CARB

CARB
CARB toroidal roller
bearings
A revolutionary concept
Contents
A Product information
C Product data
3
The winning combination
37 Bearing data – general
While SKF maintains its leadership
as the hallmark of quality bearings
throughout the world, new dimensions
in technical advances, product support
and services have evolved SKF into
a truly solutions-oriented supplier,
creating greater value for customers.
4
5
CARB toroidal roller bearings with
revolutionary design characteristics
SKF Explorer class bearings
44
44
56
58
6
7
7
A range for all requirements
Availability
Bearing benefits
These solutions encompass ways to
bring greater productivity to customers,
not only with breakthrough applicationspecific products, but also through
leading-edge design simulation tools
and consultancy services, plant asset
efficiency maintenance programmes,
and the industry’s most advanced
supply management techniques.
8
The CARB toroidal roller bearing
– the cornerstone of the SKF
self-aligning bearing system
The conventional solution
The SKF solution
The SKF brand now stands for more
than ever before, and means more
to you as a valued customer.
The SKF brand still stands for the very
best in rolling bearings, but it now
stands for much more.
SKF – the knowledge engineering
company
8
9
10 Successful in service
B Recommendations
12 Selection of bearing size
12 Longer life or downsizing
14
14
16
18
20
Design of bearing arrangements
Radial location
Axial location
Design of adjacent components
Sealing the bearing arrangement
22
22
24
25
Lubrication
Grease lubrication
Deviating conditions
Oil lubrication
26 Mounting
26 Mounting on a cylindrical seat
26 Mounting on a tapered seat
34 Dismounting
34 Dismounting from a cylindrical seat
35 Dismounting from a tapered seat
36 The SKF concept for cost savings
2
Product tables
CARB toroidal roller bearings
Sealed CARB toroidal roller bearings
CARB toroidal roller bearings on an
adapter sleeve
68 CARB toroidal roller bearings on a
withdrawal sleeve
D Additional information
78 Other associated SKF products
82 SKF – the knowledge engineering
company
The winning combination
Self-alignment ...
... combined for success
Self-aligning bearings are the hallmark of
SKF – not surprising since SKF was founded
in 1907, based on the invention of the selfaligning ball bearing by Sven Wingquist. But
the development did not stop there, other SKF
inventions followed: the spherical roller bearing in 1919 and the spherical roller thrust
bearing in 1939.
Self-alignment is called for
In the past, almost every bearing arrangement was a compromise due to misalignment
and shaft deflections. In most cases, depending on the load and speed requirements, design
engineers were limited to self-aligning ball
bearings or spherical roller bearings.
Though these bearings could accommodate
misalignment, they could not accommodate
axial displacement within the bearing like
a cylindrical roller bearing. Therefore, it was
necessary for one of the bearings to move
axially on its seat in the housing. This movement, which took place under considerable
friction, produced additional axial forces in the
bearing arrangement. The result was a shortened bearing service life and relatively high
maintenance and repair costs.
Today, this scenario is a thing of the past
because Magnus Kellström, a product designer at SKF, had the brilliant idea to create a
bearing that could compensate for misalignment without friction like a spherical roller
bearing, and accommodate changes in shaft
length internally, like a cylindrical roller
bearing.
This completely new type of bearing, called
a toroidal roller bearing gives engineers an
opportunity to design bearing arrangements
without compromise. Additional benefits
include much longer service life for the complete bearing arrangement and minimized
maintenance and repair costs.
• when misalignment exists as a result of
inaccurate manufacturing or mounting
errors
• when shaft deflections occur under load
and these have to be accommodated in the
bearing arrangement without negative effects
on performance or any reduction in bearing
service life.
... and axial
displacement ...
SKF was also heavily involved in the development of bearings having rings that can be
ax­ially displaced relative to each other. In 1908,
for example, the cylindrical roller bearing in
its modern version was developed to a large
extent by Dr.-Ing. Josef Kirner of the Norma
Compagnie in Stuttgart-Bad Cannstatt, which
became a subsidiary of SKF.
Cylindrical roller bearings are applied when
A
Self-alignment …
… and axial
displacement …
… combined in
a toroidal roller
bearing
• heavy radial loads and relatively high
speeds prevail
• thermal changes in shaft length must be
accommodated within the bearing with
as little friction as possible – provided,
of course, that there is no significant
misalignment.
3
CARB toroidal roller bearings with
revolutionary design characteristics
The CARB toroidal roller bearing represents
one of the most important breakthroughs in
rolling bearing technology over the past sixty
years. The bearing was introduced to the
market in 1995 under the SKF trademark
CARB.
The CARB toroidal roller bearing is a completely new type of roller bearing, which offers
bene­fits that were previously unthinkable.
Irrespec­tive of whether a new machine is to be
designed or an older machine maintained,
there are benefits to be gained by using a
toroidal roller bearing. Which of these benefits
is realized depends on the machine design
and its operating parameters.
A CARB bearing is a single row roller bearing with relatively long, slightly crowned rollers. The inner and outer ring raceways are
correspondingly concave and symmetrical
(† fig. 1). The outer ring raceway geometry
is based on a torus († fig. 2), hence the term
toroidal roller bearing.
The CARB toroidal roller bearing is designed
as a non-locating bearing that combines the
self-aligning ability of a spherical roller bearing with the ability to accommodate axial displacement like a cylindrical or needle roller
bearing. Additionally, if required, the toroidal
roller bearing can be made as compact as
a needle roller bearing.
An application incorporating a CARB toroidal
roller bearing provides benefits outlined in the
following.
Self-aligning capability
The self-aligning capability of a CARB bearing
is particularly important in applications where
there is misalignment as a result of inaccurate
manufacturing, mounting errors or shaft de­flections. To compensate for these conditions,
a CARB bearing can accommodate misalignment up to 0,5 degrees between the bearing
rings without any detrimental effects on the
bearing or bearing service life († fig. 3).
4
Axial displacement
Previously, only cylindrical and needle roller
bearings could accommodate thermal expansion of the shaft within the bearing. Today,
however, the CARB bearing has been added
to that list († fig. 4). The inner and outer
rings of a CARB bearing can be displaced, rela­
tive to each other, up to 10% of the bearing
width. By installing the bearing so that one
ring is initially displaced relative to the other
one, it is possible to extend the permissible
axial displacement in one direction.
In contrast to cylindrical and needle roller
bearings that require accurate shaft alignment, this is not needed for toroidal roller
bearings, which can also cope with shaft
deflection under load. This provides a solution
to many problem cases.
Long bearing system life
The ability to accommodate misalignment
plus the ability to accommodate axial displacement within the bearing with virtually
no friction enables a CARB bearing to provide
benefits to the bearing system and its associated components († fig. 5):
• Internal axial displacement is virtually without friction; there are no internally induced
axial forces, thus operating conditions are
considerably improved.
• The non-locating bearing as well as the
locating bearing only need to support
external loads.
• The bearings run cooler, the lubricant lasts
longer and maintenance intervals can be
appreciably extended.
Taken together, these benefits contribute
to longer bearing system life.
The CARB toroidal
bearing
Fig. 1
The torus
Fig. 2
Angular
misalignment
The most frequently
occurring misalign­
ments in operation
are not a problem for
a CARB toroidal roller
bearing
Fig. 3
Axial displacement
Changes in shaft
length are accommo­
dated within the
bearing, virtually
without friction
Fig. 4
Freedom
of movement
Permissible angular
misalignment + axial
displacement within
the bearing
Fig. 5
Fig. 6
Deviations from
cylindrical form are
less problematic
Demands on accuracy
of form of the bearing
seats are less stringent,
making simpler and less
costly bearing arrange­
ments possible
Diagram 1
axial vibration
High load carrying capacity
Reduced vibration
CARB toroidal roller bearings can accommodate very heavy radial loads. This is due to the
optimized design of the rings combined with
the design and number of rollers. The large
number of long rollers makes CARB bearings
the overall strongest self-aligning radial roller
bearings. Due to their robust design, CARB
bearings can cope with small deformations
and machining errors of the bearing seat
(† fig. 6). The rings accommodate these
small imperfections without the danger of
edge stresses. The high load carrying capacity
plus the ability to compensate for small manu­
facturing or installation errors provide opportunities to increase machine productivity and
uptime.
Self-aligning ball or spherical roller bearings
in the non-locating position need to be able
to slide within the housing seat. This sliding,
however, causes axial vibrations that can
reduce bearing service life considerably.
Bearing arrangements that use CARB
toroidal roller bearings as the non-locating
bearing are stiff because CARB bearings can
be radially and axially located in the housing
and on the shaft. This is possible because
thermal expansion of the shaft is accommodated within the bearing. The stiffness of the
bearing arrangement, combined with the
ability of the CARB bearing to accommodate
axial movement, substantially reduces vibrations within the application to increase service
life of the bearing arrangement and related
components († diagram 1).
Improve performance or downsize
time
–– conventional bearing system
–– bearing system with a CARB bearing
in the non-locating position
Axial vibration
With a CARB bearing axial vibrations are consider­
ably reduced, meaning longer service life and quieter
operation
For bearing systems incorporating a CARB
toroidal roller bearing as the non-locating
bearing, internally induced axial loads are
prevented. Together with high load carrying
capacity this means that
• for the same bearing size in the arrangement, performance can be increased
or service life extended
• new machine designs can be made more
compact to provide the same, or even
better performance.
Full dimensional interchangeability
The boundary dimensions of CARB to­roidal
roller bearings are in accordance with
ISO 15:1998. This provides full dimensional
interchangeability with self-aligning ball bearings, cylindrical roller and spherical roller
bearings in the same dimension series. The
CARB bearing range also covers wide bearings with low cross sections normally associated with needle roller bearings († fig. 7).
SKF Explorer class
bearings
All CARB bearings are manufactured to the
SKF Explorer performance class.
Full dimensional interchangeability
The advantages of CARB bearing can be fully
exploited when refurbishing non-locating bearing
arrangements designed for self-aligning as well
as rigid bearings
Fig. 7
5
A
A range for all requirements
Fig. 1
C39
C49
C59
C69
C30
C40
C50
C60
C31
Overview of the product range
The SKF standard range of CARB toroidal
roller bearings comprises bearings in 13
ISO dimension series († fig. 1). The smallest
bearing has a bore diameter of 25 mm and
the largest one a bore diameter of 1 250 mm.
Bearings with a bore diameter up to 1 800 mm
can be produced. Whether a new bearing
arrangement is to be designed or an existing
arrangement upgraded, most often there is
an appropriate CARB toroidal roller bearing
available or such a bearing could be
manufactured.
CARB toroidal roller bearings are produced in
• a caged version († fig. 2)
• a full complement version († fig. 3)
with
• a cylindrical bore
• a tapered bore.
The tapered bore has a taper of 1:12 or 1:30,
depending on the dimension series.
In addition to the standard bearings, SKF
also produces special executions to suit particular applications, e.g.
6
• bearings with a case hardened inner ring,
to avoid inner ring cracking and improve
reliability in applications with heat, i.e.
­Yankee and drying cylinders in paper mills
• bearings with a surface hardened cage for
vibrating screens
• sealed bearings, for example, for continuous casting plants († fig. 4). The possible
misalignment and axial displacement as
well as the load carrying capacity are lower
than for a corresponding open bearing.
C41
C22
C32
C23
Fig. 2
Fig. 3
Fig. 4
A
Caged bearing
For heavy loads and relatively high speeds
Full complement bearing
For very heavy loads and low speeds
Sealed bearing
Lubricated for life and protected against
contaminants, for heavy loads and low speeds
Availability
Bearing benefits
The product range is shown in the tables
starting on page 44. SKF recommends
checking availability of those bearings marked
with a triangle. To do that, contact your local
SKF representative or SKF distributor. The
standard range is being continuously extended
and the intention is to eventually manufacture
all the bearings shown in the product tables.
Already well proven in service, toroidal roller
bearings enable all types of machines and
equipment to be
• smaller
• lighter
• more cost-effective
• more operationally reliable.
Replacing other bearings in a non-locating
position with an equivalent CARB bearing can,
depending on the application, improve performance and uptime while decreasing the
need for maintenance. Why not put CARB
bearings to the test and reap the benefits
they can provide?
7
The CARB toroidal roller bearing
– the cornerstone of the SKF
self-aligning bearing system
The conventional solution
Conventional self-aligning bearing systems
consist of two self-aligning ball bearings if
there are high speeds and light loads, or two
spherical roller bearings if there are heavy
loads and moderate speeds. These simple
bearing systems have good load carrying
capacity and can accommodate misalignment
as well as shaft deflections († fig. 1). However, they are not well suited to accommodate
considerable axial expansion of the shaft.
In a conventional self-aligning bearing system, axial expansion of the shaft is accommodated by the bearing in the non-locating position. The fits for this bearing are selected to
provide axial movement of one of the bearing
rings, generally the outer ring, on its seat.
This axial movement is accompanied by friction that induces axial loads in both bearings
(† fig. 2). In addition, the movement of the
bearing with a loose fit on its seat can ­create
damaging vibrations because the movement
is “stick-slip” and not smooth († diagram 1).
This loose fit has a negative effect on the
stiffness of the bearing arrangement. The
bear­ing ring with the loose fit can also begin
to “wander”, which wears the seat and leads
to fretting corrosion which, if left un­checked,
could “weld” the ring to its seat († diagram 2).
Conventional solution
Two spherical roller
bearings (or selfaligning ball bearings)
accommodate easily
angular misalignment
of the inner ring relative
to the outer ring
Fig. 1
Axial expansion of the
shaft can induce an
internal axial force on
the bearing in the nonlocating position and
produce an axial force
of equal magnitude on
the bearing in the locat­
ing position and change
the load distribu­tion
in the bearings
Fig. 2
Fr
Load conditions
in a conventional
solution
The axial expansion
of the shaft can induce
internal axial forces that
change in magnitude
due to the stick-slip
effect of the moving
outer ring of the nonlocating bearing
When a non-locating
bearing is prevented
from moving in its seat,
heavy axial forces are
induced in the bear­ing
arrangement that
dramatically reduce the
service life of the bearings
Diagram 1
Fa/Fr
0,2
0,1
0
Diagram 2
Fa/Fr 1,5
1
0,5
0
8
t
t
Fig. 3
Fig. 4
The SKF solution
With a spherical roller
bearing or a self-align­
ing ball bearing in the
locating position and
a CARB toroidal roller
bearing in the nonlocating position, the
system can accommo­
date misalignment and
shaft deflections as well
as thermal changes in
shaft length, virtually
without friction
There are no induced
axial forces. Note that
both the inner and outer
rings of the CARB bear­
ing are located axially
and radially
Fr
Diagram 3
°C
Lower operating
temperatures extend
re­lubrication intervals
and bearing service
life
The SKF solution
A
There is no need for a comprise. The SKF
self-aligning bearing system solves the problem by incorporating a CARB toroidal roller
bearing in the non-locating position.
CARB toroidal roller bearings are able to
accommodate misalignment and axial displacements within the bearing († fig. 3). This
means that both rings of the non-locating
bearing can be axially located in the housing
and on the shaft († fig. 4). If it is necessary
to secure the rings so that they cannot “creep”,
they can be mounted with an interference fit,
further enhancing the radial stiffness of the
bearing arrangement.
This is an optimal solution for applications
with undetermined load direction, e.g. vibrating applications, because internal preload and
wear to the bearing seat in the housing are
avoided. No longer is there a need to comprom­
ise between a tight fit and axial freedom.
A CARB toroidal roller bearing is designed
to accommodate axial displacement without
inducing additional axial internal forces or
friction († fig. 4). This means that the loads
acting on the bearing are determined exclusively by external radial and axial forces.
Because of this, a bearing system incorporating a CARB bearing will have lower resultant
loads and a better load distribution than a
conventional bearing system. This also translates into lower operating temperatures, higher operating viscosities, extended relubrication intervals, and a significantly longer
service life for both the bearings and the
lubricant († diagram 3).
With a CARB toroidal roller bearing in the
non-locating position, the many excellent
design characteristics and properties of SKF
spherical roller bearings and self-aligning ball
bearings can be fully exploited. This provides
new opportunities to further optimize
machine design.
9
Successful in service
Although a rather recent invention, CARB
toroidal roller bearings can be found in a
variety of applications, spanning almost
every industry. This bearing has already
proven itself and in many cases has outperformed expectations by
• extending service life
• increasing reliability
• reducing maintenance
• enabling more compact designs.
Main application areas
• Steelmaking and rolling mills
• Conveyors and roller beds
• Paper machines
• Fans, blowers, pumps
• Crushers
• Gearboxes of all types
• Textile machines
• Food and beverage processing
machines
• Agricultural machinery
• Vibrating screens
10
One of the major application areas for
CARB toroidal roller bearings is in steelmaking
and particularly in continuous casters where
the multitude of guide rollers are subjected to
the most difficult operating conditions. Paper
machines are another important application
where shaft deflections and thermal changes
in roll length of up to 10 mm have to be
accommodated.
Major demands
• High operation reliability
• Long service life
• Reduced need of maintenance
• High load carrying capacity
• Lower operating costs
• Compact design
• Enhanced performance
• High power density
These main applications are not the only
fields where CARB toroidal roller bearings
perform successfully. They are also in service
in large electric motors, wind power plants,
water turbines, marine thrusters, crane
wheels, separ­ators, centrifuges, presses,
staking machines for tanneries, rotary cultivators and mulchers.
Solution
To facilitate the incorporation of CARB
toroidal roller bearings in new as well as
existing machines, please consult the SKF
application engineering service.
A
11
Selection of bearing size
To calculate bearing size or the basic rating
life for a CARB toroidal roller bearing it is possible to use all the known and standardized
(ISO 281) calculation methods. However, SKF
recommends using the SKF rating life so that
the enhanced performance characteristics of
SKF bearings can be fully exploited. Detailed
information can be found in the SKF General
Catalogue in the section “Selection of bearing
size” or in the “SKF Interactive Engineering
Catalogue” available online at www.skf.com.
For a self-aligning bearing system that
incorporates an SKF Explorer spherical roller
bearing and a CARB bearing, system life can
be calculated using the SKF system rating life
equation:
1
7—————————
Lnm,Sys =
7
1 +
1
9/8
P Lnm, SRB9/8 Lnm, CARB9/8
where
Lnm, Sys =SKF rating life for the bearing
system (at 100 – n1) % reliability),
millions of revolu­tions
Lnm, SRB =SKF rating life for the locating
spherical roller bearing
(at 100 – n1) % reliability), millions
of revolutions
Lnm, CARB=SKF rating life for the non-locating
CARB toroidal roller bearing (at
100 – n1) % reliability), millions
of revolu­tions.
1)
The factor n represents the difference between the
­requisite reliability and 100%
12
Longer life or downsizing
When used in a self-aligning bearing system,
the CARB bearing prevents internally induced
axial forces from occurring. This is in contrast
to conventional self-aligning bearing systems
with two spherical roller bearings or selfaligning ball bearings, where the induced
internal axial forces can be 20% or more of
the radial load acting on the non-locating
bearing. These additional forces represent
a sizeable percentage of the total load and
can result in premature bearing failure unless
larger bearings are used to compensate for
the additional loads.
Because a CARB toroidal roller bearing
prevents internally induced axial forces from
occurring, the load conditions in the bearing
system can be predicted accurately. The locating bearing is only subjected to its portion of
the external radial and axial loads, while the
non-locating bearing is only subjected to its
portion of the radial load.
Whether a spherical roller bearing
(† diagram 1) or a self-aligning ball bearing
(† diagram 2) is used in the locating pos­
ition, the SKF self-aligning bearing system
can substantially increase the service life of
the bearing arrangement. It also worth noting
that even if smaller bearings are used, the
SKF self-aligning bearing system will often
achieve a longer system life than a conventional system using larger bearings. This can
be exploited by downsizing adjacent components and reducing costs.
To take full advantage of the benefits
offered by the SKF self-aligning bearing system, the size of both the locating and nonlocating bearings must be selected carefully.
For assistance, contact the SKF application
engineering service.
Compare the life of a conventional self-aligning
bearing system using two spherical roller
bearings with a bearing system that uses
a CARB toroidal roller bearing and a spherical
roller bearing
Diagram 1
C 3148
23148
1
B
C 3144
23144
Relative system life
0,5
23148
23148
0
0
0,05
0,1
0,15*
0,2
0,25
0,3
0,35
0,4
Coefficient of friction μ
*Typical value for steel on cast iron
Compare the life of a conventional self-aligning
bearing system using two self-aligning ball
bearings with a bearing system that uses a CARB
toroidal roller bearing and a self-aligning ball
bearing
Diagram 2
6
5
C 2222
2222
C 2220
2220
4
3
Relative system life
2
1
2222
2222
0
0
0,05
0,1
0,15*
0,2
0,35 0,4
0,3
Coefficient of friction μ
0,25
*Typical value for steel on cast iron
13
Design of bearing arrangements
Two bearings are generally required to support, guide and locate a shaft in the radial and
axial directions. To do this, one bearing is designated the locating bearing and the other is
the non-locating bearing.
In traditional self-aligning bearing systems,
the locating bearing is secured in its housing
and locates the shaft axially, while the nonlocating bearing typically moves in its housing
to accommodate axial expansion of the shaft.
With the SKF self-aligning bearing system,
a CARB toroidal roller bearing is used in the
non-locating position and either a spherical
roller bearing († fig. 1) or a self-aligning ball
bearing († fig. 2) is used in the locating pos­
ition. Because a CARB bearing can accommodate axial expansion internally like a cylindrical
roller bearing, it prevents internally induced
axial forces from occuring; these forces would
otherwise be present if the bearing had to
slide on its seat in the housing. The ability to
accommodate axial shaft expansion intern­ally
enables the bearing rings to be axially located
on the shaft and in the housing.
Radial location
To take advantage of the very high load carrying capacity and full life potential of a toroidal
roller bearing, the bearing rings must be fully
supported around their whole circumference
and across the full width of the outer ring.
Selecting the proper fit
To locate a shaft radially, most applications
require an interference fit between the bearing rings and their seats. However, if easy
mounting and/or dismounting are required,
a looser outer ring fit might be applied.
Recommendations for suitable tolerances
for the shaft diameter and housing bore for
CARB toroidal roller bearings are provided in
tables 1, 2 and 3. These recommendations
apply to solid steel shafts and housings made
from cast iron or steel.
Generally, CARB toroidal roller bearings
­follow the fit recommendations for spherical
roller bearings on shafts and in housings.
However, a spherical roller bearing in the
non-locating position must be axially free,
which requires a loose housing fit – this is not
neces­sary for bearing arrangements using a
CARB toroidal roller bearing. CARB bearings
SKF self-aligning bearing system with a spherical roller bearing in the
locating position and a CARB toroidal roller bearing in the non-locating
position
Fig. 1
14
(and spherical roller bearings in the locating
position) can therefore utilize the advantages
of tight outer ring fits. For example, for a fan
that might have an unbalanced fan rotor, a K7
fit is applied for a split housing and P7 for
a non-split housing.
For normal, stationary outer ring load it
might not be necessary to have a tight outer
ring fit.
Bearings with a tapered bore are mounted
either directly on a tapered journal or on an
adapter or a withdrawal sleeve on cylindrical
shaft seats. The fit of the inner ring in these
cases depends on how far the ring is driven
up the tapered seat.
Accurancy of associated
components
The accurancy of the cylindrical seats on the
shaft and in the housing bore should corres­
pond to that of the bearing. For CARB toroidal
roller bearings the shaft seat should be tolerance grade 6 and the housing seat grade 7.
For an adapter or withdrawal sleeve, wider
diameter tolerances can be adopted for the
cylindrical seat on the shaft, e.g. grade 9 or 10.
The cylindricity as defined in ISO 1101-1996
for the bearing seat should be 1 or 2 grades
SKF self-aligning bearing system with a self-aligning ball bearing in the
locating position and a CARB toroidal roller bearing in the non-locating
position
Fig. 2
better than the recommended dimensional
tolerance depending on the requirements. For
example, a shaft seat machined to tolerance
p6 should have a cylindricity grade 5 or 4.
Table 1
Fits for solid steel shafts
Conditions
Examples
Shaft diameter (mm)
over incl.
Tolerance
Bearings with a cylindrical bore
Rotating inner ring load or direction of load indeterminate
Normal to heavy loads
(P > 0,05 C)
B
General bearing
25
applications,
25
40
electric motors,
40
60
turbines, pumps,
60
100
gearboxes, transmis- 100
200
sions, woodworking
200
500
machines, wind turbines 500
Very heavy loads
Traction motors, or shock loads with
rolling mills difficult working
conditions
(P > 0,1 C)
50
70
70
140
140
280
280
400
400
m5
m5
n51)
n61)
p62)
r61)
r71)
n51)
p62)
r61)
s6min ± IT6/23)4)
s7min ± IT7/23)4)
Bearings with a tapered bore on an adapter or withdrawal sleeve
Normal loads and/or normal speeds
Heavy loads and/or high speeds
h10/IT7/2
h9/IT5/2
Stationary inner ring load
Easy dismounting unnecessary
Easy dismounting desirable
h6
g65)
1)
Bearings
2)
with radial internal clearance greater than Normal may be necessary
Bearings with radial internal clearance greater than Normal are recommended for d ≤ 150 mm.
For d > 150 mm bearings with radial internal clearance greater than Normal may be necessary
3)
Bearings with radial internal clearance greater than Normal are recommended
4)
For tolerance values please consult the SKF Interactive Engineering Catalogue online at www.skf.com or
the SKF application engineering service
5)
Tolerance f6 can be selected for large bearings to provide easy dismounting
Table 2
Fits for non-split cast iron and steel housings
Conditions
Examples
Tolerance
Remarks
Rotating outer ring load
Heavy loads and
Crushers,
shock loads
vibrating screens
N6
P6
Bearing outside diameter < 160 mm
Bearing outside diameter ≥ 160 mm
Stationary outer ring load
Loads of all kinds
General engineering
H7
Direction of load indeterminate
Heavy shock loads
Normal to heavy loads (P > 0,05 C)
General engineering,
electric motors, pumps, fans
M7
K7
H7
Easy mounting of bearing required
Table 3
Fits for split cast iron and steel housings
Conditions
Examples
Tolerance
Stationary outer ring load
Loads of all kinds
General engineering
H7
Direction of load indeterminate
Loads of all kinds
General engineering, electric motors, pumps
J7
15
Axial location
The rings of CARB toroidal roller bearings
should be axially located on both sides on the
shaft as well as in the housing. SKF recommends arranging the bearing rings so that
they abut a shoulder on the shaft or in the
housing. Inner rings can be locked in position
using either
• a lock nut († fig. 3)
• a retaining ring († fig. 4)
• an end plate screwed to the shaft end
(† fig. 5).
Outer rings are usually positioned and
secured in the housing by an end cover
(† fig. 6).
Instead of integral shaft and housing shoulders CARB toroidal roller bearings can be
mounted against either
• spacer sleeves († fig. 7)
• retaining rings († fig. 8).
Bearings with a tapered bore that are
mounted either
• directly onto a tapered seat are usually
secured to the shaft with a nut on the
threaded section († fig. 9)
• on an adapter sleeve and a stepped shaft
are secured against a spacer ring
(† fig. 10)
• on a withdrawal sleeve against a shaft
shoulder are secured by a shaft nut
(† fig. 11) or an end plate († fig. 12).
Inner ring located
axially with a lock nut
Fig. 3
Inner ring located
axially with a retaining
ring
Fig. 4
Abutment and fillet dimensions
The abutment and fillet dimensions, which
include the diameters of shaft and housing
shoulders, spacer sleeves etc. have been
determined so that adequate abutment surfaces are provided for the side faces of the
bearing rings without any danger of the rotating parts being fouled. The recommended
abutment and fillet dimensions for each individual bearing can be found in the product
tables.
16
Fig. 5
Inner ring located
axially with an end
plate
Fig. 9
Inner ring on a tapered
seat held in place by
a shaft nut
B
Fig. 6
Outer ring located
axially with an end
cover
Fig. 10
Inner ring on an
adapter sleeve and a
stepped shaft, axially
located against
a spacer ring
Fig. 7
Spacer sleeves used to
axially locate the inner
and outer rings
Fig. 11
Inner ring on a with­
drawal sleeve and a
stepped shaft, axially
located by a shaft nut
Fig. 8
Retaining rings used
to axially locate the
bearing rings
Fig. 12
Inner ring on a with­
drawal sleeve and a
stepped shaft, axially
located by an end plate
17
Design of adjacent
components
Space on the sides of the bearing
When designing large bearing arrangements, it is particularly important to take
steps so that mounting and dismounting of
the bearings are facilitated or actually made
possible.
To enable axial displacement of the shaft relative to the housing, space must be provided
on both sides of the bearing as indicated in
fig. 13. The actual value for the width of this
space can be estimated based on
• the value Ca (from the product tables)
• the axial displacement of the bearing rings
from the central position expected in
operation
• the displacement of the rings caused
by misalignment
Fig. 13
Ca
Ca
Careq=Ca + 0,5 (s + smis)
or
Careq=Ca + 0,5 (s + k1 B a)
where
Careq=width of the space required on each
side of the bearing, mm
Ca =minimum width of the space required
on each side of the bearing, mm
(† product tables)
s =relative axial displacement of the rings,
thermal change in shaft length, mm
smis =axial displacement of the roller
complement caused by misalignment,
mm
k1 =misalignment factor
(† product tables)
B =bearing width, mm
(† product tables)
a =misalignment, degrees
See also under “Axial displacement” starting
on page 40.
Normally, the bearing rings are mounted
so that they are not displaced relative to each
other. However, if considerable thermal
changes in shaft length can be expected, the
inner ring can be mounted offset relative to
the outer ring up to the permissible axial displacement s1 or s2 in the direction opposite to
the expected thermal elongation († fig. 14).
In this way, the permissible axial displacement
can be appreciably extended, an advantage
which is made use of in the bearing arrangement of drying cylinders in papermaking
machines.
18
Free axial space
on both sides of the
bearing
Fig. 14
The permissible axial
displacement can be
extended by mounting
the outer ring purposely
displaced relative
to the inner ring
Fig. 15
A CARB toroidal roller
bearing on a tapered
seat with an oil duct
and distributor groove
Oil ducts and distributor grooves
for the oil injection method
and the other one two thirds from the side
at which the bearing is to be mounted and/or
dismounted. Recommended dimensions for
the oil ducts, distributor grooves and appropriate threads for the connections are provided in tables 4 and 5.
If the oil injection method is to be used
• for mounting and/or dismounting bearings
on tapered seats († fig. 15)
• for dismounting bearings on cylindrical
seats
• for dismounting bearings in housings
B
it is necessary to provide oil ducts and distri­
butor grooves in the seat on the shaft or in
the housing. The distance of the distributor
groove from the side at which the bearing
is to be mounted and/or dismounted should
correspond to approximately a third of the
bearing width. For wide bearings on cylindric­
al seats it is recommended to use two dis­
tributor grooves. One groove at one sixth
Table 4
Recommended dimensions for oil ducts and distributor grooves
L
Table 5
Threaded connection holes
L
3
ba
ra
60°
ha
Na
Ga
Ga
Na
Gc
N
Gc
Gb
Gb
Design A
Bearing seat
diameter
over incl.
Dimensions
ha
ba
mm
mm
100
150
100
150
200
3
4
4
0,5
0,8
0,8
2,5
3
3
200
250
300
250
300
400
5
5
6
1
1
1,25
400
500
650
500
650
800
7
8
10
800
1 000
12
ra
N
Design B
Thread
Design
Dimensions
Gb
Gc1)
Ga
Na
max
mm
–
mm
2,5
3
3
M 6
A
10
8
3
G 1/8
A
12
10
3
4
4
4,5
4
4
5
G 1/4
A
15
12
5
G 3/8
B
15
12
8
1,5
1,5
2
5
6
7
5
6
7
G 1/2
B
18
14
8
G 3/4
B
20
16
8
2,5
8
8
1)
Effective threaded length
19
Sealing the bearing
arrangement
When selecting the most suitable sealing
solution for a self-aligning bearing arrangement pay particular attention to
• the angular misalignment of the shaft
• the magnitude of axial displacement.
More information about general selection
­criteria can be found in the section “Sealing
arrangements” in the SKF General Catalogue
or in the “SKF Interactive Engineering Catalogue” online at www.skf.com.
A non-contact sealing arrangement should
be used when the operating conditions involve
• high speeds
• large axial displacements
• high temperatures
and the sealing position is not directly
exposed to contamination. The shaft should
be horizontal.
A simple gap-type seal († fig. 16) is suitable for sealing the non-locating bearing in
a self-aligning bearing system. The size of
the gap can be adapted to the shaft misalignment and is not limited in any way.
Single or multi-stage labyrinth seals are
obviously more efficient than the simple gaptype seal, but are more expensive. With CARB
toroidal roller bearings, the labyrinth passages
should be arranged axially so that the shaft
can move axially during operation († fig. 17).
If considerable misalignment is expected in
operation, the size of the gaps should be
adjusted accordingly. When split housings are
used, labyrinth seals with radially arranged
passages can be used, provided axial movement of the shaft relative to the housing is not
limited († fig. 18).
Radial shaft seals are contact seals that are
suitable for sealing greased or oil lubricated
CARB toroidal roller bearings, provided misalignment is small and the seal lip counterface
is sufficiently wide († fig. 19).
Some seal types are supplied as standard
with SKF bearing housings and include a
double-lip contact seal, a labyrinth seal or a
Taconite seal († fig. 20). Additional information can be found in the SKF brochures 6112
“SNL plummer block housings solve the
housing problems” and 6101 “SNL 30, SNL
31 and SNL 32 solve the housing problems”.
20
Reference
Additional information about radial shaft
seals, V-ring seals or mechanical seals
can be found in the SKF catalogue
“Industrial shaft seals” or in the “SKF
Interactive Engineering Catalogue”
online at www.skf.com.
Fig. 16
Gap-type seal
Fig. 19
Radial shaft seal
B
Fig. 17
Labyrinth seal with
axially arranged
passages
Fig. 18
Labyrinth seal with
radially arranged
passages
Fig. 20
Taconite seal
21
Lubrication
CARB toroidal roller bearings can be lubricated
with grease as well as oil. There is no strict
rule for when grease or oil should be used.
Grease has distinct advantages over oil.
It is more easily retained in the bearing, and
is less likely to leak if the shaft is at an angle
or arranged vertically.
On the other hand, oil enables higher operating speeds and dissipates heat more effect­
ively than grease. This is particularly import­
ant when an external heat source can impact
operating temperatures.
The lubricant is supplied to the CARB bearing via a grease fitting to a duct that opens
immediately adjacent to the side face of the
outer ring. To enable the used grease to be
purged from the bearing and housing, there
should be a grease escape hole at the oppos­
ite side of the housing. If the housing has no
escape hole (or that hole is plugged) this could
damage the seals († fig. 1).
Grease lubrication
To lubricate CARB toroidal roller bearings,
good quality rust inhibiting greases that are
resistant to ageing and have a consistency of
2 or 3 are suitable. Many factors influence the
choice of grease. To assist in this process, SKF
greases that are suitable for CARB bearing
lubrication are listed in table 1.
The right quantity of grease
For the majority of applications the following
guidelines apply:
• Caged CARB toroidal roller bearings should
be filled with grease to approximately 50%.
In bearings that are to be greased before
mounting it is recommended just to fill the
space between the inner ring and the cage
(† fig. 2).
• Full complement CARB toroidal roller bearings should be completely filled with
grease.
• The free space in the bearing housing
should be filled with grease to between
30% and 50%.
For bearings that turn slowly but where good
protection against corrosion is required, all
the free space in the housing can be filled with
grease as there is little risk that the operating
temperature will increase.
Table 1
Recommended SKF greases
Grease supply and grease escape hole
Fig. 1
Operating conditions
SKF grease
Designation
Temperature
range1) Viscosity at
40/100 °C
–
°C (F°)
mm2/s
Standard bearing LGMT 2
arrangements
–30/+120
(–20/+250)
110/11
Standard bearing arrange-
LGMT 3
ments but with relatively
high ambient temperatures
–30/+120
(–20/+250)
125/12
Operating temperatures
LGHB 2
always over 100 °C
–20/+150
(–5/+300)
420/26,5
High operating temperatures, LGHP 2
smooth operation
–40/+150
(–40/+300)
96/10,5
Shock loads, heavy loads,
LGEP 2
vibrations
–20/+110
(–5/+230)
200/16
High demands on
LGGB 2
environmental friendliness
–40/+120
(–40/+250)
110/13
–
1)
For safe bearing operating temperatures where the grease will function reliably, † the SKF General Catalogue
6000, section “Temperature range – the SKF traffic light concept”, starting on page 232
More details about SKF greases can be found in
– SKF catalogue MP3000 “SKF Maintenance and Lubrication Products” or online at www.mapro.skf.com
– “SKF Interactive Engineering Catalogue” online at www.skf.com
22
Fig. 2
Table 2
Bearing factors and recommended limits for the speed factor A
Bearing design
Bearing
factor
bf
Recommended limits for the speed factor A
for a load ratio
C/P ≥ 15
C/P ≈ 8
C/P ≈ 4
–
–
mm/min
CARB bearings with a cage
CARB bearings –
full complement1)
2
350 000
200 000
100 000
4
3)
3)
20 0002)
1)
The tf value obtained from diagram 1 needs to be
2)
For higher speeds oil lubrication is recommended
3)
N.A. B
N.A. divided by a factor of 10
For these C/P values a caged bearing is recommended
Relubrication
CARB toroidal roller bearings have to be re­lubricated if the service life of the grease is
shorter than the expected service life of the
bearing. Relubrication should always be
undertaken at a time when the condition
of the existing lubricant is still satisfactory.
There are a number of factors that determine relubrication intervals. These include
bearing type and size, speed, operating temperature, grease type, space around the bearing and the bearing environment.
It is only possible to base recommendations
on statistical rules; the SKF relubrication
intervals are defined as the time period, at
the end of which 99% of the bearings are still
reliably lubricated. This represents L1 for
grease life.
SKF recommends using experience data
from running applications and tests, together
with the estimated relubrication intervals
­provided in the next section.
Relubrication intervals
The relubrication intervals tf for CARB bearings on horizontal shafts under normal and
clean conditions can be obtained from
diagram 1 as a function of
• the speed factor A, where
A =n dm
n =rotational speed, r/min
dm=bearing mean diameter
=0,5 (d + D), mm
• the bearing factor bf depending on bearing
design († table 2)
• the load ratio C/P.
The relubrication interval tf is an estimated
value, valid for an operating temperature of
70 °C, using a mineral oil based grease with
a good quality lithium thickener. When bearing operating conditions differ, adjust the
r­ elubrication intervals obtained from diagram 1
according to the information provided in the
following section “Deviating conditions”.
If the speed factor A exceeds a value of
70% of the recommended limits according
to table 2, or if ambient temperatures are
high, use the calculations presented in the
SKF General Catalogue, section “Speeds and
vibration”, to check the operating temperature
and whether the lubrication system is
appropriate.
Bearing grease fill
Caged CARB toroidal roller bearings should not
be completely filled with grease; for high speed
­oper­ation fill only the space between the inner
ring and the cage
Diagram 1
Relubrication intervals for CARB toroidal roller bearings at 70 °C
tf, operating hours
50 000
10 000
5 000
C/P ≈ 4
1 000
500
100
C/P ≈ 8
C/P ≥ 15
100 000 200 000 300 000 400 000 500 000 600 000 700 000 800 000
A bf
Example: CARB toroidal roller bearing C 2220 K
The bearing has a bore diameter d = 100 mm, an outside diameter D = 180 mm and rotates at a speed
n = 500 r/min. The load ratio C/P is 4 and the operating temperature lies between 60 and 70 °C (140
and 160 °F). What is the relubrication interval?
The factor A bf is obtained as follows: n dm bf = n 0,5 (d + D) bf = 500 ¥ 0,5 (100 + 180) ¥ 2 = 
140 000. Follow a vertical line from the x-axis from the point A bf = 140 000 until it intersects the
line of the load ratio C/P = 4. The relubrication interval can then be read off on the y-axis by drawing
a horizontal line from the point of intersection with 3 000 operating hours.
0
23
Deviating conditions
Very light loads
Outer ring rotation
In many cases the relubrication interval may
be prolonged if loads are light (C/P = 30 to
To account for the accelerated ageing of
50). In order to provide satisfactory operation,
grease in hot running applications, SKF recom- CARB bearings must always be subjected to
mends halving the intervals obtained from
a given minimum load († “Minimum load”
diagram 1 for every 15 °C increase in bearing on page 42).
temperature above 70 °C.
The relubrication interval tf may be extendVertical shafts
ed at temperatures below 70 °C, provided the
operating temperature does not exceed a cer- For bearings on vertical shafts, the relubrication intervals obtained from diagram 1 should
tain limit that depends on the grease used.
Extending the relubrication interval tf by more be halved. The use of a good seal or retaining
than a factor of two is not recommended.
shield is a prerequisite or grease can leak
For full complement bearings, tf values
from the bearing arrangement.
obtained from diagram 1 should not be
prolonged.
Vibrations
Moreover, it is not advisable to use relubriMild vibrations do not have a negative effect
cation intervals in excess of 30 000 hours.
on grease life, but high vibration levels and
For many applications, there are practical
shock loads, such as those in vibrating screen
grease lubrication limits, when the bearing
applications, can cause the grease to churn.
ring with the highest temperature reaches an
In these cases the relubrication interval should
operating temperature of 100 °C (210 °F).
be reduced. If the grease becomes too soft,
Above this temperature special greases
a grease with a better mechanical stability
should be used. In addition, temperature stability of the bearing and premature seal failure (e.g. LGHB 2) and/or a stiffer grease (NLGI 3)
should be used.
should be taken into consideration.
For high temperature applications, contact
the SKF application engineering service.
Operating temperature
Contamination
In case of ingress of contaminants, more frequent relubrication can reduce the negative
effects of foreign particles on the bleeding
characteristics of grease while reducing the
damaging effects caused by overrolling of
particles. Fluid contaminants (water, process
fluids) also call for a reduced lubrication interval. In case of severe contamination, continuous relubrication should be considered.
Supplying grease to a CARB bearing
When using a hand-operated grease gun, excessive pressure should be avoided
or the seals may be damaged
Grease valve
Excess grease can leave the housing through a grease escape valve
Fig. 3
24
In applications where there is outer ring rotation, the value of n dm is calculated by applying the value of the bearing outside diameter
D instead of dm. The use of a good sealing
mechanism is a prerequisite in order to avoid
grease loss.
In applications where there are high outer
ring speeds (i.e. > 50 % of the reference speed
rating in the product tables), greases with a
reduced bleeding tendency should be selected
(e.g. lithium complex and polyurea).
Fig. 4
Requisite grease quantities
for relubrication
The used grease in a CARB toroidal roller
bearing should be replaced by fresh grease.
The quantity of grease required for this
depends on the bearing size; this can be
determined using
Gp=0,005 D B
where
Gp=grease quantity required for periodic
lubrication, g
D =bearing outside diameter, mm
B =bearing width, mm
Grease escape valve
If CARB toroidal roller bearings are relubricated frequently, there is a risk that too much
grease will collect in the housing. This risk can
be avoided by using a grease escape valve
that enables excess grease to leave the housing († fig. 3).
A grease escape valve consists of a washer
that rotates with the shaft and forms a narrow
gap to the housing cover. Excess grease is
carried by the washer into this gap and leaves
the housing by a grease escape hole in the
base.
SKF SNL housings can be supplied with
a grease escape hole (designation suffix V).
The grease should always be supplied to
the side of the bearing opposite the grease
escape valve so that it is forced to pass
through the bearing. When the bearing is
mounted on an adapter sleeve, the lock nut
functions in the same way as the disc in a
grease escape valve. Therefore, the lock nut
and grease escape valve should be positioned
on the same side, while the grease fitting
needs to be positioned on the opposite side
(† fig. 4).
Oil lubrication
Oil lubrication is recommended or must
be used if
• the relubrication intervals for grease
are too short
• speeds and/or operating temperatures
are too high for grease
• heat must be removed from the bearing
position
• adjacent components are lubricated with
oil.
For CARB toroidal roller bearings the following methods are normally employed:
• Oil bath lubrication where the oil is distributed by rotating machine components to
the bearing arrangement and runs back
to the sump.
Fig. 5
• Circulating oil lubrication where the circulation is achieved by the aid of a pump. After
the oil has passed through the bearing,
it generally settles in a tank. Before supplying the oil again to the bearing it is cooled
and/or filtered, if needed. The use of this
method requires efficient sealing to prevent
oil leakage.
The oil level should be checked regularly.
The appropriate level should not be higher
than the middle of the lowest roller when
the bearing is stationary.
The lower limit should be 2 to 3 mm above
the lowest point of the outer ring smallest
diameter, D1 in the product tables († fig. 5).
The same oils can be used for lubricating
CARB toroidal roller bearings as for spherical
and cylindrical roller bearings. They should
• have good thermal and chemical stability
• contain anti-wear additives
• provide good protection against corrosion.
Oils of viscosity class
• ISO VG 150 or ISO VG 220 can be used
under normal conditions
• ISO VG 320 or VG 460 may be more appropriate at high temperatures, under heavy
loads and slow speeds.
Oil level in CARB
toroidal roller bearing
arrangements
Max.: middle of the
lowest roller
Min.: 2 to 3 mm above
the lowest point of the
outer ring smallest
diameter, D1 in the
product tables
25
B
Mounting
A variety of mechanical and hydraulic tools
and heaters can be used to mount a CARB
bearing. The one basic rule in any installation
procedure is to avoid hitting the bearing rings,
the rollers or cage. In all cases, before mounting, the rust inhibiting oil should be wiped
from the bore and outside diameter of new
bearings and sleeves (if applicable). The shaft
seat and ­outside diameter of the sleeve (if
applicable) should be coated with a thin layer
of light oil.
When mounting a CARB bearing onto a
shaft or in a housing, both bearing rings and
the roller complement must be centred relative
to each other. For this reason SKF recom­mends
mounting CARB bearings when the shaft or
housing is in the horizontal position.
When mounting a CARB bearing onto a vertical shaft or into a vertical housing, the roller
complement together with the inner or outer
ring will move downwards until all clearance
has been removed. Unless proper clearance is
maintained during and after installation, the
expansion or compression forces resulting
from an interference fit on either the inner or
outer ring will create a preload. This preload
can cause indentations in the raceways and/or
prevent the bearing from turning altogether.
To prevent this preload condition from occurring during vertical mounting, a bearing hand­
ling tool, which keeps the bearing components
centred, should be used.
Detailed information on mounting rolling
bearings can be found in the publication
“SKF Bearing Maintenance Handbook”, as
well as online at www.skf.com/mount.
26
Mounting on a cylindrical
seat
With CARB bearings, the ring that is to have
the tighter fit should be mounted first. If the
bearing is to be cold mounted on the shaft
and in the housing at the same time, a tool of
the type shown in fig. 1 should be used. This
tool abuts both bearing rings to apply even
pressure without damaging the rolling elem­
ents or raceways.
As a rule, larger bearings cannot be cold
mounted, as the force required to press a
bearing into position increases considerably
with its size. Therefore it is recommended
• to heat the bearing before it is mounted
on the shaft
• to heat non-split housings before inserting
the bearing.
To mount a bearing on the shaft, a
tempera­ture differential of 80 °C (175 °F)
between ambient temperature and heated
Mounting dolly with abutment faces for both
bearing rings in the same plane
Fig. 1
inner ring is usually sufficient. For housings,
the appropriate differential depends on the
degree of interference and the seat diameter.
However, a moderate increase in temperature
will usually suffice. An even and risk-free
heating of CARB bearings can be achieved
using an induction heater († fig. 2).
Mounting on a tapered
seat
A CARB toroidal roller bearing with a tapered
bore is always mounted on the shaft with an
interference fit. To determine the degree of
interference, any one of the following methods
can be used:
• Measuring clearance reduction.
• Measuring lock nut tightening angle.
• Measuring axial drive-up.
• Measuring inner ring expansion.
SKF induction heater
Fig. 2
For CARB toroidal roller bearings with bore
diameters greater than or equal to 50 mm,
SKF recommends the SKF drive-up method.
This method is more accurate and takes less
time than the procedure based on measuring
clearance reduction.
Sound in CARB bearings
A rolling bearing generates a specific inherent
sound during operation. Depending on the
bearing type, the radial operating clearance
can, to some extend, determine the sound
level.
CARB bearings belong to a group of bearings where a large operating clearance can
substantially influence the sound level. Therefore, SKF recommends selecting an operating
clearance not larger than necessary to keep
the sound at a low level.
ring raceway and the lowest roller († fig. 4).
Again the bearing should be rotated a few
times between each measurement.
Recommended values for the clearance
reduction and axial drive-up are provided in
table 2 on page 28. They are valid for solid
steel shafts and normal operating conditions
(C/P > 10). Where loads are heavy (C/P < 10),
speeds are high or there is a considerable
temperature gradient across the bearing,
greater clearance reductions or axial drive-up
are required and thus bearings with greater
initial radial internal clearance might be
needed.
The values provided in table 2 on page 28
for the clearance reduction apply mainly to
bearings having initial clearances close to the
lower limits for clearance provided in table 2
on page 39.
Table 1
Angular drive-up for CARB bearings
180°
Measuring clearance reduction
Measuring the lock nut tightening
angle
Prior to mounting, the internal radial clearance must be measured with a feeler gauge
between the outer ring and an unloaded roller.
Before measuring, the bearing should be
rotated a few times to make sure that the rollers have assumed their correct position. For
the first measurement a blade should be
selected that is slightly thinner than the min­
imum clearance value. During the measurement, the blade should be moved back and
forth († fig. 3) until it reaches the middle of
the roller. The procedure should be repeated
using slightly thicker blades each time until
there is light resistance.
During mounting, the reduction in clearance should be measured between the outer
Smaller bearings can be mounted easily using
the tightening angle a that the nut is turned
to drive the bearing up onto its tapered seat.
Where applic­able, the tightening angle a is
listed in table 1. Before mounting, the thread
and side face of the nut should be coated with
a molybdenum disulphide paste or similar
lubricant and the seat should be coated with
a thin layer of light oil. Then push the bearing
onto the tapered seat until the bore of the
bearing or sleeve is in contact with the seat
on the shaft around its whole circumference,
i.e. the bearing inner ring cannot be rotated
relatively to the shaft. By then tightening the
nut through the recommended angle a the
bearing will be pressed up on the tapered
Move the blade back and forth between roller
and outer ring
Measuring clearance during the mounting
procedure
Fig. 3
seat. As the bearing has a tendency to skew
when being pressed into place it is advisable
to reposition the hook spanner in a slot at
180° to that used for tightening and then
gently tap the hook spanner. The bearing will
straighten up on its seat. Finally, check the
residual clearance of the bearing.
Fig. 4
a
Bearing Tightening
desig-
angle
nation
a
Clear-
ance
reduction
Axial
drive-up
–
degrees
mm
mm
C 2205 K
C 2206 K
C 2207 K
C 2208 K
C 2209 K
100
105
115
125
130
0,011
0,013
0,016
0,018
0,020
0,42
0,45
0,48
0,52
0,54
C 2210 K
C 2211 K
C 2212 K
C 2213 K
C 2214 K
140
110
115
120
125
0,023
0,025
0,027
0,029
0,032
0,58
0,60
0,65
0,67
0,69
C 2215 K
C 2216 K
C 2217 K
C 2218 K
C 2219 K
130
140
145
150
150
0,034
0,036
0,038
0,041
0,043
0,72
0,77
0,80
0,84
0,84
C 2220 K
C 2222 K
155
170
0,045
0,050
0,87
0,95
C 2314 K
C 2315 K
C 2316 K
C 2317 K
C 2318 K
130
135
140
145
155
0,032
0,034
0,036
0,038
0,041
0,72
0,75
0,78
0,81
0,86
C 2319 K
C 2320 K
155
160
0,043
0,045
0,87
0,9
27
B
Measuring the axial drive-up
The SKF drive-up method is based on measuring the axial displacement of the bearing
inner ring on its tapered seat from a reliably
determined starting position.
The SKF drive-up method († fig. 5)
requires the use of an SKF HMV .. E hydraulic
nut that can accommodate a dial gauge. A
pressure gauge, appropriate to the mounting
­conditions, mounted on a suitably sized hand
pump, enables accurate pressure measurement to determine the starting position.
The tools required are shown in fig. 6.
Guideline values for
Table 2
Recommended values for reduction of radial internal clearance and axial drive-up
s
• the requisite oil pressure
• the axial displacement
for the individual bearings are provided
in ­table 3, starting on page 30.
Bore
Reduction of
Axial drive-up s1)
diameter
radial internal
Taper
Taper
d
clearance 1:12
1:30
over incl.
min
max
min
max min max
Check values for the
smallest radial clearance2)
after mounting bearings
with initial clearance
Normal C3
C4
mm
mm
mm
mm
24
30
40
0,012
0,015
0,020
0,018
0,024
0,030
0,25
0,30
0,37
0,34
0,42
0,51
0,64 0,85
0,74 1,06
0,92 1,27
0,025
0,031
0,033
0,033 0,047
0,038 0,056
0,043 0,063
50
65
0,025
65
80
0,033
80
100
0,040
100 120
0,050
120 140
0,060
140 160
0,070
160 180
0,080
180 200
0,090
200 225
0,100
0,039
0,048
0,060
0,44
0,54
0,65
0,64
0,76
0,93
1,09 1,59
1,36 1,91
1,62 2,33
0,038
0,041
0,056
0,049 0,074
0,055 0,088
0,072 0,112
0,072
0,084
0,096
0,79
0,93
1,07
1,10
1,27
1,44
1,98 2,75
2,33 3,18
2,68 3,60
0,065
0,075
0,085
0,083 0,129
0,106 0,147
0,126 0,173
0,108
0,120
0,135
1,21
1,36
1,50
1,61
1,78
1,99
3,04 4,02
3,39 4,45
3,74 4,98
0,093
0,103
0,113
0,140 0,193
0,150 0,209
0,163 0,228
225
250
280
250
280
315
0,113
0,125
0,140
0,150
0,168
0,189
1,67
1,85
2,06
2,20
2,46
2,75
4,18 5,51
4,62 6,14
5,15 6,88
0,123
0,133
0,143
0,175 0,251
0,186 0,276
0,198 0,292
315
355
400
355
400
450
0,158
0,178
0,200
0,213
0,240
0,270
2,31
2,59
2,91
3,09
3,47
3,90
5,77 7,73
6,48 8,68
7,27 9,74
0,161
0,173
0,183
0,226 0,329
0,251 0,358
0,275 0,383
450
500
560
500
560
630
0,225
0,250
0,280
0,300
0,336
0,378
3,26
3,61
4,04
4,32
4,83
5,42
8,15 10,80
9,04 12,07
10,09 13,55
0,210
0,225
0,250
0,295 0,433
0,327 0,467
0,364 0,508
630
710
800
710
800
900
0,315
0,355
0,400
0,426
0,480
0,540
4,53
5,10
5,73
6,10
6,86
7,71
11,33 15,25
12,74 17,15
14,33 19,27
0,275
0,319
0,335
0,386 0,560
0,430 0,620
0,465 0,675
0,450
0,500
0,560
0,600
0,672
0,750
6,44
7,14
7,99
8,56 16,09 21,39
9,57 17,86 23,93
10,67 19,98 26,68
0,364
0,395
0,414
0,490 0,740
0,543 0,823
0,595 0,885
30
40
50
900 1 000
1 000 1 120
1 120 1 250
1)
Valid
2)
only for solid steel shafts and general application. Not valid for the SKF drive-up method
The residual clearance must be checked in cases where the initial radial internal clearance is in the lower half
of the tolerance range and where large temperature differentials between the bearing rings can arise in operation.
When measuring, make sure that the rings and the roller assembly are aligned and centred
28
Fig. 5
ss
Zero position
Starting position
Final position
B
One
Onesliding
sliding interface
interface
Case 22
Case
One sliding interface
Case 1
Two sliding interfaces
Case 3
Two sliding interfaces
Case 4
1.Check whether the bearing size and the HMV .. E hydraulic nut coincide. Otherwise the values for the
requisite pressure provided in table 3, starting on page 30, must be adjusted († note on page 33).
2.Check the number of sliding interfaces († above).
3.Lightly coat the sliding surfaces with a thin oil, e.g. SKF LHMF 300, and place the bearing on the
tapered journal or sleeve. Screw the hydraulic nut onto the thread of the journal or sleeve so that
it abuts the bearing. Then connect the appropriate oil pump († fig. 6).
4.Bring the bearing to its starting position. Pump oil into the hydraulic nut until the requisite pressure
quoted in table 3, starting on page 30, is reached.
5.Set the dial gauge to “zero” († fig. 6) and pump more oil into the hydraulic nut until the bearing has
been driven up the distance prescribed in table 3, starting on page 30, and is in its final position.
6.When mounting is complete, release the return valve of the oil pump, so that oil under high pressure
in the nut can flow back out of the nut.
7.To remove all the oil from the nut, bring the piston of the hydraulic nut to its original position. This
is most easily done by screwing the nut further up the threaded portion of the journal or sleeve.
The SKF drive-up method
8.Remove the nut from the shaft by unscrewing and replace it with a lock nut.
Fig. 6
Dial gauge
SKF hydraulic nut
HMV .. E
Suitable tools for the SKF drive-up method
SKF pump 729124 SRB (for nuts up to and including HMV 54 E)
SKF pump TML 50 SRB (for nuts up to and including HMV 170 E)
29
Table 3
Basic bearing
Starting position
designation
Requisite oil pressure for
one sliding
two sliding
interface1)
interfaces1)
Final position
Axial displacement from starting position
Radial clearance
one sliding
two sliding
reduction from interface1)
interfaces1)
zero position
ss
ss
∆r
Hydraulic nut
Desig-
nation
Piston
area
–
MPa
mm
–
mm2
C 22 series
C 2210 K
C 2211 K
C 2212 K
0,67
1,15
0,34
0,41
0,023
0,57
0,98
0,35
0,42
0,025
1,09
1,86
0,39
0,47
0,027
HMV 10 E
HMV 11 E
HMV 12 E
2 900
3 150
3 300
C 2213 K
C 2214 K
C 2215 K
0,82
0,76
0,70
1,40
1,29
1,20
0,40
0,43
0,45
0,47
0,50
0,52
0,029
0,032
0,034
HMV 13 E
HMV 14 E
HMV 15 E
3 600
3 800
4 000
C 2216 K
C 2217 K
C 2218 K
1,03
1,12
1,36
1,76
1,91
2,32
0,48
0,50
0,55
0,55
0,57
0,62
0,036
0,038
0,041
HMV 16 E
HMV 17 E
HMV 18 E
4 200
4 400
4 700
C 2219 K
C 2220 K
C 2222 K
1,02
1,12
1,49
1,74
1,90
2,54
0,54
0,57
0,63
0,62
0,64
0,71
0,043
0,045
0,050
HMV 19 E
HMV 20 E
HMV 22 E
4 900
5 100
5 600
C 2224 K
C 2226 K
C 2228 K
1,58
1,44
2,36
2,69
2,46
4,03
0,67
0,71
0,79
0,74
0,79
0,86
0,054
0,059
0,063
HMV 24 E
HMV 26 E
HMV 28 E
6 000
6 400
6 800
C 2230 K
C 2234 K
C 2238 K
1,79
2,58
1,77
3,05
4,40
3,01
0,82
0,94
1,01
0,89
1,01
1,08
0,068
0,076
0,086
HMV 30 E
HMV 34 E
HMV 38 E
7 500
9 400
11 500
C 2244 K
1,95
3,34
1,15
1,22
0,100
HMV 44 E
14 400
C 23 series
C 2314 K
C 2315 K
C 2316 K
2,01
2,25
2,11
3,43
3,84
3,61
0,46
0,48
0,49
0,53
0,55
0,56
0,032
0,034
0,036
HMV 14 E
HMV 15 E
HMV 16 E
3 800
4 000
4 200
C 2317 K
C 2318 K
C 2319 K
2,40
2,88
2,22
4,10
4,91
3,79
0,52
0,57
0,57
0,59
0,64
0,64
0,038
0,041
0,043
HMV 17 E
HMV 18 E
HMV 19 E
4 400
4 700
4 900
C 2320 K
C 2326 K
2,56
2,71
4,36
4,62
0,59
0,73
0,66
0,81
0,045
0,059
HMV 20 E
HMV 26 E
5 100
6 400
C 30 series
C 3022 K
C 3024 K
C 3026 K
0,97
0,92
1,23
1,66
1,58
2,10
0,62
0,65
0,72
0,69
0,72
0,79
0,050
0,054
0,056
HMV 22 E
HMV 24 E
HMV 26 E
5 600
6 000
6 400
C 3028 K
C 3030 K
C 3032 K
1,25
1,02
1,33
2,13
1,73
2,26
0,76
0,80
0,86
0,83
0,87
0,93
0,063
0,068
0,072
HMV 28 E
HMV 30 E
HMV 32 E
6 800
7 500
8 600
C 3034 K
C 3036 K
C 3038 K
1,52
1,43
1,60
2,60
2,44
2,73
0,90
0,95
1,02
0,98
1,02
1,09
0,076
0,081
0,086
HMV 34 E
HMV 36 E
HMV 38 E
9 400
10 300
11 500
C 3040 K
C 3044 K
C 3048 K
1,62
1,58
1,34
2,76
2,69
2,29
1,06
1,15
1,23
1,13
1,22
1,30
0,090
0,099
0,108
HMV 40 E
HMV 44 E
HMV 48 E
12 500
14 400
16 500
C 3052 K
C 3056 K
C 3060 K
1,77
1,69
1,85
3,02
2,89
3,16
1,35
1,52
1,55
1,43
1,45
1,62
0,117
0,126
0,135
HMV 52 E
HMV 56 E
HMV 60 E
18 800
21 100
23 600
C 3064 K
C 3068 K
C 3072 K
1,80
2,04
1,65
3,08
3,48
2,82
1,65
1,76
1,82
1,72
1,83
1,89
0,144
0,153
0,162
HMV 64 E
HMV 68 E
HMV 72 E
26 300
28 400
31 300
1)
mm
The quoted values are for hydraulic nuts, the thread diameter of which corresponds to the bore diameter of the bearing to be mounted and for applications with sliding surfaces
coated with a thin layer of light oil
30
Continuation Table 3
Basic bearing
Starting position
designation
Requisite oil pressure for
one sliding
two sliding
interface1)
interfaces1)
Final position
Hydraulic nut
Axial displacement from starting position
Radial clearance Desig-
one sliding
two sliding
reduction from nation
interface1)
interfaces1)
zero position
ss
ss
∆r
–
MPa
mm
mm
–
mm2
C 30 series
C 3076 K
C 3080 K
C 3084 K
1,36
1,54
1,34
2,32
2,63
2,29
1,88
1,99
2,07
1,95
2,06
2,14
0,171
0,180
0,189
HMV 76 E
HMV 80 E
HMV 84 E
33 500
36 700
40 000
C 3088 K
C 3092 K
C 3096 K
1,22
2,00
1,75
2,08
3,42
2,99
2,14
2,33
2,40
2,21
2,41
2,47
0,198
0,207
0,216
HMV 88 E
HMV 92 E
HMV 96 E
42 500
45 100
48 600
C 30/500 K
C 30/530 K
C 30/560 K
1,56
1,54
2,26
2,66
2,63
3,85
2,47
2,60
2,84
2,54
2,68
2,91
0,225
0,239
0,252
HMV 100 E
HMV 106 E
HMV 112 E
51 500
56 200
61 200
C 30/600 K
C 30/630 K
C 30/670 K
1,92
1,68
2,12
3,28
2,87
3,61
2,98
3,09
3,34
3,06
3,16
3,41
0,270
0,284
0,302
HMV 120 E
HMV 126 E
HMV 134 E
67 300
72 900
79 500
C 30/710 K
C 30/750 K
C 30/800 K
1,73
1,89
1,88
2,96
3,22
3,22
3,47
3,68
3,91
3,54
3,75
3,98
0,320
0,338
0,360
HMV 142 E
HMV 150 E
HMV 160 E
87 700
95 200
103 900
C 30/850 K
C 30/900 K
C 30/950 K
1,90
1,60
1,94
3,24
2,73
3,30
4,15
4,32
4,62
4,22
4,39
4,69
0,383
0,405
0,428
HMV 170 E
HMV 180 E
HMV 190 E
114 600
124 100
135 700
C 30/1000 K
1,93
3,30
4,85
4,92
0,450
HMV 200 E
145 800
C 31 series
C 3120 K
C 3130 K
C 3132 K
1,27
2,41
2,07
2,16
4,12
3,54
0,57
0,84
0,87
0,64
0,91
0,94
0,045
0,068
0,072
HMV 20 E
HMV 30 E
HMV 32 E
5 100
7 500
8 600
C 3134 K
C 3136 K
C 3138 K
1,84
1,71
2,27
3,13
2,92
3,87
0,90
0,94
1,02
0,97
1,01
1,10
0,076
0,081
0,086
HMV 34 E
HMV 36 E
HMV 38 E
9 400
10 300
11 500
C 3140 K
C 3144 K
C 3148 K
2,71
2,76
2,01
4,63
4,71
3,44
1,08
1,18
1,24
1,16
1,26
1,31
0,090
0,099
0,108
HMV 40 E
HMV 44 E
HMV 48 E
12 500
14 400
16 500
C 3152 K
C 3156 K
C 3160 K
2,76
2,63
2,81
4,70
4,49
4,79
1,37
1,47
1,57
1,44
1,54
1,64
0,117
0,126
0,135
HMV 52 E
HMV 56 E
HMV 60 E
18 800
21 100
23 600
C 3164 K
C 3168 K
C 3172 K
2,09
2,84
2,46
3,56
4,85
4,20
1,61
1,75
1,83
1,68
1,82
1,90
0,144
0,153
0,162
HMV 64 E
HMV 68 E
HMV 72 E
26 300
28 400
31 300
C 3176 K
C 3180 K
C 3188 K
2,57
3,32
2,38
4,39
5,66
4,06
1,93
2,10
2,20
2,01
2,17
2,27
0,171
0,180
0,198
HMV 76 E
HMV 80 E
HMV 88 E
33 500
36 700
42 500
C 3184 K
C 3192 K
C 3196 K
3,29
3,57
3,51
5,62
6,09
6,00
2,17
2,39
2,48
2,25
2,46
2,56
0,189
0,207
0,216
HMV 84 E
HMV 92 E
HMV 96 E
40 000
45 100
48 600
C 31/500 K
C 31/530 K
C 31/560 K
3,54
3,40
3,11
6,04
5,81
5,30
2,57
2,71
2,83
2,64
2,79
2,90
0,225
0,239
0,252
HMV 100 E
HMV 106 E
HMV 112 E
51 500
56 200
61 200
C 31/600 K
C 31/630 K
C 31/670 K
3,15
3,36
3,48
5,38
5,74
5,95
3,01
3,18
3,38
3,09
3,26
3,45
0,270
0,284
0,302
HMV 120 E
HMV 126 E
HMV 134 E
67 300
72 900
79 500
Piston
area
B
1)
The quoted values are for hydraulic nuts, the thread diameter of which corresponds to the bore diameter of the bearing to be mounted and for applications with sliding surfaces
coated with a thin layer of light oil
31
Continuation Table 3
Basic bearing
Starting position
designation
Requisite oil pressure for
one sliding
two sliding
interface1)
interfaces1)
Final position
Axial displacement from starting position
Radial clearance
one sliding
two sliding
reduction from interface1)
interfaces1)
zero position
ss
ss
∆r
Hydraulic nut
Desig-
nation
Piston
area
–
MPa
mm
mm
–
mm2
C 31 series
C 31/710 K
C 31/750 K
C 31/800 K
3,58
3,52
3,55
6,10
6,00
6,06
3,59
3,77
4,01
3,67
3,84
4,09
0,320
0,338
0,360
HMV 142 E
HMV 150 E
HMV 160 E
87 700
95 200
103 900
C 31/850 K
C 31/1000 K
4,02
3,69
6,86
6,30
4,32
4,97
4,39
5,04
0,383
0,450
HMV 170 E
HMV 200 E
114 600
145 800
C 32 series
C 3224 K
C 3232 K
C 3234 K
C 3236 K
2,46
2,68
3,87
3,69
4,20
4,58
0,69
0,87
0,76
0,94
0,054
0,072
HMV 24 E
HMV 32 E
6 000
8 600
6,60
6,30
0,96
1,01
1,03
1,09
0,076
0,081
HMV 34 E
HMV 36 E
9 400
10 300
C 39 series
C 3972 K
C 3976 K
C 3980K
0,63
1,06
0,74
1,08
1,81
1,27
1,74
1,88
1,93
1,81
1,95
2,00
0,162
0,171
0,180
HMV 72 E
HMV 76 E
HMV 80 E
31 300
33 500
36 700
C 3984 K
C 3988 K
C 3992 K
0,73
1,05
0,82
1,25
1,79
1,41
2,03
2,16
2,22
2,10
2,23
2,29
0,189
0,198
0,207
HMV 84 E
HMV 88 E
HMV 92 E
40 000
42 500
45 100
C 3996 K
C 39/500 K
C 39/530 K
1,18
0,95
0,73
2,01
1,63
1,25
2,37
2,43
2,52
2,44
2,50
2,59
0,216
0,225
0,239
HMV 96 E
HMV 100 E
HMV 106 E
48 600
51 500
56 200
C 39/560 K
C 39/600 K
C 39/630 K
0,96
1,00
1,05
1,64
1,71
1,80
2,70
2,89
3,03
2,78
2,96
3,11
0,252
0,270
0,284
HMV 112 E
HMV 120 E
HMV 126 E
61 200
67 300
72 900
C 39/670 K
C 39/710 K
C 39/750 K
1,44
0,81
1,06
2,46
1,39
1,80
3,31
3,35
3,59
3,38
3,42
3,66
0,302
0,320
0,338
HMV 134 E
HMV 142 E
HMV 150 E
79 500
87 700
95 200
C 39/800 K
C 39/850 K
C 39/900 K
1,13
1,09
1,00
1,93
1,85
1,70
3,83
4,06
4,26
3,90
4,14
4,34
0,360
0,383
0,405
HMV 160 E
HMV 170 E
HMV 180 E
103 900
114 600
124 100
C 39/950 K
1,04
1,77
4,50
4,57
0,428
HMV 190 E
135 700
1)
The quoted values are for hydraulic nuts, the thread diameter of which corresponds to the bore diameter of the bearing to be mounted and for applications with sliding surfaces
coated with a thin layer of light oil
32
Note
The values provided in table 3 for the
requisite oil pressure and the axial displacement ss apply to bearings mounted
on solid steel shafts for the first time. For
the case 4 shown in fig. 5 on page 29
“Two sliding interfaces” (bearing on a
withdrawal sleeve), the guideline values
provided in table 3 do not apply as a
smaller hydraulic nut is used than that
shown for the bearing in table 3.
The requisite oil pressure can be calculated from
Aref
Preq=JJP
Areq ref
where
Preq=requisite oil pressure for hydraulic
nut used, MPa
Pref=oil pressure specified for the
standard hydraulic nut, MPa
(† table 3)
Aref=piston area of the specified
standard hydraulic nut, mm2
(† table 3)
Areq=piston area of the hydraulic nut
used, mm2 († table 3)
Measuring inner ring expansion
Additional mounting information
Measuring inner ring expansion enables large
size CARB bearings with a tapered bore to be
mounted easily, quickly and accurately without
measuring the radial internal clearance before
and after mounting. The SensorMount method
uses a sensor, integrated into the inner ring of
a CARB toroidal roller bearing and a dedicated
hand-held indicator († fig. 7).
The bearing is driven up the tapered seat
using common SKF mounting tools. Information from the sensor is processed by the indicator. Inner ring expansion is displayed as the
relationship between the clearance reduction
(mm) and the bearing bore diameter (m).
Aspects like bearing size, smoothness, shaft
material or design – solid or hollow do not
need to be considered.
For detailed information about Sensor­
Mount contact SKF.
Additional information on mounting CARB
toroidal roller bearings can be found
• in the handbook “SKF Drive-up Method”
on CD-ROM
• in the “SKF Interactive Engineering Catalogue” online at www.skf.com
• online at www.skf.com/mount.
SensorMount method
Fig. 7
0,000
ON
0FF
CLR
MAX
TMEM 1500
SensoMount Indicator
33
B
Dismounting
If CARB toroidal roller bearings are to be
re-used after dismounting, the force used
for dismounting should never pass through
the rollers. The ring with the looser fit should
be withdrawn from its seat first. There are
three methods available to dismount the
bearing ring that has been mounted with
an interference fit: mechanical, hydraulic
or the oil injection method.
Detailed information on the dismounting
of bearings is contained in the publication
“SKF Bearing Maintenance Handbook”.
Dismounting from
a cylindrical seat
CARB toroidal roller bearings, with a bore
diameter up to approximately 120 mm and
that have been mounted with an interference
fit on the shaft, can be removed using a conventional puller. The puller should be applied
to the side face of the ring to be dismounted
(† fig. 1). By turning the puller spindle the
bearing is easily removed from the cylindrical
seat.
For larger bearings, the withdrawal forces
are considerable. In these cases, the use of
pullers with hydraulic assistance († fig. 2) or
the SKF oil injection method should be used.
CARB toroidal roller bearings that have
an interference fit for both rings should be
pressed out of the housing together with the
shaft. On the other hand it is also possible to
withdraw the bearing, together with its housing, from the shaft, particularly if the oil injection method is applied († fig. 3).
Small CARB toroidal roller bearings mounted
with an interference fit in a housing bore
without shoulders can be removed using
a dolly applied to the outer ring. Larger bearings require more force to remove them and
a press is required.
34
The puller is applied
to the side face of the
inner ring
Fig. 1
SKF puller with
hydraulic assistance
Fig. 2
CARB toroidal roller
bearing on a cylindrical
seat being removed
using the SKF oil
injection method
Fig. 3
Various larger CARB toroidal roller bearings
that have a loose or a transition fit in the
housing can be removed using a tool with
hooks that pass between the rollers and grip
the outer ring from behind († fig. 4), so that
the withdrawal forces are applied directly to
the outer ring and the rollers do not become
jammed between the rings.
Schematic sketch of
a tool to remove CARB
bearings from a nonsplit housing
Fig. 4
B
Dismounting from
a tapered seat
When dismounting, bearings with a tapered
bore come free from their seat very suddenly,
it is therefore necessary to provide a stop of
some sort to limit their axial movement. An
end plate screwed to a shaft end or a lock nut
(† fig. 5) serve this purpose. The lock nut
should be unscrewed a few turns.
Small CARB toroidal roller bearings can be
removed with the aid of a dolly or a drift of
special design († fig. 6). A few blows directed
at the dolly are sufficient to drive the inner
ring from its tapered seat.
Medium-sized CARB toroidal roller bearings can be withdrawn using a mechanical
puller or a puller with a hydraulic assistance.
To avoid damaging the bearing, the puller
should be applied centrically.
The removal of large bearings is greatly
facilitated if the oil injection method is used.
The lock nut is left
on the shaft thread
to provide a stop
Fig. 5
Removal of a small
CARB toroidal roller
bearing using a drift
of special design
Fig. 6
35
The SKF concept for cost savings
A daily occurrence
Whatever the industry – unplanned stoppages
are still not a thing of the past. They are not
only annoying, but can be costly too. And with
the heightened demands for prompt and justin-time deliveries they may be even more
expensive.
The SKF answer
The bearings in a machine can be likened to
the heart of a living being. When the bearings
malfunction, the machine has a problem. And
just as a doctor will listen to the heart of a
patient, it is possible to listen to the bearings
to determine if they are in danger of premature failure.
If the importance of the bearings is overlooked, it will inevitably lead to high costs,
unnecessary stoppages and, in the worst
case, damage to other machine components.
Monitoring temperature
36
Instead, SKF recommends to make use of
one of its services: an Integrated Maintenance
Solutions (IMS) contract, which consists of
linking customers with SKF resources.
This involves a multi-stage programme
that includes the following points
• common problem definition and target
setting
• optimization of stocked spares
• reduction of purchasing costs
• choosing the right bearings
• caring for the bearings
• monitoring the machine condition
• having the appropriate tools and lubricants
on hand
• customer-specific training
• a repair service.
Obviously it is possible to accept the whole
programme or to select only parts of it. Whatever the choice, it will be a win-win situation.
More information can be obtained from the
nearest SKF office or authorized distributor.
Registering vibration levels
SKF experts bring their experience
to lubricant analysis
Bearing data – general
Designs
Sealed bearings
Bearings for vibratory applications
CARB toroidal roller bearings are available
Today, the range of sealed bearings († fig. 3)
consists of small and medium size full complement bearings for low speeds. These bearings, with a seal on both sides, are filled with
a high temperature long life grease and do
not require relubrication.
The double lip seal, suitable for high temperature operation, is sheet steel reinforced
and made of hydrogenated acrylonitrile butadiene rubber (HNBR). It seals against the
inner ring raceway. The outside diameter of
the seal is retained in an outer ring recess and
provides proper sealing, even in applications
with outer ring rotation. The seals can withstand operating temperatures ranging from
–40 to +150 °C (–40 to +300 °F).
The sealed bearings are filled with a pre­
mium quality, synthetic ester oil based grease
using polyurea as a thickener. This grease has
good corrosion inhibiting properties and has
a temperature range of –25 to +180 °C (–15 to
+355 °F)1). The base oil viscosity is 440 mm2/s
at 40 °C and 38 mm2/s at 100 °C. The grease
fill is 70% to 100% of the free space in the
bearing.
Sealed bearings with other lubricating
greases or degrees of grease fill can be
­supplied on request.
For non-locating bearings in vibratory applications SKF manufactures CARB toroidal roller
bearings with a surface hardened pressed
steel cage in the C 23/C4VG114 series with
a cylindrical bore. These bearings have the
same dimensions and product data as bearings in the C 23 series. They enable a press fit
on the shaft to avoid fretting corrosion that
otherwise would be caused by a loose fit on
the shaft. Using CARB bearings in vibratory
applications in the non-locating position
results in a self-aligning bearing system with
better performance and reliability.
For additional information on CARB bearings in the C 23/C4VG114 series, consult the
SKF application engineering service.
• with a caged roller assembly († fig. 1)
• in a full complement version († fig. 2).
Both versions are produced with a cylindrical
bore, but most caged bearings are also produced with a tapered bore. Depending on the
bearing series, the taper is either 1:12 or 1:30.
Fig. 1
Fig. 2
Caged CARB toroidal
roller bearing
Full complement CARB
toroidal roller bearing
Dimensions
The boundary dimensions of CARB toroidal
roller bearings are in accordance with
ISO 15:1998. The dimensions of the adapter
and withdrawal sleeves correspond to ISO
2982-1:1995.
Tolerances
CARB toroidal roller bearings are manufactured as standard to Normal tolerances.
Bearings up to and including 300 mm bore
diameter are produced to higher precision
than the ISO Normal tolerances. For example
• the width tolerance is considerably tighter
than the ISO Normal tolerance
• the running accuracy is to tolerance class
P5 as standard.
Fig. 3
Sealed CARB toroidal
roller bearing
1)
The safe operating temperature range for this grease
according to the “SKF traffic light concept” is +60 to
+140 °C
For larger bearing arrangements where
running accuracy is a key operational parameter, CARB bearings with P5 running accuracy
are also available. These bearings are identified by the suffix C08. Their availability should
be checked.
The values of the tolerances are in accordance with ISO 492:2002.
37
C
Table 1
Radial internal clearance of CARB toroidal roller bearings with a cylindrical bore
Bore
diameter
d
over
incl.
Radial internal clearance
C2
Normal
min
mm
µm
C3
C4
C5
max
min
max
min
max
min
max
min
max
18
24
30
24
30
40
15
15
20
30
35
40
25
30
35
40
50
55
35
45
55
55
60
75
50
60
70
65
80
95
65
75
90
85
95
120
40
50
65
50
65
80
25
30
40
45
55
70
45
50
65
65
80
100
65
75
95
85
105
125
85
100
120
110
140
165
105
135
160
140
175
210
80
100
120
100
120
140
50
60
75
85
100
120
80
100
115
120
145
170
120
140
165
160
180
215
155
185
215
210
245
280
205
240
280
260
310
350
140
160
180
160
180
200
85
95
105
140
155
175
135
150
170
195
220
240
195
215
235
250
280
310
250
280
305
325
365
395
320
360
390
400
450
495
200
225
250
225
250
280
115
125
135
190
205
225
185
200
220
265
285
310
260
280
305
340
370
410
335
365
405
435
480
520
430
475
515
545
605
655
280
315
355
315
355
400
150
160
175
240
260
280
235
255
280
330
360
395
330
360
395
435
485
530
430
480
525
570
620
675
570
620
675
715
790
850
400
450
500
450
500
560
190
205
220
310
335
360
305
335
360
435
475
520
435
475
510
580
635
690
575
630
680
745
815
890
745
810
890
930
1 015
1 110
560
630
710
630
710
800
240
260
300
400
440
500
390
430
490
570
620
680
560
610
680
760
840
920
750
830
920
980
1 080
1 200
970
1 070
1 200
1 220
1 340
1 480
800
900
1 000
900
1 000
1 120
320
370
410
540
600
660
530
590
660
760
830
930
750
830
930
1 020
1 120
1 260
1 010
1 120
1 260
1 330
1 460
1 640
1 320
1 460
1 640
1 660
1 830
2 040
1 120
1 250
1 400
1 250
1 400
1 600
450
490
570
720
800
890
720
800
890
1 020
1 130
1 250
1 020
1 130
1 250
1 380
1 510
1 680
1 380
1 510
1 680
1 800
1 970
2 200
1 800
1 970
2 200
2 240
2 460
2 740
1 600
1 800
650
1 010
1 010
1 390
1 390
1 870
1 870
2 430
2 430
3 000
Internal clearance
CARB toroidal roller bearings are produced
as standard with Normal radial internal clearance and most are also available with a larger
C3 clearance. Many bearings can also be supplied with a smaller C2 clearance or with
a much greater C4 or C5 clearance.
The radial internal clearance limits are
listed for bearings with
• cylindrical bore in table 1
• tapered bore in table 2.
The limits are valid for bearings before
mounting under zero measuring load, and
with no axial displacement of one ring relative
to the other.
38
Axial displacement of one ring relative to
the other will gradually reduce the radial
internal clearance in a CARB bearing. The
amount of axial displacement encountered in
applications where there is no external heat
source on the shaft or foundation, will have
little effect on the radial internal clearance.
CARB bearings are often used together
with spherical roller bearings. The radial
internal clearance of the CARB bearing is
slightly larger than that of the corresponding
spherical roller bearing having the same
clearance class. An axial displacement of the
inner ring relative to the outer ring of 6 to 8%
of the bearing width will reduce the operational
clearance to approximately the same value as
a spherical roller bearing of the same size.
Table 2
Radial internal clearance of CARB toroidal roller bearings with a tapered bore
Bore
diameter
d
over
incl.
Radial internal clearance
C2
Normal
min
mm
µm
C3
C4
C5
max
min
max
min
max
min
max
min
max
18
24
30
24
30
40
15
20
25
35
40
50
30
35
45
45
55
65
40
50
60
55
65
80
55
65
80
70
85
100
65
80
100
85
100
125
40
50
65
50
65
80
30
40
50
55
65
80
50
60
75
75
90
110
70
85
105
95
115
140
90
110
135
120
150
180
115
145
175
145
185
220
80
100
120
100
120
140
60
75
90
100
115
135
95
115
135
135
155
180
130
155
180
175
205
235
170
200
230
220
255
295
215
255
290
275
325
365
140
160
180
160
180
200
100
115
130
155
175
195
155
170
190
215
240
260
210
235
260
270
305
330
265
300
325
340
385
420
335
380
415
415
470
520
200
225
250
225
250
280
140
160
170
215
235
260
210
235
255
290
315
345
285
315
340
365
405
445
360
400
440
460
515
560
460
510
555
575
635
695
280
315
355
315
355
400
195
220
250
285
320
350
280
315
350
380
420
475
375
415
470
485
545
600
480
540
595
620
680
755
617
675
755
765
850
920
400
450
500
450
500
560
280
305
330
385
435
480
380
435
470
525
575
640
525
575
630
655
735
810
650
730
800
835
915
1 010
835
910
1 000
1 005
1 115
1 230
560
630
710
630
710
800
380
420
480
530
590
680
530
590
670
710
780
860
700
770
860
890
990
1 100
880
980
1 100
1 110
1 230
1 380
1 110
1 230
1 380
1 350
1 490
1 660
800
900
1 000
900
1 000
1 120
520
580
640
740
820
900
730
810
890
960
1 040
1 170
950
1 040
1 160
1 220
1 340
1 500
1 210
1 340
1 490
1 530
1 670
1 880
1 520
1 670
1 870
1 860
2 050
2 280
1 120
1 250
1 400
1 250
1 400
1 600
700
770
870
980
1 080
1 200
970
1 080
1 200
1 280
1 410
1 550
1 270
1 410
1 550
1 640
1 790
1 990
1 630
1 780
1 990
2 060
2 250
2 500
2 050
2 250
2 500
2 500
2 740
3 050
1 600
1 800
950
1 320
1 320
1 690
1 690
2 180
2 180
2 730
2 730
3 310
Misalignment
During operation, angular misalignment of
up to 0,5° between the inner and outer rings
(† fig. 4) can usually be accommodated by
a CARB toroidal roller bearing without any
negative consequences for the bearing.
However, misalignment values greater than
0,5° will increase friction and influence bearing service life. For misalignment greater than
0,5° consult the SKF application engineering
service. The ability to accommodate misalignment when the bearing is stationary is also
limited. For CARB bearings with a machined
brass cage centred on the inner ring, designation suffix MB, misalignment should never
exceed 0,5°.
Misalignment displaces the rollers axially,
causing them to approach the side faces of
the bearing rings. Therefore, possible axial
displacement should be reduced († “Axial
displacement”, starting on page 40).
C
Misaligned and displaced bearing rings
Fig. 4
39
Axial displacement
CARB toroidal roller bearings can accommodate axial displacement of the shaft relative
to the housing within the bearing. The axial
displacement can result from thermal expansion or deviations from determined bearing
positions.
Misalignment as well as axial displacement
influences the axial position of the rollers in
a CARB bearing. Axial displacement also reduces the radial clearance. SKF recommends
checking that the axial displacement is within
acceptable limits, i.e. the residual clearance
is great enough, and that the rollers do not
protrude outside the side face of a ring
(† fig. 5a) or contact any locking ring
(† fig. 5b) or seal. To accommodate the displacement of the roller and cage assembly,
provide free space on both sides of the bearing as described in the section “Free space
on the sides of the bearing” on page 18.
The axial displacement from the normal
pos­ition of one bearing ring in relation to the
other is limited by
• the displacement of the roller set
• the reduction of radial clearance.
The maximum possible axial displacement
is obtained from the smaller of these two
limitations.
Limitation caused by the
displacement of the roller set
Limitation caused by the reduction
of radial clearance
The guideline values s1 and s2 for axial
­displacement († fig. 5) listed in the product
tables are valid provided
The reduction of radial clearance as a result
of axial displacement from a centred position
can be calculated using
• there is a sufficiently large operational ra­dial clearance in the bearing before shaft
elongation
• the rings are not misaligned.
k2 scle2
Cred=———
B
The reduction in the possible axial displacement
caused by misalignment can be estimated
using
smis = k1 B a
where
smis=reduction in axial displacement caused
by misalignment, mm
k1 = misalignment factor
(† product tables)
B =bearing width, mm
(† product tables)
a =misalignment, degrees
Assuming a sufficiently large operational
clearance, the maximum possible axial displacement is obtained from
slim=s1 – smis
or
slim=s2 – smis
Axial displacement limits s1 and s2
Fig. 5
s1
a
s2
b
40
where
slim=possible axial displacement relative to
the movement of the roller set caused
by misalignment, mm
s1 =guideline value for the axial displacement
capability in bearings with a cage,
sealed bearings or full complement
bearings when displacing away from
the snap ring, mm († product tables)
s2 =guideline value for the axial displacement
capability in sealed or full complement
bearings when displacing towards the
seal or snap ring respectively, mm
(† product tables)
smis=reduction in axial displacement caused
by misalignment, mm
In cases where the reduction in clearance is
greater than the radial clearance before shaft
elongation, the bearing will be preloaded. If
instead a certain radial clearance reduction is
known, the corresponding axial displacement
from a centred position can be calculated
using
8JJJ
B Cred
scle= 7———
p
k2
where
scle =axial displacement from a centred
position, corresponding to a certain
radial clearance reduction, mm
Cred=reduction of radial clearance as a result
of an axial displacement from a centred
position, mm
k2 =operating clearance factor
(† product tables)
B =bearing width, mm
Diagram 1
Axial displacement in % of the bearing width as a function of radial operational clearance
0,5
Radial clearance, % of the bearing width
The axial displacement capability can also be
obtained using diagram 1, which is valid for
all CARB bearings. The axial displacement and
radial clearance are shown as functions of the
bearing width.
From diagram 1 it can be seen (dotted line)
that for a bearing C 3052 K/HA3C4, with an
operational clearance of 0,15 mm, which
corres­ponds to approximately 0,15% of
the bearing width, an axial displacement
of approximately 12% of the bearing width
is possible. Thus, when an axial displacement
of approximately 0,12 ¥ 104 = 12,5 mm has
taken place, the operational clearance will
be zero.
It should be remembered that the distance
between the dotted line and the curve represents the residual radial operating clearance
in the bearing arrangement.
Diagram 1 also illustrates how it is possible,
simply by axially displacing the bearing rings
relative to each other, to achieve a given radial
internal clearance in a CARB bearing.
0,4
!!
!
C
0,3
0,2
0,1
0
–0,1
–20
–10
0
10
20
Axial displacement, % of the bearing width
! Range of operation with operational clearance
!! Possible range of operation where the bearing will have preload and the friction
can increase by up to 50% but where the L10 bearing life will still be achieved
Calculation example 1
For a C 3052 bearing having
Calculation example 2
For a C 3052 K/HA3C4 bearing having
Calculation example 3
For a C 3052 bearing that has
• a width B = 104 mm
• a misalignment factor k1 = 0,122
• a value for the axial displacement
s1 = 19,3,
• a width B = 104 mm
• an operating clearance factor k2 = 0,096
• an operational clearance of 0,15 mm,
• a width B = 104 mm
• an operating clearance factor k2 =
0,096,
the possible axial displacement from the
central position of one ring to the other
until the oper­ational clearance equals
zero can be obtained from
the reduction in operational clearance
caused by an axial displacement scle =
6,5 mm from the central position is
calculated using
7B Cred
scle = ———
p
k2
k2 scle2
Cred= ————
B
7104 ™ 0,15
scle = ––––––––––––
p
0,096
0,096 ¥ 6,52
Cred= ——————
104
scle = 12,7 mm
Cred= 0,039 mm
with an angular misalignment of a = 0,3°
between the inner and outer rings, the
permissible axial displacement can be
obtained from
slim=s1 – smis
slim=s1 – k1 B a
slim=19,3 – 0,122 ¥ 104 ¥ 0,3
slim=15,5 mm
The axial displacement of 12,7 mm is
below the limiting value s1 = 19,3 mm,
shown in the product table. An operating
misalignment of 0,3° is also permissible
(† Calculation example 1).
41
Cages
Depending on their size, with the exception of
full complement bearings, CARB bearings are
fitted as standard with one of the following
cages († fig. 6)
• an injection moulded window-type cage
of glass fibre reinforced polyamide 4,6,
­roller centred, designation suffix TN9 (a)
• a pressed window-type steel cage, roller
centred, no designation suffix (b)
• a machined window-type brass cage, roller
centred, designation suffix M (c)
• a two-piece machined brass cage, inner
ring centred, designation suffix MB (d).
Note
CARB bearings with polyamide 4,6 cages can
be operated continuously at temperatures up
to +130 °C. The lubricants generally used for
rolling bearings do not have a detrimental
effect on cage properties, with the exception
of a few synthetic oils and greases with a synthetic oil base, and lubricants containing a
high proportion of EP additives when used
at high temperatures.
For bearing arrangements, which are to be
operated at continuously high temperatures
or under arduous conditions, SKF recommends using bearings with a steel or brass
cage. Full complement bearings are another
possible alternative.
For detailed information about tempera­ture
resistance and the applicability of cages, consult the SKF application engineering service.
Influence of operating temperature
on bearing material
All CARB bearings undergo a special heat
treatment so that they can be operated at
higher tem­peratures for longer periods, without the occurrence of inadmissible dimensional changes, provided the permissible
operating temperature of the cage is not
exceeded, for example, a tem­perature of
+200 °C for 2 500 h, or for short periods
at even higher temperatures.
Minimum load
To provide satisfactory operation, CARB bearings, like all ball and roller bearings, must
always be subjected to a given minimum load,
particularly if they are to operate at high
speeds or are subjected to high accelerations
or rapid changes in the direction of load. Under
these conditions, the inertia forces of the rollers and cage, and the friction in the lubricant,
can have a detrimental effect on the rolling
conditions in the bearing arrangement and
may cause damaging sliding movements to
occur between the rollers and raceways.
The requisite minimum load to be applied
to a CARB bearing with a cage can be estimated using
q
7n
w
F = 0,002 C0 1+2
— – 0,3
rm
<
P nr
z
where
Frm=minimum radial bearing load, kN
C0 =basic static load rating, kN
(† product tables)
n =rotational speed, r/min
nr =reference speed, r/min
(† product tables)
When starting up at low temperatures or when
the lubricant is highly viscous, even greater
min­imum loads than Frm = 0,007 C0 and
0,01 C0 respectively may be required. The
weight of the components supported by the
bearing, together with external forces, generally exceeds the requisite minimum load. If
this is not the case, the CARB bearing must
be subjected to an additional radial load.
Equivalent dynamic bearing load
Frm = 0,007 C0
and for a full complement bearing using
As the CARB bearing can only accommodate
radial loads
Frm = 0,01 C0
P = Fr
where
Frm=minimum radial bearing load, kN
C0 =basic static load rating, kN
(† product tables).
In some applications it is not possible to reach
or exceed the requisite minimum load. However, for caged bearings that are oil lubricated,
lower minimum loads are permissible. These
loads can be calculated when n/nr ≤ 0,3 from
Frm = 0,002 C0
and when 0,3 < n/nr ≤ 2 from
Fig. 6
Equivalent static bearing load
As the CARB bearing can only accommodate
radial loads
P0 = Fr
CARB bearings on adapter
or withdrawal sleeves
CARB bearings with a tapered bore can be
mounted on adapter or withdrawal sleeves.
The sleeves enable the bearings to be quickly
and easily secured on smooth or stepped
shafts. Detailed information on CARB
bearings
• on adapter sleeves can be found in the
product table starting on page 58
• on withdrawal sleeves can be found in the
product table starting on page 68.
Where appropriate, modified adapter sleeves
of the E, L and TL designs, e.g. H 310 E, are
available for CARB bearings to prevent the
locking device from fouling the cage. With
adapter sleeves of
42
a
b
c
d
Cages for CARB bearings
• H .. E series, the standard KM lock nut and
MB locking washer are replaced by a KMFE
lock nut († fig. 7)
• OH .. HE series, the standard HM lock nut is
replaced by a HME nut with a changed front
face († fig. 8)
• L-design, the standard KM lock nut and MB
locking washer are replaced by a KML nut
with an MBL locking washer; these have
a lower sectional height († fig. 9)
• TL-design, the standard HM .. T lock nut
and MB locking washer are replaced by
a HM 30 nut with an MS 30 locking clip;
these have a lower sectional height
(† fig. 10).
Designation
The complete designation of a standard CARB
toroidal roller bearing is made up of
• the prefix C
• the ISO dimension series identification
• the size identification
• any supplementary designations used to
identify certain features of the bearing.
Diagram 2 shows the designation scheme
and the meaning of the various letters and
figures in the order in which they appear.
C
Diagram 2
Designation scheme for CARB toroidal roller bearings
Examples
Fig. 7
H .. E series sleeve
with a KMFE lock nut
C 2215 TN9/C3
C
22
15
C 3160 K/HA3C4
C
31
60
TN9/C3
K/
HA3C4
Prefix
C
BSC-
Bearing with standardized
dimensions
Special bearing
ISO dimension series
Fig. 8
OH .. HE series sleeve
with a modified HME
lock nut
39, 49, 59, 69
30, 40, 50, 60
31, 41
22, 32
23
ISO Diameter Series 9
ISO Diameter Series 0
ISO Diameter Series 1
ISO Diameter Series 2
ISO Diameter Series 3
Size identification
05 ¥ 5 25 mm bore diameter
to
96 ¥ 5 480 mm bore diameter
from
/500 Bore diameter uncoded in millimetres
Bore
Fig. 9
Fig. 10
H .. L series sleeve
with a KML lock nut
plus an MBL locking
washer
OH .. HTL series sleeve
with an HM 30 lock nut
and a MS locking clip
–
K
K30
Cylindrical bore
Tapered bore, taper 1:12
Tapered bore, taper 1:30
Other features
–
–
C2
C3
C4
C5
2CS
2CS5
Window-type steel cage, roller centred
Normal radial internal clearance
Radial internal clearance smaller than Normal
Radial internal clearance greater than Normal
Radial internal clearance greater than C3
Radial internal clearance greater than C4
Sheet steel reinforced acrylonitrile-butadiene rubber seal (NBR) on both sides of the bearing1)
Sheet steel reinforced hydrogenated acrylonitrile-butadiene rubber seal (HNBR) on both sides
of the bearing2)
HA3 Case-hardened inner ring
M
Window-type machined brass cage, roller centred
MB
Machined brass cage, inner ring centred
2NS Highly efficient acrylonitrile-butadiene rubber seal on both sides of the bearing2)
TN9 Injection moulded cage of glass fibre reinforced polyamide 4,6, roller centred
V
Full complement of rollers (no cage)
VE240 Bearing modified for greater axial displacement
VG114 Surface hardened pressed steel cage
1)
Bearings
2)
with CS seals are filled with grease to 40% of the free space in the bearing
Bearings with CS5 seals as well as with NS seals are filled with grease to between 70% and 100% of the free space
in the bearing
43
CARB toroidal roller bearings
d 25 – 60 mm
B
r1
s2
s1
r2
r1
r2
d
d d2
D D1
Cylindrical bore
Tapered bore
Full complement
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass
dynamic static
load limit
Reference Limiting speed
speed
d
D
B
C
C0
Pu
mm
kN
kN
r/min
Designations
Bearing with
cylindrical tapered
bore bore
kg –
25
52
18
44
40
4,55
13 000
18 000
0,17
gC 2205 TN9
52
18
50
48
5,5
–
7 000
0,18
gC 2205 V
30
55
45
134
180
19,6
–
3 000
0,50 C 6006 V
62
20
69,5
62
7,2
11 000
15 000
0,27 C 2206 TN9
62
20
76,5
71
8,3
–
6 000
0,29 C 2206 V
35
72
23
83
80
9,3
9 500
13 000
0,43 C 2207 TN9
72
23
95
96,5
11,2
–
5 000
0,45 C 2207 V
40
62
22
76,5
100
11
–
4 300
0,25 C 4908 V
gC 5908 V
62
30
104
143
16
–
3 400
0,35
62
40
122
180
19,3
–
2 800
0,47
gC 6908 V
80
23
90
86,5
10,2
8 000
11 000
0,50 C 2208 TN9
80
23
102
104
12
–
4 500
0,53 C 2208 V
gC 4909 V
45
68
22
81,5
112
12,9
–
3 800
0,30
68
30
110
163
18,3
–
3 200
0,41
gC 5909 V
68
40
132
200
22
–
2 600
0,55
gC 6909 V
85
23
93
93
10,8
8 000
11 000
0,55 C 2209 TN9
85
23
106
110
12,9
–
4 300
0,58 C 2209 V
50
72
22
86,5
125
13,7
–
3 600
0,29 C 4910 V
72
30
118
180
20,4
–
2 800
0,42
gC 5910 V
72
40
140
224
24,5
–
2 200
0,54 C 6910 V
gC 2205
gC 2205
80
30
116
140
16
5 000
7 500
0,55 C 4010 TN9
80
30
137
176
20
–
3 000
0,59 C 4010 V
90
23
98
100
11,8
7 000
9 500
0,59 C 2210 TN9
90
23
114
122
14,3
–
3 800
0,62 C 2210 V
gC 4911 V
55
80
25
106
153
18
–
3 200
0,43
80
34
143
224
25
–
2 600
0,60
gC 5911 V
gC 6911 V
80
45
180
300
32,5
–
2 000
0,81
100
25
116
114
13,4
6 700
9 000
0,79 C 2211 TN9
100
25
132
134
16
–
3 400
0,81 C 2211 V
60
gPlease
44
85
85
85
110
110
25
34
45
28
28
112
150
190
143
166
170
240
335
156
190
19,6
26,5
36
18,3
22,4
–
–
–
5 600
–
check availability of the bearing before incorporating it in a bearing arrangement design
3 000
2 400
1 900
7 500
2 800
0,46
gC 4912 V
gC 5912 V
0,64
0,84 C 6912 V
1,10 C 2212 TN9
1,15 C 2212 V
KTN9
KV
–
C 2206 KTN9
C 2206 KV
C 2207 KTN9
C 2207 KV
C 4908 K30V
–
–
C 2208 KTN9
C 2208 KV
gC 4909
K30V
–
–
C 2209 KTN9
C 2209 KV
C 4910 K30V
–
–
C 4010 K30TN9
C 4010 K30V
C 2210 KTN9
C 2210 KV
gC 4911
K30V
–
–
C 2211 KTN9
C 2211 KV
gC 4912
K30V
–
–
C 2212 KTN9
C 2212 KV
Ca
ra
ra
Da
da
C
Dimensions
d
d2
D1
r1,2
s11)
s21)
≈
≈
min
≈
≈
Abutment and fillet dimensions
da
da2)
Da3)
Da
Ca4)
ra
min
max
min
max
min
max
Calculation factors
mm
mm
–
25
32,1
32,1
43,3
43,3
1
1
5,8
5,8
–
2,8
30,6
30,6
32
39
42
–
46,4
46,4
0,3
–
1
1
0,09
0,09
0,126
0,126
30
38,5
37,4
37,4
47,3
53,1
53,1
1
1
1
7,9
4,5
4,5
4,9
–
1,5
35,6
35,6
35,6
43
37
49
–
51
–
49,4
56,4
56,4
–
0,3
–
1
1
1
0,102
0,101
0,101
0,096
0,111
0,111
35
44,8
44,8
60,7
60,7
1,1
1,1
5,7
5,7
–
2,7
42
42
44
57
59
–
65
65
0,1
–
1
1
0,094
0,094
0,121
0,121
40
46,1
45,8
46,6
52,4
52,4
55,3
54,6
53,8
69,9
69,9
0,6
0,6
0,6
1,1
1,1
4,7
5
9,4
7,1
7,1
1,7
2
6,4
–
4,1
43,2
43,2
43,2
47
47
52
45
46
52
66
–
–
–
68
–
58,8
58,8
58,8
73
73
–
–
–
0,3
–
0,6
0,6
0,6
1
1
0,099
0,096
0,113
0,093
0,093
0,114
0,106
0,088
0,128
0,128
45
51,6
51,3
52,1
55,6
55,6
60,5
60,1
59,3
73,1
73,1
0,6
0,6
0,6
1,1
1,1
4,7
5
9,4
7,1
7,1
1,7
2
6,4
–
4,1
48,2
48,2
48,2
52
52
51
51
52
55
69
–
–
–
71
–
64,8
64,8
64,8
78
78
–
–
–
0,3
–
0,6
0,6
0,6
1
1
0,114
0,096
0,113
0,095
0,095
0,1
0,108
0,09
0,128
0,128
50
56,9
56,8
57,5
66,1
65,7
65
0,6
0,6
0,6
4,7
5
9,4
1,7
2
6,4
53,2
53,2
53,2
62
56
61
–
–
–
68,8
68,8
68,8
–
–
–
0,6
0,6
0,6
0,103
0,096
0,093
0,114
0,11
0,113
57,6
57,6
61,9
61,9
70,8
70,8
79,4
79,4
1
1
1,1
1,1
6
6
7,1
7,1
–
3
–
3,9
54,6
54,6
57
57
57
67
61
73
70
–
77
–
75,4
75,4
83
83
0,1
–
0,8
–
1
1
1
1
0,103
0,103
0,097
0,097
0,107
0,107
0,128
0,128
55
62
62,8
62,8
65,8
65,8
72,1
72,4
71,3
86,7
86,7
1
1
1
1,5
1,5
5,5
6
7,9
8,6
8,6
2,5
3
4,9
–
5,4
59,6
59,6
59,6
64
64
62
62
62
65
80
–
–
–
84
–
80,4
80,4
80,4
91
91
–
–
–
0,3
–
1
1
1
1,5
1,5
0,107
0,097
0,096
0,094
0,094
0,105
0,109
0,105
0,133
0,133
60
68
66,8
68,7
77,1
77,1
78,2
76,5
77,5
97,9
97,9
1
1
1
1,5
1,5
5,5
6
7,9
8,5
8,5
2,3
2,8
4,7
–
5,3
64,6
64,6
64,6
69
69
68
66
72
77
91
–
–
–
95
–
80,4
80,4
80,4
101
101
–
–
–
0,3
–
1
1
1
1,5
1,5
0,107
0,097
0,108
0,1
0,1
0,108
0,11
0,096
0,123
0,123
k1
k2
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
3)
To clear the cage for caged bearings
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
45
CARB toroidal roller bearings
d 65 – 95 mm
B
r1
s2
s1
r2
r1
r2
d
d d2
D D1
Cylindrical bore
Full complement
Tapered bore
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass
dynamic static
load limit
Reference Limiting speed
speed
d
D
B
C
C0
Pu
mm
kN
kN
r/min
Designations
Bearing with
cylindrical tapered
bore bore
kg –
65
90
25
116
180
20,8
–
2 800
0,50
gC 4913 V
gC 4913 K30V
90
34
156
260
30
–
2 200
0,70
gC 5913 V
–
90
45
196
355
38
–
1 800
0,93
gC 6913 V
–
100
35
196
275
32
–
2 400
1,00
gC 4013 V
gC 4013 K30V
120
31
180
180
21,2
5 300
7 500
1,40 C 2213 TN9 C 2213 KTN9
120
31
204
216
25,5
–
2 400
1,47 C 2213 V
C 2213 KV
70
100
30
163
240
28
–
2 600
0,78
gC 4914 V
gC 4914 K30V
100
40
196
310
34,5
–
2 000
1,00
gC 5914 V
–
100
54
265
455
49
–
1 700
1,40
gC 6914 V
–
125
31
186
196
23,2
5 000
7 000
1,45 C 2214 TN9 C 2214 KTN9
125
31
212
228
27
–
2 400
1,50 C 2214 V
C 2214 KV
150
51
405
430
49
3 800
5 000
4,25 C 2314
C 2314 K
gC 4915 V
gC 4915 K30V
75
105
30
166
255
30
–
2 400
0,82
105
40
204
325
37,5
–
1 900
1,10 C 5915 V
–
105
54
204
325
37,5
–
1 600
1,40 C 6915 V/VE240 –
115
40
208
345
40,5
–
2 000
1,60 C 4015 V
C 4015 K30V
130
31
196
208
25,5
4 800
6 700
1,60 C 2215
C 2215 K
130
31
220
240
29
–
2 200
1,65 C 2215 V
C 2215 KV
160
55
425
465
52
3 600
4 800
5,20 C 2315 C 2315 K
80
110
30
173
275
31,5
–
2 200
0,87
gC 4916 V
gC 4916 K30V
110
40
208
345
40
–
1 800
1,20
gC 5916 V
–
140
33
220
250
28,5
4 500
6 000
2,00 C 2216
C 2216 K
140
33
255
305
34,5
–
2 000
2,10 C 2216 V
C 2216 KV
170
58
510
550
61
3 400
4 500
6,20 C 2316
C 2316 K
gC 4917 V
gC 4917 K30V
85
120
35
224
355
40,5
–
2 000
1,30
120
46
275
465
52
–
1 700
1,70
gC 5917 V
–
150
36
275
320
36,5
4 300
5 600
2,60 C 2217
C 2217 K
150
36
315
390
44
–
1 800
2,80
gC 2217 V
gC 2217 KV
180
60
540
600
65,5
3 200
4 300
7,30 C 2317
C 2317 K
90
125
125
150
160
160
190
35
46
72
40
40
64
186
224
455
325
365
610
315
400
670
380
440
695
35,5
44
73,5
42,5
49
73,5
–
–
–
3 800
–
2 800
2 000
1 600
1 500
5 300
1 500
4 000
1,30
gC 4918 V
1,75 C 5918 V
5,10 BSC-2039 V
3,30 C 2218
3,40
gC 2218 V
8,50 C 2318
gC 4918
95
170
200
43
67
360
610
400
695
44
73,5
3 800
2 800
5 000
4 000
4,00
gC 2219
10,0 C 2319
gC 2219
gPlease
46
check availability of the bearing before incorporating it in a bearing arrangement design
K30V
–
–
C 2218 K
gC 2218 KV
C 2318 K
K
C 2319 K
Ca
ra
ra
Da
da
C
Dimensions
d
d2
D1
r1,2
s11)
s21)
≈
≈
min
≈
≈
Abutment and fillet dimensions
da
da2)
Da3)
Da
Ca4)
ra
min
max
min
max
min
max
Calculation factors
mm
mm
–
65
72,1
72,9
72,9
74,2
79
79
82,2
82,6
81,4
89,1
106
106
1
1
1
1,1
1,5
1,5
5,5
6
7,9
6
9,6
9,6
2,3
2,8
4,7
2,8
–
5,3
69,6
69,6
69,6
71
74
74
72
72
72
74
79
97
–
–
–
–
102
–
85,4
85,4
85,4
94
111
111
–
–
–
–
0,2
–
1
1
1
1
1,5
1,5
0,107
0,097
0,096
0,1
0,097
0,097
0,109
0,111
0,107
0,108
0,127
0,127
70
78
78,7
79,1
83,7
83,7
91,4
91
90,3
89,8
111
111
130
1
1
1
1,5
1,5
2,1
6
9,4
9
9,6
9,6
9,1
2,8
6,2
5,8
–
5,3
–
74,6
74,6
74,6
79
79
82
78
78
79
83
102
105
–
–
–
107
–
120
95,4
95,4
95,4
116
116
138
–
–
–
0,4
–
2,2
1
1
1
1,5
1,5
2
0,107
0,114
0,102
0,098
0,098
0,11
0,107
0,095
0,1
0,127
0,127
0,099
75
83,1
83,6
83,6
88,7
88,5
88,5
98,5
96,1
95,5
95,5
101
115
115
135
1
1
1
1,1
1,5
1,5
2,1
6
9,4
9,2
9,4
9,6
9,6
13,1
2,8
6,2
9,2
5,1
–
5,3
–
79,6
79,6
79,6
81
84
84
87
83
89
88
94
98
105
110
–
–
–
90
110
–
130
100
100
100
109
121
121
148
–
–
–
–
1,2
–
2,2
1
1
1
1
1,5
1,5
2
0,107
0,098
0,073
0,099
0,099
0,099
0,103
0,108
0,114
0,154
0,114
0,127
0,127
0,107
80
88,2
88,8
98,1
98,1
102
101
101
125
125
145
1
1
2
2
2,1
6
9,4
9,1
9,1
10,1
1,7
5,1
–
4,8
–
84,6
84,6
91
91
92
88
88
105
115
115
–
–
120
–
135
105
105
129
129
158
–
–
1,2
–
2,4
1
1
2
2
2
0,107
0,114
0,104
0,104
0,107
0,11
0,098
0,121
0,121
0,101
85
94,5
95
104
104
110
109
109
133
133
153
1,1
1,1
2
2
3
6
8,9
7,1
7,1
12,1
1,7
4,6
–
1,7
–
91
91
96
96
99
94
95
110
115
125
–
–
125
–
145
114
114
139
139
166
–
–
1,3
–
2,4
1
1
2
2
2,5
0,1
0,098
0,114
0,114
0,105
0,114
0,109
0,105
0,105
0,105
90
102
102
109
112
112
119
113
113
131
144
144
166
1,1
1,1
2
2
2
3
11
15,4
19,7
9,5
9,5
9,6
6,7
11,1
19,7
–
5,4
–
96
96
101
101
101
104
100
105
115
120
125
135
–
–
–
130
–
155
119
119
139
149
149
176
–
–
–
1,4
–
2
1
1
2
2
2
2,5
0,125
0,089
0,087
0,104
0,104
0,108
0,098
0,131
0,123
0,117
0,117
0,101
95
113
120
149
166
2,1
3
10,5
12,6
–
–
107
109
112
135
149
155
158
186
4,2
2,1
2
2,5
0,114
0,103
0,104
0,106
k1
k2
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
3)
To clear the cage for caged bearings
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
47
CARB toroidal roller bearings
d 100 – 150 mm
B
r1
s2
s1
r2
r1
r2
d
d d2
D D1
Cylindrical bore
Tapered bore
Full complement
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass
dynamic static
load limit
Reference Limiting speed
speed
d
D
B
C
C0
Pu
mm
kN
kN
r/min
Designations
Bearing with
cylindrical tapered
bore bore
kg –
100
140
40
275
450
49
–
1 700
1,90
g C 4920 V
g C 4920 K30V
140
54
375
640
68
–
1 400
2,70
g C 5920 V
–
150
50
355
530
57
–
1 400
3,05 C 4020 V
C 4020 K30V
150
67
510
865
90
–
1 100
4,30 C 5020 V
–
165
52
475
655
71
–
1 300
4,40 C 3120 V
–
165
65
475
655
71
–
1 300
5,25 C 4120 V/VE240 C 4120 K30V/VE240
170
65
475
655
71
–
1 400
5,95 BSC-2034 V
–
180
46
415
465
47,5
3 600
4 800
4,85 C 2220
C 2220 K
215
73
800
880
91,5
2 600
3 600
12,5 C 2320
C 2320 K
g C 3022
g C 3022 K
110
170
45
355
480
51
3 200
4 500
3,50
170
60
430
655
69,5
2 600
3 400
5,30 C 4022 MB
C 4022 K30MB
170
60
500
800
85
–
1 200
5,20 C 4022 V
C 4022 K30V
180
69
670
1 000
102
–
900
7,05 C 4122 V
C 4122 K30V
200
53
530
620
64
3 200
4 300
6,90 C 2222
C 2222 K
120
180
46
375
530
55
3 000
4 000
3,90
g C 3024
g C 3024 K
180
46
430
640
67
–
1 400
4,05 C 3024 V
C 3024 KV
180
60
430
640
65,5
–
1 400
5,05 C 4024 V/VE240 C 4024 K30V/VE240
180
60
530
880
90
–
1 100
5,50 C 4024 V
C 4024 K30V
200
80
780
1 120
114
–
750
10,5
g C 4124 V
g C 4124 K30V
215
58
610
710
72
3 000
4 000
8,60
g C 2224
g C 2224 K
215
76
750
980
98
2 400
3 200
11,5 C 3224
C 3224 K
130
200
52
390
585
58,5
2 800
3 800
5,90
g C 3026
g C 3026 K
200
69
620
930
91,5
1 900
2 800
7,84 C 4026
C 4026 K30
200
69
720
1 120
112
–
850
8,05 C 4026 V
C 4026 K30V
210
80
750
1 100
108
–
670
10,5 C 4126 V/VE240 C 4126 K30V/VE240
230
64
735
930
93
2 800
3 800
11,0 C 2226
C 2226 K
g C 3028
6,30
140
210
53
490
735
72
2 600
3 400
210
69
750
1 220
118
–
800
8,55 C 4028 V
225
85
1 000
1 600
153
–
630
14,2 C 4128 V
250
68
830
1 060
102
2 400
3 400
13,8 C 2228
150
225
56
540
850
83
2 400
3 200
8,30
g C 3030 MB
225
56
585
960
93
–
1 000
8,00 C 3030 V
225
75
780
1 320
125
–
750
10,5 C 4030 V
250
80
880
1 290
122
2 000
2 800
15,0 C 3130
250
100
1 220
1 860
173
–
450
20,5
g C 4130 V
270
73
980
1 220
116
2 400
3 200
17,5 C 2230
gPlease
48
check availability of the bearing before incorporating it in a bearing arrangement design
g C 3028
K
C 4028 K30V
C 4128 K30V
C 2228 K
g C 3030
KMB
C 3030 KV
C 4030 K30V
C 3130 K
g C 4130 K30V
C 2230 K
Ca
ra
ra
Da
da
C
Dimensions
d
d2
D1
r1,2
s11)
s21)
≈
≈
min
≈
≈
Abutment and fillet dimensions
da
da2)
Da3)
Da
Ca4)
ra
min
max
min
max
min
max
Calculation factors
mm
mm
–
k1
k2
100
113
110
113
114
130
127
135
136
1,1
1,1
1,5
1,5
9,4
9
14
9,3
5,1
4,7
9,7
5
106
106
109
109
110
105
120
125
–
–
–
–
134
134
141
141
–
–
–
–
1
1
1,5
1,5
0,115
0,103
0,098
0,112
0,103
0,105
0,118
0,094
119
120
120
118
126
150
148
148
157
185
2
2
2
2,1
3
10
17,7
17,7
10,1
11,2
4,7
17,7
17,7
–
–
111
111
111
112
114
130
130
130
130
150
–
–
–
150
170
154
154
159
168
201
–
–
–
0,9
3,2
2
2
2
2
2,5
0,1
0,09
0,09
0,108
0,113
0,112
0,125
0,125
0,11
0,096
110
128
126
126
132
132
156
150
150
163
176
2
2
2
2
2,1
9,5
4,8
12
11,4
11,1
–
–
6,6
4,6
–
119
120
120
120
122
127
125
136
145
150
157
146
129
–
165
161
160
160
170
188
4
1,3
–
–
1,9
2
2
2
2
2
0,107
–
0,107
0,111
0,113
0,11
0,103
0,103
0,097
0,103
120
138
138
139
140
140
144
149
166
166
164
164
176
191
190
2
2
2
2
2
2,1
2,1
10,6
10,6
–
12
18
13
17,1
–
3,8
17,8
5,2
11,2
–
–
129
129
130
129
131
132
132
145
150
152
150
140
143
160
160
–
142
–
–
192
180
171
171
170
171
189
203
203
0,9
–
–
–
–
5,4
2,4
2
2
2
2
2
2
2
0,111
0,111
0,085
0,109
0,103
0,113
0,103
0,109
0,109
0,142
0,103
0,103
0,103
0,108
130
154
149
149
153
152
180
181
181
190
199
2
2
2
2
3
16,5
11,4
11,4
9,7
9,6
–
–
4,6
9,7
–
139
139
139
141
144
152
155
165
170
170
182
175
–
–
185
191
191
191
199
216
4,4
1,9
–
–
1,1
2
2
2
2
2,5
0,123
0,113
0,113
0,09
0,113
0,1
0,097
0,097
0,126
0,101
140
163
161
167
173
194
193
203
223
2
2
2,1
3
11
11,4
12
13,7
–
5,9
5,2
–
149
149
151
154
161
175
185
190
195
–
–
210
201
201
214
236
4,7
–
–
2,3
2
2
2
2,5
0,102
0,115
0,111
0,109
0,116
0,097
0,097
0,108
150
173
174
173
182
179
177
204
204
204
226
222
236
2,1
2,1
2,1
2,1
2,1
3
8,7
14,1
17,4
13,9
20
11,2
–
7,3
10,6
–
10,1
–
161
161
161
162
162
164
172
190
185
195
175
200
200
177
–
215
–
215
214
214
214
238
228
256
1,3
–
–
2,3
–
2,5
2
2
2
2
2
2,5
–
0,113
0,107
0,12
0,103
0,119
0,108
0,108
0,106
0,092
0,103
0,096
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
3)
To clear the cage for caged bearings
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
49
CARB toroidal roller bearings
d 160 – 300 mm
B
r1
s2
s1
r2
r1
r2
d
d d2
D D1
Cylindrical bore
Tapered bore
Full complement
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass
dynamic static
load limit
Reference Limiting speed
speed
d
D
B
C
C0
Pu
Designations
Bearing with
cylindrical tapered
bore bore
mm
kN
kN
r/min
kg –
160
600
795
915
1 000
1 460
1 370
93
110
140
129
200
170
2 200
1 600
–
1 900
–
1 700
9,60
g C 3032
12,3 C 4032
12,6 C 4032 V
21,5 C 3132 MB
26,0
g C 4132 V
28,5 C 3232
240
240
240
270
270
290
60
80
80
86
109
104
980
1 160
1 460
1 400
2 160
1 830
3 000
2 400
600
2 600
300
2 400
g C 3032
K
C 4032 K30
C 4032 K30V
C 3132 KMB
g C 4132 K30V
C 3232 K
170
260
67
750
1 160
108
2 000
2 800
12,5
g C 3034
260
90
1 140
1 860
170
–
500
17,5 C 4034 V
280
88
1 040
1 460
137
1 900
2 600
21,0
g C 3134
280
109
1 530
2 280
208
–
280
27,0
g C 4134 V
310
86
1 270
1 630
150
2 000
2 600
28,0 C 2234
180
280
74
880
1 340
125
1 900
2 600
16,5 C 3036
280
100
1 320
2 120
193
–
430
23,0 C 4036 V
300
96
1 250
1 730
156
1 800
2 400
26,0 C 3136
300
118
1 760
2 700
240
–
220
34,5
g C 4136 V
320
112
1 530
2 200
196
1 500
2 000
37,0 C 3236
190
290
75
930
1 460
132
1 800
2 400
17,5 C 3038
290
100
1 370
2 320
204
–
380
24,5
g C 4038 V
320
104
1 530
2 200
196
1 600
2 200
33,5
g C 3138
320
128
2 040
3 150
275
–
130
43,0
g C 4138 V
340
92
1 370
1 730
156
1 800
2 400
34,0 C 2238
C 3036 K1)
C 4036 K30V
C 3136 K1)
g C 4136 K30V
C 3236 K
200
C 3040 K1)
C 4040 K30V
C 3140 K1)
g C 4140 K30V
310
310
340
340
82
109
112
140
1 120
1 630
1 600
2 360
1 730
2 650
2 320
3 650
153
232
204
315
1 700
–
1 500
–
2 400
260
2 000
80
22,0 C 3040
30,5 C 4040 V
40,0 C 3140
54,0
g C 4140 V
220
340
90
1 320
2 040
176
1 600
2 200
29,0 C 3044
340
118
1 930
3 250
275
–
200
40,0
g C 4044 V
370
120
1 900
2 900
245
1 400
1 900
51,0 C 3144
400
108
2 000
2 500
216
1 500
2 000
56,5 C 2244
240
360
92
1 340
2 160
180
1 400
2 000
31,5 C 3048
400
128
2 320
3 450
285
1 300
1 700
63,0 C 3148
g C 3034
K
C 4034 K30V
g C 3134 K
g C 4134 K30V
C 2234 K
C 3038 K1)
K30V
K
K30V
C 2238 K1)
g C 4038
g C 3138
g C 4138
C 3044 K1)
K30V
C 3144 K1)
C 2244 K1)
g C 4044
C 3048 K1)
C 3148 K1)
260
400
440
104
144
1 760
2 650
2 850
4 050
232
325
1 300
1 100
1 800
1 500
46,0 C 3052 87,0 C 3152
C 3052 K1)
C 3152 K1)
280
420
460
106
146
1 860
2 850
3 100
4 500
250
355
1 200
1 100
1 600
1 400
50,0 C 3056
93,0 C 3156 C 3056 K1)
C 3156 K1)
300
460
460
500
500
118
160
160
200
2 160
2 900
3 250
4 150
3 750
4 900
5 200
6 700
290
380
400
520
1 100
850
1 000
750
1 500
1 200
1 300
1 000
71,0 C 3060 M
95,0
g C 4060 M
120 C 3160 165 C 4160 MB gPlease
check availability of the bearing before incorporating it in a bearing arrangement design
Also available in design K/HA3C4
1)
50
C 3060 KM
K30M
C 3160 K1)
C 4160 K30MB
g C 4060
Ca
ra
ra
Da
da
C
Dimensions
d
d2
D1
r1,2
s11)
s21)
≈
≈
min
≈
≈
Abutment and fillet dimensions
da
da2)
Da3)
Da
Ca4)
ra
min
max
min
max
min
max
Calculation factors
mm
mm
–
k1
k2
160
187
181
181
190
190
194
218
217
217
240
241
256
2,1
2,1
2,1
2,1
2,1
3
15
18,1
18,1
10,3
21
19,3
–
–
8,2
–
11,1
–
171
171
171
172
172
174
186
190
195
189
190
215
220
210
–
229
–
245
229
229
229
258
258
276
5,1
2,2
–
3,8
–
2,6
2
2
2
2
2
2,5
0,115
0,109
0,109
–
0,101
0,112
0,106
0,103
0,103
0,099
0,105
0,096
170
200
195
200
200
209
237
235
249
251
274
2,1
2,1
2,1
2,1
4
12,5
17,1
21
21
16,4
–
7,2
–
11,1
–
181
181
182
182
187
200
215
200
200
230
238
–
250
–
255
249
249
268
268
293
5,8
–
7,6
–
3
2
2
2
2
3
0,105
0,108
0,101
0,101
0,114
0,112
0,103
0,109
0,106
0,1
180
209
203
210
211
228
251
247
266
265
289
2,1
2,1
3
3
4
15,1
20,1
23,2
20
27,3
–
10,2
–
10,1
–
191
191
194
194
197
220
225
230
210
245
240
–
255
–
275
269
269
286
286
303
2
–
2,2
–
3,2
2
2
2,5
2,5
3
0,112
0,107
0,102
0,095
0,107
0,105
0,103
0,111
0,11
0,104
190
225
266
2,1
16,1
–
201
235
255
279
1,9
2
0,113
220
263
2,1
20
10,1
201
220
–
279
–
2
0,103
228
289
3
19
–
204
227
290
306
9,1
2,5
0,096
222
284
3
20
10,1
204
220
–
306
–
2,5
0,094
224
296
4
22,5
–
207
250
275
323
1,6
3
0,108
200
235
285
2,1
15,2
–
211
250
275
299
2,9
2
0,123
229
280
2,1
21
11,1
211
225
–
299
–
2
0,11
245
305
3
27,3
–
214
260
307
326
–
2,5
0,108
237
302
3
22
12,1
214
235
–
326
–
2,5
0,092
0,107
0,106
0,113
0,111
0,108
220
257
251
268
259
310
306
333
350
3
3
4
4
17,2
20
22,3
20,5
–
10,1
–
–
233
233
237
237
270
250
290
295
295
–
315
320
327
327
353
383
3,1
–
3,5
1,7
2,5
2,5
3
3
0,114
0,095
0,114
0,113
0,104
0,113
0,097
0,101
240
276
281
329
357
3
4
19,2
20,4
–
–
253
257
290
305
315
335
347
383
1,3
3,7
2,5
3
0,113
0,116
0,106
0,095
260
305
314
367
394
4
4
19,3
26,4
–
–
275
277
325
340
350
375
385
423
3,4
4,1
3
3
0,122
0,115
0,096
0,096
280
328
336
389
416
4
5
21,3
28,4
–
–
295
300
350
360
375
395
405
440
1,8
4,1
3
4
0,121
0,115
0,098
0,097
300
352
338
362
354
417
409
448
448
4
4
5
5
20
30,4
30,5
14,9
–
–
–
–
315
315
320
320
375
360
390
353
405
400
425
424
445
445
480
480
1,7
2,8
4,9
3,4
3
3
4
4
0,123
0,105
0,106
–
0,095
0,106
0,106
0,097
0,095
0,101
0,104
0,112
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
3)
To clear the cage for caged bearings
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
51
CARB toroidal roller bearings
d 320 – 530 mm
B
r1
s1
r2
r1
r2
d
d d2
D D1
Cylindrical bore
Tapered bore
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass
dynamic static
load limit
Reference Limiting speed
speed
d
D
B
C
C0
Pu
mm
kN
kN
r/min
Designations
Bearing with
cylindrical tapered
bore bore
kg –
320
480
121
2 280
4 000
310
1 000
1 400
76,5 C 3064 M
540
176
4 150
6 300
480
950
1 300
160 C 3164 M
340
520
133
2 900
5 000
375
950
1 300
100
g C 3068 M
580
190
4 900
7 500
560
850
1 200
205 C 3168 M
360
480
90
1 760
3 250
250
1 000
1 400
44,0 C 3972 M
540
134
2 900
5 000
375
900
1 200
105
g C 3072 M
600
192
5 000
8 000
585
800
1 100
215 C 3172 M
380
520
106
2 120
4 000
300
950
1 300
66
g C 3976 M
g C 3076 M
560
135
3 000
5 200
390
900
1 200
110
620
194
4 400
7 200
520
750
1 000
243 C 3176 MB
400
540
600
650
106
148
200
2 120
3 650
4 800
4 000
6 200
8 300
290
450
585
900
800
700
1 300
1 100
950
68,5
g C 3980 M
140
g C 3080 M
260 C 3180 M
420
560
106
2 160
4 250
310
850
1 200
71,0 C 3984 M
620
150
3 800
6 400
465
800
1 100
150 C 3084 M
700
224
6 000
10 400
710
670
900
340 C 3184 M
440
600
118
2 600
5 300
375
800
1 100
99
g C 3988 M
650
157
3 750
6 400
465
750
1 000
185 C 3088 MB
720
226
6 700
11 400
780
630
850
385 C 3188 MB
720
280
7 500
12 900
900
500
670
471 C 4188 MB
C 3064 KM
C 3164 KM
g C 3068
KM
C 3168 KM1)
C 3972 KM
KM1)
C 3172 KM1)
g C 3072
g C 3976
g C 3076
KM
KM
C 3176 KMB
g C 3980
g C 3080
KM
KM
C 3180 KM
C 3984 KM
C 3084 KM
C 3184 KM1)
g C 3988
KM
C 3088 KMB
C 3188 KMB
C 4188 K30MB
460
620
680
760
760
118
163
240
300
2 700
4 000
6 800
8 300
5 300
7 500
12 000
14 300
375
510
800
950
800
700
600
480
1 100
950
800
630
g C 3992 MB
100
200 C 3092 M
430 C 3192 M
535 C 4192 M
KMB
C 3092 KM1)
C 3192 KM
C 4192 K30M
480
650
700
790
128
165
248
3 100
4 050
6 950
6 100
7 800
12 500
430
530
830
750
670
560
1 000
900
750
120 C 3996 M
210 C 3096 M
490
g C 3196 MB
C 3996 KM
C 3096 KM
g C 3196 KMB
500
670
720
830
830
128
167
264
325
3 150
4 250
7 500
10 200
6 300
8 300
12 700
18 600
440
560
850
1 220
700
630
530
430
950
900
750
560
125
225
550
730
530
710
780
870
136
185
272
3 550
5 100
8 800
7 100
9 500
15 600
490
640
1 000
670
600
500
900
800
670
150 C 39/530 M
295 C 30/530 M
630 C 31/530 M
gPlease
check availability of the bearing before incorporating it in a bearing arrangement design
Also available in design K/HA3C4
1)
52
C 39/500 M
C 30/500 M
C 31/500 M
C 41/500 MB
g C 3992
C 39/500 KM
C 30/500 KM1)
C 31/500 KM1)
C 41/500 K30MB
C 39/530 KM
C 30/530 KM1)
C 31/530 KM1)
Ca
ra
ra
Da
da
C
Dimensions
Abutment and fillet dimensions
d
d2
D1
r1,2
s11)
d a
da2)
Da2)
Da
Ca3)
ra
≈
≈
min
≈
min
max
min
max
min
max
Calculation factors
k1
k2
mm
mm
–
320
376
372
440
476
4
5
23,3
26,7
335
340
395
410
430
455
465
520
1,8
3,9
3
4
0,121
0,114
0,098
0,096
340
402
405
482
517
5
5
25,4
25,9
358
360
430
445
465
490
502
560
1,9
4,2
4
4
0,12
0,118
0,099
0,093
360
394
417
423
450
497
537
3
5
5
17,2
26,4
27,9
373
378
380
405
445
460
440
480
510
467
522
522
1,6
2
3,9
2,5
4
4
0,127
0,12
0,117
0,104
0,099
0,094
380
428
431
446
489
511
551
4
5
5
21
27
25,4
395
398
400
450
460
445
475
495
526
505
542
600
1,8
2
7,3
3
4
4
0,129
0,12
–
0,098
0,1
0,106
400
439
458
488
501
553
589
4
5
6
21
30,6
50,7
415
418
426
461
480
526
487
525
564
525
582
624
1,8
2,1
2,5
3
4
5
0,13
0,121
0,106
0,098
0,099
0,109
420
462
475
508
522
570
618
4
5
6
21,3
32,6
34,8
435
438
446
480
510
540
515
550
595
545
602
674
1,8
2,2
3,8
3
4
5
0,132
0,12
0,113
0,098
0,1
0,098
440
494
491
522
510
560
587
647
637
4
6
6
6
20
19,7
16
27,8
455
463
466
466
517
489
521
509
546
565
613
606
585
627
694
694
1,9
1,7
7,5
7,3
3
5
5
5
0,133
–
–
–
0,095
0,105
0,099
0,1
460
508
539
559
540
577
624
679
670
4
6
7,5
7,5
11
33,5
51
46,2
475
486
492
492
505
565
570
570
580
605
655
655
605
654
728
728
10,4
2,3
4,2
5,6
3
5
6
6
–
0,114
0,108
0,111
0,12
0,108
0,105
0,097
480
529
555
583
604
640
700
5
6
7,5
20,4
35,5
24
498
503
512
550
580
580
590
625
705
632
677
758
2
2,3
20,6
4
5
6
0,133
0,113
–
0,095
0,11
0,104
500
556
572
605
598
631
656
738
740
5
6
7,5
7,5
20,4
37,5
75,3
15
518
523
532
532
580
600
655
597
615
640
705
703
652
697
798
798
2
2,3
–
4,4
4
5
6
6
0,135
0,113
0,099
–
0,095
0,111
0,116
0,093
530
578
601
635
657
704
781
5
6
7,5
28,4
35,7
44,4
548
553
562
600
635
680
640
685
745
692
757
838
2,2
2,5
4,8
4
5
6
0,129
0,12
0,115
0,101
0,101
0,097
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage
3)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
53
CARB toroidal roller bearings
d 560 – 1 250 mm
B
r1
s1
r2
r1
r2
d
d d2
D D1
Cylindrical bore
Tapered bore
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass
dynamic static
load limit
Reference Limiting speed
speed
d
D
B
C
C0
Pu
mm
kN
kN
r/min
Designations
Bearing with
cylindrical tapered
bore bore
kg –
560
750
140
3 600
7 350
490
600
850
170 C 39/560 M
820
195
5 600
11 000
720
530
750
345 C 30/560 M
920
280
9 500
17 000
1 100
480
670
750
g C 31/560 MB
600
800
150
4 000
8 800
570
560
750
210 C 39/600 M
870
200
6 300
12 200
780
500
700
390 C 30/600 M
980
300
10 200 18 000
1 140
430
600
929 C 31/600 MB
980
375
12 900 23 200
1 460
340
450
1 150
g C 41/600 MB
C 39/560 KM
C 30/560 KM1)
g C 31/560 KMB
630
270 C 39/630 M
465 C 30/630 M
1 089 C 31/630 MB
C 39/630 KM
C 30/630 KM1)
C 31/630 KMB
670
900
170
5 100
11 600
980
230
8 150
16 300
1 090 336
12 000 22 000
710
950
180
6 000
12 500
1 030 236
8 800
17 300
1 030 315
10 600 21 600
1 150 345
12 700 24 000
720
480
630
335 C 39/670 MB
1 000
430
600
580 C 30/670 M
1 320
380
530
1 230
g C 31/670 MB
780
450
630
355 C 39/710 M
1 060
400
560
645 C 30/710 M
1 290
320
430
860 C 40/710 M
1 430
360
480
1 410
g C 31/710 MB
C 39/670 KMB
C 30/670 KM1)
g C 31/670 KMB
750
815
1 160
1 800
405 C 39/750 M
838 C 30/750 MB
1 802 C 31/750 MB
C 39/750 KM
C 30/750 KMB
C 31/750 KMB
850
165
920
212
1 030 315
1 000 185
1 090 250
1 220 365
4 650
6 800
11 800
6 100
9 500
13 700
10 000
12 900
20 800
13 400
19 300
30 500
640
830
1 290
530
480
400
430
380
320
700
670
560
560
530
450
g C 39/800 MB
800
1 060 195
5 850
15 300
915
380
530
504
1 150 258
9 150
18 600
1 120
360
480
860 C 30/800 MB
g C 31/800 MB
1 280 375
15 600 30 500
1 760
300
400
1 870
850
1 120 200
7 350
16 300
965
360
480
530 C 39/850 M
1 220 272
11 600 24 500
1 430
320
450
1 105 C 30/850 MB
1 360 400
16 000 32 000
1 830
280
380
2 260
g C 31/850 MB
900
1 180 206
8 150
18 000
1 060
340
450
580
g C 39/900 MB
1 280 280
12 700 26 500
1 530
300
400
1 200 C 30/900 MB
950
1 250 224
9 300
22 000
1 250
300
430
784
g C 39/950 MB
g C 30/950 MB
1 360 300
12 900 27 500
1 560
280
380
1 410
1 000 1 420 308
13 400 29 000
1 630
260
340
1 570
g C 30/1000 MB
1 580 462
22 800 45 500
2 500
220
300
3 470
g C 31/1000 MB
g C 39/1060 MB
1 060 1 400 250
11 000 26 000
1 430
260
360
1 120
1 180 1 540 272
13 400 33 500
1 800
220
300
1 400 C 39/1180 MB
g C 30/1250 MB
1 250 1 750 375
20 400 45 000
2 320
180
240
2 740
gPlease
check availability of the bearing before incorporating it in a bearing arrangement design
Also available in design K/HA3C4
1)
54
C 39/600 KM
C 30/600 KM1)
C 31/600 KMB
g C 41/600 K30MB
C 39/710 KM
C 30/710 KM
C 40/710 K30M
g C 31/710 KMB
g C 39/800
KMB
C 30/800 KMB
g C 31/800 KMB
C 39/850 KM
C 30/850 KMB
g C 31/850 KMB
g C 39/900
KMB
C 30/900 KMB
g C 39/950
g C 30/950
KMB
KMB
g C 30/1000
g C 31/1000
KMB
KMB
g C 39/1060
KMB
C 39/1180 KMB
g C 30/1250 KMB
Ca
ra
ra
Da
da
C
Dimensions
Abutment and fillet dimensions
d
d2
D1
r1,2
s11)
d a
da2)
Da2)
Da
Ca3)
ra
≈
≈
min
≈
min
max
min
max
min
max
Calculation factors
k1
k2
mm
mm
–
560
622
660
664
701
761
808
5
6
7,5
32,4
45,7
28
578
583
592
645
695
660
685
740
810
732
793
888
2,3
2,7
23,8
4
5
6
0,128
0,116
–
0,104
0,106
0,111
600
666
692
705
697
744
805
871
869
5
6
7,5
7,5
32,4
35,9
26,1
24,6
618
623
632
632
685
725
704
696
725
775
827
823
782
847
948
948
2,4
2,7
5,1
5,5
4
5
6
6
0,131
0,125
–
–
0,1
0,098
0,107
0,097
630
700
717
749
784
840
919
6
7,5
7,5
35,5
48,1
31
653
658
662
720
755
745
770
810
920
827
892
998
2,4
2,9
26,8
5
6
6
0,121
0,118
–
0,11
0,104
0,109
670
764
775
797
848
904
963
6
7,5
7,5
40,5
41,1
33
693
698
702
765
820
795
830
875
965
877
952
1 058
2,5
2,9
28
5
6
6
–
0,121
–
0,113
0,101
0,104
710
773
807
803
848
877
945
935
1 012
6
7,5
7,5
9,5
30,7
47,3
51,2
34
733
738
738
750
795
850
840
845
850
910
915
1 015
927
1 002
1 002
1 100
2,7
3,2
4,4
28,6
5
6
6
8
0,131
0,119
0,113
–
0,098
0,104
0,101
0,102
750
830
858
888
933
993
1 076
6
7,5
9,5
35,7
25
36
773
778
790
855
855
885
910
995
1 080
977
1 062
1 180
2,7
21,8
31,5
5
6
8
0,131
–
–
0,101
0,112
0,117
800
889
913
947
990
1 047
1 133
6
7,5
9,5
45,7
25
37
823
828
840
915
910
945
970
1 050
1 135
1 037
1 122
1 240
2,9
22,3
32,1
5
6
8
–
–
–
0,106
0,111
0,115
850
940
968
1 020
1 053
1 113
1 200
6
7,5
12
35,9
27
40
873
878
898
960
965
1 015
1 025
1 115
1 205
1 097
1 192
1 312
2,9
24,1
33,5
5
6
10
0,135
–
–
0,098
0,124
0,11
900
989
1 008
1 113
1 172
6
7,5
20
45,8
923
928
985
1 050
1 115
1 130
1 157
1 252
18,4
3,4
5
6
–
–
0,132
0,1
950
1 044
1 080
1 167
1 240
7,5
7,5
35
30
978
978
1 080
1 075
1 145
1 245
1 222
1 322
3,1
26,2
6
6
–
–
0,098
0,116
1 000
1 136
1 179
1 294
1 401
7,5
12
30
46
1 028
1 048
1 135
1 175
1 295
1 405
1 392
1 532
26,7
38,6
6
10
–
–
0,114
0,105
1 060
1 175
1 323
7,5
25
1 088
1 170
1 325
1 372
23,4
6
–
0,142
1 180
1 311
1 457
7,5
44,4
1 208
1 335
1 425
1 512
4,1
6
–
0,097
1 250
1 397
1 613
9,5
37
1 284
1 395
1 615
1 716
33,9
8
–
0,126
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
2)
To clear the cage
3)
Minimum width of free space for bearings with the cage in normal position († page 18)
55
Sealed CARB toroidal roller bearings
d 50 – 200 mm
B
r1
D D1
r2
s2
r1
r2
d d2
Principal dimensions
Basic load ratings
Fatigue Limiting Mass Designation
dynamic
static
load limit speed
d
D
B
C
C0
Pu
mm
kN
kN
r/min
kg –
50
72
40
140
224
24,5
200
0,56
gC 6910-2CS5V
60
85
45
150
240
26,5
170
0,83
gC 6912-2CS5V
85
45
190
335
39
–
0,83 C 6912-2NSV
65
100
35
102
173
19
150
1,10 C 4013-2CS5V
75
105
54
204
325
37,5
140
1,40 C 6915-2CS5V
115
40
143
193
23,2
130
1,40
gC 4015-2CS5V
90
125
46
224
400
44
110
1,75 C 5918-2CS5V
gC 4020-2CS5V
100
150
50
310
450
50
95
2,90
165
65
475
655
71
90
5,20 C 4120-2CS5V
110
170
60
415
585
63
85
4,60
gC 4022-2CS5V
170
60
500
800
85
–
5,20 C 4022-2NSV
180
69
500
710
75
85
6,60 C 4122-2CS5V
120
180
60
430
640
67
80
5,10 C 4024-2CS5V
200
80
710
1 000
100
75
9,70
gC 4124-2CS5V
130
200
69
550
830
85
70
7,50 C 4026-2CS5V
210
80
750
1 100
108
70
10,5 C 4126-2CS5V
140
210
69
570
900
88
67
7,90
gC 4028-2CS5V
225
85
780
1 200
116
63
12,5 C 4128-2CS5V
150
225
75
585
965
93
63
10,0 C 4030-2CS5V
gC 4130-2CS5V
250
100
1 220
1 860
173
60
20,5
160
240
80
655
1 100
104
60
12,0
gC 4032-2CS5V
270
109
1 460
2 160
200
53
26,0
gC 4132-2CS5V
170
260
90
965
1 630
150
53
17,0
gC 4034-2CS5V
280
109
1 530
2 280
208
53
27,0
gC 4134-2CS5V
180
280
100
1 320
2 120
193
53
23,5
gC 4036-2CS5V
gC 4136-2CS5V
300
118
1 760
2 700
240
48
35,0
190
290
100
1 370
2 320
204
48
24,5
320
128
2 040
3 150
275
45
43,5
200
310
109
1 630
2 650
232
45
31,0
340
140
2 360
3 650
315
43
54,5
gPlease
56
check availability of the bearing before incorporating it in a bearing arrangement design
gC 4038-2CS5V
gC 4138-2CS5V
gC 4040-2CS5V
gC 4140-2CS5V
ra
ra
Da
da
C
Dimensions
d
d2
D1
r1,2
s21)
≈
≈
min
≈
Abutment and fillet dimensions
Calculation factors
d a
da2)
Da
ra
k1
k2
min
max
max
max
mm
mm
–
50
57,6
64,9
0,6
2,8
53,2
57
68,8
0,6
0,113
0,091
60
68
68,7
75,3
77,5
1
1
5,4
0,5
64,6
64,6
67
68,7
80,4
80,4
1
1
0,128
0,108
0,083
0,096
65
78,6
87,5
1,1
5,9
71
78
94
1
0,071
0,181
75
83,6
88,5
95,5
104
1
1,1
7,1
7,3
79,6
81
83
88
100
111
1
1
0,073
0,210
0,154
0,063
90
102
113
1,1
4,5
96
101
119
1
0,089
0,131
100
114
120
136
148
1,5
2
6,2
7,3
107
111
113
120
143
154
1,5
2
0,145
0,09
0,083
0,125
110
128
126
130
155
150
160
2
2
2
7,9
0,5
8,2
119
120
121
127
126
129
161
160
169
2
2
2
0,142
0,107
0,086
0,083
0,103
0,133
120
140
140
164
176
2
2
7,5
8,2
129
131
139
139
171
189
2
2
0,085
0,126
0,142
0,087
130
152
153
182
190
2
2
8,2
7,5
139
141
151
152
191
199
2
2
0,089
0,09
0,133
0,126
140
163
167
193
204
2
2,1
8,7
8,9
149
152
162
166
201
213
2
2
0,133
0,086
0,089
0,134
150
175
179
204
221
2,1
2,1
10,8
6,4
161
162
174
178
214
238
2
2
0,084
0,103
0,144
0,103
160
188
190
218
241
2,1
2,1
11,4
6,7
170
172
187
189
230
258
2
2
0,154
0,101
0,079
0,105
170
201
200
237
251
2,1
2,1
9
6,7
180
182
199
198
250
268
2
2
0,116
0,101
0,097
0,106
180
204
211
246
265
2,1
3
6,4
6,4
190
194
202
209
270
286
2
2,5
0,103
0,095
0,105
0,11
190
221
222
263
283
2,1
3
6,4
6,4
200
204
219
220
280
306
2
2,5
0,103
0,094
0,106
0,111
200
229
237
280
301
2,1
3
6,7
7
210
214
227
235
300
326
2
2,5
0,101
0,092
0,108
0,112
1)
Permissible
2)
axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the seal
57
CARB toroidal roller bearings on an adapter sleeve
d120 – 80 mm
B
r2
s1
B2
s2
r1
B1
d 1 d3
D D 1 d2
Bearing on an E-design
adapter sleeve
Bearing on a standard
adapter sleeve
Full complement bearing on 
a standard adapter sleeve
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
speed
speed
+
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
Adapter sleeve
kg –
20
52
18
44
40
4,55
13 000
18 000
0,24
g C 2205 KTN9
52
18
50
48
5,5
–
7 000
0,25
g C 2205 KV
25
62
20
69,5
62
7,2
11 000
15 000
0,37 C 2206 KTN9
62
20
76,5
71
8,3
–
6 000
0,39 C 2206 KV
H 305 E
H 305 E
30
H 307 E
H 307 E
72
72
23
23
83
95
80
96,5
9,3
11,2
9 500
–
13 000
5 000
0,59 C 2207 KTN9
0,59 C 2207 KV
H 306 E
H 306 E
35
80
23
90
86,5
10,2
8 000
11 000
0,69
80
23
102
104
12
–
4 500
0,70
40
85
23
93
93
10,8
8 000
11 000
0,76
85
23
106
110
12,9
–
4 300
0,79
45
90
23
98
100
11,8
7 000
9 500
0,85
90
23
114
122
14,3
–
3 800
0,89
50
100
25
116
114
13,4
6 700
9 000
1,10
100
25
132
134
16
–
3 400
1,15
C 2208 KTN9
C 2208 KV
H 308 E
H 308
C 2209 KTN9
C 2209 KV
H 309 E
H 309 E
C 2210 KTN9
C 2210 KV
H 310 E
H 310 E
C 2211 KTN9
C 2211 KV
H 311 E
H 311 E
55
110
28
143
156
18,3
5 600
7 500
1,45
110
28
166
190
22,4
–
2 800
1,50
180
21,2
5 300
7 500
1,80
60
120
31
180
120
31
204
216
25,5
–
2 400
1,90
125
31
186
196
23,2
5 000
7 000
2,10
125
31
212
228
27
–
2 400
2,20
150
51
405
430
49
3 800
5 000
5,10
65
130
31
196
208
25,5
4 800
6 700
2,30
130
31
220
240
29
–
2 200
2,40
160
55
425
465
52
3 600
4 800
6,20
70
140
33
220
250
28,5
4 500
6 000
2,90
140
33
255
305
34,5
–
2 000
3,00
170
58
510
550
61
3 400
4 500
7,40
C 2212 KTN9
C 2212 KV
H 312 E
H 312
C 2213 KTN9
C 2213 KV
H 313 E
H 313
C 2214 KTN9
C 2214 KV
C 2314 K
H 314 E
H 314
H 2314
C 2215 K
C 2215 KV
C 2315 K
H 315 E
H 315
H 2315
C 2216 K
C 2216 KV
C 2316 K
H 316 E
H 316
H 2316
75
150
36
275
320
36,5
4 300
5 600
3,70 C 2217 K
g C 2217 KV
150
36
315
390
44
–
1 800
3,85
180
60
540
600
65,5
3 200
4 300
8,50 C 2317 K
80
160
40
325
380
42,5
3 800
5 300
4,50 C 2218 K
g C 2218 KV
160
40
365
440
49
–
1 500
4,60
190
64
610
695
73,5
2 800
4 000
10,0 C 2318 K
H 317 E
H 317
H 2317
gPlease
58
check availability of the bearing before incorporating it in a bearing arrangement design
H 318 E
H 318
H 2318
Ca
Ca
Ba
da db
Ba
da db
Da
Da
ra
C
ra
Dimensions
d1
d2 d3 D1 B1 B2 r1,2 s11) s21)
≈
≈
min ≈
≈
Abutment and fillet dimensions
Calculation factors
da2)
max
k1
mm
mm
–
20
32,1 38
32,1 38
43,3 29
43,3 29
10,5 1
10,5 1
5,8
5,8
–
2,8
32
39
28
28
42
–
46,4
46,4
5
5
0,3
–
1
1
0,09
0,09
0,126
0,126
25
37,4 45
37,4 45
53,1 31
53,1 31
10,5 1
10,5 1
4,5
4,5
–
1,5
37
49
33
33
51
–
56,4
56,4
5
5
0,3
–
1
1
0,101
0,101
0,111
0,111
30
44,8 52
44,8 52
60,7 35
60,7 35
11,5 1,1
11,5 1,1
5,7
5,7
–
2,7
44
57
39
39
59
–
65
65
5
5
0,1
–
1
1
0,094
0,094
0,121
0,121
35
52,4 58
52,4 58
69,9 36
69,9 36
13
10
1,1
1,1
7,1
7,1
–
4,1
52
66
44
44
68
–
73
73
5
5
0,3
–
1
1
0,093
0,093
0,128
0,128
40
55,6 65
55,6 65
73,1 39
73,1 39
13
13
1,1
1,1
7,1
7,1
–
4,1
55
69
50
50
71
–
78
78
7
7
0,3
–
1
1
0,095
0,095
0,128
0,128
45
61,9 70
61,9 70
79,4 42
79,4 42
14
14
1,1
1,1
7,1
7,1
–
3,9
61
73
55
55
77
–
83
83
9
9
0,8
–
1
1
0,097
0,097
0,128
0,128
50
65,8 75
65,8 75
86,7 45
86,7 45
14
14
1,5
1,5
8,6
8,6
–
5,4
65
80
60
60
84
–
91
91
10
10
0,3
–
1,5
1,5
0,094
0,094
0,133
0,133
55
77,1 80
77,1 80
97,9 47
97,9 47
14 1,5
12,5 1,5
8,5
8,5
–
5,3
77
91
65
65
95
–
101
101
9
9
0,3
–
1,5
1,5
0,1
0,1
0,123
0,123
60
79
79
85
85
106 50
106 50
15 1,5
13,5 1,5
9,6
9,6
–
5,3
79
97
70
70
102
–
111
111
8
8
0,2
–
1,5
1,5
0,097
0,097
0,127
0,127
83,7 92
83,7 92
91,4 92
111 52
111 52
130 68
15 1,5
13,5 1,5
13,5 2,1
9,6
9,6
9,1
–
5,3
–
83
102
105
75
75
76
107
–
120
116
116
138
9
9
6
0,4
–
2,2
1,5
1,5
2
0,098
0,098
0,11
0,127
0,127
0,099
65
88,5 98
88,5 98
98,5 98
115 55
115 55
135 73
16 1,5
14,5 1,5
14,5 2,1
9,6 –
9,6 5,3
13,1 –
98
105
110
80
80
82
110
–
130
121
121
148
12
12
5
1,2
–
2,2
1,5
1,5
2
0,099
0,099
0,103
0,127
0,127
0,107
70
98,1 105 125 59
98,1 105 125 59
102 105 145 78
18
17
17
2
2
2,1
9,1 –
9,1 4,8
10,1 –
105
115
115
85
85
88
120
–
135
129
129
158
12
12
6
1,2
–
2,4
2
2
2
0,104
0,104
0,107
0,121
0,121
0,101
75
104 110 133 63
104 110 133 63
110 110 153 82
19
18
18
2
2
3
7,1 –
7,1 1,7
12,1 –
110
115
125
91
91
94
125
–
145
139
139
166
12
12
7
1,3
–
2,4
2
2
2,5
0,114
0,114
0,105
0,105
0,105
0,105
80
112 120 144 65
112 120 144 65
119 120 166 86
19
18
18
2
2
3
9,5
9,5
9,6
120
125
135
96
96
100
130
–
155
149
149
176
10
10
7
1,4
–
2
2
2
2,5
0,104
0,104
0,108
0,117
0,117
0,101
–
5,4
–
db
min
Da3)
min
Da
max
Ba
min
Ca4)
min
ra
max
k2
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
To clear the cage for caged bearings
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
59
CARB toroidal roller bearings on an adapter sleeve
d185 – 180 mm
B
r2
s1
B2
s2
r1
B1
d 1 d3
D D 1 d2
Bearing on an E-design
adapter sleeve
Bearing on a L-design
or standard adapter sleeve
Full complement bearing
on a standard adapter sleeve
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
speed
speed
+
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
Adapter sleeve
kg –
85
170
43
360
400
44
3 800
5 000
5,30
g C 2219 K
200
67
610
695
73,5
2 800
4 000
11,5 C 2319 K
90
165
52
475
655
71
–
1 300
6,10 C 3120 KV
180
46
415
465
47,5
3 600
4 800
6,30 C 2220 K
215
73
800
880
91,5
2 600
3 600
14,5 C 2320 K
100
170
45
355
480
51
3 200
4 500
5,50 C 3022 K
200
53
530
620
64
3 200
4 300
8,80 C 2222 K
110
180
46
375
530
55
3 000
4 000
5,70
g C 3024 K
180
46
430
640
67
–
1 400
5,85 C 3024 KV
g C 2224 K
215
58
610
710
72
3 000
4 000
8,60
215
76
750
980
98
2 400
3 200
14,2 C 3224 K
115
200
52
390
585
58,5
2 800
3 800
8,70
g C 3026 K
230
64
735
930
93
2 800
3 800
14,0 C 2226 K
125
210
53
490
735
72
2 600
3 400
9,30
g C 3028 K
250
68
830
1 060
102
2 400
3 400
17,5 C 2228 K
135
225
56
585
960
93
–
1 000
11,5 C 3030 KV
225
56
540
850
83
2 400
3 200
12,0
g C 3030 KMB
250
80
880
1 290
122
2 000
2 800
20,0 C 3130 K
270
73
980
1 220
116
2 400
3 200
23,0 C 2230 K
g C 3032 K
140
240
60
600
980
93
2 200
3 000
14,5
270
86
1 000
1 400
129
1 900
2 600
28,0 C 3132 KMB
290
104
1 370
1 830
170
1 700
2 400
36,5 C 3232 K
H 319 E
H 2319
g C 3034 K
150
260
67
750
1 160
108
2 000
2 800
18,0
280
88
1 040
1 460
137
1 900
2 600
29,0
g C 3134 K
310
86
1 270
1 630
150
2 000
2 600
35,0 C 2234 K
160
280
74
880
1 340
125
1 900
2 600
23,0 C 3036 K
300
96
1 250
1 730
156
1 800
2 400
34,0 C 3136 K
320
112
1 530
2 200
196
1 500
2 000
47,0 C 3236 K
170
290
75
930
1 460
132
1 800
2 400
24,0 C 3038 K
320
104
1 530
2 200
196
1 600
2 200
44,0
g C 3138 K
340
92
1 370
1 730
156
1 800
2 400
43,0 C 2238 K
180
310
82
1 120
1 730
153
1 700
2 400
30,0 C 3040 K
340
112
1 600
2 320
204
1 500
2 000
50,5 C 3140 K
H 3034
H 3134 L
H 3134 L
gPlease
60
check availability of the bearing before incorporating it in a bearing arrangement design
H 3120 E
H 320 E
H 2320
H 322 E
H 322 E
H 3024 E
H 3024
H 3124 L
H 2324 L
H 3026
H 3126 L
H 3028
H 3128 L
H 3030
H 3030 E
H 3130 L
H 3130 L
H 3032
H 3132 E
H 2332 L
H 3036
H 3136 L
H 2336
H 3038
H 3138 L
H 3138
H 3040
H 3140
Ca
Ca
Ba
da db
Ba
da db
Da
Da
ra
C
ra
Dimensions
d1
d2 d3 D1 B1 B2 r1,2 s11) s21)
≈
≈
min ≈
≈
Abutment and fillet dimensions
Calculation factors
da2)
max
k1
mm
mm
–
85
113 125 149 68
120 125 166 90
20
19
2,1
3
10,5 –
12,6 –
112
135
102
105
149
155
158
186
9
7
4,2
2,1
2
2,5
0,114
0,103
0,104
0,106
90
119 130 150 76
118 130 157 71
126 130 185 97
20
21
20
2
2,1
3
10
4,7
10,1 –
11,2 –
130
130
150
106
108
110
–
150
170
154
168
201
6
8
7
–
0,9
3,2
2
2
2,5
0,1
0,108
0,113
0,112
0,11
0,096
100
128 145 156 77
132 145 176 77
21,5 2
21,5 2,1
9,5 –
11,1 –
127
150
118
118
157
165
160
188
14
6
4
1,9
2
2
0,107
0,113
0,11
0,103
110
138
138
144
149
26
22
22
22
2
2
2,1
2,1
10,6
10,6
13
17,1
145
150
143
160
127
127
128
131
160
–
192
180
170
170
203
203
7
7
11
17
0,9
–
5,4
2,4
2
2
2
2
0,111
0,111
0,113
0,103
0,109
0,109
0,103
0,108
115
154 155 180 80
152 155 199 92
23
23
2
3
16,5 –
9,6 –
152
170
137
138
182
185
190
216
8
8
4,4
1,1
2
2,5
0,123
0,113
0,1
0,101
125
163 165 194 82
173 165 223 97
24
24
2
3
11
–
13,7 –
161
190
147
149
195
210
200
236
8
8
4,7
2,3
2
2,5
0,102
0,109
0,116
0,108
135
174
173
182
177
30
26
26
26
2,1
2,1
2,1
3
14,1
8,7
13,9
11,2
190
172
195
200
158
158
160
160
177
200
215
215
214
214
238
256
8
8
8
15
–
1,3
2,3
2,5
2
2
2
2,5
0,113
–
0,12
0,119
0,108
0,108
0,092
0,096
140
187 190 218 93 27,5 2,1
190 190 240 119 27,5 2,1
194 190 256 147 27,5 3
15
–
10,3 –
19,3 –
186
189
215
168
170
174
220
229
245
229
258
276
8
8
18
5,1
3,8
2,6
2
2
2,5
0,115
–
0,112
0,106
0,099
0,096
150
200 200 237 101 28,5 2,1
200 200 249 122 28,5 2,1
209 200 274 122 28,5 4
12,5 –
21
–
16,4 –
200
200
230
179
180
180
238
250
255
249
268
293
8
8
10
5,8
7,6
3
2
2
3
0,105
0,101
0,114
0,112
0,109
0,1
160
209 210 251 109 29,5 2,1
210 240 266 131 29,5 3
228 230 289 161 30 4
15,1 –
23,2 –
27,3 –
220
230
245
189
191
195
240
255
275
269
286
303
8
8
22
2
2,2
3,2
2
2,5
3
0,112
0,102
0,107
0,105
0,111
0,104
170
225 220 266 112 30,5 2,1
228 220 289 141 30,5 3
224 240 296 141 31 4
16,1 –
19
–
22,5 –
235
227
250
199
202
202
255
290
275
279
306
323
9
9
21
1,9
9,1
1,6
2
2,5
3
0,113
0,096
0,108
0,107
0,113
0,108
180
235 240 285 120 31,5 2,1
245 250 305 150 32 3
15,2 –
27,3 –
250
260
210
212
275
307
299
326
9
9
2,9
–
2
2,5
0,123
0,108
0,095
0,104
155
145
145
145
195
180
180
180
166
166
191
190
204
204
226
236
72
72
88
112
87
87
111
111
–
3,8
–
–
7,3
–
–
–
db
min
Da3)
min
Da
max
Ba
min
Ca4)
min
ra
max
k2
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
To clear the cage for caged bearings
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
61
CARB toroidal roller bearings on an adapter sleeve
d1 200 – 430 mm
B
r2
D D1 d2
B1
B3
B2
s1
r1
d1 d 3
Bearing on an OH .. H(TL)-design
adapter sleeve
Bearing on an OH .. HE-design
adapter sleeve
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
speed
speed
+
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
200
340
90
1 320
2 040
176
1 600
2 200
37,0 C 3044 K
370
120
1 900
2 900
245
1 400
1 900
64,0 C 3144 K
400
108
2 000
2 500
216
1 500
2 000
69,0 C 2244 K
220
360
92
1 340
2 160
180
1 400
2 000
42,5 C 3048 K
400
128
2 320
3 450
285
1 300
1 700
77,0 C 3148 K
240
400
104
1 760
2 850
232
1 300
1 800
59,0 C 3052 K
1 500
105 C 3152 K
440
144
2 650
4 050
325
1 100
260
420
106
1 860
3 100
250
1 200
1 600
65,0 C 3056 K
460
146
2 850
4 500
355
1 100
1 400
115 C 3156 K
280
460
118
2 160
3 750
290
1 100
1 500
91,0 C 3060 KM
500
160
3 250
5 200
400
1 000
1 300
150 C 3160 K
300
480
121
2 280
4 000
310
1 000
1 400
95,0 C 3064 KM
540
176
4 150
6 300
480
950
1 300
190 C 3164 KM
320
520
133
2 900
5 000
375
950
1 300
125
g C 3068 KM
580
190
4 900
7 500
560
850
1 200
235 C 3168 KM
340
480
90
1 760
3 250
250
1 000
1 400
73,0 C 3972 KM
134
2 900
5 000
375
900
1 200
135
g C 3072 KM
540
600
192
5 000
8 000
585
800
1 100
250 C 3172 KM
360
520
106
2 120
4 000
300
950
1 300
95
g C 3976 KM
g C 3076 KM
560
135
3 000
5 200
390
900
1 200
145
620
194
4 400
7 200
520
750
1 000
298 C 3176 KMB
380
540
106
2 120
4 000
290
900
1 300
102
g C 3980 KM
600
148
3 650
6 200
450
800
1 100
175
g C 3080 KM
650
200
4 800
8 300
585
700
950
325 C 3180 KM
400
560
106
2 160
4 250
310
850
1 200
105 C 3984 KM
620
150
3 800
6 400
465
800
1 100
180 C 3084 KM
700
224
6 000
10 400
710
670
900
395 C 3184 KM
410
600
118
2 600
5 300
375
800
1 100
155
g C 3988 KM
650
157
3 750
6 400
465
750
1 000
250 C 3088 KMB
720
226
6 700
11 400
780
630
850
470 C 3188 KMB 430
620
118
2 700
5 300
375
800
1 100
160
g C 3992 KMB
680
163
4 000
7 500
510
700
950
270 C 3092 KM 760
240
6 800
12 000
800
600
800
540 C 3192 KM
gPlease
62
check availability of the bearing before incorporating it in a bearing arrangement design
Adapter sleeve
OH 3044 H
OH 3144 HTL
OH 3144 H
OH 3048 H
OH 3148 HTL
OH 3052 H
OH 3152 HTL
OH 3056 H
OH 3156 HTL
OH 3060 H
OH 3160 H
OH 3064 H
OH 3164 H
OH 3068 H
OH 3168 H
OH 3972 HE
OH 3072 H
OH 3172 H
OH 3976 H
OH 3076 H
OH 3176 HE
OH 3980 HE
OH 3080 H
OH 3180 H
OH 3984 HE
OH 3084 H
OH 3184 H
OH 3988 HE
OH 3088 HE
OH 3188 HE
OH 3992 HE
OH 3092 H
OH 3192 H
Ca
ra
Ba
Da da db
C
Dimensions
d2 d3 D1 B1 B2 B3
r1,2 s11)
d1
≈
≈
min ≈
Abutment and fillet dimensions
Calculation factors
da2)
max
k1
mm
mm
–
200
257 260 310 126 30
268 260 333 161 30
259 280 350 161 35
41
41
–
3
4
4
17,2
22,3
20,5
270
290
295
231
233
233
295
315
320
327
353
383
9
9
21
3,1
3,5
1,7
2,5
3
3
0,114
0,114
0,113
0,104
0,097
0,101
220
276 290 329 133 34
281 290 357 172 34
46
46
3
4
19,2
20,4
290
305
251
254
315
335
347
383
11
11
1,3
3,7
2,5
3
0,113
0,116
0,106
0,095
240
305 310 367 145 34
314 310 394 190 34
46
46
4
4
19,3
26,4
325
340
272
276
350
375
385
423
11
11
3,4
4,1
3
3
0,122
0,115
0,096
0,096
260
328 330 389 152 38
336 330 416 195 38
50
50
4
5
21,3
28,4
350
360
292
296
375
395
405
440
12
12
1,8
4,1
3
4
0,121
0,115
0,098
0,097
280
352 360 417 168 42
362 380 448 208 40
54
53
4
5
20
30,5
375
390
313
318
405
425
445
480
12
12
1,7
4,9
3
4
0,123
0,106
0,095
0,106
300
376 380 440 171 42
372 400 476 226 42
55
56
4
5
23,3
26,7
395
410
334
338
430
455
465
520
13
13
1,8
3,9
3
4
0,121
0,114
0,098
0,096
320
402 400 482 187 45
405 440 517 254 55
58
72
5
5
25,4
25,9
430
445
355
360
465
490
502
560
14
14
1,9
4,2
4
4
0,12
0,118
0,099
0,093
340
394 420 450 144 45
417 420 497 188 45
423 460 537 259 58
58
58
75
3
5
5
17,2
26,4
27,9
405
445
460
372
375
380
440
480
510
467
522
580
14
14
14
1,6
2
3,9
2,5
4
4
0,127
0,12
0,117
0,104
0,099
0,094
360
428 450 489 164 48
431 450 511 193 48
446 490 551 264 60
62
62
77
4
5
5
21
27
25,4
450
460
445
393
396
401
475
495
526
505
542
600
15
15
15
1,8
2
7,3
3
4
4
0,129
0,12
–
0,098
0,1
0,106
380
439 470 501 168 52
458 470 553 210 52
488 520 589 272 62
66
66
82
4
5
6
21
30,6
50,7
461
480
526
413
417
421
487
525
564
525
582
624
15
15
15
1,8
2,1
2,5
3
4
5
0,13
0,121
0,106
0,098
0,099
0,109
400
462 490 522 168 52
475 490 570 212 52
508 540 618 304 70
66
66
90
4
5
6
21,3
32,6
34,8
480
510
540
433
437
443
515
550
595
545
602
674
15
16
16
1,8
2,2
3,8
3
4
5
0,132
0,12
0,113
0,098
0,1
0,098
410
494 520 560 189 60
491 520 587 228 60
522 560 647 307 70
77
77
90
4
6
6
20
19,7
16
517
489
521
454
458
463
546
565
613
585
627
694
17
17
17
1,9
1,7
7,5
3
5
5
0,133
–
–
0,095
0,105
0,099
430
508 540 577 189 60
539 540 624 234 60
559 580 679 326 75
77
77
95
4
6
7,5
11
33,5
51
505
565
570
474
478
484
580
605
655
605
657
728
17
17
17
10,4
2,3
4,2
3
5
6
–
0,114
0,108
0,12
0,108
0,105
db
min
Da2)
min
Da
max
Ba
min
Ca3)
min
ra
max
k2
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
63
CARB toroidal roller bearings on an adapter sleeve
d1450 – 850 mm
B
r2
D D1 d2
B1
B3
B2
s1
r1
d1 d 3
Bearing on an OH .. H-design
adapter sleeve
Bearing on an OH .. HE-design
adapter sleeve
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
speed
speed
+
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
Adapter sleeve
kg –
450
650
128
3 100
6 100
430
750
1 000
185 C 3996 KM
700
165
4 050
7 800
530
670
900
275 C 3096 KM
790
248
6 950
12 500
830
560
750
620
g C 3196 KMB
470
670
128
3 150
6 300
440
700
950
195 C 39/500 KM
720
167
4 250
8 300
560
630
900
305 C 30/500 KM
830
264
7 500
12 700
850
530
750
690 C 31/500 KM
500
710
136
3 550
7 100
490
670
900
230 C 39/530 KM
780
185
5 100
9 500
640
600
800
390 C 30/530 KM
870
272
8 800
15 600
1 000
500
670
770 C 31/530 KM
530
750
140
3 600
7 350
490
600
850
260 C 39/560 KM
820
195
5 600
11 000
720
530
750
440 C 30/560 KM
g C 31/560 KMB
920
280
9 500
17 000
1 100
480
670
930
OH 3996 H
OH 3096 H
OH 3196 HE
560
800
150
4 000
8 800
570
560
750
325 C 39/600 KM
870
200
6 300
12 200
780
500
700
520 C 30/600 KM
980
300
10 200 18 000
1 140
430
600
1 135 C 31/600 KMB
600
850
165
4 650
10 000
640
530
700
420 C 39/630 KM
12 900
830
480
670
635 C 30/630 KM
920
212
6 800
1 030
315
11 800 20 800
1 290
400
560
1 310 C 31/630 KMB
630
900
170
5 100
11 600
720
480
630
490 C 39/670 KMB
980
230
8 150
16 300
1 000
430
600
750 C 30/670 KM
1 090
336
12 000 22 000
1 320
380
530
1 550
g C 31/670 KMB
670
950
180
6 000
12 500
780
450
630
520 C 39/710 KM
1 030
236
8 800
17 300
1 060
400
560
865 C 30/710 KM
g C 31/710 KMB
1 150
345
12 700 24 000
1 430
360
480
1 800
710
1 000
185
6 100
13 400
815
430
560
590 C 39/750 KM
1 090
250
9 500
19 300
1 160
380
530
1 060 C 30/750 KMB
1 220
365
13 700 30 500
1 800
320
450
2 200 C 31/750 KMB
750
1 060
195
5 850
15 300
915
380
530
750
g C 39/800 KMB
1 150
258
9 150
18 600
1 120
360
480
1 150 C 30/800 KMB
g C 31/800 KMB
1 280
375
15 600 30 500
1 760
300
400
2 400
800
1 120
200
7 350
16 300
965
360
480
785 C 39/850 KM
1 220
272
11 600 24 500
1 430
320
450
1 415 C 30/850 KMB
1 360
400
16 000 32 000
1 830
280
380
2 260
g C 31/850 KMB
OH 39/600 HE
OH 30/600 H
OH 31/600 HE
g C 39/900 KMB
850
1 180
206
8 150
18 000
1 060
340
450
900
1 280
280
12 700 26 500
1 530
300
400
1 540 C 30/900 KMB
gPlease
64
check availability of the bearing before incorporating it in a bearing arrangement design
OH 39/500 HE
OH 30/500 H
OH 31/500 H
OH 39/530 HE
OH 30/530 H
OH 31/530 H
OH 39/560 HE
OH 30/560 H
OH 31/560 HE
OH 39/630 HE
OH 30/630 H
OH 31/630 HE
OH 39/670 HE
OH 30/670 H
OH 31/670 HE
OH 39/710 HE
OH 30/710 H
OH 31/710 HE
OH 39/750 HE
OH 30/750 HE
OH 31/750 HE
OH 39/800 HE
OH 30/800 HE
OH 31/800 HE
OH 39/850 HE
OH 30/850 HE
OH 31/850 HE
OH 39/900 HE
OH 30/900 HE
Ca
ra
Ba
Da da db
C
Dimensions
d1
d2
d3
D1
B1 B2 B3
r1,2 s11)
≈
≈
min ≈
Abutment and fillet dimensions
Calculation factors
da2)
max
k1
mm
mm
–
450 529
555
583
560
560
620
604
640
700
200 60
237 60
335 75
77
77
95
5
20,4
6
35,5
7,5 24
550
580
580
496
499
505
590
625
705
632
677
758
18
18
18
2
4
2,3 5
20,6 6
0,133
0,113
–
0,095
0,11
0,104
470 556
572
605
580
580
630
631
656
738
208 68
247 68
356 80
85
85
100
5
20,4
6
37,5
7,5 75,3
580
600
655
516
519
527
615
640
705
652
697
798
18
18
18
2
2,3
–
4
5
6
0,135
0,113
0,099
0,095
0,111
0,116
500 578
601
635
630
630
670
657
704
781
216 68
265 68
364 80
90
90
105
5
28,4
6
35,7
7,5 44,4
600
635
680
547
551
558
640
685
745
692
757
838
20
20
20
2,2
2,5
4,8
4
5
6
0,129
0,12
0,115
0,101
0,101
0,097
530 622 650 701 227 75 97
5
32,4
645
577
685
732
20 2,3 4
0,128
660 650 761 282 75 97
6
45,7
695
582
740
797
20 2,7 5
0,116
664 710 808 377 85 110 7,5 28
660
589
810
888
20 23,8 6
–
560 666 700 744 239 75 97
5
32,4
685
619
725
782
22 2,4 4
0,131
692 700 805 289 75 97
6
35,9
725
623
775
847
22 2,7 5
0,125
705 750 871 399 85 110 7,5 26,1
704
632
827
948
22 5,1 6
–
600 700 730 784 254 75 97
6
35,5
720
650
770
827
22 2,4 5
0,121
717 730 840 301 75 97
7,5 48,1
755
654
810
892
22 2,9 6
0,118
741 800 916 424 95 120 7,5 23,8
740
663
868
998
22 5,7 6
–
630 761 780 848 264 80 102 6
24,9
760
691
833
877
22 4,2 5
–
775 780 904 324 80 102 7,5 41,1
820
696
875
952
22 2,9 6
0,121
797 850 963 456 106 131 7,5 33
795
705
965
1 058 22 28
6
–
0,104
0,106
0,111
670 773
807
848
830
830
900
877 286 90 112
945 342 90 112
1 012 467 106 135
6
30,7
7,5 47,3
9,5 34
795
850
845
732
736
745
850
910
1 015
927
1 002
1 110
26
26
26
2,7 5
3,2 6
28,6 8
0,131
0,119
–
0,098
0,104
0,102
710
750
830
854
884
870
870
950
933 291 90 112
993 356 90 112
1 077 493 112 141
6
35,7
7,5 28,6
9,5 33
855
852
883
772
778
787
910
961
1 025
977
1 062
1 180
26
26
26
2,7
7,4
9,3
0,131
–
–
0,101
0,11
0,094
885
913
947
920 990 303 90 112
920 1 047 366 90 112
1 000 1 133 505 112 141
6
28,1
7,5 25
9,5 37
883
910
945
825
829
838
971
1 050
1 135
1 037
1 122
1 240
28
28
28
5,3 5
22,3 6
32,1 8
–
–
–
0,106
0,111
0,115
800 940 980 1 053 308 90 115
964 980 1 113 380 90 115
1 020 1 060 1 200 536 118 147
6
35,9
7,5 24
12 40
960
963
1 015
876
880
890
1 025
1 077
1 205
1 097
1 192
1 312
28
28
28
2,9 5
7,7 6
33,5 10
0,135
–
–
0,098
0,097
0,11
850 989 1 030 1 113 326 100 125
1 004 1 030 1 173 400 100 125
6
20
7,5 25,5
985
1 002
924
931
1 115
1 124
1 157
1 252
30
30
18,4 5
3,3 6
–
–
0,132
0,1
db
min
Da2)
min
Da
max
Ba Ca3)
min min
ra
max
5
6
8
k2
0,1
0,098
0,107
0,11
0,104
0,102
0,113
0,101
0,104
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
65
CARB toroidal roller bearings on an adapter sleeve
d1900 – 1 000 mm
B
r2
D D1 d2
B1
B3
B2
s1
r1
d1 d3
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
speed
speed
+
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
900
1 250
224
9 300
22 000
1 250
300
430
1 120
g C 39/950 KMB
1 360
300
12 900 27 500
1 560
280
380
1 800
g C 30/950 KMB
950
1 420
308
13 400 29 000
1 630
260
340
2 000
g C 30/1000 KMB
1 580
462
22 800 45 500
2 500
220
300
4 300
g C 31/1000 KMB
g C 39/1060 KMB
1 000
1 400
250
11 000 26 000
1 430
260
360
1 610
gPlease
66
check availability of the bearing before incorporating it in a bearing arrangement design
Adapter sleeve
OH 39/950 HE
OH 30/950 HE
OH 30/1000 HE
OH 31/1000 HE
OH 39/1060 HE
Ca
ra
Ba
Da da db
C
Dimensions
d1
d2
d3
D1
B1
B2 B3
r1,2 s11)
≈
≈
min ≈
Abutment and fillet dimensions
Calculation factors
da2)
max
k1
mm
mm
–
900
1 042 1 080 1 167 344 100 125 7,5 14,5
1 080 1 080 1 240 420 100 125 7,5 30
1 040
1 075
976
983
1 139 1 222
1 245 1 332
30
30
6,6
26,2
6
6
–
–
0,098
0,116
950
1 136 1 140 1 294 430 100 125 7,5 30
1 179 1 240 1 401 609 125 154 12 46
1 135
1 175
1 034 1 295 1 392
1 047 1 405 1 532
33
33
26,7
38,6
6
10
–
–
0,114
0,105
1 000 1 175 1 200 1 323 372 100 125 7,5 25
1 170
1 090 1 325 1 392
33
23,4
6
–
0,11
db
min
Da2)
min
Da
max
Ba Ca3)
min min
ra
max
k2
1)
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
67
CARB toroidal roller bearings on a withdrawal sleeve
d135 – 95 mm
B
D D1 G
B1
B2
G1
s1
r2
s2
r1
d1 d2
Full complement
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
Withdrawal speed
speed
+
sleeve
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
35
80
23
90
86,5
10,2
8 000
11 000
0,59 C 2208 KTN9
80
23
102
104
12
–
4 500
0,62 C 2208 KV
40
85
23
93
93
10,8
8 000
11 000
0,67 C 2209 KTN9
85
23
106
110
12,9
–
4 300
0,70 C 2209 KV
45
90
23
98
100
11,8
7 000
9 500
0,72 C 2210 KTN9
90
23
114
122
14,3
–
3 800
0,75 C 2210 KV
50
100
25
116
114
13,4
6 700
9 000
0,95 C 2211 KTN9
100
25
132
134
16
–
3 400
0,97 C 2211 KV
55
110
28
143
156
18,3
5 600
7 500
1,30 C 2212 KTN9
110
28
166
190
22,4
–
2 800
1,35 C 2212 KV
60
120
31
180
180
21,2
5 300
7 500
1,60 C 2213 KTN9
120
31
204
216
25,5
–
2 400
1,70 C 2213 KV
65
125
31
186
196
23,2
5 000
7 000
1,70 C 2214 KTN9
125
31
212
228
27
–
2 400
1,75 C 2214 KV
150
51
405
430
49
3 800
5 000
4,65 C 2314 K
70
130
31
196
208
25,5
4 800
6 700
1,90 C 2215 K
130
31
220
240
29
–
2 200
1,95 C 2215 KV
160
55
425
465
52
3 600
4 800
5,65 C 2315 K
75
140
33
220
250
28,5
4 500
6 000
2,35 C 2216 K
140
33
255
305
34,5
–
2 000
2,45 C 2216 KV
170
58
510
550
61
3 400
4 500
6,75 C 2316 K
80
150
36
275
320
36,5
4 300
5 600
3,00 C 2217 K
150
36
315
390
44
–
1 800
3,20
g C 2217 KV
180
60
540
600
65,5
3 200
4 300
7,90 C 2317 K
85
160
40
325
380
42,5
3 800
5 300
3,75 C 2218 K
160
40
365
440
49
–
1 500
3,85
g C 2218 KV
190
64
610
695
73,5
2 800
4 000
9,00 C 2318 K
AH 308
AH 308
90
170
43
360
400
44
3 800
5 000
4,50
g C 2219 K
200
67
610
695
73,5
2 800
4 000
11,0 C 2319 K
95
165
52
475
655
71
–
1 300
5,00 C 3120 KV
180
46
415
465
47,5
3 600
4 800
5,30 C 2220 K
215
73
800
880
91,5
2 600
3 600
13,5 C 2320 K
AHX 319
AHX 2319
gPlease
68
check availability of the bearing before incorporating it in a bearing arrangement design
AH 309
AH 309
AHX 310
AHX 310
AHX 311
AHX 311
AHX 312
AHX 312
AH 313 G
AH 313 G
AH 314 G
AH 314 G
AHX 2314 G
AH 315 G
AH 315 G
AHX 2315 G
AH 316
AH 316
AHX 2316
AHX 317
AHX 317
AHX 2317
AHX 318
AHX 318
AHX 2318
AHX 3120
AHX 320
AHX 2320
Ca
da
Da
C
ra
Dimensions
d1 d2
D1 B1 B21) G
G1 r1,2 s12) s22)
≈
≈
min ≈
≈
da
min
mm
mm
–
35
52,4
52,4
69,9 29
69,9 29
32
32
M 45™1,5 6
M 45™1,5 6
1,1 7,1
1,1 7,1
–
4,1
47
47
52
66
68
–
73
73
0,3
–
1
1
0,093
0,093
0,128
0,128
40
55,6
55,6
73,1 31
73,1 31
34
34
M 50™1,5 6
M 50™1,5 6
1,1 7,1
1,1 7,1
–
4,1
52
52
55
69
71
–
78
78
0,3
–
1
1
0,095
0,095
0,128
0,128
45
61,9
61,9
79,4 35
79,4 35
38
38
M 55™2
M 55™2
7
7
1,1 7,1
1,1 7,1
–
3,9
57
57
61
73
77
–
83
83
0,8
–
1
1
0,097
0,097
0,128
0,128
50
65,8
65,8
86,7 37
86,7 37
40
40
M 60™2
M 60™2
7
7
1,5 8,6
1,5 8,6
–
5,4
64
64
65
80
84
–
91
91
0,3
–
1,5
1,5
0,094
0,094
0,133
0,133
55
77,1
77,1
97,9 40
97,9 40
43
43
M 65™2
M 65™2
8
8
1,5 8,5
1,5 8,5
–
5,3
69
69
77
91
95
–
101
101
0,3
–
1,5
1,5
0,1
0,1
0,123
0,123
60
79
79
106 42
106 42
45
45
M 70™2
M 70™2
8
8
1,5 9,6
1,5 9,6
–
5,3
74
74
79
97
102
–
111
111
0,2
–
1,5
1,5
0,097
0,097
0,127
0,127
65
83,7
83,7
91,4
111 43
111 43
130 64
47
47
68
M 75™2
M 75™2
M 75™2
8
1,5 9,6
8
1,5 9,6
12 2,1 9,1
–
5,3
–
79
79
82
83
102
105
107
–
120
116
116
138
0,4
–
2,2
1,5
1,5
2
0,098
0,098
0,11
0,127
0,127
0,099
70
88,5
88,5
98,5
115 45
115 45
135 68
49
49
72
M 80™2
M 80™2
M 80™2
8
1,5 9,6 –
8
1,5 9,6 5,3
12 2,1 13,1 –
84
84
87
98
105
110
110
–
130
121
121
148
1,2
–
2,2
1,5
1,5
2
0,099
0,099
0,103
0,127
0,127
0,107
75
98,1
98,1
102
125 48
125 48
145 71
52
52
75
M 90™2
M 90™2
M 90™2
8
2
9,1 –
8
2
9,1 4,8
12 2,1 10,1 –
91
91
92
105
115
115
120
–
135
129
129
158
1,2
–
2,4
2
2
2
0,104
0,104
0,107
0,121
0,121
0,101
80
104
104
110
133 52
133 52
153 74
56
56
78
M 95™2
M 95™2
M 95™2
9
2
9
2
13 3
7,1 –
7,1 1,7
12,1 –
96
96
99
110
115
125
125
–
145
139
139
166
1,3
–
2,4
2
2
2,5
0,114
0,114
0,105
0,105
0,105
0,105
85
112
112
119
144 53
144 53
166 79
57
57
83
M 100™2 9
2
M 100™2 9
2
M 100™2 14 3
9,5
9,5
9,6
101
101
104
120
125
135
130
–
155
149
149
176
1,4
–
2
2
2
2,5
0,104
0,104
0,108
0,117
0,117
0,101
90
113
120
149 57
166 85
61
89
M 105™2 10 2,1 10,5 –
M 105™2 16 3
12,6 –
107
109
112
135
149
155
158
186
4,2
2,1
2
2,5
0,114
0,103
0,104
0,106
95
119
118
126
150 64
157 59
185 90
68
63
94
M 110™2 11 2
10
4,7
M 110™2 10 2,1 10,1 –
M 110™2 16 3
11,2 –
111
112
114
130
130
150
–
150
170
154
168
201
–
0,9
3,2
2
2
2,5
0,1
0,108
0,113
0,112
0,11
0,096
–
5,4
–
Abutment and fillet dimensions
da3)
max
Da4)
min
Da
max
Ca5)
min
ra
max
Calculation factors
k1
k2
1)
Width before the sleeve is driven into bearing bore
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
4)
To clear the cage for caged bearings
5)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
69
CARB toroidal roller bearings on a withdrawal sleeve
d1105 – 160 mm
B
D D1 G
B1
B2
G1
s1
r2
s2
r1
d1 d2
Full complement
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
Withdrawal speed
speed
+
sleeve
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
105
170
45
355
480
51
3 200
4 500
4,25
g C 3022 K
180
69
670
1 000
102
–
900
7,75 C 4122 K30V
200
53
530
620
64
3 200
4 300
7,65 C 2222 K
115
180
46
375
530
55
3 000
4 000
4,60
g C 3024 K
180
46
430
640
67
–
1 400
4,75 C 3024 KV
180
60
530
880
90
–
1 100
6,20 C 4024 K30V
180
60
430
640
65,5
–
1 400
5,65 C 4024 K30V/VE240
200
80
780
1 120
114
–
750
11,5
g C 4124 K30V
215
58
610
710
72
3 000
4 000
9,50
g C 2224 K
215
76
750
980
98
2 400
3 200
13,0 C 3224 K
g C 3026 K
125
200
52
390
585
58,5
2 800
3 800
6,80
200
69
620
930
91,5
1 900
2 800
8,70 C 4026 K30
200
69
720
1 120
112
–
850
8,90 C 4026 K30V
210
80
750
1 100
108
–
670
11,5 C 4126 K30V/VE240
230
64
735
930
93
2 800
3 800
12,0 C 2226 K
135
210
53
490
735
72
2 600
3 400
7,30
g C 3028 K
210
69
750
1 220
118
–
800
9,50 C 4028 K30V
225
85
1 000
1 600
153
–
630
15,5 C 4128 K30V
250
68
830
1 060
102
2 400
3 400
15,5 C 2228 K
145
225
56
540
850
83
2 400
3 200
9,40
g C 3030 KMB
225
56
585
960
93
–
1 000
8,9 C 3030 KV
225
75
780
1 320
125
–
750
11,5 C 4030 K30V
250
80
880
1 290
122
2 000
2 800
16,5 C 3130 K
g C 4130 K30V
250
100
1 220
1 860
173
–
450
22,0
270
73
980
1 220
116
2 400
3 200
19,0 C 2230 K
AHX 3122
AH 24122
AHX 3122
150
240
60
600
980
93
2 200
3 000
11,5
g C 3032 K
240
80
795
1 160
110
1 600
2 400
14,7 C 4032 K30
240
80
915
1 460
140
–
600
15,0 C 4032 K30V
270
86
1 000
1 400
129
1 900
2 600
24,0 C 3132 KMB
270
109
1 460
2 160
200
–
300
29,0
g C 4132 K30V
290
104
1 370
1 830
170
1 700
2 400
31,0 C 3232 K
160
260
67
750
1 160
108
2 000
2 800
15,0
g C 3034 K
260
90
1 140
1 860
170
–
480
20,0 C 4034 K30V
280
88
1 040
1 460
137
1 900
2 600
24,0
g C 3134 K
280
109
1 530
2 280
208
–
280
30,0
g C 4134 K30V
310
86
1 270
1 630
150
2 000
2 600
31,0 C 2234 K
AH 3032
AH 24032
AH 24032
AH 3132 G
AH 24132
AH 3232 G
gPlease
70
check availability of the bearing before incorporating it in a bearing arrangement design
AHX 3024
AHX 3024
AH 24024
AH 24024
AH 24124
AHX 3124
AHX 3224 G
AHX 3026
AH 24026
AH 24026
AH 24126
AHX 3126
AHX 3028
AH 24028
AH 24128
AHX 3128
AHX 3030
AH 3030
AH 24030
AHX 3130 G
AH 24130
AHX 3130 G
AH 3034
AH 24034
AH 3134 G
AH 24134
AH 3134 G
Ca
da
Da
C
ra
Dimensions
d1
d2
D1 B1 B21) G
G1 r1,2 s12) s22)
≈
≈
min ≈
≈
Abutment and fillet dimensions
da
min
mm
mm
–
105
128
132
132
156 68
163 82
176 68
72
91
72
M 120™2 11 2
9,5 –
M 115™2 13 2
11,4 4,6
M 120™2 11 2,1 11,1 –
119
120
122
127
145
150
157
–
165
161
170
188
4
–
1,9
2
2
2
0,107
0,111
0,113
0,11
0,097
0,103
115
138
138
140
139
140
144
149
166
166
164
164
176
191
190
60
60
73
73
93
75
90
64
64
82
82
102
79
94
M 130™2
M 130™2
M 125™2
M 125™2
M 130™2
M 130™2
M 130™2
13
13
13
13
13
12
13
2
2
2
2
2
2,1
2,1
10,6
10,6
12
–
18
13
17,1
–
3,8
5,2
17,8
11,2
–
–
129
129
129
130
131
132
132
145
150
150
152
140
143
160
160
–
–
142
–
192
180
171
171
171
170
189
203
203
0,9
–
–
–
–
5,4
2,4
2
2
2
2
2
2
2
0,111
0,111
0,109
0,085
0,103
0,113
0,103
0,109
0,109
0,103
0,142
0,103
0,103
0,108
125
154
149
149
153
152
180
181
181
190
199
67
83
83
94
78
71
93
93
104
82
M 140™2
M 140™2
M 135™2
M 140™2
M 140™2
14
14
14
14
12
2
2
2
2
3
16,5
11,4
11,4
9,7
9,6
–
–
4,6
9,7
–
139
139
139
141
144
152
155
165
170
170
182
175
–
–
185
191
191
191
199
216
4,4
1,9
–
–
1,1
2
2
2
2
2,5
0,123
0,113
0,113
0,09
0,113
0,1
0,097
0,097
0,126
0,101
135
163
161
167
173
194
193
203
223
68
83
99
83
73
93
109
88
M 150™2
M 145™2
M 150™2
M 150™2
14
14
14
14
2
2
2,1
3
11
11,4
12
13,7
–
5,9
5,2
–
149
149
151
154
161
175
185
190
195
–
–
210
201
201
214
236
4,7
–
–
2,3
2
2
2
2,5
0,102
0,115
0,111
0,109
0,116
0,097
0,097
0,108
145
173
174
173
182
179
177
204
204
204
226
222
236
72
72
90
96
115
96
77
77
101
101
126
101
M 160™3
M 160™3
M 155™3
M 160™3
M 160™3
M 160™3
15
15
15
15
15
15
2,1
2,1
2,1
2,1
2,1
3
8,7
14,1
17,4
13,9
20
11,2
–
7,3
10,6
–
10,1
–
161
161
161
162
162
164
172
190
185
195
175
200
200
177
–
215
–
215
214
214
214
238
228
256
1,3
–
–
2,3
–
2,5
2
2
2
2
2
2,5
–
0,113
0,107
0,12
0,103
0,119
0,108
0,108
0,106
0,092
0,103
0,096
150
187
181
181
190
190
194
218
217
217
240
241
256
77
95
95
103
124
124
82
106
106
108
135
130
M 170™3
M 170™3
M 170™3
M 170™3
M 170™3
M 170™3
16
15
15
16
15
20
2,1
2,1
2,1
2,1
2,1
3
15
18,1
18,1
10,3
21
19,3
–
–
8,2
–
11,1
–
171
171
171
172
172
174
186
190
195
189
190
215
220
210
–
229
–
245
229
229
229
258
258
276
5,1
2,2
–
3,8
–
2,6
2
2
2
2
2
2,5
0,115
0,109
0,109
–
0,101
0,112
0,106
0,103
0,103
0,099
0,105
0,096
160
200
195
200
200
209
237
235
249
251
274
85
106
104
125
104
90
117
109
136
109
M 180™3
M 180™3
M 180™3
M 180™3
M 180™3
17
16
16
16
16
2,1
2,1
2,1
2,1
4
12,5
17,1
21
21
16,4
–
7,2
–
11,1
–
181
181
182
182
187
200
215
200
200
230
238
–
250
–
255
249
249
268
268
293
5,8
–
7,6
–
3
2
2
2
2
3
0,105
0,108
0,101
0,101
0,114
0,112
0,103
0,109
0,106
0,1
da3)
max
Da4)
min
Da
max
Ca5)
min
ra
max
Calculation factors
k1
k2
1)
Width before the sleeve is driven into bearing bore
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
4)
To clear the cage for caged bearings
5)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
71
CARB toroidal roller bearings on a withdrawal sleeve
d1 170 – 340 mm
s1
B
D D1 G
r2
s2
r1
B1
B2
d1 d2
G1
Bearing on an AH-design
withdrawal sleeve
Bearing on an AOH-design
withdrawal sleeve
Full complement bearing on an
AOH-design withdrawal sleeve
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
Withdrawal speed
speed
+
sleeve
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
170
280
74
880
1 340
125
1 900
2 600
19,0 C 3036 K
280
100
1 320
2 120
193
–
430
26,0 C 4036 K30V
300
96
1 250
1 730
156
1 800
2 400
30,0 C 3136 K
300
118
1 760
2 700
240
–
220
38,0
g C 4136 K30V
320
112
1 530
2 200
196
1 500
2 000
41,5 C 3236 K
180
290
75
930
1 460
132
1 800
2 400
20,5 C 3038 K
290
100
1 370
2 320
204
–
380
28,0
g C 4038 K30V
320
104
1 530
2 200
196
1 600
2 200
38,0
g C 3138 K
320
128
2 040
3 150
275
–
130
47,5
g C 4138 K30V
340
92
1 370
1 730
156
1 800
2 400
38,0 C 2238 K
190
310
82
1 120
1 730
153
1 700
2 400
25,5 C 3040 K
310
109
1 630
2 650
232
–
260
34,5 C 4040 K30V
340
112
1 600
2 320
204
1 500
2 000
45,5 C 3140 K
g C 4140 K30V
340
140
2 360
3 650
315
–
80
59,0
200
340
90
1 320
2 040
176
1 600
2 200
36,0 C 3044 K
340
118
1 930
3 250
275
–
200
48,0
g C 4044 K30V
370
120
1 900
2 900
245
1 400
1 900
60,0 C 3144 K
400
108
2 000
2 500
216
1 500
2 000
65,5 C 2244 K
AH 3036
AH 24036
AH 3136 G
AH 24136
AH 3236 G
220
AOH 3048
AOH 3148
360
400
92
128
1 340
2 320
2 160
3 450
180
285
1 400
1 300
2 000
1 700
39,5 C 3048 K
75,0 C 3148 K
240
400
104
1 760
2 850
232
1 300
1 800
55,5 C 3052 K
440
144
2 650
4 050
325
1 100
1 500
102 C 3152 K
260
420
106
1 860
3 100
250
1 200
1 600
61,0 C 3056 K
460
146
2 850
4 500
355
1 100
1 400
110 C 3156 K
280
460
118
2 160
3 750
290
1 100
1 500
84,0 C 3060 KM
g C 4060 K30M
460
160
2 900
4 900
380
850
1 200
110
500
160
3 250
5 200
400
1 000
1 300
140 C 3160 K
500
200
4 150
6 700
520
750
1 000
185 C 4160 K30MB
300
480
121
2 280
4 000
310
1 000
1 400
93,0 C 3064 KM
540
176
4 150
6 300
480
950
1 300
185 C 3164 KM
320
520
133
2 900
5 000
375
950
1 300
120
g C 3068 KM
580
190
4 900
7 500
560
850
1 200
230 C 3168 KM
340
540
134
2 900
5 000
375
900
1 200
125
g C 3072 KM
600
192
5 000
8 000
585
800
1 100
245 C 3172 KM
gPlease
72
check availability of the bearing before incorporating it in a bearing arrangement design
AH 3038 G
AH 24038
AH 3138 G
AH 24138
AH 2238 G
AH 3040 G
AH 24040
AH 3140
AH 24140
AOH 3044 G
AOH 24044
AOH 3144
AOH 2244
AOH 3052
AOH 3152 G
AOH 3056
AOH 3156 G
AOH 3060
AOH 24060 G
AOH 3160 G
AOH 24160
AOH 3064 G
AOH 3164 G
AOH 3068 G
AOH 3168 G
AOH 3072 G
AOH 3172 G
Ca
da
Da
C
ra
Dimensions
d1
d2
D1 B1 B21) G
G1 r1,2 s12) s22)
≈
≈
min ≈
≈
da
min
mm
mm
–
170
209
203
210
211
228
251
247
266
265
289
92
116
116
134
140
98
127
122
145
146
M 190™3
M 190™3
M 190™3
M 190™3
M 190™3
17
16
19
16
24
2,1
2,1
3
3
4
15,1
20,1
23,2
20
27,3
–
10,2
–
10,1
–
191
191
194
194
197
220
225
230
210
245
240
–
255
–
275
269
269
286
286
303
2
–
2,2
–
3,2
2
2
2,5
2,5
3
0,112
0,107
0,102
0,095
0,107
0,105
0,103
0,111
0,11
0,104
180
225
220
228
222
224
266
263
289
284
296
96
118
125
146
112
102
131
131
159
117
M 200™3
M 200™3
M 200™3
M 200™3
M 200™3
18
18
20
18
18
2,1
2,1
3
3
4
16,1
20
19
20
22,5
–
10,1
–
10,1
–
201
201
204
204
207
235
220
227
220
250
255
–
290
–
275
279
279
306
306
323
1,9
–
9,1
–
1,6
2
2
2,5
2,5
3
0,113
0,103
0,096
0,094
0,108
0,107
0,106
0,113
0,111
0,108
190
235
229
245
237
285
280
305
302
102
127
134
158
108
140
140
171
Tr 210™4
Tr 210™4
Tr 220™4
Tr 210™4
19
18
21
18
2,1
2,1
3
3
15,2
21
27,3
22
–
11,1
–
12,1
211
211
214
214
250
225
260
235
275
–
307
–
299
299
326
326
2,9
–
–
–
2
2
2,5
2,5
0,123
0,11
0,108
0,092
0,095
0,101
0,104
0,112
200
257
251
268
259
310
306
333
350
111
138
145
130
117
152
151
136
Tr 230™4
Tr 230™4
Tr 240™4
Tr 240™4
20
20
23
20
3
3
4
4
17,2
20
22,3
20,5
–
10,1
–
–
233
233
237
237
270
250
290
295
295
–
315
320
327
327
353
383
3,1
–
3,5
1,7
2,5
2,5
3
3
0,114
0,095
0,114
0,113
0,104
0,113
0,097
0,101
220
276
281
329 116 123 Tr 260™4 21 3
357 154 161 Tr 260™4 25 4
19,2 –
20,4 –
253
257
290
305
315
335
347
383
1,3
3,7
2,5
3
0,113
0,116
0,106
0,095
240
305
314
367 128 135 Tr 280™4 23 4
394 172 179 Tr 280™4 26 4
19,3 –
26,4 –
275
277
325
340
350
375
385
423
3,4
4,1
3
3
0,122
0,115
0,096
0,096
260
328
336
389 131 139 Tr 300™4 24 4
416 175 183 Tr 300™5 28 5
21,3 –
28,4 –
295
300
350
360
375
395
405
440
1,8
4,1
3
4
0,121
0,115
0,098
0,097
280
352
338
362
354
417
409
448
448
20
30,4
30,5
14,9
–
–
–
–
315
315
320
320
375
360
390
353
405
400
425
424
445
445
480
480
1,7
2,8
4,9
3,4
3
3
4
4
0,123
0,105
0,106
–
0,095
0,106
0,106
0,097
300
376
372
440 149 157 Tr 340™5 27 4
476 209 217 Tr 340™5 31 5
23,3 –
26,7 –
335
340
395
410
430
455
465
520
1,8
3,9
3
4
0,121
0,114
0,098
0,096
320
402
405
482 162 171 Tr 360™5 28 5
517 225 234 Tr 360™5 33 5
25,4 –
25,9 –
358
360
430
445
465
490
502
560
1,9
4,2
4
4
0,12
0,118
0,099
0,093
340
417
423
497 167 176 Tr 380™5 30 5
537 229 238 Tr 380™5 35 5
26,4 –
27,9 –
378
380
445
460
480
510
522
522
2
3,9
4
4
0,12
0,117
0,099
0,094
145
184
192
224
153
202
200
242
Tr 320™5
Tr 320™5
Tr 320™5
Tr 320™5
26
24
30
24
4
4
5
5
Abutment and fillet dimensions
da3)
max
Da4)
min
Da
max
Ca5)
min
ra
max
Calculation factors
k1
k2
1)
Width before the sleeve is driven into bearing bore
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage for caged bearings or to clear the snap ring for full complement bearings
4)
To clear the cage for caged bearings
5)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
73
CARB toroidal roller bearings on a withdrawal sleeve
d1360 – 710 mm
s1
B
r2
r1
B1
D D1 G
d1 d2
B2
G1
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
Withdrawal speed
speed
+
sleeve
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
360
560
135
3 000
5 200
390
900
1 200
130
gC 3076 KM
620
194
4 400
7 200
520
750
1 000
270 C 3176 KMB
380
600
148
3 650
6 200
450
800
1 100
165
gC 3080 KM
650
200
4 800
8 300
585
700
950
285 C 3180 KM
400
620
150
3 800
6 400
465
850
1 200
175 C 3084 KM
700
224
6 000
10 400
710
800
1 100
380 C 3184 KM
420
650
157
3 750
6 400
465
800
1 100
215 C 3088 KMB
720
226
6 700
11 400
780
630
850
420 C 3188 KMB
720
280
7 500
12 900
900
500
670
510 C 4188 K30MB
440
680
163
4 000
7 500
510
700
950
230 C 3092 KM
760
240
6 800
12 000
800
600
800
480 C 3192 KM
760
300
8 300
14 300
950
480
630
585 C 4192 K30M
460
700
165
4 050
7 800
530
670
900
245 C 3096 KM
gC 3196 KMB
790
248
6 950
12 500
830
560
750
545
AOH 3076 G
AOH 3176 G
480
720
167
4 250
8 300
560
630
900
265 C 30/500 KM
830
264
7 500
12 700
850
530
750
615 C 31/500 KM
830
325
10 200
18 600
1 220
430
560
780 C 41/500 K30MB
500
780
185
5 100
9 500
640
600
800
355 C 30/530 KM
870
272
8 800
15 600
1 000
500
670
720 C 31/530 KM
530
820
195
5 600
11 000
720
600
850
415 C 30/560 KM
gC 31/560 KMB
920
280
9 500
17 000
1 100
530
750
855
570
870
200
6 300
12 200
780
500
700
460 C 30/600 KM
980
300
10 200
18 000
1 140
430
600
1 020 C 31/600 KMB
980
375
12 900
23 200
1 460
340
450
1 270 C 41/600 K30MB
600
920
212
6 800
12 900
830
480
670
555 C 30/630 KM
1 030
315
11 800
20 800
1 290
400
560
1 200 C 31/630 KMB
630
980
230
8 150
16 300
1 000
430
600
705 C 30/670 KM
1 090
336
12 000
22 000
1 320
380
530
1 410
gC 31/670 KMB
AOHX 30/500 G
AOHX 31/500 G
AOH 241/500
670
AOHX 30/710
AOH 240/710 G
AOHX 31/710
1 030
1 030
1 150
236
315
345
8 800
10 600
12 700
17 300
21 600
24 000
1 060
1 290
1 430
450
400
360
630
560
480
780 C 30/710 KM
1 010 C 40/710 K30M
1 600
gC 31/710 KMB
710
1 090
250
9 500
19 300
1 160
380
530
975 C 30/750 KMB
1 220
365
13 700
30 500
1 800
320
450
1 990 C 31/750 KMB
gPlease
74
check availability of the bearing before incorporating it in a bearing arrangement design
AOH 3080 G
AOH 3180 G
AOH 3084 G
AOH 3184 G
AOHX 3088 G
AOHX 3188 G
AOH 24188
AOHX 3092 G
AOHX 3192 G
AOH 24192
AOHX 3096 G
AOHX 3196 G
AOH 30/530
AOH 31/530
AOHX 30/560
AOH 31/560
AOHX 30/600
AOHX 31/600
AOHX 241/600
AOH 30/630
AOH 31/630
AOH 30/670
AOHX 31/670
AOH 30/750
AOH 31/750
Ca
da D a
C
ra
Dimensions
Abutment and fillet dimensions
d1
d2
D1 B1 B21) G
G1 r1,2 s12)
da
da3) Da3)
Da
Ca4)
ra
≈
≈
min ≈
min
max min
max
min
max
Calculation factors
k1
k2
mm
mm
–
360
431
446
511 170 180 Tr 400™5 31 5
551 232 242 Tr 400™5 36 5
27
25,4
398
400
460
445
495
526
542
600
2
7,3
4
4
0,12
–
0,1
0,106
380
400
458
488
553 183 193 Tr 420™5 33 5
589 240 250 Tr 420™5 38 6
30,6
50,7
418
426
480
526
525
564
582
624
2,1
2,5
4
5
0,121
0,106
0,099
0,109
475
508
570 186 196 Tr 440™5 34 5
618 266 276 Tr 440™5 40 6
32,6
34,8
438
446
510
540
550
595
602
674
2,2
3,8
4
5
0,12
0,113
0,1
0,098
420
440
491
522
510
587 194 205 Tr 460™5 35 6
647 270 281 Tr 460™5 42 6
637 310 332 Tr 460™5 30 6
19,7
16
27,8
463
466
466
489
521
509
565
613
606
627
694
694
1,7
7,5
7,3
5
5
5
–
–
–
0,105
0,099
0,1
539
559
540
624 202 213 Tr 480™5 37 6
33,5
679 285 296 Tr 480™6 43 7,5 51
670 332 355 Tr 480™5 32 7,5 46,2
486
492
492
565
570
570
605
655
655
654
728
728
2,3
4,2
5,6
5
6
6
0,114
0,108
0,111
0,108
0,105
0,097
460
555
583
640 205 217 Tr 500™6 38 6
35,5
700 295 307 Tr 500™6 45 7,5 24
503
512
580
580
625
705
677
758
2,3
20,6
5
6
0,113
–
0,11
0,104
480
572
605
598
656 209 221 Tr 530™6 40 6
37,5
738 313 325 Tr 530™6 47 7,5 75,3
740 360 383 Tr 530™6 35 7,5 15
523
532
532
600
655
597
640
705
703
697
798
798
2,3
–
4,4
5
6
6
0,113
0,099
–
0,111
0,116
0,093
500
601
635
704 230 242 Tr 560™6 45 6
35,7
781 325 337 Tr 560™6 53 7,5 44,4
553
562
635
680
685
745
757
838
2,5
4,8
5
6
0,12
0,115
0,101
0,097
530
660
664
761 240 252 Tr 600™6 45 6
45,7
808 335 347 Tr 600™6 55 7,5 28
583
592
695
660
740
810
793
888
2,7
23,8
5
6
0,116
–
0,106
0,111
570
692
705
697
805 245 259 Tr 630™6 45 6
35,9
871 355 369 Tr 630™6 55 7,5 26,1
869 413 439 Tr 630™6 38 7,5 24,6
623
632
632
725
704
696
775
827
823
847
948
948
2,7
5,1
5,5
5
6
6
0,125
–
–
0,098
0,107
0,097
600
630
717
741
840 258 272 Tr 670™6 46 7,5 48,1
916 375 389 Tr 670™6 60 7,5 23,8
658
662
755
740
810
868
892
998
2,9
5,7
6
6
0,118
–
0,104
0,102
775
797
904 280 294 Tr 710™7 50 7,5 41,1
963 395 409 Tr 710™7 59 7,5 33
698
702
820
795
875
965
952
2,9
1 058 28
6
6
0,121
–
0,101
0,104
670
807
803
848
945 286 302 Tr 750™7 50 7,5 47,3
935 360 386 Tr 750™7 45 7,5 51,2
1 012405 421 Tr 750™7 60 9,5 34
738
738
750
850
840
845
910
1 002 3,2
915
1 002 4,4
1 015 1 100 28,6
6
6
8
0,119
0,113
–
0,104
0,101
0,102
710
854
884
993 300 316 Tr 800™7 50 7,5 28,6
1 077425 441 Tr 800™7 60 9,5 33
778
790
852
883
961
1 062 7,4
1 025 1 180 9,3
6
8
–
–
0,11
0,094
1)
Width before the sleeve is driven into bearing bore
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
75
CARB toroidal roller bearings on a withdrawal sleeve
d1750 – 950 mm
B
s1
r2
r1
B1
D D1 G
d1 d2
B2
G1
Principal dimensions
Basic load ratings
Fatigue Speed ratings
Mass Designations
dynamic static
load limit
Reference Limiting Bearing Bearing
Withdrawal speed
speed
+
sleeve
d1
D
B
C
C0
Pu
sleeve
mm
kN
kN
r/min
kg –
750
1 150
258
9 150
18 600
1 120
360
480
1 060 C 30/800 KMB
1 280
375
15 600
30 500
1 760
300
400
2 170
gC 31/800 KMB
800
1 220
272
11 600
24 500
1 430
320
450
1 300 C 30/850 KMB
1 360
400
16 000
32 000
1 830
280
380
2 600
gC 31/850 KMB
850
1 280
280
12 700
26 500
1 530
300
400
1 400 C 30/900 KMB
gC 30/950 KMB
900
1 360
300
12 900
27 500
1 560
280
380
1 700
950
1 420
308
13 400
29 000
1 630
260
340
1 880
gC 30/1000 KMB
gC 31/1000 KMB
1 580
462
22 800
45 500
2 500
220
300
3 950
gPlease
76
check availability of the bearing before incorporating it in a bearing arrangement design
AOH 30/800
AOH 31/800
AOH 30/850
AOH 31/850
AOH 30/900
AOH 30/950
AOH 30/1000
AOH 31/1000
Ca
da D a
C
ra
Dimensions
Abutment and fillet dimensions
d1
d2
D1
B1 B21) G
G1 r1,2 s12)
da
da3)
Da3)
Da
Ca4)
ra
≈
≈
min ≈
min
max min
max
min
max
Calculation factors
k1
k2
mm
mm
–
750
888
947
1 076 308 326 Tr 850™7 50 9,5 36
1 133 438 456 Tr 850™7 63 9,5 37
790
840
885
945
8
8
–
–
0,117
0,115
800
964 1 113 325 343 Tr 900™7 53 7,5 24
1 020 1 200 462 480 Tr 900™7 62 12 40
878
898
963 1 077 1 192 7,7
1 015 1 205 1 312 33,5
6
10
–
–
0,097
0,11
850
900
1 004 1 173 335 355 Tr 950™8 55 7,5 25,5
928
1 002 1 124 1 252 3,3
6
_
0,1
1 080 1 240 355 375 Tr 1000™8 55 7,5 30
978
1 075 1 245 1 322 26,2
6
–
0,116
950
1 136 1 294 365 387 Tr 1060™8 57 7,5 30
1 179 1 401 525 547 Tr 1060™8 63 12 46
1 028 1 135 1 295 1 392 26,7
1 048 1 175 1 405 1 532 38,6
6
10
–
–
0,114
0,105
1 080 1 180 31,5
1 135 1 240 32,1
1)
Width before the sleeve is driven into bearing bore
Permissible axial displacement from normal position of one bearing ring in relation to the other († page 40)
To clear the cage
4)
Minimum width of free space for bearings with the cage in normal position († page 18)
2)
3)
77
Other associated SKF products
Self-aligning ball bearings
Self-aligning ball bearings as locating bearings are excellent partners for non-locating
CARB toroidal roller bearings in self-aligning
bearing systems if loads are light and speeds
relatively high.
Self-aligning ball bearings were invented in
1907 by Sven Wingquist and SKF was founded
to manufacture them. They are the low-friction bearings among rolling bearings and are
still the optimum choice for many applications, even today. The SKF range covers all
the usual dimension series and sizes for
shafts from 5 to 240 mm in diameter. Most
sizes are available with a tapered bore as well
as a cylindrical bore and can therefore be
mounted on the shaft in a variety of ways.
Spherical roller bearings
Spherical roller bearings are used in widely
differing branches of industry as the locating
bearing in self-aligning bearing systems when
loads are heavy and speeds moderate. They
are used successfully, e.g. in paper machines,
for the roller beds of continuous casting
plants as well as in ventilators and fans.
Spherical roller bearings are core products
for SKF, as are self-aligning ball bearings, and
were invented in 1919 by Arvid Palmgren and
further developed in several stages by SKF.
Today, the range produced by SKF comprises
bearings in twelve dimension series with bore
diameters ranging from 20 to 1 800 mm.
All are available with cylindrical as well as
tapered bores and some sizes are available
in a sealed version.
Accessories
Lock nuts
Lock nuts (also referred to as shaft nuts) are
mostly used to axially locate bearings at shaft
ends and are produced by SKF to several
designs. The KM, KML and HM nuts have
four or eight slots equally spaced around the
78
c­ ircumference and are secured by locking
washers or locking clips, that engage a groove
in the shaft.
KMFE lock nuts with a locking screw were
specially developed for use with CARB bearings and sealed spherical roller bearings and
have dimensions appropriate to these bearings. They can therefore be mounted immediately adjacent to the bearings without impeding axial displacement within the bearing.
A holding groove in the shaft is not needed.
KMT precision lock nuts with locking pins
and KMK lock nuts with an integral locking
device that do not require a groove in the
shaft are also available.
or an end plate. SKF withdrawal sleeves are
slotted and have an external taper of 1:12
or 1:30. The nuts required for mounting and
dismounting the withdrawal sleeve are not
supplied with the sleeve and must be ordered
separately.
Adapter and withdrawal sleeves
Adapter and withdrawal sleeves are used
above all for bearing arrangements that have
to be repeatedly mounted and dismounted.
Bearings with a tapered bore can be mounted
on smooth shafts as well as stepped shafts.
They facilitate bearing mounting and dismounting and often simplify bearing arrangement design.
Adapter sleeves
Adapter sleeves are the more popular sleeves
as they enable bearings to be mounted on
smooth shafts as well as stepped shafts.
When using adapter sleeves on smooth shafts
it is possible to locate the bearing at any pos­
ition on the shaft. When used on stepped
shafts together with a spacer ring, exact axial
positioning of the bearing can be achieved
and bearing dismounting is facilitated.
SKF adapter sleeves are slotted and are
supplied complete with nut and locking device
and for smaller sizes also with a KMFE lock
nut.
Withdrawal sleeves
Withdrawal sleeves can be used to mount
bearings with a tapered bore on cylindrical
seats of stepped shafts. The sleeve is pressed
into the bore of the bearing, which abuts a
shaft shoulder or similar fixed component.
The sleeve is located on the shaft by a nut
SKF withdrawal and adapter sleeves
SKF lock nuts
Bearing housings
Standard bearing housings together with
rolling bearings provide economic bearing
arrangements that require little maintenance.
This is also true of CARB toroidal roller bearings. Mounted in standard housings the bearings are supported firmly and evenly around
their circumference and across the whole
raceway width. They are also protected
against solid contaminants and moisture.
SKF produces a wide variety of bearing
housings to meet different application
demands. Most are made of grey cast iron,
but housings of spheroidal graphite cast iron
or cast steel can also be produced.
To meet the needs of bearing applications,
for example in paper machines, housings to
fit CARB bearings used at the non-drive side
are available. These housings can be bolted
to the bed as the thermal changes in cylinder
length can be accommodated within the
CARB toroidal roller bearing.
See also SKF catalogues
•“Bearing accessories”
•“Bearing housings”
and SKF brochures
•6100 “SKF spherical roller bearings
– setting a new standard for performance and reliability”
•6101 “SNL 30, SNL 31 and SNL 32
plummer block housings solve the
housing problems”
•6111 “SONL plummer block housings
– designed for oil lubrication”
•6112 “SNL plummer block housings
solve the housing problems”
•6121 “SKF self-aligning bearing
system”
D
or the
•“SKF Interactive Engineering Catalogue” online at www.skf.com
79
Lubricants and lubrication Products for mounting
equipment
and dismounting
CARB toroidal roller bearings operate under
a variety of loads, speeds, temperatures and
environmental conditions. They require the
type of high-quality lubricating greases, which
SKF provides.
SKF greases have been specially developed
for rolling bearings in their typical applications.
The SKF assortment includes fifteen environmentally friendly greases and covers practically all application requirements.
The assortment is complemented by a
selection of lubrication accessories including
• automatic lubricators
• grease guns
• lubricant metering devices
• a wide range of manually and pneumatically
operated grease pumps.
See also SKF catalogue MP3000
“SKF Maintenance and Lubrication
Products” or online at
www.mapro.skf.com
SKF lubricants:
the best choice for any bearing
80
Like all rolling bearings, CARB toroidal roller
bearings require a high degree of skill when
mounting or dismounting, as well as the correct tools and methods.
The comprehensive SKF assortment of
tools and equipment includes everything that
is required
• mechanical tools
• heaters
• hydraulic tools and equipment.
Mounting kit to apply the SKF drive-up method
Condition monitoring
equipment
The goal of condition monitoring is to maximize the time that a machine is functioning
properly and minimize the number of unexpected breakdowns, thereby significantly
reducing downtime and maintenance costs.
Condition monitoring enables incipient
bearing damage to be detected and evaluated
so that repairs can be scheduled for a time
that will have a minimal impact on production.
Applied to all critical machinery condition
monitoring can optimize machinery
utilization.
SKF provides a comprehensive range of
condition monitoring equipment to measure
important parameters. These include
connected directly the the plant’s Computerized Maintenance Management System
(CMMS).
One example is the MARLIN I-Pro data
manager, which is a rugged, high performance data collector that enables plant oper­
ations personnel to quickly and easily collect,
store and analyse overall machine vibration,
process and inspection data. The unit enables
trending, comparison with previous readings,
alarm alerts and more. A “user notes” feature
enables an operator to immediately record
detailed observations of troublesome
machine conditions or questionable
measurements.
D
• temperature
• speed
• noise
• oil condition
• shaft alignment
• vibration
• bearing condition.
Products range from lightweight, handheld
devices, to sophisticated continuous monitoring systems for fixed installations that can be
Taking the temperature
Checking vibration levels
MARLIN I-Pro data manager
81
SKF – the knowledge
engineering company
From the company that invented the selfaligning ball bearing more than 100 years
ago, SKF has evolved into a knowledge engineering company that is able to draw on five
technology platforms to create unique solutions for its customers. These platforms
include bearings, bearing units and seals, of
course, but extend to other areas including:
lubricants and lubrication systems, critical for
long bearing life in many applications; mechatronics that combine mechanical and electronics knowledge into systems for more effective
linear motion and sensorized solutions; and
a full range of services, from design and logistics support to conditioning monitoring and
reliability systems.
Though the scope has broadened, SKF
continues to maintain the world’s leadership
in the design, manufacture and marketing of
rolling bearings, as well as complementary
products such as radial seals. SKF also holds
an increasingly important position in the market for linear motion products, high-precision
aerospace bearings, machine tool spindles
and plant maintenance services.
The SKF Group is globally certified to ISO
14001, the international standard for environmental management, as well as OHSAS
18001, the health and safety management
standard. Individual divisions have been
approved for quality certification in accordance
with ISO 9001 and other customer specific
requirements.
With over 100 manufacturing sites worldwide and sales companies in 70 countries,
SKF is a truly international corporation. In
addition, our distributors and dealers in
some 15 000 locations around the world,
an e-business marketplace and a global distribution system put SKF close to customers for
the supply of both products and services. In
essence, SKF solutions are available wherever
and whenever customers need them. Overall, the SKF brand and the corporation are
stronger than ever. As the knowledge engineering company, we stand ready to serve
you with world-class product competencies,
intellectual resources, and the vision to help
you succeed.
© Airbus – photo: exm company, H. Goussé
Evolving by-wire technology
SKF has a unique expertise in fast-growing by-wire
technology, from fly-by-wire, to drive-by-wire, to
work-by-wire. SKF pioneered practical fly-by-wire
technology and is a close working partner with all
aerospace industry leaders. As an example, virtually
all aircraft of the Airbus design use SKF by-wire
systems for cockpit flight control.
SKF is also a leader in automotive by-wire technology, and has partnered with automotive engineers to
develop two concept cars, which employ SKF mechatronics for steering and braking. Further by-wire
development has led SKF to produce an all-electric
forklift truck, which uses mechatronics rather than
hydraulics for all controls.
Seals
Bearings
and units
Mechatronics
82
Lubrication
systems
Services
Harnessing wind power
The growing industry of wind-generated electric power provides a source of
clean, green electricity. SKF is working closely with global industry leaders to
develop efficient and trouble-free turbines, providing a wide range of large, highly
specialized bearings and condition monitoring systems to extend equipment life
of wind farms located in even the most remote and inhospitable environments.
Working in extreme environments
In frigid winters, especially in northern countries, extreme sub-zero temperatures can cause bearings in railway axleboxes to seize due to lubrication starvation. SKF created a new family of synthetic lubricants formulated to retain their
lubrication viscosity even at these extreme temperatures. SKF knowledge enables
manufacturers and end user customers to overcome the performance issues
resulting from extreme temperatures, whether hot or cold. For example, SKF
products are at work in diverse environments such as baking ovens and instant
freezing in food processing plants.
D
Developing a cleaner cleaner
The electric motor and its bearings are the heart of many household appliances.
SKF works closely with appliance manufacturers to improve their products’ performance, cut costs, reduce weight, and reduce energy consumption. A recent
example of this cooperation is a new generation of vacuum cleaners with substantially more suction. SKF knowledge in the area of small bearing technology
is also applied to manufacturers of power tools and office equipment.
Maintaining a 350 km/h R&D lab
In addition to SKF’s renowned research and development facilities in Europe and
the United States, Formula One car racing provides a unique environment for
SKF to push the limits of bearing technology. For over 50 years, SKF products,
engineering and knowledge have helped make Scuderia Ferrari a formidable
force in F1 racing. (The average racing Ferrari utilizes more than 150 SKF components.) Lessons learned here are applied to the products we provide to automakers and the aftermarket worldwide.
Delivering Asset Efficiency Optimization
Through SKF Reliability Systems, SKF provides a comprehensive range of asset
efficiency products and services, from condition monitoring hardware and software to maintenance strategies, engineering assistance and machine reliability
programmes. To optimize efficiency and boost productivity, some industrial facilities opt for an Integrated Maintenance Solution, in which SKF delivers all services under one fixed-fee, performance-based contract.
Planning for sustainable growth
By their very nature, bearings make a positive contribution to the natural environment, enabling machinery to operate more efficiently, consume less power,
and require less lubrication. By raising the performance bar for our own products, SKF is enabling a new generation of high-efficiency products and equipment. With an eye to the future and the world we will leave to our children, the
SKF Group policy on environment, health and safety, as well as the manufacturing techniques, are planned and implemented to help protect and preserve the
earth’s limited natural resources. We remain committed to sustainable, environmentally responsible growth.
83
®SKF, CARB, MARLIN, Microlog and SensorMount
are registered trademarks of the SKF Group.
™ SKF Explorer is a trademark of the SKF Group.
©SKF Group 2013
The contents of this publication are the copyright of the
publisher and may not be reproduced (even extracts)
unless permission is granted. Every care has been taken
to ensure the accuracy of the information contained in this
publication but no liability can be accepted for any loss or
damage whether direct, indirect or consequential arising
out of the use of the information contained herein.
Publication 6102/I EN · May 2013
Printed in Sweden on environmentally friendly paper.
skf.com
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement