gek106495

gek106495
Title Page
g
GE Industrial Systems
489
Generator Management Relay
COMMUNICATIONS GUIDE
Software Revision: 3.00
GE Publication Code: GEK-106495A
GE Multilin Part Number: 1601-0149-A2
Copyright © 2004 GE Multilin
RE
Canada L6E 1B3
Tel: (905) 294-6222
Fax: (905) 201-2098
Internet: http://www.GEindustrial.com/multilin
ISO9001:2000
EM
G
215 Anderson Avenue, Markham, Ontario
I
N
GE Multilin
D
T
GIS ERE
U LT I L
GE Multilin's Quality Management
System is registered to
ISO9001:2000
QMI # 005094
UL # A3775
Table of Contents
489
Communications Guide
Table of Contents
MODBUS PROTOCOL
Electrical Interface.................................................................................................................................. 1
Modbus RTU Description ...................................................................................................................... 1
Data Frame Format and Data Rate ....................................................................................................... 1
Data Packet Format................................................................................................................................ 2
CRC-16 Algorithm .................................................................................................................................. 3
Timing..................................................................................................................................................... 3
MODBUS FUNCTIONS
Supported Functions ............................................................................................................................. 3
Function Codes 03/04: Read Setpoints / Actual Values ...................................................................... 4
Function Code 05: Execute Operation.................................................................................................. 5
Function Code 06: Store Single Setpoint ............................................................................................. 5
Function Code 07: Read Device Status ................................................................................................ 6
Function Code 08: Loopback Test......................................................................................................... 6
Function Code 16: Store Multiple Setpoints........................................................................................ 7
Function Code 16: Performing Commands ......................................................................................... 8
Error Responses..................................................................................................................................... 8
MODBUS MEMORY MAP
Memory Map Information..................................................................................................................... 9
User-Definable Memory Map Area ...................................................................................................... 9
Event Recorder....................................................................................................................................... 9
Waveform Capture .............................................................................................................................. 10
Dual Setpoints...................................................................................................................................... 10
Passcode Operation............................................................................................................................. 10
489 Memory Map................................................................................................................................. 11
Memory Map Data Formats ................................................................................................................ 40
DNP PROTOCOL
Device Profile Document..................................................................................................................... 46
Implementation Table ......................................................................................................................... 47
Default Variations ................................................................................................................................ 48
DNP POINT LISTS
Binary Input / Binary Input Change (Objects 01/02) .......................................................................... 49
Binary / Control Relay Output Block (Objects 10/12)......................................................................... 51
Binary / Frozen Counter (Objects 20/21)............................................................................................. 52
Analog Input / Input Change (Objects 30/32) ..................................................................................... 53
GE Multilin
http://www.GEindustrial.com/multilin
i
489
Table of Contents
Communications Guide
ii
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Protocol
Communications Guide
489 Communications Guide
GE Publication Code: GEK-106495A
GE Multilin Part Number: 1601-0149-A2
Copyright © 2004 GE Multilin
Modbus Protocol
Electrical Interface
The hardware or electrical interface is one of the following: one of two 2-wire RS485
ports from the rear terminal connector or the RS232 from the front panel connector.
In a 2-wire RS485 link, data flow is bidirectional. Data flow is half-duplex for both
the RS485 and the RS232 ports. That is, data is never transmitted and received at
the same time. RS485 lines should be connected in a daisy chain configuration
(avoid star connections) with a terminating network installed at each end of the link,
i.e. at the master end and at the slave farthest from the master. The terminating
network should consist of a 120 Ω resistor in series with a 1 nF ceramic capacitor
when used with Belden 9841 RS485 wire. The value of the terminating resistors
should be equal to the characteristic impedance of the line. This is approximately
120 Ω for standard #22 AWG twisted pair wire. Shielded wire should always be used
to minimize noise. Polarity is important in RS485 communications. Each '+' terminal
of every 489 must be connected together for the system to operate. Refer to the
489 Instruction Manual for correct serial port wiring.
Modbus RTU
Description
The 489 implements a subset of the AEG Modicon Modbus RTU serial communication
standard. Many popular programmable controllers support this protocol directly with
a suitable interface card allowing direct connection of relays. Although the Modbus
protocol is hardware independent, the 489 interfaces include two 2-wire RS485
ports and one RS232 port. Modbus is a single master, multiple slave protocol
suitable for a multi-drop configuration as provided by RS485 hardware. In this
configuration up to 32 slaves can be daisy-chained together on a single
communication channel.
The 489 is always a slave; it cannot be programmed as a master. Computers or
PLCs are commonly programmed as masters. The Modbus protocol exists in two
versions: Remote Terminal Unit (RTU, binary) and ASCII. Only the RTU version is
supported by the 489. Monitoring, programming, and control functions are
performed with read/write register commands.
Data Frame Format and
Data Rate
One data frame of an asynchronous transmission to or from a 489 is default to 1
start bit, 8 data bits, and 1 stop bit. This produces a 10-bit data frame. This is
important for transmission through modems at high bit rates (11 bit data frames are
not supported by Hayes modems at bit rates of greater than 300 bps). The parity bit
is optional as odd or even. If it is programmed as odd or even, the data frame
consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit.
Modbus protocol can be implemented at any standard communication speed. The
489 RS485 ports support operation at 1200, 2400, 4800, 9600, and 19200 baud.
The front panel RS232 baud rate is fixed at 9600 baud.
GE Multilin
http://www.GEindustrial.com/multilin
1
489
Modbus Protocol
Communications Guide
Data Packet Format
A complete request/response sequence consists of the following bytes (transmitted
as separate data frames):
1.
A Master Query Message consisting of: a 1-byte Slave Address, a 1-byte Function Code, a variable number of Data Bytes depending on the Function Code,
and a 2-byte CRC code.
2.
A Slave Response Message consisting of: a 1-byte Slave Address, a 1-byte
Function Code, a variable number of Data Bytes depending on the Function
Code, and a 2-byte CRC code.
The terms Slave Address, Function Code, Data Bytes, and CRC are explained below:
•
SLAVE ADDRESS: This is the first byte of every transmission. This byte
represents the user-assigned address of the slave device that is to receive the
message sent by the master. Each slave device must be assigned a unique
address and only the addressed slave will respond to a transmission that starts
with its address. In a master request transmission the Slave Address represents
the address of the slave to which the request is being sent. In a slave response
transmission the Slave Address represents the address of the slave that is
sending the response. The RS232 port ignores the slave address, so it will
respond regardless of the value in the message. Note: A master transmission
with a Slave Address of 0 indicates a broadcast command. Broadcast commands
can be used for specific functions.
•
FUNCTION CODE: This is the second byte of every transmission. Modbus
defines function codes of 1 to 127. The 489 implements some of these
functions. In a master request transmission the Function Code tells the slave
what action to perform. In a slave response transmission if the Function Code
sent from the slave is the same as the Function Code sent from the master
indicating the slave performed the function as requested. If the high order bit of
the Function Code sent from the slave is a 1 (i.e. if the Function Code is greater
than 127) then the slave did not perform the function as requested and is
sending an error or exception response.
•
DATA BYTES: This is a variable number of bytes depending on the Function
Code. These may be actual values, setpoints, or addresses sent by the master
to the slave or vice-versa. Data is sent MSByte first followed by the LSByte.
•
CRC: This is a two byte error checking code. CRC is sent LSByte first followed
by the MSByte. The RTU version of Modbus includes a two byte CRC-16 (16-bit
cyclic redundancy check) with every transmission. The CRC-16 algorithm
essentially treats the entire data stream (data bits only; start, stop and parity
ignored) as one continuous binary number. This number is first shifted left 16
bits and then divided by a characteristic polynomial (11000000000000101B).
The 16-bit remainder of the division is appended to the end of the transmission,
LSByte first. The resulting message including CRC, when divided by the same
polynomial at the receiver will give a zero remainder if no transmission errors
have occurred.
If a 489 Modbus slave device receives a transmission in which an error is indicated
by the CRC-16 calculation, the slave device will not respond to the transmission. A
CRC-16 error indicates than one or more bytes of the transmission were received
incorrectly and thus the entire transmission should be ignored in order to avoid the
489 performing any incorrect operation. The CRC-16 calculation is an industry
standard method used for error detection. An algorithm is included here to assist
programmers in situations where no standard CRC-16 calculation routines are
available.
2
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Functions
CRC-16 Algorithm
Communications Guide
Once the following algorithm is complete, the working register “A” will contain the
CRC value to be transmitted. Note that this algorithm requires the characteristic
polynomial to be reverse bit ordered. The MSbit of the characteristic polynomial is
dropped since it does not affect the value of the remainder.
The symbols used in the algorithm are shown below:
-->
data transfer
A; Alow; Ahigh
16-bit working register; low and high order bytes of A (the 16-bit
working register)
CRC
16 bit CRC-16 result
i, j
loop counters
(+)
logical EXCLUSIVE-OR operator
N
total number of data bytes
Di
i-th data byte (i = 0 to N – 1)
G
16 bit characteristic polynomial = 1010000000000001 (binary)
with MSbit dropped and bit order reversed
shr (x)
right shift operator (the LSbit of x is shifted into a carry flag, a '0' is
shifted into the MSbit of x, all other bits are shifted right one
location)
The CRC algorithm is shown below:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Timing
FFFF (hex) --> A
0 --> i
0 --> j
Di (+) Alow --> Alow
j + 1 --> j
shr (A)
Is there a carry? No: go
Yes: G
Is j = 8?
No: go
i + 1 --> i
Is i = N?
No: go
A --> CRC
to step 8.
(+) A --> A and continue.
to 5.; Yes: continue.
to 3.; Yes: continue.
Data packet synchronization is maintained by timing constraints. The receiving
device must measure the time between the reception of characters. If three and one
half character times elapse without a new character or completion of the packet,
then the communication link must be reset (i.e. all slaves start listening for a new
transmission from the master). Thus at 9600 baud a delay of greater than 3.5 × 1 /
9600 × 10 = 3.65 ms will cause the communication link to be reset.
Modbus Functions
Supported Functions
The following functions are supported by the 489:
•
Function Codes 03 and 04: Read Setpoints and Actual Values
•
Function Code 05: Execute Operation
•
Function Code 06: Store Single Setpoint
•
Function Code 07: Read Device Status
•
Function Code 08: Loopback Test
•
Function Code 16: Store Multiple Setpoints
A detailed explanation of how the 489 implements these function codes is shown in
the following sections.
GE Multilin
http://www.GEindustrial.com/multilin
3
489
Modbus Functions
Communications Guide
Function Codes 03/04:
Read Setpoints / Actual
Values
Modbus implementation: Read Input and Holding Registers
489 Implementation: Read Setpoints and Actual Values
For the 489 Modbus implementation, these commands are used to read any setpoint
(‘holding registers’) or actual value (‘input registers’). Holding and input registers
are 16-bit (two byte) values transmitted high order byte first. Thus all 489 setpoints
and actual values are sent as two bytes. The maximum of 125 registers can be read
in one transmission. Function codes 03 and 04 are configured to read setpoints or
actual values interchangeably since some PLCs do not support both function codes.
The slave response to these function codes is the slave address, function code, a
count of the number of data bytes to follow, the data itself and the CRC. Each data
item is sent as a two byte number with the high order byte sent first. The CRC is
sent as a two byte number with the low order byte sent first.
Message Format and Example:
Request slave 11 to respond with 2 registers starting at address 0235. For this
example, the register data in these addresses is:
Address
Data
0235
0064
0236
000A
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
03
read register values
Data Starting Address
2
02 32
data starting at 0235h
Number of Setpoints
2
00 02
2 registers = 4 bytes total
CRC (low, high)
2
D5 17
computed CRC error code
Slave Response
4
Description
Bytes
Example
Slave Address
1
0B
Description
message from slave 11
Function Code
1
03
read register values
Byte Count
1
04
Data #1 (high, low)
2
00 64
value in address 0235h
Data #2 (high, low)
2
00 0A
value in address 0236h
CRC (low, high)
2
EB 91
computed CRC error code
http://www.GEindustrial.com/multilin
2 registers = 4 bytes total
GE Multilin
489
Modbus Functions
Function Code 05:
Execute Operation
Communications Guide
Modbus Implementation: Force Single Coil
489 Implementation: Execute Operation
This function code allows the master to request specific 489 command operations.
The command numbers listed in the Commands area of the memory map
correspond to operation code for function code 05. The operation commands can
also be initiated by writing to the Commands area of the memory map using
function code 16. Refer to Section Function Code 16: Store Multiple Setpoints on
page –7 for complete details.
Supported Operations:Reset 489 (operation code 1); Generator Start (operation
code 2);
Generator Stop (operation code 3); Waveform Trigger (operation code 4)
Message Format and Example:
Reset 489 (operation code 1).
Master Transmission
Bytes
Example
1
0B
Slave Address
message for slave 11
Function Code
1
05
Operation Code
2
00 01
reset command (op code 1)
Code Value
2
FF 00
perform function
CRC (low, high)
2
DD 50
computed CRC error code
Bytes
Example
1
0B
Slave Response
Slave Address
Function Code 06: Store
Single Setpoint
Description
execute operation
Description
message from slave 11
Function Code
1
05
Operation Code
2
00 01
reset command (op code 1)
execute operation
Code Value
2
FF 00
perform function
CRC (low, high)
2
DD 50
computed CRC error code
Modbus Implementation: Preset Single Register
489 Implementation: Store Single Setpoint
This command allows the master to store a single setpoint into the 489 memory.
The slave response to this function code is to echo the entire master transmission.
Message Format and Example:
Request slave 11 to store the value 01F4 in Setpoint address 1180. After the
transmission in this example is complete, Setpoints address 1180 will contain the
value 01F4.
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
06
store single setpoint
Data Starting Address
2
11 80
setpoint address 1180h
Data
2
01 F4
data for address 1180h
CRC (low, high)
2
8D A3
computed CRC error code
Slave Response
GE Multilin
Description
Bytes
Example
Slave Address
1
0B
message from slave 11
Function Code
1
06
store single setpoint
Data Starting Address
2
11 80
setpoint address 1180h
Data
2
01 F4
data for address 1180h
CRC (low, high)
2
8D A3
computed CRC error code
http://www.GEindustrial.com/multilin
Description
5
489
Modbus Functions
Communications Guide
Function Code 07: Read
Device Status
Modbus Implementation: Read Exception Status
489 Implementation: Read Device Status
This function reads the selected device status. A short message length allows for
rapid reading of status. The returned status byte has individual bits set to 1 or 0
depending on the slave device status. The 489 general status byte is shown below:
BIT
DESCRIPTION
BIT
DESCRIPTION
B0
1 TRIP relay operated = 1
B4
5 ALARM relay operated = 1
B1
2 AUXILIARY relay operated = 1
B5
6 SERVICE relay operated = 1
B2
3 AUXILIARY relay operated = 1
B6
Stopped = 1
B3
4 AUXILIARY relay operated = 1
B7
Running = 1
Note that if status is neither stopped or running, the generator is starting.
Message Format and Example:
Request status from slave 11.
Master Transmission
Bytes
Example
Slave Address
1
0B
Function Code
1
07
CRC (low, high)
2
47 42
Bytes
Example
Slave Address
1
0B
Function Code
1
07
read device status
Device Status
1
59
status = 01011001b
CRC (low, high)
2
C2 08
Slave Response
Function Code 08:
Loopback Test
Description
message for slave 11
read device status
computed CRC error code
Description
message from slave 11
computed CRC error code
Modbus Implementation: Loopback Test
489 Implementation: Loopback Test
This function is used to test the integrity of the communication link. The 489 will
echo the request.
Message Format and Example:
Loopback test from slave 11.
Master Transmission
Bytes
Example
Slave Address
1
0B
Function Code
1
08
Diagnostic Code
2
00 00
must be 0000h
Data
2
00 00
must be 0000h
CRC (low, high)
2
E0 A1
computed CRC error code
Bytes
Example
Slave Address
1
0B
Function Code
1
08
Diagnostic Code
2
00 00
must be 0000h
Data
2
00 00
must be 0000h
CRC (low, high)
2
E0 A1
computed CRC error code
Slave Response
6
http://www.GEindustrial.com/multilin
Description
message for slave 11
loopback test
Description
message from slave 11
loopback test
GE Multilin
489
Modbus Functions
Function Code 16: Store
Multiple Setpoints
Communications Guide
Modbus Implementation: Preset Multiple Registers
489 Implementation: Store Multiple Setpoints
This function code allows multiple Setpoints to be stored into the 489 memory.
Modbus “registers” are 16-bit (two byte) values transmitted high order byte first.
Thus all 489 setpoints are sent as two bytes. The maximum number of Setpoints
that can be stored in one transmission is dependent on the slave device. Modbus
allows up to a maximum of 60 holding registers to be stored. The 489 response to
this function code is to echo the slave address, function code, starting address, the
number of Setpoints stored, and the CRC.
Message Format and Example:
Request slave 11 to store the value 01F4 to Setpoint address 1180 and the value
0001 to setpoint address 1181. After the transmission in this example is complete,
489 slave 11 will have the following setpoints information stored:
Address
Data
1180
01F4
1181
0001
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
10
store setpoints
Data Starting Address
2
11 80
data starting at 1180h
Number of Setpoints
2
00 02
2 setpoints = 4 bytes total
Byte Count
1
04
Data 1
2
01 F4
data for address 1180h
Data 2
2
00 01
data for address 1181h
CRC (low, high)
2
9B 89
computed CRC error code
Bytes
Example
Slave Address
1
0B
message from slave 11
Function Code
1
10
store multiple setpoints
Data Starting Address
2
11 80
data starting at 1180h
Number of Setpoints
2
00 02
2 setpoints (4 bytes total)
CRC (low, high)
2
45 B6
computed CRC error code
Slave Response
GE Multilin
Description
http://www.GEindustrial.com/multilin
2 registers = 4 bytes
Description
7
489
Modbus Functions
Communications Guide
Function Code 16:
Performing Commands
Some PLCs may not support execution of commands using function code 5 but do
support storing multiple setpoints using function code 16. To perform this operation
using function code 16 (10h), a certain sequence of commands must be written at
the same time to the 489. The sequence consists of: Command Function register,
Command operation register and Command Data (if required). The Command
Function register must be written with the value of 5 indicating an execute operation
is requested. The Command Operation register must then be written with a valid
command operation number from the list of commands shown in the memory map.
The Command Data registers must be written with valid data if the command
operation requires data. The selected command will execute immediately upon
receipt of a valid transmission.
Message Format and Example:
Perform a 489 RESET (operation code 1).
Master Transmission
Bytes
Example
Slave Address
1
0B
message for slave 11
Function Code
1
10
store setpoints
Data Starting Address
2
00 80
setpoint address 0080h
Number of Setpoints
2
00 02
2 setpoints = 4 bytes total
Byte Count
1
04
Command Function
2
00 05
data for address 0080h
Command Function
2
00 01
data for address 0081h
CRC (low, high)
2
0B D6
computed CRC error code
Slave Response
Error Responses
Description
2 registers = 4 bytes
Bytes
Example
Slave Address
1
0B
Description
message from slave 11
Function Code
1
10
store multiple setpoints
Data Starting Address
2
00 80
setpoint address 0080h
Number of Setpoints
2
00 02
2 setpoints (4 bytes total)
CRC (low, high)
2
40 8A
computed CRC error code
When a 489 detects an error other than a CRC error, a response will be sent to the
master. The MSbit of the Function Code byte will be set to 1 (i.e. the function code
sent from the slave will be equal to the function code sent from the master plus
128). The following byte will be an exception code indicating the type of error that
occurred.
Transmissions received from the master with CRC errors will be ignored by the 489.
The slave response to an error (other than CRC error) will be:
•
SLAVE ADDRESS: 1 byte
•
FUNCTION CODE: 1 byte (with MSbit set to 1)
•
EXCEPTION CODE: 1 byte
•
CRC: 2 bytes
The 489 implements the following exception response codes.
01: ILLEGAL FUNCTION
The function code transmitted is not one of the functions supported by the 489.
02: ILLEGAL DATA ADDRESS
The address referenced in the data field transmitted by the master is not an
allowable address for the 489.
03: ILLEGAL DATA VALUE
The value referenced in the data field transmitted by the master is not within range
for the selected data address.
8
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Modbus Memory Map
Memory Map
Information
NOTE
User-Definable
Memory Map Area
The data stored in the 489 is grouped as Setpoints and Actual Values. Setpoints can
be read and written by a master computer. Actual Values are read only. All Setpoints
and Actual Values are stored as two byte values. That is, each register address is
the address of a two-byte value. Addresses are listed in hexadecimal. Data values
(Setpoint ranges, increments, and factory values) are in decimal.
Many Modbus communications drivers add 40001d to the actual address of the
register addresses. For example: if address 0h was to be read, 40001d would be the
address required by the Modbus communications driver; if address 320h (800d) was
to be read, 40801d would be the address required by the Modbus communications
driver.
The 489 contains a User Definable area in the memory map. This area allows
remapping of the addresses of all Actual Values and Setpoints registers. The User
Definable area has two sections:
1.
A Register Index area (memory map addresses 0180h to 01FCh) that contains
125 Actual Values or Setpoints register addresses.
2.
A Register area (memory map addresses 0100h to 017Ch) that contains the
data at the addresses in the Register Index.
Register data that is separated in the rest of the memory map may be remapped to
adjacent register addresses in the User Definable Registers area. This is
accomplished by writing to register addresses in the User Definable Register Index
area. This allows for improved throughput of data and can eliminate the need for
multiple read command sequences.
For example, if the values of Average Phase Current (register addresses 0412h and
0413h) and Hottest Stator RTD Temperature (register address 04A0h) are required
to be read from an 489, their addresses may be remapped as follows:
1.
Write 0412h to address 0180h (User Definable Register Index 0000) using function code 06 or 16.
2.
Write 0413h to address 0181h (User Definable Register Index 0001) using function code 06 or 16.
(Average Phase Current is a double register number)
3.
Write 04A0h to address 0182h (User Definable Register Index 0001) using function code 06 or 16.
A read (function code 03 or 04) of registers 0100h (User Definable Register 0000)
and 0101h (User Definable Register 0001) will return the Average Phase Current
and register 0102h (User Definable Register 0002) will return the Hottest Stator
RTD Temperature.
Event Recorder
The 489 event recorder data starts at address 3000h. Address 3003h is the ID
number of the event of interest (a high number representing the latest event and a
low number representing the oldest event). Event numbers start at zero each time
the event record is cleared, and count upwards. To retrieve event 1, write ‘1’ to the
Event Record Selector (3003h) and read the data from 3004h to 30E7h. To retrieve
event 2, write ‘2’ to the Event Record Selector (3003h) and read the data from
3004h to 30E7h. All 40 events may be retrieved in this manner. The time and date
stamp of each event may be used to ensure that all events have been retrieved in
order without new events corrupting the sequence of events (event 0 should be less
recent than event 1, event 1 should be less recent than event 2, etc.).
If more than 40 events have been recorded since the last time the event record was
cleared, the earliest events will not be accessible. For example, if 100 events have
been recorded (i.e., the total events since last clear in register 3002h is 100),
events 60 through 99 may be retrieved. Writing any other value to the event record
selector (register 3003h) will result in an “invalid data value” error.
GE Multilin
http://www.GEindustrial.com/multilin
9
489
Modbus Memory Map
Communications Guide
Each communications port can individually select the ID number of the event of
interest by writing address 3003h. This way the front port, rear port and auxiliary
port can read different events from the event recorder simultaneously.
Waveform Capture
The 489 stores up to 64 cycles of A/D samples in a waveform capture buffer each
time a trip occurs. The waveform capture buffer is time and date stamped and may
therefore be correlated to a trip in the event record. To access the waveform capture
memory, select the channel of interest by writing the number to the Waveform
Capture Channel Selector (30F5h). Then read the waveform capture data from
address 3100h-31BFh, and read the date, time and line frequency from addresses
30F0h-30F4h.
Each communications port can individually select a Waveform Channel Selector of
interest by writing address 30F5h. This way the front port, rear port and auxiliary
port can read different Waveform Channels simultaneously.
The channel selector must be one of the following values:
VALUE
10
SELECTED A/D SAMPLES
SCALE FACTOR
0
Phase A line current
500 counts equals 1 × CT primary
1
Phase B line current
500 counts equals 1 × CT primary
2
Phase C line current
500 counts equals 1 × CT primary
3
Neutral-End phase A current
500 counts equals 1 × CT primary
4
Neutral-End phase B current
500 counts equals 1 × CT primary
5
Neutral-End phase C current
500 counts equals 1 × CT primary
6
Ground current
500 counts equals 1 × CT primary
or 1A for 50:0.025
7
Phase A to neutral voltage
2500 counts equals 120 secondary volts
8
Phase B to neutral voltage
2500 counts equals 120 secondary volts
9
Phase C to neutral voltage
2500 counts equals 120 secondary volts
Dual Setpoints
Each communications port can individually select an Edit Setpoint Group of interest
by writing address 1342h. This way the front port, rear port and auxiliary port can
read and alter different setpoints simultaneously.
Passcode Operation
Each communications port can individually set the Passcode Access by writing
address 88h with the correct Passcode. This way the front port, rear port and
auxiliary port have individual access to the setpoints. Reading address 0203h,
COMMUNICATIONS SETPOINT ACCESS register, provides the user with the current state
of access for the given port. A value of 1 read from this register indicates that the
user has full access rights to changing setpoints from the given port.
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
489 Memory Map
Communications Guide
The 489 memory map is shown in the following table.
Table 1: 489 Memory Map (Sheet 1 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
PRODUCT ID
0000
GE Multilin Product Device Code
0001
Product Hardware Revision
0002
Product Software Revision
0003
Product Modification Number
0010
Boot Program Revision
0011
Boot Program Modification Number
N/A
N/A
N/A
F1
32
1 to 26
1
N/A
F15
N/A
N/A
N/A
N/A
N/A
F16
0 to 999
1
N/A
F1
N/A
N/A
N/A
N/A
F16
N/A
0 to 999
1
N/A
F1
N/A
MODEL ID
0040
Order Code
0 to 16
1
N/A
F22
N/A
0050
489 Revision
12
1
N/A
F22
N/A
0060
489 Boot Revision
12
1
N/A
F22
N/A
COMMANDS
0080
Command Function Code (always 5)
0081
Command Operation Code
5
N/A
N/A
F1
N/A
0 to 65535
1
N/A
F1
0088
Communications Port Passcode
N/A
0 to 99999999
1
N/A
F12
00F0
0
Time (Broadcast)
N/A
N/A
N/A
F24
N/A
00F2
Date (Broadcast)
N/A
N/A
N/A
F18
N/A
USER_MAP / USER MAP VALUES
0100
User Map Value #1 of 125...
5
N/A
N/A
F1
N/A
017C
User Map Value #125 of 125
5
N/A
N/A
F1
N/A
USER_MAP / USER MAP ADDRESSES
0180
User Map Address #1 of 125...
0 to 3FFF
1
hex
F1
0
01FC
User Map Address #125 of 125
0 to 3FFF
1
hex
F1
0
1
STATUS / GENERATOR STATUS
0200
Generator Status
0 to 4
1
–
F133
0201
Generator Thermal Capacity Used
0 to 100
1
%
F1
0
0202
Estimated Trip Time On Overload
0 to 65535 1
1
s
F12
–1
0203
Communications Setpoint Access
0 to 1
N/A
N/A
F126
N/A
0
STATUS / SYSTEM STATUS
0210
General Status
0211
Output Relay Status
0212
Active Setpoint Group
0 to 65535
1
N/A
F140
0 to 63
1
N/A
F141
0
0 to 1
1
N/A
F118
0
STATUS / LAST TRIP DATA
0220
Cause of Last Trip
0 to 139
1
–
F134
0
0221
Time of Last Trip
N/A
N/A
N/A
F19
N/A
0223
Date of Last Trip
N/A
0225
Tachometer Pretrip
0226
Phase A Pre-Trip Current
0228
Phase B Pre-Trip Current
0 to 999999
1
Amps
F12
0
022A
Phase C Pre-Trip Current
0 to 999999
1
Amps
F12
0
022C
Phase A Pre-Trip Differential Current
0 to 999999
1
Amps
F12
0
022E
Phase B Pre-Trip Differential Current
0 to 999999
1
Amps
F12
0
0230
Phase C Pre-Trip Differential Current
0 to 999999
1
Amps
F12
0
0 to 2000
1
% FLA
F1
0
0 to 20000000
1
A
F14
0
0232
Negative Sequence Current Pretrip
0233
Ground Current Pretrip
N/A
N/A
N/A
F18
0 to 7200
1
RPM
F1
0
0 to 999999
1
Amps
F12
0
0235
Pre-Trip A-B Voltage
0 to 50000
1
Volts
F1
0
0236
Pre-Trip B-C Voltage
0 to 50000
1
Volts
F1
0
0237
Pre-Trip C-A Voltage
0 to 50000
1
Volts
F1
0
0238
Frequency Pretrip
0 to 12000
1
Hz
F3
0
023B
Real Power (MW) Pretrip
–2000000 to 2000000
1
MW
F13
0
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
11
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 2 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
023D
Reactive Power Mvar Pretrip
–2000000 to 2000000
1
Mvar
F13
0
023F
Apparent Power MVA Pretrip
0 to 2000000
1
MVA
F13
0
0241
Last Trip Data Stator RTD
1 to 12
1
–
F1
1
0242
Hottest Stator RTD Temperature
–50 to 250
1
°C
F4
0
0243
Last Trip Data Bearing RTD
1 to 12
1
–
F1
1
0244
Hottest Bearing RTD Temperature
–50 to 250
1
°C
F4
0
0245
Last Trip Data Other RTD
1 to 12
1
–
F1
1
0246
Hottest Other RTD Temperature
–50 to 250
1
°C
F4
0
0247
Last Trip Data Ambient RTD
1 to 12
1
–
F1
1
0248
Hottest Ambient RTD Temperature
–50 to 250
1
°C
F4
0
0249
Analog Input 1 Pretrip
–50000 to 50000
1
Units
F12
0
024B
Analog Input 2 Pretrip
–50000 to 50000
1
Units
F12
0
024D
Analog Input 3 Pretrip
–50000 to 50000
1
Units
F12
0
024F
Analog Input 4 Pretrip
–50000 to 50000
1
Units
F12
0
025C
Hottest Stator RTD Temperature
–50 to 250
1
°F
F4
0
025D
Hottest Bearing RTD Temperature
–50 to 250
1
°F
F4
0
025E
Hottest Other RTD Temperature
–50 to 250
1
°F
F4
0
025F
Hottest Ambient RTD Temperature
–50 to 250
1
°F
F4
0
0260
Neutral Voltage Fundamental Pretrip
0 to 250000
1
Volts
F10
0
0262
Neutral Voltage 3rd Harmonic Pretrip
0 to 250000
1
Volts
F10
0
0 to 65535
1
ohms s
F2
0
0 to 359
1
°
F1
0
0
0264
Pre-Trip Vab/Iab
0265
Pre-Trip Vab/Iab Angle
STATUS / TRIP PICKUPS
0280
Input A Pickup
0 to 4
1
–
F123
0281
Input B Pickup
0 to 4
1
–
F123
0
0282
Input C Pickup
0 to 4
1
–
F123
0
0283
Input D Pickup
0 to 4
1
–
F123
0
0284
Input E Pickup
0 to 4
1
–
F123
0
0285
Input F Pickup
0 to 4
1
–
F123
0
0286
Input G Pickup
0 to 4
1
–
F123
0
0287
Sequential Trip Pickup
0 to 4
1
–
F123
0
0288
Field-Breaker Discrepancy Pickup
0 to 4
1
–
F123
0
0289
Tachometer Pickup
0 to 4
1
–
F123
0
028A
Offline Overcurrent Pickup
0 to 4
1
–
F123
0
028B
Inadvertent Energization Pickup
0 to 4
1
–
F123
0
028C
Phase Overcurrent Pickup
0 to 4
1
–
F123
0
028D
Negative Sequence Overcurrent Pickup
0 to 4
1
–
F123
0
028E
Ground Overcurrent Pickup
0 to 4
1
–
F123
0
028F
Phase Differential Pickup
0 to 4
1
–
F123
0
0290
Undervoltage Pickup
0 to 4
1
–
F123
0
0291
Overvoltage Pickup
0 to 4
1
–
F123
0
0292
Volts/Hertz Pickup
0 to 4
1
–
F123
0
0293
Phase Reversal Pickup
0 to 4
1
–
F123
0
0294
Underfrequency Pickup
0 to 4
1
–
F123
0
0295
Overfrequency Pickup
0 to 4
1
–
F123
0
0296
Neutral Overvoltage (Fundamental) Pickup
0 to 4
1
–
F123
0
0297
Neutral Undervoltage (3rd Harmonic) Pickup
0 to 4
1
–
F123
0
0298
Reactive Power Pickup
0 to 4
1
–
F123
0
0299
Reverse Power Pickup
0 to 4
1
–
F123
0
029A
Low Forward Power Pickup
0 to 4
1
–
F123
0
029B
Thermal Model Pickup
0 to 4
1
–
F123
0
029C
RTD #1 Pickup
0 to 4
1
–
F123
0
029D
RTD #2 Pickup
0 to 4
1
–
F123
0
1, 2, 3
12
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 3 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
029E
RTD #3 Pickup
0 to 4
1
–
F123
0
029F
RTD #4 Pickup
0 to 4
1
–
F123
0
02A0
RTD #5 Pickup
0 to 4
1
–
F123
0
02A1
RTD #6 Pickup
0 to 4
1
–
F123
0
02A2
RTD #7 Pickup
0 to 4
1
–
F123
0
02A3
RTD #8 Pickup
0 to 4
1
–
F123
0
02A4
RTD #9 Pickup
0 to 4
1
–
F123
0
02A5
RTD #10 Pickup
0 to 4
1
–
F123
0
02A6
RTD #11 Pickup
0 to 4
1
–
F123
0
02A7
RTD #12 Pickup
0 to 4
1
–
F123
0
02A8
Analog Input 1 Pickup
0 to 4
1
–
F123
0
02A9
Analog Input 2 Pickup
0 to 4
1
–
F123
0
02AA
Analog Input 3 Pickup
0 to 4
1
–
F123
0
02AB
Analog Input 4 Pickup
0 to 4
1
–
F123
0
02AC
Loss Of Excitation 1 Pickup
0 to 4
1
–
F123
0
02AD
Loss Of Excitation 2 Pickup
0 to 4
1
–
F123
0
02AE
Ground Directional Pickup
0 to 4
1
–
F123
0
02AF
High-Set Phase Overcurrent Pickup
0 to 4
1
–
F123
0
02B0
Distance Zone 1 Pickup
0 to 4
1
–
F123
0
02B1
Distance Zone 2 Pickup
0 to 4
1
–
F123
0
0
STATUS / ALARM PICKUPS
0300
Input A Pickup
0 to 4
1
–
F123
0301
Input B Pickup
0 to 4
1
–
F123
0
0302
Input C Pickup
0 to 4
1
–
F123
0
0303
Input D Pickup
0 to 4
1
–
F123
0
0304
Input E Pickup
0 to 4
1
–
F123
0
0305
Input F Pickup
0 to 4
1
–
F123
0
0306
Input G Pickup
0 to 4
1
–
F123
0
0307
Tachometer Pickup
0 to 4
1
–
F123
0
0308
Overcurrent Pickup
0 to 4
1
–
F123
0
0309
Negative Sequence Overcurrent Pickup
0 to 4
1
–
F123
0
030A
Ground Overcurrent Pickup
0 to 4
1
–
F123
0
030B
Undervoltage Pickup
0 to 4
1
–
F123
0
030C
Overvoltage Pickup
0 to 4
1
–
F123
0
030D
Volts/Hertz Pickup
0 to 4
1
–
F123
0
030E
Underfrequency Pickup
0 to 4
1
–
F123
0
030F
Overfrequency Pickup
0 to 4
1
–
F123
0
0310
Neutral Overvoltage (Fundamental) Pickup
0 to 4
1
–
F123
0
0311
Neutral Undervoltage (3rd harmonic) Pickup
0 to 4
1
–
F123
0
0312
Reactive Power Pickup
0 to 4
1
–
F123
0
0313
Reverse Power Pickup
0 to 4
1
–
F123
0
0314
Low Forward Power Pickup
0 to 4
1
–
F123
0
0315
RTD #1 Pickup
0 to 4
1
–
F123
0
0316
RTD #2 Pickup
0 to 4
1
–
F123
0
0317
RTD #3 Pickup
0 to 4
1
–
F123
0
0318
RTD #4 Pickup
0 to 4
1
–
F123
0
0319
RTD #5 Pickup
0 to 4
1
–
F123
0
031A
RTD #6 Pickup
0 to 4
1
–
F123
0
031B
RTD #7 Pickup
0 to 4
1
–
F123
0
031C
RTD #8 Pickup
0 to 4
1
–
F123
0
031D
RTD #9 Pickup
0 to 4
1
–
F123
0
031E
RTD #10 Pickup
0 to 4
1
–
F123
0
031F
RTD #11 Pickup
0 to 4
1
–
F123
0
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
13
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 4 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
0320
RTD #12 Pickup
0 to 4
1
–
F123
0
0321
Open Sensor Pickup
0 to 4
1
–
F123
0
0322
Short/Low Temperature Pickup
0 to 4
1
–
F123
0
0323
Thermal Model Pickup
0 to 4
1
–
F123
0
0324
Trip Counter Pickup
0 to 4
1
–
F123
0
0325
Breaker Failure Pickup
0 to 4
1
–
F123
0
0326
Trip Coil Monitor Pickup
0 to 4
1
–
F123
0
0327
VT Fuse Failure Pickup
0 to 4
1
–
F123
0
0328
Current Demand Pickup
0 to 4
1
–
F123
0
0329
MW Demand Pickup
0 to 4
1
–
F123
0
032A
Mvar Demand Pickup
0 to 4
1
–
F123
0
032B
MVA Demand Pickup
0 to 4
1
–
F123
0
032C
Analog Input 1 Pickup
0 to 4
1
–
F123
0
032D
Analog Input 2 Pickup
0 to 4
1
–
F123
0
032E
Analog Input 3 Pickup
0 to 4
1
–
F123
0
032F
Analog Input 4 Pickup
0 to 4
1
–
F123
0
0330
Not Programmed Pickup
0 to 4
1
–
F123
0
0331
Simulation Mode Pickup
0 to 4
1
–
F123
0
0332
Output Relays Forced Pickup
0 to 4
1
–
F123
0
0333
Analog Output Forced Pickup
0 to 4
1
–
F123
0
0334
Test Switch Shorted Pickup
0 to 4
1
–
F123
0
0335
Ground Directional Pickup
0 to 4
1
–
F123
0
0336
IRIG-B Alarm Pickup
0 to 4
1
–
F123
0
0337
Generator Running Hour Pickup
0 to 4
1
–
F123
0
0
STATUS / DIGITAL INPUTS
0380
Access Switch State
0 to 1
1
–
F207
0381
Breaker Status Switch State
0 to 1
1
–
F207
0
0382
Assignable Digital Input 1 State
0 to 1
1
–
F207
0
0383
Assignable Digital Input 2 State
0 to 1
1
–
F207
0
0384
Assignable Digital Input 3 State
0 to 1
1
–
F207
0
0385
Assignable Digital Input 4 State
0 to 1
1
–
F207
0
0386
Assignable Digital Input 5 State
0 to 1
1
–
F207
0
0387
Assignable Digital Input 6 State
0 to 1
1
–
F207
0
0388
Assignable Digital Input 7 State
0 to 1
1
–
F207
0
0389
Trip Coil Supervision
0 to 1
1
–
F132
0
STATUS / REAL TIME CLOCK
03FC
Date (Read-only)
N/A
N/A
N/A
F18
N/A
03FE
Time (Read-only)
N/A
N/A
N/A
F19
N/A
METERING DATA / CURRENT METERING
0400
Phase A Output Current
0 to 999999
1
Amps
F12
0
0402
Phase B Output Current
0 to 999999
1
Amps
F12
0
0404
Phase C Output Current
0 to 999999
1
Amps
F12
0
0406
Phase A Neutral-Side Current
0 to 999999
1
Amps
F12
0
0408
Phase B Neutral-Side Current
0 to 999999
1
Amps
F12
0
040A
Phase C Neutral-Side Current
0 to 999999
1
Amps
F12
0
040C
Phase A Differential Current
0 to 999999
1
Amps
F12
0
040E
Phase B Differential Current
0 to 999999
1
Amps
F12
0
0410
Phase C Differential Current
0 to 999999
1
Amps
F12
0
0412
Average Phase Current
0 to 999999
1
Amps
F12
0
0414
Generator Load
0 to 2000
1
% FLA
F1
0
0415
Negative Sequence Current
0416
Ground Current
0420
Phase A Current Angle
1, 2, 3
14
0 to 2000
1
% FLA
F1
0
0 to 10000
1
Amps
F14
0
0 to 359
1
°
F1
0
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 5 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
0421
Phase B Current Angle
0 to 359
1
°
F1
DEFAULT
0
0422
Phase C Current Angle
0 to 359
1
°
F1
0
0423
Phase A Neutral-Side Angle
0 to 359
1
°
F1
0
0424
Phase B Neutral-Side Angle
0 to 359
1
°
F1
0
0425
Phase C Neutral-Side Angle
0 to 359
1
°
F1
0
0426
Phase A Differential Angle
0 to 359
1
°
F1
0
0427
Phase B Differential Angle
0 to 359
1
°
F1
0
0428
Phase C Differential Angle
0 to 359
1
°
F1
0
0429
Ground Current Angle
0 to 359
1
°
F1
0
METERING DATA / VOLTAGE METERING
0440
Phase A-B Voltage
0 to 50000
1
Volts
F1
0
0441
Phase B-C Voltage
0 to 50000
1
Volts
F1
0
0442
Phase C-A Voltage
0 to 50000
1
Volts
F1
0
0443
Average Line Voltage
0 to 50000
1
Volts
F1
0
0444
Phase A-N Voltage
0 to 50000
1
Volts
F1
0
0445
Phase B-N Voltage
0 to 50000
1
Volts
F1
0
0446
Phase C-N Voltage
0 to 50000
1
Volts
F1
0
0447
Average Phase Voltage
0 to 50000
1
Volts
F1
0
0448
Per Unit Measurement Of V/Hz2
0 to 200
1
–
F3
0
0449
Frequency
500 to 9000
1
Hz
F3
0
044A
Neutral Voltage Fund
0 to 250000
1
Volts
F10
0
044C
Neutral Voltage 3rd Harmonic
0 to 250000
1
Volts
F10
0
044E
Neutral Voltage Vp3 3rd Harmonic
0 to 250000
1
Volts
F10
0
0450
Vab/Iab
0 to 65535
1
ohms
F2
0
0451
Vab/Iab Angle
0 to 359
1
°
F1
0
0460
Line A-B Voltage Angle
0 to 359
1
°
F1
0
0461
Line B-C Voltage Angle
0 to 359
1
°
F1
0
0462
Line C-A Voltage Angle
0 to 359
1
°
F1
0
0463
Phase A-N Voltage Angle
0 to 359
1
°
F1
0
0464
Phase B-N Voltage Angle
0 to 359
1
°
F1
0
0465
Phase C-N Voltage Angle
0 to 359
1
°
F1
0
0466
Neutral Voltage Angle
0 to 359
1
–
F1
0
METERING DATA / POWER METERING
0480
Power Factor
–100 to 100
1
–
F6
0
0481
Real Power
–2000000 to 2000000
1
MW
F13
0
0483
Reactive Power
–2000000 to 2000000
1
Mvar
F13
0
0485
Apparent Power
–2000000 to 200000
1
MVA
F13
0
0487
Positive Watthours
0 to 4000000000
1
MWh
F13
0
0489
Positive Varhours
0 to 4000000000
1
Mvarh
F13
0
048B
Negative Varhours
0 to 4000000000
1
Mvarh
F13
0
METERING DATA / TEMPERATURE
04A0
Hottest Stator RTD
1 to 12
1
–
F1
0
04A1
Hottest Stator RTD Temperature
–52 to 250
1
°C
F4
–52
04A2
RTD #1 Temperature
–52 to 251
1
°C
F4
–52
04A3
RTD #2 Temperature
–52 to 251
1
°C
F4
–52
04A4
RTD #3 Temperature
–52 to 251
1
°C
F4
–52
04A5
RTD #4 Temperature
–52 to 251
1
°C
F4
–52
04A6
RTD #5 Temperature
–52 to 251
1
°C
F4
–52
04A7
RTD #6 Temperature
–52 to 251
1
°C
F4
–52
04A8
RTD #7 Temperature
–52 to 251
1
°C
F4
–52
04A9
RTD #8 Temperature
–52 to 251
1
°C
F4
–52
04AA
RTD #9 Temperature
–52 to 251
1
°C
F4
–52
04AB
RTD #10 Temperature
–52 to 251
1
°C
F4
–52
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
15
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 6 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
04AC
RTD #11 Temperature
–52 to 251
1
°C
F4
–52
04AD
RTD #12 Temperature
–52 to 251
1
°C
F4
–52
04C0
Hottest Stator RTD Temperature
–52 to 250
1
°F
F4
–52
04C1
RTD #1 Temperature
–52 to 251
1
°F
F4
–52
04C2
RTD #2 Temperature
–52 to 251
1
°F
F4
–52
04C3
RTD #3 Temperature
–52 to 251
1
°F
F4
–52
04C4
RTD #4 Temperature
–52 to 251
1
°F
F4
–52
04C5
RTD #5 Temperature
–52 to 251
1
°F
F4
–52
04C6
RTD #6 Temperature
–52 to 251
1
°F
F4
–52
04C7
RTD #7 Temperature
–52 to 251
1
°F
F4
–52
04C8
RTD #8 Temperature
–52 to 251
1
°F
F4
–52
04C9
RTD #9 Temperature
–52 to 251
1
°F
F4
–52
04CA
RTD #10 Temperature
–52 to 251
1
°F
F4
–52
04CB
RTD #11 Temperature
–52 to 251
1
°F
F4
–52
04CC
RTD #12 Temperature
–52 to 251
1
°F
F4
–52
METERING DATA / DEMAND METERING
04E0
Current Demand
0 to 1000000
1
Amps
F12
0
04E2
MW Demand
0 to 2000000
1
MW
F13
0
04E4
Mvar Demand
0 to 2000000
1
Mvar
F13
0
04E6
MVA Demand
0 to 2000000
1
MVA
F13
0
04E8
Peak Current Demand
0 to 1000000
1
Amps
F12
0
04EA
Peak MW Demand
0 to 2000000
1
MW
F13
0
04EC
Peak Mvar Demand
0 to 2000000
1
Mvar
F13
0
04EE
Peak MVA Demand
0 to 2000000
1
MVA
F13
0
METERING DATA / ANALOG INPUTS
0500
Analog Input 1
–50000 to 50000
1
Units
F12
0
0502
Analog Input 2
–50000 to 50000
1
Units
F12
0
0504
Analog Input 3
–50000 to 50000
1
Units
F12
0
0506
Analog Input 4
–50000 to 50000
1
Units
F12
0
0 to 7200
1
RPM
F1
0
0
METERING DATA / SPEED
0520
Tachometer
LEARNED DATA / PARAMETER AVERAGES
0600
Average Generator Load
0 to 2000
1
%FLA
F1
0601
Average Negative Sequence Current
0 to 2000
1
%FLA
F1
0
0602
Average Phase-Phase Voltage
0 to 50000
1
V
F1
0
0603
Reserved
–
–
–
–
–
0604
Reserved
–
–
–
–
–
LEARNED DATA / RTD MAXIMUMS
0620
RTD #1 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0621
RTD #2 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0622
RTD #3 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0623
RTD #4 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0624
RTD #5 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0625
RTD #6 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0626
RTD #7 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0627
RTD #8 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0628
RTD #9 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0629
RTD #10 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
062A
RTD #11 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
062B
RTD #12 Maximum Temperature (Celsius)
–52 to 251
1
°C
F4
–52
0640
RTD #1 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0641
RTD #2 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0642
RTD #3 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
1, 2, 3
16
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 7 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
0643
RTD #4 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0644
RTD #5 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0645
RTD #6 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0646
RTD #7 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0647
RTD #8 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0648
RTD #9 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
0649
RTD #10 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
064A
RTD #11 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
064B
RTD #12 Maximum Temperature (Fahrenheit)
–52 to 251
1
°F
F4
–52
LEARNED DATA / ANALOG IN MIN/MAX
0700
Analog Input 1 Minimum
–50000 to 50000
1
Units
F12
0
0702
Analog Input 1 Maximum
–50000 to 50000
1
Units
F12
0
0704
Analog Input 2 Minimum
–50000 to 50000
1
Units
F12
0
0706
Analog Input 2 Maximum
–50000 to 50000
1
Units
F12
0
0708
Analog Input 3 Minimum
–50000 to 50000
1
Units
F12
0
070A
Analog Input 3 Maximum
–50000 to 50000
1
Units
F12
0
070C
Analog Input 4 Minimum
–50000 to 50000
1
Units
F12
0
070E
Analog Input 4 Maximum
–50000 to 50000
1
Units
F12
0
MAINTENANCE / TRIP COUNTERS
077F
Trip Counters Last Cleared (Date)
N/A
N/A
N/A
F18
N/A
0781
Total Number of Trips
0 to 50000
1
–
F1
0
0782
Digital Input Trips
0 to 50000
1
–
F1
0
0783
Sequential Trips
0 to 50000
1
–
F1
0
0784
Field-Breaker Discrepancy Trips
0 to 50000
1
–
F1
0
0785
Tachometer Trips
0 to 50000
1
–
F1
0
0786
Offline Overcurrent Trips
0 to 50000
1
–
F1
0
0787
Phase Overcurrent Trips
0 to 50000
1
–
F1
0
0788
Negative Sequence Overcurrent Trips
0 to 50000
1
–
F1
0
0789
Ground Overcurrent Trips
0 to 50000
1
–
F1
0
078A
Phase Differential Trips
0 to 50000
1
–
F1
0
078B
Undervoltage Trips
0 to 50000
1
–
F1
0
078C
Overvoltage Trips
0 to 50000
1
–
F1
0
078D
Volts/Hertz Trips
0 to 50000
1
–
F1
0
078E
Phase Reversal Trips
0 to 50000
1
–
F1
0
078F
Underfrequency Trips
0 to 50000
1
–
F1
0
0790
Overfrequency Trips
0 to 50000
1
–
F1
0
0791
Neutral Overvoltage (Fundamental) Trips
0 to 50000
1
–
F1
0
0792
Neutral Undervoltage (3rd Harmonic) Trips
0 to 50000
1
–
F1
0
0793
Reactive Power Trips
0 to 50000
1
–
F1
0
0794
Reverse Power Trips
0 to 50000
1
–
F1
0
0795
Low Forward Power Trips
0 to 50000
1
–
F1
0
0796
Stator RTD Trips
0 to 50000
1
–
F1
0
0797
Bearing RTD Trips
0 to 50000
1
–
F1
0
0798
Other RTD Trips
0 to 50000
1
–
F1
0
0799
Ambient RTD Trips
0 to 50000
1
–
F1
0
079A
Thermal Model Trips
0 to 50000
1
–
F1
0
079B
Inadvertent Energization Trips
0 to 50000
1
–
F1
0
079C
Analog Input 1 Trips
0 to 50000
1
–
F1
0
079D
Analog Input 2 Trips
0 to 50000
1
–
F1
0
079E
Analog Input 3 Trips
0 to 50000
1
–
F1
0
079F
Analog Input 4 Trips
0 to 50000
1
–
F1
0
0 to 50000
1
–
F1
0
MAINTENANCE / GENERAL COUNTERS
07A0
1, 2, 3
Number Of Breaker Operations
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
17
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 8 of 29)
ADDR NAME
07A1
Number Of Thermal Resets
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 50000
1
–
F1
0
0
MAINTENANCE / TRIP COUNTERS
07A2
Loss Of Excitation 1 Trips
0 to 50000
1
–
F1
07A3
Loss Of Excitation 2 Trips
0 to 50000
1
–
F1
0
07A4
Ground Directional Trips
0 to 50000
1
–
F1
0
07A5
High-Set Phase Overcurrent Trips
0 to 50000
1
–
F1
0
07A6
Distance Zone 1 Trips
0 to 50000
1
–
F1
0
07A7
Distance Zone 2 Trips
0 to 50000
1
–
F1
0
0 to 1000000
1
h
F12
0
0 to 65535
1
N/A
F136
N/A
3000000 to 9999999
1
–
F12
3000000
MAINTENANCE / TIMERS
07E0
Generator Hours Online
PRODUCT INFO. / 489 MODEL INFO.
0800
Order Code
0801
489 Serial Number
PRODUCT INFO. / CALIBRATION INFO.
0810
Original Calibration Date
N/A
N/A
N/A
F18
N/A
0812
Last Calibration Date
N/A
N/A
N/A
F18
N/A
5 to 100
5
s
F2
20
10 to 900
1
s
F1
300
1 to 90
1
min
F1
15
0 to 1
1
–
F100
0
1 to 100
1
%
F1
25
489 SETUP / PREFERENCES
1000
Default Message Cycle Time
1001
Default Message Timeout
1003
Parameter Averages Calculation Period
1004
Temperature Display
1005
Waveform Trigger Position
1006
Passcode (Write Only)
1008
Encrypted Passcode (Read Only)
100A
Waveform Memory Buffer
0 to 99999999
1
N/A
F12
0
N/A
N/A
N/A
F12
N/A
1 to 16
1
–
F1
8
489 SETUP / SERIAL PORTS
1010
Slave Address
1 to 254
1
–
F1
254
1011
Computer RS485 Baud Rate
0 to 5
1
–
F101
4
1012
Computer RS485 Parity
0 to 2
1
–
F102
0
1013
Auxiliary RS485 Baud Rate
0 to 5
1
–
F101
4
1014
Auxiliary RS485 Parity
0 to 2
1
–
F102
0
1015
Port Used For DNP
0 to 3
1
–
F216
0
1016
DNP Slave Address
0 to 255
1
–
F1
255
1017
DNP Turnaround Time
0 to 100
10
ms
F1
10
489 SETUP / REAL TIME CLOCK
1030
Date
N/A
N/A
N/A
F18
N/A
1032
Time
N/A
N/A
N/A
F19
N/A
1034
IRIG-B Type
0 to 2
1
–
F220
0
_
489 SETUP / MESSAGE SCRATCHPAD
1060
Scratchpad
0 to 40
1
–
F22
1080
Scratchpad
0 to 40
1
–
F22
_
10A0
Scratchpad
0 to 40
1
–
F22
_
10C0
Scratchpad
0 to 40
1
–
F22
_
10E0
Scratchpad
0 to 40
1
–
F22
_
489 SETUP / CLEAR DATA
1130
Clear Last Trip Data
0 to 1
1
–
F103
0
1131
Clear Mwh And Mvarh Meters
0 to 1
1
–
F103
0
1132
Clear Peak Demand Data
0 to 1
1
–
F103
0
1133
Clear RTD Maximums
0 to 1
1
–
F103
0
1134
Clear Analog Inputs Minimums/Maximums
0 to 1
1
–
F103
0
1135
Clear Trip Counters
0 to 1
1
–
F103
0
1136
Clear Event Record
0 to 1
1
–
F103
0
1137
Clear Generator Information
0 to 1
1
–
F103
0
1, 2, 3
18
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 9 of 29)
ADDR NAME
1138
Clear Breaker Information
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 1
1
–
F103
0
10 to 50001
1
Amps
F1
50001
0 to 3
1
–
F104
0
10 to 10000
1
: 1 / :5
F1
100
SYSTEM SETUP / CURRENT SENSING
1180
Phase CT Primary
1181
Ground CT
1182
Ground CT Ratio
SYSTEM SETUP / VOLTAGE SENSING
11A0
VT Connection Type
0 to 2
1
–
F106
0
11A1
Voltage Transformer Ratio
100 to 30000
1
:1
F3
500
11A2
Neutral VT Ratio
100 to 24000
1
:1
F3
500
11A3
Neutral Voltage Transformer
0 to 1
1
–
F103
0
50 to 2000001
1
MVA
F13
2000001
5 to 100
1
–
F3
100
100 to 30001
1
V
F1
30001
SYSTEM SETUP / GEN. PARAMETERS
11C0
Generator Rated MVA
11C2
Generator Rated Power Factor
11C3
Generator Voltage Phase-Phase
11C4
Generator Nominal Frequency
0 to 3
1
Hz
F107
0
11C5
Generator Phase Sequence
0 to 2
1
–
F124
0
0
SYSTEM SETUP / SERIAL START/STOP
11E0
Serial Start/Stop Initiation
0 to 1
1
–
F105
11E1
Startup Initiation Relays (2-5)
1 to 4
1
–
F50
0
11E2
Shutdown Initiation Relays (1-4)
0 to 3
1
–
F50
0
11E3
Serial Start/Stop Events
0 to 1
1
–
F105
0
0 to 1
1
–
F209
1
0
DIGITAL INPUTS / BREAKER STATUS
1200
Breaker Status
DIGITAL INPUTS / GENERAL INPUT A
1210
Assign Digital Input
0 to 7
1
–
F210
1211
Asserted Digital Input State
0 to 1
1
–
F131
0
1212
Input Name
0 to 12
1
–
F22
_
1218
Block Input From Online
0 to 5000
1
s
F1
0
1219
General Input A Control
0 to 1
1
–
F105
0
121A
Pulsed Control Relay Dwell Time
0 to 250
1
s
F2
0
121B
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
121C
General Input A Control Events
0 to 1
1
–
F105
0
121D
General Input A Alarm
0 to 2
1
–
F115
0
121E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
121F
General Input A Alarm Delay
1 to 50000
1
s
F2
50
1220
General Input A Alarm Events
0 to 1
1
–
F105
0
1221
General Input A Trip
0 to 2
1
–
F115
0
1222
Assign Trip Relays (1-4)
1223
General Input A Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
0
DIGITAL INPUTS / GENERAL INPUT B
1230
Assign Digital Input
0 to 7
1
–
F210
1231
Asserted Digital Input State
0 to 1
1
–
F131
0
1232
Input Name
0 to 12
1
–
F22
_
1238
Block Input From Online
0 to 5000
1
s
F1
0
1239
General Input B Control
0 to 1
1
–
F105
0
123A
Pulsed Control Relay Dwell Time
0 to 250
1
s
F2
0
123B
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
123C
General Input B Control Events
0 to 1
1
–
F105
0
123D
General Input B Alarm
0 to 2
1
–
F115
0
123E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
123F
General Input B Alarm Delay
1 to 50000
1
s
F2
50
1240
General Input B Alarm Events
0 to 1
1
–
F105
0
1241
General Input B Trip
0 to 2
1
–
F115
0
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
19
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 10 of 29)
ADDR NAME
1242
Assign Trip Relays (1-4)
1243
General Input B Trip Delay
RANGE
STEP
UNITS
FORMAT
0 to 3
1
–
F50
DEFAULT
1
1 to 50000
1
s
F2
50
0
DIGITAL INPUTS / GENERAL INPUT C
1250
Assign Digital Input
0 to 7
1
–
F210
1251
Asserted Digital Input State
0 to 1
1
–
F131
0
1252
Input Name
0 to 12
1
–
F22
_
1258
Block Input From Online
0 to 5000
1
s
F1
0
1259
General Input C Control
0 to 1
1
–
F105
0
125A
Pulsed Control Relay Dwell Time
0 to 250
1
s
F2
0
125B
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
125C
General Input C Control Events
0 to 1
1
–
F105
0
125D
General Input C Alarm
0 to 2
1
–
F115
0
125E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
125F
General Input C Alarm Delay
1 to 50000
1
s
F2
50
1260
General Input C Alarm Events
0 to 1
1
–
F105
0
1261
General Input C Trip
0 to 2
1
–
F115
0
1262
Assign Trip Relays (1-4)
1263
General Input C Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
0
DIGITAL INPUTS / GENERAL INPUT D
1270
Assign Digital Input
0 to 7
1
–
F210
1271
Asserted Digital Input State
0 to 1
1
–
F131
0
1272
Input Name
0 to 12
1
–
F22
_
1278
Block Input From Online
0 to 5000
1
s
F1
0
1279
General Input D Control
0 to 1
1
–
F105
0
127A
Pulsed Control Relay Dwell Time
0 to 250
1
s
F2
0
127B
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
127C
General Input D Control Events
0 to 1
1
–
F105
0
127D
General Input D Alarm
0 to 2
1
–
F115
0
127E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
127F
General Input D Alarm Delay
1 to 50000
1
s
F2
50
1280
General Input D Alarm Events
0 to 1
1
–
F105
0
1281
General Input D Trip
0 to 2
1
–
F115
0
1282
Assign Trip Relays (1-4)
1283
General Input D Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
0
DIGITAL INPUTS / GENERAL INPUT E
1290
Assign Digital Input
0 to 7
1
–
F210
1291
Asserted Digital Input State
0 to 1
1
–
F131
0
1292
Input Name
0 to 12
1
–
F22
_
1298
Block Input From Online
0 to 5000
1
s
F1
0
1299
General Input E Control
0 to 1
1
–
F105
0
129A
Pulsed Control Relay Dwell Time
0 to 250
1
s
F2
0
129B
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
129C
General Input E Control Events
0 to 1
1
–
F105
0
129D
General Input E Alarm
0 to 2
1
–
F115
0
129E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
50
129F
General Input E Alarm Delay
1 to 50000
1
s
F2
12A0
General Input E Alarm Events
0 to 1
1
–
F105
0
12A1
General Input E Trip
0 to 2
1
–
F115
0
12A2
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
12A3
General Input E Trip Delay
1 to 50000
1
s
F2
50
DIGITAL INPUTS / GENERAL INPUT F
12B0
Assign Digital Input
0 to 7
1
–
F210
0
12B1
Asserted Digital Input State
0 to 1
1
–
F131
0
1, 2, 3
20
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 11 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
12B2
Input Name
0 to 12
1
–
F22
_
12B8
Block Input From Online
0 to 5000
1
s
F1
0
12B9
General Input F Control
12BA
Pulsed Control Relay Dwell Time
12BB
12BC
DEFAULT
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
General Input F Control Events
0 to 1
1
–
F105
0
12BD
General Input F Alarm
0 to 2
1
–
F115
0
12BE
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
12BF
General Input F Alarm Delay
1 to 50000
1
s
F2
50
12C0
General Input F Alarm Events
0 to 1
1
–
F105
0
12C1
General Input F Trip
0 to 2
1
–
F115
0
12C2
Assign Trip Relays (1-4)
12C3
General Input F Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
DIGITAL INPUTS / GENERAL INPUT G
12D0
Assign Digital Input
0 to 7
1
–
F210
0
12D1
Asserted Digital Input State
0 to 1
1
–
F131
0
0 to 12
1
–
F22
_
0 to 5000
1
s
F1
0
12D2
Input Name
12D8
Block Input From Online
12D9
General Input G Control
12DA
Pulsed Control Relay Dwell Time
0 to 1
1
–
F105
0
0 to 250
1
s
F2
0
12DB
12DC
Assign Control Relays (1-5)
0 to 4
1
–
F50
0
General Input G Control Events
0 to 1
1
–
F105
0
12DD
General Input G Alarm
0 to 2
1
–
F115
0
12DE
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
50
12DF
General Input G Alarm Delay
1 to 50000
1
s
F2
12E0
General Input G Alarm Events
0 to 1
1
–
F105
0
12E1
General Input G Trip
0 to 2
1
–
F115
0
12E2
Assign Trip Relays (1-4)
12E3
General Input G Trip Delay
0 to 3
1
–
F50
1
1 to 50000
1
s
F2
50
0 to 7
1
–
F210
0
0 to 7
1
–
F210
0
0 to 7
1
–
F210
0
0
DIGITAL INPUTS / REMOTE RESET
1300
Assign Digital Input
DIGITAL INPUTS / TEST INPUT
1310
Assign Digital Input
DIGITAL INPUTS / THERMAL RESET
1320
Assign Digital Input
DIGITAL INPUTS / DUAL SETPOINTS
1340
Assign Digital Input
0 to 7
1
–
F210
1341
Active Setpoint Group
0 to 1
1
–
F118
0
1342
Edit Setpoint Group
0 to 1
1
–
F118
0
0
DIGITAL INPUTS / SEQUENTIAL TRIP
1360
Assign Digital Input
0 to 7
1
–
F210
1361
Sequential Trip Type
0 to 1
1
–
F206
0
1362
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1363
Sequential Trip Level
2 to 99
1
× Rated MW
F14
5
1365
Sequential Trip Delay
2 to 1200
1
s
F2
10
0
DIGITAL INPUTS / FIELD-BREAKER DISCREPANCY
1380
Assign Digital Input
0 to 7
1
–
F210
1381
Field Status Contact
0 to 1
1
–
F109
0
1382
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1383
Field-Breaker Discrepancy Trip Delay
1 to 5000
1
s
F2
10
DIGITAL INPUTS / TACHOMETER
13A0
Assign Digital Input
13A1
Rated Speed
1, 2, 3
0 to 7
1
–
F210
0
100 to 3600
1
RPM
F1
3600
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
21
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 12 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
13A2
Tachometer Alarm
0 to 2
1
–
F115
DEFAULT
0
13A3
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
13A4
Tachometer Alarm Speed
101 to 175
1
%Rated
F1
110
13A5
Tachometer Alarm Delay
1 to 250
1
s
F1
1
13A6
Tachometer Alarm Events
0 to 1
1
–
F105
0
13A7
Tachometer Trip
0 to 2
1
–
F115
0
13A8
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
13A9
Tachometer Trip Speed
101 to 175
1
%Rated
F1
110
13AA
Tachometer Trip Delay
1 to 250
1
s
F1
1
0 to 7
1
–
F210
0
DIGITAL INPUTS / WAVEFORM CAPTURE
13C0
Assign Digital Input
DIGITAL INPUTS / GROUND SWITCH STATUS
13D0
Assign Digital Input
0 to 7
1
–
F210
0
13D1
Ground Switch Contact
0 to 1
1
–
F109
0
OUTPUT RELAYS / RELAY RESET MODE
1400
1 Trip
0 to 1
1
–
F117
0
1401
2 Auxiliary
0 to 1
1
–
F117
0
1402
3 Auxiliary
0 to 1
1
–
F117
0
1403
4 Auxiliary
0 to 1
1
–
F117
0
1404
5 Alarm
0 to 1
1
–
F117
0
1405
6 Service
0 to 1
1
–
F117
0
CURRENT ELEMENTS / OVERCURRENT ALARM
1500
Overcurrent Alarm
0 to 2
1
–
F115
0
1501
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1502
Overcurrent Alarm Level
10 to 150
1
× FLA
F3
101
1503
Overcurrent Alarm Delay
1 to 2500
1
s
F2
1
1504
Overcurrent Alarm Events
0 to 1
1
–
F105
0
CURRENT ELEMENTS / OFFLINE OVERCURRENT
1520
Offline Overcurrent Trip
0 to 2
1
–
F115
0
1521
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1522
Offline Overcurrent Pickup
1523
Offline Overcurrent Trip Delay
5 to 100
1
× CT
F3
5
3 to 99
1
Cycles
F1
5
CURRENT ELEMENTS / INADVERTENT ENERGIZATION
1540
Inadvertent Energize Trip
0 to 2
1
–
F115
0
1541
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1542
Arming Signal
0 to 1
1
–
F202
0
1543
Inadvertent Energize O/c Pickup
5 to 300
1
× CT
F3
5
1544
Inadvertent Energize Pickup
50 to 99
1
× Rated V
F3
50
CURRENT ELEMENTS / PHASE OVERCURRENT
1600
Phase Overcurrent Trip
0 to 2
1
–
F115
0
1601
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1602
Enable Voltage Restraint
0 to 1
1
–
F103
0
1603
Phase Overcurrent Pickup
15 to 2000
1
× CT
F3
1000
1604
Curve Shape
0 to 13
1
–
F128
0
1605
FlexCurve™ Trip Time at 1.03 × PU
0 to 65535
1
ms
F1
65535
1606
FlexCurve™ Trip Time at 1.05 × PU
0 to 65535
1
ms
F1
65535
1607
FlexCurve™ Trip Time at 1.10 × PU
0 to 65535
1
ms
F1
65535
1608
FlexCurve™ Trip Time at 1.20 × PU
0 to 65535
1
ms
F1
65535
1609
FlexCurve™ Trip Time at 1.30 × PU
0 to 65535
1
ms
F1
65535
160A
FlexCurve™ Trip Time at 1.40 × PU
0 to 65535
1
ms
F1
65535
160B
FlexCurve™ Trip Time at 1.50 × PU
0 to 65535
1
ms
F1
65535
160C
FlexCurve™ Trip Time at 1.60 × PU
0 to 65535
1
ms
F1
65535
160D
FlexCurve™ Trip Time at 1.70 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
22
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 13 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
160E
FlexCurve™ Trip Time at 1.80 × PU
0 to 65535
1
ms
F1
65535
160F
FlexCurve™ Trip Time at 1.90 × PU
0 to 65535
1
ms
F1
65535
1610
FlexCurve™ Trip Time at 2.00 × PU
0 to 65535
1
ms
F1
65535
1611
FlexCurve™ Trip Time at 2.10 × PU
0 to 65535
1
ms
F1
65535
1612
FlexCurve™ Trip Time at 2.20 × PU
0 to 65535
1
ms
F1
65535
1613
FlexCurve™ Trip Time at 2.30 × PU
0 to 65535
1
ms
F1
65535
1614
FlexCurve™ Trip Time at 2.40 × PU
0 to 65535
1
ms
F1
65535
1615
FlexCurve™ Trip Time at 2.50 × PU
0 to 65535
1
ms
F1
65535
1616
FlexCurve™ Trip Time at 2.60 × PU
0 to 65535
1
ms
F1
65535
1617
FlexCurve™ Trip Time at 2.70 × PU
0 to 65535
1
ms
F1
65535
1618
FlexCurve™ Trip Time at 2.80 × PU
0 to 65535
1
ms
F1
65535
1619
FlexCurve™ Trip Time at 2.90 × PU
0 to 65535
1
ms
F1
65535
161A
FlexCurve™ Trip Time at 3.00 × PU
0 to 65535
1
ms
F1
65535
161B
FlexCurve™ Trip Time at 3.10 × PU
0 to 65535
1
ms
F1
65535
161C
FlexCurve™ Trip Time at 3.20 × PU
0 to 65535
1
ms
F1
65535
161D
FlexCurve™ Trip Time at 3.30 × PU
0 to 65535
1
ms
F1
65535
161E
FlexCurve™ Trip Time at 3.40 × PU
0 to 65535
1
ms
F1
65535
161F
FlexCurve™ Trip Time at 3.50 × PU
0 to 65535
1
ms
F1
65535
1620
FlexCurve™ Trip Time at 3.60 × PU
0 to 65535
1
ms
F1
65535
1621
FlexCurve™ Trip Time at 3.70 × PU
0 to 65535
1
ms
F1
65535
1622
FlexCurve™ Trip Time at 3.80 × PU
0 to 65535
1
ms
F1
65535
1623
FlexCurve™ Trip Time at 3.90 × PU
0 to 65535
1
ms
F1
65535
1624
FlexCurve™ Trip Time at 4.00 × PU
0 to 65535
1
ms
F1
65535
1625
FlexCurve™ Trip Time at 4.10 × PU
0 to 65535
1
ms
F1
65535
1626
FlexCurve™ Trip Time at 4.20 × PU
0 to 65535
1
ms
F1
65535
1627
FlexCurve™ Trip Time at 4.30 × PU
0 to 65535
1
ms
F1
65535
1628
FlexCurve™ Trip Time at 4.40 × PU
0 to 65535
1
ms
F1
65535
1629
FlexCurve™ Trip Time at 4.50 × PU
0 to 65535
1
ms
F1
65535
162A
FlexCurve™ Trip Time at 4.60 × PU
0 to 65535
1
ms
F1
65535
162B
FlexCurve™ Trip Time at 4.70 × PU
0 to 65535
1
ms
F1
65535
162C
FlexCurve™ Trip Time at 4.80 × PU
0 to 65535
1
ms
F1
65535
162D
FlexCurve™ Trip Time at 4.90 × PU
0 to 65535
1
ms
F1
65535
162E
FlexCurve™ Trip Time at 5.00 × PU
0 to 65535
1
ms
F1
65535
162F
FlexCurve™ Trip Time at 5.10 × PU
0 to 65535
1
ms
F1
65535
1630
FlexCurve™ Trip Time at 5.20 × PU
0 to 65535
1
ms
F1
65535
1631
FlexCurve™ Trip Time at 5.30 × PU
0 to 65535
1
ms
F1
65535
1632
FlexCurve™ Trip Time at 5.40 × PU
0 to 65535
1
ms
F1
65535
1633
FlexCurve™ Trip Time at 5.50 × PU
0 to 65535
1
ms
F1
65535
1634
FlexCurve™ Trip Time at 5.60 × PU
0 to 65535
1
ms
F1
65535
1635
FlexCurve™ Trip Time at 5.70 × PU
0 to 65535
1
ms
F1
65535
1636
FlexCurve™ Trip Time at 5.80 × PU
0 to 65535
1
ms
F1
65535
1637
FlexCurve™ Trip Time at 5.90 × PU
0 to 65535
1
ms
F1
65535
1638
FlexCurve™ Trip Time at 6.00 × PU
0 to 65535
1
ms
F1
65535
1639
FlexCurve™ Trip Time at 6.50 × PU
0 to 65535
1
ms
F1
65535
163A
FlexCurve™ Trip Time at 7.00 × PU
0 to 65535
1
ms
F1
65535
163B
FlexCurve™ Trip Time at 7.50 × PU
0 to 65535
1
ms
F1
65535
163C
FlexCurve™ Trip Time at 8.00 × PU
0 to 65535
1
ms
F1
65535
163D
FlexCurve™ Trip Time at 8.50 × PU
0 to 65535
1
ms
F1
65535
163E
FlexCurve™ Trip Time at 9.00 × PU
0 to 65535
1
ms
F1
65535
163F
FlexCurve™ Trip Time at 9.50 × PU
0 to 65535
1
ms
F1
65535
1640
FlexCurve™ Trip Time at 10.0 × PU
0 to 65535
1
ms
F1
65535
1641
FlexCurve™ Trip Time at 10.5 × PU
0 to 65535
1
ms
F1
65535
1642
FlexCurve™ Trip Time at 11.0 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
23
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 14 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
1643
FlexCurve™ Trip Time at 11.5 × PU
0 to 65535
1
ms
F1
65535
1644
FlexCurve™ Trip Time at 12.0 × PU
0 to 65535
1
ms
F1
65535
1645
FlexCurve™ Trip Time at 12.5 × PU
0 to 65535
1
ms
F1
65535
1646
FlexCurve™ Trip Time at 13.0 × PU
0 to 65535
1
ms
F1
65535
1647
FlexCurve™ Trip Time at 13.5 × PU
0 to 65535
1
ms
F1
65535
1648
FlexCurve™ Trip Time at 14.0 × PU
0 to 65535
1
ms
F1
65535
1649
FlexCurve™ Trip Time at 14.5 × PU
0 to 65535
1
ms
F1
65535
164A
FlexCurve™ Trip Time at 15.0 × PU
0 to 65535
1
ms
F1
65535
164B
FlexCurve™ Trip Time at 15.5 × PU
0 to 65535
1
ms
F1
65535
164C
FlexCurve™ Trip Time at 16.0 × PU
0 to 65535
1
ms
F1
65535
164D
FlexCurve™ Trip Time at 16.5 × PU
0 to 65535
1
ms
F1
65535
164E
FlexCurve™ Trip Time at 17.0 × PU
0 to 65535
1
ms
F1
65535
164F
FlexCurve™ Trip Time at 17.5 × PU
0 to 65535
1
ms
F1
65535
1650
FlexCurve™ Trip Time at 18.0 × PU
0 to 65535
1
ms
F1
65535
1651
FlexCurve™ Trip Time at 18.5 × PU
0 to 65535
1
ms
F1
65535
1652
FlexCurve™ Trip Time at 19.0 × PU
0 to 65535
1
ms
F1
65535
1653
FlexCurve™ Trip Time at 19.5 × PU
0 to 65535
1
ms
F1
65535
1654
FlexCurve™ Trip Time at 20.0 × PU
1655
Overcurrent Curve Multiplier
1657
Overcurrent Curve Reset
1658
Voltage Lower Limit
0 to 65535
1
ms
F1
65535
0 to 100000
1
–
F14
100
0 to 1
1
–
F201
0
10 to 60
1
%
F1
10
CURRENT ELEMENTS / NEGATIVE SEQUENCE
1700
Negative Sequence Alarm
0 to 2
1
–
F115
0
1701
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1702
Negative Sequence Alarm Pickup
3 to 100
1
%FLA
F1
3
1703
Negative Sequence Alarm Delay
1 to 1000
1
s
F2
50
1704
Negative Sequence Alarm Events
0 to 1
1
–
F105
0
1705
Negative Sequence Overcurrent Trip
0 to 2
1
–
F115
0
1706
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1707
Negative Sequence Overcurrent Trip Pickup
3 to 100
1
%FLA
F1
8
1708
Negative Sequence Overcurrent Constant K
1 to 100
1
–
F1
1
1709
Negative Sequence Overcurrent Maximum Time
10 to 1000
1
s
F1
1000
170A
Negative Sequence Overcurrent Reset Rate
0 to 9999
1
s
F2
2270
CURRENT ELEMENTS / GROUND O/C
1720
Ground Overcurrent Alarm
0 to 2
1
–
F115
0
1721
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1722
Ground Overcurrent Alarm Pickup
5 to 2000
1
× CT
F3
20
1723
Ground Overcurrent Alarm Delay
0 to 100
1
Cycles
F1
0
1724
Ground Overcurrent Alarm Events
0 to 1
1
–
F105
0
1725
Ground Overcurrent Trip
0 to 2
1
–
F115
0
1726
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1727
Ground Overcurrent Trip Pickup
5 to 2000
1
× CT
F3
20
1728
Curve Shape
1729
FlexCurve™ Trip Time at 1.03 × PU
0 to 13
1
–
F128
0
0 to 65535
1
ms
F1
65535
172A
FlexCurve™ Trip Time at 1.05 × PU
0 to 65535
1
ms
F1
65535
172B
FlexCurve™ Trip Time at 1.10 × PU
0 to 65535
1
ms
F1
65535
172C
FlexCurve™ Trip Time at 1.20 × PU
0 to 65535
1
ms
F1
65535
172D
FlexCurve™ Trip Time at 1.30 × PU
0 to 65535
1
ms
F1
65535
172E
FlexCurve™ Trip Time at 1.40 × PU
0 to 65535
1
ms
F1
65535
172F
FlexCurve™ Trip Time at 1.50 × PU
0 to 65535
1
ms
F1
65535
1730
FlexCurve™ Trip Time at 1.60 × PU
0 to 65535
1
ms
F1
65535
1731
FlexCurve™ Trip Time at 1.70 × PU
0 to 65535
1
ms
F1
65535
1732
FlexCurve™ Trip Time at 1.80 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
24
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 15 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
1733
FlexCurve™ Trip Time at 1.90 × PU
0 to 65535
1
ms
F1
65535
1734
FlexCurve™ Trip Time at 2.00 × PU
0 to 65535
1
ms
F1
65535
1735
FlexCurve™ Trip Time at 2.10 × PU
0 to 65535
1
ms
F1
65535
1736
FlexCurve™ Trip Time at 2.20 × PU
0 to 65535
1
ms
F1
65535
1737
FlexCurve™ Trip Time at 2.30 × PU
0 to 65535
1
ms
F1
65535
1738
FlexCurve™ Trip Time at 2.40 × PU
0 to 65535
1
ms
F1
65535
1739
FlexCurve™ Trip Time at 2.50 × PU
0 to 65535
1
ms
F1
65535
173A
FlexCurve™ Trip Time at 2.60 × PU
0 to 65535
1
ms
F1
65535
173B
FlexCurve™ Trip Time at 2.70 × PU
0 to 65535
1
ms
F1
65535
173C
FlexCurve™ Trip Time at 2.80 × PU
0 to 65535
1
ms
F1
65535
173D
FlexCurve™ Trip Time at 2.90 × PU
0 to 65535
1
ms
F1
65535
173E
FlexCurve™ Trip Time at 3.00 × PU
0 to 65535
1
ms
F1
65535
173F
FlexCurve™ Trip Time at 3.10 × PU
0 to 65535
1
ms
F1
65535
1740
FlexCurve™ Trip Time at 3.20 × PU
0 to 65535
1
ms
F1
65535
1741
FlexCurve™ Trip Time at 3.30 × PU
0 to 65535
1
ms
F1
65535
1742
FlexCurve™ Trip Time at 3.40 × PU
0 to 65535
1
ms
F1
65535
1743
FlexCurve™ Trip Time at 3.50 × PU
0 to 65535
1
ms
F1
65535
1744
FlexCurve™ Trip Time at 3.60 × PU
0 to 65535
1
ms
F1
65535
1745
FlexCurve™ Trip Time at 3.70 × PU
0 to 65535
1
ms
F1
65535
1746
FlexCurve™ Trip Time at 3.80 × PU
0 to 65535
1
ms
F1
65535
1747
FlexCurve™ Trip Time at 3.90 × PU
0 to 65535
1
ms
F1
65535
1748
FlexCurve™ Trip Time at 4.00 × PU
0 to 65535
1
ms
F1
65535
1749
FlexCurve™ Trip Time at 4.10 × PU
0 to 65535
1
ms
F1
65535
174A
FlexCurve™ Trip Time at 4.20 × PU
0 to 65535
1
ms
F1
65535
174B
FlexCurve™ Trip Time at 4.30 × PU
0 to 65535
1
ms
F1
65535
174C
FlexCurve™ Trip Time at 4.40 × PU
0 to 65535
1
ms
F1
65535
174D
FlexCurve™ Trip Time at 4.50 × PU
0 to 65535
1
ms
F1
65535
174E
FlexCurve™ Trip Time at 4.60 × PU
0 to 65535
1
ms
F1
65535
174F
FlexCurve™ Trip Time at 4.70 × PU
0 to 65535
1
ms
F1
65535
1750
FlexCurve™ Trip Time at 4.80 × PU
0 to 65535
1
ms
F1
65535
1751
FlexCurve™ Trip Time at 4.90 × PU
0 to 65535
1
ms
F1
65535
1752
FlexCurve™ Trip Time at 5.00 × PU
0 to 65535
1
ms
F1
65535
1753
FlexCurve™ Trip Time at 5.10 × PU
0 to 65535
1
ms
F1
65535
1754
FlexCurve™ Trip Time at 5.20 × PU
0 to 65535
1
ms
F1
65535
1755
FlexCurve™ Trip Time at 5.30 × PU
0 to 65535
1
ms
F1
65535
1756
FlexCurve™ Trip Time at 5.40 × PU
0 to 65535
1
ms
F1
65535
1757
FlexCurve™ Trip Time at 5.50 × PU
0 to 65535
1
ms
F1
65535
1758
FlexCurve™ Trip Time at 5.60 × PU
0 to 65535
1
ms
F1
65535
1759
FlexCurve™ Trip Time at 5.70 × PU
0 to 65535
1
ms
F1
65535
175A
FlexCurve™ Trip Time at 5.80 × PU
0 to 65535
1
ms
F1
65535
175B
FlexCurve™ Trip Time at 5.90 × PU
0 to 65535
1
ms
F1
65535
175C
FlexCurve™ Trip Time at 6.00 × PU
0 to 65535
1
ms
F1
65535
175D
FlexCurve™ Trip Time at 6.50 × PU
0 to 65535
1
ms
F1
65535
175E
FlexCurve™ Trip Time at 7.00 × PU
0 to 65535
1
ms
F1
65535
175F
FlexCurve™ Trip Time at 7.50 × PU
0 to 65535
1
ms
F1
65535
1760
FlexCurve™ Trip Time at 8.00 × PU
0 to 65535
1
ms
F1
65535
1761
FlexCurve™ Trip Time at 8.50 × PU
0 to 65535
1
ms
F1
65535
1762
FlexCurve™ Trip Time at 9.00 × PU
0 to 65535
1
ms
F1
65535
1763
FlexCurve™ Trip Time at 9.50 × PU
0 to 65535
1
ms
F1
65535
1764
FlexCurve™ Trip Time at 10.0 × PU
0 to 65535
1
ms
F1
65535
1765
FlexCurve™ Trip Time at 10.5 × PU
0 to 65535
1
ms
F1
65535
1766
FlexCurve™ Trip Time at 11.0 × PU
0 to 65535
1
ms
F1
65535
1767
FlexCurve™ Trip Time at 11.5 × PU
0 to 65535
1
ms
F1
65535
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
25
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 16 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
1768
FlexCurve™ Trip Time at 12.0 × PU
0 to 65535
1
ms
F1
65535
1769
FlexCurve™ Trip Time at 12.5 × PU
0 to 65535
1
ms
F1
65535
176A
FlexCurve™ Trip Time at 13.0 × PU
0 to 65535
1
ms
F1
65535
176B
FlexCurve™ Trip Time at 13.5 × PU
0 to 65535
1
ms
F1
65535
176C
FlexCurve™ Trip Time at 14.0 × PU
0 to 65535
1
ms
F1
65535
176D
FlexCurve™ Trip Time at 14.5 × PU
0 to 65535
1
ms
F1
65535
176E
FlexCurve™ Trip Time at 15.0 × PU
0 to 65535
1
ms
F1
65535
176F
FlexCurve™ Trip Time at 15.5 × PU
0 to 65535
1
ms
F1
65535
1770
FlexCurve™ Trip Time at 16.0 × PU
0 to 65535
1
ms
F1
65535
1771
FlexCurve™ Trip Time at 16.5 × PU
0 to 65535
1
ms
F1
65535
1772
FlexCurve™ Trip Time at 17.0 × PU
0 to 65535
1
ms
F1
65535
1773
FlexCurve™ Trip Time at 17.5 × PU
0 to 65535
1
ms
F1
65535
1774
FlexCurve™ Trip Time at 18.0 × PU
0 to 65535
1
ms
F1
65535
1775
FlexCurve™ Trip Time at 18.5 × PU
0 to 65535
1
ms
F1
65535
1776
FlexCurve™ Trip Time at 19.0 × PU
0 to 65535
1
ms
F1
65535
1777
FlexCurve™ Trip Time at 19.5 × PU
0 to 65535
1
ms
F1
65535
1778
FlexCurve™ Trip Time at 20.0 × PU
0 to 65535
1
ms
F1
65535
0 to 100000
1
–
F14
100
0 to 1
1
–
F201
0
1779
Overcurrent Curve Multiplier
177B
Overcurrent Curve Reset
CURRENT ELEMENTS / PHASE DIFFERENTIAL
17E0
Phase Differential Trip
0 to 2
1
–
F115
0
17E1
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
17E2
Differential Trip Minimum Pickup
5 to 100
1
× CT
F3
10
17E3
Differential Trip Slope 1
1 to 100
1
%
F1
10
17E4
Differential Trip Slope 2
1 to 100
1
%
F1
20
17E5
Differential Trip Delay
0 to 100
1
cycles
F1
0
CURRENT ELEMENTS / GROUND DIRECTIONAL
1800
Supervise With Digital Input
0 to 1
1
–
F103
1
1801
Ground Directional MTA
0 to 3
1
–
F217
0
1802
Ground Directional Alarm
0 to 2
1
–
F115
0
1803
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1804
Ground Directional Alarm Pickup
5 to 2000
1
× CT
F3
5
1805
Ground Directional Alarm Delay
1 to 1200
1
s
F2
30
1806
Ground Directional Alarm Events
0 to 1
1
–
F105
0
1807
Ground Directional Trip
0 to 2
1
–
F115
0
1808
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1809
Ground Directional Trip Pickup
5 to 2000
1
× CT
F3
5
180A
Ground Directional Trip Delay
1 to 1200
1
s
F2
30
CURRENT ELEMENTS / HIGH-SET PHASE OVERCURRENT
1830
High-Set Phase Overcurrent Trip
0 to 2
1
–
F115
0
1831
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
1832
High-Set Phase Overcurrent Pickup
15 to 2000
1
× CT
F3
500
1833
High-Set Phase Overcurrent Delay
0 to 10000
1
s
F3
100
VOLTAGE ELEMENTS / UNDERVOLTAGE
2000
Undervoltage Alarm
0 to 2
1
–
F115
0
2001
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2002
Undervoltage Alarm Pickup
50 to 99
1
× Rated
F3
85
2003
Undervoltage Alarm Delay
2 to 1200
1
s
F2
30
2004
Undervoltage Alarm Events
0 to 1
1
–
F105
0
2005
Undervoltage Trip
0 to 2
1
–
F115
0
2006
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2007
Undervoltage Trip Pickup
50 to 99
1
× Rated
F3
80
2008
Undervoltage Trip Delay
2 to 100
1
s
F2
10
1, 2, 3
26
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 17 of 29)
ADDR NAME
2009
Undervoltage Curve Reset Rate
200A
Undervoltage Curve Element
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 9999
1
s
F2
14
0 to 1
1
–
F208
0
VOLTAGE ELEMENTS / OVERVOLTAGE
2020
Overvoltage Alarm
0 to 2
1
–
F115
0
2021
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2022
Overvoltage Alarm Pickup
101 to 150
1
× Rated
F3
115
2023
Overvoltage Alarm Delay
1 to 1200
1
s
F2
30
2024
Overvoltage Alarm Events
0 to 1
1
–
F105
0
2025
Overvoltage Trip
0 to 2
1
–
F115
0
2026
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2027
Overvoltage Trip Pickup
101 to 150
1
× Rated
F3
120
2028
Overvoltage Trip Delay
2029
Overvoltage Curve Reset Rate
202A
Overvoltage Curve Element
1 to 100
1
s
F2
10
0 to 9999
1
s
F2
14
0 to 1
1
–
F208
0
VOLTAGE ELEMENTS / VOLTS/HERTZ
2040
Volts/Hertz Alarm
0 to 2
1
–
F115
0
2041
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2042
Volts/Hertz Alarm Pickup
50 to 199
1
× Nominal
F3
100
2043
Volts/Hertz Alarm Delay
1 to 1500
1
s
F2
30
2044
Volts/Hertz Alarm Events
0 to 1
1
–
F105
0
2045
Volts/Hertz Trip
0 to 2
1
–
F115
0
0 to 3
1
–
F50
1
50 to 199
1
× Nominal
F3
100
2046
Assign Trip Relays (1-4)
2047
Volts/Hertz Trip Pickup
2048
Volts/Hertz Trip Delay
1 to 1500
1
s
F2
10
2049
Volts/Hertz Curve Reset Rate
0 to 9999
1
s
F2
14
204A
Volts/Hertz Trip Element
0 to 3
1
–
F211
0
VOLTAGE ELEMENTS / PHASE REVERSAL
2060
Phase Reversal Trip
0 to 2
1
–
F115
0
2061
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
VOLTAGE ELEMENTS / UNDERFREQUENCY
2080
Block Underfrequency From Online
2081
Voltage Level Cutoff
0 to 5
1
s
F1
1
50 to 99
1
× Rated
F3
50
2082
2083
Underfrequency Alarm
0 to 2
1
–
F115
0
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2084
2085
Underfrequency Alarm Level
2000 to 6000
1
Hz
F3
5950
Underfrequency Alarm Delay
1 to 50000
1
s
F2
50
2086
Underfrequency Alarm Events
0 to 1
1
–
F105
0
2087
Underfrequency Trip
0 to 2
1
–
F115
0
0 to 3
1
–
F50
1
2000 to 6000
1
Hz
F3
5950
2088
Assign Trip Relays (1-4)
2089
Underfrequency Trip Level 1
208A
Underfrequency Trip Delay 1
1 to 50000
1
s
F2
600
208B
Underfrequency Trip Level 2
2000 to 6000
1
Hz
F3
5800
208C
Underfrequency Trip Delay 2
1 to 50000
1
s
F2
300
VOLTAGE ELEMENTS / OVERFREQUENCY
20A0
Block Overfrequency From Online
20A1
Voltage Level Cutoff
20A2
Overfrequency Alarm
0 to 2
20A3
Assign Alarm Relays (2-5)
1 to 4
20A4
Overfrequency Alarm Level
2501 to 7000
20A5
Overfrequency Alarm Delay
1 to 50000
20A6
Overfrequency Alarm Events
20A7
20A8
1, 2, 3
0 to 5
1
s
F1
1
50 to 99
1
× Rated
F3
50
1
–
F115
0
1
–
F50
16
1
Hz
F3
6050
1
s
F2
50
0 to 1
1
–
F105
0
Overfrequency Trip
0 to 2
1
–
F115
0
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
27
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 18 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
20A9
Overfrequency Trip Level 1
2501 to 7000
1
Hz
F3
6050
20AA
Overfrequency Trip Delay 1
1 to 50000
1
s
F2
600
20AB
Overfrequency Trip Level 2
2501 to 7000
1
Hz
F3
6200
20AC
Overfrequency Trip Delay 2
1 to 50000
1
s
F2
300
VOLTAGE ELEMENTS / NEUTRAL OVERVOLTAGE (FUNDAMENTAL)
20C0
Neutral Overvoltage Alarm
0 to 2
1
–
F115
0
20C1
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
20C2
Neutral Overvoltage Alarm Level
20 to 1000
1
Vsec.
F2
30
20C3
Neutral Overvoltage Alarm Delay
1 to 1200
1
s
F2
10
20C4
Neutral Overvoltage Alarm Events
0 to 1
1
–
F105
0
20C5
Neutral Overvoltage Trip
0 to 2
1
–
F115
0
20C6
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20C7
Neutral Overvoltage Trip Level
20 to 1000
1
V
F2
50
20C8
Neutral Overvoltage Trip Delay
1 to 1200
1
s
F2
10
20C9
Supervise With Digital Input
0 to 1
1
–
F103
0
20CA
Neutral Overvoltage Curve Reset Rate
0 to 9999
1
s
F2
0
20CB
Neutral Overvoltage Trip Element
0 to 1
1
–
F208
1
VOLTAGE ELEMENTS / NEUTRAL UNDERVOLTAGE (3rd HARMONIC)
20E0
Low Power Blocking Level
2 to 99
1
× Rated MW
F14
5
20E2
Low Voltage Blocking Level
50 to 100
1
× Rated
F3
75
20E3
Neutral Undervoltage Alarm
0 to 2
1
–
F115
0
20E4
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
20E5
Neutral Undervoltage Alarm Level
5 to 200
1
V
F2
5
20E6
Neutral Undervoltage Alarm Delay
5 to 120
1
s
F1
30
20E7
Neutral Undervoltage Alarm Events
0 to 1
1
–
F105
0
20E8
Neutral Undervoltage Trip
0 to 2
1
–
F115
0
20E9
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
20EA
Neutral Undervoltage Trip Level
5 to 200
1
V
F2
10
20EB
Neutral Undervoltage Trip Delay
5 to 120
1
s
F1
30
VOLTAGE ELEMENTS / LOSS OF EXCITATION
2100
Enable Voltage Supervision
2101
Voltage Level
0 to 1
1
–
F103
0
70 to 100
1
× rated
F3
70
2102
Circle 1 Trip
0 to 2
2103
Assign Circle 1 Trip Relays (1-4)
0 to 3
1
–
F115
0
1
–
F50
1
2104
Circle 1 Diameter
25 to 3000
2105
Circle 1 Offset
10 to 3000
1
Ωs
F2
250
1
Ωs
F2
2106
Circle 1 Trip Delay
1 to 100
25
1
s
F2
2107
Circle 2 Trip
50
0 to 2
1
–
F115
2108
Assign Circle 2 Trip Relays (1-4)
0
0 to 3
1
–
F50
1
2109
Circle 2 Diameter
210A
Circle 2 Offset
25 to 3000
1
Ωs
F2
350
10 to 3000
1
Ωs
F2
210B
Circle 2 Trip Delay
1 to 100
25
1
s
F2
50
VOLTAGE ELEMENTS / DISTANCE ELEMENT
2130
Step Up Transformer Setup
0 to 1
1
–
F219
0
2131
Fuse Failure Supervision
0 to 1
1
–
F105
0
2132
Zone 1 Trip
0 to 2
1
–
F115
0
2133
Assign Zone 1 Trip Relays (1-4)
0 to 3
1
–
F50
1
2134
Zone 1 Reach
1 to 5000
1
Ωs
F2
100
2135
Zone 1 Angle
50 to 85
1
°
F1
75
2136
Zone 1 Trip Delay
0 to 1500
1
s
F2
4
2137
Zone 2 Trip
0 to 2
1
–
F115
0
2138
Assign Zone 2 Trip Relays (1-4)
0 to 3
1
–
F50
1
2139
Zone 2 Reach
1 to 5000
1
Ωs
F2
100
1, 2, 3
28
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 19 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
213A
Zone 2 Angle
50 to 85
1
°
F1
75
213B
Zone 2 Trip Delay
0 to 1500
1
s
F2
20
1
POWER ELEMENTS / REACTIVE POWER
2200
Block Mvar Element From Online
0 to 5000
1
s
F1
2201
Reactive Power Alarm
0 to 2
1
–
F115
0
2202
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2203
Positive Mvar Alarm Level 3
Negative Mvar Alarm Level 3
2 to 201
1
x rated
F14
85
2205
2 to 201
1
x rated
F14
85
2207
Negative Mvar Alarm Delay
2 to 1200
1
s
F2
10
2208
Reactive Power Alarm Events
0 to 1
1
–
F105
0
2209
Reactive Power Trip
0 to 2
1
–
F115
0
220A
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
220B
Positive Mvar Trip Level 3
2 to 201
1
Mvar
F14
80
220D
Negative Mvar Trip Level 3
2 to 201
1
Mvar
F14
80
220F
Negative Mvar Trip Delay
2 to 1200
1
s
F2
10
2210
Positive Mvar Trip Delay
2 to 1200
1
s
F2
200
2211
Positive Mvar Alarm Delay
2 to 1200
1
s
F2
100
1
POWER ELEMENTS / REVERSE POWER
2240
Block Reverse Power From Online
0 to 5000
1
s
F1
2241
Reverse Power Alarm
0 to 2
1
–
F115
0
2242
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2243
Reverse Power Alarm Level
2 to 99
1
× Rated
F14
5
2245
Reverse Power Alarm Delay
2 to 1200
1
s
F2
100
2246
Reverse Power Alarm Events
0 to 1
1
–
F105
0
2247
Reverse Power Trip
0 to 2
1
–
F115
0
2248
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2249
Reverse Power Trip Level
2 to 99
1
× Rated
F14
5
224B
Reverse Power Trip Delay
2 to 1200
1
s
F2
200
0
POWER ELEMENTS / LOW FORWARD POWER
2280
Block Low Forward Power From Online
0 to 15000
1
s
F1
2281
Low Forward Power Alarm
0 to 2
1
–
F115
0
2282
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2283
Low Forward Power Alarm Level
2 to 99
1
× Rated MW
F14
5
2285
Low Forward Power Alarm Delay
2 to 1200
1
s
F2
100
2286
Low Forward Power Alarm Events
0 to 1
1
–
F105
0
2287
Low Forward Power Trip
0 to 2
1
–
F115
0
2288
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2289
Low Forward Power Trip Level
2 to 99
1
× Rated MW
F14
5
228B
Low Forward Power Trip Delay
2 to 1200
1
s
F2
200
RTD TEMPERATURE / RTD TYPES
2400
Stator RTD Type
0 to 3
1
–
F120
0
2401
Bearing RTD Type
0 to 3
1
–
F120
0
2402
Ambient RTD Type
0 to 3
1
–
F120
0
2403
Other RTD Type
0 to 3
1
–
F120
0
RTD TEMPERATURE / RTD #1
2420
RTD #1 Application
0 to 4
1
–
F121
1
2421
RTD #1 Alarm
0 to 2
1
–
F115
0
2422
Assign Alarm Relays (2-5)
2423
RTD #1 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
130
2424
RTD #1 Alarm Events
0 to 1
1
–
F105
0
2425
RTD #1 Trip
0 to 2
1
–
F115
0
2426
RTD #1 Trip Voting
2427
Assign Trip Relays (1-4)
1, 2, 3
1 to 12
1
–
F122
1
0 to 3
1
–
F50
1
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
29
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 20 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
2428
RTD #1 Trip Temperature
1 to 250
1
°C
F1
155
2429
RTD #1 Name
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #2
2460
RTD #2 Application
0 to 4
1
–
F121
1
2461
RTD #2 Alarm
0 to 2
1
–
F115
0
2462
Assign Alarm Relays (2-5)
2463
RTD #2 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
130
2464
RTD #2 Alarm Events
0 to 1
1
–
F105
0
2465
RTD #2 Trip
0 to 2
1
–
F115
0
2466
RTD #2 Trip Voting
2467
Assign Trip Relays (1-4)
2468
RTD #2 Trip Temperature
2469
RTD #2 Name
1 to 12
1
–
F122
2
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
155
0 to 8
1
–
F22
_
1
RTD TEMPERATURE / RTD #3
24A0
RTD #3 Application
0 to 4
1
–
F121
24A1
RTD #3 Alarm
0 to 2
1
–
F115
0
24A2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
24A3
RTD #3 Alarm Temperature
1 to 250
1
°C
F1
130
24A4
RTD #3 Alarm Events
0 to 1
1
–
F105
0
24A5
RTD #3 Trip
0 to 2
1
–
F115
0
24A6
RTD #3 Trip Voting
24A7
Assign Trip Relays (1-4)
24A8
RTD #3 Trip Temperature
24A9
RTD #3 Name
1 to 12
1
–
F122
3
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
155
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #4
24E0
RTD #4 Application
0 to 4
1
–
F121
1
24E1
RTD #4 Alarm
0 to 2
1
–
F115
0
24E2
Assign Alarm Relays (2-5)
24E3
RTD #4 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
130
24E4
RTD #4 Alarm Events
0 to 1
1
–
F105
0
24E5
RTD #4 Trip
0 to 2
1
–
F115
0
24E6
RTD #4 Trip Voting
24E7
Assign Trip Relays (1-4)
24E8
RTD #4 Trip Temperature
24E9
RTD #4 Name
1 to 12
1
–
F122
4
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
155
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #5
2520
RTD #5 Application
0 to 4
1
–
F121
1
2521
RTD #5 Alarm
0 to 2
1
–
F115
0
2522
Assign Alarm Relays (2-5)
2523
RTD #5 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
130
2524
RTD #5 Alarm Events
0 to 1
1
–
F105
0
2525
RTD #5 Trip
0 to 2
1
–
F115
0
2526
RTD #5 Trip Voting
2527
Assign Trip Relays (1-4)
2528
RTD #5 Trip Temperature
2529
RTD #5 Name
1 to 12
1
–
F122
5
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
155
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #6
2560
RTD #6 Application
0 to 4
1
–
F121
1
2561
RTD #6 Alarm
0 to 2
1
–
F115
0
2562
Assign Alarm Relays (2-5)
2563
RTD #6 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
130
2564
RTD #6 Alarm Events
0 to 1
1
–
F105
0
2565
RTD #6 Trip
0 to 2
1
–
F115
0
1, 2, 3
30
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 21 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
2566
RTD #6 Trip Voting
1 to 12
1
–
F122
DEFAULT
6
2567
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2568
RTD #6 Trip Temperature
1 to 250
1
°C
F1
155
2569
RTD #6 Name
0 to 8
1
–
F22
_
2
RTD TEMPERATURE / RTD #7
25A0
RTD #7 Application
0 to 4
1
–
F121
25A1
RTD #7 Alarm
0 to 2
1
–
F115
0
25A2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
25A3
RTD #7 Alarm Temperature
1 to 250
1
°C
F1
80
25A4
RTD #7 Alarm Events
0 to 1
1
–
F105
0
25A5
RTD #7 Trip
0 to 2
1
–
F115
0
25A6
RTD #7 Trip Voting
25A7
Assign Trip Relays (1-4)
25A8
RTD #7 Trip Temperature
25A9
RTD #7 Name
1 to 12
1
–
F122
7
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
90
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #8
25E0
RTD #8 Application
0 to 4
1
–
F121
2
25E1
RTD #8 Alarm
0 to 2
1
–
F115
0
25E2
Assign Alarm Relays (2-5)
25E3
RTD #8 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
80
25E4
RTD #8 Alarm Events
0 to 1
1
–
F105
0
25E5
RTD #8 Trip
0 to 2
1
–
F115
0
25E6
RTD #8 Trip Voting
25E7
Assign Trip Relays (1-4)
25E8
RTD #8 Trip Temperature
25E9
RTD #8 Name
1 to 12
1
–
F122
8
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
90
0 to 8
1
–
F22
_
RTD TEMPERATURE / RTD #9
2620
RTD #9 Application
0 to 4
1
–
F121
2
2621
RTD #9 Alarm
0 to 2
1
–
F115
0
2622
Assign Alarm Relays (2-5)
2623
RTD #9 Alarm Temperature
1 to 4
1
–
F50
16
1 to 250
1
°C
F1
80
2624
RTD #9 Alarm Events
0 to 1
1
–
F105
0
2625
RTD #9 Trip
0 to 2
1
–
F115
0
2626
RTD #9 Trip Voting
2627
Assign Trip Relays (1-4)
2628
RTD #9 Trip Temperature
2629
RTD #9 Name
1 to 12
1
–
F122
9
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
90
0 to 8
1
–
F22
_
2
RTD TEMPERATURE / RTD #10
2660
RTD #10 Application
0 to 4
1
–
F121
2661
RTD #10 Alarm
0 to 2
1
–
F115
0
2662
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2663
RTD #10 Alarm Temperature
1 to 250
1
°C
F1
80
2664
RTD #10 Alarm Events
0 to 1
1
–
F105
0
2665
RTD #10 Trip
0 to 2
1
–
F115
0
10
2666
RTD #10 Trip Voting
2667
Assign Trip Relays (1-4)
2668
RTD #10 Trip Temperature
2669
RTD #10 Name
1 to 12
1
–
F122
0 to 3
1
–
F50
1
1 to 250
1
°C
F1
90
0 to 8
1
–
F22
_
4
RTD TEMPERATURE / RTD #11
26A0
RTD #11 Application
0 to 4
1
–
F121
26A1
RTD #11 Alarm
0 to 2
1
–
F115
0
26A2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
26A3
RTD #11 Alarm Temperature
1 to 250
1
°C
F1
80
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
31
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 22 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
26A4
RTD #11 Alarm Events
0 to 1
1
–
F105
DEFAULT
0
26A5
RTD #11 Trip
0 to 2
1
–
F115
0
26A6
RTD #11 Trip Voting
1 to 12
1
–
F122
11
26A7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
26A8
RTD #11 Trip Temperature
1 to 250
1
°C
F1
90
26A9
RTD #11 Name
0 to 8
1
–
F22
_
3
RTD TEMPERATURE / RTD #12
26E0
RTD #12 Application
0 to 4
1
–
F121
26E1
RTD #12 Alarm
0 to 2
1
–
F115
0
26E2
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
26E3
RTD #12 Alarm Temperature
1 to 250
1
°C
F1
60
26E4
RTD #12 Alarm Events
0 to 1
1
–
F105
0
26E5
RTD #12 Trip
0 to 2
1
–
F115
0
26E6
RTD #12 Trip Voting
1 to 12
1
–
F122
12
26E7
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
26E8
RTD #12 Trip Temperature
1 to 250
1
°C
F1
80
26E9
RTD #12 Name
0 to 8
1
–
F22
_
RTD TEMPERATURE / OPEN RTD SENSOR
2720
Open RTD Sensor Alarm
0 to 2
1
–
F115
0
2721
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2722
Open RTD Sensor Alarm Events
0 to 1
1
–
F105
0
RTD TEMPERATURE / RTD SHORT/LOW TEMPERATURE
2740
RTD Short/Low Temperature Alarm
0 to 2
1
–
F115
0
2741
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2742
RTD Short/Low Temperature Alarm Events
0 to 1
1
–
F105
0
THERMAL MODEL / MODEL SETUP
2800
Enable Thermal Model
0 to 1
1
–
F103
0
2801
Overload Pickup Level
101 to 125
1
× FLA
F3
101
2802
Unbalance Bias K Factor
0 to 12
1
–
F1
0
2803
Cool Time Constant Online
0 to 500
1
min
F1
15
2804
Cool Time Constant Offline
0 to 500
1
min
F1
30
2805
Hot/Cold Safe Stall Ratio
1 to 100
1
–
F3
100
2806
Enable RTD Biasing
0 to 1
1
–
F103
0
2807
RTD Bias Minimum
0 to 250
1
°C
F1
40
2808
RTD Bias Center Point
0 to 250
1
°C
F1
130
2809
RTD Bias Maximum
0 to 250
1
°C
F1
155
280A
Select Curve Style
0 to 2
1
–
F142
0
280B
Standard Overload Curve Number
1 to 15
1
–
F1
4
280C
Time to Trip at 1.01 × FLA
5 to 999999
1
s
F10
5
280E
Time to Trip at 1.05 × FLA
5 to 999999
1
s
F10
5
2810
Time to Trip at 1.10 × FLA
5 to 999999
1
s
F10
5
2812
Time to Trip at 1.20 × FLA
5 to 999999
1
s
F10
5
2814
Time to Trip at 1.30 × FLA
5 to 999999
1
s
F10
5
2816
Time to Trip at 1.40 × FLA
5 to 999999
1
s
F10
5
2818
Time to Trip at 1.50 × FLA
5 to 999999
1
s
F10
5
281A
Time to Trip at 1.75 × FLA
5 to 999999
1
s
F10
5
281C
Time to Trip at 2.00 × FLA
5 to 999999
1
s
F10
5
281E
Time to Trip at 2.25 × FLA
5 to 999999
1
s
F10
5
2820
Time to Trip at 2.50 × FLA
5 to 999999
1
s
F10
5
2822
Time to Trip at 2.75 × FLA
5 to 999999
1
s
F10
5
2824
Time to Trip at 3.00 × FLA
5 to 999999
1
s
F10
5
2826
Time to Trip at 3.25 × FLA
5 to 999999
1
s
F10
5
2828
Time to Trip at 3.50 × FLA
5 to 999999
1
s
F10
5
1, 2, 3
32
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 23 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
282A
Time to Trip at 3.75 × FLA
5 to 999999
1
s
F10
5
282C
Time to Trip at 4.00 × FLA
5 to 999999
1
s
F10
5
282E
Time to Trip at 4.25 × FLA
5 to 999999
1
s
F10
5
2830
Time to Trip at 4.50 × FLA
5 to 999999
1
s
F10
5
2832
Time to Trip at 4.75 × FLA
5 to 999999
1
s
F10
5
2834
Time to Trip at 5.00 × FLA
5 to 999999
1
s
F10
5
2836
Time to Trip at 5.50 × FLA
5 to 999999
1
s
F10
5
2838
Time to Trip at 6.00 × FLA
5 to 999999
1
s
F10
5
283A
Time to Trip at 6.50 × FLA
5 to 999999
1
s
F10
5
283C
Time to Trip at 7.00 × FLA
5 to 999999
1
s
F10
5
283E
Time to Trip at 7.50 × FLA
5 to 999999
1
s
F10
5
2840
Time to Trip at 8.00 × FLA
5 to 999999
1
s
F10
5
2842
Time to Trip at 10.0 × FLA
5 to 999999
1
s
F10
5
2844
Time to Trip at 15.0 × FLA
5 to 999999
1
s
F10
5
2846
Time to Trip at 20.0 × FLA
5 to 999999
1
s
F10
5
2848
Minimum Allowable Voltage
70 to 95
1
%
F1
80
200 to 1500
1
× FLA
F3
480
5 to 9999
1
s
F2
200
2849
Stall Current at Minimum Voltage
284A
Safe Stall Time at Minimum Voltage
284B
Acceleration Intersect at Minimum Voltage
200 to 1500
1
× FLA
F3
380
284C
Stall Current at 100% Voltage
200 to 1500
1
× FLA
F3
600
284D
Safe Stall Time at 100% Voltage
5 to 9999
1
s
F2
100
284E
Acceleration Intersect at 100% Voltage
200 to 1500
1
× FLA
F3
500
THERMAL MODEL / THERMAL ELEMENTS
2900
Thermal Model Alarm
0 to 2
1
–
F115
0
2901
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
75
2902
Thermal Alarm Level
10 to 100
1
%Used
F1
2903
Thermal Model Alarm Events
0 to 1
1
–
F105
0
2904
Thermal Model Trip
0 to 2
1
–
F115
0
2905
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
MONITORING / TRIP COUNTER
2A00
Trip Counter Alarm
0 to 2
1
–
F115
0
2A01
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
1 to 50000
1
Trips
F1
25
0 to 1
1
–
F105
0
2A02
Trip Counter Alarm Level
2A03
Trip Counter Alarm Events
MONITORING / BREAKER FAILURE
2A20
Breaker Failure Alarm
0 to 2
1
–
F115
0
2A21
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A22
Breaker Failure Level
5 to 2000
1
× CT
F3
100
2A23
Breaker Failure Delay
10 to 1000
10
ms
F1
100
2A24
Breaker Failure Alarm Events
0 to 1
1
–
F105
0
MONITORING / TRIP COIL MONITOR
2A30
Trip Coil Monitor Alarm
0 to 2
1
–
F115
0
2A31
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A32
Trip Coil Monitor Alarm Events
0 to 1
1
–
F105
0
MONITORING / VT FUSE FAILURE
2A50
VT Fuse Failure Alarm
0 to 2
1
–
F115
0
2A51
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A52
VT Fuse Failure Alarm Events
0 to 1
1
–
F105
0
15
MONITORING / CURRENT DEMAND
2A60
Current Demand Period
5 to 90
1
min
F1
2A61
Current Demand Alarm
0 to 2
1
A
F115
0
2A62
Assign Alarm Relays (2-5)
1 to 4
1
A
F50
16
2A63
Current Demand Limit
10 to 2000
1
× FLA
F14
125
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
33
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 24 of 29)
ADDR NAME
2A65
Current Demand Alarm Events
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 1
1
A
F105
0
15
MONITORING / MW DEMAND
2A70
MW Demand Period
5 to 90
1
min
F1
2A71
MW Demand Alarm
0 to 2
1
–
F115
0
2A72
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A73
MW Demand Limit
10 to 200
1
× Rated
F14
125
2A75
MW Demand Alarm Events
0 to 1
1
–
F105
0
15
MONITORING / Mvar DEMAND
2A80
Mvar Demand Period
5 to 90
1
min
F1
2A81
Mvar Demand Alarm
0 to 2
1
–
F115
0
2A82
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A83
Mvar Demand Limit
10 to 200
1
× Rated
F14
125
2A85
Mvar Demand Alarm Events
0 to 1
1
–
F105
0
15
MONITORING / MVA DEMAND
2A90
MVA Demand Period
5 to 90
1
min
F1
2A91
MVA Demand Alarm
0 to 2
1
–
F115
0
2A92
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2A93
MVA Demand Limit
10 to 200
1
× Rated
F14
125
2A95
MVA Demand Alarm Events
0 to 1
1
–
F105
0
MONITORING / PULSE OUTPUT
2AB0
Positive kWh Pulse Output Relays (2-5)
2AB1
Positive kWh Pulse Output Interval
2AB2
Positive kvarh Pulse Output Relays (2-5)
2AB3
Positive kvarh Pulse Output Interval
2AB4
Negative kvarh Pulse Output Relays (2-5)
2AB5
Negative kvarh Pulse Output Interval
2AB6
Pulse Width
1 to 4
1
–
F50
0
1 to 50000
1
–
F1
10
1 to 4
1
–
F50
0
1 to 50000
1
–
F1
10
1 to 4
1
–
F50
0
1 to 50000
1
–
F1
10
200 to 1000
1
–
F1
200
MONITORING / RUNNING HOUR SETUP
2AC0
Initial Generator Running Hours
0 to 999999
1
h
F12
0
2AC2
Generator Running Hour Alarm
0 to 2
1
–
F115
0
2AC3
Assign Alarm Relays (2-5)
2AC4
Generator Running Hour Limit
2AC6
Reserved
1 to 4
1
–
F50
16
1 to 1000000
1
h
F12
1000
0 to 42
1
–
F127
0
0 to 42
1
–
F127
0
0 to 42
1
–
F127
0
0 to 42
1
–
F127
0
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 1
2B00
Analog Output 1
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 2
2B01
Analog Output 2
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 3
2B02
Analog Output 3
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 4
2B03
Analog Output 4
ANALOG INPUT/OUTPUT / ANALOG OUTPUTS
2B04
Ia Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B05
Ia Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B06
Ib Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B07
Ib Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B08
Ic Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B09
Ic Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B0A
Average Output Current Minimum
0 to 2000
1
× FLA
F3
0
2B0B
Average Output Current Maximum
0 to 2000
1
× FLA
F3
125
2B0C
Negative Sequence Current Minimum
0 to 2000
1
%FLA
F1
0
2B0D
Negative Sequence Current Maximum
0 to 2000
1
%FLA
F1
100
2B0E
Averaged Generator Load Minimum
0 to 2000
1
× FLA
F3
0
1, 2, 3
34
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 25 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
0 to 2000
1
× FLA
F3
125
Hottest Stator RTD Minimum
–50 to 250
1
°C
F4
0
Hottest Stator RTD Maximum
–50 to 250
1
°C
F4
200
2B0F
Averaged Generator Load Maximum
2B10
2B11
2B12
Hottest Bearing RTD Minimum
–50 to 250
1
°C
F4
0
2B13
Hottest Bearing RTD Maximum
–50 to 250
1
°C
F4
200
2B14
Ambient RTD Minimum
–50 to 250
1
°C
F4
0
2B15
Ambient RTD Maximum
–50 to 250
1
°C
F4
70
2B16
RTD #1 Minimum
–50 to 250
1
°C
F4
0
2B17
RTD #1 Maximum
–50 to 250
1
°C
F4
200
2B18
RTD #2 Minimum
–50 to 250
1
°C
F4
0
2B19
RTD #2 Maximum
–50 to 250
1
°C
F4
200
2B1A
RTD #3 Minimum
–50 to 250
1
°C
F4
0
2B1B
RTD #3 Maximum
–50 to 250
1
°C
F4
200
2B1C
RTD #4 Minimum
–50 to 250
1
°C
F4
0
2B1D
RTD #4 Maximum
–50 to 250
1
°C
F4
200
2B1E
RTD #5 Minimum
–50 to 250
1
°C
F4
0
2B1F
RTD #5 Maximum
–50 to 250
1
°C
F4
200
2B20
RTD #6 Minimum
–50 to 250
1
°C
F4
0
2B21
RTD #6 Maximum
–50 to 250
1
°C
F4
200
2B22
RTD #7 Minimum
–50 to 250
1
°C
F4
0
2B23
RTD #7 Maximum
–50 to 250
1
°C
F4
200
2B24
RTD #8 Minimum
–50 to 250
1
°C
F4
0
2B25
RTD #8 Maximum
–50 to 250
1
°C
F4
200
2B26
RTD #9 Minimum
–50 to 250
1
°C
F4
0
2B27
RTD #9 Maximum
–50 to 250
1
°C
F4
200
2B28
RTD #10 Minimum
–50 to 250
1
°C
F4
0
2B29
RTD #10 Maximum
–50 to 250
1
°C
F4
200
2B2A
RTD #11 Minimum
–50 to 250
1
°C
F4
0
2B2B
RTD #11 Maximum
–50 to 250
1
°C
F4
200
2B2C
RTD #12 Minimum
–50 to 250
1
°C
F4
0
2B2D
RTD #12 Maximum
–50 to 250
1
°C
F4
200
2B2E
AB Voltage Minimum
0 to 150
1
× Rated
F3
0
2B2F
AB Voltage Maximum
0 to 150
1
× Rated
F3
125
2B30
BC Voltage Minimum
0 to 150
1
× Rated
F3
0
2B31
BC Voltage Maximum
0 to 150
1
× Rated
F3
125
2B32
CA Voltage Minimum
0 to 150
1
× Rated
F3
0
2B33
CA Voltage Maximum
0 to 150
1
× Rated
F3
125
2B34
Average Voltage Minimum
0 to 150
1
× Rated
F3
0
2B35
Average Voltage Maximum
0 to 150
1
× Rated
F3
125
2B36
Volts/Hertz Minimum
0 to 200
1
× Rated
F3
0
2B37
Volts/Hertz Maximum
0 to 200
1
× Rated
F3
150
2B38
Frequency Minimum
0 to 9000
1
Hz
F3
5900
2B39
Frequency Maximum
0 to 9000
1
Hz
F3
6100
2B3C
Power Factor Minimum
–99 to 100
1
–
F6
80
2B3D
Power Factor Maximum
–99 to 100
1
–
F6
–80
2B3E
Reactive Power Minimum
–200 to 200
1
× Rated
F6
0
2B3F
Reactive Power Maximum
–200 to 200
1
× Rated
F6
125
2B40
Real Power (MW) Minimum
–200 to 200
1
× Rated
F6
0
2B41
Real Power (MW) Maximum
–200 to 200
1
× Rated
F6
125
2B42
Apparent Power Minimum
0 to 200
1
× Rated
F3
0
2B43
Apparent Power Maximum
0 to 200
1
× Rated
F3
125
2B44
Analog Input 1 Minimum
–50000 to 50000
1
Units
F12
0
2B46
Analog Input 1 Maximum
–50000 to 50000
1
Units
F12
50000
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
35
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 26 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
2B48
Analog Input 2 Minimum
–50000 to 50000
1
Units
F12
DEFAULT
0
2B4A
Analog Input 2 Maximum
–50000 to 50000
1
Units
F12
50000
2B4C
Analog Input 3 Minimum
–50000 to 50000
1
Units
F12
0
2B4E
Analog Input 3 Maximum
–50000 to 50000
1
Units
F12
50000
2B50
Analog Input 4 Minimum
–50000 to 50000
1
Units
F12
0
2B52
Analog Input 4 Maximum
–50000 to 50000
1
Units
F12
50000
2B54
Tachometer Minimum
0 to 7200
1
RPM
F1
3500
2B55
Tachometer Maximum
0 to 7200
1
RPM
F1
3700
2B56
Thermal Capacity Used Minimum
0 to 100
1
%
F1
0
2B57
Thermal Capacity Used Maximum
0 to 100
1
%
F1
100
2B58
Neutral Voltage Third Harmonic Minimum
0 to 250000
1
Volts
F10
0
2B5A
Neutral Voltage Third Harmonic Maximum
0 to 250000
1
Volts
F10
450
2B5C
Current Demand Minimum
0 to 2000
1
× FLA
F3
0
2B5D
Current Demand Maximum
0 to 2000
1
× FLA
F3
125
2B5E
Mvar Demand Minimum
0 to 200
1
× Rated
F3
0
2B5F
Mvar Demand Maximum
0 to 200
1
× Rated
F3
125
2B60
MW Demand Minimum
0 to 200
1
× Rated
F3
0
2B61
MW Demand Maximum
0 to 200
1
× Rated
F3
125
2B62
MVA Demand Minimum
0 to 200
1
× Rated
F3
0
2B63
MVA Demand Maximum
0 to 200
1
× Rated
F3
125
ANALOG INPUT/OUTPUT / ANALOG INPUT 1
2C00
Analog Input 1
0 to 3
1
–
F129
0
2C05
Analog Input 1 Units
0 to 6
1
–
F22
_
2C08
Analog Input 1 Minimum
–50000 to 50000
1
Units
F12
0
2C0A
Analog Input 1 Maximum
–50000 to 50000
1
Units
F12
100
0
2C0C
Block Analog Input 1 From Online
0 to 5000
1
s
F1
2C0D
Analog Input 1 Alarm
0 to 2
1
–
F115
0
2C0E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2C0F
Analog Input 1 Alarm Level
–50000 to 50000
1
Units
F12
10
2C11
Analog Input 1 Alarm Pickup
0 to 1
1
–
F130
0
2C12
Analog Input 1 Alarm Delay
1 to 3000
1
s
F2
1
2C13
Analog Input 1 Alarm Events
0 to 1
1
–
F105
0
2C14
Analog Input 1 Trip
0 to 2
1
–
F115
0
2C15
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2C16
Analog Input 1 Trip Level
–50000 to 50000
1
Units
F12
20
2C18
Analog Input 1 Trip Pickup
0 to 1
1
–
F130
0
2C19
Analog Input 1 Trip Delay
1 to 3000
1
s
F2
1
2C1A
Analog Input 1 Name
0 to 12
1
–
F22
_
ANALOG INPUT/OUTPUT / ANALOG INPUT 2
2C40
Analog Input 2
0 to 3
1
–
F129
0
2C45
Analog Input 2 Units
0 to 6
1
–
F22
_
2C48
Analog Input 2 Minimum
–50000 to 50000
1
Units
F12
0
2C4A
Analog Input 2 Maximum
–50000 to 50000
1
Units
F12
100
0
2C4C
Block Analog Input 2 From Online
0 to 5000
1
s
F1
2C4D
Analog Input 2 Alarm
0 to 2
1
–
F115
0
2C4E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2C4F
Analog Input 2 Alarm Level
–50000 to 50000
1
Units
F12
10
2C51
Analog Input 2 Alarm Pickup
0 to 1
1
–
F130
0
2C52
Analog Input 2 Alarm Delay
1 to 3000
1
s
F2
1
2C53
Analog Input 2 Alarm Events
0 to 1
1
–
F105
0
2C54
Analog Input 2 Trip
0 to 2
1
–
F115
0
2C55
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2C56
Analog Input 2 Trip Level
–50000 to 50000
1
Units
F12
20
1, 2, 3
36
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 27 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
2C58
Analog Input 2 Trip Pickup
0 to 1
1
–
F130
DEFAULT
0
2C59
Analog Input 2 Trip Delay
1 to 3000
1
s
F2
1
2C5A
Analog Input 2 Name
0 to 12
1
–
F22
_
ANALOG INPUT/OUTPUT / ANALOG INPUT 3
2C80
Analog Input 3
0 to 3
1
–
F129
0
2C85
Analog Input 3 Units
0 to 6
1
–
F22
_
2C88
Analog Input 3 Minimum
–50000 to 50000
1
Units
F12
0
2C8A
Analog Input 3 Maximum
–50000 to 50000
1
Units
F12
100
0
2C8C
Block Analog Input 3 From Online
0 to 5000
1
s
F1
2C8D
Analog Input 3 Alarm
0 to 2
1
–
F115
0
2C8E
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2C8F
Analog Input 3 Alarm Level
–50000 to 50000
1
Units
F12
10
2C91
Analog Input 3 Alarm Pickup
0 to 1
1
–
F130
0
2C92
Analog Input 3 Alarm Delay
1 to 3000
1
s
F2
1
2C93
Analog Input 3 Alarm Events
0 to 1
1
–
F105
0
2C94
Analog Input 3 Trip
0 to 2
1
–
F115
0
2C95
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2C96
Analog Input 3 Trip Level
–50000 to 50000
1
Units
F12
20
2C98
Analog Input 3 Trip Pickup
0 to 1
1
–
F130
0
2C99
Analog Input 3 Trip Delay
1 to 3000
1
s
F2
1
2C9A
Analog Input 3 Name
0 to 12
1
–
F22
_
ANALOG INPUT/OUTPUT / ANALOG INPUT 4
2CC0
Analog Input 4
0 to 3
1
–
F129
0
2CC5
Analog Input 4 Units
0 to 6
1
–
F22
_
2CC8
Analog Input 4 Minimum
–50000 to 50000
1
Units
F12
0
2CCA
Analog Input 4 Maximum
–50000 to 50000
1
Units
F12
100
2CCC
Block Analog Input 4 From Online
0 to 5000
1
s
F1
0
2CCD
Analog Input 4 Alarm
0 to 2
1
–
F115
0
2CCE
Assign Alarm Relays (2-5)
1 to 4
1
–
F50
16
2CCF
Analog Input 4 Alarm Level
–50000 to 50000
1
Units
F12
10
2CD1
Analog Input 4 Alarm Pickup
0 to 1
1
–
F130
0
2CD2
Analog Input 4 Alarm Delay
1 to 3000
1
s
F2
1
2CD3
Analog Input 4 Alarm Events
0 to 1
1
–
F105
0
2CD4
Analog Input 4 Trip
0 to 2
1
–
F115
0
2CD5
Assign Trip Relays (1-4)
0 to 3
1
–
F50
1
2CD6
Analog Input 4 Trip Level
–50000 to 50000
1
Units
F12
20
2CD8
Analog Input 4 Trip Pickup
0 to 1
1
–
F130
0
2CD9
Analog Input 4 Trip Delay
1 to 3000
1
s
F2
1
2CDA
Analog Input 4 Name
0 to 12
1
–
F22
_
0 to 3
1
–
F138
0
0 to 300
1
s
F1
15
489 TESTING / SIMULATION MODE
2D00
Simulation Mode
2D01
Pre-fault To Fault Time Delay
489 TESTING / PRE-FAULT SETUP
2D20
Pre-Fault Iphase Output
2D21
Pre-Fault Voltages Phase-N
0 to 2000
1
× CT
F3
0
0 to 150
1
× Rated
F3
100
2D22
Pre-Fault Current Lags Voltage
0 to 359
1
°
F1
0
2D23
Pre-Fault Iphase Neutral
0 to 2000
1
× CT
F3
0
2D24
Pre-Fault Current Ground
0 to 2000
1
× CT
F3
0
2D25
Pre-Fault Voltage Neutral
0 to 1000
1
Volts
F2
0
2D26
Pre-Fault Stator RTD Temp
–50 to 250
1
°C
F4
40
2D27
Pre-Fault Bearing RTD Temp
–50 to 250
1
°C
F4
40
2D28
Pre-Fault Other RTD Temp
–50 to 250
1
°C
F4
40
2D29
Pre-Fault Ambient RTD Temp
–50 to 250
1
°C
F4
40
1, 2, 3
See Table footnotes on page 39
GE Multilin
http://www.GEindustrial.com/multilin
37
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 28 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
DEFAULT
50 to 900
1
Hz
F2
600
Pre-Fault Analog Input 1
0 to 100
1
%
F1
0
Pre-Fault Analog Input 2
0 to 100
1
%
F1
0
2D2A
Pre-Fault System Frequency
2D2B
2D2C
2D2D
Pre-Fault Analog Input 3
0 to 100
1
%
F1
0
2D2E
Pre-Fault Analog Input 4
0 to 100
1
%
F1
0
2D4C
Pre-Fault Stator RTD Temp
–50 to 250
1
°F
F4
40
2D4D
Pre-Fault Bearing RTD Temp
–50 to 250
1
°F
F4
40
2D4E
Pre-Fault Other RTD Temp
–50 to 250
1
°F
F4
40
2D4F
Pre-Fault Ambient RTD Temp
–50 to 250
1
°F
F4
40
489 TESTING / FAULT SETUP
2D80
Fault Iphase Output
2D81
Fault Voltages Phase-N
0 to 2000
1
× CT
F3
0
0 to 150
1
× Rated
F3
100
2D82
Fault Current Lags Voltage
0 to 359
1
°
F1
0
2D83
Fault Iphase Neutral
0 to 2000
1
× CT
F3
0
2D84
Fault Current Ground
0 to 2000
1
× CT
F3
0
2D85
Fault Voltage Neutral
0 to 1000
1
Volts
F2
0
2D86
Fault Stator RTD Temp
–50 to 250
1
°C
F4
40
2D87
Fault Bearing RTD Temp
–50 to 250
1
°C
F4
40
2D88
Fault Other RTD Temp
–50 to 250
1
°C
F4
40
2D89
Fault Ambient RTD Temp
–50 to 250
1
°C
F4
40
2D8A
Fault System Frequency
50 to 900
1
Hz
F2
600
2D8B
Fault Analog Input 1
0 to 100
1
%
F1
0
2D8C
Fault Analog Input 2
0 to 100
1
%
F1
0
2D8D
Fault Analog Input 3
0 to 100
1
%
F1
0
2D8E
Fault Analog Input 4
0 to 100
1
%
F1
0
2DBC
Fault Stator RTD Temp
–50 to 250
1
°F
F4
40
2DBD
Fault Bearing RTD Temp
–50 to 250
1
°F
F4
40
2DBE
Fault Other RTD Temp
–50 to 250
1
°F
F4
40
2DBF
Fault Ambient RTD Temp
–50 to 250
1
°F
F4
40
0 to 8
1
–
F139
0
489 TESTING / TEST OUTPUT RELAYS
2DE0
Force Operation Of Relays
489 TESTING / TEST ANALOG OUTPUT
2DF0
Force Analog Outputs Function
0 to 1
1
–
F126
0
2DF1
Analog Output 1 Forced Value
0 to 100
1
%
F1
0
2DF2
Analog Output 2 Forced Value
0 to 100
1
%
F1
0
2DF3
Analog Output 3 Forced Value
0 to 100
1
%
F1
0
2DF4
Analog Output 4 Forced Value
0 to 100
1
%
F1
0
EVENT RECORDER / GENERAL
3000
Event Recorder Last Reset Date (2 Words)
N/A
N/A
N/A
F18
N/A
3002
Total Number Of Events Since Last Clear
0 to 65535
1
N/A
F1
N/A
3003
Event Record Selector
0 to 65535
1
–
F1
0
EVENT RECORDER / SELECTED EVENT
3004
Cause Of Event
3005
Time Of Event (2 Words)
3007
Date Of Event (2 Words)
3009
Tachometer
300A
0 to 139
1
–
F134
0
N/A
N/A
N/A
F19
N/A
N/A
N/A
N/A
F18
N/A
0 to 7200
1
RPM
F1
0
Phase A Current
0 to 999999
1
Amps
F12
0
300C
Phase B Current
0 to 999999
1
Amps
F12
0
300E
Phase C Current
0 to 999999
1
Amps
F12
0
3010
Phase A Differential Current
0 to 999999
1
Amps
F12
0
3012
Phase B Differential Current
0 to 999999
1
Amps
F12
0
3014
Phase C Differential Current
0 to 999999
1
Amps
F12
0
3016
Neg. Seq. Current
0 to 2000
1
%FLA
F1
0
1, 2, 3
38
See Table footnotes on page 39
http://www.GEindustrial.com/multilin
GE Multilin
489
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 29 of 29)
ADDR NAME
RANGE
STEP
UNITS
FORMAT
0 to 20000000
1
A
F14
0
A-B Voltage
0 to 50000
1
Volts
F1
0
301A
B-C Voltage
0 to 50000
1
Volts
F1
0
301B
C-A Voltage
0 to 50000
1
Volts
F1
0
301C
Frequency
0 to 12000
1
Hz
F3
0
0
3017
Ground Current
3019
DEFAULT
301D
Active Group
0 to 1
1
–
F1
301F
Real Power (MW)
–2000000 to 2000000
1
MW
F13
0
3021
Reactive Power Mvar
–2000000 to 2000000
1
Mar
F13
0
3023
Apparent Power MVA
0 to 2000000
1
MVA
F13
0
3025
Hottest Stator RTD Number
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
–50 to 250
1
°C
F4
0
1 to 12
1
–
F1
1
0
3026
Hottest Stator RTD Temperature
3027
Hottest Bearing RTD Number
3028
Hottest Bearing RTD Temperature
3029
Hottest Other RTD Number
302A
Hottest Other RTD Temperature
302B
Hottest Ambient RTD Number
302C
Hottest Ambient RTD Temperature
–50 to 250
1
°C
F4
302D
Analog Input 1
–50000 to 50000
1
Units
F12
0
302F
Analog Input 2
–50000 to 50000
1
Units
F12
0
3031
Analog Input 3
–50000 to 50000
1
Units
F12
0
3033
Analog Input 4
–50000 to 50000
1
Units
F12
0
3035
Phase A Neutral Current
0 to 999999
1
Amps
F12
0
3037
Phase B Neutral Current
0 to 999999
1
Amps
F12
0
3039
Phase C Neutral Current
0 to 999999
1
Amps
F12
0
30E0
Hottest Stator RTD Temperature
–50 to 250
1
°F
F4
0
30E1
Hottest Bearing RTD Temperature
–50 to 250
1
°F
F4
0
30E2
Hottest Other RTD Temperature
–50 to 250
1
°F
F4
0
30E3
Hottest Ambient RTD Temperature
–50 to 250
1
°F
F4
0
30E5
Neutral Voltage (Fundamental)
0 to 250000
1
Volts
F10
0
30E7
Neutral Voltage (3rd Harmonic)
0 to 250000
1
Volts
F10
0
30E9
Vab/Iab
0 to 65535
1
ohms s
F1
0
30EA
Vab/Iab Angle
0 to 359
1
°
F1
0
WAVEFORM MEMORY SETUP
30F0
Waveform Memory Trigger Date
N/A
N/A
N/A
F18
N/A
30F2
Waveform Memory Trigger Time
N/A
N/A
N/A
F19
N/A
0 to 12000
1
Hz
F3
0
0 to 9
1
N/A
F214
0
1 to 65535
1
N/A
F1
0
30F4
Frequency During Trace Acquisition
30F5
Waveform Memory Channel Selector (Holding Register)
30F6
Waveform Trigger Selector
30F7
Waveform Trigger Cause (Read-only)
0 to 139
1
N/A
F134
0
30F8
Number of Samples per Waveform Capture
1 to 768
1
N/A
F1
168
30F9
Number of Waveform Captures Taken
0 to 65535
1
N/A
F1
0
WAVEFORM MEMORY SAMPLES
3100
First Waveform Memory Sample
–32767 to 32767
1
N/A
F4
0
3400
Last Waveform Memory Sample
–32767 to 32767
1
N/A
F4
0
1, 2, 3
1.
2.
3.
See Table footnotes on page 39
A Value of 65535 indicates ‘Never’
A value of 0xFFFF indicates “no measurable value”.
Maximum value turns feature ‘Off’
GE Multilin
http://www.GEindustrial.com/multilin
39
489
Modbus Memory Map
Communications Guide
Memory Map Data
Formats
The data formats used in the Modbus memory map are shown below.
Table 2: Data Formats (Sheet 1 of 12)
Table 2: Data Formats (Sheet 2 of 12)
CODE
TYPE
DEFINITION
CODE
TYPE
DEFINITION
F1
16 bits
UNSIGNED VALUE
F15
16 bits
HARDWARE REVISION
16 bits
0000 0000
0000 0001
1=A
F2
0000 0000
0000 0010
2=B
Example: 1234 stored as 1234
UNSIGNED VALUE,
1 DECIMAL PLACE
Example: 123.4 stored as 1234
F3
16 bits
F4
16 bits
UNSIGNED VALUE,
2 DECIMAL PLACES
Example: 12.34 stored as 1234
2’s COMPLEMENT
SIGNED VALUE
F16
Example: –1234 stored as –1234 (i.e.
64302)
F5
16 bits
2’s COMPLEMENT
SIGNED VALUE
1 DECIMAL PLACES
Example: -123.4 stored as -1234 (i.e.
64302)
F6
F10
F18
SOFTWARE REVISION
1111 1111
xxxx xxxx
Major Revision Number
0 to 9 in steps of 1
xxxx xxxx
1111 1111
Minor Revision Number
(two BCD digits)
00 to 99 in steps of 1
32 bits
DATE (MM/DD/YYYY)
Month (1 to 12)
Day (1 to 31)
Example: –12.34 stored as –1234 (i.e.
64302)
3rd & 4th
byte
Year (1995 to 2094)
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE
1 DECIMAL PLACE
Example: Feb. 20, 1996 stored as
34867148 (i.e. 1st word: 0214, 2nd
word 07CC)
1st 16 bits
High Order Word of Long
Value
F19
32 bits
TIME (HH:MM:SS:hh)
1st byte
Hours (0 to 23)
Low Order Word of Long
Value
2nd byte
Minutes (0 to 59)
Example: –12345.6 stored as
–123456 (i.e. 1st word: FFFE hex, 2nd
word: 1DC0 hex)
3rd byte
Seconds (0 to 59)
4th byte
Hundreds of seconds (0
to 99)
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE
1st 16 bits
High Order Word of Long
Value
2nd 16 bits
Low Order Word of Long
Value
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE,
3 DECIMAL PLACES
1st 16 bits
High Order Word of Long
Value
2nd 16 bits
Low Order Word of Long
Value
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE,
2 DECIMAL PLACES
1st 16 bits
High Order Word of Long
Value
2nd 16 bits
Low Order Word of Long
Value
Example: -1234.56 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word:
1DC0 hex)
40
16 bits
2nd byte
2’s COMPLEMENT
SIGNED VALUE
2 DECIMAL PLACES
Example: 2:05pm stored as
235208704 (i.e. 1st word: 0E05, 2nd
word 0000)
F20
http://www.GEindustrial.com/multilin
32 bits
2’s COMPLEMENT
SIGNED LONG VALUE
1st 16 bits
High Order Word of Long
Value
2nd 16 bits
Low Order Word of Long
Value
Note: -1 means “Never”
F22
Example: -123.456 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word:
1DC0 hex)
F14
26 = Z
Example: Revision 2.30 stored as
0230 hex
Example: -123456 stored as -123456
(i.e. 1st word: FFFE hex, 2nd word:
1DC0 hex)
F13
...
0000 0000
0001 1010
1st byte
16 bits
2nd 16 bits
F12
...
16 bits
TWO 8-BIT
CHARACTERS
PACKED INTO 16-BIT
UNSIGNED
MSB
First Character
LSB
Second Character
Example: String ‘AB’ stored as 4142
hex.
F24
32 bits
TIME FORMAT FOR
BROADCAST
1st byte
Hours (0 to 23)
2nd byte
Minutes (0 to 59)
3rd & 4th
bytes
Milliseconds (0 to 59999)
Note: Clock resolution
limited to 0.01 sec
Example: 1:15:48:572 stored as
17808828 (i.e., 1st word 010F, 2nd
word BDBC)
GE Multilin
Modbus Memory Map
489
Communications Guide
Table 2: Data Formats (Sheet 3 of 12)
TYPE
DEFINITION
CODE
TYPE
DEFINITION
F100
Unsigned
16 bit
integer
TEMPEATURE DISPLAY
UNITS
F117
Unsigned
16 bit
integer
RESET MODE
0
Celsius
0
All Resets
1
Fahrenheit
1
Remote Reset Only
RS 485 BAUD RATE
2
Keypad Reset Only
SETPOINT GROUP
Group 1
FC101 Unsigned
16 bit
integer
F102
F103
F104
F105
F106
F107
F109
F115
GE Multilin
Table 2: Data Formats (Sheet 4 of 12)
CODE
F118
0
300 baud
Unsigned
16 bit
integer
1
1200 baud
0
2
2400 baud
1
Group 2
3
4800 baud
RTD TYPE
4
F120
9600 baud
Unsigned
16 bit
integer
5
19200 baud
0
100 Ohm Platinum
Unsigned
16 bit
integer
RS 485 PARITY
1
120 Ohm Nickel
2
100 Ohm Nickel
0
None
1
Odd
F121
3
10 Ohm Copper
RTD APPLICATION
2
Even
Unsigned
16 bit
integer
Unsigned
16 bit
integer
NO/YES SELECTION
0
None
1
Stator
0
No
2
Bearing
1
Yes
3
Ambient
Unsigned
16 bit
integer
GROUND CT TYPE
4
Other
0
None
Unsigned
16 bit
integer
RTD VOTING
SELECTION
1
1 A Secondary
1
RTD #1
2
50/0.025 Ground CT
2
RTD #2
3
5 A Secondary
3
RTD #3
Unsigned
16 bit
integer
OFF/ON SELECTION
4
RTD #4
5
RTD #5
0
Off
6
RTD #6
1
On
7
RTD #7
Unsigned
16 bit
integer
VOLTAGE
TRANSFORMER
CONNECTION TYPE
8
RTD #8
9
RTD #9
0
None
10
RTD #10
1
Open Delta
11
RTD #11
2
Wye
Unsigned
16 bit
integer
NOMINAL FREQUENCY
0
----
1
60 Hz
2
50 Hz
3
25 Hz
Unsigned
16 bit
integer
STARTER STATUS
SWITCH
0
Auxiliary A
1
Auxiliary B
Unsigned
16 bit
integer
ALARM / TRIP TYPE
SELECTION
0
Off
1
2
F122
F123
F124
12
RTD #12
Unsigned
16 bit
integer
ALARM/TRIP STATUS
0
Not Enabled
1
Inactive
2
Timing Out
3
Active Trip
4
Latched Trip
Unsigned
16 bit
integer
PHASE ROTATION
SELECTION
0
----
1
ABC
2
ACB
Unsigned
16 bit
DISABLED / ENABLED
SELECTION
Latched
0
Disabled
Unlatched
1
Enabled
F126
http://www.GEindustrial.com/multilin
41
489
Modbus Memory Map
Communications Guide
Table 2: Data Formats (Sheet 5 of 12)
TYPE
DEFINITION
CODE
TYPE
DEFINITION
F127
Unsigned
16 bit
integer
ANALOG OUTPUT
PARAMETER
SELECTION
F128
ctd.
5
IEC Curve B (BS142)
6
IEC Curve C (BS142)
0
None
7
IEC Short Inverse
1
IA Output Current
8
IAC Extremely Inverse
2
IB Output Current
9
IAC Very Inverse
3
IC Output Current
10
IAC Inverse
4
Average Output Current
11
IAC Short Inverse
5
Negative Sequence
Current
12
FlexCurve™
6
Average Generator Load
7
Hottest Stator RTD
8
Hottest Bearing RTD
9
Ambient RTD
10
RTD #1
11
RTD #2
12
RTD #3
13
RTD #4
14
RTD #5
15
RTD #6
16
RTD #7
17
RTD #8
18
RTD #9
19
RTD #10
0
RTD #11
1
Open
TRIP COIL
SUPERVISION STATUS
No Coil
20
F130
0
Disabled
1
4 to 20 mA
2
0 to 20 mA
3
0 to 1 mA
Unsigned
16 bit
integer
PICKUP TYPE
0
Over
1
FC131 Unsigned
16 bit
integer
Under
INPUT SWITCH
STATUS
Closed
AB Voltage
23
BC Voltage
0
24
CA Voltage
1
Coil
25
Average Voltage
GENERATOR STATUS
26
Volts/Hertz
Unsigned
16 bit
integer
27
Frequency
0
Offline
28
Third Harmonic Neutral
Voltage
1
Offline
2
Online
3
Overload
RTD #12
29
Power Factor
30
Reactive Power (Mvar)
31
Real Power (MW)
32
Apparent Power (MVA)
33
34
F132
Definite Time
ANALOG INPUT
SELECTION
22
F133
4
Tripped
CAUSE OF EVENT /
CAUSE OF LAST TRIP
Analog Input 1
Unsigned
16 bit
integer
Analog Input 2
0
No Event
General Switch A Trip
General Switch B Trip
F134
Analog Input 3
1
36
Analog Input 4
2
37
Tachometer
3
General Switch C Trip
38
Thermal Capacity Used
4
General Switch D Trip
39
Current Demand
5
General Switch E Trip
40
Mvar Demand
6
General Switch F Trip
41
MW Demand
7
General Switch G Trip
MVA Demand
8
Sequential Trip
Unsigned
16 bit
integer
OVERCURRENT CURVE
STYLE SELECTION
9
Tachometer Trip
10
Unknown Trip
0
ANSI Extremely Inverse
11
Unknown Trip
1
ANSI Very Inverse
2
ANSI Normally Inverse
3
ANSI Moderately Inverse
4
IEC Curve A (BS142)
35
42
F128
13
FC129 Unsigned
16 bit
integer
Unsigned
16 bit
integer
21
42
Table 2: Data Formats (Sheet 6 of 12)
CODE
http://www.GEindustrial.com/multilin
12
Overload Trip
13
Unknown Trip
14
Neutral Overvoltage Trip
15
Neutral Undervoltage
(3rd Harmonic) Trip
GE Multilin
Modbus Memory Map
489
Communications Guide
Table 2: Data Formats (Sheet 7 of 12)
GE Multilin
Table 2: Data Formats (Sheet 8 of 12)
CODE
TYPE
DEFINITION
CODE
TYPE
DEFINITION
F134
ctd.
16
Not Used
69
RTD 5 Alarm
17
Not Used
F134
ctd.
70
RTD 6 Alarm
18
Not Used
71
RTD 7 Alarm
19
Not Used
72
RTD 8 Alarm
20
Differential Trip
73
RTD 9 Alarm
21
Acceleration Trip
74
RTD 10 Alarm
22
RTD 1 Trip
75
RTD 11 Alarm
23
RTD 2 Trip
76
RTD 12 Alarm
24
RTD 3 Trip
77
Open RTD Alarm
25
RTD 4 Trip
78
Short/Low RTD Alarm
26
RTD 5 Trip
79
Undervoltage Alarm
27
RTD 6 Trip
80
Overvoltage Alarm
28
RTD 7 Trip
81
Overfrequency Alarm
29
RTD 8 Trip
82
Power Factor Alarm
30
RTD 9 Trip
83
Reactive Power Alarm
31
RTD 10 Trip
84
Low Forward Power Alarm
32
RTD 11 Trip
85
Trip Counter Alarm
33
RTD 12 Trip
86
Breaker Failure Alarm
34
Undervoltage Trip
87
Current Demand Alarm
35
Overvoltage Trip
88
kW Demand Alarm
36
Phase Reversal Trip
89
kvar Demand Alarm
37
Overfrequency Trip
90
kVA Demand Alarm
38
Power Factor Trip
91
Broken Rotor Bar
39
Reactive Power Trip
92
Analog Input 1 Alarm
40
Underfrequency Trip
93
Analog Input 2 Alarm
41
Analog Input 1 Trip
94
Analog Input 3 Alarm
42
Analog Input 2 Trip
95
Analog Input 4 Alarm
43
Analog Input 3 Trip
96
Reverse Power Alarm
44
Analog Input 4 Trip
97
45
Single Phasing Trip
Incomplete Sequence
Alarm
46
Reverse Power Trip
98
Negative Sequence Alarm
47
Field-Breaker Discrepancy
99
Ground Overcurrent
Alarm
Not Used
48
Offline Overcurrent Trip
100
49
Phase Overcurrent Trip
101
Service Alarm
50
Negative Sequence
Overcurrent Trip
102
Control Power Lost
51
General Switch A Alarm
103
Control Power Applied
52
General Switch B Alarm
104
Thermal Reset Close
53
General Switch C Alarm
54
General Switch D Alarm
55
General Switch E Alarm
56
General Switch F Alarm
57
General Switch G Alarm
58
Not Used
59
Tachometer Alarm
60
Thermal Model Alarm
61
Overload Alarm
62
Underfrequency Alarm
63
Not Used
64
Ground Fault Alarm
65
RTD 1 Alarm
66
RTD 2 Alarm
67
RTD 3 Alarm
68
RTD 4 Alarm
http://www.GEindustrial.com/multilin
105
Emergency Reset Open
106
Start While Blocked
107
Relay Not Inserted
108
Trip Coil Supervision
109
Breaker Failure
110
VT Fuse Failure
111
Simulation Started
112
Simulation Stopped
113
Ground Overcurrent Trip
114
Volts/Hertz Trip
115
Volts/Hertz Alarm
116
Low Forward Power Trip
117
Inadvertent Energization
118
Serial Start Command
119
Serial Stop Command
120
Input A Control
121
Input B Control
43
489
Modbus Memory Map
Communications Guide
Table 2: Data Formats (Sheet 9 of 12)
TYPE
DEFINITION
CODE
TYPE
DEFINITION
F134
ctd.
122
Input C Control
bit 4
Reserved
123
Input D Control
F140
ctd.
bit 5
Reserved
124
Input E Control
bit 6
Reserved
125
Input F Control
bit 7
Simulation Mode Enabled
126
Input G Control
bit 8
Breaker Open LED
127
Neutral Overvoltage
Alarm
bit 9
Breaker Closed LED
128
Neutral Undervoltage
(3rd Harmonic) Alarm
129
Setpoint Group 1 Active
bit 12
Ground LED
130
Setpoint Group 2 Active
bit 13
Loss of Field LED
131
Loss of Excitation 1
bit 14
VT Failure LED
132
Loss of Excitation 2
bit 15
Breaker Failure LED
133
Ground Directional Trip
16 bits
134
Ground Directional Alarm
OUTPUT RELAY
STATUS
135
High-Set Phase
Overcurrent Trip
bit 0
1 TRIP
bit 1
2 AUXILIARY
3 AUXILIARY
F136
F139
F140
Hot Stator LED
bit 11
Negative Sequence LED
136
Distance Zone 1 Trip
137
Distance Zone 2 Trip
bit 3
4 AUXILIARY
138
Digital Input Waveform
Trigger
bit 4
5 ALARM
bit 5
6 SERVICE
139
Serial Waveform Trigger
Not Used
Unsigned
16 bit
integer
ORDER CODE
bit 6 to
bit 15
Bit 0
0 = P5 (5 A CT
secondary), 1 = P1 (1 A
CT secondary)
Unsigned
16 bit
integer
THERMAL MODEL
CURVE STYLE
SELECTION
0
Standard
Bit 2
F138
F141
bit 10
bit 2
Bit 1
44
Table 2: Data Formats (Sheet 10 of 12)
CODE
F142
0 = HI (High Voltage
Power Supply),
1 = LO (Low Voltage
Power Supply)
F200
0 = A20 (4 to 20 mA
Analog Outputs),
1 = A1 (0 to 1 mA Analog
Outputs)
Unsigned
16 bit
integer
SIMULATION MODE
0
1
Custom
2
Voltage Dependent
Unsigned
16 bit
integer
COMMUNICATION
MONITOR BUFFER
STATUS
0
Buffer Cleared
1
Received OK
2
Wrong Slave Address
3
Illegal Function
Off
4
Illegal Count
1
Simulate Pre-Fault
5
Illegal Register Address
2
Simulate Fault
6
CRC Error
3
Pre-Fault to Fault
7
Illegal Data
Unsigned
16 bit
integer
FORCE OPERATION OF
RELAYS
Unsigned
16 bit
integer
CURVE RESET TYPE
0
Disabled
0
Instantaneous
1
1 TRIP
1
Linear
2
2 AUXILIARY
3
3 AUXILIARY
Unsigned
16 bit
integer
INADVERTENT
ENERGIZATION
ARMING TYPE
4
4 AUXILIARY
0
Undervoltage and Offline
5
5 ALARM
1
Undervoltage or Offline
6
6 SERVICE
7
All Relays
Unsigned
16 bit
integer
SEQUENTIAL TRIP
TYPE
0
Low Forward Power
8
No Relays
16 bits
GENERAL STATUS
bit 0
Relay in Service
bit 1
Active Trip Condition
bit 2
Active Alarm Condition
bit 3
Reserved
http://www.GEindustrial.com/multilin
F201
F202
F206
F207
1
Reverse Power
Unsigned
16 bit
integer
SWITCH STATUS
0
Open
1
Shorted
GE Multilin
Modbus Memory Map
489
Communications Guide
Table 2: Data Formats (Sheet 11 of 12)
Table 2: Data Formats (Sheet 12 of 12)
CODE
TYPE
DEFINITION
CODE
TYPE
DEFINITION
F208
Unsigned
16 bit
integer
UNDERVOLTAGE TRIP
ELEMENT TYPE
F214
Unsigned
16 bit
integer
WAVEFORM MEMORY
CHANNEL SELECTOR
0
Curve
0
1
Definite Time
Phase A Line Current
512 counts = 1 × CT
Unsigned
16 bit
integer
BREAKER OPERATION
TYPE
1
Phase B Line Current
512 counts = 1 × CT
2
0
Breaker Auxiliary A
Phase C Line Current
512 counts = 1 × CT
1
Breaker Auxiliary B
3
Phase A Line Current
512 counts = 1 × CT
Unsigned
16 bit
integer
ASSIGNABLE INPUT
SELECTION
4
Neutral-End Phase A Line
Current
512 counts = 1 × CT
0
None
5
1
Input 1
2
Input 2
Neutral-End Phase B Line
Current
512 counts = 1 × CT
3
Input 3
6
4
Input 4
Neutral-End Phase C Line
Current
512 counts = 1 × CT
5
Input 5
7
6
Input 6
Phase A to Neutral
Voltage; 3500 counts =
120 secondary volts
7
Input 7
8
Unsigned
16 bit
integer
VOLTS/HERTZ
ELEMENT TYPE
Phase B to Neutral
Voltage; 3500 counts =
120 secondary volts
9
0
Curve #1
Phase C to Neutral
Voltage; 3500 counts =
120 secondary volts
1
Curve #2
Curve #3
Unsigned
16 bit
integer
CURRENT SOURCE
2
0
Neutral-End CTs
F209
F210
F211
F212
F213
3
Definite Time
Unsigned
16 bit
integer
RTD NUMBER
0
All
1
RTD #1
2
RTD #2
3
RTD #3
4
RTD #4
5
RTD #5
6
RTD #6
7
RTD #7
8
RTD #8
9
RTD #9
10
RTD #10
11
RTD #11
F215
F216
12
RTD #12
Unsigned
16 bit
integer
COMMUNICATIONS
MONITOR PORT
SELECTION
0
Computer RS485
1
Auxiliary RS485
2
Front Panel RS232
F217
F218
F219
F220
GE Multilin
http://www.GEindustrial.com/multilin
1
Output-End CTs
Unsigned
16 bit
integer
DNP PORT SELECTION
0
None
1
Computer RS485
2
Auxiliary RS485
3
Front Panel RS485
Unsigned
16 bit
integer
GROUND
DIRECTIONAL MTA
0
0 degrees
1
90 degrees
2
180 degrees
3
270 degrees
Unsigned
16 bit
integer
BREAKER STATE
0
52 Closed
1
52 Open/Closed
Unsigned
16 bit
integer
STEP-UP
TRANSFORMER TYPE
0
None
1
Delta/Wye
Unsigned
16 bit
integer
IRIG-B TYPE
0
None
1
DC Shift
2
Amplitude Modulated
45
489
DNP Protocol
Communications Guide
DNP Protocol
Device Profile
Document
The communications port configured as a DNP slave port must support the full set of
features listed in the Level 2 DNP V3.00 Implementation (DNP-L2) described in
Chapter 2 of the subset definitions. See the DNP protocol website at http://
www.dnp.org for details
DNP 3.0: DEVICE PROFILE DOCUMENT
Vendor Name: General Electric Multilin Inc.
Device Name: 489 Generator Management Relay
Device Function:
Slave
Ë Master Ë
Highest DNP Level Supported:
For Requests: Level 2
For Responses: Level 2
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP
Levels Supported (the complete list is described in the attached table):
Binary Input (Object 1, variations 1 and 2)
Binary Output (Object 10, variation 2)
Binary Counter (Object 20, variations 5 and 6)
Frozen Counter (Object 21, variations 9 and 10)
Analog Input (Object 30, variations 1, 2, 3, and 4)
Analog Input Change (Object 32, variations 1, 2, 3, and 4)
Warm Restart (Function Code 14)
Maximum Data Link Frame Size (octets):
Transmitted: 292
Received: 292
Maximum Application Fragment Size
(octets):
Transmitted: 2048
Received: 2048
Maximum Data Link Re-tries:
Ë
None
Ë Fixed
Ë Configurable
Maximum Application Layer Re-tries:
Ë
None
Ë Configurable
Requires Data Link Layer Confirmation:
Ë
Never
Ë Always
Ë Sometimes
Ë Configurable
Requires Application Layer Confirmation:
Ë Never
Ë Always
Ë
When reporting Event Data
Ë When sending multi-fragment responses
Ë Sometimes
Ë Configurable
Timeouts while waiting for:
Data Link Confirm
Complete Appl. Fragment
Application Confirm
Complete Appl. Response
Others: (None)
46
Ë
None
Ë
None
Ë
None
Ë Fixed
Ë Fixed
Ë Fixed
Ë Variable
Ë Variable
Ë Variable
(fixed value is 5000 milliseconds)
Ë
None
Ë Fixed
Ë Variable
http://www.GEindustrial.com/multilin
Ë Configurable
Ë Configurable
Ë Configurable
Ë Configurable
GE Multilin
489
DNP Protocol
Communications Guide
DNP 3.0: DEVICE PROFILE DOCUMENT (Continued)
Executes Control Operations:
Write Binary Outputs
Ë
Never Ë Always
Ë Sometimes
Select/Operate
Ë
Never Ë Always
Ë Sometimes
Direct Operate
Always
Ë Never Ë
Ë Sometimes
Direct Operate: No Ack
Always
Ë Never Ë
Ë Sometimes
Count > 1
Ë
Never Ë Always
Ë Sometimes
Pulse On
Always
Ë Never Ë
Ë Sometimes
Pulse Off
Ë
Never Ë Always
Ë Sometimes
Latch On
Ë
Never Ë Always
Ë Sometimes
Latch Off
Ë
Never Ë Always
Ë Sometimes
See Binary / Control Relay Output Block (Objects 10/12) on page
explanation of the above.
Queue
Ë
Never Ë Always
Ë Sometimes
Clear Queue
Ë
Never Ë Always
Ë Sometimes
Ë Configurable
Ë Configurable
Reports Binary Input Change Events when
no specific variations requested:
Ë Never
Ë
Only time-tagged
Ë Only non-time-tagged
Ë Configurable to send both, one or
the other
Reports time-tagged Binary Input Change
Events when no specific variation
requested:
Ë Never
Ë
Binary Input Change With Time
Ë Binary Input Change With Relative
Time
Ë Configurable
Sends Unsolicited Responses:
Ë
Never
Ë Configurable
Ë Only certain objects
Ë Sometimes
Ë ENABLE/DISABLE UNSOLICITED
Function codes supported
Sends Static Data in Unsolicited
Responses:
Ë
Never
Ë When Device Restarts
Ë When Status Flags Change
Default Counter Object/Variation:
Ë No Counters Reported
Ë Configurable
Ë
Default Object / Default Variation
Ë Point-by-point list attached
Counters Roll Over at:
Ë No Counters Reported
Ë Configurable
Ë 16 Bits
Ë 32 Bits
Ë Other Value
Ë
Point-by-point list attached
Sends Multi-Fragment Responses:
Implementation Table
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
Configurable
51 for an
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë
Ë Yes
Ë
No
The table below gives a list of all objects recognized and returned by the relay.
Additional information is provided on the following pages including a list of the
default variations returned for each object and lists of defined point numbers for
each object.
Implementation Table Notes:
GE Multilin
1.
For this object, the quantity specified in the request must be exactly 1 as there
is only one instance of this object defined in the relay.
2.
All static data known to the relay is returned in response to a request for Class
0. This includes all objects of type 1 (Binary Input), type 10 (Binary Output),
type 20 (Binary Counter), type 21 (Frozen Counter) and type 30 (Analog Input).
3.
The point tables for Binary Input and Analog Input objects contain a field that
defines to which event class the corresponding static data point has been
assigned.
4.
For this object, the qualifier code must specify an index of 7 only.
5.
Delay Measurement (function code 23) is supported since the relay allows for
writing the time via object 50 and it also periodically sets the “Time Synchronization Required” Internal Indication (IIN). The IIN is set at power-up and will be
set again 24 hours after it was last cleared. The IIN is cleared when time is written as object 50 data or if IRIG-B is enabled and relay time is updated as a
result of a successful decoding of this signal.
http://www.GEindustrial.com/multilin
47
489
DNP Protocol
Communications Guide
Table 3: DNP Implementation Table
Object
Request
Func Codes
Response
Obj
Var
Description
Qual Codes
(Hex)
Func Codes
Qual Codes
(Hex)
1
0
Binary Input - All Variations
1
06
1
1
Binary Input
1
00, 01, 06
1
2
Binary Input With Status (Note 6)
129
00, 01
1
00, 01, 06
129
2
0
00, 01
Binary Input Change - All Variations
1
06, 07, 08
2
2
1
Binary Input Change Without Time
1
06, 07, 08
129
17, 28
2
Binary Input Change With Time
1
06, 07, 08
129
17, 28
10
0
Binary Output - All Variations
1
06
10
2
Binary Output Status
1
00, 01, 06
129
00, 01
12
1
Control Relay Output Block
3, 4, 5, 6
17, 28
129
17, 28
20
0
Binary Counter - All Variations
1, 7, 8, 9, 10
06
129
00, 01
20
5
32-Bit Binary Counter without Flag
1, 7, 8, 9, 10
06
129
00, 01
20
6
16-Bit Binary Counter without Flag
1, 7, 8, 9, 10
06
129
00, 01
21
0
Frozen Counter - All Variations
1
06
129
00, 01
21
9
32-Bit Frozen Counter without Flag
1
06
129
00, 01
21
10
16-Bit Frozen Counter without Flag
1
06
129
00, 01
30
0
Analog Input - All Variations
1
06
30
1
32-Bit Analog Input With Flag
1
00, 01, 06
129
00, 01
30
2
16-Bit Analog Input With Flag
1
00, 01, 06
129
00, 01
30
3
32-Bit Analog Input Without Flag
1
00, 01, 06
129
00, 01
30
4
16-Bit Analog Input Without Flag
1
00, 01, 06
129
00, 01
32
0
Analog Input Change - All Variations
1
06, 07, 08
32
1
32-Bit Analog Input Change without Time
1
06, 07, 08
129
17, 28
32
2
16-Bit Analog Input Change without Time
1
06, 07, 08
129
17, 28
32
3
32-Bit Analog Input Change with Time
1
06, 07, 08
129
17, 28
32
4
16-Bit Analog Input Change with Time
50
1
Time and Date
60
1
60
60
1
06, 07, 08
129
17, 28
1, 2
07 (Note 1)
129
07
Class 0 Data (Note 2)
1
06
129
2
Class 1 Data (Note 3)
1
06, 07, 08
129
3
Class 2 Data (Note 3)
1
06, 07, 08
129
60
4
Class 3 Data (Note 3)
1
06, 07, 08
129
80
1
Internal Indications
2
00 (Note 4)
129
No object - Cold Start
Default Variations
13
No object - Warm Start
14
No object - Delay Measurement (Note 5)
23
The following table specifies the default variation for all objects returned by the
relay. These are the variations that will be returned for the object in a response
when no specific variation is specified in a request.
Table 4: Default Variations
48
OBJECT
DESCRIPTION
DEFAULT
VARIATION
1
Binary Input - Single Bit
1
2
Binary Input Change With Time
2
10
Binary Output Status
2
20
16-Bit Binary Counter without Flag
6
21
16-Bit Frozen Counter without Flag
10
30
32-Bit Analog Input Without Flag
3
32
32-Bit Analog Input Change Without Time
1
http://www.GEindustrial.com/multilin
GE Multilin
DNP Point Lists
489
Communications Guide
DNP Point Lists
Binary Input / Binary
Input Change (Objects
01/02)
The point list for Binary Inputs (Object 01) and Binary Input Change (Object 02) is
shown below:
Table 5: Binary Inputs (Sheet 1 of 4)
Idx
Description
Class
Idx
Description
Class
0
Relay In Service
Class 1
50
Class 1
1
Trip Condition Active
Class 1
Offline Overcurrent Trip Active
or Latched
2
Alarm Condition Active
Class 1
51
Inadvertent Energization Trip
Active or Latched
Class 1
3
Simulation Mode Enabled
Class 1
52
Breaker Is Open
Class 1
Phase Overcurrent Trip Active
or Latched
Class 1
4
5
Breaker Is Closed
Class 1
53
Class 1
6
Hot Stator Fault Active
Class 1
Negative Sequence
Overcurrent Trip Active or
Latched
7
Negative Sequence Fault Active Class 1
54
8
Ground Fault Active
Class 1
Ground Overcurrent Trip Active Class 1
or Latched
9
Loss Of Field Fault Active
Class 1
55
Phase Differential Trip Active or Class 1
Latched
10
VT Failure Detected
Class 1
56
Breaker Failure Detected
Class 1
Undervoltage Trip Active or
Latched
Class 1
11
12
Relay 1 Trip Operated
Class 1
57
Overvoltage Trip Active or
Latched
Class 1
13
Relay 2 Auxiliary Operated
Class 1
58
Relay 3 Auxiliary Operated
Class 1
Volts/Hertz Trip Active or
Latched
Class 1
14
15
Relay 4 Auxiliary Operated
Class 1
59
Phase Reversal Trip Active or
Latched
Class 1
60
Underfrequency Trip Active or
Latched
Class 1
61
Overfrequency Trip Active or
Latched
Class 1
62
Neutral Overvoltage Trip Active Class 1
or Latched
63
Neutral Undervoltage (Third
Harmonic) Trip Active or
Latched
Class 1
64
Reactive Power Trip Active or
Latched
Class 1
65
Reverse Power Trip Active or
Latched
Class 1
66
Low Fwd Power Trip Active or
Latched
Class 1
67
Thermal Model Trip Active or
Latched
Class 1
68
RTD 1 Trip Active or Latched
Class 1
69
RTD 2 Trip Active or Latched
Class 1
70
RTD 3 Trip Active or Latched
Class 1
71
RTD 4 Trip Active or Latched
Class 1
72
RTD 5 Trip Active or Latched
Class 1
73
RTD 6 Trip Active or Latched
Class 1
74
RTD 7 Trip Active or Latched
Class 1
75
RTD 8 Trip Active or Latched
Class 1
76
RTD 9 Trip Active or Latched
Class 1
77
RTD 10 Trip Active or Latched
Class 1
78
RTD 11 Trip Active or Latched
Class 1
79
RTD 12 Trip Active or Latched
Class 1
80
Analog Input 1 Trip Active or
Latched
Class 1
81
Analog Input 2 Trip Active or
Latched
Class 1
16
Relay 5 Alarm Operated
Class 1
17
Relay 6 Service Operated
Class 1
18
Setpoint Access Input Closed
Class 1
19
Breaker Status Input Closed
Class 1
20
Assignable Input 1 Closed
Class 1
21
Assignable Input 2 Closed
Class 1
22
Assignable Input 3 Closed
Class 1
23
Assignable Input 4 Closed
Class 1
24
Assignable Input 5 Closed
Class 1
25
Assignable Input 6 Closed
Class 1
26
Assignable Input 7 Closed
Class 1
27
Trip Coil Supervision - Coil
Detected
Class 1
40
Assignable Input 1 Trip Active
or Latched
Class 1
41
Assignable Input 2 Trip Active
or Latched
Class 1
42
Assignable Input 3 Trip Active
or Latched
Class 1
Assignable Input 4 Trip Active
or Latched
Class 1
43
44
Assignable Input 5 Trip Active
or Latched
Class 1
Assignable Input 6 Trip Active
or Latched
Class 1
46
Assignable Input 7 Trip Active
or Latched
Class 1
47
Sequential Trip Active or
Latched
Class 1
48
Field-Breaker Discrepancy Trip
Active or Latched
Class 1
49
Tachometer Trip Active or
Latched
Class 1
45
GE Multilin
Table 5: Binary Inputs (Sheet 2 of 4)
http://www.GEindustrial.com/multilin
49
489
DNP Point Lists
Communications Guide
Table 5: Binary Inputs (Sheet 3 of 4)
Description
Class
Idx
Description
Class
82
Analog Input 3 Trip Active or
Latched
Class 1
124
RTD 4 Alarm Active or Latched
Class 1
Analog Input 4 Trip Active or
Latched
Class 1
125
RTD 5 Alarm Active or Latched
Class 1
126
RTD 6 Alarm Active or Latched
Class 1
127
RTD 7 Alarm Active or Latched
Class 1
128
RTD 8 Alarm Active or Latched
Class 1
129
RTD 9 Alarm Active or Latched
Class 1
130
RTD 10 Alarm Active or Latched Class 1
131
RTD 11 Alarm Active or Latched Class 1
132
RTD 12 Alarm Active or Latched Class 1
133
Open Sensor Alarm Active or
Latched
Class 1
134
Short/Low Temp Alarm Active
or Latched
Class 1
135
Thermal Model Alarm Active or Class 1
Latched
136
Trip Counter Alarm Active or
Latched
137
Breaker Failure Alarm Active or Class 1
Latched
138
Trip Coil Monitor Alarm Active
or Latched
139
VTFF Alarm Active or Latched
Class 1
140
Current Dmd Alarm Active or
Latched
Class 1
141
MW Demand Alarm Active or
Latched
Class 1
142
Mvar Demand Alarm Active or
Latched
Class 1
Class 1
83
84
Loss of Excitation Circle 1 Trip
Active or Latched
Class 1
Loss of Excitation Circle 2 Trip
Active or Latched
Class 1
86
Ground Directional Trip Active
or Latched
Class 1
87
High Set Phase Overcurrent
Trip Active or Latched
Class 1
88
Distance Zone 1 Trip Active or
Latched
Class 1
89
Distance Zone 2 Trip Active or
Latched
Class 1
100
Assignable Input 1 Alarm
Active / Latched
Class 1
101
Assignable Input 2 Alarm
Active or Latched
Class 1
102
Assignable Input 3 Alarm
Active or Latched
Class 1
103
Assignable Input 4 Alarm
Active or Latched
Class 1
104
Assignable Input 5 Alarm
Active or Latched
Class 1
105
Assignable Input 6 Alarm
Active or Latched
Class 1
106
Assignable Input 7 Alarm
Active / Latched
Class 1
107
Tachometer Alarm Active or
Latched
Class 1
143
MVA Alarm Active or Latched
108
Overcurrent Alarm Active or
Latched
Class 1
144
Analog Input 1 Alarm Active or Class 1
Latched
109
Negative Sequence Alarm
Active or Latched
Class 1
145
Analog Input 2 Alarm Active or Class 1
Latched
110
Ground Overcurrent Alarm
Active or Latched
Class 1
146
Analog Input 3 Alarm Active or Class 1
Latched
111
Undervoltage Alarm Active or
Latched
Class 1
147
Analog Input 4 Alarm Active or Class 1
Latched
112
Overvoltage Alarm Active or
Latched
Class 1
148
Not Programmed Alarm Active
or Latched
Class 1
113
Volts/Hertz Alarm Active or
Latched
Class 1
149
Simulation Mode Alarm Active
or Latched
Class 1
114
Underfreq Alarm Active or
Latched
Class 1
150
Output Relays Forced Alarm
Active or Latched
Class 1
115
Overfrequency Alarm Active or
Latched
Class 1
151
Analog Output Forced Alarm
Active or Latched
Class 1
116
Neutral Overvoltage Alarm
Active or Latched
Class 1
152
Test Switch Shorted Alarm
Active or Latched
Class 1
117
Neutral Undervoltage (Third
Harmonic) Alarm Active or
Latched
Class 1
153
Ground Directional Alarm
Active or Latched
Class 1
118
Reactive Power Alarm Active or Class 1
Latched
154
IRIG-B Failure Alarm Active or
Latched
Class 1
119
Reverse Power Alarm Active or
Latched
Class 1
155
Generator Running Hour Alarm Class 1
Active or Latched
120
Low Forward Power Alarm
Active / Latched
Class 1
121
RTD 1 Alarm Active or Latched
Class 1
122
RTD 2 Alarm Active or Latched
Class 1
123
RTD 3 Alarm Active or Latched
Class 1
85
50
Table 5: Binary Inputs (Sheet 4 of 4)
Idx
http://www.GEindustrial.com/multilin
NOTE
Class 1
Class 1
Any detected change in the
state of any point assigned to
Class 1 will cause the generation
of an event object.
GE Multilin
489
DNP Point Lists
Binary / Control Relay
Output Block (Objects
10/12)
Communications Guide
Table 6: Binary Output Point List
INDEX
DESCRIPTION
0
Reset
1
Generator Start
2
Generator Stop
3
Clear Trip Counters
4
Clear Last Trip Data
5
Clear MWh and Mvarh
6
Clear Peak Demand Data
7
Clear Generator Information
8
Clear Breaker Information
The following restrictions should be noted when using object 12 to control the points
listed above:
1.
The Count field is checked first. If it is zero, the command will be accepted but
no action will be taken. If this field is non-zero, the command will be executed
exactly once regardless of its value.
2.
The Control Code field of object 12 is then inspected:
–
The Queue and Clear sub-fields are ignored.
–
If the Control Code field is zero (i.e., NUL operation) the command is
accepted but no action is taken.
–
For all points, the only valid control is “Close - Pulse On” (41 hex). This is
used to initiate the function (e.g., Reset) associated with the point.
–
Any value in the Control Code field not specified above is invalid and will
be rejected.
–
The On Time and Off Time fields are ignored. A ”Pulse On” control takes
effect immediately when received. Thus, the timing is irrelevant.
–
The Status field in the response will reflect the success or failure of the
control attempt thus:
–
A Status of “Request Accepted” (0) will be returned if the command was
accepted.
–
A Status of “Request not Accepted due to Formatting Errors” (3) will be
returned if the Control Code field was incorrectly formatted or an invalid
Code was present in the command.
–
A Status of “Control Operation not Supported for this Point” (4) will be
returned if an attempt was made to operate the point and the relay, owing
to its configuration, does not allow the point to perform its function.
An operate of the Reset point may fail (even if the command is accepted) due to
other inputs or conditions (e.g., blocks) existing at the time. To verify the success or
failure of an operate of this point it is necessary that the associated Binary Input(s)
be examined after the control attempt is performed.
When using object 10 to read the status of any Binary Output, a value of zero will
always be returned. This is due to the fact that all points are “Pulse On” and are
deemed to be normally off.
GE Multilin
http://www.GEindustrial.com/multilin
51
489
DNP Point Lists
Communications Guide
Binary / Frozen Counter
(Objects 20/21)
NOTE
52
Table 7: Counters Point List
INDEX
ROLLOVER
POINT
DESCRIPTION
0
50000
Number of Breaker Operations
1
50000
Number of Thermal Resets
2
50000
Number of Trips (total)
3
50000
Number of Digital Input Trips
4
50000
Number of Sequential Trips
5
50000
Number of Field-Breaker Discrepancy Trips
6
50000
Number of Tachometer Trips
7
50000
Number of Offline Overcurrent Trips
8
50000
Number of Phase Overcurrent Trips
9
50000
Number of Negative Sequence Overcurrent Trips
10
50000
Number of Ground Overcurrent Trips
11
50000
Number of Phase Differential Trips
12
50000
Number of Undervoltage Trips
13
50000
Number of Overvoltage Trips
14
50000
Number of Volts/Hertz Trips
15
50000
Number of Phase Reversal Trips
16
50000
Number of Underfrequency Trips
17
50000
Number of Overfrequency Trips
18
50000
Number of Neutral Overvoltage (Fundamental) Trips
19
50000
Number of Neutral Undervoltage (Third Harmonic) Trips
20
50000
Number of Reactive Power Trips
21
50000
Number of Reverse Power Trips
22
50000
Number of Underpower Trips
23
50000
Number of Stator RTD Trips
24
50000
Number of Bearing RTD Trips
25
50000
Number of Other RTD Trips
26
50000
Number of Ambient RTD Trips
27
50000
Number of Thermal Model Trips
28
50000
Number of Inadvertent Energization Trips
29
50000
Number of Analog Input 1 Trips
30
50000
Number of Analog Input 2 Trips
31
50000
Number of Analog Input 3 Trips
32
50000
Number of Analog Input 4 Trips
33
50000
Number of Loss of Excitation Circle 1 Trips
34
50000
Number of Loss of Excitation Circle 2 Trips
35
50000
Number of Ground Directional Trips
36
50000
Number of High Set Phase Overcurrent Trips
37
50000
Number of Distance Zone 1 Trips
38
50000
Number of Distance Zone 2 Trips
The counters cannot be cleared with the Freeze/Clear function codes (9/10).
Instead, the control relay output block points can be used to clear groups of
counters. There is only one copy of each counter, so clearing a counter via Modbus
or the front panel display causes the corresponding DNP counter point to be cleared
and vice-versa.
http://www.GEindustrial.com/multilin
GE Multilin
489
DNP Point Lists
Analog Input / Input
Change (Objects 30/32)
Communications Guide
In the following table, the Format column indicates that the associated data point
format is determined by the entry in Data Formats on page 40. For example, an
“F1” format is described in that table as a (16-bit) unsigned value without any
decimal places. Therefore, the value read should be interpreted in this manner.
Many of the values reported by the 489 have a size of 32-bits and have had their
upper and lower 16-bit components assigned to separate points. Where indicated,
refer to the appropriate note following the table for more detail.
Table 8: Analog Inputs Point List (Sheet 1 of 4)
GE Multilin
INDEX
FORMAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
0
F133
1
F1
Generator Status
Class 1
Note 3
Generator Thermal Capacity Used
Class 1
2
F1
Estimated Trip Time On Overload
(seconds, 65535 means never)
Class 1
3
F134
Cause Of Last Trip
Class 1
Note 3
4
F19
Time Of Last Trip (Upper 16 Bits)
Class 1
Notes 3,4
5
F19
Time Of Last Trip (Lower 16 Bits)
Class 1
Notes 3,4
6
F18
Date Of Last Trip (Upper 16 Bits)
Class 1
Notes 3,4
7
F18
Date Of Last Trip (Lower 16 Bits)
Class 1
Notes 3,4
8
F1
Tachometer Pre-Trip
Class 1
Note 3
9
F1
Scale factor for pre-trip current readings
(pre-trip points marked with “Note 6”).
Will always be a power of 10 (1, 10, 100,
etc.). Changes only when the configuration
setpoints are changed.
Class 1
Note 3
10
F1
Phase A Pre-Trip Current
Class 1
Notes 3, 6
11
F1
Phase B Pre-Trip Current
Class 1
Notes 3, 6
12
F1
Phase C Pre-Trip Current
Class 1
Notes 3, 6
13
F1
Phase A Pre-Trip Differential Current
Class 1
Notes 3, 6
14
F1
Phase B Pre-Trip Differential Current
Class 1
Notes 3, 6
15
F1
Phase C Pre-Trip Differential Current
Class 1
Notes 3, 6
16
F1
Pre-Trip Negative Sequence Current
Class 1
Note 3
17
F1
Ground Current Scale Factor. Will always
be a power of 10 (1, 10, 100, etc.).
Changes only when the configuration
setpoints are changed.
Class 1
Note 3
18
F6
Pre-Trip Ground Current (scaled according
to previous setpoint)
Class 1
Note 3
19
F1
Phase A-B Pre-Trip Voltage
Class 1
Note 3
20
F1
Phase B-C Pre-Trip Voltage
Class 1
Note 3
21
F1
Phase C-A Pre-Trip Voltage
Class 1
Note 3
22
F3
Pre-Trip Frequency
Class 1
Note 3
23
F1
Pre-Trip Real Power (MW)
Class 1
Notes 3,8
24
F1
Pre-Trip Real Power (kW)
Class 1
Notes 3,8
25
F1
Pre-Trip Reactive Power (Mar
Class 1
Notes 3,8
26
F1
Pre-Trip Reactive Power (kvar)
Class 1
Notes 3,8
27
F1
Pre-Trip Apparent Power (MVA)
Class 1
Notes 3,8
28
F1
Pre-Trip Apparent Power (kVA)
Class 1
Notes 3,8
29
F1
Last Trip Stator RTD
Class 1
Note 3
30
F4
Last Trip Hottest Stator RTD Temperature
(°C)
Class 1
Note 3
31
F1
Last Trip Bearing RTD
Class 1
Note 3
32
F4
Last Trip Hottest Bearing RTD Temperature
(°C)
Class 1
Note 3
33
F1
Last Trip Other RTD
Class 1
Note 3
34
F4
Last Trip Hottest Other RTD Temperature
(°C)
Class 1
Note 3
http://www.GEindustrial.com/multilin
53
489
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 2 of 4)
54
INDEX
FORMAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
35
F1
36
F4
Last Trip Ambient RTD
Class 1
Note 3
Last Trip Hottest Ambient RTD
Temperature (°C)
Class 1
Note 3
37
F12
38
F12
Pre-Trip Analog Input 1
Class 1
Notes 3,9
Pre-Trip Analog Input 2
Class 1
39
F12
Notes 3,9
Pre-Trip Analog Input 3
Class 1
Notes 3,9
40
F12
Pre-Trip Analog Input 4
Class 1
Notes 3,9
41
F1
Pre-Trip Fundamental Frequency Neutral
Voltage (volts)
Class 1
Notes 3,10
42
F10
Pre-Trip Fundamental Frequency Neutral
Voltage (tenths of a volt)
Class 1
Notes 3,10
43
F1
Pre-Trip Third Harmonic Neutral Voltage
(volts)
Class 1
Notes 3,10
44
F10
Pre-Trip Third Harmonic Neutral Voltage
(tenths of a volt)
Class 1
Notes 3,10
45
F2
Pre-Trip Vab/Iab (loss of excitation
impedance)
Class 1
Note 3
46
F1
Pre-Trip Vab/Iab Angle (loss of excitation
impedance angle)
Class 1
Note 3
47
F1
Scale factor for current readings (points
marked with “Note 7”). Will always be a
power of 10 (1, 10, 100, etc.). Changes
only when the configuration setpoints are
changed.
Class 1
Note 3
48
F1
Phase A Output Current
Class 2
Note 7
49
F1
Phase B Output Current
Class 2
Note 7
50
F1
Phase C Output Current
Class 2
Note 7
51
F1
Phase A Neutral-Side Current
Class 2
Note 7
52
F1
Phase B Neutral-Side Current
Class 2
Note 7
53
F1
Phase C Neutral-Side Current
Class 2
Note 7
54
F1
Phase A Differential Current
Class 2
Note 7
55
F1
Phase B Differential Current
Class 2
Note 7
56
F1
Phase C Differential Current
Class 2
Note 7
57
F1
Average Phase Current
Class 2
Note 7
58
F1
Generator Load (percent)
Class 2
59
F1
Negative Sequence Current
Class 2
60
F1
Ground Current Scale Factor. Will always
be a power of 10 (1, 10, 100, etc.).
Changes only when the configuration
setpoints are changed.
Class 1
61
F3
Ground Current (scaled according to the
previous point)
Class 2
62
F1
Phase A-B Voltage
Class 2
63
F1
Phase B-C Voltage
Class 2
64
F1
Phase C-A Voltage
Class 2
Note 3
65
F1
Average Line Voltage
Class 2
66
F1
Phase A-N Voltage
Class 2
67
F1
Phase B-N Voltage
Class 2
68
F1
Phase C-N Voltage
Class 2
69
F1
Average Phase Voltage
Class 2
70
F3
Per Unit Measurement Of V/Hz
Class 2
71
F3
Frequency
Class 2
Note 2
72
F1
Fundamental Frequency Neutral Voltage
(volts)
Class 2
Note 10
73
F10
Fundamental Frequency Neutral Voltage
(tenths of a volt)
Class 2
Note 10
http://www.GEindustrial.com/multilin
GE Multilin
489
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 3 of 4)
INDEX
GE Multilin
FORMAT
74
F1
75
F10
76
F1
77
F10
DESCRIPTION
EVENT CLASS
ASSIGNED TO
NOTES
Third Harmonic Neutral Voltage (volts)
Class 2
Note 10
Third Harmonic Neutral Voltage (tenths of
a volt)
Class 2
Note 10
Third Harmonic Terminal Voltage (volts)
Class 2
Note 10
Third Harmonic Terminal Voltage (tenths of
a volt)
Class 2
Note 10
78
F2
Vab/Iab (loss of excitation impedance)
Class 2
79
F1
Vab/Iab Angle (loss of excitation
impedance angle)
Class 2
80
F6
Power Factor
Class 2
81
F1
Real Power (MW)
Class 2
Note 8
82
F1
Real Power (kW)
Class 2
Note 8
83
F1
Reactive Power (Mar)
Class 2
Note 8
84
F1
Reactive Power (kvar)
Class 2
Note 8
85
F1
Apparent Power (MVA)
Class 2
Note 8
86
F1
Apparent Power (kVA)
Class 2
Note 8
87
F1
Hottest Stator RTD
Class 2
Note 3
88
F4
Hottest Stator RTD Temperature (°C)
Class 2
89
F4
RTD #1 Temperature (°C)
Class 2
90
F4
RTD #2 Temperature (°C)
Class 2
91
F4
RTD #3 Temperature (°C)
Class 2
92
F4
RTD #4 Temperature (°C)
Class 2
93
F4
RTD #5 Temperature (°C)
Class 2
94
F4
RTD #6 Temperature (°C)
Class 2
95
F4
RTD #7 Temperature (°C)
Class 2
96
F4
RTD #8 Temperature (°C)
Class 2
97
F4
RTD #9 Temperature (°C)
Class 2
98
F4
RTD #10 Temperature (°C)
Class 2
99
F4
RTD #11 Temperature (°C)
Class 2
100
F4
RTD #12 Temperature (°C)
Class 2
101
F1
Current Demand
Class 2
Note 7
102
F1
MW Demand
Class 2
Note 8
103
F1
kW Demand
Class 2
Note 8
104
F1
Mvar Demand
Class 2
Note 8
105
F1
kvar Demand
Class 2
Note 8
106
F1
MVA Demand
Class 2
Note 8
107
F1
kVA Demand
Class 2
Note 8
108
F1
Peak Current Demand
Class 2
Note 7
109
F1
Peak MW Demand
Class 2
Note 8
110
F1
Peak kW Demand
Class 2
Note 8
111
F1
Peak Mvar Demand
Class 2
Note 8
112
F1
Peak kvar Demand
Class 2
Note 8
Note 8
113
F1
Peak MVA Demand
Class 2
114
F1
Peak kVA Demand
Class 2
Note 8
115
F12
Analog Input 1
Class 2
Note 9
116
F12
Analog Input 2
Class 2
Note 9
117
F12
Analog Input 3
Class 2
Note 9
118
F12
Analog Input 4
Class 2
Note 9
119
F1
Tachometer RPM
Class 2
120
F1
Average Generator Load
Class 2
http://www.GEindustrial.com/multilin
55
489
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 4 of 4)
INDEX
FORMAT
DESCRIPTION
EVENT CLASS
ASSIGNED TO
121
F1
Average Negative Sequence Current
Class 2
122
F1
Average Phase-Phase Voltage
Class 2
123
-
User Map Value 1
124
-
User Map Value 2
↓
↓
…↓...
246
-
User Map Value 124
247
-
248
F118
249
250
NOTES
Note 5
Note 5
↓
↓
Note 5
User Map Value 125
Note 5
Active Setpoint Group
Class 1
F13
Positive kWh
Class 2
F13
Positive kvarh
Class 2
251
F13
Negative kvarh
Class 2
252
F12
Generator Hours Online
Class 2
Note 3
TABLE NOTES:
1.
Unless otherwise specified, an event object will be generated for a point if the
current value of the point changes by an amount greater than or equal to two
percent of its previous value.
2.
An event object is created for the Frequency point if the frequency changes by
0.04 Hz or more from its previous value.
3.
An event object is created for these points if the current value of a point is in
any way changed from its previous value.
4.
To support existing SCADA hardware that is not capable of 32-bit data reads,
the upper and lower 16-bit portions of these 32-bit values have been assigned
to separate points. To read this data, it is necessary to read both the upper and
lower 16-bit portions, concatenate these two values to form a 32-bit value and
interpret the result in the format associated with the point as specified in Data
Formats on page 40.
5.
The data returned by a read of the User Map Value points is determined by the
values programmed into the corresponding User Map Address registers (which
are only accessible via Modbus). Refer to User-Definable Memory Map Area on
page 9 for more information. Changes in User Map Value points never generate
event objects. Note that it is possible to refer to a 32-bit quantity in a user map
register, which may require the use of a 32-bit variation to read the associated
analog input point.
6.
The scale for pre-trip currents is determined by the value in point 9, which
should not normally change
7.
The scale for currents is determined by the value in point 47, which should not
normally change
8.
Each power quantity is available at two different points, with two different scale
factors (kW and MW, for example). The user should select the unit which is closest to providing the resolution and range desired. If 32-bit analog input capability is present, the higher-resolution (kW, kvar, kVA) points should generally be
used, since they provide the greatest resolution.
9.
Analog input values may be –50000 to +50000 if so configured. Therefore, 32bit analog input capability is required to read the full possible range. If the
SCADA equipment can only read 16-bit registers, the analog inputs should be
configured to operate within the range –32768 to +32767.
10. Each neutral voltage quantity is available at two different points, with two different scale factors (volts and tenths of a volt). The user should select the unit
which is closest to providing the resolution and range desired. If 32-bit analog
input capability is present, the higher-resolution (tenths of a volt) points should
generally be used, since they provide the greatest resolution.
56
http://www.GEindustrial.com/multilin
GE Multilin
Index
489
Communications Guide
Index
A
E
ANALOG INPUTS
DNP point list ................................................................ 2-53
ELECTRICAL INTERFACE .................................................. 2-1
ERROR RESPONSES ........................................................ 2-8
EVENT RECORDER ........................................................... 2-9
B
BAUD RATE ...................................................................... 2-1
BINARY COUNTER DNP POINTS .................................... 2-52
BINARY INPUTS DNP POINTS ......................................... 2-49
BINARY OUTPUTS DNP POINTS ..................................... 2-51
L
LOOPBACK TEST .............................................................. 2-6
M
C
COMMUNICATIONS
data frame format ............................................................ 2-1
data rate ......................................................................... 2-1
error responses ............................................................... 2-8
passcode ...................................................................... 2-10
CRC-16 ...................................................................... 2-2, 2-3
CYCLIC REDUNDANCY CHECK
see CRC-16
D
DATA FORMATS, MEMORY MAP ..................................... 2-40
DATA FRAME FORMAT ..................................................... 2-1
DATA PACKET FORMAT ................................................... 2-2
DATA RATE ....................................................................... 2-1
DEFAULT VARIATIONS ................................................... 2-48
DNP
device profile document ................................................. 2-46
implementation table ..................................................... 2-47
point lists ..................................................... 2-49, 2-51, 2-52
DNP COMMUNICATIONS
device profile document ................................................. 2-46
DUAL SETPOINTS ........................................................... 2-10
MEMORY MAP
data formats .................................................................. 2-40
description ....................................................................... 2-9
format codes .................................................................. 2-40
information ...................................................................... 2-9
Modbus ......................................................................... 2-11
user-definable .................................................................. 2-9
MODBUS
description ....................................................................... 2-1
execute operation ............................................................ 2-5
function code 03 .............................................................. 2-4
function code 04 .............................................................. 2-4
function code 05 .............................................................. 2-5
function code 06 .............................................................. 2-5
function code 07 .............................................................. 2-6
function code 08 .............................................................. 2-6
function code 16 .............................................................. 2-7
loopback test ................................................................... 2-6
performing commands ...................................................... 2-8
read actual values ............................................................ 2-4
read device status ............................................................ 2-6
read setpoints .................................................................. 2-4
store multiple setpoints .................................................... 2-7
store single setpoint ......................................................... 2-5
MODBUS FUNCTIONS ....................................................... 2-3
R
RS232 COMMUNICATIONS ................................................ 2-1
RS485 COMMUNICATIONS ................................................ 2-1
GE Multilin
http://www.GEindustrial.com/multilin
i
489
Communications Guide
T
TIMING .............................................................................. 2-3
TRACE MEMORY ............................................................. 2-10
U
USER DEFINABLE MEMORY MAP ..................................... 2-9
W
WAVEFORM CAPTURE .................................................... 2-10
ii
http://www.GEindustrial.com/multilin
GE Multilin
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising