Advertisement
Advertisement
Agilent 4395A Network/Spectrum/Impedance Analyzer Operation Manual Manual Change Agilent Part No. N/A Feb 2008 Change 1 Change the value of Return loss to the following. Return loss frequency <100 MHz…………………………………………………………………>12 dB (SPC) frequency ≧100 MHz…………………………………………………………………> 7 dB (SPC) Change 2 Change the specification of L Accuracy (Page 11-19) to the following. Accuracy D ≦ 0.2 0.2 < D La La La(1 + D) C Copyright 2008 Agilent Technologies ○ マニュアル チェンジ 変更 1 Return Loss の値を以下に変更してください。 Return loss frequency <100 MHz…………………………………………………………………>12 dB (SPC) frequency ≧100 MHz…………………………………………………………………> 7 dB (SPC) 変更 2 L Accuracy の仕様(ページ 11-19)を以下に変更して下さい。 Accuracy D ≦ 0.2 0.2 < D La La La(1 + D) C Copyright 2008 Agilent Technologies ○ Agilent 4395A Network/Spectrum/Impedance Analyzer Operation Manual Manual Change Agilent Part No. N/A May 2007 Change 1 Regarding the Data Processing of Impedance Analyzer Mode, refer to the 4396B Operating Hand book (Page 5-6 to 5-9), or the 4396B Function reference. You can also download the 4396B Manual with the following process. 1. Open the Agilent Technologies Website. http://www.agilent.com/ 2. In the search box, enter 4396B, and then open the page of 4396B Network/Spectrum Impedance Analyzer. 3. Click the manuals in the Technical Support of 4396B RF Network/Spectrum/Impedance Analyzer. 4. Download the manual C Copyright 2007 Agilent Technologies ○ マニュアル チェンジ 変更 1 インピーダンス・アナライザ・モードでの内部データ処理については、4396B オペレーティング・ハンドブ ック(5-6 から 5-9 ページ)または、4396B の機能解説書を参照して下さい。 また、4396B のマニュアルは以下の手順でダウンロードする事ができます。 1. アジレント・テクノロジーのホームページを開きます。 http://www.agilent.com/ 2. 検索の欄に“4396B”を入力し、4396B ネットワーク/スペクトラム/インピーダンスアナライザのページ を開きます。 3. 4396B RF ネットワーク/スペクトラム/インピーダンスアナライザの、テクニカルサポート/イベントか らマニュアルをクリックします。 4. マニュアルをダウンロードします。 C Copyright 2007 Agilent Technologies ○ Agilent 4395A Network/Spectrum/Impedance Analyzer Operation Manual Manual Change Agilent Part No. N/A January 2007 Change 1 Change the equations for the noise level measurement (page 8-35) to the following. Converting to a Different Equivalent Noise Bandwidth 1. Calculate the conversion factor using the following equations with displayed units: Unit Use dBm/Hz K=10logBW dBV/√Hz、dBμV/√Hz K=10logBW W/Hz K=BW V/√Hz K=√BW Where, BW is the target equivalent noise bandwidth. Change 2 Change options 1CN, 1CM and 1CP in the package contents of the 4395A (page 2-3) to the following. Description Option 1CN Handle Kit Handle Kit Option 1CM Rack Mount Kit Rack Mount Kit Option 1CP Rack Mount & Handle Kit Rack Mount & Handle Kit C Copyright 2007 Agilent Technologies ○ Agilent Part Number Quantity 5063-9229 1 5063-9216 1 5063-9223 1 マニュアル チェンジ 変更 1 ノイズ・レベル測定(ページ 8-36)の計算式を以下に変更して下さい。 等価ノイズ・バンド幅の変換 1. 表示単位にあわせて、以下の式から変換係数 K を計算します。 表示単位 式 dBm/Hz K=10logBW dBV/√Hz、dBμV/√Hz K=10logBW W/Hz K=BW V/√Hz K=√BW ここで、BW は変換する等価ノイズ・バンド幅です。 変更 2 4395A の梱包内容(ページ 2-3)のオプション 1CN、1CM、1CP を以下に変更して下さい。 説明 オプション 1CN ハンドル・キット ハンドル・キット オプション 1CM ラック・マウント・キット ラック・マウント・キット オプション 1CP ラック・マウント&ハンドル・キット ラック・マウント&ハンドル・キット C Copyright 2007 Agilent Technologies ○ Agilent パーツ番号 数量 5063-9229 1 5063-9216 1 5063-9223 1 Manual Change Agilent Part No. N/A August 2004 Printed in Malaysia Change Change the company name from (YOKOGAWA-) HEWLETT-PACKARD, LTD., or its abbreviation HP (YHP) to Agilent Technologies or Agilent. This document may contain references to HP (YHP) or (Yokogawa-) Hewlett-Packard. Please note that Hewlett-Packard’s former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. To reduce potential confusion, the only change to product numbers and names has been in the company name prefix: where a product number/name was HP XXXX the current name/number is now Agilent XXXX. For example, model number HP4294A is now model number Agilent 4294A. マニュアル・チェンジ 変更 本文中の「HP(YHP)」、または「(横河)ヒューレット・パッカード株式会社」という語句を、「Agilent」、 または「アジレント・テクノロジー株式会社」と変更してください。 ヒューレット・パッカード社の電子計測、半導体製品、化学分析ビジネス部門は分離独立し、アジ レント・テクノロジー社となりました。 社名変更に伴うお客様の混乱を避けるため、製品番号の接頭部のみ変更しております。 (例: 旧製品名 HP 4294A © Copyright 2004 Agilent Technologies は、現在 Agilent 4294A として販売いたしております。) Safety Summary When you notice any of the unusual conditions listed below, immediately terminate operation and disconnect the power cable. Contact your local Agilent Technologies sales representative or authorized service company for repair of the instrument. If you continue to operate without repairing the instrument, there is a potential fire or shock hazard for the operator. n Instrument operates abnormally. n Instrument emits abnormal noise, smell, smoke or a spark-like light during the operation. n Instrument generates high temperature or electrical shock during operation. n Power cable, plug, or receptacle on instrument is damaged. n Foreign substance or liquid has fallen into the instrument. Caution Do not exceed the operating input power, voltage, and current level and signal type appropriate for the instrument being used, refer to your instrument's Operation Manual. Electrostatic discharge(ESD) can damage the highly sensitive microcircuits in your instrument. ESD damage is most likely to occur as the test fixtures are being connected or disconnected. Protect them from ESD damage by wearing a grounding strap that provides a high resistance path to ground. Alternatively, ground yourself to discharge any static charge built-up by touching the outer shell of any grounded instrument chassis before touching the test port connectors. 4395A Agilent 4395A Network/Spectrum/Impedance Analyzer Operation Manual SERIAL NUMBERS This manual applies directly to instruments which have the serial number prex JP1KE and MY411. For additional important information about serial numbers, read \Serial Number" in Appendix D of this Manual. Agilent Part No. 04395-90040 Printed in JAPAN May 2003 Sixth Edition Notice The information contained in this document is subject to change without notice. This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of the Agilent Technologies. Agilent Technologies Japan, Ltd. Component Test PGU-Kobe 1-3-2, Murotani, Nishi-ku, Kobe-shi, Hyogo, 651-2241 Japan c Copyright 1997, 1998, 2000, 2001, 2002, 2003 Agilent Technologies Japan, Ltd. Manual Printing History The manual printing date and part number indicate its current edition. The printing date changes when a new edition is printed. (Minor corrections and updates that are incorporated at reprint do not cause the date to change.) The manual part number changes when extensive technical changes are incorporated. September 1997 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : First Edition (part number: 04395-90000) September 1998 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Second Edition (part number: 04395-90010) March 2000 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Third Edition (part number: 04395-90010) July 2001 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Fourth Edition (part number: 04395-90020) December 2002 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Fifth Edition (part number: 04395-90030) May 2003 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Sixth Edition (part number: 04395-90040) iii Certication Agilent Technologies certies that this product met its published specications at the time of shipment from the factory. Agilent Technologies further certies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institution's calibration facility, or to the calibration facilities of other International Standards Organization members. Warranty This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from the date of shipment, except that in the case of certain components listed in General Information of this manual, the warranty shall be for the specied period. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective. For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country. Agilent Technologies warrants that its software and rmware designated by Agilent Technologies for use with an instrument will execute its programming instruction when property installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument, or software, or rmware will be uninterrupted or error free. Limitation Of Warranty The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modication or misuse, operation outside the environmental specications for the product, or improper site preparation or maintenance. No other warranty is expressed or implied. Agilent Technologies specically disclaims the implied warranties of merchantability and tness for a particular purpose. iv Exclusive Remedies The remedies provided herein are buyer's sole and exclusive remedies. Agilent Technologies shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory. Assistance Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products. For any assistance, contact your nearest Agilent Technologies Sales and Service Oce. Addresses are provided at the back of this manual. v Safety Summary The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specic WARNINGS elsewhere in this manual may impair the protection provided by the equipment. In addition it violates safety standards of design, manufacture, and intended use of the instrument. The Agilent Technologies assumes no liability for the customer's failure to comply with these requirements. Note 4395A comply with INSTALLATION CATEGORY II and POLLUTION DEGREE 2 in IEC1010-1. 4395A are INDOOR USE product. Note LEDs in this product are Class 1 in accordance with IEC825-1. CLASS 1 LED PRODUCT Ground The Instrument To avoid electric shock hazard, the instrument chassis and cabinet must be connected to a safety earth ground by the supplied power cable with earth blade. DO NOT Operate In An Explosive Atmosphere Do not operate the instrument in the presence of ammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a denite safety hazard. Keep Away From Live Circuits Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualied maintenance personnel. Do not replace components with the power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them. DO NOT Service Or Adjust Alone Do not attempt internal service or adjustment unless another person, capable of rendering rst aid and resuscitation, is present. DO NOT Substitute Parts Or Modify Instrument Because of the danger of introducing additional hazards, do not install substitute parts or perform unauthorized modications to the instrument. Return the instrument to a Agilent Technologies Sales and Service Oce for service and repair to ensure that safety features are maintained. vi Dangerous Procedure Warnings Warnings , such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. Warning Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting this instrument. vii Safety Symbols General denitions of safety symbols used on equipment or in manuals are listed below. Instruction manual symbol: the product is marked with this symbol when it is necessary for the user to refer to the instruction manual. Alternating current. Direct current. On (Supply). O (Supply). In position of push-button switch. Out position of push-button switch. Frame (or chassis) terminal. A connection to the frame (chassis) of the equipment which normally include all exposed metal structures. This Warning sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel. This Caution sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. This Note sign denotes important information. It calls attention to a procedure, practice, condition or the like, which is essential to highlight. Axed to product containing static sensitive devices use anti-static handling procedures to prevent electrostatic discharge damage to component. viii Typeface Conventions Bold Italics Computer 4HARDKEYS5 NNNNNNNNNNNNNNNNNNNNNNNNNN SOFTKEYS Boldface type is used when a term is dened. For example: icons are symbols. Italic type is used for emphasis and for titles of manuals and other publications. Italic type is also used for keyboard entries when a name or a variable must be typed in place of the words in italics. For example: copy lename means to type the word copy, to type a space, and then to type the name of a le such as file1. Computer font is used for on-screen prompts and messages. Labeled keys on the instrument front panel are enclosed in 4 5. Softkeys located to the right of the LCD are enclosed in NNNNN . ix Documentation Map The following manuals are available for the analyzer. Operation Manual (Option ABA only) (Agilent Part Number 04395-900x0) The Operation Manual describes all function accessed from the front panel keys and softkeys. It also provides information on options and accessories available, specications, system performance, and some topics about the analyzer's features. Programming Manual (Option ABA only) (Agilent Part Number 04395-900x1) The Programming Manual shows how to write and use BASIC program to control the analyzer and describes how Instrument BASIC works with the analyzer.. Instrument BASIC Users Handbook (Option ABA only) (Agilent Part Number 04155-9015x) The Instrument BASIC User's Handbook introduces you to the Instrument BASIC programming language, provide some helpful hints on getting the most use from it, and provide a general programming reference. It is divided into three books, Instrument BASIC Programming Techniques, Instrument BASIC Interface Techniques, and Instrument BASIC Language Reference. Service Manual (Option 0BW only), (Agilent Part Number 04395-901x0) The Service Manual explains how to adjust, troubleshoot, and repair the instrument. This manual is option 0BW only. The number indicated by \x" in the part number of each manual, is allocated for numbers increased by one each time a revision is made. The latest edition comes with the product. x Contents 1. Introduction About the 4395A Network/Spectrum/Impedance Analyzer . . . . . . . . . . . About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Document Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Installation Guide Incoming Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Replacing Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . Providing clearance to dissipate heat at installation site . . . . . . . . . . . Instruction for Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . Rack/Handle Installation . . . . . . . . . . . . . . . . . . . . . . . . . . Option 1CN Handle Kit . . . . . . . . . . . . . . . . . . . . . . . . . . Installing the Handle . . . . . . . . . . . . . . . . . . . . . . . . . . Option 1CM Rack Mount Kit . . . . . . . . . . . . . . . . . . . . . . . Mounting the Rack . . . . . . . . . . . . . . . . . . . . . . . . . . . Option 1CP Rack Mount & Handle Kit . . . . . . . . . . . . . . . . . . . Mounting the Handle and Rack . . . . . . . . . . . . . . . . . . . . . Connecting Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting a Test Set for Network Analyzer Mode . . . . . . . . . . . . . . Connecting an Active Probe . . . . . . . . . . . . . . . . . . . . . . . . For Spectrum Analyzer Mode . . . . . . . . . . . . . . . . . . . . . . . For Network Analyzer Mode . . . . . . . . . . . . . . . . . . . . . . . Connecting an Impedance Test Kit and a Test Fixture for Impedance Analyzer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting an Impedance Test Kit . . . . . . . . . . . . . . . . . . . Connecting a Test Fixture to the Impedance Test Kit . . . . . . . . . . . Connecting a Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . Setting Up a 75 Measurement For Spectrum Analyzer Mode . . . . . . . . 3. Quick Start Guide Network Analyzer Tour . . . . . . . Before You Leave On The Tour . . . . Overview . . . . . . . . . . . . . Required Equipments . . . . . . . Step 1: Preparing for the Measurement Turning ON the 4395A . . . . . . . Connecting the DUT . . . . . . . . Step 2: Setting up the 4395A . . . . . Setting the Analyzer Type . . . . . Setting the Active Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1-1 1-2 2-2 . . . . . . . . . . . . . . . . . . . . 2-4 2-4 2-4 2-5 2-5 2-7 2-7 2-7 2-8 2-8 2-8 2-9 2-9 2-9 2-9 2-9 2-10 2-12 2-12 2-12 . . . . . 2-16 2-16 2-16 2-18 2-19 . . . . . . . . . . 3-1 3-1 3-1 3-2 3-3 3-3 3-3 3-5 3-5 3-6 Contents-1 Selecting the Input . . . . . . . . . . . . . . . . . . . . Setting the Frequency Range . . . . . . . . . . . . . . . Performing the Automatic Scaling . . . . . . . . . . . . . Step 3: Making a Calibration . . . . . . . . . . . . . . . . Step 4: Reading a Measurement Result . . . . . . . . . . . Reading a Measured Value by Using Marker . . . . . . . . Step 5: Printing Out the Measurement Result . . . . . . . . Conguring and Connecting a Printer . . . . . . . . . . . Making a Hardcopy of the LCD Display . . . . . . . . . . Spectrum Analyzer Tour . . . . . . . . . . . . . . . . . . Before You Leave On The Tour . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . Required Equipments . . . . . . . . . . . . . . . . . . Step 1: Preparing for a Measurement . . . . . . . . . . . . Turning ON the 4395A . . . . . . . . . . . . . . . . . . Connecting the DUT . . . . . . . . . . . . . . . . . . . Step 2: Setting Up the 4395A . . . . . . . . . . . . . . . . Setting the Analyzer Type . . . . . . . . . . . . . . . . Setting the Active Channel . . . . . . . . . . . . . . . . Selecting the Input . . . . . . . . . . . . . . . . . . . . Setting the Frequency Range . . . . . . . . . . . . . . . Step 3: Making a Measurement . . . . . . . . . . . . . . . Reading the Peak Level Using the Marker . . . . . . . . . Setting the Resolution Bandwidth to See Low Level Signals Searching for Harmonics Using the Search Function . . . . Step 4: Saving and Recalling 4395A Settings . . . . . . . . . Preparing the Disk . . . . . . . . . . . . . . . . . . . . Saving 4395A Settings . . . . . . . . . . . . . . . . . . Entering the File Name . . . . . . . . . . . . . . . . Recalling the 4395A Settings . . . . . . . . . . . . . . . Impedance Analyzer Tour . . . . . . . . . . . . . . . . . Before You Leave On The Tour . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . Required Equipments . . . . . . . . . . . . . . . . . Step 1: Preparing for the Measurement . . . . . . . . . . Connecting the Impedance Test Kit . . . . . . . . . . . Turning ON the 4395A . . . . . . . . . . . . . . . . . Setting Up the 4395A . . . . . . . . . . . . . . . . . . Setting the Analyzer Type . . . . . . . . . . . . . . . Activating Channel 1 . . . . . . . . . . . . . . . . . . Setting the Sweep Parameters . . . . . . . . . . . . . Setting the Output Level . . . . . . . . . . . . . . . . Setting the IF Bandwidth . . . . . . . . . . . . . . . . Setting the Averaging Factor . . . . . . . . . . . . . . Step 3: Making a Calibration . . . . . . . . . . . . . . . OPEN Calibration . . . . . . . . . . . . . . . . . . . SHORT Calibration . . . . . . . . . . . . . . . . . . . LOAD Calibration . . . . . . . . . . . . . . . . . . . Step 4: Connecting and Setting Up a Test Fixture . . . . . Connecting the xture . . . . . . . . . . . . . . . . . Setting the Electrical Length . . . . . . . . . . . . . . Fixture Compensation . . . . . . . . . . . . . . . . . Step 5: Carrying Out Impedance Measurement . . . . . . Selecting the Measurement Parameters for Channel 1 . . Connecting the DUT . . . . . . . . . . . . . . . . . . Contents-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 3-7 3-8 3-10 3-12 3-12 3-14 3-14 3-14 3-15 3-15 3-15 3-16 3-17 3-17 3-17 3-18 3-18 3-19 3-19 3-20 3-22 3-22 3-23 3-25 3-26 3-26 3-27 3-27 3-29 3-31 3-31 3-31 3-32 3-33 3-33 3-33 3-34 3-34 3-35 3-36 3-37 3-38 3-39 3-41 3-41 3-42 3-43 3-45 3-45 3-45 3-47 3-49 3-49 3-50 Performing the Automatic Scaling . . . . . . . . . . . . . Step 6: Switching from Channel 1 to Channel 2 . . . . . . . Setting the Averaging Factor for Channel 2 . . . . . . . . Step 7: Selecting the measurement parameters for Channel 2 Step 8: Dual Channel Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-50 3-52 3-53 3-54 3-56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 4-1 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-3 6. Analyzer Input Terminals R, A, and B . . . . . . . . . . . . . . . . 7. RF OUT Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4-4 4. Front and Rear Panels Features of 4395A . . . . . . . . . . . . . . . . . Front Panel . . . . . . . . . . . . . . . . . . . . 1. Hardkeys . . . . . . . . . . . . . . . . . . . ACTIVE CHANNEL Block . . . . . . . . . . . MEASUREMENT Block . . . . . . . . . . . . . SWEEP Key Block . . . . . . . . . . . . . . . MARKER Block . . . . . . . . . . . . . . . . INSTRUMENT STATE Block . . . . . . . . . . ENTRY keys . . . . . . . . . . . . . . . . . . 2. Softkeys . . . . . . . . . . . . . . . . . . . Softkeys that are Joined by Vertical Lines . . . . Softkeys That Toggle Between On and O States . Softkeys that Show Status Indications in Brackets 3. GPIB \REMOTE" Indicator . . . . . . . . . . . 4. 4Preset5 Key . . . . . . . . . . . . . . . . . . 5. PROBE POWER Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. DC SOURCE (DC Voltage/Current Output) Connector (Option 001) . 9. Built-in Flexible Disk Drive . . . . . . . . . . . . . . . . . . . . . 10. LINE Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. Liquid Crystal Display (LCD) . . . . . . . . . . . . . . . . . . . . Screen Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Active Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Measured Input(s) . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. SCALE/DIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Marker Data Readout . . . . . . . . . . . . . . . . . . . . . . . . 7. Marker Statistics and Width Value . . . . . . . . . . . . . . . . . . 8. Softkey Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 9. PASS/FAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10. Sweep Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. Sweep Parameter Span/Stop Value . . . . . . . . . . . . . . . . . 12. Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13. CW Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 14. Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . . 15. Input Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . 16. Sweep Parameter Center/Start Value . . . . . . . . . . . . . . . . 17. RBW/IFBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18. Status Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 19. External Reference . . . . . . . . . . . . . . . . . . . . . . . . 20. Active Entry Area . . . . . . . . . . . . . . . . . . . . . . . . . 21. Message Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 22. Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rear Panel Features and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 4-5 4-5 4-5 4-5 4-6 4-7 4-7 4-7 4-7 4-7 4-7 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-8 4-9 4-9 4-10 4-10 4-10 4-10 4-11 Contents-3 1. External Reference Input Connector . 2. Internal Reference Output Connector 3. External Program RUN/CONT Input . 4. I/O Port . . . . . . . . . . . . . . 5. Power Cable Receptacle . . . . . . . 6. GPIB Interface . . . . . . . . . . . 7. External Monitor Terminal . . . . . . 8. Parallel Interface . . . . . . . . . . 9. 24-bit I/O Port . . . . . . . . . . . 10. mini-DIN Keyboard Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 4-11 4-12 4-12 4-12 4-12 4-12 4-12 4-12 4-12 11. Test Set I/O Interface . . . . . . . 12. Gate Output (Option 1D6 Only) . . . . . 13. External Trigger Input . . . . . . . . . 14. Reference Oven Output (Option 1D5 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 4-13 4-13 4-13 5. Preparations for Measurements Selecting an appropriate connection of DUT . . . . . . . . . . . . . . . . . . For Network Measurement . . . . . . . . . . . . . . . . . . . . . . . . . Connecting DUT for Directional Transmission Characteristic Measurement . . Connecting DUT for Directional Transmission and Reection Characteristics Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting DUT for Bi-directional Transmission and Reection Characteristics (Four S Parameters) Measurement . . . . . . . . . . . . . . . . . . . Connecting DUT for Transmission Characteristic Measurement When the Output Signal is in a Circuit . . . . . . . . . . . . . . . . . . . . . . Connecting DUT for Transmission Characteristic Measurement When the Input and Output Signals are in a Circuit . . . . . . . . . . . . . . . . . . For Spectrum Measurement . . . . . . . . . . . . . . . . . . . . . . . . Connecting DUT When Directly Measuring the Signal . . . . . . . . . . . Connecting DUT When Measuring the Signal in a Circuit . . . . . . . . . . For Impedance Measurement (Option 010) . . . . . . . . . . . . . . . . . . Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . Presetting 4395A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Setting and Optimizing Measurement Conditions Selecting the Analyzer Mode . . . . . . . . . . . . . . . . . . . . . Selecting the Active Channel . . . . . . . . . . . . . . . . . . . . . Dual Channel Display . . . . . . . . . . . . . . . . . . . . . . . . Setting Up the Trigger System . . . . . . . . . . . . . . . . . . . . Setting Up the Trigger System . . . . . . . . . . . . . . . . . . . Using the External Trigger . . . . . . . . . . . . . . . . . . . . . Setting the Trigger Signal Polarity . . . . . . . . . . . . . . . . . Generating a Trigger Event on Each Measurement Point (NA, ZA Mode) Setting the Sweep Conditions . . . . . . . . . . . . . . . . . . . . . Selecting the Sweep Mode . . . . . . . . . . . . . . . . . . . . . Selecting the Sweep Type . . . . . . . . . . . . . . . . . . . . . Using the Power Sweep Function (NA, ZA Mode) . . . . . . . . . . Selecting the Input Port/Measurement Parameter . . . . . . . . . . . To Select the Input Port in NA Mode . . . . . . . . . . . . . . . . With the T/R Test Set . . . . . . . . . . . . . . . . . . . . . . With the S-Parameter Test Set . . . . . . . . . . . . . . . . . . To Select the Input Port in SA Mode . . . . . . . . . . . . . . . . To Select the Measurement Parameter in ZA mode . . . . . . . . . . Selecting the Measurement Format (NA, ZA Mode) . . . . . . . . . . . Contents-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 5-1 5-1 5-2 5-2 5-3 5-5 5-6 5-6 5-6 5-8 5-8 5-9 6-2 6-2 6-3 6-4 6-4 6-4 6-5 6-5 6-6 6-6 6-6 6-7 6-7 6-7 6-7 6-7 6-8 6-8 6-10 Selecting the Measurement Format in NA Mode . . . . . . . . . Displaying the Trace as a Smith Chart (NA, ZA Mode) . . . . . . How To Change Marker Readout Format (NA, ZA Mode) . . . . . Using the Impedance Conversion Function (NA Mode) . . . . . . To Display Phase beyond 6180 Degrees (NA, ZA Mode) . . . . . Using the Complex Plane Format (ZA Mode) . . . . . . . . . . . Displaying R-X in the Complex Plane . . . . . . . . . . . . . Using the Marker . . . . . . . . . . . . . . . . . . . . . . Adjusting the Scale Setting . . . . . . . . . . . . . . . . . . Selecting the Display Unit . . . . . . . . . . . . . . . . . . . . Selecting the Display Unit in SA Mode . . . . . . . . . . . . . Selecting the Phase Unit (NA, ZA Mode) . . . . . . . . . . . . Setting the Frequency Range . . . . . . . . . . . . . . . . . . . Setting the Center Frequency . . . . . . . . . . . . . . . . . . Setting the Marker Position to Center . . . . . . . . . . . . . . Setting the Maximum Peak to Center . . . . . . . . . . . . . . Change the Center Frequency by the Specied Step Size . . . . . Example: Displaying Harmonics (SA Mode) . . . . . . . . . . Setting the Frequency Span . . . . . . . . . . . . . . . . . . Narrowing the Span Setting (SA Mode) . . . . . . . . . . . . . Setting the Frequency Range to Full Span . . . . . . . . . . Setting the Sweep Parameters Using 4Start5 and 4Stop5 . . . . . . Zooming To a Part of the Trace . . . . . . . . . . . . . . . . Change the Zooming Factor . . . . . . . . . . . . . . . . . Displaying a Zoomed Trace on the Other Channel . . . . . . Adjusting the Scale and Reference . . . . . . . . . . . . . . . . Automatically Adjusting the Scale and Reference (NA, ZA Mode) Manually Adjusting the Scale and Reference (NA, ZA Mode) . . Setting the Reference (SA Mode) . . . . . . . . . . . . . . . Using the Numeric Keys . . . . . . . . . . . . . . . . . . Using the Marker . . . . . . . . . . . . . . . . . . . . . Changing the Scale per Division (SA Mode) . . . . . . . . . . Setting the IF/Resolution/Video Bandwidth . . . . . . . . . . . . Setting the IF Bandwidth (NA, ZA Mode) . . . . . . . . . . . . Setting the IF Bandwidth to Auto Mode . . . . . . . . . . . . Setting the Resolution Bandwidths (SA Mode) . . . . . . . . . . Setting the Resolution Bandwidth to Auto Mode . . . . . . . . Setting the Video Bandwidth (SA Mode) . . . . . . . . . . . . . Resetting the Video Bandwidth . . . . . . . . . . . . . . . 7. Calibration Calibration Required for the Network Analyzer Mode To Select an Appropriate Calibration Method . . . Performing a Response Calibration . . . . . . . . Performing a Response & Isolation Calibration . . . Performing an S11 1-Port Calibration . . . . . . . Performing an S22 1-Port Calibration . . . . . . . Performing a Full 2-Port Calibration . . . . . . . . Performing a 1-Path 2-Port Calibration . . . . . . Selecting the Calibration Kit . . . . . . . . . . . Customizing the User Dened Calibration Kit . . . Dening the Standard Denition . . . . . . . . Step 1: Preparation . . . . . . . . . . . . . Step 2: Opening the Dene Standard Menu . . Step 3: Entering C Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 6-10 6-11 6-11 6-12 6-12 6-12 6-13 6-13 6-14 6-14 6-14 6-15 6-15 6-15 6-17 6-17 6-18 6-19 6-20 6-20 6-21 6-22 6-22 6-22 6-23 6-23 6-23 6-24 6-24 6-24 6-25 6-26 6-26 6-26 6-27 6-27 6-28 6-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 7-1 7-2 7-2 7-4 7-5 7-6 7-8 7-10 7-10 7-10 7-10 7-10 7-11 Contents-5 Step 4: Entering OFFSET Parameters . . . . . . . . . . . . . Step 5: Entering a Standard Class Label . . . . . . . . . . . . Step 6: Completing the Denition of a Calibration Kit . . . . . Dening a Class Assignment . . . . . . . . . . . . . . . . . . Step 1: Preparing for the Class Assignment . . . . . . . . . . Step 2: Specifying the Standard Class . . . . . . . . . . . . . Step 3: Creating the Standard Class Label . . . . . . . . . . . Labeling and Saving Calibration Kit . . . . . . . . . . . . . . Verifying the Denition of the User-Dened Calibration Kit . . . Calibration Required for the Impedance Analyzer Mode . . . . . . . OPEN/SHORT/LOAD Calibration . . . . . . . . . . . . . . . . . Calibration Procedure . . . . . . . . . . . . . . . . . . . . . Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . Setting the Electrical Length of the Test Fixture . . . . . . . . . . Setting the User Dened Fixture . . . . . . . . . . . . . . . . . Performing Fixture Compensation . . . . . . . . . . . . . . . . . Selecting the Calibration Kit . . . . . . . . . . . . . . . . . . . Dening a Custom Fixture Compensation Kit . . . . . . . . . . . Step 1: Opening the Fixture Compensation Kit Modication Menu Step 2: Specifying Parameter Values . . . . . . . . . . . . . . Step 3: Specifying the Standard Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 7-11 7-11 7-12 7-12 7-12 7-13 7-13 7-13 7-14 7-14 7-14 7-15 7-17 7-17 7-18 7-19 7-19 7-19 7-20 7-20 Interpreting the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . To Read a Value Using the Marker . . . . . . . . . . . . . . . . . . . . . Improving the Readout Resolution (SA Mode) . . . . . . . . . . . . . . . To Select Marker Readout Unit (SA Nide) . . . . . . . . . . . . . . . . . To Use the Sub-markers . . . . . . . . . . . . . . . . . . . . . . . . . . To Use the 1Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . To Search for a Point that has the Target Value (NA, SA Mode) . . . . . . . . To Search for the Peak-to-Peak of Ripples Using the Statistics Function . . . . Step 1: To Specify the Search Range . . . . . . . . . . . . . . . . . . . Step 2: To Search For the Ripple . . . . . . . . . . . . . . . . . . . . . To Search for a Single Peak on the Trace . . . . . . . . . . . . . . . . . . To Search for Multiple Peaks . . . . . . . . . . . . . . . . . . . . . . . . To Dene the Peak for Search (To Ignore Unnecessary Peaks) . . . . . . . . . Dening the Peak Slope to Ignore the Relatively Broad Peaks (NA, ZA Mode) Entering Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . Dening Peak Height (SA Mode) . . . . . . . . . . . . . . . . . . . . . Specifying the Peak Threshold to Ignore the Absolutely Small Peaks . . . . Entering Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . To Specify the Search Range . . . . . . . . . . . . . . . . . . . . . . . . Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using the 1Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . To Use the Trace Memory . . . . . . . . . . . . . . . . . . . . . . . . . . To Store the Trace into the Trace Memory . . . . . . . . . . . . . . . . . . To Display Memory Traces . . . . . . . . . . . . . . . . . . . . . . . . . To Use the Trace Math Function . . . . . . . . . . . . . . . . . . . . . . . To Turn O the Data Math Function . . . . . . . . . . . . . . . . . . . . To Multiply the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . To Clear a Multiplied Trace . . . . . . . . . . . . . . . . . . . . . . . . . To Overlay Multiple Traces . . . . . . . . . . . . . . . . . . . . . . . . . . To Store the Trace into the Overlay Trace . . . . . . . . . . . . . . . . . . 8-2 8-2 8-3 8-3 8-4 8-5 8-5 8-7 8-7 8-7 8-8 8-9 8-10 8-10 8-10 8-10 8-11 8-11 8-11 8-11 8-12 8-12 8-12 8-14 8-14 8-14 8-15 8-15 8-15 8-15 8-16 8-16 8. Analyzing the Measurement Results Contents-6 . . . . . . . . . . . . . . . . . . . . . To Clear the Overlay Traces . . . . . . . . . . . . . . . . . . . To Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . To Print Out a Display Image . . . . . . . . . . . . . . . . . . . To See or Print a Measured Value List . . . . . . . . . . . . . . . To Print an Analyzer Setting . . . . . . . . . . . . . . . . . . . To Save and Recall the Settings and Data . . . . . . . . . . . . . . To Save an Analyzer Setting or Measurement Data . . . . . . . . . Specifying the Data Format . . . . . . . . . . . . . . . . . . . Specifying a Data Array Type . . . . . . . . . . . . . . . . . To Recall a Saved Analyzer Setting . . . . . . . . . . . . . . . . To Save a Display Image to a TIFF File . . . . . . . . . . . . . . To Save Measured Data for a Spreadsheet . . . . . . . . . . . . . To Copy a File between Floppy Disk and Memory Disk . . . . . . . To Initialize a Disk for Use . . . . . . . . . . . . . . . . . . . . To Initialize the Memory Disk for Use . . . . . . . . . . . . . . . To Back Up the Memory Disk . . . . . . . . . . . . . . . . . . . Typical Network Measurement Techniques . . . . . . . . . . . . . Measuring 3 dB Bandwidth Using the Width Function . . . . . . . Measuring Electrical Length . . . . . . . . . . . . . . . . . . . Setting the Velocity Factor of a Cable . . . . . . . . . . . . . . Measuring Phase Deviation . . . . . . . . . . . . . . . . . . . . Deviation from the Linear Phase . . . . . . . . . . . . . . . . Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . Setting the Group Delay Aperture . . . . . . . . . . . . . . Compensating for the Electrical Delay Caused by an Extension Cable If the Electrical Delay of the Extension Cable is Known . . . . . If the Electrical Delay of the Extension Cable is Unknown . . . . Measuring the Electrical Length of a Cable . . . . . . . . . . Reection of a Opened or Shorted Cable . . . . . . . . . . . Typical Spectrum Measurement Techniques . . . . . . . . . . . . . Measuring the Noise Level . . . . . . . . . . . . . . . . . . . . Converting to a Dierent Unit of Equivalent Noise Bandwidth . . Measuring the Carrier to Noise Ratio . . . . . . . . . . . . . . . Time Gated Spectrum Analysis . . . . . . . . . . . . . . . . . . Gate Trigger Mode . . . . . . . . . . . . . . . . . . . . . . . Edge Mode . . . . . . . . . . . . . . . . . . . . . . . . . Level Mode . . . . . . . . . . . . . . . . . . . . . . . . . RBW Filter Response Time . . . . . . . . . . . . . . . . . . . Performing Time Gated Spectrum Analysis . . . . . . . . . . . Step 1: Determining the Gate Trigger Parameters . . . . . . . Step 2: Connecting the Gate Trigger Source . . . . . . . . . . Step 3: Setting the Center and Span Frequency . . . . . . . . Step 4: Adjusting the Gate Trigger . . . . . . . . . . . . . . Setting the RBW/VBW and Using the Averaging Function . . . . . Setting the Resolution Bandwidth . . . . . . . . . . . . . . . Setting the Video Bandwidth (VBW) . . . . . . . . . . . . . Measuring the Spectrum . . . . . . . . . . . . . . . . . . . Measuring Zero Span . . . . . . . . . . . . . . . . . . . . . . . Reading Transition Time Using the Marker . . . . . . . . . . . Tracking Unstable Harmonics Using the Search Track Function . . . Typical Impedance Measurement Techniques . . . . . . . . . . . . Applying DC Bias . . . . . . . . . . . . . . . . . . . . . . . . Setting the Upper Limit for DC Bias . . . . . . . . . . . . . . . Setting up and Applying Output Voltage/Current . . . . . . . . . Equivalent Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 8-17 8-17 8-17 8-17 8-19 8-19 8-20 8-20 8-20 8-21 8-21 8-22 8-22 8-23 8-23 8-24 8-25 8-27 8-28 8-29 8-29 8-29 8-30 8-31 8-31 8-32 8-32 8-32 8-34 8-35 8-35 8-37 8-38 8-38 8-38 8-39 8-40 8-41 8-41 8-43 8-43 8-43 8-44 8-44 8-45 8-46 8-47 8-48 8-50 8-51 8-51 8-52 8-52 8-53 Contents-7 Menus Associated with Equivalent Circuit Analysis . . . . . . . Equivalent Circuit Menu . . . . . . . . . . . . . . . . . . . Select Equivalent Circuit Menu . . . . . . . . . . . . . . . . Dene Equivalent Circuit Parameter Menu . . . . . . . . . . Using the Equivalent Circuit Analysis Function . . . . . . . . . Calculating Approximate Values of Equivalent Circuit Constants Simulating a Trace from the Equivalent Circuit Parameters . . . Determining Q Value Using the Width Search Function . . . . . . . Widths Menu . . . . . . . . . . . . . . . . . . . . . . . . . . Width Value Menu . . . . . . . . . . . . . . . . . . . . . . . . Using the Anti-Resonance Point . . . . . . . . . . . . . . . . . Using the Resonance Point . . . . . . . . . . . . . . . . . . . Using the Admittance Chart . . . . . . . . . . . . . . . . . . Port Extension . . . . . . . . . . . . . . . . . . . . . . . . . . 9. Advanced Techniques for Optimizing Measurements Reducing Sweep Time (Using List Sweep) . . . . . . Planning the sweep list . . . . . . . . . . . . . Editing a Sweep List . . . . . . . . . . . . . . . To Modify or Delete the Segment . . . . . . . . Executing the List Sweep . . . . . . . . . . . . Improving Dynamic Range (NA Mode) . . . . . . . . Adjusting the IF Bandwidth . . . . . . . . . . . Using List Sweep . . . . . . . . . . . . . . . . Performing GO/NO-GO Test of a Filter (using limit line) Planning the Limit Lime . . . . . . . . . . . . . Editing a Limit Line Table . . . . . . . . . . . . To Modify or Delete the Segment . . . . . . . . Executing a Limit Line Test . . . . . . . . . . . To Make a Limit Line Test Active . . . . . . . . To Beep When the Limit Test is Failed . . . . . . To Oset the Limit Line . . . . . . . . . . . . . Stabilizing the Trace . . . . . . . . . . . . . . . . To Stop the Sweep . . . . . . . . . . . . . . . . To Use the Averaging Function . . . . . . . . . . To Use Maximum or Minimum Hold Function . . . To Capture an Unstable Signal Using Signal Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-53 8-53 8-54 8-54 8-56 8-56 8-56 8-57 8-57 8-57 8-58 8-58 8-58 8-59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 9-2 9-3 9-4 9-5 9-6 9-6 9-7 9-8 9-9 9-9 9-10 9-10 9-10 9-11 9-12 9-13 9-13 9-13 9-13 9-14 Measuring Transmission Characteristics of a Filter (NA Mode) Measurement Setup . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . Performing Calibration . . . . . . . . . . . . . . . . . Measurement . . . . . . . . . . . . . . . . . . . . . Read Out Insertion Loss Using the Marker . . . . . . . . . 6 dB Bandwidth . . . . . . . . . . . . . . . . . . . . . Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . Measuring Phase Response . . . . . . . . . . . . . . . . Using the Expanded Phase Mode . . . . . . . . . . . . . Reection Measurement (NA) . . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . Performing Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 10-2 10-2 10-2 10-3 10-3 10-3 10-3 10-4 10-5 10-6 10-7 10-8 10-8 10-8 10-8 10. Examples of Applications Contents-8 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . Return Loss and Reection Coecient . . . . . . . . . . . . . . . . . Standing Wave Ratio (SWR) . . . . . . . . . . . . . . . . . . . . . . . S-Parameters Measurement . . . . . . . . . . . . . . . . . . . . . . . Data Readout Using the Marker . . . . . . . . . . . . . . . . . . . . Impedance Measurement . . . . . . . . . . . . . . . . . . . . . . . . Admittance Measurement . . . . . . . . . . . . . . . . . . . . . . . Gain Compression Measurement (NA) . . . . . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . Performing Calibration . . . . . . . . . . . . . . . . . . . . . . . . Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Output Level Measurement . . . . . . . . . . . . . . . . . . AM Signal Measurement (SA) . . . . . . . . . . . . . . . . . . . . . . . Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . Carrier Amplitude and Frequency Measurement Using the Marker . . . . Modulating Frequency and Modulation Index Measurement Using 1Marker FM Signal Measurement (SA) . . . . . . . . . . . . . . . . . . . . . . . Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Deviation of Wide Band FM Signal . . . . . . . . . . . . . . Frequency Deviation . . . . . . . . . . . . . . . . . . . . . . . . . Carrier Level and Modulating Frequency . . . . . . . . . . . . . . . Evaluation of a Chip Capacitor (ZA Mode) . . . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . . Setting the Electrical Length of the Test Fixture . . . . . . . . . . . . Fixture Compensation . . . . . . . . . . . . . . . . . . . . . . . . Capacitance and Dissipation Factor under Swept Frequency . . . . . . . Setting Measurement Parameters . . . . . . . . . . . . . . . . . . . Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . jZj and (Phase) under Swept Frequency . . . . . . . . . . . . . . . . Equivalent Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . Evaluation of a Crystal Resonator (ZA Mode) . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . . Setting the Electrical Length of the Test Fixture . . . . . . . . . . . . Fixture Compensation . . . . . . . . . . . . . . . . . . . . . . . . Setting Measurement Parameters . . . . . . . . . . . . . . . . . . . Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . Readout of Resonance Frequency (Fr ) and Crystal Impedance (CI) . . . . Equivalent Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . Admittance Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 10-9 10-10 10-11 10-11 10-12 10-13 10-14 10-14 10-14 10-15 10-15 10-15 10-16 10-18 10-18 10-18 10-18 10-18 10-18 10-19 10-21 10-21 10-21 10-21 10-21 10-21 10-21 10-22 10-24 10-24 10-24 10-24 10-25 10-25 10-26 10-26 10-27 10-27 10-27 10-28 10-29 10-31 10-31 10-31 10-31 10-31 10-31 10-31 10-32 10-32 10-32 10-33 10-33 10-35 Contents-9 Using the Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analyzer Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . Dening the Sweep List . . . . . . . . . . . . . . . . . . . . . . . . Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . . . Setting the Electrical Length of the Test Fixture . . . . . . . . . . . . . Fixture Compensation . . . . . . . . . . . . . . . . . . . . . . . . . Measuring Capacitance under DC Bias Conditions . . . . . . . . . . . . . 11. Specications and Supplemental Characteristics Network Measurement . . . . . . . . . . . . . . . . . . . . . . . . . Source Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Magnitude Characteristics . . . . . . . . . . . . . . . . . . . . . Phase Characteristics . . . . . . . . . . . . . . . . . . . . . . . Group Delay Characteristics . . . . . . . . . . . . . . . . . . . . . Sweep Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Measurement Throughput 1 . . . . . . . . . . . . . . . . . . . . . . Spectrum Measurement . . . . . . . . . . . . . . . . . . . . . . . . Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . Amplitude Characteristics . . . . . . . . . . . . . . . . . . . . . . Sweep Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . Specications when Option 1D6 Time-Gated spectrum analysis is installed Specications when Option 1D7 50 to 75 Input Impedance Conversion is installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4395A Option 010 Impedance Measurement . . . . . . . . . . . . . . . Measurement Functions . . . . . . . . . . . . . . . . . . . . . . . Display Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . Sweep Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . IF Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Port Type . . . . . . . . . . . . . . . . . . . . . . . Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . Measurement Basic Accuracy (Supplemental Performance Characteristics) . jZj - Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . jYj - Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . R - X Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . . G - B Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . . D Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . . . . C Accuracy (Depends on D) . . . . . . . . . . . . . . . . . . . . . . Common to Network/Spectrum/Impedance Measurement . . . . . . . . . Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hard copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents-10 . 10-35 . . . . . . . . . . 10-36 10-36 10-36 10-36 10-36 10-37 10-38 10-38 10-38 10-38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 11-1 11-1 11-1 11-3 11-3 11-4 11-5 11-6 11-6 11-6 11-7 11-7 11-8 11-12 11-12 11-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13 11-14 11-14 11-14 11-14 11-14 11-14 11-14 11-14 11-16 11-17 11-18 11-18 11-18 11-19 11-19 11-19 11-20 11-20 11-20 11-20 11-20 11-20 Printer parallel port . . . . . . . . . . . . . . . . . . . . . . . . Option 001 DC Voltage/Current Source . . . . . . . . . . . . . . . Probe Power . . . . . . . . . . . . . . . . . . . . . . . . . . . Specications When HP Instrument BASIC Is Operated . . . . . . . . General Characteristics . . . . . . . . . . . . . . . . . . . . . . . Input and Output Characteristics . . . . . . . . . . . . . . . . . Internal Clock . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . Non-operation Conditions . . . . . . . . . . . . . . . . . . . . . Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Performance at Network Measurement . . . . . . . . . . . . Typical System Performance . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison of Typical Error-Corrected Measurement Uncertainty . . Reection Uncertainty of a One-Port Device . . . . . . . . . . . . . Reection Uncertainty of a Two-Port Device . . . . . . . . . . . . Transmission Uncertainty of a Low-Loss Device . . . . . . . . . . . Transmission Uncertainty of a Wide Dynamic Range Device . . . . . Types of Residual Measurement Errors . . . . . . . . . . . . . . . . Residual Systematic Errors . . . . . . . . . . . . . . . . . . . . . Residual Random Errors . . . . . . . . . . . . . . . . . . . . . . Residual Drift Errors . . . . . . . . . . . . . . . . . . . . . . . . System Error Model . . . . . . . . . . . . . . . . . . . . . . . . . Reection Uncertainty Equations . . . . . . . . . . . . . . . . . . . Total Reection Magnitude Uncertainty (Erm ) . . . . . . . . . . . . Total Reection Phase Uncertainty (Erp ) . . . . . . . . . . . . . . . Transmission Uncertainty Equations . . . . . . . . . . . . . . . . . Total Transmission Magnitude Uncertainty (Etm ) . . . . . . . . . . . Total Transmission Phase Uncertainty (Etp ) . . . . . . . . . . . . . Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . Magnitude Dynamic Accuracy . . . . . . . . . . . . . . . . . . . Determining Relative Magnitude Dynamic Accuracy Error Contribution Phase Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . Determining Relative Phase Dynamic Accuracy Error Contribution . . Dynamic Accuracy Error Contribution . . . . . . . . . . . . . . . . Dynamic Accuracy Error Contribution . . . . . . . . . . . . . . . . Dynamic Accuracy Error Contribution . . . . . . . . . . . . . . . . Eects of Temperature Drift . . . . . . . . . . . . . . . . . . . . . Temperature Drift with S11 One-Port Calibration . . . . . . . . . . . Temperature Drift with Full Two-Port Calibration . . . . . . . . . . System performance with Dierent Test Sets and Connector Types . . . Determining Expected System performance . . . . . . . . . . . . . . Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12. Accessories and Options Options Available . . . . . . . . . . . . . . . . . . DC SOURCE (Option 001) . . . . . . . . . . . . . . High Stability Frequency Reference (Option 1D5) . . Time-Gated Spectrum Analyzer (Option 1D6) . . . . 50 to 75 Input Impedance Conversion (Option 1D7) Impedance Measurement Function (Option 010) . . . Handle Kit (Option 1CN) . . . . . . . . . . . . . . Rack Mount Kit (Option 1CM) . . . . . . . . . . . . Rack Mount and Handle Kit (Option 1CP) . . . . . . Measurement accessories available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-21 11-21 11-21 11-21 11-24 11-24 11-25 11-25 11-26 11-26 11-28 11-28 11-28 11-28 11-29 11-30 11-31 11-32 11-33 11-33 11-33 11-33 11-34 11-35 11-35 11-35 11-36 11-36 11-36 11-37 11-37 11-37 11-38 11-38 11-39 11-40 11-41 11-42 11-43 11-44 11-45 11-52 11-52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 12-1 12-1 12-1 12-1 12-1 12-1 12-1 12-1 12-2 Contents-11 Test Sets . . . . . . . . . . . . . . . . . . . . . . 87511A/B S Parameter Test Set . . . . . . . . . . . 87512A/B Transmission/Reection Test Set . . . . . Active Probes . . . . . . . . . . . . . . . . . . . . 41800A Active Probe (5 Hz to 500 MHz) . . . . . . . 41802A 1 M Input Adapter (5 Hz to 100 MHz) . . . 1141A Dierential Probe . . . . . . . . . . . . . . Power Splitters . . . . . . . . . . . . . . . . . . . 11850C,D Three-way Power Splitters . . . . . . . . 11667A Power Splitter . . . . . . . . . . . . . . . Calibration Kits . . . . . . . . . . . . . . . . . . . Cables . . . . . . . . . . . . . . . . . . . . . . . 11857D 7 mm Test Port Return Cable Set . . . . . . 11857B 75 Type-N Test Port Return Cable Set . . . 11851B 50 Type-N RF Cable Set . . . . . . . . . . BNC Cables . . . . . . . . . . . . . . . . . . . . Adapters . . . . . . . . . . . . . . . . . . . . . . 11852B 50 to 75 Minimum Loss Pad (DC to 2 GHz) Adapter Kits . . . . . . . . . . . . . . . . . . . . System accessories available . . . . . . . . . . . . . . Printer . . . . . . . . . . . . . . . . . . . . . . . GPIB cable . . . . . . . . . . . . . . . . . . . . . External Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 12-2 12-2 12-2 12-2 12-2 12-2 12-2 12-2 12-2 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-5 12-5 12-5 12-5 System Overview . . . . . . . . . . . . . . . . . . . . . . . . Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Processing for Network Measurement . . . . . . . . . . . Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . Ratio Calculations . . . . . . . . . . . . . . . . . . . . . . Frequency Characteristics Correction by Corrective Data Arrays Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . Raw Data Arrays . . . . . . . . . . . . . . . . . . . . . . Calibration Coecient Arrays . . . . . . . . . . . . . . . . Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . Electrical Delay and Phase Oset . . . . . . . . . . . . . . . Conversion . . . . . . . . . . . . . . . . . . . . . . . . . Format . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Hold . . . . . . . . . . . . . . . . . . . . . . . . . . Data Math . . . . . . . . . . . . . . . . . . . . . . . . . . Data Trace Arrays . . . . . . . . . . . . . . . . . . . . . . Memory Trace Arrays . . . . . . . . . . . . . . . . . . . . Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Processing for Spectrum Measurement . . . . . . . . . . . Decimation Windowing . . . . . . . . . . . . . . . . . . . . Fast Fourier Transform (fft) . . . . . . . . . . . . . . . . . Absolute Squared (ABS2 ) . . . . . . . . . . . . . . . . . . . Video Averaging . . . . . . . . . . . . . . . . . . . . . . . Detection . . . . . . . . . . . . . . . . . . . . . . . . . . Attenuator Adjustment . . . . . . . . . . . . . . . . . . . . Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Characteristics Level Correction . . . . . . . . . . Raw Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2 A-3 A-3 A-3 A-4 A-4 A-5 A-5 A-5 A-5 A-5 A-5 A-5 A-5 A-6 A-6 A-6 A-6 A-6 A-6 A-7 A-7 A-7 A-8 A-8 A-8 A-8 A-8 A-8 A-8 A. Basic Measurement Theory Contents-12 . . . . . . . . . . . . . . . . . . . . . . . Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . Format/Unit conversion . . . . . . . . . . . . . . . . . . . . . . . . Data Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . . Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Processing for Impedance Measurement . . . . . . . . . . . . . . . Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage/Current Ratio . . . . . . . . . . . . . . . . . . . . . . . . . I-V to Reection Coecient Conversion . . . . . . . . . . . . . . . . . Calibration Coecient Arrays/Calibration . . . . . . . . . . . . . . . . Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Raw Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . Fixture Compensation Coecient Arrays/Fixture Compensation . . . . . Data Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Trace Array . . . . . . . . . . . . . . . . . . . . . . . . . . Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Network Measurement Basics . . . . . . . . . . . . . . . . . . . . . . . . S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion Function . . . . . . . . . . . . . . . . . . . . . . . . . . . Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Polar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Averaging (Sweep Averaging) . . . . . . . . . . . . . . . . . . . . . . . IF Band Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spectrum Measurement Basics . . . . . . . . . . . . . . . . . . . . . . . Detection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Positive and Negative Peak Modes . . . . . . . . . . . . . . . . . . . Sample Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Swept Spectrum Analyzers versus FFT Analyzers . . . . . . . . . . . . . Selectivity of the RBW . . . . . . . . . . . . . . . . . . . . . . . . . . Noise measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . Noise Format and Marker Noise Form . . . . . . . . . . . . . . . . . . Sample Detection Mode for Noise Measurement . . . . . . . . . . . . . VBW for Noise Measurement . . . . . . . . . . . . . . . . . . . . . . Impedance Measurement Basics . . . . . . . . . . . . . . . . . . . . . . . I-V Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . . Basic Concept of I-V Method . . . . . . . . . . . . . . . . . . . . . . . How This Is Dierent From Impedance Conversion in the Network Analyzer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impedance Measurement Scheme . . . . . . . . . . . . . . . . . . . . . . Measurement Block Diagram . . . . . . . . . . . . . . . . . . . . . . . Test Signal Level at DUT . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Points and Display Points . . . . . . . . . . . . . . . . . . . Channel Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limit Line Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . How Limit Lines are Entered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 A-8 A-8 A-8 A-9 A-9 A-9 A-10 A-10 A-10 A-11 A-11 A-11 A-11 A-11 A-11 A-11 A-11 A-11 A-11 A-12 A-12 A-12 A-12 A-13 A-13 A-14 A-15 A-15 A-15 A-16 A-16 A-16 A-19 A-19 A-19 A-19 A-19 A-21 A-22 A-22 A-22 A-22 A-23 A-23 A-23 . . . . . . . . A-23 A-25 A-25 A-25 A-27 A-28 A-29 A-29 Contents-13 Turning ON/OFF Limit Line/Limit Test . . . . . . . . . . . . . . . . Segments Entering Order Needs Notice . . . . . . . . . . . . . . . . Saving the Limit Line Table . . . . . . . . . . . . . . . . . . . . . . Osetting the Sweep Parameter or Amplitude of the Limit Lines . . . . Supported Display Formats . . . . . . . . . . . . . . . . . . . . . . Use a Sucient Number of Points or Errors May Occur . . . . . . . . . Displaying, Printing, or Plotting Limit Test Data . . . . . . . . . . . . Results of Plotting or Printing the Display with Limit Lines ON . . . . . Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three Types of Markers . . . . . . . . . . . . . . . . . . . . . . . Marker Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marker Time Mode . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous/Discrete Mode . . . . . . . . . . . . . . . . . . . . . . Marker on the Data Trace or on the Memory Trace . . . . . . . . . . 1Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marker Search Function . . . . . . . . . . . . . . . . . . . . . . . Width Function . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak Denition for Network Analyzer Mode . . . . . . . . . . . . . Peak Denition for Spectrum Analyzer Mode . . . . . . . . . . . . GPIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How GPIB Works . . . . . . . . . . . . . . . . . . . . . . . . . . Talker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPIB Requirements . . . . . . . . . . . . . . . . . . . . . . . . . GPIB Capabilities of the 4395A . . . . . . . . . . . . . . . . . . . . Bus Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setting Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration for Network Measurement . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Accuracy Enhancement . . . . . . . . . . . . . . . . . . . . . . . Sources of Measurement Errors . . . . . . . . . . . . . . . . . . . . Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Source Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . Load Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isolation (Crosstalk) . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Response (Tracking) . . . . . . . . . . . . . . . . . . . . Compensation for Measurement Errors . . . . . . . . . . . . . . . . Modifying Calibration Kits . . . . . . . . . . . . . . . . . . . . . . Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dening the Standards . . . . . . . . . . . . . . . . . . . . . . . Standard Types . . . . . . . . . . . . . . . . . . . . . . . . . . Oset and Delay . . . . . . . . . . . . . . . . . . . . . . . . . . Specifying the Standard Class . . . . . . . . . . . . . . . . . . . Accuracy Enhancement Fundamentals-Characterizing Systematic Errors One-Port Error Model . . . . . . . . . . . . . . . . . . . . . . . Measuring reection coecient . . . . . . . . . . . . . . . . . . Directivity Error . . . . . . . . . . . . . . . . . . . . . . . . . Source match error . . . . . . . . . . . . . . . . . . . . . . . Frequency response error . . . . . . . . . . . . . . . . . . . . How calibration standards are used to quantify these error terms . . Two-Port Error Model . . . . . . . . . . . . . . . . . . . . . . . Measuring Transmission Coecient . . . . . . . . . . . . . . . . Load Match Error . . . . . . . . . . . . . . . . . . . . . . . . Contents-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30 A-30 A-31 A-31 A-31 A-31 A-31 A-31 A-32 A-32 A-32 A-32 A-32 A-32 A-33 A-33 A-33 A-35 A-35 A-36 A-37 A-37 A-37 A-37 A-37 A-38 A-38 A-39 A-39 A-40 A-40 A-40 A-40 A-41 A-42 A-43 A-43 A-44 A-44 A-45 A-45 A-45 A-46 A-47 A-47 A-49 A-49 A-49 A-49 A-50 A-50 A-51 A-54 A-54 A-54 Isolation Errors . . . . . . . . . . . . . . . . . . . Error Terms the 4395A Can Reduce . . . . . . . . . . Saving and Recalling Instrument States and Data . . . . . . Storage Devices . . . . . . . . . . . . . . . . . . . . . . Disk Requirements . . . . . . . . . . . . . . . . . . . . Disk Formats . . . . . . . . . . . . . . . . . . . . . . Memory Disk Capacity . . . . . . . . . . . . . . . . . . Copy Files Between the Memory Disk and the Flexible Disk File Types And Data Saved . . . . . . . . . . . . . . . . . Binary Files and ASCII Files . . . . . . . . . . . . . . . Data Groups . . . . . . . . . . . . . . . . . . . . . . . Instrument States and Internal Data Arrays (STATE) . . . Internal Data Arrays (DATA ONLY) . . . . . . . . . . . Graphics image (GRAPHICS) . . . . . . . . . . . . . . File Type and Data Group Combinations . . . . . . . . . . File Names . . . . . . . . . . . . . . . . . . . . . . . . Auto Recall Function . . . . . . . . . . . . . . . . . . . File Structure . . . . . . . . . . . . . . . . . . . . . . . File Structure of Internal Data Arrays File for Binary Files . File Header . . . . . . . . . . . . . . . . . . . . . . Data Group . . . . . . . . . . . . . . . . . . . . . . File Structure of Internal Data Arrays File for ASCII File . . Status Block and Data Block . . . . . . . . . . . . . . File Structure for Single Channel and Dual Channel . . . Data Array Names for the Spectrum Analyzer . . . . . . Data Array Names for the Network Analyzer . . . . . . Data Groups of the Spectrum Analyzer . . . . . . . . . Data Groups of the Network Analyzer . . . . . . . . . Save Data Format . . . . . . . . . . . . . . . . . . . . . CAL Data Group . . . . . . . . . . . . . . . . . . . . . B. Softkey Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Marker5 4Marker 5 4Search5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Chan 15 4Chan 25 4Meas5 . . . 4Display5 . . . 4Scale Ref5 . . 4Bw/Avg5 . . . 4Cal5 . . . . . 4Sweep5 . . . . 4Source5 . . . 4Trigger5 . . . 4Format5 4Center5 4Span5 4Start5 4Stop5 ! . . . . . . . 4Local5 4Preset5 . 4Copy5 . . . . 4Save5 . . . . 4Recall5 . . . . 4Utility5 4System5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-55 A-55 A-58 A-58 A-58 A-58 A-58 A-59 A-59 A-59 A-59 A-59 A-59 A-60 A-60 A-61 A-61 A-62 A-62 A-62 A-62 A-66 A-66 A-68 A-68 A-69 A-69 A-69 A-71 A-71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 B-5 B-7 B-11 B-14 B-16 B-29 B-32 B-34 B-35 B-36 B-39 B-42 B-44 B-47 B-48 B-52 B-54 Contents-15 C. Input Range and Default Settings Active Channel Block . . . . . . . . . . . . . . . . . . . . . 4Chan 15 and 4Chan 25 . . . . . . . . . . . . . . . . . . . . . . Measurement Block . . . . . . . . . . . . . . . . . . . . . . 4Meas5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Format5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Display5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Scale Ref5 . . . . . . . . . . . . . . . . . . . . . . . . . . 4Bw/Avg5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Cal5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sweep Block . . . . . . . . . . . . . . . . . . . . . . . . . 4Sweep5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Source5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Trigger5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Center5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Span5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Start5 & 4Stop5 . . . . . . . . . . . . . . . . . . . . . . . . Marker Block . . . . . . . . . . . . . . . . . . . . . . . . . 4Marker5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Marker!5 . . . . . . . . . . . . . . . . . . . . . . . . . . 4Search5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Utility5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instrument State Block . . . . . . . . . . . . . . . . . . . . . 4System5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Copy5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Save5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Local5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Results of Power Loss to Battery Backup Memory (Factory Setting) Predened Calibration Kits . . . . . . . . . . . . . . . . . . . Predened Standard Class Assignments . . . . . . . . . . . . D. Manual Changes Introduction . . . . . Manual Changes . . . Serial Number . . . . Miscellaneous Changes Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 C-1 C-2 C-2 C-2 C-3 C-5 C-13 C-13 C-14 C-14 C-15 C-16 C-16 C-16 C-17 C-17 C-17 C-18 C-18 C-19 C-20 C-20 C-20 C-21 C-21 C-21 C-22 C-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1 D-1 D-2 D-3 Error Messages in Alphabetical Order . . . . . . . . . . . . . . . . . . . .Messages-1 . Error Messages in Numerical Order . . . . . . . . . . . . . . . . . . . . Messages-15 . . Index Contents-16 Figures 2-1. 2-2. 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11. 3-1. 3-2. 3-3. 3-4. 3-5. 3-6. 3-7. 4-1. 4-2. 4-3. 5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 5-7. 5-8. 5-9. 6-1. 6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. Power Cable Supplied . . . . . . . . . . . . . . . . . . . . . . . . . . . Rack Mount Kits Installation . . . . . . . . . . . . . . . . . . . . . . . . Connecting a Transmission/Reection Test Set . . . . . . . . . . . . . . . . Connecting an S-parameter Test Set . . . . . . . . . . . . . . . . . . . . . Spectrum Analyzer Mode (One Active Probe) . . . . . . . . . . . . . . . . Network Analyzer Mode (One Active Probe) . . . . . . . . . . . . . . . . . Network Analyzer Mode (Two Active Probes) . . . . . . . . . . . . . . . . Using a Transmission/Reection Test Set . . . . . . . . . . . . . . . . . . . Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . . Connecting Test Fixture . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting a Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission/Reection Test Set Setup . . . . . . . . . . . . . . . . . . . S-Parameter Test Set Setup . . . . . . . . . . . . . . . . . . . . . . . . . Required Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . Required Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . . Connecting the test xture . . . . . . . . . . . . . . . . . . . . . . . . . Front Panel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . Screen Display (Single Channel, Cartesian Format) . . . . . . . . . . . . . . Rear panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting DUT for Directional Transmission Characteristic Measurement . . . Connecting DUT for Directional Transmission and Reection Characteristics Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting DUT for Bi-directional Transmission and Reection Characteristics (Four S Parameters) Measurement . . . . . . . . . . . . . . . . . . . . Connecting DUT for Transmission Characteristic Measurement When the Output Signal is in a Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting DUT for Transmission and Reection Characteristics Measurement When the Output Signal is in a Circuit . . . . . . . . . . . . . . . . . . Connecting DUT for Transmission Characteristic Measurement When the Input and Output Signals are in a Circuit . . . . . . . . . . . . . . . . . . . Connecting DUT When Directly Measuring the Signal . . . . . . . . . . . . Connecting DUT When Measuring the Signal in a Circuit . . . . . . . . . . . Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . . Dual Channel Display . . . . . . . . . . . . . . . . . . . . . . . . . . . Location of EXT TRIGGER Connector . . . . . . . . . . . . . . . . . . . . Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expanded Phase Format . . . . . . . . . . . . . . . . . . . . . . . . . . Marker Readout of Complex Plane . . . . . . . . . . . . . . . . . . . . . Marker to Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak to Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displaying Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . Narrowing Span with Signal Track . . . . . . . . . . . . . . . . . . . . . Setting the Sweep Parameters . . . . . . . . . . . . . . . . . . . . . . . Zooming the Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 2-8 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 3-2 3-3 3-4 3-16 3-32 3-33 3-45 4-1 4-6 4-11 5-1 5-2 5-3 5-3 5-4 5-5 5-6 5-7 5-8 6-3 6-5 6-11 6-12 6-13 6-16 6-17 6-18 6-20 6-21 6-22 Contents-17 6-12. 6-13. 6-14. 6-15. 6-16. 6-17. 7-1. 7-2. 7-3. 8-1. 8-2. 8-3. 8-4. 8-5. 8-6. 8-7. 8-8. 8-9. 8-10. 8-11. 8-12. 8-13. 8-14. 8-15. 8-16. 8-17. 8-18. 8-19. 8-20. 8-21. 8-22. 8-23. 8-24. 8-25. 8-26. 8-27. 8-28. 8-29. 8-30. 8-31. 9-1. 9-2. 9-3. 9-4. 9-5. 9-6. 9-7. 9-8. 9-9. 9-10. 9-11. 9-12. 9-13. 10-1. 10-2. Autoscale Function . . . . . . . . . . . . . . . . . . . . . . Marker to Reference . . . . . . . . . . . . . . . . . . . . . . Changing Scale/Div. . . . . . . . . . . . . . . . . . . . . . . Setting IF Bandwidth (IFBW) . . . . . . . . . . . . . . . . . . Setting Resolution Bandwidth (RBW) . . . . . . . . . . . . . . Setting Video Bandwidth (VBW) . . . . . . . . . . . . . . . . Connecting Calibration Standards . . . . . . . . . . . . . . . . Connecting Test Fixture . . . . . . . . . . . . . . . . . . . . Model of Fixture Compensation Kit . . . . . . . . . . . . . . . Marker Readout . . . . . . . . . . . . . . . . . . . . . . . . Sub-marker and Maker List . . . . . . . . . . . . . . . . . . . 1Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . Ripple Parameters Readout . . . . . . . . . . . . . . . . . . . Peak Search . . . . . . . . . . . . . . . . . . . . . . . . . . Searching for Multiple Peaks . . . . . . . . . . . . . . . . . . Peak Denition . . . . . . . . . . . . . . . . . . . . . . . . Threshold Function . . . . . . . . . . . . . . . . . . . . . . Search Range . . . . . . . . . . . . . . . . . . . . . . . . . Reading Saved Data from Spreadsheet Software . . . . . . . . . Bandwidth Measurement Using Width Function . . . . . . . . . Parameters of a Band Pass Filter Measurement . . . . . . . . . Measuring Electrical Length . . . . . . . . . . . . . . . . . . Deviation from the Linear Phase . . . . . . . . . . . . . . . . Setting Group Delay Aperture . . . . . . . . . . . . . . . . . Port Extension With the T/R Test Set . . . . . . . . . . . . . . Cable Measurement Conguration (Transmission) . . . . . . . . Cable Measurement Conguration (Reection) . . . . . . . . . . Noise Readout . . . . . . . . . . . . . . . . . . . . . . . . . C/N Measurement . . . . . . . . . . . . . . . . . . . . . . . Edge Mode . . . . . . . . . . . . . . . . . . . . . . . . . . Level Mode . . . . . . . . . . . . . . . . . . . . . . . . . . Time Domain Measurement Conguration . . . . . . . . . . . . Target and Trigger Signal Timing on the Oscilloscope . . . . . . . Gate Parameters . . . . . . . . . . . . . . . . . . . . . . . . Time Gated Measurement Conguration . . . . . . . . . . . . . Time Gated Spectrum Analysis . . . . . . . . . . . . . . . . . Marker Time . . . . . . . . . . . . . . . . . . . . . . . . . Tracking Unstable Harmonics Using Search Track . . . . . . . . Connecting DC SOURCE to Impedance test kit . . . . . . . . . . Q Measurement Examples . . . . . . . . . . . . . . . . . . . Reducing Sweep Time by Optimizing the Number of Display Points List Sweep Editor . . . . . . . . . . . . . . . . . . . . . . . Sweep List Edit Display . . . . . . . . . . . . . . . . . . . . Setting IF Bandwidth (IFBW) . . . . . . . . . . . . . . . . . . Dynamic Range Enhancement . . . . . . . . . . . . . . . . . Limit Line Image . . . . . . . . . . . . . . . . . . . . . . . Frequency, Upper and Lower Limit . . . . . . . . . . . . . . . Limit Line Editor . . . . . . . . . . . . . . . . . . . . . . . Limit Line Test . . . . . . . . . . . . . . . . . . . . . . . . Osetting Limit Lines . . . . . . . . . . . . . . . . . . . . . Maximum Holding the Drifting Signal . . . . . . . . . . . . . . Display When Starting Signal Track . . . . . . . . . . . . . . . Display After Signal Has Drifted . . . . . . . . . . . . . . . . Transmission Measurement Setup . . . . . . . . . . . . . . . . Response of a SAW Filter . . . . . . . . . . . . . . . . . . . . Contents-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23 6-24 6-25 6-26 6-27 6-28 7-15 7-16 7-19 8-2 8-4 8-5 8-7 8-8 8-9 8-10 8-11 8-13 8-22 8-26 8-26 8-27 8-29 8-30 8-31 8-32 8-33 8-35 8-37 8-38 8-39 8-41 8-42 8-42 8-43 8-46 8-49 8-50 8-51 8-58 9-2 9-3 9-4 9-6 9-7 9-8 9-8 9-9 9-11 9-12 9-14 9-15 9-15 10-2 10-3 10-3. 10-4. 10-5. 10-6. 10-7. 10-8. 10-9. 10-10. 10-11. 10-12. 10-13. 10-14. 10-15. 10-16. 10-17. 10-18. 10-19. 10-20. 10-21. 10-22. 10-23. 10-24. 10-25. 10-26. 10-27. 10-28. 10-29. 10-30. 10-31. 10-32. 11-1. 11-2. 11-3. 11-4. 11-5. 11-6. 11-7. 11-8. 11-9. 11-10. 11-11. 11-12. 11-13. 11-14. 11-15. 11-16. 11-17. 11-18. 11-19. 11-20. 11-21. 11-22. 11-23. Using the Marker to Determine 6 dB Bandwidth . . . . . . . . . . . . . . . Using Peak Search to Determine Ripple . . . . . . . . . . . . . . . . . . . Amplitude and Phase Response of a SAW Filter . . . . . . . . . . . . . . . Expanded Phase Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . Reection Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . Reection Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S11 on Polar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impedance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . Admittance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . Gain Compression Measurement Setup . . . . . . . . . . . . . . . . . . . Gain Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input vs. Output Power Level at the 01 dB Gain Compression Point . . . . . Carrier Amplitude and Frequency of AM Signal . . . . . . . . . . . . . . . Modulating Frequency of AM Signal . . . . . . . . . . . . . . . . . . . . . Wide Band FM Signal Measurement . . . . . . . . . . . . . . . . . . . . . Zooming Carrier Signal of FM Signal . . . . . . . . . . . . . . . . . . . . Connecting the Impedance Test Kit . . . . . . . . . . . . . . . . . . . . . Connecting the Test Fixture . . . . . . . . . . . . . . . . . . . . . . . . Cs and D Characteristics of a Chip Capacitor under Swept Frequency . . . . . jZj and Characteristics of a Chip Capacitor under Swept Frequency . . . . . Equivalent Circuit Parameters . . . . . . . . . . . . . . . . . . . . . . . Simulation of Frequency-based Characteristics Using Resulting Equivalent Circuit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency-based Characteristics of a Crystal Resonator . . . . . . . . . . . Readout of the Fr and CI Values of a Crystal Resonator . . . . . . . . . . . . Equivalent Circuit Parameters . . . . . . . . . . . . . . . . . . . . . . . Simulation of Frequency-based Characteristics Using Resulting Equivalent Circuit Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Admittance Chart for a Crystal Resonator . . . . . . . . . . . . . . . . . . Characteristics of a Varactor Diode under DC Bias Sweep . . . . . . . . . . Magnitude Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . . Phase Dynamic Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . Noise Sidebands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . Typical On-screen Dynamic Range (Center: 50 MHz) . . . . . . . . . . . . . Typical Dynamic Range at Inputs R, A, and B . . . . . . . . . . . . . . . . Impedance Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . 8 bit I/O Port Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . 24-bit I/O Interface Pin Assignment . . . . . . . . . . . . . . . . . . . . . Trigger Signal (External trigger input) . . . . . . . . . . . . . . . . . . . . S-Parameter Test Set Interface Pin Assignments . . . . . . . . . . . . . . . Front View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rear View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Side View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Reection Magnitude Uncertainty of One-Port Device . . . . . . . . . . Total Reection Phase Uncertainty of One-Port Device . . . . . . . . . . . . Total Reections Magnitude Uncertainty of Two-Port Device . . . . . . . . . Total Reection Phase Uncertainty of Two-Port Device . . . . . . . . . . . . Total Transmission Magnitude Uncertainty of a Low-Loss Device . . . . . . . Total Transmission Phase Uncertainty of a Low-Loss Device . . . . . . . . . Total Transmission Magnitude Uncertainty of a Wide Dynamic Range Device . Total Transmission Phase Uncertainty of a Wide Dynamic Range Device . . . . 4395A/85046A System Error Model . . . . . . . . . . . . . . . . . . . . . 10-4 10-5 10-6 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-16 10-17 10-19 10-19 10-22 10-23 10-24 10-26 10-28 10-29 10-29 10-30 10-32 10-33 10-34 10-34 10-35 10-38 11-4 11-5 11-8 11-9 11-10 11-11 11-17 11-22 11-22 11-24 11-25 11-26 11-27 11-27 11-29 11-29 11-30 11-30 11-31 11-31 11-32 11-32 11-34 Contents-19 11-24. Typical Magnitude Dynamic Accuracy Error (@Reference Power Level=Full Scale) . . . . . . . . . . . . . 11-25. Typical Phase Dynamic Accuracy Error (@Reference Power Level=Full Scale) . . . . . . . . . . . . . 11-26. Typical Magnitude Dynamic Accuracy Error (@Reference Power Level=020 dB from Full Scale) . . . . . . 11-27. Typical Phase Dynamic Accuracy Error (@Reference Power Level=020 dB from Full Scale) . . . . . . 11-28. Typical Magnitude Dynamic Accuracy Error (@Reference Power Level=060 dB from Full Scale) . . . . . . 11-29. Typical Phase Dynamic Accuracy Error (@Reference Power Level=060 dB from Full Scale) . . . . . . 11-30. Total Reection Magnitude Uncertainty (@One-Port Cal) . . . . . . 11-31. Total Refection Phase Uncertainty (@One-Port Cal) . . . . . . . . 11-32. Total Transmission Magnitude Uncertainty (@Full Two-Port Cal) . . 11-33. Total Transmission Phase Uncertainty (@Full Two-Port Cal) . . . . . A-1. Schematic block diagram . . . . . . . . . . . . . . . . . . . . . A-2. Data Processing for Network Measurement . . . . . . . . . . . . A-3. Data Processing for Spectrum Measurement . . . . . . . . . . . . A-4. Data Processing for Impedance Measurement . . . . . . . . . . . A-5. S-Parameters of a Two-Port Device . . . . . . . . . . . . . . . . A-6. Reection Impedance and Admittance Conversions . . . . . . . . A-7. Transmission Impedance and Admittance Conversions . . . . . . . A-8. Constant Group Delay . . . . . . . . . . . . . . . . . . . . . . A-9. Higher Order Phase Shift . . . . . . . . . . . . . . . . . . . . . A-10. Rate of Phase Change Versus Frequency . . . . . . . . . . . . . A-11. Variations in Frequency Aperture . . . . . . . . . . . . . . . . . A-12. Swept Spectrum Analyzers versus Step FFT Analyzers . . . . . . . A-13. Resolving Small Adjacent Signal . . . . . . . . . . . . . . . . . A-14. I-V Measurement Method . . . . . . . . . . . . . . . . . . . . . A-15. Impedance Test Kit Block Diagram . . . . . . . . . . . . . . . . A-16. Test Signal Level . . . . . . . . . . . . . . . . . . . . . . . . . A-17. Measurement Points and Display Points . . . . . . . . . . . . . . A-18. The Concept of Segments as a Point between Two Sets of Limit Lines A-19. Bandwidth Search Example . . . . . . . . . . . . . . . . . . . A-20. Peak Denition for Network Analyzer Mode . . . . . . . . . . . . A-21. Peak Denition for Spectrum Analyzer Mode . . . . . . . . . . . A-22. Analyzer Single Bus Concept . . . . . . . . . . . . . . . . . . . A-23. Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . A-24. Source Match . . . . . . . . . . . . . . . . . . . . . . . . . . A-25. Load Match . . . . . . . . . . . . . . . . . . . . . . . . . . . A-26. Sources of Error in a Reection Measurement . . . . . . . . . . . A-27. Reection Coecient . . . . . . . . . . . . . . . . . . . . . . A-28. Eective Directivity EDF . . . . . . . . . . . . . . . . . . . . . A-29. Source Match ESF . . . . . . . . . . . . . . . . . . . . . . . . A-30. Reection Tracking ERF . . . . . . . . . . . . . . . . . . . . . A-31. \Perfect Load" Termination . . . . . . . . . . . . . . . . . . . A-32. Measured Eective Directivity . . . . . . . . . . . . . . . . . . A-33. Short Circuit Termination . . . . . . . . . . . . . . . . . . . . A-34. Open Circuit Termination . . . . . . . . . . . . . . . . . . . . . A-35. Measured S11 . . . . . . . . . . . . . . . . . . . . . . . . . . A-36. Major Sources of Error . . . . . . . . . . . . . . . . . . . . . . A-37. Transmission Coecient . . . . . . . . . . . . . . . . . . . . . A-38. Load Match ELF . . . . . . . . . . . . . . . . . . . . . . . . . A-39. Isolation EXF . . . . . . . . . . . . . . . . . . . . . . . . . . Contents-20 . . . . . 11-39 . . . . . 11-39 . . . . . 11-40 . . . . . 11-40 . . . . . 11-41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-41 11-43 11-43 11-44 11-44 A-2 A-4 A-7 A-10 A-13 A-14 A-14 A-17 A-17 A-18 A-18 A-20 A-21 A-23 A-25 A-25 A-27 A-29 A-34 A-35 A-36 A-39 A-41 A-42 A-43 A-49 A-49 A-50 A-50 A-51 A-51 A-52 A-52 A-53 A-53 A-54 A-54 A-55 A-55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-40. A-41. A-42. A-43. A-44. A-45. A-46. A-47. D-1. Full Two-Port Error Model . . . . . . . . . . . . . . . . . . . . . . . File Header Structure . . . . . . . . . . . . . . . . . . . . . . . . . RAW Data Group Structure for the Network Analyzer . . . . . . . . . . RAW Data Group Structure for the Spectrum Analyzer . . . . . . . . . . CAL Data Group Structure for the Network Analyzer . . . . . . . . . . CAL Data Group Structure for the Spectrum Analyzer . . . . . . . . . . DATA, MEMORY, DATA TRACE and MEMORY TRACE Data Group Structure CAL Data Group Structure . . . . . . . . . . . . . . . . . . . . . . . Serial Number Plate (sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-56 A-62 A-63 A-63 A-64 A-64 A-65 A-71 D-2 Contents-21 Tables 2-1. 2-2. 2-3. 2-4. 7-1. 7-2. 7-3. 8-1. 8-2. 8-3. 8-4. 10-1. 11-1. 11-2. 11-3. 11-4. 11-5. 11-6. 11-7. 11-8. 11-9. 11-10. 12-1. A-1. A-2. A-3. A-4. A-5. A-6. A-7. A-8. A-9. A-10. C-1. C-2. C-3. C-4. C-5. C-6. C-7. Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuse Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rack Mount Kits . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration Method Selection Table . . . . . . . . . . . . . . . . . Example of the Standard Denitions . . . . . . . . . . . . . . . . Example: Standard Class Assignment of the 85032B . . . . . . . . . Allowable RWB Settings and Minimum Gate Length . . . . . . . . . Default Settings When Switched to Normal Span or Zero Span . . . . Minimum Time Resolution . . . . . . . . . . . . . . . . . . . . . Equivalent Circuit Selection Guide . . . . . . . . . . . . . . . . . Sweep List for Evaluating a Varactor Diode . . . . . . . . . . . . . Signal Source Assignment . . . . . . . . . . . . . . . . . . . . . Parameters of System error Model . . . . . . . . . . . . . . . . . Typical System Performance for Devices with 7 mm Connectors 4395A with 87511A Test Set (300 kHz to 500 MHz) . . . . . . . . Typical System Performance for Devices with 3.5 mm Connectors 4395A with 87511A Test Set (300 kHz to 500 MHz) . . . . . . . . Typical System Performance for Devices with 50 Type-N Connectors 4395A with 87511A Test Set (300 kHz to 500 MHz) . . . . . . . . Typical System Performance for Devices with 75 Type-N Connectors 4395A with 87511B Test Set (300 kHz to 500 MHz) . . . . . . . . Typical System Performance for Devices with 50 Type-N Connectors 4395A with 87512A Test Set (100 Hz to 500 MHz) . . . . . . . . . Typical System Performance for Devices with 75 Type-N Connectors 4395A with 87512B Test Set (100 Hz to 500 MHz) . . . . . . . . . Reection Measurement Uncertainty Worksheet . . . . . . . . . . . Transmission Measurement Uncertainty Worksheet . . . . . . . . . . Supported Printers and Printing Modes . . . . . . . . . . . . . . . Obtaining Parameters in 1 Marker Mode . . . . . . . . . . . . . . . Standard Denitions . . . . . . . . . . . . . . . . . . . . . . . . Standard Class Assignments Table . . . . . . . . . . . . . . . . . . Valid Characters for File Names . . . . . . . . . . . . . . . . . . . Suxes and Extensions Added Automatically . . . . . . . . . . . . Contents of ASCII Files . . . . . . . . . . . . . . . . . . . . . . Data Groups and Data Array Names for Spectrum Analyzer . . . . . Data Groups and Data Array Names for the Network Analyzer Mode . Network Measurement Type Versus Raw Data Saved . . . . . . . . . Calibration Type for Network Measurement Versus CAL Data Saved . 3.5 mm Standard Cal Kit . . . . . . . . . . . . . . . . . . . . . . 7 mm Standard Cal Kit . . . . . . . . . . . . . . . . . . . . . . . 50 Type-N Standard Cal Kit . . . . . . . . . . . . . . . . . . . . 75 Type-N Standard Cal Kit . . . . . . . . . . . . . . . . . . . . Standard Class Assignments Table (7 mm and 3.5 mm) . . . . . . . . Standard Class Assignments Table (50 Type-N) . . . . . . . . . . . Standard Class Assignments Table (75 Type-N) . . . . . . . . . . . Contents-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 2-4 2-7 2-8 7-2 7-10 7-12 8-45 8-47 8-48 8-55 10-37 11-23 11-34 . . . . 11-46 . . . . 11-47 . . . . 11-48 . . . . 11-49 . . . . 11-50 . . . . . . . . . . . . . . . . . . . . . 11-51 11-53 11-54 12-5 A-33 A-46 A-47 A-61 A-61 A-67 A-68 A-69 A-70 A-70 C-22 C-22 C-22 C-23 C-24 C-24 C-25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1. Manual Changes by Serial Number . . . . . . . . . . . . . . . . . . . . . D-2. Manual Changes by Firmware Version . . . . . . . . . . . . . . . . . . . . D-1 D-1 Contents-23 1 Introduction About the 4395A Network/Spectrum/Impedance Analyzer The 4395A Network/Spectrum/Impedance Analyzer provides excellent vector network and spectrum measurement performance from 10 Hz to 500 MHz. Providing both network and spectrum measurement capabilities, the 4395A is a cost eective solution for the development and production testing of electronic devices. Optionally, the 4395A can serve as an impedance analyzer as well. This requires Option 010 and the 43961A Impedance Test Kit. About This Guide This guide is the Operation Manual for the 4395A. It includes the following chapters/appendixes: \Chapter 1 Introduction" This chapter. \Chapter 2 Installation Provides procedures needed to install the 4395A. Guide" Provides a quick-start tutorial which lets you learn the basics of \Chapter 3 Quick Start network, spectrum, and impedance analyzer modes. Guide" Illustrates and describes the 4395A's front and rear panel \Chapter 4 Front and Rear features. Panels" \Chapter 5 Preparations for Provides the procedures needed to prepare for a measurement. Measurement" \Chapter 6 Setting and Provides the procedures for setting and optimizing measurement conditions of 4395A. Optimizing Measurement Conditions" \Chapter 7 Calibration" Provides general procedures for using the 4395A as an impedance analyzer. \Chapter 8 Analyzing the Explains how to analyze and process the measurement results Measurement Results" obtained in each analyzer mode. Provides advanced measurement techniques that can be used to \Chapter 9 Advanced optimize your measurement tasks. Techniques for Optimizing Measurement Tasks" \Chapter 10 Examples of Contains example applications of the 4395A for each of Applications" network, spectrum, and impedance analyzer modes. \Chapter 11 Specications Provides detailed information on the 4395A's specications. and Supplemental Characteristics" \Chapter 12 Accessories and Lists options and accessories available with the 4395A. Options" Introduction 1-1 \Appendix A Analyzer Features" \Appendix B Softkey Reference" \Appendix C Input Range and Default Settings" \Appendix D Manual Changes" Document Guide provides additional information on analyzer features beyond the basics covered in the previous chapters. Shows the hierarchy of softkeys that appear on the 4395A's display. Lists the valid ranges and initial settings of the various functions of the 4395A. Provides information on changes to the manual and on the product serial number. For information on using GPIB commands to program the 4395A, refer to Programming Manual, which contains a complete command reference with ready-to-use sample programs. 1-2 Introduction 2 Installation Guide This chapter provides installation and setup instructions. It contains the following information: Incoming Inspection Replacing Fuse Power Requirements Operation Environment Providing clearance to dissipate heat at installation site Instruction for Cleaning Rack/Handle Installation Connecting Cables Connecting a Test Set for Network Analyzer Mode Connecting an Active Probe Connecting an Impedance Test Kit and a Test Fixture Connecting a Keyboard Setting Up a 75 Measurement For Spectrum Analyzer Mode Installation Guide 2-1 Incoming Inspection Incoming Inspection Warning To avoid hazardous electrical shock, do not turn on the 4395A when there are signs of shipping damage to any portion of the outer enclosure (for example, covers, panel, or display) Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the 4395A has been checked mechanically and electrically. The contents of the shipment should be as listed in Table 2-1. If the contents are incomplete, if there is mechanical damage or defect, or if the 4395A does not pass the power-on selftests, notify the nearest Agilent Technologies oce. If the shipping container is damaged, or the cushioning material shows signs of unusual stress, notify the carrier as well as the Agilent Technologies oce. Keep the shipping materials for the carrier's inspection. 2-2 Installation Guide Incoming Inspection Description Table 2-1. Contents Agilent Part Number Quantity Network/Spectrum/Impedance Analyzer 4395A 1 CD-ROM (Manuals) 04395-905xx1 1 Sample Program Disk (2 disks) 04395-180x0 1 Power Cable2 - 1 Operation Manual 04395-900x01 1 Programming Manual 04395-900x11 1 Instrument BASIC Users HandBook 04155-90151 1 - 1 8120-1839 1 04395-901x01 1 1250-1859 1 11852B option 004 1 5062-3991 1 5062-3979 1 5062-3985 1 Option ABA only Option 810 only mini-DIN Keyboard Option 010 only BNC(m)-BNC(m) Cable Option 0BW only Service Manual Option 1D5 only BNC Adapter Option 1D7 only 50 /75 Minimum Loss Pad Option 1CN Handle Kit Handle Kit Option 1CM Rack Mount Kit Rack Mount Kit Option 1CP Rack Mount & Handle Kit Rack Mount & Handle Kit 1 The number indicated by \x" in the part number of each manual, is allocated for numbers increased by one each time a revision is made. The latest edition comes with the product. 2 The power cable depends on where the instrument is used,see Figure 2-1. Installation Guide 2-3 Replacing Fuse Replacing Fuse Fuse Selection Select proper fuse according to the Table 2-2. Table 2-2. Fuse Selection Fuse Rating/Type Fuse Part Number 5A 250Vac UL/CSA type Time Delay 2110-0030 For ordering the fuse,contact your nearest Agilent Technologies Sales and Service Oce. Procedure Lever a small minus screwdriver to dismount the fuse holder above the AC line receptacle on the rear panel. Caution To check or replace the fuse, pull the fuse holder and remove the fuse. To reinstall the fuse, insert a fuse with the proper rating into the fuse holder. Use the proper fuse for the line voltage selected. Use only fuses with the required current rating and of the specied type as replacements. DO NOT use a mended fuse or short-circuit the fuse-holder in order to by-pass a blown fuse. Find out what caused the fuse to blow! 2-4 Installation Guide Power Requirements Power Requirements The 4395A requires the following power source: Voltage : 90 to 132 Vac, 198 to 264 Vac Frequency : 47 to 63 Hz Power : 300 VA maximum Power Cable In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate ac power outlet, this cable grounds the instrument frame. The type of power cable shipped with each instrument depends on the country of destination. Refer to Figure 2-1 for the part numbers of the power cables available. Warning For protection from electrical shock, the power cable ground must not be defeated. The power plug must be plugged into an outlet that provides a protective earth ground connection. Installation Guide 2-5 Power Requirements Figure 2-1. Power Cable Supplied 2-6 Installation Guide Operation Environment Operation Environment The 4395A must be operated under within the following environment conditions, and sucient space must be kept behind the 4395A to avoid obstructing the air ow of the cooling fans. Temperature: 10 C to 40 C Humidity: less than 80% RH Note The 4395A must be protected from temperature extremes which could cause condensation within the instrument. Providing clearance to dissipate heat at installation site To ensure the specications and measurement accuracy of the product, you must keep ambient temperature around the product within the specied range by providing appropriate cooling clearance around the product or, for the rackmount type, by forcefully air-cooling inside the rack housing. For information on ambient temperature to satisfy the specications and measurement accuracy of the product, refer to Chapter 11, Specications and Supplemental Characteristics. When the ambient temperature around the product is kept within the temperature range of the operating environment specication (refer to \Operating Conditions" in Chapter 11), the product conforms to the requirements of the safety standard. Furthermore, under that temperature environment, it has been conrmed that the product still conforms to the requirements of the safety standard when it is enclosed with cooling clearance as follows: Table 2-3. Conditions Rear 180 mm Side 60 mm Instruction for Cleaning To prevent electrical shock, disconnect the 4395A power cable from the receptacle before cleaning. Wipe with a dry cloth or a soft cloth that is soaked with water and wrung tightly without undue pressure to clean the casing. Do not attempt to clean the 4395A internally. Installation Guide 2-7 Rack/Handle Installation Rack/Handle Installation The 4395A can be rack mounted and used as a component in a measurement system. Figure 2-2 shows how to rack mount the 4395A. Table 2-4. Rack Mount Kits Description Option 1CN 1CM 1CP Handle Kit Rack Mount Kit Rack Mount & Handle Kit Agilent Part Number 5062-3991 5062-3979 5062-3985 Figure 2-2. Rack Mount Kits Installation Option 1CN Handle Kit Option 1CN is a handle kit containing a pair of handles and the necessary hardware to attach them to the instrument. Installing the Handle 1. Remove the adhesive-backed trim strips 1 from the left and right front sides of the 4395A. 2. Attach the front handles 3 to the sides using the screws provided. 3. Attach the trim strips 4 to the handles. 2-8 Installation Guide Rack/Handle Installation Option 1CM Rack Mount Kit Option 1CM is a rack mount kit containing a pair of anges and the necessary hardware to mount them to the instrument in an equipment rack with 482.6 mm (19 inches) horizontal spacing. Mounting the Rack 1. Remove the adhesive-backed trim strips 1 from the left and right front sides of the 4395A. 2. Attach the rack mount ange 2 to the left and right front sides of the 4395A using the screws provided. 3. Remove all four feet (lift bar on the inner side of the foot, and slide the foot toward the bar). Option 1CP Rack Mount & Handle Kit Option 1CP is a rack mount kit containing a pair of anges and the necessary hardware to mount them to an instrument which has handles attached, in an equipment rack with 482.6 mm (19 inches) spacing. Mounting the Handle and Rack 1. Remove the adhesive-backed trim strips 1 from the left and right front sides of the 4395A. 2. Attach the front handle 3 and the rack mount ange 5 together on the left and right front sides of the 4395A using the screws provided. 3. Remove all four feet (lift bar on the inner side of the foot, and slide the foot toward the bar). Connecting Cables Use shielded cables when you connect the DUT and accessories for testing. For more information about the cables, see chapter 12. Installation Guide 2-9 Connecting a Test Set for Network Analyzer Mode Connecting a Test Set for Network Analyzer Mode To use the network analyzer mode of the 4395A, a test set is required to measure the transmission and reection characteristics of the device under test (DUT). You can use either the 87512A/B transmission/reection (T/R) test set or the 87511A/B S-parameter test set. The 87512A/B T/R test set measures reection and transmission in the forward direction only. The 87511A/B S-parameter test set measures both the forward and reverse directions without reconnection. For more information about the test sets, see Chapter 12. Connecting a Transmission/Reection Test Set Figure 2-3. Connecting a Transmission/Reection Test Set 1. Place the transmission/reection (T/R) test set in front of the 4395A. 2. Connect the R and A ports of the 4395A and the T/R test set to each other. 3. Connect the RF OUT port of the 4395A and the RF IN port of the T/R test set with a semi-rigid cable. Note When you use the 87512B, press 4Cal5 MORE SET Z0 . Then press 475 455 4215 to set the characteristic impedance (Z0 ) to 75 . 2-10 Installation Guide NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Connecting a Test Set for Network Analyzer Mode Connecting an S-parameter Test Set Figure 2-4. Connecting an S-parameter Test Set 1. Place the 4395A on the S-parameter test set. 2. Connect the TEST SET-I/O INTERCONNECT interface on the rear panel of the 4395A and the NETWORK ANALYZER-I/O INTERCONNECT interface of the test set using the cable furnished with the test set. 3. Connect the RF OUT, R, A, and B inputs of the 4395A to the S-parameter test set to each other. Note When you use the 87511B, press 4Cal5 MORE SET Z0 . Then press 475 455 4215 to set the characteristic impedance (Z0 ) to 75 . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Installation Guide 2-11 Connecting an Active Probe Connecting an Active Probe The active probe allows you to analyze an in-circuit signal or device that has no port for connecting to the test set. The active probe can be used for both spectrum and network measurements. The 4395A can use the following active probes: 41800A Active Probe (5 Hz to 500 MHz) 41802A 1 M Input Adapter (5 Hz to 100 MHz) For more information about these active probes, see Chapter 12. For Spectrum Analyzer Mode Figure 2-5. Spectrum Analyzer Mode (One Active Probe) 1. Connect the output connector of the active probe to the R,A,or B port of the 4395A. 2. Plug the probe power plug into the PROBE POWER connector. For Network Analyzer Mode Using One Active Probe 2-12 Installation Guide Connecting an Active Probe Figure 2-6. Network Analyzer Mode (One Active Probe) 1. 2. 3. 4. Connect the power splitter to the RF OUT port. Connect one output from the power splitter to the R input. Connect the other output of the power splitter to the DUT. Connect the active probe to the B input and plug the probe plug into the PROBE POWER connector. 5. If necessary, terminate the DUT with a load. Note The following power splitters are available for the 4395A: 11850C,D Three-way Power Splitter 11667A Two-way Power Splitter For more information about these power splitters, see Chapter 12. Installation Guide 2-13 Connecting an Active Probe Using Two Active Probes Figure 2-7. Network Analyzer Mode (Two Active Probes) 1. 2. 3. 4. Connect one active probe to the R input. Connect the other active probe to the B input. Connect the RF OUT port to the DUT. If necessary, terminate the DUT with a load. 2-14 Installation Guide Connecting an Active Probe Using a Transmission/Reection Test Set Figure 2-8. Using a Transmission/Reection Test Set 1. Connect the 87512A/B T/R test set. 2. Connect the active probe to the B input. 3. If necessary, terminate the DUT with a load. Installation Guide 2-15 Connecting an Active Probe Connecting an Impedance Test Kit and a Test Fixture for Impedance Analyzer Mode Connecting an Impedance Test Kit To start the impedance measurement, you need to connect the 43961A Impedance Test Kit to the 4395A. See Figure 2-9. 1. Verify the 4395A is turned o. 2. Connect the N-cable to the RF OUT port of the 4395A. 3. Connect two connectors of the 43961A to the R and A ports of the 43961A. 4. Connect the other connector of the N-cable to the RF IN port of the 43961A. 5. Turn on the 4395A. Figure 2-9. Connecting the Impedance Test Kit Connecting a Test Fixture to the Impedance Test Kit To connect the test xture to the impedance test kit, see the applicable test xture manual for instructions. The following is a general procedure: 1. Turn the APC-7 connector of the impedance test kit OUTPUT port. 2. Verify that the connector sleeve is retracted fully. 3. Set the mounting posts of the test station into the twin locating holes at the corner of the test xture. 4. Connect the connector on the underside of the test xture to the OUTPUT port of the impedance test kit. 2-16 Installation Guide Connecting an Active Probe Figure 2-10. Connecting Test Fixture Installation Guide 2-17 Connecting a Keyboard Connecting a Keyboard An mini-DIN keyboard can be connected to the mini-DIN connector on the rear panel of the 4395A. The mini-DIN keyboard provides an easier way to enter characters for the le names, display titles, and Instrument BASIC programs. It can also access the 4395A softkey functions by using keyboard function keys. For more information on the mini-DIN keyboard, see Programming Manual. Figure 2-11. Connecting a Keyboard 2-18 Installation Guide Setting Up a 75 Measurement For Spectrum Analyzer Mode Setting Up a 75 Measurement For Spectrum Analyzer Mode Note This operation requires the option 1D7 50 to 75 Input Impedance Conversion. For detail information about option 1D7, see Chapter 12. 1. Attach the 11852B Option 004 50 N(m)/75 N(f) minimum loss pad to R, A, or B input. 2. Press 4Cal5. 3. Press INPUT Z . NNNNNNNNNNNNNNNNNNNNNNN 4. Press 4*5 to set the impedance of the source (75 ). Then press 4Entry O5. 5. Select the input port: Attached to Press Input R Input A Input B NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN LVL CAL DATA R LVL CAL DATA A LVL CAL DATA B NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Enter the insertion loss of the minimum loss pad in dB and press 4215. Note Perform this procedure each time the 4395A is preset because the 4395A does not retain this setting in memory. Installation Guide 2-19 3 Quick Start Guide Network Analyzer Tour In this section, you explore the network analyzer mode of operation. Before starting this tour, verify that the 4395A is correctly installed (see chapter 2, \Installation Guide," if you need additional information). Before You Leave On The Tour On this tour, you will learn how to make a basic network analyzer measurement by measuring the transmission characteristics of a bandpass lter. Overview The following is a short summary of the tour: 1. Preparing for a measurement Turning ON the 4395A Connecting the DUT 2. Setting up the 4395A Selecting the analyzer type Setting the active channel Setting the input port Setting the frequency range Performing the automatic scaling 3. Making a calibration 4. Reading a measurement result Reading a measured value by using marker 5. Printing out the measurement result Conguring and connecting a printer Making a hardcopy of the display After you nish this tour, you will understand how to make a basic measurement in the network analyzer mode of operation. Quick Start Guide 3-1 Before You Leave On The Tour Required Equipments To perform all the steps in this tour, you must have the following equipments: 4395A Network/Spectrum/Impedance Analyzer Measurement Device: This tour assumes the device under test (DUT) is a 70 MHz bandpass lter THRU (BNC female-to-female connector) Two BNC cables Test Set (use either of the following) Transmission/Reection (T/R) Test Set Two N-to-BNC adapters S-Parameter Test Set Two APC7-to-N adapters Two N-to-BNC adapters HP DeskJet Printer * Parallel Interface Cable * * If you wish to test some other device, you will need to change particular measuring conditions, such as the frequency range, according to the general characteristics of the DUT. * If you do not have an HP DeskJet printer and cable, skip step 5, \Printing Out the Measurement Results". Figure 3-1. Required Equipment 3-2 Quick Start Guide Step 1: Preparing for the Measurement Step 1: Preparing for the Measurement You must set up the test set before you turn ON the 4395A. The setup procedure for the test set is described in \Connecting a Test Set for Network Analyzer Mode" in Chapter 2. Turning ON the 4395A Press the LINE switch. The 4395A performs a power on self-test. About 20 seconds later, the model name, revision number, and other information should appear on the LCD to indicate that the 4395A has normally started up. Connecting the DUT Connect the DUT as shown in Figure 3-2 or Figure 3-3. Figure 3-2. Transmission/Reection Test Set Setup Quick Start Guide 3-3 Step 1: Preparing for the Measurement Figure 3-3. S-Parameter Test Set Setup 3-4 Quick Start Guide Step 2: Setting up the 4395A Step 2: Setting up the 4395A Before you start the measurement, you must set up the 4395A to t your measurement requirements. For example, you must set the frequency range of the measurement. In this step, you will set the following parameters: Analyzer type Network analyzer mode Active channel Channel 1 Inputs B/R or S21 (depending on the test set) Format Log magnitude (default) Frequency Range Center 70 MHz, Span 500 kHz Setting the Analyzer Type To use the 4395A in the network analyzer mode, you must set the analyzer type to the network analyzer mode after selecting the active channel. In the MEASUREMENT block, press 4Meas5. FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press ANALYZER TYPE . FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press NETWORK ANALYZER . Quick Start Guide 3-5 Step 2: Setting up the 4395A Setting the Active Channel Because the 4395A has two measurement channels you can have two dierent measurement setups at the same time. To change the active channel to channel 1: In the ACTIVE CHANNEL block, press 4Chan 1 5. Note Verify the Chan 1 active channel indicator lights. Changing the analyzer type presets the 4395A for the active channel. If you want to keep the current measurement settings when changing the analyzer type, rst set the other channel to active. Selecting the Input The 4395A uses three inputs for network measurements (R, A, and B). Usually, the R input is connected to the RF OUT signal directly, the A input measures the reected signal from the DUT, and the B input measures the signal through the DUT. This example assumes you are using the T/R test set. Therefore, because you are going to measure the transmission characteristics of the DUT, select B/R to measure the ratio of B and R inputs. When you use the S-parameter test set, you can measure the forward and reverse characteristics of a 2-port device without reconnecting the inputs. In that case, select S21 for a transmission measurement in the forward direction. 3-6 Quick Start Guide Step 2: Setting up the 4395A In the MEASUREMENT block, press 4Meas5. FFFFFFFFF Press B/R . FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press Trans:FWD S21 [B/R] to select B/R for the forward direction. Setting the Frequency Range To display the transmission characteristics of the 70 MHz bandpass lter, you should specify the frequency range for the measurement. In this example, set the 4395A to a 70 MHz center frequency with a 500 kHz span. Quick Start Guide 3-7 Step 2: Setting up the 4395A In the SWEEP block, press 4Center5. Press 475 405. Press 4M/5. In the SWEEP block, press 4Span5. Press 455 405 405. Press 4k/m5. Performing the Automatic Scaling Often, the trace obtained after specifying the frequency range is too large or too small vertically for the grid. However, by using the automatic scaling function, you can obtain the optimum vertical setting automatically. 3-8 Quick Start Guide Step 2: Setting up the 4395A In the MEASUREMENT block, Press 4Scale Ref5. FFFFFFFFFFFFFFFFFFFFFFFFFF Press AUTO SCALE . The transmission characteristics trace of the lter is displayed as shown below: All the settings are displayed on the LCD. 1. Active channel is set to channel 1. 2. Inputs are set to B/R. 3. Format is set to log magnitude mode. 4. Center frequency is set to 70 MHz. 5. Frequency span is set to 500 kHz. Quick Start Guide 3-9 Step 3: Making a Calibration Step 3: Making a Calibration To ensure accurate measurement results, calibrate the 4395A before making a measurement. Calibration reduces error factor due to uncertainty. In this example, you perform the response calibration to cancel a frequency response error. A THRU (BNC female-to-female connector) is necessary to perform a response calibration for the transmission measurement. Performing a Response Calibration (for the Transmission Measurement) Press 4Cal5. FFFFFFFFFFFFFFFFFFFFF Press RESPONSE . FFFFFFFFFFFF Press THRU . 3-10 Quick Start Guide FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press CALIBRATE MENU . Disconnect the DUT then, connect the THRU. WAIT - MEASURING CAL STANDARD is displayed. Step 3: Making a Calibration FFFFFFFFFFFF The THRU softkey label is underlined when the measurement is completed. FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press DONE: RESPONSE . Disconnect the THRU and reconnect the DUT. \Cor" is displayed on the left side of the display to show that the frequency response error is corrected. The measured value is now corrected for the frequency response error. Note If the trace is changed, it requires an adjustment of the scale. Perform the automatic scaling again by pressing 4Scale Ref5 AUTO SCALE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Quick Start Guide 3-11 Step 4: Reading a Measurement Result Step 4: Reading a Measurement Result You may want to readout the measured values on the displayed trace. You can use the marker function for this purpose. The marker shows the frequency and response value at the marker point. Reading a Measured Value by Using Marker In the MARKER block, press 4Marker5. Verify a marker appears on the trace. Turn the knob to the right to move the marker toward the right. Read the values at the right top of the display. The marker has a search function that makes it easier and faster to evaluate the trace results. For example, to search for the maximum value and its frequency on the trace: In the MARKER block, press 4Search5. 3-12 Quick Start Guide FFFFFFFFF Press MAX . Step 4: Reading a Measurement Result The marker immediately moves to the maximum point on the displayed trace. Read the frequency and response values displayed at the upper right of the display. Quick Start Guide 3-13 Step 5: Printing Out the Measurement Result Step 5: Printing Out the Measurement Result You may want a hardcopy of the measured results for a permanent record of the measurement. The 4395A can print out the data as a snapshot of the display or as a list of values without using any external controller. Conguring and Connecting a Printer Locate the parallel interface connector on the back of the 4395A. Caution Do not connect a printer to \TEST SET - I/O INTERCONNECT". Doing so could damage the printer. Note For more information about printer, see the chapter 12. Making a Hardcopy of the LCD Display Press 4Copy5. 3-14 Quick Start Guide FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press PRINT [STANDARD] to execute the printing. Spectrum Analyzer Tour Spectrum Analyzer Tour In this section, you explore the spectrum analyzer mode of operation. Before starting this tour, verify the 4395A is correctly installed (see chapter 2, \Installation Guide," if you need additional information). Before You Leave On The Tour On this tour, you will learn how to make a basic spectrum analyzer measurement by measuring the output signal of a signal generator. Overview The following is a short summary of the tour: 1. Preparing for a measurement Turning ON the 4395A Connecting the test signal source 2. Setting up the 4395A Selecting the analyzer type Setting the active channel Selecting the input Setting the frequency range 3. Making a Measurement Reading the peak level using the marker Setting the resolution bandwidth to see low level signals Searching for harmonics using the search function 4. Saving and recalling the 4395A settings Preparing the disk Saving 4395A settings Entering the le name Recalling the 4395A settings After you nish this tour, you will understand how to make a basic measurement in the spectrum analyzer mode of operation. Quick Start Guide 3-15 Spectrum Analyzer Tour Required Equipments To perform all the steps in this tour, you must have the following equipments: 4395A Network/Spectrum/Impedance Analyzer Test signal source (020dBm, 20MHz, sine wave)** N to BNC Adapter (50 ) BNC cable 3.5 inch 2HD Blank Disk ** If you wish to test some other test signal, you will need to change particular measuring conditions, such as the frequency range, according to the general characteristics of the signal. Figure 3-4. Required Equipments 3-16 Quick Start Guide Step 1: Preparing for a Measurement Step 1: Preparing for a Measurement Turning ON the 4395A Verify the power source setting is correct before you turning ON the 4395A. If necessary, see chapter 2, \Installation Guide." Press the LINE switch The 4395A performs a power on self-test. About 20 seconds later, the model name, revision number, and other information should appear on the LCD to indicate that the 4395A has normally started up. Connecting the DUT Connect the test signal source (020 dBm, 20 MHz) to Input R of the 4395A. Quick Start Guide 3-17 Step 2: Setting Up the 4395A Step 2: Setting Up the 4395A In this step, you will set the following parameters: Active channel Channel 2 Analyzer type Spectrum analyzer mode Input R input Frequency Range 0 Hz to 80 MHz Setting the Analyzer Type To use the spectrum analyzer mode, you must set the analyzer type to the spectrum analyzer mode after selecting an active channel. In the MEASUREMENT block, press 4Meas5. FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press ANALYZER TYPE . FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press SPECTRUM ANALYZER . Note Changing the analyzer type presets the 4395A for the active channel. If you want to keep the current measurement settings when changing the analyzer type, rst set the other channel to active. 3-18 Quick Start Guide Step 2: Setting Up the 4395A Setting the Active Channel The 4395A has two measurement channels. This allows you to have two dierent measurement setups. Other selections you make on the front panel aect only the active channel. To set the active channel to channel 2: In the ACTIVE CHANNEL block, press 4Chan 25. Note Verify the Chan 2 active channel indicator lights. All selected settings are stored separately for each channel. You must select an active channel (1 or 2) before you can change the measurement setup for that channel. Selecting the Input The 4395A has three inputs; R, A, and B. Any of the inputs (R, A, or B) can be used for a spectrum measurement. In the spectrum analyzer mode, the R input is selected by default. In the following steps, you verify the R input is selected. In the MEASUREMENT block, press 4Meas5. FFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFF Verify the R in SPECTRUM: R is underlined. (This shows that the R input is selected for a spectrum analyzer measurement.) Quick Start Guide 3-19 Step 2: Setting Up the 4395A Setting the Frequency Range The CAL OUT signal (20 MHz at 020 dBm) is connected as test signal source. To see this signal on display, you must set the appropriate frequency range (in this case, 0 to 80 MHz): In the SWEEP block, press 4Start5. Press 405. Press 4215. Press 4Stop5. Press 485 405. Press 4M/5. Verify the 20 MHz signal is displayed as shown below: 3-20 Quick Start Guide Step 2: Setting Up the 4395A Quick Start Guide 3-21 Step 3: Making a Measurement Step 3: Making a Measurement Reading the Peak Level Using the Marker Let's try to read peak signal level by using the marker: Press 4Search5. FFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press SEARCH:PEAK . Read the marker value shown at the upper right of grid. 3-22 Quick Start Guide Marker appears on trace. Marker moves to the top of the CAL OUT signal. Step 3: Making a Measurement Setting the Resolution Bandwidth to See Low Level Signals To see lower level signals that are approximately the same level as the noise oor, use a narrow resolution bandwidth (rbw) setting. Before you set the RBW, set the maximum peak level as the reference level. This increases the visibility of the lower level signal. This technique is useful when you are measuring two signals and one is very close to the noise level. Press 4Marker!5. Press MKR!REFERENCE . FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF The trace moves upward to place the tip of the maximum peak at the top line of the grid. Quick Start Guide 3-23 Step 3: Making a Measurement Press 4Bw/Avg5. Press 4+5 to narrow RBW setting to 3 kHz. Now, with the noise oor level lowered by narrowing the resolution bandwidth, the second and third harmonics can be seen as shown below: 3-24 Quick Start Guide Step 3: Making a Measurement Searching for Harmonics Using the Search Function You can easily readout a harmonics' frequency and level by using the peak search function: Press 4Search5. FFFFFFFFFFFFFFFFFFFFFFFF Press NEXT PEAK . FFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press SEARCH:PEAK . The marker moves to the third (or second) harmonic. To move the marker to the second (or third) FFFFFFFFFFFFFFFFFFFFFFFF harmonic, press NEXT PEAK again. Quick Start Guide 3-25 Step 4: Saving and Recalling 4395A Settings Step 4: Saving and Recalling 4395A Settings You can store the settings or measurement data on a 3.5 inch disk using the 4395A's disk drive. In this tour, you save and recall the settings that you selected previously in this tour. Preparing the Disk To use a disk, you must rst initialize it by performing the following steps: Verify the disk is not write protected. Insert the disk into the disk drive Press 4Save5. Press FILE UTILITIES . FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFF Toggle STOR DEV [MEMORY] to [DISK] , and Toggle FORMAT [DOS] to [LIF] . FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF press INITIALIZE DISK 3-26 Quick Start Guide Step 4: Saving and Recalling 4395A Settings FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Press INIT DISK: YES . The message, \INITIALIZE DISK In Progress," is displayed. After the disk is initialized, this message is turned o. Note The 4395A can use either a LIF (Logical Interchange Format) or a MS-DOS (Disk Operating System) format disk. Note The 4395A can initialize a 1.44 MB 3.5 inch exible disk only. Saving 4395A Settings In the following example, use \SATOUR" as the le name of the 4395A settings you want to save. Press 4Save5. FFFFFFFFFFFFFF Press STATE . The 4395A requests the le name you want to use for the saved settings. Entering the File Name Note If a keyboard is connected, you can use it for le name entry. If not, use the front-panel controls as described in the following steps. Quick Start Guide 3-27 Step 4: Saving and Recalling 4395A Settings FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Turn the rotary knob to move the arrow below the rst character, S. Press SELECT LETTER . Keep entering characters until SATOUR is entered. If you enter a wrong character, press FFFFFFFFFFFFFFFFFFFFFFFFFF BACK SPACE to erase the character. FFFFFFFFFFFF To complete the le name entry, press DONE . Verify the disk access indicator lights (this shows that the 4395A is saving the settings to the disk). Note The le name for a LIF format can be up to 10 characters long. However, with the 4395A, the last 2 characters are reserved for a sux. Therefore, you can enter a le name of up to 8 characters. Either upper or lower case is recognized in the LIF format. A le name for a MS-DOS(DOS) format consists of a le name and an extension. The le name can be up to 8 characters long and the extension contains up to 3 characters. A period separates the extension from the le name. The extension 3-28 Quick Start Guide Step 4: Saving and Recalling 4395A Settings part reserved by the 4395A. Therefore, you can enter a le name of up to 8 characters. The le name is not case sensitive in the DOS format. Recalling the 4395A Settings You can recall the le containing the saved 4395A settings anytime you want. This is true, even if you change the current 4395A settings. In this example, you will preset the 4395A and then recall the settings in the SATOUR le. Presetting Press 4Preset5. The 4395A is set to the preset conditions. However, the 4395A settings from the previous examples are stored in the SATOUR le on the disk. Quick Start Guide 3-29 Step 4: Saving and Recalling 4395A Settings Recalling the SATOUR le. Press 4Recall5. The disk access lamp lights. The stored le is listed in the softkey label FFFFFFFFFFFFFFFFFFFFF area. Press SATOUR_S to recall the 4395A settings that you saved. Note Sux, \_S," means the 4395A settings are saved. If you save the 4395A settings in a DOS format, an extension, \.sta," is appended to the le name. After the disk access lamp goes out, all 4395A settings that you set are recalled. You can verify them on the display. If you want to know what settings are saved, see chapter 8. 3-30 Quick Start Guide Impedance Analyzer Tour Impedance Analyzer Tour In this section, you explore the impedance analyzer mode of operation. Before starting this tour, make sure that your 4395A is correctly installed (see chapter 1, \Installation and Setup Guide," if you need additional information). Note Your 4395A must be equipped with option 010 to serve as an impedance analyzer. Otherwise, impedance analyzer mode is not available. Before You Leave On The Tour Through this tour, you will learn how to make a basic impedance analyzer measurement by measuring the impedance characteristics of a chip capacitor. Overview The following is a short summary of the tour: 1. Preparing for a measurement Connecting the impedance test kit Turning ON the 4395A 2. Setting up the 4395A Selecting the analyzer type Activating Channel 1 Setting the sweep parameters Setting the output level Setting the IF bandwidth 3. Calibrating the 4395A OPEN calibration SHORT calibration LOAD calibration 4. Connecting and setting up a test xture Connecting the xture Setting the electrical length Fixture compensation 5. Carrying out impedance measurement Selecting the measurement parameters for Channel 1 Connecting the DUT Performing the Automatic Scaling 6. Switching from Channel 1 to Channel 2 7. Selecting the measurement parameters for Channel 2 8. Dual channel display Quick Start Guide 3-31 Impedance Analyzer Tour After you nish this tour, you will understand how to make a basic measurement in impedance analyzer mode. If you want to learn how to perform more complex tasks, refer to Chapters 5 through 9. Required Equipments To perform all the steps in this tour, you must have the following equipments: Figure 3-5. Required Equipments 1. 4395A Network/Spectrum/Impedance Analyzer with Option 010 equipped 2. 43961A Impedance Test Kit 3. Calibration kit (included in the 43961A) 4. Test xture of your choice 5. Short device for the test xture 6. DUT (chip capacitor)* If you wish to test some other device instead of a chip capacitor, you will need to change particular measuring conditions, such as the frequency range, according to the general characteristics of the DUT. 3-32 Quick Start Guide Impedance Analyzer Tour Step 1: Preparing for the Measurement Connecting the Impedance Test Kit The 4395A requires the 43961A Impedance Test Kit to apply signals to, and measure the impedance characteristics of, a DUT (see Figure 3-6). To connect the 43961A Impedance Test Kit, follow these steps: Figure 3-6. Connecting the Impedance Test Kit 1. 2. 3. 4. Make sure that the power to the 4395A is OFF. Connect the N-N cable to the 4395A's RF OUT port. Make sure that the 43961A's APC7 connector sleeve is completely exposed. Connect the two connectors of the 43961A to the R and A ports of the 4395A, by tightening the two connectors little by little alternately while holding the test kit. 5. Connect the other end of the N-N cable to the RF IN port of the 43961A. Turning ON the 4395A Verify the power source setting is correct before you turning ON the 4395A. If necessary, see chapter 2, \Installation Guide." Quick Start Guide 3-33 Impedance Analyzer Tour Press the power switch. The 4395A performs a power on self-test. About 20 seconds later, the model name, revision number, and other information should appear on the LCD to indicate that the 4395A has normally started up. Setting Up the 4395A Setting the Analyzer Type NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Available analyzer modes are listed in the menu under the ANALYZER TYPE softkey. You can use the 4395A as an impedance analyzer by selecting the corresponding analyzer mode from that menu. Follow these steps: Press the 4Meas5 key in the MEASRUREMENT block. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose IMPEDANCE ANALYZER . 3-34 Quick Start Guide NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose ANALYZER TYPE . Impedance Analyzer Tour Activating Channel 1 The 4395A has two channels, each of which can retain dierent measuring conditions. To demonstrate how eectively you can use these two channels to perform impedance measurement, this tour uses the following scenario: 1. Activate Channel 1, and set the parameters that apply to Channel 1 2. Switch to Channel 2, and set the parameters that apply to Channel 2 (see \Step 6: Switching from Channel 1 to Channel 2") 3. Display both channels in parallel (see \Step 8: Dual Channel Display") First, activate Channel 1 through these steps: Press the 4Chan 15 key in the ACTIVE CHANNEL block. Make sure that the indicator lamp beside the 4Chan 15 key is ON. Quick Start Guide 3-35 Impedance Analyzer Tour Setting the Sweep Parameters This tour assumes that the frequency is being swept from 100 kHz to 500 MHz. Follow these steps: Press the 4Sweep5 key. NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose SWEEP TYPE MENU to access the sweep type menu. Choose LOG FREQ to have the 4395A accept log frequency settings. Press the 4Start5 key. To specify the frequency at which to start the sweep, enter 415 405 405 using the numeric keys. Press the 4k/m5 key to indicate that the unit is kHz. 3-36 Quick Start Guide Impedance Analyzer Tour Press the 4STOP5 key. To specify the frequency at which to stop the sweep, enter 455 405 405 using the numeric keys. Press the 4M/5 key to indicate that the unit is MHz. Setting the Output Level This tour assumes an output level of +0.5 dBm. Follow these steps: Quick Start Guide 3-37 Impedance Analyzer Tour NNNNNNNNNNNNNNNNN Press the 4Source5 key. Choose POWER . Enter 405 4.5 455 using the numeric keys. Press the 4x15 key. Setting the IF Bandwidth This tour assumes an IF bandwidth of 300 Hz. Follow these steps: 3-38 Quick Start Guide Impedance Analyzer Tour Note NNNNNNNNNNNNNNNNN Press the 4Bw/Avg5 key. Choose IF BW . Enter 435 405 405 using the numeric key. Press the 4215 key. A smaller IF bandwidth reduces trace noise, but increases measuring time. Setting the Averaging Factor This tour assumes the averaging factor of 8. Follow these steps: Quick Start Guide 3-39 Impedance Analyzer Tour NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press the 4Bw/Avg5 key. Choose AVERAGING FACTOR . Enter 485 using the numeric key. Press the 4215 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Toggle AVERAGING on OFF to ON off . NNNNNNNNNNNNNNNNNNNN Note When you perform impedance measurement with the 43961A, you must set IF bandwidth equal to or less than 300 Hz and averaging factor equal to or greater than 8. 3-40 Quick Start Guide Impedance Analyzer Tour Step 3: Making a Calibration Calibrating the 4395A in impedance analyzer mode requires that the 4395A be connected with the 43961A impedance test kit. A proper calibration is required for the 4395A to perform measurements within the guaranteed accuracy range. For impedance analyzer mode, the 4395A must be calibrated for each of the following three circuit states: OPEN (0 S termination) SHORT (0 termination) LOAD (50 termination) To calibrate the 4395A, access the calibration menu through these steps: Press the 4Cal5 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose CALIBRATE MENU . With the calibration menu displayed on the LCD screen, calibrate the 4395A for the OPEN, SHORT, and LOAD states in order. Note Be sure to use the calibration kit included in the 43961A package. OPEN Calibration Follow these steps: Quick Start Guide 3-41 Impedance Analyzer Tour Connect the 0 S termination to the 43961A's OUTPUT port. Remove the 0 S termination. SHORT Calibration Follow these steps: 3-42 Quick Start Guide NNNNNNNNNNNNNN Choose OPEN . Wait until the OPEN softkey's label is underlined to indicate that the OPEN calibration is complete. NNNNNNNNNNNNNN Impedance Analyzer Tour Connect the 0 termination to the 43961A's OUTPUT port. NNNNNNNNNNNNNNNNN Press SHORT . Wait until the SHORT softkey's label is underlined to indicate that the SHORT calibration is complete. NNNNNNNNNNNNNNNNN Remove the 0 termination. LOAD Calibration Follow these steps: Quick Start Guide 3-43 Impedance Analyzer Tour Connect the 50 termination to the 43961A's OUTPUT port. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose DONE: CAL . Remove the 50 termination. 3-44 Quick Start Guide NNNNNNNNNNNNNN Press LOAD . Wait until the LOAD softkey's label is underlined to indicate that the LOAD calibration is complete. NNNNNNNNNNNNNN Make sure that a \Cor" marker is displayed at the left-hand edge of the screen. Impedance Analyzer Tour Step 4: Connecting and Setting Up a Test Fixture Connecting the xture This tour does not assume any specic test xture. You can use a test xture of your choice. For how to connect your test xture to the impedance test kit, refer to the documentation that comes with the test xture. A typical test xture can be installed in such a procedure as shown below: 1. Turn the OUTPUT port APC-7 connector of the impedance test kit. 2. Make sure that the connecting sleeve is completely retracted. 3. Set the test station's mount post to the pair of holes located at one corner of the test xture. 4. Turn the xing ring counterclockwise until it is fully tightened. 5. Connect the impedance test kit's OUTPUT port to the connector located on the back side of the test xture. Figure 3-7. Connecting the test xture Setting the Electrical Length Connecting a test xture adds an extra electrical length to the test circuit. This electrical length, which is specic to the test xture you use, must be known to the 4395A so that it can compensate for the extra electrical length and eliminate errors due to phase shifts. The 4395A incorporates a database of Agilent test xtures with their own electrical lengths. For example, if the model number of your test xture is 16192, you would set the electrical length as follows: Quick Start Guide 3-45 Impedance Analyzer Tour Press the 4Meas5 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose SELECT FIXTURE . NNNNNNNNNNNNNNNNNNNN Press RETURN twice. 3-46 Quick Start Guide NNNNNNNNNNNNNNNNNNNNNNN Choose FIXTURE . NNNNNNNNNNNNNNNNN Select 16192 . Make sure that the FIXTURE label on the screen is followed by your selected model number (16192, in this case). Impedance Analyzer Tour Fixture Compensation Fixture compensation is a process that calibrates the 4395A with a test xture installed, thereby eliminating errors produced between the test xture electrode and the impedance test kit's OUTPUT port. Normally, the 4395A must be xture-compensated for the OPEN and SHORT circuit states. It can optionally be xture-compensated for the LOAD state. Note For how to connect standards, refer to the documentation that comes with the test xture you use. Quick Start Guide 3-47 Impedance Analyzer Tour Connect the appropriate short device to the xture. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose COMPEN MENU . NNNNNNNNNNNNNNNNN Remove the short device to put the circuit into the OPEN state. Choose FIXTURE COMPEN . Choose SHORT . Wait until the SHORT softkey's label is underlined to indicate that the SHORT compensation is complete. NNNNNNNNNNNNNNNNN 3-48 Quick Start Guide Press the 4Cal5 key. Impedance Analyzer Tour NNNNNNNNNNNNNN Choose OPEN . Wait until the OPEN softkey's label is underlined to indicate that the OPEN compensation is complete. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose DONE: COMPEN . Make sure that a \Cmp" marker is displayed in place of the \Cor" marker. Step 5: Carrying Out Impedance Measurement Selecting the Measurement Parameters for Channel 1 To begin impedance measurement, the 4395A must know which characteristics it should measure and how it should report the measured values. This tour assumes that the following measurement parameters are specied for Channel 1. Characteristic Absolute value of impedance (jZj) value Format Log To set the parameters listed above, follow these steps: Quick Start Guide 3-49 Impedance Analyzer Tour Press the 4Meas5 key. Choose IMPEDACE: MAG (jZj) . Press the 4Format5 key. Choose LOG Y-AXIS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN These settings are applied to Channel 1, which has been the active channel in the scenario of this tour. Note that, in Steps 6 and 7, you will switch from Channel 1 to Channel 2, and assign dierent settings to Channel 2. Connecting the DUT How to connect a DUT diers depending on which test xture you use. For more information, refer to the documentation that comes with your test xture. As soon as you have connected the DUT, the 4395A will measure and display the impedance characteristics. Performing the Automatic Scaling Often, the trace obtained after specifying the frequency range is too large or too small vertically for the grid. However, by using the automatic scaling function, you can obtain the optimum vertical setting automatically. Follow these steps: 3-50 Quick Start Guide Impedance Analyzer Tour Press the 4Scale Ref5 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose AUTO SCALE . Quick Start Guide 3-51 Impedance Analyzer Tour Step 6: Switching from Channel 1 to Channel 2 All the settings you have made so far are assigned to Channel 1. Now, activate Channel 2 instead of Channel 1. Press the 4Chan 25 key in the ACTIVE CHANNEL block. 3-52 Quick Start Guide Make sure that the indicator lamp beside the 4Chan 25 key is ON. Impedance Analyzer Tour Setting the Averaging Factor for Channel 2 This tour assumes the averaging factor of 8. Follow these steps: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press the 4Bw/Avg5 key. Choose AVERAGING FACTOR . Enter 485 using the numeric key. Press the 4215 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Toggle AVERAGING on OFF to ON off . NNNNNNNNNNNNNNNNNNNN Quick Start Guide 3-53 Impedance Analyzer Tour Step 7: Selecting the measurement parameters for Channel 2 This tour assumes that the following measurement parameters be specied for Channel 2. Characteristic Phase (z ) value Format Linear To set the parameters listed above, follow these steps: NNNNNNNNNNNNNNNNNNNNNNNNNNNN Press the 4Meas5 key. Choose PHASE: z . Press the 4Format5 key. Choose LIN Y-AXIS . 3-54 Quick Start Guide NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Impedance Analyzer Tour Now both Channels 1 and 2 are assigned specic settings. You can not only have one of the two channels displayed at a time, but also have both channels displayed in parallel, as you will learn in the next step. Quick Start Guide 3-55 Impedance Analyzer Tour Step 8: Dual Channel Display The 4395A provides a feature that displays the measurement results for both channels at the same time. This feature is called \dual channel display." Follow these steps: Press the 4Display5 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose DUAL CHAN on OFF so that the label changes to DUAL CHAN ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The screen is split into upper and lower halves. The upper half shows the absolute impedance value while the lower half shows the phase. 3-56 Quick Start Guide Impedance Analyzer Tour NNNNNNNNNNNNNN Choose MORE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose SPLIT DISP ON off so that the label changes to SPLIT DISP on OFF . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Two graphs are merged into a single coordinate plane. Quick Start Guide 3-57 4 Front and Rear Panels Features of 4395A This chapter describes the features of the front and rear panels of 4395A. It provides illustrations and descriptions of the front panel features, the LCD display and its labels, and the rear panel features and connectors. Front Panel The front panel provides a number of hardkeys (physical keys) and softkeys (menu items displayed on the LCD), which allow you to activate various analyzer functions (Figure 4-1). Figure 4-1. Front Panel Layout Front and Rear Panels 4-1 Front Panel 1. Hardkeys The hardkeys (physical keys) located on the front panel are divided into 6 blocks|- labeled \ACTIVE CHANNEL", \MEASUREMENT", \SWEEP", \MARKER", \INSTRUMENT STATE", and \ENTRY", respectively. Some of the front panel hardkeys control instrument functions directly while others provide access to softkey menus. ACTIVE CHANNEL Block The ACTIVE CHANNEL block contains two hardkeys: 4Chan 15 and 4Chan 25. By pressing either of these two keys, you can make the channel 1 or 2 active. All measuring conditions you specify through the front panel, such as sweep settings, are assigned to the currently active channel. Once you have assigned your desired settings to each channel, you can instantly switch between the two dierent sets of measuring conditions by simply pressing the 4Chan 15 or 4Chan 25 key. MEASUREMENT Block The MEASUREMENT block contains hardkeys associated with measuring parameters, display formats, and calibration. SWEEP Key Block The SWEEP block contains hardkeys associated with sweep settings. MARKER Block The MARKER block contains hardkeys associated with the marker function that facilitates reading values on the measurement trace. INSTRUMENT STATE Block The INSTRUMENT block contains hardkeys that aect the instrument state of 4395A. ENTRY keys The ENTRY block contains the following: numeric keys a rotary knob step keys for incrementing or decrementing your entered values edit keys unit terminator keys You can use the rotary knob to change the value of the currently active parameter. 2. Softkeys Softkey menus are lists of up to eight related functions that can be displayed in the softkey label area at the right-hand side of the display. The eight keys to the right of the LCD are the softkeys. Pressing one of the softkeys selects the adjacent menu function. This either executes the labeled function and makes it the active function, causes instrument status information to be displayed, or presents another softkey menu. Some of the softkey menus are accessed directly from front panel keys and some from other menus. For example, the sweep menu accessed by pressing the 4Sweep5 key presents all the sweep functions such as sweep type, number of points, and sweep time. Pressing 4-2 Front and Rear Panels Front Panel NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NUMBER of POINTS allows the required number of points displayed per sweep to be entered directly from the number pad. RETURN softkeys return to previous menus. DONE indicates completion of a specic procedure and then returns to an earlier menu. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Softkeys that are Joined by Vertical Lines When several possible choices are available for a function, the softkeys are joined by vertical lines. For example, in the spectrum input port menu under the 4Meas5 key, the available inputs are listed: R , A , B with a vertical line between them. Note that only one softkey can be selected at a time. When a selection has been made from the listed alternatives, that selection is underlined until another selection is made. NNNNN NNNNN NNNNN Softkeys That Toggle Between On and O States Some softkey functions can be toggled on or off, for example averaging. This is indicated in the softkey label. The current state, on or off, is capitalized in the softkey label. Example: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AVERAGING ON off FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF AVERAGING on OFF The word on is capitalized, showing that averaging is currently on. The word o is capitalized, showing that averaging is currently o. Softkeys that Show Status Indications in Brackets Some softkey labels show the current status of a function in brackets. These include simple toggle functions and status-only indicators. An example of a toggled function is the PRINT [STANDARD] or PRINT [COLOR] softkey. The DATA MATH[ ] softkey is an example of a status-only indicator, where the selected equation of the data math function is shown in brackets in the softkey label. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. GPIB \REMOTE" Indicator The \REMOTE" Indicator turns on when the analyzer is in the remote state. 4. 4Preset5 Key This key returns the instrument to a known standard preset state from any step of any manual procedure. A complete listing of the instrument preset conditions is provided in Appendix C. 5. PROBE POWER Connector This connector (fused inside the instrument) supplies power to an active probe for in-circuit measurements of AC circuits. Applicable active probes are described in Chapter 12. Front and Rear Panels 4-3 Front Panel 6. Analyzer Input Terminals R, A, and B These are input terminals through which the 4395A receives signals output from the RF OUT terminal and then fed through the test circuit. How to use these input terminals diers depending on which analyzer mode you use: In network analyzer mode, use the A and B terminals to receive signals output from the RF OUT terminal and then fed through the device under test (DUT), and use the R terminal to directly feed back the signal output from the RF OUT terminal to provide the reference input signal. You may want to use a power splitter to split the RF OUT signal among the input terminals. In spectrum analyzer mode, you can use any of these three terminals to monitor the spectrum of the input signals. In impedance analyzer mode, which is available with option 010, use the R and A terminals to monitor the voltage and current across the DUT being fed with the signals output from the RF OUT terminal. These terminals comply with INSTALLATION CATEGORY I of IEC 1010-1. Note Do not exceed the operating input power, voltage, and current level and signal type appropriate for the instrument being used, refer to your instrument's operation manual. Note Electrostatic discharge(ESD) can damage the highly sensitive microcircuits in your instrument. ESD damage is most likely to occur as the test xtures are being connected or disconnected. Protect them from ESD damage by wearing a grounding strap that provides a high resistance path to ground. Alternatively, ground yourself to discharge any static charge built-up by touching the outer shell of any grounded instrument chassis before touching the test port connectors. 7. RF OUT Connector Connects the RF output signal from the analyzer's internal source to a test set or power splitter. The output impedance at this connector is 50 . Note that, in spectrum analyzer mode, the RF output is disabled by default. When you perform zero span measurement in spectrum analyzer mode, you can turn the RF output on. 8. DC SOURCE (DC Voltage/Current Output) Connector (Option 001) This connector, located on the front panel, supplies up to 640 V / 6100 mA of DC voltage/current. 4-4 Front and Rear Panels Screen Display 9. Built-in Flexible Disk Drive You can use this disk drive to store your measurement data, instrument , list sweep tables, and HP Instrument BASIC programs. Supported data formats include the LIF (logical interchange format) and DOS (disk operating system) format. 10. LINE Switch Turns on/o the power to the 4395A. 11. Liquid Crystal Display (LCD) Displays measurement results, softkey menus, instrument settings, system or error messages Screen Display The LCD displays a grid on which the measurement data is plotted, the currently selected measurement traces, and other information describing the measurement. Figure 4-2 shows the locations of the dierent information labels. In addition to the full-screen display shown in Figure 4-2, a split display is available (see \Dual Channel Display" in Chapter 6). In this case, information labels are provided for each half of the display. The screen can also be used as the HP Instrument BASIC display. HP Instrument BASIC uses either a full-screen display or a half-screen display below the graphic display as a text screen. Front and Rear Panels 4-5 Screen Display Figure 4-2. Screen Display (Single Channel, Cartesian Format) 1. Active Channel Displays either \CH1" or \CH2" to indicate the number of the currently active channel (one that was selected keys in the ACTIVE CHANNEL block). When the dual channel function is enabled and traces for the two channels are overlaid, both \CH1" and \CH2" appear in this area. 4-6 Front and Rear Panels Screen Display 2. Measured Input(s) Shows the input terminals currently in use, the values of the S parameters, or ratio of inputs (such as A/R ratio). Use the 4Meas5 key to select the item to appear in this area. 3. Format Shows the currently selected display format. Use the 4Format5 key to select your desired display format. 4. SCALE/DIV Shows the currently selected scale in the unit appropriate to the ongoing measurement. Use the 4Scale Ref5 key to select your desired scale. 5. Reference Level Displays the value of a reference line in Cartesian formats or the outer circle in polar formats. It is selected using the 4Scale Ref5 key. However, the reference line is invisible (it is indicated by a small triangle adjacent to the graticule at the left). The position of the reference line for the spectrum analyzer is xed at the top of the Cartesian format. 6. Marker Data Readout Displays the values of the marker in the unit appropriate to the current measurement (see Chapter 8). The status of the marker is also displayed under the marker values. The following status notations are used: Cpl Xch Sgnl Peak Max Min Targ PksA PksL PksR Marker couple is tuned on. (When single channel is displayed, this notation is not displayed even if the marker couple is on.) Cross channel is turned on. Signal tracking is turned on. (When both signal tracking and search tracking are turned on, only Sgnl is displayed because search tracking is not allowed in this case.) PEAK search tracking is turned on. MAX search tracking is turned on. MIN search tracking is turned on. TARGET search tracking is turned on. PEAK ALL search tracking is turned on. PEAK LEFT ALL search tracking is turned on. PEAK RIGHT ALL search tracking is turned on. 7. Marker Statistics and Width Value Displays the statistical marker values determined by using the menus accessed with the 4Utility5 key, and the width value determined by using the menus accessed with the 4Search5 key. See Chapter 8. Front and Rear Panels 4-7 Screen Display 8. Softkey Labels Displays the menu labels that dene the function of the softkeys immediately to the right of the label. 9. PASS/FAIL Indicates the values used for limit testing using limit lines. See \Limit Line Concept" in Appendix A. 10. Sweep Time Displays the sweep time. When sweep time is manually changed, # is displayed between SWP and the sweep time value. 11. Sweep Parameter Span/Stop Value Displays the stop frequency of the sweep range in frequency domain measurements or the upper limit of a power sweep if 4395A is in network analyzer mode or impedance analyzer mode. When the sweep parameter is in center/span mode, however, this area indicates the span instead. You can suppress the display of the sweep parameter values (see Chapter 6). 12. Power Level Displays the power level of RF output if the 4395A is in network analyzer mode or impedance analyzer mode and frequency sweep is selected. When power sweep is selected or the 4395A is in another mode, this area is blank. 13. CW Frequency Displays the measured frequency if the 4395A is in network analyzer mode or impedance analyzer mode and power sweep is being performed. When frequency sweep is selected or the 4395A is in another mode, this area is blank. 14. Video Bandwidth (VBW) Displays the video bandwidth if the 4395A is in spectrum analyzer mode. 15. Input Attenuator Displays the input attenuator value at the inputs R, A, B if the 4395A is in spectrum analyzer mode. 16. Sweep Parameter Center/Start Value Displays the start frequency of the sweep range in frequency domain measurements or the lower power value in power sweep if the 4395A is in network analyzer mode or impedance analyzer mode. When the sweep parameter is in center/span mode, this area shows the sweep center value instead. 4-8 Front and Rear Panels Screen Display 17. RBW/IFBW Displays the RBW (in spectrum analyzer mode) or IFBW (in network analyzer mode or impedance analyzer mode). When RBW or IFBW is manually changed, a sharp sign (#) is displayed between RBW or IFBW and the value. 18. Status Notations Displays the current status of various functions for the active channel. The following notations are used: 3 P Cor C2 Cmp C? C2? Cm? C! C2! Cm! Cm* Del Neg Smp Avg Max Min G3 0O G&O D0M D+M D/M Hld " ext man bus Svc Sweep parameters changed: measured data in doubt until a complete fresh sweep has been taken. RF output is ON (zero span in spectrum analyzer mode only). Error correction is ON (network analyzer mode and impedance analyzer mode). Level correction is ON (spectrum analyzer mode only). Two-port error correction is ON (network analyzer mode only). Fixture compensation is ON(impedance analyzer mode only). Sweep parameters have changed1 and interpolated error correction is ON (network analyzer mode and impedance analyzer mode). Sweep parameters have changed1 and interpolated two-port correction is ON (network analyzer mode only). Sweep parameters have changed1 and interpolated xture compensation is ON (impedance analyzer mode only). Sweep parameters have changed2 and extrapolated error correction is ON (network analyzer mode and impedance analyzer mode). Sweep parameters have changed2 and extrapolated two-port correction is ON (network analyzer mode only). Sweep parameters have changed2 and extrapolated xture compensation is ON (impedance analyzer mode only). Fixture compensation is ON when error correction is C? or C! (impedance analyzer mode only). Electrical delay, port extension, or phase oset has been added or subtracted (network analyzer mode and impedance analyzer mode). Negative peak detection is ON (spectrum analyzer mode only). Sample detection is ON (spectrum analyzer mode only). Sweep-by-sweep averaging is ON. The averaging count is shown below. Maximum hold is ON. Minimum hold is ON. Data math Gain is ON. Data math Oset is ON. Data math Gain is ON and data math Oset is ON. Data math ( Data Trace 0 Memory Trace ) is ON. Data math ( Data Trace + Memory Trace ) is ON. Data math ( Data Trace / Memory Trace ) is ON. Hold sweep. Sweep indicator. (When sweep time is longer than 2 seconds, it appears on the trace). Waiting for external trigger (BNC in rear panel). Waiting for manual trigger. Waiting for GPIB trigger. A service mode is turned on. If this notation is shown, the measurement data will be out of specications. (See Service Manual.) 1 Frequency span reduced, etc. 2 Frequency span expanded, etc. Note No status notation is displayed when Gate trigger is used. Front and Rear Panels 4-9 Screen Display 19. External Reference ExtRef is displayed when an external reference signal is connected to the external reference input on the rear panel. This applies even if the phase is not locked to the external reference signal. 20. Active Entry Area Displays the name of the currently active input parameter with its current value. 21. Message Area Displays prompts or error messages. See \Error Messages" for more information on error messages. 22. Title Displays a user-dened title which can consist of alphanumeric characters. 4-10 Front and Rear Panels Rear Panel Features and Connectors Rear Panel Features and Connectors Figure 4-3 shows the features and connectors on the rear panel. Requirements for the input signals to the rear panel connectors are provided in Chapter 11. Figure 4-3. Rear panel 1. External Reference Input Connector Connects an external frequency reference signal to the analyzer that is used to phase lock the analyzer for increased accuracy in frequency. When the 4395A is equipped with the external oven (Option 1D5), this connector must be connected to REF OVEN connector (14). The external frequency reference function is automatically enabled when a signal is connected to this input. When the signal is removed, the analyzer automatically switches back to its internal frequency reference. 2. Internal Reference Output Connector Connects to the frequency reference input of an external instrument to phase lock it to the 4395A for stable synchronization with the internal frequency of the 4395A. Front and Rear Panels 4-11 Rear Panel Features and Connectors 3. External Program RUN/CONT Input Externally triggers run or cont of the HP Instrument BASIC program. The positive edge of a pulse whose width is 20 s or larger in the low state triggers run or cont. The signal is TTL-compatible. 4. I/O Port This is a 12-bit data communications port that connects to external devices such as a handler on a production line. It can communicate 8 bits of output data and 4 bits of input data at a time. For more information, see Chapter 11 and Programming Manual. 5. Power Cable Receptacle This receptacle accommodates the main power cable. Insert the main-power cable plug only into a socket outlet that has a protective ground contact. Note that the fuse that protects the power line is located inside the rear panel cover. 6. GPIB Interface Connects the analyzer to an external controller and other instruments to congure an automated system. This connector is also used when the analyzer itself serves as the controller of compatible peripherals. For more information, see Programming Guide. 7. External Monitor Terminal This terminal outputs measurement results to an external color monitor. Color monitors supporting VGA (scan rate of 31.5 kHz) can be connected to this terminal. 8. Parallel Interface This interface can be used to redirect the displayed results to a printer. It complies with the Centronics parallel interface standard. See \Printer" in Chapter 12 for supported printers. 9. 24-bit I/O Port In addition to the 12-bit I/O port (described in item 4 above), the 4395A is equipped with a 24-bit data communications port that connects to external devices such as a handler on a production line. This port can communicate 2 sets of 8-bit output data and 2 sets of 4-bit bidirectional data at a time. For more information, see Programming Guide. 10. mini-DIN Keyboard Connector Connect a mini-DIN keyboard to this connector usually when using Instrument BASIC. Note Be sure to use the specied PS/2, 101 keyboard. Using any other keyboard can cause failure. 4-12 Front and Rear Panels Rear Panel Features and Connectors 11. Test Set I/O Interface You can use this interface to establish a connection between the 4395A and the test set using the cable included in the S-parameter test set package to control the test set from the 4395A. See Chapter 12 for the test set that can be connected. This interface is not used for the 87512A/B transmission/reection test set. Caution Do not connect a printer to this interface. Doing so could damage the printer. 12. Gate Output (Option 1D6 Only) Outputs a signal that indicates the status of the gate when the 4395A is performing gate trigger in EDGE mode. The signal is TTL-compatible; high indicates gate on, low indicates gate off. 13. External Trigger Input Triggers a measurement sweep. The positive (or negative) edge of a signal in the low (or high state) starts a measurement. The signal is TTL-compatible. To use this connector, set the trigger mode to external using softkey functions. 14. Reference Oven Output (Option 1D5 Only) Connects to the EXT REF INPUT connector when Option 1D5 is installed. Option 1D5 improves the frequency accuracy and stability of the 4395A. Front and Rear Panels 4-13 5 Preparations for Measurements This chapter provides the each procedure needed to prepare for network , spectrum, and impedance (with Option 010) measurements. The procedures are: Selecting an appropriate connection of DUT Presetting 4395A If you are using the 4395A for the rst time, it is recommended to get started by reading Chapter 1 through Chapter 3 of this manual. Selecting an appropriate connection of DUT For Network Measurement Connections of DUT in the network measurement varies depending upon your measurement parameters as described in this section. Connecting DUT for Directional Transmission Characteristic Measurement When you measure the transmission characteristic supplying a signal to your DUT from one direction, connect the DUT to the analyzer with the power splitter and the cables as shown in Figure 5-1. You should manually change cabling when measuring the characteristic for reverse direction. Figure 5-1. Connecting DUT for Directional Transmission Characteristic Measurement Preparations for Measurements 5-1 Selecting an appropriate connection of DUT Connecting DUT for Directional Transmission and Reection Characteristics Measurement When you measure the transmission and reection characteristics supplying a signal to your DUT from one direction, connect the DUT to the analyzer with the transmission/reection test set. You should manually change cabling when measuring the characteristics for reverse direction. Figure 5-2. Connecting DUT for Directional Transmission and Reection Characteristics Measurement Connecting DUT for Bi-directional Transmission and Reection Characteristics (Four S Parameters) Measurement Bi-directional transmission and reection characteristics, or all four S parameters, can be measured eectively with the S parameter set. The device allows you to measure all the four parameters without changing cable connection manually at each measurement. 5-2 Preparations for Measurements Selecting an appropriate connection of DUT Figure 5-3. Connecting DUT for Bi-directional Transmission and Reection Characteristics (Four S Parameters) Measurement Connecting DUT for Transmission Characteristic Measurement When the Output Signal is in a Circuit If the output signal of DUT is in a circuit, use the active probe to capture a signal from the test channel as shown in Figure 5-4. Figure 5-4. Connecting DUT for Transmission Characteristic Measurement When the Output Signal is in a Circuit Use the transmission/reection test set with the active probe, when measuring the reection characteristic at the input lead simultaneously. See Figure 5-5. Preparations for Measurements 5-3 Selecting an appropriate connection of DUT Figure 5-5. Connecting DUT for Transmission and Reection Characteristics Measurement When the Output Signal is in a Circuit 5-4 Preparations for Measurements Selecting an appropriate connection of DUT Connecting DUT for Transmission Characteristic Measurement When the Input and Output Signals are in a Circuit If both of the input and output signals of DUT are in a circuit, attach the active probes to both of the reference channel and the test channel, as shown in Figure 5-6. Figure 5-6. Connecting DUT for Transmission Characteristic Measurement When the Input and Output Signals are in a Circuit Preparations for Measurements 5-5 Selecting an appropriate connection of DUT For Spectrum Measurement Connections of DUT in the spectrum measurement varies depending upon how the measurement signal can be obtained as described in this section. Connecting DUT When Directly Measuring the Signal When you measure a signal which is directly supplied from the DUT to 4395A, connect the DUT as shown in Figure 5-7. Figure 5-7. Connecting DUT When Directly Measuring the Signal Connecting DUT When Measuring the Signal in a Circuit Use the active probe to capture the measurement signal which is in a circuit as shown in Figure 5-8. 5-6 Preparations for Measurements Selecting an appropriate connection of DUT Figure 5-8. Connecting DUT When Measuring the Signal in a Circuit Preparations for Measurements 5-7 Selecting an appropriate connection of DUT For Impedance Measurement (Option 010) Connecting the Impedance Test Kit In the impedance measurement, the 43961A Impedance Test Kit is required to connect your DUT to the analyzer. See Figure 5-9. 1. Verify the 4395A is turned o. 2. Connect the N-cable to the RF OUT port of the analyzer. 3. Connect two connectors of the 43961A to the R and A ports of the 43961A. 4. Connect the other connector of the N-cable to the RF IN port of the 43961A. 5. Turn on the 4395A. Note Figure 5-9. Connecting the Impedance Test Kit The connection between DUT and the analyzer is accomplished when a test xture is mounted on the impedance test kit. Note that all the measurement settings and calibrations should be completed before you mount the test xture. Follow the steps described in Chapter 6 and Chapter 7. 5-8 Preparations for Measurements Presetting 4395A Presetting 4395A Before starting measurement, press the green 4Preset5 key in the INSTRUMENT STATE block to set the 4395A to the preset state. For additional information about the preset state, see Appendix C. Preparations for Measurements 5-9 6 Setting and Optimizing Measurement Conditions This chapter provides following procedures for setting and optimizing measurement conditions: Select the analyzer mode Select the active channel Set up the trigger system Set the sweep conditions Select the input port/measurement parameter Select the measurement format Select the display unit Set the frequency range Set the vertical scale Set the IF/resolution/video bandwidth (IFBW/RBW/VBW) Setting and Optimizing Measurement Conditions 6-1 Selecting the Active Channel Selecting the Analyzer Mode 1. Press 4Meas5. 2. Press ANALYZER TYPE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following analyzer modes: Analyzer Mode Softkey Network Analyzer Spectrum Analyzer Impedance Analyzer1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NETWORK ANALYZER SPECTRUM ANALYZER IMPEDANCE ANALYZER NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 1 Option 010 only. Note When you change the analyzer mode (operating mode), the analyzer is set to the preset state. So, when you want to change the analyzer mode, you must select it before you set up the other settings. Note In this manual, the following abbreviations are used: NA mode: Network analyzer mode SA mode: Spectrum analyzer mode ZA mode: Impedance analyzer mode Selecting the Active Channel In the ACTIVE CHANNEL block, press 4Chan 15 (channel 1) or 4Chan 25 (channel 2) to select the active channel. The 4395A has two independent channels. You can assign a dierent set of measurement conditions to each channel and switch between the two channels with just a single keystroke, provided that you use both channels for the same analyzer mode. By switching between the channels, you can eectively evaluate the DUT's characteristics under dierent measurement conditions. Note Be sure to select the active channel before you set measurement conditions. Once you have activated either channel, all the settings you make are assigned to the active channel. These two channels can only be assigned dierent measurement conditions within the same analyzer mode. You cannot use them across two dierent analyzer modes. For example, it is not possible to assign network measurement conditions to one channel while assigning spectrum measurement conditions to the other channel. 6-2 Setting and Optimizing Measurement Conditions Dual Channel Display Dual Channel Display 1. Press 4Display5. 2. Toggle DUAL CHAN on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 3. Press MORE . NNNNNNNNNNNNNN 4. Select one of the following options: Display Mode Toggle Split the screen into the two channels Merge the channels into one screen NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SPLIT CHAN on OFF NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SPLIT CHAN ON off Split the screen into the two channels ! ! NNNNNNNNNNNNNNNNNNNN ON off NNNNNNNNNNNNNNNNNNNN on OFF Merge the channels into one screen Figure 6-1. Dual Channel Display Setting and Optimizing Measurement Conditions 6-3 Setting Up the Trigger System Setting Up the Trigger System This section provides procedures for setting the trigger system. Setting up the trigger system Using the external trigger Setting Up the Trigger System 1. Press 4Trigger5. 2. Press TRIGGER: [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following options: Trigger Mode Softkey Internal trigger source External trigger source1 Manual trigger Gate trigger2 NNNNNNNNNNNNNNNNNNNNNNNNNN FREE RUN EXTERNAL MANUAL GATE [ ] NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 1 See \Using the External Trigger" that follows. 2 Option 1D6 and SA (spectrum analyzer) mode only. Chapter 8 describes how to use this trigger mode. Using the External Trigger 1. Connect the trigger source to the EXT TRIGGER connector on the rear panel of the 4395A. 2. Press 4Trigger5. 3. Press TRIGGER: [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press EXTERNAL . NNNNNNNNNNNNNNNNNNNNNNNNNN 5. Input a trigger signal to the analyzer. The external trigger signal level must be TTL Level. 6-4 Setting and Optimizing Measurement Conditions Setting Up the Trigger System Figure 6-2. Location of EXT TRIGGER Connector Setting the Trigger Signal Polarity 1. Press 4Trigger5. 2. Press TRIGGER: [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Toggle TRIG PLRTY POS neg to pos NEG to turn the trigger polarity to the negative logic. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN Generating a Trigger Event on Each Measurement Point (NA, ZA Mode) 1. Press 4Trigger5. 2. Press TRIGGER: [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following options: Trigger Source Softkey Manual External Press MANUAL . Press EXTERNAL . NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Toggle TRIG EVENT [ON SWEEP] to [ON POINT] . 5. To generate a trigger event, press MANUAL (for manual) or input the external trigger signal (for external). NNNNNNNNNNNNNNNNNNNN Setting and Optimizing Measurement Conditions 6-5 Setting the Sweep Conditions The sweep indicator (\"") moves to each point every time a trigger event is generated. You can select this mode only after you have selected MANUAL or EXTERNAL as the trigger source, or activated the bus trigger mode. For more information about the bus trigger mode, see the Programming Manual. NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN Setting the Sweep Conditions The 4395A controls the sweep process based on the following conditions: Sweep mode Sweep type Sweep parameters This section describes how to select the sweep mode and sweep type. For how to set the sweep parameters, see \Setting the Frequency Range". For how to use the power sweep function, see \Using the Power Sweep Function (NA, ZA Mode)". In addition, the 4395A is capable of automatically controlling the sweep process in accordance with a user-specied sweep list. For more information on the list sweep function, refer to Chapter 9 of this manual. Selecting the Sweep Mode Select one of the following options Sweep Mode Keystrokes Continuous Single Specied times Press 4Trigger5, then choose CONTINUOUS . Press 4Trigger5, then choose SINGLE . Press 4Trigger5, choose NUMBER of GROUPS , enter the number of times, and then press 4215. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Selecting the Sweep Type 1. Press 4Sweep5 and choose SWEEP TYPE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Select one of the following options: Sweep Type Softkey Linear Frequency Log Frequency1 List Frequency Press LIN FREQ . Press LOG FREQ . Press LIST FREQ (See \Reducing Sweep Time (Using List Sweep)" in Chapter 9). Press POWER SWEEP . See \Using the Power Sweep Function (NA, ZA Mode)" that follows. Power Sweep1 NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 1 NA, ZA mode. 6-6 Setting and Optimizing Measurement Conditions Selecting the Input Port/Measurement Parameter Using the Power Sweep Function (NA, ZA Mode) 1. Press 4Source5 CW FREQ . Then enter the CW frequency. NNNNNNNNNNNNNNNNNNNNNNN 2. Press 4Sweep5. 3. Press SWEEP TYPE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press POWER SWEEP . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Enter the start and stop power levels. For example, to sweep from 05 dBm to +15 dBm, press 4Start5 405 455 4215, 4Stop5 415 455 4215. Note You can set the sweep power in increments of 0.1 dB. Maximum power sweep range (start to stop) is 20 dB within range of 050 dBm to +15 dBm. Selecting the Input Port/Measurement Parameter This step provides following procedures: To select the input port in NA mode To select the input port in SA mode To select the measurement parameter in ZA mode To Select the Input Port in NA Mode With the T/R Test Set Press 4Meas5. To measure Type Press Reection Transmission A port/B port Ratio Ratio Ratio NNNNNNNNNNN Reection Transmission Source Absolute Absolute Absolute A/R B/R A/B NNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNN NNNNN MORE A MORE B MORE R NNNNNNNNNNNNNN NNNNN NNNNNNNNNNNNNN NNNNN With the S-Parameter Test Set Press 4Meas5. Setting and Optimizing Measurement Conditions 6-7 Selecting the Input Port/Measurement Parameter To measure Direction Press Reection Forward NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Transmission Forward NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Transmission Reverse NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Reection Reverse NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN S-PARAMETERS Refl:FWD S11 [A/R] S-PARAMETERS Trans:FWD S21 [B/R] S-PARAMETERS Trans:REV S12 [B/R] S-PARAMETERS Refl:REV S22 [A/R] NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Select the Input Port in SA Mode The 4395A has three input ports: R, A, and B. You can use any of these input ports for spectrum measurements. In the preset state, the 4395A uses the R input port for spectrum measurements. To explicitly specify the input port, choose one of the following softkeys: To select Softkey R input port B input port A input port NNNNN R B A NNNNN NNNNN To Select the Measurement Parameter in ZA mode 6-8 Setting and Optimizing Measurement Conditions Selecting the Measurement Format (NA,ZA Mode) To measure Press Absolute magnitude value of impedance Phase value of impedance Resistance value Reactance value Absolute magnitude value of admittance NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Phase value of admittance Conductance value Susceptance value Absolute magnitude value of reection coecient Phase value of reection coecient Real part of reection coecient Imaginary part of reection coecient Parallel capacitance IMPEDANCE: MAG(|Z|) NNNNNNNNNNNNNNNNNNNNNNNNNNNN PHASE(z) RESIST(R) REACT(X) MORE 1/5 ADMITTNCE: MAG(|Y|) MORE 1/5 y MORE 1/5 CONDUCT(G) MORE 1/5 SUSCEPT(B) MORE 1/5 MORE 2/5 MAG(|0|) NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN MORE 1/5 MORE 2/5 PHASE(0 ) NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN MORE 1/5 MORE 2/5 REAL(0x) MORE 1/5 MORE 2/5 IMAG(0y) NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN MORE 1/5 MORE 2/5 MORE 3/5 CAPCITNCE: PRL(Cp) MORE 1/5 MORE 2/5 MORE 3/5 SER(Cs) MORE 1/5 MORE 2/5 MORE 3/5 INDUCTNCE: PRL(Lp) MORE 1/5 MORE 2/5 MORE 3/5 SER(Ls) MORE 1/5 MORE 2/5 MORE 3/5 MORE 4/5 RESISTNCE: PRL(Rp) MORE 1/5 MORE 2/5 MORE 3/5 MORE 4/5 SER(Rs) MORE 1/5 MORE 2/5 MORE 3/5 MORE 4/5 D FACTOR: (D) MORE 1/5 MORE 2/5 MORE 3/5 MORE 4/5 Q FACTOR: (Q) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Series capacitance NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN Parallel inductance NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Series inductance NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN Parallel resistance NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Series resistance NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN Dissipation factor NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Quality factor NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Setting and Optimizing Measurement Conditions 6-9 Selecting the Measurement Format (NA,ZA Mode) Selecting the Measurement Format (NA, ZA Mode) Selecting the Measurement Format in NA Mode 1. Press 4Format5. 2. Select one of the following options: Measurement Format Softkey LOG Magnitude Phase Group Delay1 Smith Chart2 Polar Chart Liner Magnitude Standing Wave Ratio (SWR) Real Part Only Imaginary Part Only Admittance Chart Phase Unit (degree or radian) Expanded Phase NNNNNNNNNNNNNNNNNNNNNNN LOG MAG PHASE DELAY SMITH CHART POLAR CHART MORE LIN MAG MORE SWR MORE REAL MORE IMAGINARY MORE ADMITTANCE CHART PHASE UNIT [ ] ( [DEG] or [RAD] ) EXP PHASE on OFF (toggle to ON off ) NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 1 See \Group Delay" in Chapter 8. 2 See \Displaying the Trace as a Smith Chart (NA, ZA Mode)". Displaying the Trace as a Smith Chart (NA, ZA Mode) 1. Press 4Format5. 2. Press SMITH CHART to display the trace as a smith chart. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Use the marker to read a measured value, by pressing 4Marker5 and turning 6-10 Setting and Optimizing Measurement Conditions . Selecting the Measurement Format (NA,ZA Mode) Note Figure 6-3. Smith Chart To display the Smith Chart in the ZA mode, set the measurement parameter to MAG(|0|) in the measurement menu. NNNNNNNNNNNNNNNNNNNNNNNNNN To change the marker readout format, use the following procedure: How To Change Marker Readout Format (NA, ZA Mode) 1. Press 4Utility5 SMTH/POLAR MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Select one of the following options by pressing the corresponding softkey: Format Softkey Real and Imaginary Linear Magnitude and Phase Log Magnitude and Phase Impedance Admittance SWR and Phase NNNNNNNNNNNNNNNNNNNNNNNNNNNNN REAL IMAG LIN MAG PHASE LOG MAG PHASE R+jX G+jB SWR PHASE NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Using the Impedance Conversion Function (NA Mode) 1. Press 4Meas5. 2. Press CONVERSION [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following options: Setting and Optimizing Measurement Conditions 6-11 Selecting the Measurement Format (NA,ZA Mode) Convert To Selected Port Softkey Impedance Admittance A/R, S11, S12 B/R, S21, S22 NNNNNNNNNNNNNNNNNNNN A/R, S11, S12 B/R, S21, S22 NNNNNNNNNNNNNNNNNNNN Z:Refl Z:Trans NNNNNNNNNNNNNNNNNNNNNNN Y:Refl Y:Trans NNNNNNNNNNNNNNNNNNNNNNN The marker readout value is a linear impedance or admittance value even if the LOG MAG format is selected. To Display Phase beyond 6180 Degrees (NA, ZA Mode) By default, the 4395A wraps the trace around at 6180 degree phases. However, there are occasions when it is more convenient to display the trace without 6180 degree wrap-around. If this is the case, you can use the Expanded Phase Format, which displays phases beyond 6180 degrees as shown in Figure 10-6. To select the expanded phase format, follow these steps: 1. Press 4Format5. 2. Toggle EXP PHASE on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Figure 6-4. Expanded Phase Format Using the Complex Plane Format (ZA Mode) Displaying R-X in the Complex Plane 1. Press 4Meas5 and choose IMPEDANCE: MAG(|Z|) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press 4Format5 and choose COMPLEX PLANE to select the complex plane format. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press 4Scale Ref5 and choose AUTO SCALE to adjust the scale. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN In the complex plane, the measurement parameter is always a complex number even if you select a scalar parameter (such as jZj). 6-12 Setting and Optimizing Measurement Conditions Selecting the Display Unit (SA, ZA Mode) Using the Marker 1. Press 4Marker5. Then move the marker using the rotary knob. The marker displays the real and imaginary value of the marker position at the upper-right corner of the grid as shown in Figure 6-5. Figure 6-5. Marker Readout of Complex Plane Adjusting the Scale Setting 1. Press 4Scale Ref5. 2. Change the following settings to adjust the scale of the complex plane: Scale Setting Keystrokes Scale/Div Choose SCALE/DIV . Then enter the scale per division value. Choose REFERENCE X VALUE . Then enter the reference X value. Choose REFERENCE Y VALUE . Then enter the reference Y value. Reference X Value Reference Y Value NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The reference position of the complex plane is always at the center of the grid. You can adjust the scale by changing the scale per division setting or the reference coordinate value. Setting and Optimizing Measurement Conditions 6-13 Selecting the Display Unit (SA, ZA Mode) Selecting the Display Unit Selecting the Display Unit in SA Mode 1. Press 4Format5. 2. Select one of the following options by choosing the corresponding softkey: Display Format Unit Softkey Power dBm W NNNNNNNNNNN dBV dBV V NNNNNNNNNNN Voltage dBm WATT NNNNNNNNNNNNNN dBV dBuV VOLT NNNNNNNNNNNNNN NNNNNNNNNNNNNN You can change the unit of a displayed value anytime you want. The 4395A automatically converts values into your specied format (unit) using the internally stored data. This eliminates the need of re-sweeping. Also, the 4395A can convert values even when it is in the held state. In spectrum analyzer mode, marker readout unit can be selected apart from the display unit. See \To Select Marker Readout Unit (SA Nide)" in Chapter 8 for details. If you want to perform a noise measurement instead of a spectrum measurement, see \Measuring the Noise Level" in Chapter 8. Selecting the Phase Unit (NA, ZA Mode) You can display the phase in either degrees or radians. To switch between the two units, follow these steps: 1. Press 4Format5. 2. Do one of the following: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN To switch from degrees to radians, toggle PHASE UNIT [DEG] to [RAD] . To switch from radians to degrees, toggle PHASE UNIT [RAD] to [DEG] . 6-14 Setting and Optimizing Measurement Conditions Setting the Frequency Range Setting the Frequency Range The 4395A has some useful features for setting the frequency range. This section provides the following procedures that are related to setting the frequency range. Setting the center frequency Setting the marker position to center Setting the maximum peak to center Changing the center with the specied step size Setting the frequency span Narrowing the span setting (SA mode) Setting the frequency range to full span Setting the sweep parameters using 4Start5 and 4Stop5 Zooming to a part of the trace Changing the zooming factor Displaying a zoomed trace on the other channel Zooming between the marker and the 1marker Setting the Center Frequency 1. Press 4Center5 to activate the center frequency function. 2. Change the center frequency to place the target signal in the center of the grid by using the following keys: To Use Set directly Change continuously Change with 1-2-5 steps1 405 . . . 495 and units terminator keys * + 4 5 4 5 1 You can change the step size of 4*5 4+5. See \Change the Center Frequency by the Specied Step Size" in this section. Setting the Marker Position to Center 1. Press 4Marker!5. A reverse-triangle shaped marker appears. 2. Place the marker on the position you want to set to the center by using the rotary knob. 3. Press MKR!CENTER . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Entry O5. The above procedure causes the 4395A to immediately use the marker-pointed frequency as the center frequency. If you are measuring an unknown signal, display the signal in full span rst. Then move the signal to the center using this function. Setting and Optimizing Measurement Conditions 6-15 Setting the Frequency Range Press MKR!CENTER NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Move the marker Figure 6-6. Marker to Center 6-16 Setting and Optimizing Measurement Conditions Setting the Frequency Range Setting the Maximum Peak to Center 1. Press 4Marker!5. 2. Press PEAK!CENTER . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press 4Entry O5. This function changes the center frequency to display the maximum peak at the center of the grid. Note A large frequency span may prevent the peak from appearing accurately at the center of the grid. If this is the case, press PEAK!CENTER again so that the peak is redisplayed in the middle. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Display the peak at the center of the screen Figure 6-7. Peak to Center Change the Center Frequency by the Specied Step Size 1. Do one of the following: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose 4Center5 CENTER STEP SIZE . Then directly enter your desired step size using 405 . . . 495 and the units terminator keys. Press 4Marker5 and move the marker to the point you want to use as the step size frequency. Then choose 4Center5 MKR!CNTR STEP . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Toggle STEP SIZE AUTO man to auto MAN . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press 4Center5. 4. Press 4*5 to increment (or 4+5 to decrement) the center frequency setting by the specied step size. This function is useful to display peaks that have a constant interval (such as harmonics) one after another. The following is an example of using this function to display harmonics . Setting and Optimizing Measurement Conditions 6-17 Setting the Frequency Range Example: Displaying Harmonics (SA Mode) To display the fundamental and harmonics of a 100 MHz signal, follow these steps: 1. Press 4Center5 100 4M/5. Then set the span to display the fundamental at the center of the grid. 2. Press 4Span5 150 4M/5. 3. Press 4Search5 and toggle SEARCH TRK on OFF to ON off to enable the search track function. 4. Choose SEARCH: PEAK to move the marker on the fundamental. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press 4Center5 and choose MKR!CNTR STEP . Enter 100 MHz (so the step size matches the fundamental frequency). 6. Toggle STEP SIZE AUTO man to auto MAN to enable the specied step size. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 7. Press 4Center5. Then press 4*5 to display the second harmonic. 8. To display higher order harmonics, press 4*5 as required. The marker searches for the next harmonic each time you change the center frequency using the search track function. Fundamental Second Harmonics Figure 6-8. Displaying Harmonics 6-18 Setting and Optimizing Measurement Conditions Setting the Frequency Range Setting the Frequency Span 1. Press 4Span5. 2. Enter the frequency span to display the target peak in the optimum grid setting. To Use Set directly Change continuously Change with 1-2-5 steps 405 . . . 495 and units terminator keys * + 4 5 4 5 Setting and Optimizing Measurement Conditions 6-19 Setting the Frequency Range Narrowing the Span Setting (SA Mode) 1. Press 4Search5. 2. Choose SEARCH: PEAK to place the marker on the carrier. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Toggle SIGNAL TRK on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 4. Narrow the span setting. See the \Setting the Frequency Span" procedure. An extremely small span setting may cause the test signal to disappear from display. This happens because of the dierence between the displayed and actual frequencies. For example, when the span setting is set to full span, the displayed test signal frequency has an error of approximately 600 kHz because of its resolution (500 MHz/800). A span setting smaller than the error frequency can cause the test signal to disappear from the screen depending on the error range. The signal track function allows you to avoid this situation. When signal track is enabled, the analyzer narrows the span setting while centering the test signal as you narrow the span setting. Therefore, the test signal is placed at the center of the grid. The following gure shows an example of narrowing the span with the signal track function. The actual signal frequency is 250.100025 MHz. When the center is xed and the span is 10 kHz, the signal is out of display. The signal track function tracks the signal by changing the center frequency, and keeps displaying the signal at the center of the display. Span 500MHz Span 10kHz Figure 6-9. Narrowing Span with Signal Track Setting the Frequency Range to Full Span. 1. Press 4Span5. 2. Press FULL SPAN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN This function is useful when you want to get a general view of the spectrum after you have obtained the detailed view of a specic signal. 6-20 Setting and Optimizing Measurement Conditions Setting the Frequency Range Setting the Sweep Parameters Using 4Start5 and 4Stop5 You can set the sweep parameters using 4Start5 and 4Stop5 instead of 4Center5 and 4Span5: 1. Press 4Start5 to put the 4395A into a mode where it accepts your entered value as the frequency at which to start the sweep process. 2. Set the start frequency using the following keys: To Use Set directly 405 Change continuously Change with 1-2-5 steps 4 5 4 5 . . . 495 and units terminator keys * + 3. Press 4Stop5 to put the 4395A into a mode where it accepts your entered value as the frequency at which to stop the sweep process. 4. Set the stop frequency using the keys listed in the previous table. Figure 6-10. Setting the Sweep Parameters Setting and Optimizing Measurement Conditions 6-21 Setting the Frequency Range Zooming To a Part of the Trace 1. Move the marker to the point where you want to observe the signal details. 2. Press 4Marker!5. 3. Press MKR ZOOM . NNNNNNNNNNNNNNNNNNNNNNNNNN 4. To zoom more, press MKR ZOOM again. NNNNNNNNNNNNNNNNNNNNNNNNNN Change the Zooming Factor. 1. Press 4Marker!5 ZOOMING APERTURE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Enter your desired zooming aperture as a percentage of the span. If you want to obtain a 20-fold zoom, for example, enter 5% for as the zooming factor. Displaying a Zoomed Trace on the Other Channel. 1. Press 4Display5 and toggle DUAL CHAN on OFF to ON off to display two channels on the LCD. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 2. Move the marker to the point where you want to observe the signal details. 3. Press 4Marker!5. 4. Choose MKR!XCH MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Choose MKR XCH ZOOM . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The other channel displays the zoomed trace. Figure 6-11. Zooming the Trace 6-22 Setting and Optimizing Measurement Conditions Adjusting the Scale and Reference Adjusting the Scale and Reference The 4395A provides you with several means to adjust the scale and reference of the trace so that the entire trace is displayed within the grid area. For example, when the trace is out of the grid or is too at to see the required characteristics, you can adjust the trace settings by adjusting the reference or the scale. Automatically adjusting the scale and reference Manually adjusting the scale and reference Setting the reference Changing the scale per division Automatically Adjusting the Scale and Reference (NA, ZA Mode) 1. Press 4Scale Ref5. 2. Press AUTO SCALE to t the trace within the grid. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The scale and reference settings are automatically adjusted to provide an optimum trace display. Before Auto Scale After Auto Scale Figure 6-12. Autoscale Function Manually Adjusting the Scale and Reference (NA, ZA Mode) If you want to manually adjust the scale and reference settings, the following functions are available: To change the scale per division setting, press SCALE/DIV . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN To change the reference position that is shown as \ 7", use REFERENCE POSITION and 4*5 4+5 keys. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To change the reference value, use REFERENCE VALUE . If you are displaying a data trace and a memory trace together, you need to consider whether you want to change the scale for one or both traces. You can change the traces as follows: Setting and Optimizing Measurement Conditions 6-23 Adjusting the Scale and Reference NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN If you want to change the scale setting for the data trace only, set SCALE FOR [DATA] and D&M SCALE [UNCOUPLE] under 4Scale Ref5 key. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN If you want to change the scale setting for the memory trace only, set SCALE FOR [MEMORY] and D&M SCALE [UNCOUPLE] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN If you want to change the scale settings for the both traces, set D&M SCALE [COUPLE] . Setting the Reference (SA Mode) Using the Numeric Keys. 1. Press 4Scale Ref5. 2. Choose REFERENCE VALUE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Use or 4+5 Move trace upward Move trace downward Set reference value directly or 4*5 405 . . . 495 and unit keys Using the Marker. 1. Press 4Search5 and choose SEARCH: PEAK to move the marker to the peak. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press 4Scale Ref5. 3. Choose MKR!REFERENCE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Move the marker to the top of the peak Press 4Scale Ref5 MKR!REFERENCE Figure 6-13. Marker to Reference 6-24 Setting and Optimizing Measurement Conditions NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Adjusting the Scale and Reference Changing the Scale per Division (SA Mode) 1. Set the reference level to the peak level of the target signal. See the \Using the Marker" procedure. 2. Press 4Scale Ref5. 3. Choose SCALE/DIV . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Change the scale/division setting to display additional details using the following keys: To Use Change continuously Change by 1-2-5 steps Set Scale/Div directly 4 5 4 5 + * 405 . . . 495 and unit keys This function can be used to display a small peak on a full grid. Scale 10 dB/Div Scale 3 dB/Div Figure 6-14. Changing Scale/Div. Setting and Optimizing Measurement Conditions 6-25 Setting the IF/Resolution/Video Bandwidth Setting the IF/Resolution/Video Bandwidth Setting the IF Bandwidth (NA, ZA Mode) 1. Press 4Bw/Avg5. 2. Choose IF BW . NNNNNNNNNNNNNNNNN 3. Press 4*5 or 4+5, or enter an IF bandwidth value directly from the numeric keypad. A smaller IF bandwidth increases the dynamic range but slows down the sweep process. IF Bandwidth 30 kHz IF Bandwidth 100 Hz Figure 6-15. Setting IF Bandwidth (IFBW) Note The IF bandwidth should be set equal to or less than 1/5 of the measurement frequency. When making impedance measurements with the 43961A, you must set the IF bandwidth equal to or less than 300 Hz and set the averaging factor equal to or greater than 8. Setting the IF Bandwidth to Auto Mode If the sweep type is log frequency, the IF bandwidth can be set to auto mode. 1. Press 4Bw/Avg5. 2. Toggle IF BW auto MAN to AUTO man . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN In auto mode, the IF bandwidth is automatically set equal to or less than 1/5 of each measurement frequency. If you want to set an upper limit of IF bandwidth in auto mode, press AUTO IFBW LIMIT and enter the upper limit with entry keys. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6-26 Setting and Optimizing Measurement Conditions Setting the IF/Resolution/Video Bandwidth Setting the Resolution Bandwidths (SA Mode) Adjusting the RBW can improve the resolution of the frequency and lower the displayed noise oor. 1. Press 4Bw/Avg5. 2. Choose RES BW . NNNNNNNNNNNNNNNNNNNN 3. Change the RBW setting using 4*5, 4+5, or the . Measuring two or more mutually adjusting signals requires special considerations on the width of the 4395A's internal IF lter. If the internal IF lter is wider than the dierence between the signals, the analyzer cannot separate them. To avoid this problem, you must provide a resolution bandwidth (RBW) small enough for the 4395A to identify the respective signals. A small RBW can reduce the noise power per display point, thereby lowering the displayed noise oor and making it possible to display lower level signals. For example, the trace of a 400 Hz amplitude modulated signal conceals sidebands in the skirt of the carrier trace when the RBW is 300 Hz. In this case, you can split the carrier and sidebands completely and lower the displayed noise oor by setting the RBW to 10 Hz. RBW 300 Hz RBW 10 Hz Figure 6-16. Setting Resolution Bandwidth (RBW) Setting the Resolution Bandwidth to Auto Mode You can automatically set the resolution bandwidth in accordance with the percentage of the sweep span. 1. Press 4Bw/Avg5. 2. Press RBW/SPAN RATIO and enter the percentage of the sweep span with entry keys. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Toggle to AUTO man . NNNNNNNNNNNNNNNNNNNNNNNNNN Setting and Optimizing Measurement Conditions 6-27 Setting the IF/Resolution/Video Bandwidth Setting the Video Bandwidth (SA Mode) 1. Press 4Bw/Avg5. 2. Choose VIDEO BW . NNNNNNNNNNNNNNNNNNNNNNNNNN 3. Set the video bandwidth using the following keys: To Use Lower noise level 4 5, Shorten sweep time Set bandwidth directly 405 + or 4*5, or . . . 495 and unit keys When the target signal and the noise are hard to distinguish because of noise variation, narrow the video bandwidth. This reduces the noise variations and makes the signal clearly visible. Note, however, that reducing the video bandwidth slows down the sweep process. You can set the VBW to a value that is 1/1, 1/3, 1/10, 1/30, 1/100, or 1/300 of the RBW setting currently in eect. Resetting the Video Bandwidth. 1. Press 4Bw/Avg5 VIDEO BW . NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Enter the same value as the RBW setting. Video BW 30 kHz Video BW 300 Hz Figure 6-17. Setting Video Bandwidth (VBW) 6-28 Setting and Optimizing Measurement Conditions 7 Calibration This chapter describes calibration procedures required for measurement in the network analyzer mode and the impedance analyzer mode. For details about calibration procedures, see Appendix A. In the spectrum analyzer mode, the 4395A requires no calibration procedure in the measurement. Note When performing the 75 measurement in the spectrum analyzer mode, see Chapter 2 to set the 4395A properly. Calibration Required for the Network Analyzer Mode This section provide procedures for performing calibration. The calibration eliminates the errors and improves the measurement accuracy. The analyzer has six dierent methods of calibration. You can select the method that ts your measurement requirement by reading \To Select an Appropriate Calibration Method" procedure. This section also contains a procedure to customize a calibration kit. Selecting an appropriate calibration method Performing a response calibration Performing a response & isolation calibration Performing an S11 1-port calibration Performing an S22 1-port calibration Performing a full 2-port calibration Performing a 1-path 2-port calibration Selecting the calibration kit Customizing the user dened calibration kit To Select an Appropriate Calibration Method The analyzer has six calibration methods. You can choose the appropriate calibration method to t your measurement by using Table 7-1. Calibration 7-1 Calibration Required for the Network Analyzer Mode Table 7-1. Calibration Method Selection Table Measurement Type Calibration Complexity Method Transmission or reection measurement when the highest accuracy is not required. Response Transmission of high insertion loss devices Response & or reection of high return loss devices. Not isolation as accurate as 1-port or 2-port calibration. See simple \Performing a Response Calibration" simple \To Perform a Response & Isolation Calibration" Reection of any one-port device or well terminated two-port device. S11 1-port slightly complex \Performing an S11 1-Port Calibration" Reection of any one-port device or well terminated two-port device. S22 1-port slightly complex \Performing an S22 1-Port Calibration" Full 2-port Transmission or reection of highest accuracy for two-port devices. S-parameter Test Set is required. complex \Performing a Full 2-Port Calibration" One-path Transmission or reection of highest accuracy for two-port devices. (Reverse test 2-port device between forward and reverse measurements.) complex \Performing a 1-Path 2-Port Calibration" Performing a Response Calibration 1. Press 4Cal5 CALIBRATE MENU RESPONSE to display the response calibration menu. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Connect one of following standards. Then press the corresponding key. Measurement Type Connect Standard Press Transmission Measurement THRU NNNNNNNNNNNNNN Reection Measurement OPEN NNNNNNNNNNNNNN SHORT NNNNNNNNNNNNNNNNN THRU OPEN SHORT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press DONE: RESPONSE . Performing a Response & Isolation Calibration 1. Press 4Cal5 CALIBRATE MENU RESPONSE & ISOL'N to display the response and isolation calibration menu. 2. Press RESPONSE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 3. See 2 of the \Performing a Response Calibration" procedure. 4. Press DONE: RESPONSE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Connect isolation standard (LOAD). 7-2 Calibration Calibration Required for the Network Analyzer Mode 6. Press ISOL'N . NNNNNNNNNNNNNNNNNNNN 7. Press DONE RESP ISOL'N CAL . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Calibration 7-3 Calibration Required for the Network Analyzer Mode Performing an S11 1-Port Calibration Step 1: Opening the S-11 1-Port Calibration Menu 1. Press 4Cal5. 2. Select the proper calibration kit. If the connector type or calibration kit name shown in the CAL KIT softkey label is not the same as the calibration you are going to use, follow the \Selecting the Calibration Kit" procedure. 3. Press CALIBRATE MENU S11 1-PORT . NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 2: Measuring the OPEN 1. Connect OPEN standard to port 1. 2. Press (S11): OPEN (for the 7 mm or 3.5 mm cal kit) or (S11): OPENS (for the type-N cal kit). When the 7 mm or 3.5 mm calibration kit is selected, the message \WAIT - MEASURING CAL STANDARD" is displayed while the OPEN data is measured. The softkey label OPEN is then underlined. Skip to step 3. 3. If the type-N calibration kit is selected, do the following: a. Press OPEN [M] (for a male port connector) or press OPEN [F] (for a female port connector). The OPEN data is measured and the softkey label is then underlined. b. Press DONE: OPENS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 3: Measuring the SHORT 1. Disconnect the OPEN. Then connect a SHORT standard to port 1. 2. Press SHORT (for the 7 mm or 3.5 mm calibration kit) or SHORTS (for the type-N calibration kit). When the 7 mm or 3.5 mm calibration kit is selected, the SHORT data is measured and the softkey label is underlined. 3. If the type-N calibration kit is selected, do the following: a. Press SHORT [M] (for a male port connector) or press SHORT [F] (for a female port connector). The SHORT data is measured and the softkey label is then underlined. b. Press DONE: SHORTS . NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 4: Measuring the LOAD 1. Disconnect the SHORT, and connect an impedance-matched LOAD (usually 50 or 75 ) at port 1. 2. Press LOAD . Then wait the LOAD is measured and the LOAD softkey is underlined. NNNNNNNNNNNNNN 7-4 Calibration NNNNNNNNNNNNNN Calibration Required for the Network Analyzer Mode Step 5: Completing the Calibration 1. Press DONE 1-PORT CAL to complete the calibration. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The 4395A calculates the error coecients, and then redisplays the correction menu with a CORRECTION ON off label. A corrected S11 trace is displayed, and \Cor" appears at the left side of the screen. If you press DONE without measuring all the required standards, the message \CAUTION: ADDITIONAL STANDARDS NEEDED" is displayed. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN Performing an S22 1-Port Calibration This calibration is similar to the S11 1-port calibration except that S22 is selected automatically. It is used only with an S-parameter test set. For S-parameter measurements in the reverse direction with a transmission/reection test kit, use the S11 1-port or 1-path 2-port calibration and reverse the DUT between measurement sweeps. Calibration 7-5 Calibration Required for the Network Analyzer Mode Performing a Full 2-Port Calibration Step 1: Opening the Full 2-Port Calibration Menu 1. Press 4Cal5. 2. Select the proper calibration kit. If the connector type or calibration kit name shown in the CAL KIT softkey label is not the same as the calibration kit to be used, see the \Selecting the Calibration Kit" procedure. 3. Press CALIBRATE MENU FULL 2-PORT REFLECT'N . NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 2: Measuring the Reection 1. Connect a shielded OPEN to port 1. 2. Press (S11): OPEN (for the 7 mm or 3.5 mm calibration kit) or (S11): OPENS (for the type-N calibration kit). When the 7 mm or 3.5 mm calibration kit is selected in step 1, the OPEN data is measured and the softkey label OPEN is underlined. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 3. If the type-N calibration kit is selected, do the following: a. Press OPEN [M] (for a male port connector) or press OPEN [F] (for a female port connector). The OPEN data is measured. The softkey label is then underlined. b. Press DONE: OPENS . NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Disconnect the OPEN and connect the SHORT to port 1. 5. Press (S11): SHORT (for the 7 mm or 3.5 mm calibration kit) or (S11): SHORTS (for the type-N calibration kit). When the 7 mm or 3.5 mm calibration kit is selected, the SHORT data is measured and the softkey label SHORT is underlined. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 6. If the type-N calibration kit is selected, do the following: a. Press SHORT [M] (for a male port connector) or press SHORT [F] (for a female port connector). The SHORT data is measured and the softkey label is then underlined. b. Press DONE: SHORTS NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Disconnect the SHORT and connect an impedance-matched LOAD (usually 50 or 75 ) at port 1. 8. Press (S11): LOAD . Then conrm the LOAD softkey label is underlined. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 9. Repeat the OPEN-SHORT-LOAD measurements described above, connecting the devices in turn to port 2 and using the (S22) softkeys. 10. Press REFLECT'N DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The reection calibration coecients are computed and stored. The two-port calibration menu is displayed (with the REFLECT'N softkey underlined). NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7-6 Calibration Calibration Required for the Network Analyzer Mode Step 3: Measuring the Transmission 1. Press TRANSMISSION . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Connect a THRU connection between port 1 and port 2 at the points where the test device is connected. 3. When the trace settles, press FWD. TRANS. THRU . Then wait the S21 frequency response is measured and the softkey label is underlined. 4. Press FWD. MATCH THRU . Then wait the S11 load match is measured and the softkey label is underlined. 5. Press REV. TRANS. THRU . Then wait the S12 frequency response is measured and the softkey label is underlined. 6. Press REV. MATCH THRU . Then wait the S22 load match is measured and the softkey label is underlined. 7. Press TRANS. DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The transmission coecients are computed and stored. The two-port calibration menu is displayed (with the TRANSMISSION softkey underlined). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 4: Measuring the Isolation 1. If correction for isolation is not required, press ISOLATION OMIT ISOLATION ISOLATION DONE . Then skip to step 5. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. If correction for isolation is required, connect impedance-matched LOADs to port 1 and port 2. 3. Press FWD ISOL'N ISOL'N STD . Then wait the S21 isolation is measured and the softkey label is underlined. 4. Press REV ISOL'N ISOL'N STD . Then wait the S12 isolation is measured and the softkey label is underlined. 5. Press ISOLATION DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The isolation error coecients are stored. The two-port calibration menu is displayed (with the ISOLATION softkey underlined). NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 5: Completing the Calibration 1. Press DONE: 2-PORT CAL to complete the calibration. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The error coecients are computed and stored. The correction menu is displayed (with CORRECTION ON off ). A corrected trace is displayed. The notation \C2" at the left of the screen indicates that two-port error correction is ON. Now the test device can be connected and measured. Save the calibration data on the built-in disk drive. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Calibration 7-7 Calibration Required for the Network Analyzer Mode Performing a 1-Path 2-Port Calibration Step 1: Opening the 1-Path 2-Port Calibration Menu 1. Press 4Cal5. 2. Select the proper calibration kit. If the connector type or calibration kit name shown in the CAL KIT softkey label is not the same as the calibration kit to be used, see the \Selecting the Calibration Kit" procedure. 3. Press CALIBRATE MENU ONE-PATH 2-PORT REFLECT'N . NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 2: Measuring the Reection 1. Connect a shielded OPEN to the test port. 2. Press (S11): OPEN (for the 7 mm calibration kit) or (S11): OPENS (for the type-N calibration kit). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN The OPEN data is measured, and the softkey label OPEN is underlined. 3. If the type-N calibration kit is selected, do the following: a. Press OPEN [M] (for a male port connector) or press OPEN [F] (for a female port connector). The OPEN data is measured and the softkey label is then underlined. b. Press DONE: OPENS . NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Disconnect the OPEN and connect a SHORT to the test port. 5. Press SHORT (for the 7 mm or 3.5 mm calibration kit) or SHORTS (for the type-N calibration kit). When the 7 mm or 3.5 mm calibration kit is selected, the SHORT data is measured and the softkey label SHORT is underlined. NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 6. If the type-N calibration kit is selected, do the following: a. Press SHORT [M] (for a male port connector) or press SHORT [F] (for a female port connector). The SHORT data is measured and the softkey label is then underlined. b. Press DONE: SHORTS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Disconnect the SHORT and connect an impedance-matched LOAD (50 or 75 ) to the test port. 8. Press LOAD . Then wait the LOAD is measured and the softkey label LOAD is underlined. NNNNNNNNNNNNNN NNNNNNNNNNNNNN 9. Press REFLECT'N DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The reection calibration coecients are computed and stored. The two-port calibration menu is displayed (with the REFLECT'N softkey underlined). NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7-8 Calibration Calibration Required for the Network Analyzer Mode Step 3: Measuring the Transmission 1. Connect a THRU between the test port and the return cable to the analyzer (connect to the points at which the test device is connected). 2. Press TRANSMISSION . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press FWD. TRANS. THRU . Then wait the S21 frequency response is measured and the softkey label is underlined. 4. Press FWD. MATCH THRU . Then wait the S11 load match is measured and the softkey label is underlined. 5. Press TRANS. DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The transmission coecients are computed and stored. The two-port calibration menu is displayed (with the TRANSMISSION softkey underlined). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 4: Measuring the Isolation 1. If correction for isolation is not required, press ISOLATION OMIT ISOLATION ISOLATION DONE . Skip to step 5. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. If correction for isolation is required, connect impedance-matched LOADs to the test port and the return port. 3. Press FWD ISOL'N ISOL'N STD . Then wait the S21 isolation is measured and the softkey label is underlined. 4. Press ISOLATION DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The isolation error coecients are stored. The two-port calibration menu is displayed (with the ISOLATION softkey underlined). NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 5: Completing the Calibration 1. Press DONE 2-PORT CAL to complete the calibration. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The error coecients are computed and stored. The correction menu is displayed with CORRECTION ON off . A corrected trace is displayed. The notation \C2" at the left of the screen indicates that 2-port error correction is ON. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 6: Performing the Measurement 1. Connect the test device in the reverse direction. Then press PRESS to CONTINUE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Reconnect the test device in the forward direction. Then press PRESS to CONTINUE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Now the error corrected trace is displayed. If you measure the other test device, press 4Trigger5 MEASUREMENT RESTART . Then perform the procedure of step 6. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Save the calibration data on a oppy disk or memory disk. For additional information about calibration, see Appendix A. Calibration 7-9 Calibration Required for the Network Analyzer Mode Selecting the Calibration Kit 1. Press 4Cal5. 2. Press CAL KIT [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following options by pressing the corresponding key: Calibration Kit Softkey 7 mm calibration kit 3.5 mm calibration kit 50 N type 75 N type User dened calibration kit NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN CAL KIT: 7mm 3.5mm N 50 N 75 USER KIT NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN Customizing the User Dened Calibration Kit Dening the Standard Denition Step 1: Preparation. 1. Prepare the \Standard Denitions" table of the standard kit you want to use. Table 7-2 is an example of a standard denition table. Table 7-2. Example of the Standard Denitions STANDARD C0 NO. TYPE 210-15 F 1 SHORT 2 OPEN 3 LOAD 4 OFFSET FREQ. (GHz) C1 C2210-36 C3210-45 FIXED OR COAX or STANDARD -27 210 F F/Hz F/Hz SLIDING DELAY LOSS Z0 MIN. MAX. WAVEGUIDE LABEL ps M /s 0 700 50 0 999 COAX SHORT (M) 0 700 50 0 999 COAX OPEN (M) 0 700 50 0 999 COAX BROADBAND DELAY/ THRU 0 700 50 0 999 COAX THRU 7 SHORT 17.544 700 50 0 999 COAX SHORT (F) 8 OPEN 17.544 700 50 0 999 COAX OPEN (F) 108 55 130 0 FIXED 5 6 62 17 28 0 Step 2: Opening the Dene Standard Menu. 1. Press 4Cal5. 2. Press CAL KIT [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press MODIFY [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press DEFINE STANDARD . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Select standard number. 7-10 Calibration Calibration Required for the Network Analyzer Mode 6. Select standard type. If you did not select standard type as OPEN in step 2, skip to step 4. Step 3: Entering C Parameters. 1. Press C0 . Then enter C0 (210-15 F). NNNNNNNN 2. Press C1 . Then enter C1 (210-27 F/Hz). NNNNNNNN 3. Press C2 . Then enter C2 (210-36 F/Hz2 ). NNNNNNNN Step 4: Entering OFFSET Parameters. 1. Press SPECIFY OFFSET . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press OFFSET DELAY . Then enter the oset delay value. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press OFFSET LOSS . Then enter the oset loss value. Press OFFSET Z0 . Then enter Z0 . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press STD OFFSET DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 5: Entering a Standard Class Label. 1. Press LABEL STD . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Enter a standard label (up to 10 characters). 3. Press DONE . NNNNNNNNNNNNNN Step 6: Completing the Denition of a Calibration Kit. 1. Press STD DONE (DEFINED) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press KIT DONE (MODIFIED) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Calibration 7-11 Calibration Required for the Network Analyzer Mode Dening a Class Assignment Step 1: Preparing for the Class Assignment. 1. Prepare the standard class assignment table for your calibration kit. Table 7-3. Example: Standard Class Assignment of the 85032B A B C D E F G STANDARD CLASS LABEL S11 A 2 8 OPENS S11 B 1 7 SHORTS S11 C 3 S22 A 2 8 OPENS S22 B 1 7 SHORTS S22 C 3 LOAD Forward Transmission 4 Fwd. Trans Thru Reverse Transmission 4 Rev. Trans Thru Forward Match 4 Fwd. Match Thru Reverse Match 4 Rev. Match Thru Response 1 7 2 8 4 RESPONSE Response & Isolation 1 7 2 8 4 Response & Isol'n LOAD Step 2: Specifying the Standard Class. 1. Press SPECIFY CLASS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Select standard class. To Select Press S11 A S11 B S11 C S22 A S22 B S22 C Forward Transmission Reverse Transmission Forward Match Reverse Match Response Response & Isolation NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SPECIFY: S11A S11B S11C SPECIFY: S22A S22B S22C MORE SPECIFY: FWD. TRANS. MORE REV.TRANS. MORE FWD. MATCH MORE REV.MATCH MORE RESPONSE MORE RESPONSE & ISOL'N NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Enter the standard number from A to G. 4. Press CLASS DONE (SPEC'D) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7-12 Calibration Calibration Required for the Network Analyzer Mode Step 3: Creating the Standard Class Label. 1. Press LABEL CLASS to label the standard class. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Select the standard class. See 2 of Step 2. 3. Enter or modify the correspondent standard class label. 4. Press LABEL DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Labeling and Saving Calibration Kit. 1. Press LABEL KIT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Enter label. 3. Press DONE KIT DONE (MODIFIED) . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press CAL KIT [ ] SAVE USER KIT USER KIT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press RETURN . NNNNNNNNNNNNNNNNNNNN Once you have dened your own calibration kit, you can verify the denition using the copy function that lists standard parameters and class assignment. Verifying the Denition of the User-Dened Calibration Kit. 1. Press 4Cal5 CAL KIT [ ] USER KIT to specify the calibration kit as a user-dened kit. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press 4Copy5 MORE CAL KIT DEFINITION . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To display the standard parameters dened, press STANDARD DEFINITON . Then press the softkey whose label corresponds to the standard number if you want to list the dened parameters. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To display the dened class assignment, press CLASS ASSIGNMENT . 3. To make a hardcopy, press PRINT [STANDARD] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. To return to the normal display, press RESTORE DISPLAY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Calibration 7-13 Calibration Required for the Impedance Analyzer Mode Calibration Required for the Impedance Analyzer Mode This section provide procedures for performing the calibration when measuring in the impedance analyzer mode. This section also covers how to customize the user dened calibration kit. OPEN/SHORT/LOAD Calibration In the impedance analyzer mode, 4395A should be calibrated with the 43961A impedance test kit attached. Calibration denes the measurement accuracy at the OUTPUT port on the impedance test kit. After calibration, the analyzer can measure within its specied measurement accuracy. The calibration is performed in terms of the three items: OPEN (using 0 S termination) SHORT (using 0 termination) LOAD (using 50 termination) Note You must use the calibration kit that is furnished to the 43961A for the standard calibration kit. Calibration Procedure Follow the steps below to perform the OPEN/SHORT/LOAD calibrations. 1. Press 4Cal5. 2. Press CALIBRATE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Connect the 0 S termination to the OUTPUT port. 4. Press OPEN . After an open calibration sequence is completed, the OPEN softkey label is underlined. NNNNNNNNNNNNNN NNNNNNNNNNNNNN 5. Disconnect the 0 S termination, then connect the 0 termination to the OUTPUT port. 6. Press SHORT . After a short calibration sequence is completed, the SHORT softkey label is underlined. NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 7. Disconnect the 0 termination, then connect the 50 termination. 8. Press LOAD . After a load calibration sequence is completed, the LOAD softkey label is underlined. NNNNNNNNNNNNNN NNNNNNNNNNNNNN 9. Press DONE: CAL . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10. Verify the \Cor" notation is displayed on the left of the screen. 7-14 Calibration Calibration Required for the Impedance Analyzer Mode Note Figure 7-1. Connecting Calibration Standards The OUTPUT port of the impedance test kit and the calibration standards have APC-7 connectors. The APC-7 connector is very sensitive to damage and dirt. You need to do the following when handling and storing APC-7 connectors: Keep the connectors clean. Do not touch the mating plane surfaces. Do not set the connectors contact-end down. Before storing, extend the sleeve or connector nut. Use end caps over the mating plane surfaces. Never store connectors loose in a box or a drawer. Connecting the Test Fixture To connect the test xture to the impedance test kit, see the applicable test xture manual for instructions. The following is a general procedure: 1. Turn the APC-7 connector of the impedance test kit OUTPUT port. 2. Verify that the connector sleeve is retracted fully. 3. Set the mounting posts of the test station into the twin locating holes at the corner of the test xture. 4. Connect the connector on the underside of the test xture to the OUTPUT port of the impedance test kit. Calibration 7-15 Calibration Required for the Impedance Analyzer Mode Figure 7-2. Connecting Test Fixture 7-16 Calibration Calibration Required for the Impedance Analyzer Mode Setting the Electrical Length of the Test Fixture After connecting the test xture, you need to enter the extended electrical length of the xture. This is required to eliminate a phase shift error caused by the extended electrical length. The analyzer has electrical length data for some xtures as preset data. 1. Press 4Meas5. 2. Press FIXTURE SELECT FIXTURE . NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select the xture model number that you are using. 4. Press RETURN . NNNNNNNNNNNNNNNNNNNN 5. Verify that \Del" notation appears on the left side of the display. If your xture is not listed on the softkey label in the xture selection menu, use the user xture setting menu. (See \Setting the User Dened Fixture ".) Setting the User Dened Fixture NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Selecting FIXTURE [NONE] SELECT FIXTURE under 4Meas5 displays the list containing Agilent xtures. To use a xture that is not listed in the xture list, perform the following procedure: 1. Determine the following parameters before dening the user xture: Port Extension The equivalent electrical length of the xture [m]. Label The xture identication that is displayed in the softkey label. 2. Press 4Meas5 FIXTURE [NONE] MODIFY [NONE] to display the user xture setting menu. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press DEFINE EXTENSION . Then enter an equivalent electrical length by using the numerical keys. 4. Press LABEL FIXTURE . Enter a label by using the rotary knob and then press DONE . Pressing 4*5 4+5 changes the character set for entry. Up to 8 characters are allowed. 5. Press KIT DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 6. To store the setting data into the non-volatile memory, press SAVE USER FXTR KIT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To use the user xture setting, select USER under 4Meas5 FIXTURE [NONE] SELECT FIXTURE . Calibration 7-17 Calibration Required for the Impedance Analyzer Mode Performing Fixture Compensation Fixture compensation reduces the parasitic error existing between the test xture electrode and the impedance test kit OUTPUT port. Fixture compensation consists of OPEN, SHORT and LOAD compensations. For basic measurements, the OPEN and SHORT compensations are required. Note For the instructions on how to connect the standards, see the applicable test xture manual. 1. Connect the SHORT bar to the xture. 2. Press 4Cal5 FIXTURE COMPEN COMPEN MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press SHORT . After the short compensation sequence is done, the SHORT softkey label is underlined. NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 4. Remove the SHORT bar and set the OPEN condition. 5. Press OPEN . After the open compensation sequence is done, the OPEN softkey label is underlined. NNNNNNNNNNNNNN NNNNNNNNNNNNNN 6. Press DONE: COMPEN . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Verify that \Cor" changes to \Cmp" notation. 7-18 Calibration Calibration Required for the Impedance Analyzer Mode Selecting the Calibration Kit See \Selecting the Calibration Kit" in \Calibration Required for the Network Analyzer Mode" for selecting the calibration kit. Dening a Custom Fixture Compensation Kit This section explains how to dene a custom xture compensation kit. The 4395A incorporates a database of Agilent's genuine test xtures and their specic compensation coecients. Therefore, as long as you use an Agilent's genuine test xture, you can use the xture without dening an associated compensation kit. If you use your custom test xture to meet your actual needs, however, you must dene the compensation kit associated with the xture before you can use your custom test xture. Once you have dened a xture compensation kit, the 4395A preserves the denitions so you can select the compensation kit whenever you need to use it. The 4395A uses the following equivalent circuit to perform xture compensation for each of the OPEN, SHORT, and LOAD circuit states: Figure 7-3. Model of Fixture Compensation Kit Dening a xture compensation kit involves the following steps: 1. Opening the xture compensation kit modication menu 2. Specifying parameter values 3. Specifying the standard label The above steps are described in the following subsections in order. Step 1: Opening the Fixture Compensation Kit Modication Menu To open the xture compensation kit modication menu, do the following: 1. Press 4Cal5. 2. Choose COMPEN KIT [USER] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Choose MODIFY [USER] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Choose DEFINE STANDARD . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Calibration 7-19 Calibration Required for the Impedance Analyzer Mode Step 2: Specifying Parameter Values In this step, you specify 2 parameters for each of the OPEN, SHORT, and LOAD circuit states; thus 6 parameters in all. While the parameters for OPEN and SHORT are required, those for LOAD are optional. To specify the parameter values, do the following: 1. Choose OPEN: CONDUCT(G) , and enter the conductance value (G) for OPEN. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Choose CAP. (C) , and enter the capacitance value (C) for OPEN. NNNNNNNNNNNNNNNNNNNNNNNNNN 3. Choose SHORT: RESIST. (R) , and enter the resistance value (R) for SHORT. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Choose INDUCT. (L) , and enter the inductance value (L) for SHORT. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Choose LOAD: RESIST. (R) , and enter the resistance value (R) for LOAD. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Choose INDUCT. (L) , and enter the reactance value (L) for LOAD. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Choose STD DONE (DEFINED) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 3: Specifying the Standard Label 1. Choose LABEL KIT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Enter the standard label (up to 10 characters). 3. Choose DONE . NNNNNNNNNNNNNN 4. Choose KIT DONE (MODIFIED) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7-20 Calibration 8 Analyzing the Measurement Results The 4395A provides various analyzer functions that allow you to output, save, or further analyze measurement results obtained through the 4395A's measurement functions. The rst half of this chapter provides these analyzer functions which are not dependent on a particular analyzer mode. In the latter half, typical measurement techniques for each analyzer mode are described. Topics covered include: Interpreting the trace Storing the trace data in memory Using the trace math functions Overlaying traces Outputting the data to a printer Saving and recalling the settings and data Typical network measurement techniques Typical spectrum measurement techniques Typical Impedance measurement techniques Analyzing the Measurement Results 8-1 Interpreting the Trace Interpreting the Trace Once you have successfully displayed the correct trace on the screen, you can use the marker to interpret the trace. The 4395A provides you with powerful search functions that allow you to search for specic points (like peaks or ripples). This section provides procedures for reading values using the marker and the marker search functions. To read a value using the marker To use the sub-markers To use the 1marker To search for a point that has a target value To search for the peak-to-peak of ripples using the statistics function To search for a single peak on the trace To search for multiple peaks To dene the peak for search (to ignore unnecessary peaks) To specify the search range To Read a Value Using the Marker 1. Press 4Marker5. 2. Move the marker by performing the following steps: Turn the rotary knob until the marker moves to the point where you want to read the measured value. Enter the target frequency by using numerical keys. 3. Read the marker value displayed on the upper right of the display. Figure 8-1. Marker Readout 8-2 Analyzing the Measurement Results Interpreting the Trace Improving the Readout Resolution (SA Mode) If you want a more accurate frequency reading of the target signal, set the span and the RBW as narrow as possible. Note The readout resolution of the frequency is determined by the setting of the frequency span, the number of points (NOP), and the resolution bandwidth (RBW). The resolution is the sum value of SPAN/(NOP01) and RBW. For example, when the frequency span is 10 MHz, the NOP is 801, and the RBW is 10 kHz, the readout resolution is approximately 22.5 kHz. To Select Marker Readout Unit (SA Nide) Maker readout unit can be selected as follows: 1. press 4Utility5. 2. Press MKR UNIT { g. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following options: Format Unit Softkey Power dBm W NNNNNNNNNNN dBV dBV V NNNNNNNNNNN Voltage dBm WATT NNNNNNNNNNNNNN dBV dBuV VOLT NNNNNNNNNNNNNN NNNNNNNNNNNNNN Analyzing the Measurement Results 8-3 Interpreting the Trace To Use the Sub-markers 1. Press 4Marker5. 2. Move the marker to the point where you want to set the sub-marker. 3. Press SUB MKR . NNNNNNNNNNNNNNNNNNNNNNN 4. Select the sub-marker from SUB MKR 1 to 7 . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNN 5. Press 4Utility5. 6. Toggle MKR LIST on OFF to ON off to display the marker list on the bottom of the display. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN The sub-marker appears at the point of that the marker is displayed. Sub-markers are xed horizontally and you cannot move them. The sub-marker value can only be displayed by using the marker list. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To clear a sub-marker, press 4Marker5 CLEAR SUB MKR . Then press the sub-marker number that you want to erase from the display. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To clear all of the markers, press 4Marker5 PRESET MKRS . Figure 8-2. Sub-marker and Maker List 8-4 Analyzing the Measurement Results Interpreting the Trace To Use the 1Marker 1. Press 4Marker5. 2. Place the marker at the point you want use as the reference point by using the . 3. Press 1MODE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 1MKR . NNNNNNNNNNNNNN 5. The reference marker appears at the marker point. 6. To move the marker: Enter an oset frequency by using the numerical keys. Turn the rotary knob until the marker moves to the point you want to read the value. 7. Read the level and the frequency dierences from the reference marker that are displayed on the upper right of the grid. The marker value on the upper right of the grid shows the frequency and the level dierences between the reference marker and the marker. When you use the sub-markers, use the marker list to display the dierence between reference the marker and the sub-markers. (Press 4Utility5 and then toggle MKR LIST on OFF to ON off .) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Figure 8-3. 1Marker To Search for a Point that has the Target Value (NA, SA Mode) 1. Press 4Search5. 2. Press TARGET . NNNNNNNNNNNNNNNNNNNN 3. Enter the target value using 405 . . . 495 and the unit terminator keys. Analyzing the Measurement Results 8-5 Interpreting the Trace To search for a target on All of the display Left side of the marker Right side of the marker Press NNNNNNNNNNNNNNNNNNNN TARGET SEARCH LEFT SEARCH RIGHT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN When the 1marker is active, the target value becomes the dierence from the reference marker, not an absolute value. For example, you can search for the 03 dB cuto point of a lter by mixing the 1marker and the target search function. 8-6 Analyzing the Measurement Results Interpreting the Trace To Search for the Peak-to-Peak of Ripples Using the Statistics Function Step 1: To Specify the Search Range 1. Press 4Marker5. Then move the marker to the start point of the range. 2. Press 1MODE MENU 1MKR to place the reference marker on the start point of the range. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 3. Move the marker to the end point of the range. 4. Press 4Search5 SEARCH RANGE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Toggle PART SRCH on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 6. Press MKR1!SEARCH RNG to set the range dened by the reference marker and the marker as the search range. Triangle-shaped indicator (4) at the bottom of the grid shows current search range. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Step 2: To Search For the Ripple 1. Press 4Utility5. 2. Toggle STATISTICS on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN STATISTICS displays the mean value (mean), the standard deviation (s.dev), and the peak-to-peak value (p-p) of the ripple within the specied range of the active channel. This information is displayed on the upper right of the display (see Figure 8-4). If you did not specify the search range, the analyzer searches within the displayed area. Figure 8-4. Ripple Parameters Readout Analyzing the Measurement Results 8-7 Interpreting the Trace To Search for a Single Peak on the Trace 1. Press 4Search5. 2. Press SEARCH: PEAK to search a maximum peak. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. If you want to search for another peak: To search next peak for Press 2nd highest peak Peak just to the left Peak just to the right NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NEXT PEAK NEXT PEAK LEFT NEXT PEAK RIGHT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 8-5. Peak Search 8-8 Analyzing the Measurement Results Interpreting the Trace To Search for Multiple Peaks 1. Press 4Search5 MULTIPLE PEAKS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Do any of the following: To search for peaks Press For all the peaks For peaks on the right For peaks on the left NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SEARCH: PEAKS ALL PEAKS RIGHT PEAKS LEFT NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 3. Press 4Utility5. Toggle MKR LIST on OFF to ON off to list all marker values. When this function is enabled, the marker is placed on the maximum peak and the sub-markers are placed on up to seven other peaks. PEAKS ALL searches for all the peaks and places the sub-markers in the order of peak level. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN PEAKS RIGHT and PEAKS LEFT search only to the right or left side of the peak and place the sub-markers on peaks in the order found. If the marker is to search for peaks other than harmonics, specify the peak threshold for the search function. This makes the search function ignore the peaks that have a lower level than the threshold level. See the \To Dene the Peak for Search (To Ignore Unnecessary Peaks)" procedure. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN PEAKS ALL NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN PEAKS RIGHT Figure 8-6. Searching for Multiple Peaks Analyzing the Measurement Results 8-9 Interpreting the Trace To Dene the Peak for Search (To Ignore Unnecessary Peaks) You can dene the target peak for the search function using the following techniques: Dening the peak slope to ignore the relatively broad peaks. Specifying the peak threshold to ignore the absolutely small peaks. Dening the Peak Slope to Ignore the Relatively Broad Peaks (NA, ZA Mode) Entering Directly. 1. Press 4Search5 SEARCH: PEAK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press PEAK DEF MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press PEAK DEF: 1X . Then enter a width of the peak. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Peak PEAK DEF: 1Y . Then enter a height of the peak. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Using the Marker. 1. Press 4Marker5. Then move the marker on the local maximum you want to search. 2. Press 1MODE MENU 1MKR NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 3. Press 4Search5 SEARCH: PEAK PEAK DEF MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Move the marker to the foot of the peak. 5. Press MKR!PEAK DELTA . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN This parameter denes the slope of the peak. The denition is made by dening 1X and 1Y as shown in Figure 8-7. The search function searches only for peaks that are steeper than the specied slope. Use this function when the search function searches for a peak that has a gentle slope. Figure 8-7. Peak Denition 8-10 Analyzing the Measurement Results Interpreting the Trace Dening Peak Height (SA Mode) 1. Press 4Search5. 2. Press SEARCH: PEAK PEAK DEF MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press PEAK DEF: 1Y . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Enter a peak height using the numerical keys and the units terminator keys. 5. Press RETURN . NNNNNNNNNNNNNNNNNNNN Specifying the Peak Threshold to Ignore the Absolutely Small Peaks Entering Directly. 1. Press 4Search5 SEARCH: PEAK PEAK DEF MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press THRESHOLD VALUE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Enter a threshold value. 4. Toggle THRESHOLD on OFF to ON off . NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The red threshold line is displayed. The all search function searches for only the upper side of the threshold line. Using the Marker. 1. Press 4Search5. 2. Press SEARCH: PEAK PEAK DEF MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Move the marker to the point you want to set as the threshold value. 4. Press MKR!THRESHOLD . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Toggle THRESHOLD on OFF to ON off . NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Before Dening the Threshold After Dening the Threshold Figure 8-8. Threshold Function Analyzing the Measurement Results 8-11 Interpreting the Trace To Specify the Search Range You can set the search function to search within a specied range. To specify the search range, use one of the following two procedures: Using the marker Using the 1marker Using the Marker 1. Press 4Search5. 2. Press SEARCH RANGE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Toggle PART SRCH on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 4. Move the marker to the start point of the search range. 5. Press MKR!LEFT RNG to set the marker position as the left edge of the range. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Move the marker to the end point of the search range. 7. Press MKR!RIGHT RNG to set the marker position to the right edge of the range. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8. Press RETURN NNNNNNNNNNNNNNNNNNNN Using the 1Marker 1. Press 4Marker5. 2. Move the marker to the start point of the search range. 3. Press 1MODE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 1MKR . NNNNNNNNNNNNNN 5. Move the marker to the end point of the search range. 6. Press 4Search5. 7. Press SEARCH RANGE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8. Toggle PART SRCH on OFF to ON off to enable the search range. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 9. Press MKR1!SEARCH RNG . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN All the search functions search within a specied search range. You can specify the search range for each channel individually. The triangle-shaped indicator at the bottom of the grid shows the current search range (see Figure 8-9). In this gure, 4Search5 SEARCH: PEAK searches for the highest peak within the specied range. It does not search all of the grid. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8-12 Analyzing the Measurement Results Interpreting the Trace Figure 8-9. Search Range NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To turn o the part search, press 4Search5 SEARCH RANGE MENU , and then toggle PART SRCH ON off to on OFF . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-13 To Use the Trace Memory To Use the Trace Memory To Store the Trace into the Trace Memory 1. Display the trace you want to store into the trace memory. 2. Press 4Display5. 3. Press DATA!MEMORY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN This operation only stores the digitized trace data into the trace memory (not the display on LCD). You can store the trace data for the trace memory of each channel individually. The stored trace data is retained until new data is stored, the 4395A is preset, or power is turned o. To Display Memory Traces 1. Press 4Display5 DISPLAY [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Select the display trace: To display Press Memory trace Data and memory trace together Data trace NNNNNNNNNNNNNNNNNNNN MEMORY DATA and MEMORY DISPLAY: DATA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Memory traces are displayed as green (channel 1) or red (channel 2) to distinguish between the two traces. You can change this color by using the modify colors menu under 4Display5 MORE ADJUST DISPLAY . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN If the trace memory of the active channel is empty, the error message (CAUTION: NO VALID MEMORY TRACE) is displayed. Notes The scale of the memory trace is coupling with the data trace. If you want to change the scale setting for only the data or memory trace, toggle 4Scale Ref5 D&M SCALE [COUPLE] to [UNCOUPLE] . Then toggle SCALE FOR [DATA] or [MEMORY] before you change the settings. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8-14 Analyzing the Measurement Results NNNNNNNNNNNNNNNNNNNNNNNNNN To Overlay Multiple Traces To Use the Trace Math Function 1. Press 4Display5. 2. Press DATA MATH [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Do one of the following: To Press Add Trace with Memory Trace Subtract Trace with Memory Trace Divide Trace with Memory Trace NNNNNNNNNNNNNNNNNNNNNNNNNN DATA+MEM DATA-MEM DATA/MEM NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN To Turn O the Data Math Function 1. Press 4Display5. 2. Press DATA MATH [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press DATA MATH: DATA . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Multiply the Trace 1. Press 4Display5. 2. Press DATA MATH [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press GAIN . Then enter a multiplication factor: NNNNNNNNNNNNNN To Use Change value continuously Change value with 1-2-5 steps Enter value directly 4 5 4 5 Note * + 405 . . . 495 and unit keys For more information about the settings of gain and oset value, see Appendix B. To Clear a Multiplied Trace 1. Press 4Display5. 2. Press DATA MATH [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press DEFAULT GAIN & OFS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-15 To Overlay Multiple Traces To Overlay Multiple Traces To Store the Trace into the Overlay Trace 1. Press 4Display5. 2. Press OVERLAY TRACES . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press SELECT PEN COLOR and select one of the colors: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Overlay Trace Color1 Press White Red Yellow Green Light Blue Blue NNNNNNNNNNNNNNNNN PEN PEN PEN PEN PEN PEN 1 2 3 4 5 6 NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 1 Power ON default. 4. Press DATA!OVERLAY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Repeat steps 1 through 4 above to store dierent traces. Note You cannot change the scale setting for the overlay traces. It is also impossible to read the overlay trace data with markers or to save the data into a oppy disk or memory disk. For those applications, use the data trace or memory trace. To Clear the Overlay Traces 1. Press 4Display5. 2. Press OVERLAY TRACES . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press CLEAR GRAPHICS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8-16 Analyzing the Measurement Results To Print To Print This step provides the following procedures for printing: To print out a display image To see or print a measured value list To print an analyzer setting To Print Out a Display Image 1. Connect the printer to the analyzer with a cable. 2. Press 4Copy5 PRINT [STANDARD] to print out a display image. To abort printing, press 4Copy5 COPY ABORT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To See or Print a Measured Value List 1. Press 4Copy5. 2. Press MORE LIST VALUES to display the measured value list. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN To see all of the measured value list, press NEXT PAGE or PREV PAGE to turn the pages. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To print out the measured value list, press PRINT [STANDARD] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To return to the measurement display, press RESTORE DISPLAY . To Print an Analyzer Setting 1. Press 4Copy5. 2. Press MORE OPERATING PARAMETERS to display the analyzer setting table as shown below. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press PRINT [STANDARD] to print out the settings. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. To return to the measurement display, press RESTORE DISPLAY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-17 To Print Analyzer Setting Table OPERATING PARAMETER ANALYZER TYPE CH1 NA CH2 NA SWEEP TYPE NUMBER of POINTS PORT 1 ATTEN. PORT 2 ATTEN. INPUT R ATTEN. INPUT A ATTEN. INPUT B ATTEN. GROUP DELAY APERTURE PHASE OFFSET LIN FREQ 201 0 dB 0 dB 20 dB 20 dB 20 dB 1 % SPAN 0 LIN FREQ 201 0 dB 0 dB 20 dB 20 dB 20 dB 1 % SPAN 0 PORT PORT INPUT INPUT INPUT VELOCITY FACTOR 0 s 0 s 0 s 0 s 0 s OFF 1 0 s 0 s 0 s 0 s 0 s OFF 1 CAL KIT 7mm 7mm Z0 CAL TYPE 50 ohm NONE 50 ohm NONE 1 2 R A B EXTENSION EXTENSION EXTENSION EXTENSION EXTENSION 8-18 Analyzing the Measurement Results To Save and Recall To Save and Recall the Settings and Data This step provides the following procedures for saving and recalling: To save an analyzer setting or measurement data To recall a saved analyzer setting To save a display image to a TIFF le To save measured data for a spreadsheet To copy a le between oppy disk and memory disk To initialize a disk for use To initialize the memory disk for use To back up the memory disk To Save an Analyzer Setting or Measurement Data The 4395A supports two storage devices, a built-in exible disk drive and a 512KB memory disk. The exible disk drive should be used to store large numbers of les and for long term data storage. Memory disk should be used for temporary data and instrument states and to store or get data quickly. Note When you store important data into the memory disk, perform the memory disk backup operation described in \To Back Up the Memory Disk". Otherwise, the memory disk data is lost when the power is turned o. 1. Insert a LIF or DOS formatted 3.5 inch disk into the built-in disk drive (if you are recalling an instrument state le from the memory disk, skip this step). 2. Press 4Save5. 3. Select a save data type: Save Data Type Press Instrument states only Measurement data only1 NNNNNNNNNNNNNNNNN STATE DATA ONLY (binary) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 1 You can specify a data array type. See the \Specifying a Data Array Type" procedure. 4. Select where the le is stored by pressing either STOR DEV [DISK] (for the built-in disk drive) or STOR DEV [MEMORY] (for the memory disk). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Enter a lename. Then press DONE . NNNNNNNNNNNNNN The analyzer automatically detects the disk format as either the LIF (Logical Interchange Format) or DOS (Disk Operating System). If you insert an any other format type disk, an error message is displayed. For more information, Appendix A provides a complete list of the instrument state to be saved. Analyzing the Measurement Results 8-19 To Save and Recall Specifying the Data Format To save only the measurement data in the ASCII or binary format, follow these steps: 1. Press 4Save5. 2. Choose DATA ONLY . Then select one of the following options by choosing the corresponding softkey: NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Data Format Softkey ASCII Binary NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SAVE ASCII SAVE BINARY NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Specifying a Data Array Type To save only the measurement data by specifying the data array to save, follow these steps: 1. Press 4Save5. 2. Choose DATA ONLY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press DEFINE SAVE DATA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Choose the softkey associated with the data array to save so that the last two words of the key label are toggle from on OFF to ON off . NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Data Array Toggle Raw data array Calibration data array Data array Memory array Data Trace array Memory Trace array NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN RAW on OFF to ON off CAL on OFF to ON off DATA on OFF to ON off MEM on OFF to ON off DATA TRACE on OFF to ON off MEM TRACE on OFF to ON off NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 5. Choose RETURN to return to the top menu. See Appendix A for the denition of each array. To Recall a Saved Analyzer Setting 1. Insert a disk (if you are recalling an instrument state le from the memory disk, skip this step). 2. Press 4Recall5. 3. Select where the le is stored by pressing either STOR DEV [DISK] (for a built-in disk NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN drive) or STOR DEV [MEMORY] (for a memory disk). 4. Search for the lename you want to recall (the les are listed on the softkey label). 5. If a target le is not listed on the softkey label, turn the label page by pressing PREV FILES or NEXT FILES . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8-20 Analyzing the Measurement Results To Save and Recall 6. Press the softkey corresponding to the lename label. To Save a Display Image to a TIFF File 1. Press 4Save5 GRAPHICS . NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Select where to store the le by pressing either STOR DEV [DISK] (for a built-in disk drive) or STOR DEV [MEMORY] (for a memory disk). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Enter lename. Then press DONE . NNNNNNNNNNNNNN Note A display image is saved according to the color setup you have done on the print setup menu (4Copy5 PRINT SETUP ). You can choose from PRINT:STANDARD (black and white), PRINT COLOR [FIXED] (color against white background), and PRINT COLOR [VARIABLE] (color against black background). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The analyzer saves a TIFF le with an extension, \.TIF" for a DOS format, or a sux, \_T" for a LIF format. If there is a le that has the same name you entered on the disk, the error message, \lename error" will be displayed. To save the le, use the other lename to save or purge the old le. To purge a le, press 4Save5 FILE UTILITIES PURGE FILE then select the displayed lename by pressing the associated softkey. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Save Measured Data for a Spreadsheet 1. Insert a DOS format disk into the built-in disk drive. 2. Press 4Save5 DATA ONLY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press SAVE ASCII . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Select the built-in disk drive as the storage device by toggling to STOR DEV [DISK] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Enter a lename. Then press DONE . NNNNNNNNNNNNNN The analyzer saves an ASCII le with a \.TXT" extension. The measured data is saved as ASCII text. Each value is separated by a tab. When you open this le from the spreadsheet software, specify the le format as the \TEXT with TAB delimiter". Analyzing the Measurement Results 8-21 To Save and Recall Figure 8-10. Reading Saved Data from Spreadsheet Software To Copy a File between Floppy Disk and Memory Disk 1. Press 4Save5 FILE UTILITIES . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press COPY FILE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select a storage device where the le is stored by toggling either STOR DEV [DISK] (for the build-in disk drive) or STOR DEV [MEMORY] (for the memory disk). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Search for the lename you want to recall (the les are listed on the softkey label). 5. If a target le is not listed on the softkey labels, turn the label page by pressing PREV FILES or NEXT FILES . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Press the softkey corresponding to the lename label. 7. Enter the lename of the target le. 8. Select the target storage device by toggling STOR DEV [DISK] or [MEMORY] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 9. Press DONE to copy the le. NNNNNNNNNNNNNN You cannot copy a le between the LIF and DOS formats. When you want to copy a le on a DOS formatted disk to the memory disk, you must initialize the memory disk to the DOS format. To Initialize a Disk for Use Note 1. 2. 3. 4. Initializing the disk erases all data on the disk. The 4395A can initialize a 1.44 MB 3.5 inch exible disk only. Verify that the disk is not write protected. Insert the disk. Press 4Save5. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Choose FILE UTILITIES . 5. Choose INITIALIZE DISK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8-22 Analyzing the Measurement Results To Save and Recall 6. Select the disk format (either DOS or LIF) by toggling FORMAT [DOS] or [LIF] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 7. Toggle to STOR DEV [DISK] to select the disk drive. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8. Press INIT DISK: YES to initialize the disk. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Initialize the Memory Disk for Use Note Initializing the memory disk erases all data on the memory disk. Copy important les on the memory disk to a exible disk before initializing the memory disk. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 1. Press 4Save5 FILE UTILITIES . 2. Press INITIALIZE DISK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select the disk format (either DOS or LIF) by toggling FORMAT [DOS] or [LIF] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 4. Toggle to STOR DEV [MEMORY] to select the memory disk. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press INIT DISK: YES . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The les on the memory disk are lost when the 4395A is turned o unless the memory disk is backed up using BACK UP MEMO DISK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Back Up the Memory Disk The data (les and disk format) on the memory disk can be copied to a non-volatile memory (ash memory) by memory disk backup operation. The backup copy data is recalled to the memory disk every time the 4395A is turned on. 1. Press 4Save5. 2. Press BACK UP MEMO DISK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Note When you store important data into the memory disk, You must back up the memory disk using BACK UP MEMO DISK . Otherwise, the data on the memory disk is lost when the 4395A is turned o. Backup is also important as a means of recovering your precious data in the event of a power interruption or misoperation. For example, even if you inadvertently formatted the memory disk while using the 4395A, you could easily recover the data (les and disk format) from the backup copy; all you have to do is turn OFF and ON the 4395A. The memory disk can endure approximately 100,000 cycles of backup operation. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-23 Typical Network Measurement Techniques Typical Network Measurement Techniques This section provides the following typical measurement techniques using the network analyzer mode of operation: Measuring 3 dB bandwidth using the width function Measuring electrical length Measuring phase deviation Compensating for the electrical delay caused by an extension cable 8-24 Analyzing the Measurement Results Measuring 3 dB Bandwidth Using the Width Function Measuring 3 dB Bandwidth Using the Width Function 1. Do one of the following: Reference Point Keystrokes Maximum value Nominal frequency Press 4Search5 MAX . Press 4Marker5 and enter the nominal frequency through the numerical keypad. NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 2. Press 4Marker5 1MODE MENU 1MKR to make the marker a reference. 3. Press 4Search5 WIDTH [OFF] WIDTH VALUE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 405 435 4215 to enter 03 dB. 5. Toggle WIDTH on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN As shown in Figure 8-11, a pair of sub-markers appear on both sides of the reference marker, being lowered by the specied number of levels; also, another sub-maker is displayed in the middle between the two sub-markers. The bandwidth (BW), center frequency of the bandwidth (cent), Q factor (Q), insertion loss (loss), and left and right hand bandwidth (1L.F and 1R.F) are displayed at the upper right corner of the grid. Figure 8-12 shows a typical example of a band pass lter measurement trace and describes each parameter. 0 will be returned for all parameters when two cuto points can not be found. Parameter Description Bandwidth (BW) Center frequency of the bandwidth (cent) Q factor (Q) Insertion loss (loss) The stimulus width between two cuto points (f1 and f2 ) The center point (fcent ) of the two cuto points (f1 and f2) Left hand bandwidth (1L.F) Right hand bandwidth (1R.F) Q= pf1 2f2 BW The abosolute value of the dierence of the maximum value within a specied range and 0 dB The stimulus dierence between the left hand cuto point (f1) and the center point of a specied rnage. The stimulus dierence between the right hand cuto point (f2) and the center point of a specied range. You can move the reference marker using the rotary knob. When you enable the width function, the reference marker automatically turns into a tracking 1marker that allows you to move the reference marker. For more information on the width function, see Appendix A. Analyzing the Measurement Results 8-25 Measuring 3 dB Bandwidth Using the Width Function Figure 8-11. Bandwidth Measurement Using Width Function Figure 8-12. Parameters of a Band Pass Filter Measurement 8-26 Analyzing the Measurement Results Measuring Electrical Length Measuring Electrical Length 1. Press 4Format5 PHASE , and then select the desired phase format. NNNNNNNNNNNNNNNNN 2. Do one of the following procedures: Using the marker: a. Press 4Marker5. b. Turn the rotary knob to move the marker to the center of the display. c. Press 4Cal5 MORE ELEC DELAY MENU . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN d. Press MKR!DELAY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Using the rotary knob: a. Press 4cal5 MORE ELEC DELAY MENU NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN b. Press ELECTRICAL DELAY . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN c. Turn the rotary knob until the trace becomes at at the specied frequency. 3. Press ELECTRICAL DELAY . Then read the electrical length that is displayed under the electrical delay time. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Before Adding the Electrical Length After Adding the Electrical Length Figure 8-13. Measuring Electrical Length If the average relative permittivity ("R ) of the DUT is known over the frequency span, the length calculation can be adjusted to better indicate the actual length of the DUT. This can be done by entering the relative velocity factor for the DUT. Analyzing the Measurement Results 8-27 Measuring Electrical Length Setting the Velocity Factor of a Cable 1. Press 4Cal5. 2. Press MORE . NNNNNNNNNNNNNN 3. Press VELOCITY FACTOR . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Enter a new value. Then press 4215. The relative velocity factor for a given dielectric can be calculated by: 1 Vf = p "R The velocity factor defaults to 1. 8-28 Analyzing the Measurement Results Measuring Phase Deviation Measuring Phase Deviation Deviation from the Linear Phase 1. Specify the frequency range. 2. Display the phase trace by pressing 4Format5 PHASE . NNNNNNNNNNNNNNNNN 3. Adjust the scale settings by pressing 4Scale Ref5 AUTO SCALE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Marker5. Then move the marker to any of the points where the sloping trace crosses the center (place the marker on the sloping portion of the trace, not the vertical phase \wrap-around"). 5. Press 4cal5 MORE ELEC DELAY MENU MKR!DELAY to add enough electrical length to match the phase slope present at the marker frequency. 6. Read the phase value as a deviation from the linear phase. By adding the electrical length to atten the phase response, the linear phase shift caused by the DUT is removed. The displayed response is the deviation from the linear phase. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To turn o the electrical length function, press 4cal5 MORE ELEC DELAY MENU ELECTRICAL DELAY 405 4215. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 8-14. Deviation from the Linear Phase Group Delay The phase linearity of many devices is specied in terms of group delay or envelope delay. This is especially true of telecommunications components and systems. Group delay is the dierence in propagation time through a device as a function of frequency. It is measured as a ratio of phase change over a sample delta frequency as follows: 1 Group Delay = 0 3601F Where: 1 is phase change [deg] 1F (commonly called the \aperture") is the frequency dierence that gives 1 1. Press 4Format5. Analyzing the Measurement Results 8-29 Measuring Phase Deviation 2. Press DELAY . NNNNNNNNNNNNNNNNN 3. Press 4Scale Ref5 AUTO SCALE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The group delay format displays the phase deviation to the group delay aperture. Therefore, setting the group delay aperture aects the trace shape. Setting a wider aperture makes the trace smoother. The aperture defaults to 1% of the span. Setting the Group Delay Aperture. 1. Press 4Bw/Avg5. 2. Press GROUP DELAY APERTURE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Enter group delay aperture value as a percentage of the span. The group delay aperture is based on the number of points, not the real aperture. For example, if the number of points is 201, a 1% group delay aperture causes the 4395A to calculate the group delay using the adjacent measurement points on both sides. Therefore, the group delay trace may dier depending on the specied number of points. Aperture 1% Aperture 5% Figure 8-15. Setting Group Delay Aperture 8-30 Analyzing the Measurement Results Compensating for the Electrical Delay Caused by an Extension Cable Compensating for the Electrical Delay Caused by an Extension Cable If the Electrical Delay of the Extension Cable is Known 1. Press 4Cal5 MORE PORT EXTENSIONS to open the port extension menu. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Enter the electrical delay values for the respective input ports. If you do not use the S-parameter test set, follow these steps: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press EXTENSION INPUT R . Then enter the electrical delay of the cable that is connected to the R input. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press EXTENSION INPUT A . Then enter the electrical delay of the A input. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press EXTENSION INPUT B . Then enter the electrical delay of the B input. If you use the transmission/reection (T/R) test set, enter the electrical delay of the cable that is connected to the TEST PORT (for the R and A inputs). Figure 8-16. Port Extension With the T/R Test Set If you use the S-parameter test set, follow these steps: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Enter \0" for EXTENSION INPUT R , EXTENSION INPUT A and EXTENSION INPUT B to clear the port extension of the R, A and B inputs. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press EXTENSION PORT 1 . Then enter the electrical delay of the PORT 1. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press EXTENSION PORT 2 . Then enter the electrical delay of the PORT 2. 3. Toggle EXTENSION on OFF to ON off to enable the port extension. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-31 Compensating for the Electrical Delay Caused by an Extension Cable If the Electrical Delay of the Extension Cable is Unknown You can determine the electrical delay of the extension cable by: Measuring the electrical delay of the cable Measuring the cable's reection in the OPEN or SHORT circuit state. Measuring the Electrical Length of a Cable. 1. Connect the cable as shown in Figure 8-17. 2. Dene the frequency range according to the measurement conditions. 3. Press 4Meas5 B/R (or S PARAMETERS Trans: FWD S21 [B/R] ) to select the transmission measurement. 4. Press 4Format5 PHASE to select the phase format. NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 5. Press 4Marker5. Then move the marker to the sloping trace that crosses the center of the display. 6. Press 4Cal5 MORE ELEC DELAY MENU MKR!DELAY ELECTRICAL DELAY , then read the electrical delay of the cable. 7. Press 405 4215 to clear the electrical delay oset. 8. Enter a measured electrical delay as described in the \If the Electrical Delay of the Extension Cable is Known" procedure. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 8-17. Cable Measurement Conguration (Transmission) Reection of a Opened or Shorted Cable. 1. Connect the cable as shown in Figure 8-18. 2. Dene the frequency range according to the measurement conditions. 3. Press 4Meas5 A/R (or S PARAMETERS Refl:FWD S11 [A/R] ) to select the reection measurement. 4. Press 4Format5 PHASE to select the phase format. NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 8-32 Analyzing the Measurement Results Compensating for the Electrical Delay Caused by an Extension Cable 5. Press 4Marker5. Then move the marker to the sloping trace that crosses the center of the display. 6. Press 4Cal5 MORE ELEC DELAY MENU MKR!DELAY ELECTRICAL DELAY , then read the electrical delay of the cable. Note that this value is twice the real delay because there are both output and return paths. 7. Press 405 4215 to clear the electrical delay oset. 8. Enter half the value of the measured electrical delay as described in the \If the Electrical Delay of the Extension Cable is Known" procedure. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 8-18. Cable Measurement Conguration (Reection) Analyzing the Measurement Results 8-33 Typical Spectrum Measurement Techniques Typical Spectrum Measurement Techniques This section describes typical spectrum measurement techniques. The topics covered include: Measuring the noise level Measuring the carrier to noise ratio Performing the time gated spectrum analysis Measuring zero span (time domain measurement) Tracking unstable harmonics using the search track function 8-34 Analyzing the Measurement Results Measuring the Noise Level Measuring the Noise Level 1. Press 4Format5. 2. Choose NOISE . NNNNNNNNNNNNNNNNN 3. Press 4Scale Ref5. Then press 4+5 until the noise trace gets close to the reference level. 4. Press 4Bw/Avg5. Then press VIDEO BW . NNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press 4+5 to atten the noise trace. 6. Press 4 and read the normalized noise level. Marker5. Then turn the The marker readout unit becomes \dBm/Hz" and is normalized by the 1 Hz equivalent noise bandwidth (ENBW). To convert the ENBW, see the \Converting to a Dierent Unit of Equivalent Noise Bandwidth" procedure. Note Figure 8-19. Noise Readout Switching the display to a noise format causes the 4395A to perform detection in sample detection mode. Subsequently returning the format to 4Format5 SPECTRUM causes the 4395A to perform detection in positive peak detection mode. This is true even if you have selected the negative detection mode before switching to the noise format. NNNNNNNNNNNNNNNNNNNNNNNNNN Converting to a Dierent Unit of Equivalent Noise Bandwidth 1. Calculate the conversion factor using the following equations with displayed units: Unit Use dBm=Hz p p K = 10logBW dBV = Hz , dBV = Hz K = 20logBW W=Hz K = 1=BW V = Hz K = 1= BW p p 2. Where, BW is the target equivalent noise bandwidth. Analyzing the Measurement Results 8-35 Measuring the Noise Level 3. Press 4Display5 and choose DATA MATH [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN p p NNNNNNNNNNNNNNNNNNNN Choose OFFSET for dBm=Hz , dBV = Hz , and dBV = Hz . NNNNNNNNNNNNNN p Choose GAIN for V = Hz and W=Hz . 4. Enter K, then press 4215. Note p p p The 4395A displays dBV = Hz , dBV = Hz , V = Hz as dBV/Hz, dBV/Hz, V/Hz respectively. 8-36 Analyzing the Measurement Results Measuring the Carrier to Noise Ratio Measuring the Carrier to Noise Ratio 1. Set up the frequency range within which to measure a carrier signal. 2. Press 4Marker5 to place the marker on the trace. 3. Press 4Scale Ref5 and choose PEAK!REFERENCE to set the reference level to the carrier signal level. 4. Adjust the scale/div to display the carrier and noise oor. Use 4Scale Ref5 SCALE/DIV . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press 4Marker5 and choose 1MODE MENU 1MKR to place the reference marker on the carrier signal. 6. Press 4Bw/Avg5. Then choose VIDEO BW . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 7. Enter an appropriate video bandwidth to reduce the variation. 8. Press 4Marker5. Then do either of the following: Enter the oset frequency using the numeric keys. Move the marker into the noise level of the trace using the rotary knob. 9. If you want to normalize the marker readout with the RBW lter, press 4Utility5 and toggle NOISE FORM on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 10. Read the dierence from the reference marker. Figure 8-20. C/N Measurement Analyzing the Measurement Results 8-37 Measuring the Carrier to Noise Ratio Time Gated Spectrum Analysis The time gated spectrum analysis function can be used to measure any one of several signals separated in time (for example, burst modulated, pulsed RF, and time multiplexed). Using the gated sweep function allows the analyzer to measure the spectrum of a specic part of the signal or separate signals, and mask out interfering or transient signals. In the gated sweep mode, the analyzer is triggered to start and interrupt sweep selectively by an external trigger signal. By controlling the external trigger signal, the analyzer measures only the signals that are present when the analyzer sweeps. The gate sweep is controlled by the following factors: Trigger polarity, which determines which positive or negative edge (level) causes triggering Gate trigger mode, which selects one of two modes (EDGE or LEVEL) Gate Delay, which determines how long after the trigger signal the gate actually becomes active. Gate Length, which determines how long the gate is on. Gate Trigger Mode Two gate trigger modes (EDGE and LEVEL) are provided for the gate trigger to match the trigger signal used. Edge Mode. The edge mode allows you to position the gate relative to either the rising or falling edge of a TTL trigger signal. The edge initiates the gate delay. For the edge mode, the gate sweep is controlled by the following factors: Trigger polarity, which selects the edge (positive or negative) to initiate the start point of the gate sweep. At the start point, the edge initiates the gate delay. Gate Delay, which determines how long after the trigger signal the gate actually becomes active. Gate Length, which determines how long the gate is on. Figure 8-21. Edge Mode 8-38 Analyzing the Measurement Results Measuring the Carrier to Noise Ratio Level Mode. The level mode allows the external trigger signal to open and close the gate directly, without a programmed gate length. The level mode also provides the gate delay. For the level mode, the gate sweep is controlled by the following factors: Trigger polarity, which selects the polarity of TTL the level (+5 V or 0 V) to open gate. Gate Delay, which determines how long after the trigger signal the gate becomes active. Figure 8-22. Level Mode Analyzing the Measurement Results 8-39 Measuring the Carrier to Noise Ratio RBW Filter Response Time You don't need to care about the setting time for the RBW lter because the 4395A implements the RBW lter using digital processing. Video bandwidth (VBW) can be set without concern for the gate length setting. The analyzer implements the video lter using digital processing. The video lter of the analyzer requires no settling time for normal operation. Therefore, it is not aected by the gate length setting. 8-40 Analyzing the Measurement Results Performing Time Gated Spectrum Analysis Performing Time Gated Spectrum Analysis Time gated spectrum analysis involves the following steps: 1. Determining the Gate Trigger Parameters 2. Connecting the Gate Trigger Source 3. Setting the Center and Span Frequency 4. Adjusting the Gate Trigger 5. Setting the RBW/VBW and Using the Averaging Function 6. Measuring the Spectrum Note Performing this measurement requires Option 1D6. Step 1: Determining the Gate Trigger Parameters. 1. Connect the target signal and the trigger signal to the input port of an oscilloscope (see Figure 8-23). Figure 8-23. Time Domain Measurement Conguration 2. Adjust the oscilloscope to display the two signals. 3. Using the oscilloscope, check the following parameters: For the target signal: Pulse repetition width (PRI) Signal width ( ) Signal delay (SD) For the trigger signal: Pulse width (if you use the level trigger mode) Analyzing the Measurement Results 8-41 Performing Time Gated Spectrum Analysis The signal delay (SD) is the delay inherent in the signal (that is, SD is the length of time after the trigger, but before the signal of interest occurs and becomes stable). Figure 8-24. Target and Trigger Signal Timing on the Oscilloscope 4. Determine the gate parameters using the following equations: Gate delay = SUT + SD Figure 8-25 shows the scheme of these parameters. Open the \gate" during the time the signal is in a stable condition. The time from the start time of a signal and the open time of a gate is the \set up time" (SUT). Figure 8-25. Gate Parameters 8-42 Analyzing the Measurement Results Performing Time Gated Spectrum Analysis Step 2: Connecting the Gate Trigger Source. 1. Connect the RF signal source to the R input of the 4395A. 2. Connect the trigger output from the signal source to the EXT TRIGGER connector on the rear panel of the 4395A. Figure 8-26. Time Gated Measurement Conguration Step 3: Setting the Center and Span Frequency. Set up the center and span frequency of the 4395A to display the target signal. Step 4: Adjusting the Gate Trigger. 1. Press 4Trigger5 CONTINUOUS to activate a gate trigger. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Choose TRIGGER: [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Choose GATE [ ] . NNNNNNNNNNNNNNNNNNNNNNNNNN 4. Select the gate control mode. Select LEVEL or EDGE by toggling GATE CTL: LEVEL and EDGE to the required mode. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 5. If you have selected the LEVEL trigger mode, set the trigger polarity for starting the gate. Press RETURN . And then toggle TRIG PLRTY to POS neg (positive) or pos NEG (negative). NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN 6. Choose GATE [ ] GATE DELAY . NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Set a gate delay time. 8. If you have selected the EDGE trigger mode, choose GATE LENGTH . Then set the gate open length. You can see the gate trigger status by monitoring the GATE Output terminal using an oscilloscope. The GATE Output terminal is located on the 4395A's rear panel. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-43 Performing Time Gated Spectrum Analysis Setting the RBW/VBW and Using the Averaging Function Setting the Resolution Bandwidth. 1. Press 4Bw/Avg5. 2. Press RES BW and set the resolution bandwidth in accordance with Table 8-1. NNNNNNNNNNNNNNNNNNNN 8-44 Analyzing the Measurement Results Performing Time Gated Spectrum Analysis You must specify a gate length longer than the minimum gate length listed in Table 8-1. Otherwise, the sweep does not start. Table 8-1. Allowable RWB Settings and Minimum Gate Length RBW Minimum Gate Length1 1 MHz 6 sec 300 kHz 22 sec 100 kHz 44 sec 30 kHz 170 sec 10 kHz 660 sec 3 kHz 1.4 msec 1 kHz 5.3 msec 300 Hz 22 msec 100 Hz 43 msec 30 Hz 170 msec 10 Hz 680 msec 3 Hz 1.4 sec 1 Hz Gated sweep is not available.2 1 If the gate control mode is \level", add the gate delay setting to the listed value. 2 5.5 sec when the gate control mode is \level". Setting the Video Bandwidth (VBW). 1. Choose VIDEO BW . NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Set the video bandwidth. You can set any video bandwidth (VBW) without concern for the gate length setting. The 4395A implements the video lter using digital processing. The video lter of the 4395A requires no settling time for normal operation. Therefore, it is not aected by the gate length setting. You can also use the averaging function to reduce the variation of the trace. Analyzing the Measurement Results 8-45 Performing Time Gated Spectrum Analysis Measuring the Spectrum. 1. Adjust the span setting to t the trace to your requirement. 2. Perform your measurement. Before Time Gating (VBW = 30 kHz) After Time Gating (VBW = 300 Hz) Figure 8-27. Time Gated Spectrum Analysis 8-46 Analyzing the Measurement Results Measuring Zero Span Measuring Zero Span 1. Determine the following parameters: Sweep Time Number of Display Points (NOP) 2. Press 4Center5. Then enter the frequency of the target signal. 3. Press 4Span5 and choose ZERO SPAN to set the frequency span to 0 Hz. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Sweep5. 5. Press 4Sweep5 and choose SWEEP TIME , and then enter the sweep time. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Press 4Sweep5 and choose NUMBER of POINTS . Then enter your desired number of points (NOP). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Note Table 8-2 lists default settings when the span is switched to normal span or zero span in spectrum analyzer mode. Table 8-2. Default Settings When Switched to Normal Span or Zero Span Switched to Normal Span Switched to Zero Span RBW mode Auto Manual RBW Automatically determined 3 MHz Sweep time mode Auto (Fixed1 ) Manual (Fixed1 ) Sweep time Automatically determined 32 sec NOP2 Automatically determined 801 Detection mode Positive peak Sample 1 Sweep time mode can not be changed in spectrum analyzer mode. 2 Number of display points You must specify an RBW equal to or greater than 3 kHz. If your specied value is smaller than 3 kHz, the 4395A automatically sets the RBW to 3 kHz. When you change the sweep time in zero span measurement of spectrum analyzer mode, the sweep time is limited by the number of display points. If you want to set a shorter sweep time than the limited sweep time, reduce the number of display points with 4Sweep5 NUMBER of POINTS , and then set a desired sweep time with SWEEP . If you want to set a longer sweep time than the limited sweep time, increase the number of display points, and then set a desired sweep time. The minimum time resolution and maximum sweep time in measuring zero span are listed in Table 8-3. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-47 Measuring Zero Span Table 8-3. Minimum Time Resolution RBW Min. Time Max. Sweep Time Resolution (NOP=801) 5 MHz 40 nsec 1.28 msec 3 MHz 40 nsec 2.56 msec 1.5 MHz 80 nsec 5.12 msec 800 kHz 160 nsec 10.24 msec 400 kHz 320 nsec 20.48 msec 200 kHz 640 nsec 40.96 msec 100 kHz 1.28 sec 81.9 msec 40 kHz 2.56 sec 163.8 msec 20 kHz 5.12 sec 327.7 msec 10 kHz 10.24 sec 655.4 msec 5 kHz 20.48 sec 1.311 sec 3 kHz 40.96 sec 2.621 sec The 4395A uses an exclusive lter for 5 MHz resolution bandwidth to improve the response time. Accurate measurements with a 5 MHz RBW require the center frequency to be equal to the signal frequency. Reading Transition Time Using the Marker 1. Press 4Utility5. 2. Toggle MKR TIME on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. NNNNNNNNNNNNNNNNNNNN Move the marker using the . 4. Read the transition time that is displayed on the upper right of the grid. When you are measuring the zero span, the marker displays the same frequency on every point of trace. Using the marker time function, you can change have the 4395A display time values instead of frequency. The marker displays transition time from the left end of the grid. 8-48 Analyzing the Measurement Results Measuring Zero Span Figure 8-28. Marker Time Analyzing the Measurement Results 8-49 Tracking Unstable Harmonics Using the Search Track Function Tracking Unstable Harmonics Using the Search Track Function 1. Set the frequency range to display the carrier and the harmonics. 2. Press 4Search5 and choose SEARCH: PEAK to move the marker to the peak. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press 4Marker5 and choose 1MODE MENU TRACKING 1MKR to set up the marker as a reference 1marker that can move with the carrier. 4. Press 4Search5 and toggle SEARCH TRK on OFF to ON off to cause the search function to be activated every time the 4395A performs a sweep process. 5. Choose MULTIPLE PEAKS PEAKS RIGHT to search for the carrier and harmonics under the search track. 6. Press 4Utility5. Then toggle MKR LIST on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Even if the frequency of a carrier changes, the 4395A automatically tracks the carrier and the harmonics at the end of the sweep. Then the analyzer lists the dierence between the carrier and the harmonics in the lower half of the screen. If you wish to ignore the peaks other than the harmonics, you can use the peak threshold. For more information, See \To Dene the Peak for Search (To Ignore Unnecessary Peaks)". Carrier Frequency: 50 MHz 55 MHz Figure 8-29. Tracking Unstable Harmonics Using Search Track 8-50 Analyzing the Measurement Results Typical Impedance Measurement Techniques Typical Impedance Measurement Techniques This section describes typical impedance measurement techniques. The topics covered include: Applying DC bias Equivalent circuit analysis Determining Q value using the width search function Port extension Applying DC Bias The 4395A option 001 DC source can be used to supply up to 640 V / 6100 mA of DC voltage/current to external circuit or DUT through the DC SOURCE port on the front panel. This section explains how to supply DC bias to the DUT on impedance measurement mode. 1. Make sure that the 4395A's DC SOURCE port is inactive. (The softkey label under 4Source5 should be DC OUT on OFF .) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Connect a BNC cable between the DC SOURCE port and the impedance test kit's DC SOURCE INPUT port (see Figure 8-30). The 4395A can apply DC voltage bias up to 640V or dc current bias up to 620 mA. Caution Figure 8-30. Connecting DC SOURCE to Impedance test kit Do not attempt to perform calibration or xture compensation while the 4395A is applying DC bias. Doing so could damage the calibration or xture compensation standard. Analyzing the Measurement Results 8-51 Typical Impedance Measurement Techniques Setting the Upper Limit for DC Bias The 4395A can control DC bias so that a user-specied upper limit (current or voltage) is not exceeded. This feature ensures that the device under DC bias is protected from excessively high voltage or current. DC bias can be applied in one of two modes: current control and voltage control. You can set the upper limit voltage for current control mode, or the upper limit current for voltage control mode. Caution Before applying DC bias, you must set the upper limit to protect the DUT. To set the DC bias upper limit, follow these steps: 1. Press 4Source5. 2. Select one of the following two options: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To apply DC bias in voltage control mode, toggle DC SRC [CURRENT] to DC SRC [VOLTAGE] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To apply DC bias in current control mode, toggle DC SRC [VOLTAGE] to DC SRC [CURRENT] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Set the upper limit voltage or current. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN For voltage control mode, choose DC CURRENT LIMIT and enter the upper limit current using the numeric keys. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN For current control mode, choose DC VOLTAGE LIMIT and enter the upper limit voltage using the numeric keys. Setting up and Applying Output Voltage/Current 1. Press 4Source5. 2. Press DC VOLTAGE (for voltage control mode) or DC CURRENT (for current control mode), and enter output DC voltage or current using the numeric keys. 3. Toggle DC OUT on OFF to ON off to apply the DC voltage or current to the DUT. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 8-52 Analyzing the Measurement Results Typical Impedance Measurement Techniques Equivalent Circuit Analysis The 4395A provides a function that automatically calculates approximate values of specic parameters of an equivalent circuit that corresponds to a DUT. This function supports ve circuit models. In addition, the resulting parameter values can be used to simulate the frequency-based characteristics of the equivalent circuit; this allows you to compare the simulated characteristics with the actually measured characteristics. Menus Associated with Equivalent Circuit Analysis To use the equivalent circuit analysis function, open the Equivalent Circuit Menu by pressing and choosing EQUIV KIT MENU . The Equivalent Circuit Menu provides access to two submenus: Select Equivalent Circuit Menu and Dene Equivalent Circuit Parameter Menu. These three menus are described in this section. Equivalent Circuit Menu. You can open the equivalent circuit analysis menu by pressing 4Display5 and choosing MORE EQUIV KIT MENU . This menu provides such options as for calculating the equivalent circuit parameters or simulating the equivalent circuit's characteristics under swept frequency. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4Display5 NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Softkey Label Description SELECT EQV CKT [ ] Opens the Select Equivalent Circuit Menu, which NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN DISP EQV PARM [ ] DEFINE EQV PARAMS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN CALCULATE EQV PARAMS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SIMULATE F-CHRST NNNNNNNNNNNNNNNNNNNN RETURN lets you to select one of the ve supported circuit models. Shows or hides the equivalent circuit constants. Opens the Dene Equivalent Circuit Parameter Menu, which lets you enter the equivalent circuit parameter values. Calculates the equivalent circuit parameters. While the calculation is being performed, a message Calculating EQV parameters is displayed. After the calculation is completed, the values of the equivalent parameters are displayed. Simulates the frequency characteristics by using the current equivalent circuit parameters and shows simulation results on the screen using memory trace. In other words, simulation results are stored into the memory trace. Returns to the previous menu. Analyzing the Measurement Results 8-53 Typical Impedance Measurement Techniques Select Equivalent Circuit Menu. This menu lets you to select one of the ve supported circuit models. The 4395A calculates the parameter values within the range you specied using the marker search function. Softkey Label Description NNNNNNNNNNNNNNNNN CKT A Selects equivalent circuit A, which is used to simulate inductors with high core loss. B Selects equivalent circuit B, which is used to simulate inductors in general and resistors. C Selects equivalent circuit C, which is used to simulate high-value resistors. D Selects equivalent circuit D, which is used to simulate capacitors. E Selects equivalent circuit E, which is used to simulate resonators. CALCULATE EQV PARAMS Same as CALCULATE EQV PARAMS in the Equivalent Circuit Menu. SIMULATE F-CHRST Same as SIMULATE F-CHRST in the Equivalent Circuit Menu. RETURN Returns to the Equivalent Circuit Menu. NNNNN NNNNN NNNNN NNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Dene Equivalent Circuit Parameter Menu. This menu lets you enter the equivalent circuit parameter values. Softkey Label Description NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Sets R1 value. Sets C1 value. Sets L1 value. Sets C0 value. Same as SIMULATE F-CHRST in the Equivalent Circuit Menu. RETURN Returns to the Equivalent Circuit Menu. PARAMETER R1 C1 L1 C0 SIMULATE F-CHRST NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN As shown in Table 8-4, each equivalent circuit model is suitable for analyzing specic type(s) of device. 8-54 Analyzing the Measurement Results Typical Impedance Measurement Techniques Table 8-4. Equivalent Circuit Selection Guide Equivalent Circuit Typical Frequency Characteristics Type of Devices A Inductors with high core loss B Inductors and resistors C High-value resistors D Capacitors E Resonators Analyzing the Measurement Results 8-55 Typical Impedance Measurement Techniques Using the Equivalent Circuit Analysis Function Calculating Approximate Values of Equivalent Circuit Constants. 1. Press 4Display5 and choose MORE EQUIV CKT MENU to display the equivalent circuit menu. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Choose SELECT CKT [ ] to display the equivalent circuit models. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select one of the following: Type of DUT Softkey Coils with high core loss Coils in general / Resistors High-value resistors Capacitors Resonators NNNNNNNNNNNNNNNNN CKT A B C D E NNNNN NNNNN NNNNN NNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Choose CALCULATE EQV PARAM to calculate the equivalent circuit parameters. After a beep, the calculated equivalent parameters are displayed on the screen. To hide the equivalent parameters, press 4Display5 and choose MORE EQUIV CKT MENU . Then toggle DISP EQV PARM [ON] to [OFF] . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN You can simulate a frequency characteristic trace from the equivalent circuit parameters obtained and compare it with the measured trace. 5. Press 4Display5 MORE EQUIV CKT MENU . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Choose SIMULATE F-CHRST . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN After a beep, the simulated trace is displayed. The simulated trace is stored in the memory trace. To turn o the simulated trace, press 4Display5 and choose DISPLAY [ ] DISPLAY: DATA . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Simulating a Trace from the Equivalent Circuit Parameters. You can also simulate the frequency characteristics of an equivalent circuit by entering its parameters. 1. Press 4Display5 and choose MORE EQUIV CKT MENU to display the equivalent circuit menu. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Choose SELECT EQV CKT [ ] to display the equivalent circuit models. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Select the equivalent circuit model. Then choose RETURN . NNNNNNNNNNNNNNNNNNNN 4. Choose DEFINE EQV PARAMS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Enter the equivalent circuit parameter value for the activated parameters. 6. Choose SIMULATE F-CHRST to simulate the frequency characteristics. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN After a beep, the simulated frequency characteristics are displayed. 8-56 Analyzing the Measurement Results Typical Impedance Measurement Techniques Determining Q Value Using the Width Search Function The width search function analyzes a resonator and displays the center point, width, and quality factor (Q) for the specied bandwidth. To use the width search function, open the Widths Menu by pressing 4Search5 and choosing WIDTH [ ] . The Widths Menu provides access to a submenu called Width Value Menu, which lets you specify the bandwidth search criteria. These two menus are described in this section. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Widths Menu This menu controls the width search function. Softkey Label Description NNNNNNNNNNNNNNNNNNNNNNNNNNNNN SEARCH IN Searches for the cut-o point on the trace that is within the current cut-o points. SEARCH OUT Searches for the cut-o point on the trace outside the current cut-o points. WIDTHS on OFF Turns on the width search feature and calculates the center frequency of a lobe on the trace, width, Q, and cut-o point deviation from the center stimulus value. The cut-o point that denes the width parameters is set using the WIDTH VALUE softkey. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The 1marker is automatically changed to the tracking 1marker when WIDTHS is turned on. When WIDTHS is ON, the (normal) 1marker cannot be selected. WIDTH VALUE Sets a measurement value of a cut-o point that denes the start and stop points for a width search. The width search feature analyzes the center point and the width between the trace down from (or up to) the anti-resonance point or resonance point and the quality factor (Q) for the resonator. Width units are in the units of the current format. RETURN Returns to the Search Menu. NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Width Value Menu This menu lets you specify the search criteria for the width search function. Analyzing the Measurement Results 8-57 Typical Impedance Measurement Techniques Softkey Label Description p NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN MKRVAL/( 2) Sets the width value to the value that equals the marker value divided by square root of 2. p MKRVAL*( 2) Sets the width value to the value that equals the marker value multiplied by square root of 2. MKRVAL/2 Sets the width value to the value that equals the marker value divided by 2. FIXD VALUE Makes the width value the active function and sets the width value to the value specied by this softkey. RETURN Returns to the Widths Menu. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Figure 8-31 shows an example of using the bandwidth search function. Figure 8-31. Q Measurement Examples Using the Anti-Resonance Point 1. Press 4Search5 to make the marker active. 2. Toggle SEARCH TRK on OFF to ON off . Then choose MAX to move the marker to the anti-resonance point on the trace. 3. Press 4Search5 and choose WIDTH [ ] WIDTH VALUE MKRVAL/(p2) RETURN . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 4. Toggle WIDTH on OFF to ON off . The width value, Q factor, and several parameters are displayed on the screen. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Using the Resonance Point 1. Press 4Search5 to make the marker active. 2. Toggle SEARCH TRK on off to ON off . Then choose MIN to move the marker to the resonance point on the trace. 3. Press 4Search5 and choose WIDTH [ ] WIDTH VALUE MKRVAL3(p2) RETURN . 4. Toggle WIDTH on OFF to ON off . The width value, Q factor, and several parameters are displayed on the screen. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Using the Admittance Chart 1. Press 4Utility5 to make the marker active. Then choose SMTH/POLAR MENU G+jB to read conductance and susceptance (assuming that the admittance circle has been displayed on the admittance chart). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 8-58 Analyzing the Measurement Results Typical Impedance Measurement Techniques 2. Press 4Search5 and toggle SEARCH TRK on OFF to ON off . Then choose MAX to move the marker to the point where the G value is maximum on the trace (resonance point). 3. Press 4Search5 and choose WIDTH [ ] WIDTH VALUE MKRVAL/2 RETURN 4. Toggle WIDTH on OFF to ON off . The width value, Q factor, and several parameters are displayed on the screen. The 4395A searches half of the maximum conductance points on the admittance circle. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Port Extension The 43961A impedance test kit has ACP-7 connectors that are intended for direct connection with a test xture. However, you can use the 4395A's port extension feature to connect an extension cable between the test kit and xture. Note You must determine the electrical length of the extension cable before using it with the aid of the port extension feature. Follow these steps: 1. Connect the cable to the APC-7 connector of the 43961A impedance test kit. 2. Press 4Cal5 and choose MORE PORT EXTENSION NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Choose EXTENSION VALUE and enter the equivalent electrical length using the numeric keys. 4. Toggle EXTENSION on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 5. If the cable's velocity factor is known, you can set the cable length more accurately. To set the velocity factor, press 4Cal5 and choose MORE VELOCITY FACTOR . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Analyzing the Measurement Results 8-59 Advanced Techniques for Optimizing Measurements 9 This chapter introduces you to advanced measurement techniques on using the 4395A that have not been covered in the previous chapters. It explains how to use these techniques to optimize your measurement tasks. Topics covered include: Reducing sweep time (using list sweep) Improving dynamic range Adjusting the IF bandwidth Using list sweep function Performing GO/NO-GO test of a lter (using limit line) Simultaneous measurement with dierent settings (using dual channel) Stabilizing the trace Advanced Techniques for Optimizing Measurements 9-1 Reducing Sweep Time (Using List Sweep) Reducing Sweep Time (Using List Sweep) The analyzer has a list sweep function that can sweep frequency according to a predened sweep segment list. Each sweep segment is independent. For the network/impedance analyzer mode, each segment can have a dierent number of sweep points, power level, and IF bandwidth value. For the spectrum analyzer mode, each segment can have a dierent number of points and RBW. Furthermore, the output voltage or current at DC SOURCE port can be set for each segment in all analyzer modes (option 001 only). This section covers: Planning the sweep list Editing a sweep list Executing the List Sweep Planning the sweep list 1. Specify sweep segments. A segment looks like a normal sweep setting. The list sweep function can combine up to 51 segments settings for network or impedance analyzer mode and 15 segments settings for spectrum analyzer mode into 1 sweep. You may want to use the list sweep function primarily to reduce the time required for the sweep process. The 4395A does not require that the sweep segments be contiguous. Therefore, you can speed up the sweep process using the following strategy: Dierentiate the sweep range of interest from other sweep ranges in terms of the number of points (Figure 9-1). Figure 9-1. Reducing Sweep Time by Optimizing the Number of Display Points 2. Determine the following parameters before editing the sweep list. Parameter Description Sweep Parameter Frequency of each segment. Each segment cannot be continuous. Zero span can be set. Number of display points. You can adjust the display area for each segment by setting this parameter. Total number of points for all segments is 801 points maximum. Number of points 9-2 Advanced Techniques for Optimizing Measurements Reducing Sweep Time (Using List Sweep) RBW IF BW Output Power DC Voltage or Current(Option 001) This parameter is for the spectrum analyzer mode. You can set the resolution bandwidth for the each segment individually. This is useful if you want to display higher resolution only for the specic segment. This parameter for the network analyzer and impedance analyzer mode. You can set the IF bandwidth for each segment individually. This is useful if you want to display higher dynamic range only for the specic segment. Output power from the RF OUT port of each segment. The allowable range is 050 dBm to +15 dBm. (NA, ZA mode only) DC output voltage or current from the DC SOURCE port on the front panel. Editing a Sweep List 1. Press 4Sweep5 SWEEP TYPE MENU EDIT LIST to call the sweep list editor. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press EDIT to edit the sweep list. NNNNNNNNNNNNNN Figure 9-2. List Sweep Editor 3. Enter the frequency range of the segment. Move the marker to the start point. Then press SEGMENT: MKR!START . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Move the marker to the stopping point. Then press MKR!STOP . NNNNNNNNNNNNNNNNNNNNNNNNNNNN Press 4Start5 to enter the start sweep parameter. Then press 4Stop5 to enter the stop sweep parameter. 4. Press MORE NUMBER of POINTS . Then enter the number of points for the segment. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press POWER . Then enter the output power level for the segment. (NA, ZA mode only) NNNNNNNNNNNNNNNNN 6. Set the internal lter bandwidth: When in spectrum analyzer mode, press RES BW to set the resolution bandwidth. NNNNNNNNNNNNNNNNNNNN Advanced Techniques for Optimizing Measurements 9-3 Reducing Sweep Time (Using List Sweep) NNNNNNNNNNNNNNNNN When in network or impedance analyzer mode, press IF BW to set the IF bandwidth. 7. Press DC VOLTAGE or DC CURRENT and enter DC output voltage or current. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8. Press RETURN SEGMENT DONE to complete editing the segment. NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 9. Press ADD to edit the next segment. NNNNNNNNNNN 10. Repeat steps 3 through 9 until you complete editing of all required segments. 11. When you nish editing all the segments, press LIST DONE to complete the sweep list. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN The segments do not have to be entered in any particular order. The analyzer automatically sorts them in increasing order of sweep parameter value. Figure 9-3. Sweep List Edit Display To Modify or Delete the Segment 1. Press 4Sweep5 SWEEP TYPE MENU EDIT LIST SEGMENT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN 2. Select the segment you want to delete or modify: Enter the segment number you want to modify. Then press 4215. Move the cursor, \>", to the segment you want to modify by using the 4*5, the 4+5, or the . 3. Do either of the following: To Press Modify specied segment Delete specied segment NNNNNNNNNNNNNN EDIT DELETE NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. When you nish editing, press LIST DONE . 9-4 Advanced Techniques for Optimizing Measurements Reducing Sweep Time (Using List Sweep) Executing the List Sweep 1. Press 4Sweep5. 2. Press SWEEP TYPE MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press LIST FREQ . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. If you use the DC output, press 4Source5. Then toggle DC OUT on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Notes NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN If you want to delete an edited sweep list, press 4Sweep5 SWEEP TYPE MENU EDIT LIST CLEAR LIST CLEAR LIST YES LIST DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN You can save and recall the edited sweep list with all other instrument settings by pressing STATE . See \To Save an Analyzer Setting or Measurement Data" in Chapter 8 for more information. 4Save5 NNNNNNNNNNNNNNNNN Advanced Techniques for Optimizing Measurements 9-5 Improving Dynamic Range (NA Mode) Improving Dynamic Range (NA Mode) This section introduces you two techniques for enhancing the dynamic range of 4395A. These are: Adjusting the IF Bandwidth Using List Sweep You can increase the dynamic range by applying the highest allowable power. The output power can be set by pressing 4Source5 POWER . NNNNNNNNNNNNNNNNN Averaging can also enhance the dynamic range. See \To Use the Averaging Function" for further information. Adjusting the IF Bandwidth Adjusting the IF bandwidth can lower the noise ower. For example, if you changed the IF bandwidth to 1/10 of the current setting (say, 100 Hz instead of 1 kHz), the measurement noise oor would lower by approximately 10 dB. This technique increases the dynamic range, but slows down the sweep process. 1. Press 4Bw/Avg5. 2. Press IF BW . NNNNNNNNNNNNNNNNN 3. Press 4*5 or 4+5, or enter an IF bandwidth value directly from the numeric keypad. IF Bandwidth 30 kHz IF Bandwidth 100 Hz Figure 9-4. Setting IF Bandwidth (IFBW) 9-6 Advanced Techniques for Optimizing Measurements Improving Dynamic Range (NA Mode) Using List Sweep Figure 9-5 shows the sweep list modied from the list of the previous example(Figure 9-3) to improve dynamic range. Segments 1 and 3 have a narrow IF bandwidth and a higher power level for the stopband of the lter. Segment 2 has a wide IF bandwidth and lower power level for passband. 1. Press 4Sweep5 SWEEP TYPE MENU EDIT LIST . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. To modify segment 1, press SEGMENT 415 4215 EDIT . NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 3. Press POWER 15 4215 IFBW 30 4215 SEGMENT DONE . NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. To modify segments 2 and 3, see Figure 9-5 for the values and modify them in a manner similar to steps 2 and 3. 5. Press LIST DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Press LIST FREQ . NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 9-5. Dynamic Range Enhancement Advanced Techniques for Optimizing Measurements 9-7 Performing GO/NO-GO Test of a Filter (using limit line) Performing GO/NO-GO Test of a Filter (using limit line) The limit line is constructed by connecting the segment points as shown in Figure 9-6. Figure 9-6. Limit Line Image For example, if you want to specify four points for the limit test, the limit line image is as shown in Figure 9-7. Each point has frequency information and an upper and a lower limit value. Enter these values as described in the \Editing a Limit Line Table" procedure. Figure 9-7. Frequency, Upper and Lower Limit In this example, the limit line connects four limit points. If a measured trace exceeds the upper or lower limit line, the limit test fails. 9-8 Advanced Techniques for Optimizing Measurements Performing GO/NO-GO Test of a Filter (using limit line) This section covers: Planning the Limit Line Editing a Limit Line Table Executing a Limit Line Test To Oset the Limit Line Planning the Limit Lime 1. Determine the following parameters before editing the limit line: Parameter Description Sweep Parameter Upper Limit Lower Limit Frequency of each segment. Upper limit level of each segment. Lower limit level of each segment. Editing a Limit Line Table 1. 2. 3. 4. Set up the frequency range of the grid before starting the limit line edit. If you want to use marker to set the segment, press 4Marker5. Press 4System5. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNN Press LIMIT MENU . Then toggle LIMIT LINE on OFF to ON . This makes it easier to understand the status of the limit line while you are editing it. 5. Press EDIT LIMIT LINE to call the limit line editor. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. If an old limit line table is still in the limit line editor, press CLEAR LIST CLEAR LIST YES to clear it. 7. Press EDIT to edit the rst segment. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN Figure 9-8. Limit Line Editor 8. Enter the frequency of the segment in one of the following ways: Advanced Techniques for Optimizing Measurements 9-9 Performing GO/NO-GO Test of a Filter (using limit line) NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press SWP PARAM . Then enter the frequency of the segment. Move the marker to the point you want to use as the frequency of the segment. Then press MKR!SWP PARAM . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 9. Press UPPER LIMIT . Then enter a upper limit value. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10. Press LOWER LIMIT . Then enter a lower limit value. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 11. Press DONE to end editing the segment. NNNNNNNNNNNNNN 12. Press ADD to edit the next segment. NNNNNNNNNNN 13. Repeat steps 7 through 11 until all segments are dened. 14. When you nish editing all segments, press DONE to complete editing the limit line table. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN You can enter the limit value using the middle and width method by pressing MIDDLE VALUE and DELTA LIMIT . You then enter the amplitude value as a middle amplitude value with a delta limit. The upper and lower limit lines appear at an equal positive and negative distance from the specied middle amplitude. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Modify or Delete the Segment 1. Press 4System5 LIMIT MENU EDIT LIMIT LINE SEGMENT . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN 2. Select the segment you want to delete or modify: Enter the segment number you want to modify. Then press 4215. Move cursor, \>", to the segment you want to modify by using the 4*5, the 4+5, or the 3. Do either of the following: To Press Modify specied segment Delete specied segment NNNNNNNNNNNNNN EDIT DELETE NNNNNNNNNNNNNNNNNNNN Executing a Limit Line Test To Make a Limit Line Test Active 1. Press 4System5. 2. Press LIMIT MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Toggle LIMIT TEST on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN If the limit line test passes, a green PASS message appears on the right of the grid. If it fails, a red FAIL message is displayed. You can set the analyzer to beep if the limit line test fails. (See the \To Beep When the Limit Test is Failed" procedure.) 9-10 Advanced Techniques for Optimizing Measurements . Performing GO/NO-GO Test of a Filter (using limit line) Figure 9-9. Limit Line Test To Beep When the Limit Test is Failed 1. Press 4System5. 2. Press LIMIT MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Toggle BEEP FAIL on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Advanced Techniques for Optimizing Measurements 9-11 To Oset the Limit Line To Oset the Limit Line 1. Press 4System5 LIMIT MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press LIMIT LINE OFFSETS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press the following keys: To move line Press Horizontally Vertically NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SWP PARAM OFFSET AMPLITUDE OFFSET NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Then move the limit line by entering an oset value using one of the following: To Use Move continuously Move with steps Enter oset value directly 4 5 4 5 * + 405 . . . 495 and unit keys 5. To move the limit line vertically to the marker position: a. Press 4Marker5 Then move the marker to the point you want to set as the oset value. b. Press 4System5 LIMIT MENU LIMIT LINE OFFSETS MKR! AMP. OFS. . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. When you are nished osetting the limit line, press RETURN . NNNNNNNNNNNNNNNNNNNN Before Oset After Oset Figure 9-10. Osetting Limit Lines To clear the oset, enter 0 for all the oset values. 9-12 Advanced Techniques for Optimizing Measurements Stabilizing the Trace Stabilizing the Trace When the trace is not stable and the marker value changes frequently, it is dicult to read the measured value. You can use the following techniques to stabilize the trace: Stop the sweep. Use the averaging function. Use the maximum or minimum hold function. Capture the unstable signal using signal track. To Stop the Sweep 1. Press 4Trigger5. 2. Press SWEEP: HOLD . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The sweep is stopped immediately (even if the sweep is in progress). If you want to restart the sweep, press CONTINUOUS to start a free-run sweep or press SINGLE to make a single sweep. NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Use the Averaging Function 1. Press 4Bw/Avg5. 2. Press AVERAGING FACTOR . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. If needed, enter the averaging factor (number of times). Then press the 4215. Default averaging factor is 16. 4. Toggle AVERAGING on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN The averaging notation (Avg) appears on left side of the grid when averaging is turned on. The averaging notation indicates the number of times averaging has been performed. When averaging is completed, the counter stops incrementing. However, the trace continues updating with each sweep. Averaging requires a sweep with a specied number of times that is enough for an averaging factor to complete the averaging. You can set the number of sweeps by using the number of groups function. If you want to change the setting of any parameter when averaging, you can restart averaging from the 0 count. To restart the averaging, press 4Bw/Avg5 AVERAGING RESTART . This resets averaging counter to 0. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Use Maximum or Minimum Hold Function 1. Press 4Display5. 2. Press DATA HOLD [OFF] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To Hold Press Maximum Level Minimum Level NNNNNNNNNNN MAX MIN NNNNNNNNNNN Advanced Techniques for Optimizing Measurements 9-13 Stabilizing the Trace \Max" (or \Min") appears on the right of the grid when the maximum (minimum) hold function is activated. To turn o the maximum or minimum hold, press 4Display5 DATA HOLD [ ] HOLD: OFF . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 9-11. Maximum Holding the Drifting Signal To Capture an Unstable Signal Using Signal Track 1. Press 4Display5 DUAL CHAN on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 2. Press 4Chan 15. 3. Press 4Search5. 4. Press SEARCH: PEAK to move the marker to the peak of the drifting test signal. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Toggle SIGNAL TRK on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN The signal track function captures the peak that is indicated by the marker and places it in the center of the grid for each sweep. If the peak is unstable horizontally, use this function. The analyzer automatically changes the center frequency to keep the peak in the center of the grid. Figure 9-12 shows a display when signal track is ON at channel 1. Figure 9-13 shows a display after the analyzer sweeps a few times. At channel 1, the center frequency has been changed to maintain the drifting signal at the center of the display. Channel 2 shows that signal frequency has drifted to a higher frequency. 9-14 Advanced Techniques for Optimizing Measurements Stabilizing the Trace Figure 9-12. Display When Starting Signal Track Figure 9-13. Display After Signal Has Drifted Advanced Techniques for Optimizing Measurements 9-15 10 Examples of Applications This chapter contains example applications of the 4395A for each of network, spectrum, and impedance analyzer modes. Note In this manual, the following abbreviations are used: NA mode: Network analyzer mode SA mode: Spectrum analyzer mode ZA mode: Impedance analyzer mode Network Measurement (NA Mode) Filter transmission measurement 6 dB bandwidth Ripple Magnitude and phase characteristics Expanded phase characteristics Reection measurement Return loss and reection coecient Standing wave ratio (SWR) S-parameters measurement Impedance measurement Admittance measurement Gain compression measurement Absolute output level measurement Spectrum Measurement (SA Mode) AM signal measurement Carrier amplitude and frequency measurement using the marker Modulating frequency and modulation index measurement using 1Marker FM Signal Measurement Frequency deviation of wide band FM signal Impedance Measurement (ZA Mode) Evaluation of a chip capacitor Capacitance (C) and dissipation factor (D) under swept frequency jZj and (Phase) under swept frequency Equivalent circuit analysis Evaluation of a crystal resonator Readout of resonance frequency (Fr ) and crystal impedance (CI) Equivalent circuit analysis Admittance chart Using the marker Evaluation of a varactor diode - DC bias sweep using list sweep function Measuring capacitance under DC bias conditions Examples of Applications 10-1 Measuring Transmission Characteristics of a Filter (NA Mode) Measuring Transmission Characteristics of a Filter (NA Mode) Insertion loss and gain are ratios of the output to input signals. The following procedure measures the insertion loss and gain of a 83.16 MHz SAW bandpass lter. This measurement can be used to obtain the key lter parameters. Measurement Setup Connection Set up the 4395A as shown in Figure 10-1. Figure 10-1. Transmission Measurement Setup Analyzer Settings Press 4Preset5. Then set the analyzer's controls as follows: Desired Settings Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select Network Analyzer 4Meas5 ANALYZER TYPE NETWORK ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 1 5(default) MEASUREMENT block Select S21 (or B/R) measurement 4Meas5 S-PARAMETERS FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Trans:FWD S21 [B/R] FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 4Format5 FORMAT:LOG MAG SWEEP block 10-2 Examples of Applications (default) IF BW 3 kHz 4Bw/Avg5 435 4k/m5 Center frequency 83.16 MHz 4Center5 485 435 4.5 415 465 4M/5 Span frequency 500 MHz 4Span5 455 405 405 4k/m5 Measuring Transmission Characteristics of a Filter (NA Mode) Performing Calibration Perform a frequency response calibration for this measurement as follows: 1. Press 4Cal5 CALIBRATE MENU RESPONSE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Connect a THRU calibration standard between the measurement cables in place of the DUT. 3. Press THRU to perform a frequency response calibration data measurement. NNNNNNNNNNNNNN 4. Press DONE: RESPONSE . ( CORRECTION on OFF is automatically set to ON off .) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Measurement NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Replace the THRU standard with the DUT. Press 4Scale Ref5 AUTO SCALE if the trace needs to be rescaled. Note that the display shows the complete response of the bandpass lter under test. Read Out Insertion Loss Using the Marker 1. Press 4Search5 MAX to move the marker to the maximum value of trace. The marker reads out the insertion loss and displays it at the upper right of the display. 2. Press 4Marker5 1MODE MENU 1MKR to turn on the 1Marker (at the position of the marker). NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 3. Enter 415 455 405 4k/m5 to move the marker to the point oset from the 1marker. The 1marker value shows the relative attenuation at the oset position (see Figure 10-2). Figure 10-2. Response of a SAW Filter 6 dB Bandwidth The analyzer calculates the bandwidth of the DUT between two equal power levels. In this example, it calculates the 06 dB bandwidth relative to the lter center frequency. 1. Press 4Search5 MAX to move the marker to the maximum value of the trace. NNNNNNNNNNN 2. Press WIDTHS [OFF] NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 0 215. 4 5 465 4 3. Press WIDTHS on OFF to ON off . The analyzer calculates the 06 dB bandwidth, center frequency, Q (Quality Factor), insertion loss, and dierences between the center frequency and the cuto frequencies of the DUT. It then lists the results at the upper right hand of the NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Examples of Applications 10-3 Measuring Transmission Characteristics of a Filter (NA Mode) display. Sub-marker 1 on the trace shows the passband center frequency while sub-markers 2 and 3 show the location of the 06 dB cuto points. Figure 10-3. Using the Marker to Determine 6 dB Bandwidth NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To have the 4395A calculate the bandwidth between other power levels, select WIDTH VALUE and enter the number (for example, enter 03 4215 for 03 dB). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press 4Marker5 PRESET MKRS when you are nished with this measurement. Ripple Passband ripple is the variation in insertion loss over a specied portion of the passband. 1. Press 4Display5 DUAL CHAN on OFF to ON off to display channel 2 below channel 1. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 2. Press 4Sweep5 COUPLED CH ON off to on OFF . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 3. Press 4Marker5 485 435 4.5 415 465 4M/5. 4. Press 4Marker!5 MKR!XCH MENU ZOOMING APERTURE 415 405 4215. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press MKR XCH ZOOM . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Press 4Chan 25 4Search5 MAX . Then press 4Marker!5 MKR!REFERENCE 4Scale Ref5 SCALE/DEV 415 4215 to magnify the trace and resolve the ripple. 7. Press 4Search5 SEARCH: PEAK . Then press 4Marker5 1MODE MENU 1MKR . NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 8. Press 4Search5 SEARCH: PEAK PEAK DEF MENU PEAK PLRTY POS neg to pos NEG . Then press RETURN RETURN SEARCH: PEAK . The passband ripple is automatically given as the peak-to-peak variation between the markers. The ripple value is displayed at the upper right of the display. Depending on the peak size, you may need to dene the peak size using the peak denition feature of the 4395A. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10-4 Examples of Applications NNNNNNNNNNNNNNNNNNNNNNN Measuring Transmission Characteristics of a Filter (NA Mode) Figure 10-4. Using Peak Search to Determine Ripple NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press 4Chan 15 4Marker5 PRESET MKRS , and 4Chan 25 4Marker5 PRESET MKRS when you are nished with this measurement. Measuring Phase Response A two input ratio measurement can also provide information about the phase shift of a network. The analyzer can translate this information into a related parameter, group delay. With the same connection, instrument settings, and calibration used in the previous example (see \Measurement Setup" in \Measuring Transmission Characteristics of a Filter (NA Mode)"), make the following changes: 1. Press 4Chan 15 4Sweep5 COUPLED CH on OFF to ON off to couple sweep parameters of channel 2 to channel 1. 2. Press 4Chan 25 4Format5 PHASE to display the phase response on channel 2. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN If the trace needs to be rescaled, press 4Scale Ref5 and AUTO SCALE . Figure 10-5 shows the phase response of the bandpass lter. Notice the linear phase shift through the passband and the rapid uctuations that occur outside this region. The random phase of the broadband noise oor causes the spurious out-of-band response. This format displays phase over the range of 0180 to +180 degrees. As phase increases beyond these values, a sharp 360 degree transition occurs in the display as the trace \wraps" between +180 and 0180 degrees. This wrap causes the characteristic \sawtooth" display usually seen on devices with linearly increasing (or decreasing) phase responses. Examples of Applications 10-5 Measuring Transmission Characteristics of a Filter (NA Mode) Figure 10-5. Amplitude and Phase Response of a SAW Filter Using the Expanded Phase Mode The 4395A can display phase beyond 6180 degrees. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press 4Format5 EXP PHASE on OFF to ON off . Then press 4Scale Ref5 AUTO SCALE . The phase is displayed with \no wrap" (see Figure 10-6). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Figure 10-6. Expanded Phase Mode NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Press 4Format5 EXP PHASE ON off to on OFF to turn o the expanded phase mode. 10-6 Examples of Applications Reection Measurement (NA) Reection Measurement (NA) When making a reection measurement, the 4395A monitors the signal going to the DUT and uses it as the reference. It compares the reected signal from the DUT to the reference signal. The ratio of the incident and reected signals is the reection coecient of the DUT or, when expressed in decibels, the return loss. Reection measurements require the connection of a directional device, such as a directional coupler, to separate the power reected from the DUT. This separation is necessary so that it can be measured independently of the incident power (see Figure 10-7). Figure 10-7. Reection Measurement Multi-Port Test Devices When the device has more than one port, connect high-quality terminations (loads) to all unused DUT ports to terminate them into their characteristic impedance (usually 50 or 75 ). If this is not done, reections o the unused ports will cause measurement errors. The S-parameter test set automatically switches the termination at the unused port for each S-parameter measurement. When using a transmission/reection test set, terminate the unused input port of the analyzer with a high quality load. The signal reected from the DUT is measured as a ratio with the incident signal. It can be expressed as a reection coecient, a return loss, or as SWR. These measurements are mathematically dened as: Examples of Applications 10-7 Reection Measurement (NA) return loss(dB) = 020 log() reected power reection coecient = incident power = (magnitude only) = 0 (magnitude and phase) = S11 or S22 (magnitude and phase) 1+ SWR = 10 Measurement Setup Connection Set up the 4395A as shown in Figure 10-8. Figure 10-8. Reection Measurement Setup Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: Desired Setting Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select network analyzer 4Meas5 ANALYZER TYPE NETWORK ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 1 5 MEASUREMENT block SWEEP block (default) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Select S11 4Meas5 S-PARAMETERS Refl:FWD S11 [A/R] Select LOG MAG format 4Format5 FORMAT: LOG MAG Center frequency 70 MHz 4Center5 475 405 4M/5 Span frequency 100 kHz 4Span5 415 405 405 4k/m5 (default) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF (default) Performing Calibration Perform an S11 , 1-port calibration for this measurement. The following procedure is for using 7 mm standards. 10-8 Examples of Applications Reection Measurement (NA) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 1. Press 4Cal5 CALIBRATE MENU S11 1-PORT . 2. Connect the OPEN standard to port 1. Then press [S11]: OPEN . (The softkey label OPEN is underlined when the measurement is complete.) 3. Connect the SHORT standard to port 1. Then press SHORT . (The softkey label SHORT is underlined when the measurement is complete.) 4. Connect the LOAD standard to port 1. Then press LOAD . (The softkey label LOAD is underlined when the measurement is complete.) 5. Press DONE: 1-PORT CAL . ( CORRECTION on OFF is automatically set to ON off .) NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Note NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN The next example \S-Parameters Measurement" uses the calibration corrections you just completed. Do not change the calibration settings before doing the example. Measurement NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Connect the DUT to the test set. Press 4Scale Ref5 AUTO SCALE if the trace needs to be rescaled. Return Loss and Reection Coecient The return loss characteristics are displayed in the Log Mag format in Figure 10-9. The value inside the passband is greater than outside the passband. A large value for return loss corresponds to a small reected signal just as a large value for insertion loss corresponds to a small transmitted signal. Figure 10-9. Return Loss NNNNNNNNNNNNNN To display the same data in terms of reection coecient, press 4Format5 MORE FORMAT: LIN MAG . This redisplays the existing measurement in a linear magnitude format that varies from 0=1.00 at the top of the display (100% reection) to 0.00 at the bottom of the display (perfect match). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Examples of Applications 10-9 Reection Measurement (NA) Standing Wave Ratio (SWR) To display the reection measurement data as standing wave ratio (swr), press 4Format5 MORE SWR . The analyzer reformats the display in the non-unit measure of SWR (with SWR = 1, a perfect match, at the bottom of the display). NNNNNNNNNNNNNN NNNNNNNNNNN Figure 10-10. SWR 10-10 Examples of Applications Reection Measurement (NA) S-Parameters Measurement S-parameters S11 and S22 are no dierent from the measurements made in the previous section. S11 is the complex reection coecient of the DUT's input. S22 is the complex reection coecient of the DUT's output. In both cases, all unused ports must be properly terminated. To display the trace on the polar chart, press 4Format5 POLAR CHART . The results of a typical S11 measurement is shown in Figure 10-11. Each point on the polar trace corresponds to a particular value of both magnitude and phase. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Polar Chart Shows Magnitude and Phase Magnitude The center of the circle represents a reection coecient 0 of 0, that is, a perfect match or no reected signal. The outermost circumference of the scale represents a 0 = 1.00, or 100 % reection. Phase The 3 o'clock position corresponds to zero phase angle, that is, the reected signal is at the same phase as the incident signal. Phase dierences of 90, 180, and 270 degrees correspond to the 12, 9, and 6 o'clock positions on the polar display, respectively. Figure 10-11. S11 on Polar Chart Data Readout Using the Marker Press 4Marker5 and use the knob to position the marker at any desired point on the trace. Then read the frequency, magnitude, and phase in the upper right hand corner of the display. Or, enter the frequency of interest from the data entry key pad to read the magnitude and phase at that point. To read the marker data in logarithmic, linear, real/imaginary, impedance (R+jX), admittance (G+jB), or SWR/phase formats, press 4Utility5 SMTH/POLAR MENU and select the desired format. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Examples of Applications 10-11 Reection Measurement (NA) Impedance Measurement The amount of power reection from a device is directly related to the impedance values of both the device and the measuring system. In fact, each value of the reection coecient (0) uniquely denes a device impedance. For example: 0=0 occurs when the device and test set impedance are the same. A short circuit has a reection coecient of 0=1 6 180 (=01). An open circuit has a reection coecient of 0=1 6 0 (=1). Every other value for 0 also corresponds uniquely to a complex device impedance, according to the equation: 1+0 Zn = 100 Where Zn is the DUT impedance normalized to (that is, divided by) the measuring system's characteristic impedance (usually 50 or 75 ). The network analyzer has a default impedance of 50 . To set the impedance to 75 , press 4Cal5 MORE SET Z0 . The network analyzer uses the formula above to convert the reection coecient measurement data to impedance data. 1. Press 4Format5 SMITH CHART . The display shows the complex impedance of the DUT over the frequency range selected. 2. Press 4Marker5 to turn on the marker. Then use the knob to read the resistive and reactive components of the complex impedance at any point along the trace. The marker displays a complex impedance readout. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 10-12. Impedance Measurement 10-12 Examples of Applications Reection Measurement (NA) Admittance Measurement 1. Press 4Format5 MORE ADMITTANCE CHART . The display shows the complex impedance of the DUT over the frequency range selected. 2. Use the knob to read the resistive and reactive components of the complex impedance at any point along the trace. The marker displays complex impedance readout. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 10-13. Admittance Measurement Examples of Applications 10-13 Gain Compression Measurement (NA) Gain Compression Measurement (NA) An important measure of active circuits is how well they handle a signal frequency with a varying input amplitude. By using the power sweep function in the network analyzer mode, measurements such as gain compression or automatic gain control slope can be made. Measurement Setup Connection Set up the 4395A as shown in Figure 10-14. Figure 10-14. Gain Compression Measurement Setup 10-14 Examples of Applications Gain Compression Measurement (NA) Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: Desired Settings Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select network analyzer 4Meas5 ANALYZER TYPE NETWORK ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 15 (default) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select S21 (or B/R) measurement 4Meas5 S-PARAMETERS FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Trans:FWD S21 [B/R] SWEEP block FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF (default) Select LOG MAG format 4Format5 FORMAT: LOG MAG IF BW 1 kHz 4Bw/Avg5 415 4k/m5 Select power sweep 4Sweep5 SWEEP TYPE MENU POWER SWEEP CW frequency 250 MHz 4Source5 CW FREQ 425 455 405 4M/5 Start power 05 dBm 4Start5 4 5 455 4 Stop power 15 dBm FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFF 0 215 4Stop5 415 455 4215 Performing Calibration Perform a power response calibration for this measurement as follows: 1. Press 4Cal5 CALIBRATION MENU RESPONSE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN 2. Connect a THRU calibration standard between the measurement cables in place of the DUT (see Figure 10-14). 3. Press THRU to perform a power response calibration data measurement. NNNNNNNNNNNNNN 4. Press DONE: RESPONSE . ( CORRECTION on OFF is automatically set to ON off .) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Measurement 5. Replace the THRU standard with the DUT. 6. Press 4Scale Ref5 AUTO SCALE if the trace needs rescaling. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Press 4Search5 MAX to move the marker to the maximum point on the trace. NNNNNNNNNNN 8. Press 4Marker5 1MODE MENU 1MKR to set the 1marker to the maximum point. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 9. Press 4Search5 TARGET Figure 10-15.) NNNNNNNNNNNNNNNNNNNN 0 215 to search for the point of the gain compression. 4 5 415 4 (See Examples of Applications 10-15 Gain Compression Measurement (NA) Figure 10-15. Gain Compression Absolute Output Level Measurement The analyzer can show the characteristics input level versus output level by using the absolute measurement capability in the network analyzer mode. 1. Press 4Marker5 MKR [UNCOUPLE] to MKR [COUPLE] to couple the marker between both channels. 2. Press 4Chan 25 4Meas5 MORE B to select the absolute measurement at the B input. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNN 3. Press 4Display5 DATA MATH [DATA] OFFSET . Then input the value of the attenuator that is connected between the DUT and the B input. In this example measurement, a 30 dB attenuator is used. Therefore, enter 30 4215. 4. The 4395A displays the input versus output power levels. The marker shows the input and output power levels at the 01 dB gain compression point. 5. Press 4Display5 DUAL CHAN on OFF to ON off to display both channel (see Figure 10-16). Note that you must subtract 6 dB from the input value readout. This is necessary because the input signal is attenuated by the power splitter that is between the RF OUT and the DUT. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10-16 Examples of Applications NNNNNNNNNNNNNNNNNNNN Gain Compression Measurement (NA) Figure 10-16. Input vs. Output Power Level at the 01 dB Gain Compression Point Examples of Applications 10-17 AM Signal Measurement (SA) AM Signal Measurement (SA) In this example, the following parameters for AM signal measurement are derived: Carrier amplitude (Ec ) and frequency (fc ) Modulating frequency (fm ) and modulation index (m) Test Signal The following test signal is used in this example: AM Signal Frequency (fc ): 100 MHz Modulating signal frequency (fm ): 10 kHz Measurement Setup Connection Connect the test signal source to the R input port. Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: Desired Setting Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select Spectrum Analyzer 4Meas5 ANALYZER TYPE SPECTRUM ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 1 5(default) MEASUREMENT block Select R input port 4Meas5 SPECTRUM: R SWEEP block Center frequency 100 MHz 4Center5 415 405 405 4M/5 Span frequency 200 kHz 4Span5 425 405 405 4k/m5 FFFFFFFFFFFFFFFFFFFFFFFFFFFFF (default) Carrier Amplitude and Frequency Measurement Using the Marker Press 4Scale Ref5 and enter the reference value if the trace needs rescaling. 1. Press 4Search5 to turn the marker on. 2. Press MAX to search for the carrier signal. The carrier amplitude and frequency are displayed in the upper right corner as shown in Figure 10-17. NNNNNNNNNNN 10-18 Examples of Applications AM Signal Measurement (SA) Figure 10-17. Carrier Amplitude and Frequency of AM Signal The marker shows that the carrier amplitude (Ec ) is 020.305 dBm and frequency (fc ) is 100 MHz. Modulating Frequency and Modulation Index Measurement Using 1Marker 3. Press 4Marker5 1MODE MENU 1MKR . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 4. Press 4Search5 SEARCH: PEAK NEXT PEAK to search for a sideband. The oset value from the carrier is displayed as the marker sweep parameter value shown in Figure 10-18. This value is the modulation frequency. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 10-18. Modulating Frequency of AM Signal The 1marker shows that the sideband amplitude value relative to the carrier is 019.708 dB (see Figure 10-18). The modulation index (m) can be derived from the following equation: 20 m = 2 2 10 1Mkr = 20:68% Examples of Applications 10-19 AM Signal Measurement (SA) where 1Mkr is the 1marker value shown in Figure 10-18. 10-20 Examples of Applications FM Signal Measurement (SA) FM Signal Measurement (SA) This example describes how to derive the frequency deviation (1fpeak ) value. Test Signal The following test signal is used in this example: Wide band FM Signal Carrier frequency: 100 MHz. Modulating frequency: 1 kHz. Frequency deviation: 1 MHz. Measurement Setup Connection Connect the test signal to the R input port. Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: Desired Setting Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select Spectrum Analyzer 4Meas5 ANALYZER TYPE SPECTRUM ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 15(default) MEASUREMENT block Select R input port 4Meas5 SPECTRUM: R Reference scale level 010 dBm 4Scale/Ref5 4 5 415 405 4 Center frequency 100 MHz 4Center5 415 405 405 4M/5 Span frequency 5 MHz 4Span5 455 4M/5 RBW 300 Hz 4Bw/Avg5 435 405 405 4 SWEEP block FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0 (default) 215 215 Frequency Deviation of Wide Band FM Signal Press 4Scale Ref5 and enter reference value if the trace needs rescaling. Frequency Deviation 1. Press 4Search5 SEARCH: PEAK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Press 4Marker5 1MODE MENU 1MKR . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 3. Press 4Search5 SEARCH: PEAK NEXT PEAK . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Examples of Applications 10-21 FM Signal Measurement (SA) Figure 10-19. Wide Band FM Signal Measurement The frequency deviation (1fpeak ) can be derived roughly from the following equation: j1M krj 1fpeak = 2 where 1Mkr is the marker sweep parameter value shown in Figure 10-19. In this example, the frequency deviation is about 987.5 kHz. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Press 4Marker5 PRESET MKRS when you are nished with this measurement. Carrier Level and Modulating Frequency The carrier level and modulating frequency can be derived using a method similar to the AM signal measurement. In this example, the zooming function is used to measure the carrier and the adjacent signal. 1. Press 4Marker5 415 405 405 4M/5 to put the maker on the carrier frequency. 2. Press 4Marker!5 ZOOMING APERTURE 405 4.5 425 4215. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press MKR ZOOM to zoom up to the carrier signal. NNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Bw/Avg5 415 405 4215. 5. Press 4Scale Ref5 and enter reference vale if the trace needs rescaling. 6. Press 4Marker5 415 405 405 4M/5 to move the marker to the career frequency. The carrier amplitude can be read as the marker value. 7. Press 4Marker5 1MODE MENU 1MKR to put the 1maker on the carrier. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 8. Press 4Search5 SEARCH: PEAK NEXT PEAK LEFT (or NEXT PEAK RIGHT ) to move the marker to the sideband. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10-22 Examples of Applications NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN FM Signal Measurement (SA) Figure 10-20. Zooming Carrier Signal of FM Signal Examples of Applications 10-23 Evaluation of a Chip Capacitor (ZA Mode) Evaluation of a Chip Capacitor (ZA Mode) As a typical application of impedance analyzer mode, this example shows how to evaluate the impedance characteristics of a chip under swept frequency. Also, it shows how to determine the equivalent circuit parameters of a chip capacitor using the equivalent circuit analysis function of the 4395A. Note that using the 4395A as an impedance analyzer requires the 43961A Impedance Test Kit as well as Option 010. Measurement Setup Connection Set up the 4395A as shown in Figure 10-21. Figure 10-21. Connecting the Impedance Test Kit Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: 10-24 Examples of Applications Evaluation of a Chip Capacitor (ZA Mode) Desired Settings Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENTblock Select impedance analyzer mode 4Meas5 ANALYZER TYPE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF IMPEDANCE ANALYZER ACTIVE CHANNELblock Select channel 1 4Chan 15(default) SWEEPblock Select LOG FREQ mode. 4Sweep5 SWEEP TYPE MENU FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF SWEEP TYPE: LOG FREQ Sweep start frequency 100 kHz 4Start5 415 405 405 4k/m5 Sweep stop frequency 500 MHz 4Stop5 455 405 405 4M/5 Output level 0.5 dBm 4Source5 POWER 4.5 455 4 IF bandwidth 300 Hz Averaging factor 8 FFFFFFFFFFFFFF FFFFFFFFFFFFFF 215 215 4Bw/Avg5 IF BW 435 405 405 4 AVERAGING FACTOR 485 4215 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF AVERAGING on OFF (to ON off ) Calibration A proper calibration is requisite for the 4395A to perform measurements within the guaranteed accuracy range. Calibrating the 4395A for impedance analyzer mode requires three dierent terminations: 0 S (OPEN), 0 (SHORT), and 50 (LOAD). Note Be sure to use the calibration kit included in the 43961A package. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 1. Press 4Cal5 and choose CALIBRATE MENU . 2. Connect the 0S termination to the OUTPUT port, and choose OPEN . Wait until the OPEN softkey's label is underlined to indicate that the OPEN calibration is complete. 3. Remove the 0S termination. 4. Connect the 0 termination to the OUTPUT port, and choose SHORT . Wait until the SHORT softkey's label is underlined to indicate that the SHORT calibration is complete. 5. Remove the 0 termination. 6. Connect the 50 termination to the OUTPUT port, and choose LOAD . Wait until the LOAD softkey's label is underlined to indicate that the LOAD calibration is complete. 7. Choose DONE: CORRECTION . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8. Make sure that a \Cor" marker is displayed at the left-hand edge of the screen. Connecting the Test Fixture The test xture used in this example is the 16192A Parallel Electrode SMD Test Fixture. Connect the test xture to the test kit referring to the documentation for the 16192A Parallel Electrode SMD Test Fixture. Examples of Applications 10-25 Evaluation of a Chip Capacitor (ZA Mode) Figure 10-22. Connecting the Test Fixture Setting the Electrical Length of the Test Fixture Connecting a test xture adds an extra electrical length to the test circuit. This electrical length, which is specic to the test xture you use, must be known to the 4395A so that it can compensate for the extra electrical length and eliminate errors due to phase shifts. The 4395A incorporates a database of Agilent test xtures with their own electrical lengths. This database contains the electrical length of the 16192A test xture. To set the electrical length of the test xture, follow these steps: 1. Press 4Meas5. 2. Choose FIXTURE [NONE] SELECT FIXTURE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. As the model number for the test xture you are going to use, select 16192 . NNNNNNNNNNNNNNNNN 4. Choose RETURN . NNNNNNNNNNNNNNNNNNNN 5. A \Del" marker appears at the left edge of the screen. Fixture Compensation Fixture compensation is a process that calibrates the 4395A with a test xture installed, thereby eliminating errors produced between the test xture electrode and the impedance test kit's OUTPUT port. Normally, the 4395A must be xture-compensated for the OPEN and SHORT circuit states. It can optionally be xture-compensated for the LOAD state. Note For how to connect standard devices, refer to the documentation that comes with the test xture you use. To carry out xture compensation, follow these steps: 10-26 Examples of Applications Evaluation of a Chip Capacitor (ZA Mode) 1. Press 4Cal5 and choose FIXTURE COMPEN COMPEN MENU . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Make sure that the test circuit is in the open state. 3. Choose OPEN . Wait until the OPEN softkey's label is underlined to indicate that the OPEN compensation is complete. 4. Connect the appropriate short device to the test xture. 5. Choose SHORT . Wait until the SHORT softkey's label is underlined to indicate that the SHORT compensation is complete. 6. Choose DONE: COMPEN . NNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Check that a \Cmp" marker is displayed in place of the \Cor" marker. Capacitance and Dissipation Factor under Swept Frequency Setting Measurement Parameters To begin impedance measurement, the 4395A must know which characteristics it should measure and how it should report the measured values. 1. Press 4Chan 15 to activate Channel 1. 2. Press 4Meas5 and choose MORE 1/5 MORE 2/5 MORE 3/5 SER(Cs) to instruct the 4395A to measure Cs (serial capacitance) for Channel 1. 3. Press 4Chan 25 to activate Channel 2. 4. Press 4Meas5 and choose MORE 4/5 D FACTOR(D) to instruct the 4395A to measure D (dissipation factor) for Channel 2. 5. Press 4Bw/Avg5 AVERAGING FACTOR 485 4215. NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. Toggle AVERAGING on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 7. Press 4Display5 and toggle DUAL CHAN on OFF to ON off to turn ON the dual channel function. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Measurement Connect the DUT to the test xture referring to the documentation that comes with the 16192A test xture. Press 4Chan 15 4Scale Ref5 AUTO SCALE , 4Chan 25 4Scale Ref5 AUTO SCALE if the trace needs rescaling. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Examples of Applications 10-27 Evaluation of a Chip Capacitor (ZA Mode) Figure 10-23. Cs and D Characteristics of a Chip Capacitor under Swept Frequency jZj and (Phase) under Swept Frequency Follow these steps: 1. Press 4Chan 15 to activate Channel 1. 2. Press 4Meas5 and choose MORE 5/5 IMPEDANCE: |Z| to instruct the 4395A to measure jZj for Channel 1. 3. Press 4Format5 and choose FORMAT: LOG Y-AXIS . NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Scale Ref5 and choose AUTO SCALE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press 4Chan 25 to activate Channel 2. 6. Press 4Meas5 and choose z . NNNNNNN 7. Press 4Scale Ref5 and choose AUTO SCALE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The 4395A displays the jZj and characteristics under swept frequency, as shown in Figure 10-24. 10-28 Examples of Applications Evaluation of a Chip Capacitor (ZA Mode) Figure 10-24. jZj and Characteristics of a Chip Capacitor under Swept Frequency Equivalent Circuit Analysis The 4395A provides a function that automatically calculates approximate values of specic parameters of an equivalent circuit that corresponds to a DUT. This function supports ve circuit models. In addition, the resulting parameter values can be used to simulate the frequency-based characteristics of the equivalent circuit; this allows you to compare the simulated characteristics with the actually measured characteristics. To analyze equivalent circuit parameters, follow these steps: 1. Press 4Display5 and choose MORE EQUIV CKT MENU to access the equivalent circuit menu. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Choose SELECT EQV CKT [A] and select D as the equivalent circuit model to use. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNN 3. Choose CALCULATE EQV PARAMS to calculate the parameters of the equivalent circuit. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Preceded by a beep, the values of the equivalent circuit parameters appear at the bottom of the screen. Figure 10-25. Equivalent Circuit Parameters Examples of Applications 10-29 Evaluation of a Chip Capacitor (ZA Mode) NNNNNNNNNNNNNN To hide the equivalent circuit parameters from the screen, press 4Display5, choose MORE EQUIV CKT MENU . Then choose DISP EQV PARM [ON] so that the softkey label changes to [OFF] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN You may wish to use the resulting parameter values to simulate the frequency-based characteristics of the equivalent circuit and compare them with the actually measured characteristics. To do so, follow these steps: 4. Press 4Display5. 5. Choose MORE EQUIV CKT MENU SIMULATE F-CHRST . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Preceded by a beep, the simulation results appear on the screen. They are also stored in the trace memory. Figure 10-26. Simulation of Frequency-based Characteristics Using Resulting Equivalent Circuit Parameters You can simulate the frequency-based characteristics with desired parameter values you dened. Press 4Display5 MORE EQUIV CKT MENU DEFINE EQV PARAMS , enter each parameter values using R1 , C1 , L1 ,and C0 ,and then press SIMULATE F-CHRST . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To hide the simulation results from the screen, press 4Display5 and choose DISPLAY [DATA&MEM] DISPLAY: DATA for both 4Chan 15 and 4Chan 25. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10-30 Examples of Applications Evaluation of a Crystal Resonator (ZA Mode) Evaluation of a Crystal Resonator (ZA Mode) Measurement Setup Connection Connect the 4395A with the 43961A Impedance Test Kit in the same procedure as described in \Evaluation of a Chip Capacitor (ZA Mode)". Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: Desired Settings Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select impedance analyzer mode 4Meas5 ANALYZER TYPE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF IMPEDANCE ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 15(default) SWEEP block Center frequency 24 MHz 4Center5 425 445 4M/5 Span frequency 200 kHz 4Span5 425 405 405 4k/m5 Output level 0.5 dBm 4Source5 POWER 4.5 455 4x15 IF bandwidth 300 Hz 4Bw/Avg5 IF BW 435 405 405 4 Averaging factor 8 FFFFFFFFFFFFFF FFFFFFFFFFFFFF 215 AVERAGING FACTOR 485 4215 FFFFFFFFFFFFFFFF AVERAGING on OFF (to ON off ) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Calibration Calibrate the 4395A as described in \Evaluation of a Chip Capacitor (ZA Mode)". Connecting the Test Fixture The test xture used in this example is the 16092A Spring Clip Test Fixture. Connect the test xture to the test kit referring to the documentation for the 16092A Spring Clip Test Fixture. Setting the Electrical Length of the Test Fixture Connecting a test xture adds an extra electrical length to the test circuit. This electrical length, which is specic to the test xture you use, must be known to the 4395A so that it can compensate for the extra electrical length and eliminate errors due to phase shifts. Although the 4395A incorporates a database of Agilent test xtures with their own electrical lengths, the 16092A test xture is not contained in this database. Therefore, you need to manually set its electrical length. Follow these steps: 1. Press 4Meas5. 2. Choose FIXTURE [NONE] MODIFY [NONE] DEFINE EXTENSION . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. The 16092A test xture has an electrical length of 0.0034 m. To enter this electrical length, press 4.5 405 405 435 445 4215. Examples of Applications 10-31 Evaluation of a Crystal Resonator (ZA Mode) 4. Choose LABEL FIXTURE ERASE TITLE . Press 415 465 405 495 425, and then choose DONE . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN 5. Choose KIT DONE (MODIFIED) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6. A \Del" marker appears at the left edge of the screen. Fixture Compensation Carry out xture compensation as described in \Evaluation of a Chip Capacitor (ZA Mode)". Setting Measurement Parameters 1. Press 4Chan 15 to activate Channel 1. 2. Press 4Meas5 and check that IMPEDANCE: MAG(|Z|) is currently selected. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press 4Format5 and choose LOG Y-AXIS . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Chan 25 to activate Channel 2. 5. Press 4Meas5 and check that z is currently selected. NNNNNNN 6. Press 4Format5 and check that FORMAT: LIN Y-AXIS is currently selected. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Press 4Bw/Avg5 AVERAGING FACTOR 485 4215. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8. Toggle AVERAGING on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 9. Press 4Display5 and toggle DUAL CHAN on OFF to ON off to turn OFF the dual channel display. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Measurement Connect the DUT to the test xture referring to the documentation that comes with the 16092A Spring Clip Test Fixture. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN If the trace needs rescaling, press 4Scale Ref5 and choose enter AUTO SCALE after activating Channel 1 with 4Chan 15 key. Figure 10-27. Frequency-based Characteristics of a Crystal Resonator 10-32 Examples of Applications Evaluation of a Crystal Resonator (ZA Mode) Readout of Resonance Frequency (Fr ) and Crystal Impedance (CI) 1. Press 4Chan 25 to activate Channel 2. 2. Press 4Search5 and toggle SEARCH TRK on OFF to ON off to turn ON the search track function. 3. Choose TARGET . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN 4. Press 405 4215 and choose SEARCH LEFT . The marker moves to the zero phase (0 ) point on the lower-frequency side. This is the point at which the resonance frequency (Fr ) and crystal impedance (CI) occur. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 10-28. Readout of the Fr and CI Values of a Crystal Resonator Equivalent Circuit Analysis The 4395A supports the 4-element equivalent circuit model, which is suitable for evaluating crystal resonator. 1. Press 4Display5 and choose MORE EQUIV CKT MENU to access the equivalent circuit menu. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Choose SELECT EQV CKT [A] and select E as the equivalent circuit model to use. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNN 3. Choose CALCULATE EQV PARAMS to calculate the parameters of the equivalent circuit. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Preceded by a beep, the values of the equivalent circuit parameters appear at the bottom of the screen. Examples of Applications 10-33 Evaluation of a Crystal Resonator (ZA Mode) Figure 10-29. Equivalent Circuit Parameters NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To hide the equivalent circuit parameters from the screen, press 4Display5 MORE EQV CKT MENU and toggle DISP EQV PARM [ON] to [OFF] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN You may wish to use the resulting parameter values to simulate the frequency-based characteristics of the equivalent circuit and compare them with the actually measured characteristics. To do so, follow these steps: 4. Press 4Display5 and choose MORE EQUIV CKT MENU SIMULATE F-CHRST . NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN To hide the simulation results from the screen, press 4Display5 and choose DISPLAY [DATA&MEM] DISPLAY: DATA for both channels. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Figure 10-30. Simulation of Frequency-based Characteristics Using Resulting Equivalent Circuit Parameters 10-34 Examples of Applications Evaluation of a Crystal Resonator (ZA Mode) Admittance Chart 1. If the results of equivalent circuit simulation are currently displayed for Channel 1, hide the results by pressing 4Chan 15 4Display5 and choosing DISPLAY [DATA&MEM] DISPLAY: DATA RETURN MORE EQUIV CKT MENU DISP EQV PARM [ON] . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. With the marker located at the resonance frequency (Fr ) point, press 4Marker!5 and choose MKR!CENTER to set the sweep center frequency to the resonance frequency. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Press 4Chan 15 4Meas5 and choose MORE [1/5] ADMITTNCE: MAG(|Y|) . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 4. Press 4Format5 and choose COMPLEX PLANE to select the complex plane format. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 5. Press 4Display5 and choose DUAL CHAN ON off to on OFF to turn OFF the dual channel display. 6. Press 4Scale Ref5 and choose AUTO SCALE to rescale the trace. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7. Adjust the span by pressing 4Span5 and then 4+5 or 4*5. If the number of sweep points is so small that the admittance chart does not form a circular shape, increase the number of sweep points by pressing 4Sweep5 and choosing NUMBER OF POINTS then pressing 4*5. (Press 4Scale Ref5 AUTO SCALE if required.) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN On a complex plane, the measurement parameters are always expressed as complex numbers even if you have selected a scalar parameter such as jYj. Figure 10-31. Admittance Chart for a Crystal Resonator Using the Marker 1. To move the marker, press 4Marker5 and turn the rotary knob. The real and imaginary parts of the complex number that corresponds to the marker position are shown at the upper left corner of the grid area (see Figure 10-31). If necessary, press 4Scale Ref5 and rescale the trace. Examples of Applications 10-35 Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode) Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode) This section provides an example application of impedance analyzer mode in which the 4395A's internal DC source (Option 001) is controlled through the list sweep function to evaluate the characteristics of a varactor diode under DC bias conditions. Measurement Setup Connection Connect the 4395A with the 43961A Impedance Test Kit in the same procedure as described in \Evaluation of a Chip Capacitor (ZA Mode)". Connect the BNC(m)-BNC(m) cable included in the 43961A package between the 4395A's DC SOURCE connector and the 43961A's DC SOURCE Input connector. Analyzer Settings Press 4Preset5. Then set the 4395A's controls as follows: Desired Settings Key Strokes FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MEASUREMENT block Select impedance analyzer mode 4Meas5 ANALYZER TYPE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF IMPEDANCE ANALYZER ACTIVE CHANNEL block Select channel 1 4Chan 1 5(default) MEASUREMENT block Cp (parallel capacitance) 4Meas5 MORE 1/5 MORE 2/5 MORE 3/5 FFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF CAPACITANCE: PRL(C p) Averaging factor 8 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 215 4Bw/Avg5 AVERAGING FACTOR 485 4 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF AVERAGING on OFF (to ON off ) SWEEP block Hold trigger FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 4Trigger5 SWEEP: HOLD Dening the Sweep List The list sweep function controls the sweep process in accordance with a user-dened sweep list. To dene the sweep list, follow these steps: 1. Press 4Source5 and check that DC source output is turned o. (Softkey label must be DC OUT on OFF ). NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 2. Check that DC SRC [VOLTAGE] (voltage mode) is currently selected. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 3. Choose DC CURRENT LIMIT and press 415 405 4k/m5 to set the upper limit current to 10 mA . (Note that you may need to specify a greater or smaller value depending on the specications of the actual DUT). 4. Press 4Sweep5 and choose SWEEP TYPE MENU EDIT LIST to begin editing the sweep list. First, you dene segment 1 of the sweep list. 5. Choose ADD SEGMENT: START and press 435 405 405 4M/5. This denes both start and stop frequency for segment 1 to be 300 MHz, and instructs the 4395A to keep the frequency for segment 1 constant at 300 MHz. 6. Do not change the number of points. (default value is 2) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10-36 Examples of Applications Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode) 7. Choose MORE POWER and press 405 415 435 4215 to set the power for segment 1 to 013 dBm. NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN 8. Choose DC VOLTAGE and press 405 425 485 4215 to set the DC bias voltage for segment 1 to 028 V. 9. Choose RETURN SEGMENT DONE to nish dening segment 1. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 10. Repeat steps 4 through 8 above for each of segments 2 through 15, increasing the DC bias voltage in 2 V increments from one segment to another. Note that, when you add a new segment by choosing ADD , the new segment inherits the denitions for the immediately preceding segment. Therefore, you can create the sweep list by just changing the DC SOURCE setting for each subsequent segment. NNNNNNNNNNN Table 10-1. Sweep List for Evaluating a Varactor Diode Segment Number Start Frequency Stop Frequency Measuring Point Power IF Bandwidth DC Bias Voltage 1 300 MHz 300 MHz 2 2 300 MHz 300 MHz 2 3 300 MHz 300 MHz 2 4 300 MHz 300 MHz 2 5 300 MHz 300 MHz 2 6 300 MHz 300 MHz 2 7 300 MHz 300 MHz 2 8 300 MHz 300 MHz 2 9 300 MHz 300 MHz 2 10 300 MHz 300 MHz 2 11 300 MHz 300 MHz 2 12 300 MHz 300 MHz 2 13 300 MHz 300 MHz 2 14 300 MHz 300 MHz 2 15 300 MHz 300 MHz 2 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 013 dBm 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 2 Hz 028 V 026 V 024 V 022 V 020 V 018 V 016 V 014 V 012 V 010 V 08 V 06 V 04 V 02 V 00 V NNNNNNNNNNNNNNNNNNNNNNNNNNNNN 11. When you have nished dening segment 15, choose LIST DONE to exit from edit mode. 12. Choose LIST FREQ to set the sweep mode to list sweep. NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Calibration Calibrate the 4395A as described in \Evaluation of a Chip Capacitor (ZA Mode)". Caution Do not attempt to perform calibration or xture compensation while the 4395A is applying external DC bias. Doing so could damage the calibration or xture compensation standard. Examples of Applications 10-37 Evaluation of a Varactor Diode - DC Bias Sweep Using List Sweep Function (ZA Mode) Connecting the Test Fixture Connect the 4395A with the 16192A Test Fixture as described in \Evaluation of a Chip Capacitor (ZA Mode)". Setting the Electrical Length of the Test Fixture Set the electrical length of the 16192A Test Fixture as described in \Evaluation of a Chip Capacitor (ZA Mode)". Fixture Compensation Carry out xture compensation as described in \Evaluation of a Chip Capacitor (ZA Mode)". Measuring Capacitance under DC Bias Conditions 1. Connect the DUT. 2. Press 4Source5 and toggle DC OUT on OFF to ON off . NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN Figure 10-32. Characteristics of a Varactor Diode under DC Bias Sweep In this example, you learned how to evaluate the capacitance characteristics of a varactor diode under DC voltage bias conditions using the list sweep function. Other possible applications of the list sweep function include evaluating the capacitance of a capacitor under DC voltage bias conditions and evaluating the characteristics of a coil under DC current bias conditions. 10-38 Examples of Applications 11 Specications and Supplemental Characteristics These specications are the performance standards or limits against which the instrument is tested. When shipped from the factory, the 4395A meets the specications listed in this section. The performance test procedures are covered in the 4395A Service Manual. Specications describe the instrument's warranted performance over the temperature range of 0 C to 40 C (except as noted). Supplemental characteristics are intended to provide information that is useful in applying the instrument by giving non-warranted performance parameters. These are denoted as SPC (supplemental performance characteristics), typical or nominal . Warm up time must be greater than or equal to 30 minutes after power on for all specications. Network Measurement Source Characteristics Frequency Characteristics Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 Hz to 500 MHz Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 mHz Frequency reference Accuracy at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <65.5 ppm Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62.5 ppm/year (SPC) Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.0 ppm (SPC) Temperature stability at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62ppm (SPC) Precision frequency reference (option 1D5) Accuracy at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.13 ppm Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.1 ppm/year (SPC) Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.02 ppm (SPC) Temperature stability at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.01 ppm (SPC) Output Characteristics Power range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 050 dBm to +15 dBm Level accuracy at 0 dBm output, 50 MHz, 2365 C, : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61.0 dB Level linearity Specications and Supplemental Characteristics 11-1 Network Measurement Output Power 040 dBm < 040 dBm Linearity1 61.0 dB 61.5 dB 1 at relative to 0 dBm output, 50 MHz, 2365 C Flatness at 0 dBm output, relative to 50 MHz, 2365 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62 dB Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.1 dB Spectral Purity Characteristics Harmonics at +10 dBm output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <030 dBc Non-harmonics spurious at +10 dBm output : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <030 dBc Noise sidebands at 10 kHz oset from carrier : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <095 dBc/Hz Power sweep range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20 dB max. Power sweep linearity deviation from linear power referenced to the stop power level : : : : : : : : : : : : : : : : : : : : : 60.5 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Impedance Return loss frequency 200 MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : >15 dB (SPC) frequency > 200 MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : >7 dB (SPC) Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Type N female 11-2 Specications and Supplemental Characteristics Network Measurement Receiver Characteristics Input Characteristics Frequency range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 Hz to 500 MHz Input attenuator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 to 50 dB, 10 dB step Full scale input level (R,A,B) Attenuator setting [dB] Full scale input level1 [dBm] 0 10 20 30 40 50 0 +10 +20 +30 +30 010 1 Note that it is dierent from the full scale input level in spectrum measurement. IF bandwidth (IFBW) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2, 10, 30, 100, 300, 1 k, 3 k, 10 k, 30 kHz Note: The IFBW should be set equal to or less than 1/5 of the lowest frequency in the sweep range. Noise level (referenced to full scale input level, 2365 C) at 10 Hz frequency < 100 Hz, IFBW=2 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 085 dB (SPC) at 100 Hz frequency < 100 kHz, IFBW=10 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 085 dB at 100 kHz frequency, IFBW=10 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : (0115 + f/100 MHz)dB Input crosstalk for input R . . . +10 dBm input, input attenuator: 20 dB for input A, B . . . input attenuator: 0 dB at frequency<100 kHz R through A, B : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0100 dB others : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0100 dB (SPC) at frequency100 kHz R through A, B : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0120 dB others : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0120 dB (SPC) Source Crosstalk (for input A, B)(typical for input R) at +10 dBm output, <100 kHz , input attenuator: 0 dB : : : : : : : : : : : : : : : : : : : : : : : : : : <0100 dB at +10 dBm output, 100 kHz , Input attenuator: 0 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : <0120 dB Impedance change by multiplexer switching at Input attenuator 0 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.5 % (SPC) at Input attenuator 10 dB and above : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.1 % (SPC) Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Type N female Impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Return loss 10 Hz frequency < 100 kHz 100 kHz frequency 100 MHz 100 MHz < frequency 0 dB 25 dB1 25 dB1 15 dB1 Input attenuator 10 dB 20 dB to 50 dB 25 dB1 25 dB 15 dB 25 dB1 25 dB1 15 dB1 1 SPC Maximum input level : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm (at input attenuator: 40 dB or 50 dB) Specications and Supplemental Characteristics 11-3 Network Measurement Maximum safe input level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm or 67 Vdc (SPC) Magnitude Characteristics Absolute amplitude accuracy (R, A, B) at 010 dBm input, input attenuator: 10 dB, frequency 100 Hz, IFBW3 kHz, 2365 C, : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.5 dB Ratio accuracy (A/R, B/R) (typical for A/B) at 010 dBm input, input attenuator: 10 dB, IFBW3 kHz, 2365 C, : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62 dB Dynamic accuracy (A/R, B/R) (typical for A/B) Input Level (relative to full scale input level) 0 dB input level > 010 dB 010 dB input Level 060 dB 060 dB > input level 080 dB 080 dB > input level 0100 dB Dynamic Accuracy1 frequency 100 Hz 60.4 dB 60.05 dB 60.3 dB 63 dB 1 A input level (B input level for B/R)= full scale input level 010 dB, R input level (B input level for A/B)= full scale input level 010 dB, IFBW = 10 Hz, 2365 C At the following points, measurement error may exceed the specications: 124.0 MHz, 136.0 MHz, 415.0 MHz Figure 11-1. Magnitude Dynamic Accuracy 11-4 Specications and Supplemental Characteristics Network Measurement Residual responses : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <080 dB full scale input level (SPC) Trace noise (A/R, B/R, A/B) at 50 MHz, 020 dBm input, both inputs: full scale input level 010 dB, IFBW=300 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.005 dB rms (SPC) Stability (A/R, B/R, A/B) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : < 60.01 dB/ C (SPC) Phase Characteristics Measurements format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Standard format, Expanded phase format Frequency response (deviation from linear phase) (A/R, B/R) (SPC for A/B) at 010 dBm input, input attenuator: 10 dB, IFBW3 kHz, 2365 C :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::< Dynamic accuracy (A/R, B/R) (SPC for A/B) Input Level (relative to full scale input level) 0 dB input level > 010 dB 010 dB input level 060 dB 060 dB > input level 080 dB 080 dB > input level 0100 dB 612 Dynamic Accuracy1 frequency 100 Hz 63 60.3 61.8 618 1 A input level (B input level for B/R) = full scale input level 010 dB, R input level (B input level for A/B) = full scale input level 010 dB, IFBW = 10 Hz, 2365 C At the following points, measurement error may exceed the specications: 124.0 MHz, 136.0 MHz, 415.0 MHz Figure 11-2. Phase Dynamic Accuracy Trace noise (A/R, B/R, A/B) at 50 MHz, 020 dBm input, both inputs: full scale input level 010 dB, IFBW=300 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <0.04 rms (SPC) Stability (A/R, B/R, A/B) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : < 60.1 / C (SPC) Specications and Supplemental Characteristics 11-5 Network Measurement Group Delay Characteristics Aperture [Hz] Accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.25 % to 20 % of span In general, the following formula can be used to determine the accuracy, in seconds, of a specic group delay measurement: P haseAccuracy [degree] : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Aperture [Hz ]2360[ degree] Sweep Characteristics Sweep type : : : : : : : : : : : : : : : : : : : : : : : : : : Linear frequency, Log frequency, Power, List frequency Trigger type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Hold, Single, Number of groups, Continuous Trigger source : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Internal (free run), External, Manual, GPIB (bus) Event trigger : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : On point, On sweep NOP(Number of Points) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 to 801 Measurement Throughput 1 (msec, SPC, IFBW=30 kHz, after through calibration) Measurement points Amplitude Amplitude/Phase 51 75 75 201 165 215 401 305 400 801 580 770 Includes system retrace time and RF switching time. Add 80 msec at start frequency < 5 MHz. 1 11-6 Specications and Supplemental Characteristics Spectrum Measurement Spectrum Measurement Frequency Characteristics Frequency range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 Hz to 500 MHz Frequency readout accuracy AN [H z ] )) : : : : : : : : : : : : : : : : : : : : : : : : : 6((freq readout[Hz ]) 2 (freq ref accuracy) + RBW [Hz ] + SP (NOP 01) where NOP means number of display points Frequency reference Accuracy at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <65.5 ppm Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62.5 ppm/year (SPC) Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.0 ppm (SPC) Temperature stability at 2365 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <62 ppm (SPC) Precision frequency reference (option 1D5) Accuracy at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.13 ppm Aging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.1 ppm/year (SPC) Initial achievable accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.02 ppm (SPC) Temperature stability at 0 C to 40 C, referenced to 23 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.01 ppm (SPC) Resolution bandwidth (RBW) Range 3 dB RBW at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 Hz to 1 MHz, 1-3 step 3 dB RBW at span = 0 : : : : : : : : : : : : : : : : : : : : : : : : 3k, 5k, 10k, 20k, 40k, 100k, 200k, 400k, 800k, 1.5M, 3M, 5MHz Selectivity (60 dB BW / 3 dB BW) at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <3 Mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Auto or Manual Accuracy at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <610% at span = 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <630% Video bandwidth (VBW) Range at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 mHz to 3 MHz, 1-3 step, 0.003 VBW/RBW 1 Noise sidebands (Carrier Frequency: 10 MHz, 100 MHz, 500 MHz) Oset from Carrier 1 kHz 100 kHz Noise Sidebands 097 dBc/Hz 0110 dBc/Hz < < Specications and Supplemental Characteristics 11-7 Spectrum Measurement Figure 11-3. Noise Sidebands Amplitude Characteristics Amplitude range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : displayed average noise level to +30 dBm Reference value setting range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0100 dBm to +30 dBm Level accuracy at 020 dBm input, 50MHz, input attenuator: 10 dB, 2365 C : : : : : : : : : : : : : : : : : : : : : : <60.8 dB Frequency response at 020 dBm input, input attenuator: 10 dB, referenced to level at 50 MHz, 2365 C frequency 100 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.3 dB frequency < 100 Hz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <63.0 dB Amplitude delity1 Log scale2 Input level (dB to full scale input level) 0 to 030 dB 030 to 040 dB 040 to 050 dB 050 to 060 dB 060 to 070 dB 070 to 080 dB 11-8 Specications and Supplemental Characteristics Amplitude Fidelity 60.05 dB 60.07 dB 60.15 dB 60.35 dB 60.8 dB 61.8 dB Spectrum Measurement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <63% Amplitude delity shows an extent of nonlinearity referenced to the full scale input level 010 dB. 2 RBW=10 Hz, 020 dBm reference value +30 dBm, referenced to full scale input level010 dB, input attenuator: auto, 2365 C Note: Refer to Input attenuator part for the denition of full scale input level. Linear scale2 1 Displayed average noise level at reference value040 dBm, input attenuator: auto or 0 dB at frequency1 kHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0120 dBm/Hz at 100 kHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0133 dBm/Hz at 10 MHz1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : (0145 + frequency/100 MHz) dBm/Hz 1 at start frequency 10 MHz Figure 11-4. Typical Displayed Average Noise Level On-screen dynamic range Specications and Supplemental Characteristics 11-9 Spectrum Measurement Figure 11-5. Typical On-screen Dynamic Range (Center: 50 MHz) Spurious responses Second harmonic distortion (2365 C) at single tone input with full scale input level010 dB, input signal frequency 100 kHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <070 dBc Third order inter-modulation distortion (2365 C) at two tones input with full scale input level016 dB, separation 100 kHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <070 dBc Other spurious (2365 C) at single tone input with full scale input level010 dB, input signal frequency 500 MHz, RBW 100 kHz, 1KHz frequency oset 300MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <070 dBc (<060 dBc (SPC) if there are input signals in the following frequency range: 14.7 MHz to 15.9 MHz, 29.5 MHz to 31.7 MHz, 414.7 MHz to 415.9 MHz) Residual response at reference value setting 040 dBm, input attenuator: auto or 0 dB : : : : : : : : : : <0108 dBm See \EMC" under \Others" in \Common to Network/Spectrum/Impedance Measurement". Typical dynamic range 11-10 Specications and Supplemental Characteristics Spectrum Measurement Figure 11-6. Typical Dynamic Range at Inputs R, A, and B Input attenuator Setting range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 dB to 50 dB, 10 dB step Attenuator Setting Full Scale Input Level1 0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 0 dBm +10 dBm +20 dBm +30 dBm 020 dBm 010 dBm 1 Note that it is dierent from the full scale input level in network measurement. Mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Auto or Manual (In auto mode, the attenuator is set to minimum value which ensures full scale input level reference level) Input attenuator switching uncertainty 30 dB, referenced to 10 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.0 dB 40 dB, referenced to 10 dB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <61.5 dB Temperature drift : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : <60.05 dB/ C (SPC) at attenuator: at attenuator: Specications and Supplemental Characteristics 11-11 Spectrum Measurement Scale Log : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.1 dB/div to 20 dB/div Linear at watt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.0 2 10012 W/div at volt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1.0 2 1009 V/div Measurement format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Spectrum or Noise (/Hz) Display unit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : dBm, dBV, dBV, V, W Sweep Characteristics Sweep type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Linear frequency, List frequency Trigger type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Hold, Single, Number of groups, Continuous, Trigger source : : : : : : : : : Internal (free run), External, Manual, Level gate(Option 1D6), Edge gate(Option 1D6), GPIB (bus) Sweep time (excluding each sweep setup time) RBW SPAN Typical Sweep Time 1 MHz 100 kHz 10 kHz 1 kHz 100 Hz 10 Hz 1 Hz | 500 MHz 100 MHz 10 MHz 1 MHz 100 kHz 10 kHz 1 kHz Zero Span 180 ms 300 ms 240 ms 190 ms 270 ms 2.0 s 11 s |1 1 See the next item for sweep time at zero span Zero span RBW Minimum Resolution Maximum Sweep Time 5 MHz 100 kHz 3 k Hz 40 ns 1.28 s 40.96 s 1.28 ms 81.92 ms 2.62 s Number of display points at span > 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 to 801 points (automatically set) at span = 0 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 to 801 points (selectable) Input Characteristics Input Port Crosstalk : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : R, A, B from any input to other inputs, at the same input attenuator settings : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :< 0100 dB (SPC) Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Type N female Impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Return Loss 10 Hz frequency < 100 kHz 100 kHz frequency 100 MHz 100 MHz < frequency 1 (SPC) 11-12 Specications and Supplemental Characteristics 0 dB 25 dB1 25 dB1 15 dB1 Input Attenuator 10 dB 20 dB to 50 dB 25 dB1 25 dB 15 dB 25 dB1 25 dB1 15 dB1 Spectrum Measurement Input Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm max. at input attenuator: 50 dB Maximum safe input level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : +30 dBm or 67 Vdc (SPC) Specications when Option 1D6 Time-Gated spectrum analysis is installed All specications are identical to the standard 4395A except the following items. Gate length Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 s to 3.2 s Resolution Range of Gate Length(Tl ) 6 sTl 25 ms 25 ms<Tl 64 ms 64 ms<Tl 130 ms 130 ms<Tl 320 ms 320 ms<Tl 1.28 s 1.28 s<Tl 3.2 s Resolution 0.4 s 1 s 2 s 5 s 20 s 100 s Gate delay Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.8 s to 3.2 s Resolution Range of Gate Delay (Td ) 0.8 sTd 25 ms 25 ms<Td 64 ms 64 ms<Td 130 ms 130 ms<Td 320 ms 320 ms<Td 1.28 s 1.28 s<Td 3.2 s Resolution 0.4 s 1 s 2 s 5 s 20 s 100 s Additional Amplitude Error Log scale : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : < 0.3 dB (SPC) Linear scale : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : < 3% (SPC) Gate Control Modes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Edge (positive/negative) or Level Gate Trigger Input (External Trigger Input is used) Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL Gate Output Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL Specications when Option 1D7 50 to 75 Input Impedance Conversion is installed Insertion loss for Conversion Pad : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5.7 dB nominal Specications and Supplemental Characteristics 11-13 4395A Option 010 Impedance Measurement 4395A Option 010 Impedance Measurement The following specications are applied when the 43961A Impedance Test Kit is connected to the 4395A. Measurement Functions Measurement parameters Display parameters Z, Y, L, C, Q, R, X, G, B, jZj,z, R, X, jYj, y , G, B, j0j, , 0x, 0y, Cp, Cs, Lp, Ls, Rp, Rs, D, Q Display Formats Vertical lin/log scale Complex plane Polar/Smith/admittance chart Sweep Parameters Linear frequency sweep Logarithmic frequency sweep List frequency sweep Power sweep (in dBm unit) IF Bandwidth 2, 10, 30, 100, 300, 1k, 3k, 10k, 30k [Hz] Calibration OPEN/SHORT/LOAD 3 term calibration Fixture compensation Port extension correction Measurement Port Type APC-7 Output Characteristics Frequency range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100 kHz to 500 MHz Frequency resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 mHz Output impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Output Level when the measurement port is terminated by 50 1 : : : : : : : : : : : : : : : : : : : : : : : : : 056 to +9 dBm when the measurement port is open : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.71 mVrms to 1.26 Vrms 1 Note: When the measurement port is terminated with 50 , the signal level at the measurement port is 6 dB lower than the signal level at the RF OUT port. 11-14 Specications and Supplemental Characteristics 4395A Option 010 Impedance Measurement Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0.1 dB Level accuracy frequency < 1 MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6(A + 3 [dB]) frequency 1 MHz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6(A + 1 [dB]) where, A is the sum total of level accuracy, level linearity, and level atness specications for output characteristics of network measurement. Specications and Supplemental Characteristics 11-15 Measurement Basic Accuracy (Supplemental Performance Characteristics) Measurement Basic Accuracy (Supplemental Performance Characteristics) Measurement accuracy is specied at the connecting surface of the APC-7 connector of the 43961A under the following conditions: 1 Warm up time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : > 30 minutes Ambient temperature : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23 C 6 5 C, within 61 C from the temperature at which calibration is performed Signal level (setting) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 to +15 dBm Correction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ON IFBW (for calibration and measurement) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 300 Hz Averaging factor (for calibration and measurement) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 1 At the following points, measurement error may exceed the performance described in this section: 124.0 MHz, 136.0 MHz, 415.0 MHz 11-16 Specications and Supplemental Characteristics Measurement Basic Accuracy (Supplemental Performance Characteristics) Figure 11-7. Impedance Measurement Accuracy jZj - Accuracy jZj accuracy accuracy Za = A + (B=jZm j + C 2 jZm j) 2 100 [%] a = sin01 (Za =100) Where, jZm j is jZj measured. A, B, and C are obtained from Figure 11-7. Specications and Supplemental Characteristics 11-17 Measurement Basic Accuracy (Supplemental Performance Characteristics) jYj - Accuracy jYj accuracy Ya = A + (B 2 jYm j + C=jYmj) 2 100 [%] a = sin01 (Ya =100) accuracy Where, jYm j is jYj measured. A, B, and C are obtained from Figure 11-7. R - X Accuracy (Depends on D) Accuracy D 0.2 Ra 6Xm 2 Xa =100 [ ] Xa Xa [%] Where, D can be calculated as: 5<D Ra=cos [%] Ra [%] Xa =sin [%] 6Rm 2 Ra =100 [ ] R=X , or R=(2f 2 Ls ), or R 2 2f can be calculated as: 0.2 < D 5 2 Cs tan01 (X=R), or tan01 (2f 2 Ls =R), or tan01 (1=(R 2 2f 2 Cs )) Ra = A + (B=jRm j + C 2 jRmj) 2 100 [%] Xa = A + (B=jXm j + C 2 jXm j) 2 100 [%] Rm and Xm are the measured R and X, respectively. A, B, and C are obtained from Figure 11-7. G - B Accuracy (Depends on D) Accuracy D 0.2 Ga 6Bm 2 Ba =100 [S] Ba Ba [%] Where, D can be calculated as: 5<D Ga =cos [%] Ga [%] Ba =sin [%] 6Gm 2 Ga =100 [S] G=B , or G=(2f 2 Cp ), or G 2 2f can be calculated as: 0.2 < D 5 2 Lp tan01 (B=G), or tan01 (2f 2 Cp=G), or tan01 (1=(G 2 2f 2 Lp )) Ga = A + (B 2 jGm j + C=jGmj) 2 100 [%] Ba = A + (B 2 jBm j + C=jBm j) 2 100 [%] 11-18 Specications and Supplemental Characteristics Measurement Basic Accuracy (Supplemental Performance Characteristics) Gm and Bm are the measured G and B, respectively. A, B, and C are obtained from Figure 11-7. D Accuracy Accuracy D 0.2 Da Za =100 (Za =100) 2 (1 + D2 ) Accuracy D 0.2 0.2 < D La La =100 La (1 + D) 0.2 < D Where, Za is jZj accuracy. L Accuracy (Depends on D) Where, La = A + (B=jZl j + C 2 jZl j) 2 100 [%] jZl j = 2f 2 Lm, f is frequency in Hz, and Lm is measured L. A, B, and C are obtained from Figure 11-7. C Accuracy (Depends on D) Accuracy D 0.2 0.2 < D Ca Ca Ca (1 + D) Where, Ca = A + (B=jZc j + C 2 jZcj) 2 100 [%] jZc j = (2f 2 Cm )01, f is frequency in Hz, and Cm is measured C. A, B, and C are obtained from Figure 11-7. Specications and Supplemental Characteristics 11-19 Common to Network/Spectrum/Impedance Measurement Common to Network/Spectrum/Impedance Measurement Display LCD Size/Type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8.4 inch color LCD Number of pixels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 640 2 480 Eective Display Area : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 160 mm 2 115 mm(600 2 430 dots) Number of display channels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 Format : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : single, dual (split or overwrite) Number of traces For measurement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 traces For memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 traces Data math : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : gain 2 data 0 oset, gain 2 (data 0 memory) 0 oset, gain 2 (data + memory) 0 oset, gain 2 (data/memory ) 0 oset Data hold : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Maximum hold, Minimum hold Marker Number of markers Main marker : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 for each channel Sub-marker : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 for each channel 1marker : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 for each channel Hard copy Mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Dump mode only (including color dump mode) Storage Built-in exible disk drive Type : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.5 inch, 1.44 MByte or 720 KByte, 1.44 MByte format is used for disk initialization Memory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 512 KByte, can be backed up by ash memory Backup Memory Charge time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 hour Typical Operating time of the battery backup : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72 hours Typical GPIB Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : IEEE 488.1-1987, IEEE 488.2-1987, Interface function IEC 625, and JIS C 1901-1987 standards compatible. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, Data transfer formats PP0, DC1, DT1, C1, C2, C3, C4, C11, E2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ASCII, 32 and 64 bit IEEE 754 Floating point format, DOS PC format (32 bit IEEE with byte order reversed) 11-20 Specications and Supplemental Characteristics Common to Network/Spectrum/Impedance Measurement Printer parallel port Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : IEEE 1284 Centronics standard compliant Printer control language : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : HP PCL3 Printer Control Language Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : D-SUB (25-pin) Option 001 DC Voltage/Current Source The setting of option 001 DC voltage/current source is independent of Channel 1 and Channel 2 settings. Voltage Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 040 V to +40 V Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 mV Current limitation at Voltage setting = 025 V to +25 V : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6100 mA at Voltage setting = 040 V to 025 V, 25 V to 40 V : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 620 mA Current Range : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 020 A to 0100 mA, 20 A to 100 mA Resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20 A Voltage limitation at Current setting = 020 mA to +20 mA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 640 V at Current setting = 0100 mA to 020 mA, 20 mA to 100 mA : : : : : : : : : : : : : : : : : : : : 625 V Accuracy Voltage at 2365 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6(0.1 % + 4 mV + Idc 1 [mA]25 [ ] mV) Current at 2365 C : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6(0.5 % + 30 A + Vdc 2 [V]/10 [k ] mA) 1 2 Probe Power Output voltage : : : : : : : : : : : : : : : : : : : : : : : : : : : : +15 V (300 mA), current at DC source connector voltage at DC source connector 012.6 V (160 mA), GND nominal Specications When HP Instrument BASIC Is Operated Keyboard : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : PS/2 style 101 English keyboard Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : mini-DIN 8 bit I/O port Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : D-SUB (15-pin) Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL Number of Input/Output bit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 bit for Input, 8 bit for Output Specications and Supplemental Characteristics 11-21 Common to Network/Spectrum/Impedance Measurement Figure 11-8. 8 bit I/O Port Pin Assignments 24-bit I/O Interface Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : D-SUB (36-pin) Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL I/O : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8-bit for input or output, 16-bit for output Figure 11-9. 24-bit I/O Interface Pin Assignment 11-22 Specications and Supplemental Characteristics Common to Network/Spectrum/Impedance Measurement Pin No. Table 11-1. Signal Source Assignment Signal Name Signal Standard 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 GND INPUT1 OUTPUT1 OUTPUT2 OUTPUT PORT A0 OUTPUT PORT A1 OUTPUT PORT A2 OUTPUT PORT A3 OUTPUT PORT A4 OUTPUT PORT A5 OUTPUT PORT A6 OUTPUT PORT A7 OUTPUT PORT B0 OUTPUT PORT B1 OUTPUT PORT B2 OUTPUT PORT B3 OUTPUT PORT B4 OUTPUT PORT B5 OUTPUT PORT B6 OUTPUT PORT B7 I/O PORT C0 I/O PORT C1 I/O PORT C2 I/O PORT C3 I/O PORT D0 I/O PORT D1 I/O PORT D2 I/O PORT D3 PORT C STATUS PORT D STATUS WRITE STROBE SIGNAL 32 33 +5V PULLUP SWEEP END SIGNAL 34 35 36 0V TTL level, pulse input (pulse width: 1s or above) TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, latch output TTL level, input mode: LOW, output mode: HIGH TTL level, input mode: LOW, output mode: HIGH TTL level, active low, pulse output (width: 10 s; typical) TTL level, active low, pulse output (width: 20 s; typical) +5V +5V, 100 mA MAX TTL level, PASS: HIGH, FAIL: LOW, latch output PASS/FAIL SIGNAL PASS/FAIL WRITE STROBE TTL level, active low, pulse output (width: 10 s; typical) SIGNAL Specications and Supplemental Characteristics 11-23 Common to Network/Spectrum/Impedance Measurement General Characteristics Input and Output Characteristics External reference input Frequency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 MHz 610 ppm (SPC) Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 05 dBm to +5 dBm (SPC) Input impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female Internal Reference Output Frequency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 MHz nominal Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 dBm (SPC) Output Impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female Reference oven output (Option 1D5) Frequency : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 MHz nominal Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 dBm (SPC) Output impedance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50 nominal Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female External trigger input Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL Pulse width (Tp ) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 s Typically Polarity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : positive/negative selective Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female External program Run/Cont input Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL Gate output (Option 1D6) Level : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : TTL Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : BNC female Figure 11-10. Trigger Signal (External trigger input) S-parameter test set interface 11-24 Specications and Supplemental Characteristics Common to Network/Spectrum/Impedance Measurement Connector Caution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : D-SUB (25-pin) Do not connect a printer to this connector. If you connect a printer with the S-parameter test set interface connector (TEST SET-I/O INTERCONNECT), it may cause damage to the printer. Figure 11-11. S-Parameter Test Set Interface Pin Assignments External monitor output Connector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : D-SUB (15-pin HD) Display resolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 640 2 480 VGA Internal Clock Charge time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 hour (SPC) Capacity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72 hours (SPC) Operation Conditions Temperature Disk drive non-operating condition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 C to 40 C Disk drive operating condition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10 C to 40 C Humidity at wet bulb temperature 29 C, without condensation Disk drive non-operating condition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15% to 95% RH Disk drive operating condition : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15% to 80% RH Altitude : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 to 2,000 m Warm up time : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30 minutes Specications and Supplemental Characteristics 11-25 Common to Network/Spectrum/Impedance Measurement Non-operation Conditions Temperature Humidity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 020 C to 60 C at wet bulb temperature 45 C, without condensation : : : : : : : : : : : : : : : : : : : : : : 15% to 95% RH Altitude : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 0 to 4,572 m Others EMC : : : : : : : : : : : : : : : : : : : : : Complies with CISPR 11 (1990) / EN 55011 (1991) : Group 1, Class A Complies with EN 50082-1 (1992) / IEC 1000-4-2 (1995) : 4 kV CD, 8 kV AD Complies with EN 50082-1 (1992) / IEC 1000-4-3 (1995) : 3 V/m, 27 MHz to 1 GHz Complies with EN 50082-1 (1992) / IEC 1000-4-4 (1995) : 1 kV / Main,0.5kV / Signal Line Complies with IEC 1000-3-2 (1995) / EN 61000-3-2 (1995) Complies with IEC 1000-3-3 (1994) / EN 61000-3-3 (1995) Note: When tested at 3 V/m according to IEC 801-3/1984, the residual response will be within specications over the full immunity test frequency range of 27 MHz to 1000 MHz except when the analyzer frequency is identical to the transmitted interference signal test frequency. This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada. Safety : : : : : : : : Complies with IEC 1010-1 (1990), Amendment 1 (1992), Amendment 2 (1995) Certied by CSA-C22.2 No.1010.1-92 Power requirements : : : : : : : 90 V to 132 V, or 198 V to 264 V (automatically switched), 47 to 63 Hz, 300 VA max. Weight : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21 kg (SPC) Dimensions (with Option 001, 1CN, 1D5, and 1D7) (SPC) Figure 11-12. Front View 11-26 Specications and Supplemental Characteristics Common to Network/Spectrum/Impedance Measurement Figure 11-13. Rear View Figure 11-14. Side View Specications and Supplemental Characteristics 11-27 Typical System Performance System Performance at Network Measurement Typical System Performance Introduction The performance of the 4395A Network/Spectrum Analyzer (analyzer) depends not only on the performance of the analyzer but also on the conguration, the user-selected operating conditions, and the measurement calibration. This section explains the residual errors remaining in a measurement system after accuracy enhancement. It provides information to calculate the total measurement uncertainty of dierent congurations. Graphs at the beginning of the section show examples of the performance that can be calculated using the methods in this section. The sources of measurement errors are explained, with an error model owgraph and uncertainty equations. Information is provided for conversion of the dynamic accuracy error (in dB) to a linear value for use in the uncertainty equations. The eects of temperature drift on measurement uncertainty are illustrated with graphs. Typical system performance tables are provided for an 7 mm and 3.5mm systems using an 85046A test set, for 50 type-N systems using the 85046A and 87512A test sets, and 75 type-N systems using the 85046B and 87512B test sets. Procedure and blank worksheets are supplied to compute the total error-corrected measurement uncertainty of a system. These procedures combine the terms in the tables, the uncertainty equation, and the nominal S-parameter data of the device under test. Comparison of Typical Error-Corrected Measurement Uncertainty Figure 11-15 through Figure 11-22 are examples of the measurement uncertainty data that can be calculated using the information provided in this section. These gures compare the reection and transmission measurement uncertainty of a 7 mm system using dierent levels of error correction. Each gure shows uncorrected values and residual uncertainty values after response calibration, response and isolation calibration, and full one or two port calibration. The data applies to a frequency range of 300 kHz to 500 MHz with a stable temperature (no temperature drift), using compatible 7 mm calibration devices from the 85031B calibration kit. The results shown in Figure 11-15 through Figure 11-22 can be obtained using the 85046A. Dierent measurement calibration procedures provide comparable measurement improvement for the following compatible connector types and test sets (using the compatible calibration kits): 3.5 mm connectors 87511A and 87511A with 50 type-N connectors 87511B and 87511B with 75 type-N connectors 11-28 Specications and Supplemental Characteristics Typical System Performance Reection Uncertainty of a One-Port Device Figure 11-15. Total Reection Magnitude Uncertainty of One-Port Device Figure 11-16. Total Reection Phase Uncertainty of One-Port Device Specications and Supplemental Characteristics 11-29 Typical System Performance Reection Uncertainty of a Two-Port Device Figure 11-17. Total Reections Magnitude Uncertainty of Two-Port Device Figure 11-18. Total Reection Phase Uncertainty of Two-Port Device 11-30 Specications and Supplemental Characteristics Typical System Performance Transmission Uncertainty of a Low-Loss Device Figure 11-19. Total Transmission Magnitude Uncertainty of a Low-Loss Device Figure 11-20. Total Transmission Phase Uncertainty of a Low-Loss Device Specications and Supplemental Characteristics 11-31 Typical System Performance Transmission Uncertainty of a Wide Dynamic Range Device Figure 11-21. Total Transmission Magnitude Uncertainty of a Wide Dynamic Range Device Figure 11-22. Total Transmission Phase Uncertainty of a Wide Dynamic Range Device 11-32 Specications and Supplemental Characteristics Types of Residual Measurement Errors Types of Residual Measurement Errors Network analysis measurement errors can be separated into three types: systematic, random, and drift errors. Measurement errors that remain after measurement calibration are called residual measurement errors. See \Calibration for Network Measurement" in Appendix A for a detailed description of the systematic errors corrected by measurement calibration. Residual Systematic Errors These errors result from imperfections in the calibration standards, connector standards and interface, interconnecting cables, and instrumentation. These are the errors that aect transmission and reection measurements. Transmission Measurements Reection Measurements Dynamic accuracy Eective switch port match Eective load match Eective source match Switch tracking Multiplexer switching Uncertainty Frequency error Eective crosstalk Eective directivity Eective transmission tracking Eective reection tracking Cable stability Residual Random Errors These non-repeatable errors are due to trace noise, noise oor, and connector repeatability. They aect both transmission and reection measurements. Residual Drift Errors These errors stem from frequency drift and instrumentation drift. They aect both kinds of measurements. Instrumentation drift is primarily temperature related. Specications and Supplemental Characteristics 11-33 System Error Model System Error Model Any measurement result is the vector sum of the actual test device response plus all error terms. The precise eect of each error term depends upon its magnitude and phase relationship to the actual test device response. When the phase of an error response is not known, phase is assumed to be worst case (0 or 180 degrees). Random errors such as noise and connector repeatability are generally combined in a root-sum-of the squares (RSS) manner. The error term related to thermal drift is combined on a typical basis as shown in each uncertainty equation given in the following paragraphs. Figure 11-23 shows the error model for the analyzer with the 85046A/B S-parameter test set. This error model shows the relationship of the various error sources in the forward direction and can be used to analyze overall measurement performance. The model for signal ow in the reverse direction is similar. Note the appearance of the dynamic accuracy, noise errors, switch errors, and connector repeatability terms in both the reection and transmission portions of the model. A Figure 11-23. 4395A/85046A System Error Model Table 11-2. Parameters of System error Model = Dynamic Accuracy (Am = Magnitude Dynamic Accuracy) U = Multiplexer Switching Uncertainty (Um = Magnitude Multiplexer Switching Uncertainty) (Ap = Phase Dynamic Accuracy) (Up = Phase Multiplexer Switching Uncertainty) Nl = Noise Floor Ms = Residual Source Match Nh = High Level Noise Ml = Residual Load Match Tsw = Switch Tracking C = Residual Crosstalk Msw = Switch Port Match Tr = Residual Reection Tracking Rr1 = Port 1 Reection Repeatability Tt = Residual Transmission Tracking Rr2 = Port 2 Reection Repeatability Sr1 = Port 1 Cable Reection Stability Rt1 = Port 1 Transmission Repeatability Sr2 = Port 2 Cable Reection Stability Rt2 = Port 2 Transmission Repeatability St1 = Port 1 Cable Transmission Stability Trd = Reection Tracking Drift St2 = Port 2 Cable Transmission Stability Ttd = Transmission Tracking Drift D = Residual Directivity For measurement of one-port devices, set the crosstalk (C), load match (Ml ), transmission tracking (Tt ), transmission tracking drift (Ttd ), port 2 connector repeatability (Rr2 , Rt2 ), and port 2 cable stability (Sr2 , St2 ) error terms to zero. 11-34 Specications and Supplemental Characteristics Reection Uncertainty Equations Reection Uncertainty Equations Total Reection Magnitude Uncertainty (Erm) An analysis of the error model yields an equation for the reection magnitude uncertainty. The equation contains all of the rst order terms and the signicant second order terms. The error term related to thermal drift is combined on a worst case basis with the total of systematic and random errors. The four terms under the radical are random in character and are combined on an RSS basis. The terms in the systematic error group are combined on a worst case basis. In all cases, the error terms and the S-parameters are treated as linear absolute magnitudes. Erm(linear) = Vr + S11 Trd(magnitude) and E Erm(log) = 20log 1 6 rm S11 where p Vr = Sr + W2r + X2r + Y2r + Z2r Sr = systematic error = (1 + Tsw )(D + Sr1) + (Tsw + Tr )S11 + (Msw + Ms + Sr1 )S211 + (Ml + Sr2 + Msw )S21 S12 + (Am + Um )S11 Wr = random low-level noise = 3Nl Xr = random high-level noise = 3Nh S11 Yr = random port1 repeatability = Rr1 + 2Rt1S11 + Rr1S211 Zr = random port2 repeatability = Rr2S21 S12 Total Reection Phase Uncertainty (Erp) Reection phase uncertainty is determined from a comparison of the magnitude uncertainty with the test signal magnitude. The worst case phase angle is computed. This result is combined with the error terms related to thermal drift of the total system, port 1 cable stability, phase dynamic accuracy, and phase multiplexer switching uncertainty. Vr 0 (Am + Um )S11 + Trd(phase) + 2St1 + Ap + Up Erp = arcsin S11 Specications and Supplemental Characteristics 11-35 Transmission Uncertainty Equations Transmission Uncertainty Equations Total Transmission Magnitude Uncertainty (Etm) An analysis of the error model in Figure 11-23 yields an equation for the transmission magnitude uncertainty. The equation contains all of the rst order terms and some of the signicant second order terms. The error term related to thermal drift is combined on a worst case basis with the total of systematic and random errors. The four terms under the radical are random in character and are combined on an RSS basis. The terms in the systematic error group are combined on a worst case basis. In all cases, the error terms are treated as linear absolute magnitudes. Etm(linear) = Vt + S21 Ttd(magnitude) and E Etm(log) = 20log 1 6 tm S21 where p Vt = St + W2t + X2t + Y2t + Z2t St = systematic error = C + (Tsw + Tt )S21 + (Msw + Ms + Sr1)S11 S21 + (Msw + Ml + Sr2)S21 S22 + (Am + Um )S21 Wt = random low-level noise = 3Nl Xt = random high-level noise = 3Nh S21 Yt = random port1 repeatability = Rt1 S21 + Rr1 S11 S21 Zt = random port2 repeatability = Rt2 S21 + Rr2 S22 S21 Total Transmission Phase Uncertainty (Etp) Transmission phase uncertainty is calculated from a comparison of the magnitude uncertainty with the test signal magnitude. The worst case phase angle is computed. This result is combined with the error terms related to phase dynamic accuracy, cable phase stability, thermal drift of the total system, and phase multiplexer switching uncertainty. Vt 0 (Am + Um )S21 + Ttd(phase) + St1 + St2 + Ap + Up Etp = arcsin S21 11-36 Specications and Supplemental Characteristics Dynamic Accuracy Dynamic Accuracy The dynamic accuracy value used in the system uncertainty equations is obtained from the analyzer's dynamic accuracy typical values. The typical value for magnitude dynamic accuracy is in dB, and it must be converted to a linear value to be used in the uncertainty equations. In addition, the analyzer's dynamic accuracy typical values are given for an input signal level from full scale in dB. This must be converted to a relative error (relative to the power at which the measurement calibration occurs) to be used in the system uncertainty equations. Dynamic Accuracy (linear) = 10 6DynAcc(dB) 20 71 Dynamic Accuracy (dB) = 20log(1 6 Dynamic Accuracy (linear)) Magnitude Dynamic Accuracy Typical magnitude dynamic accuracy can be expressed in the following equations: Magnitude Dynamic Accuracy = Ed1m + Ed2m + Ed3m Ed1m = 1:39 2 1002 L2 Ed2m = 1:73 2 1003 6:95 2 1007 Ed3m = L where, L = Measurement level (linear, relative to full scale level) Ed1m = Magnitude compression error (dominant at high measurement level range) Ed2m = Magnitude residual error (dominant at middle measurement level range) Ed3m = Magnitude A/D converter dierential nonlinearity error (dominant at low measurement level range) Determining Relative Magnitude Dynamic Accuracy Error Contribution Typical magnitude dynamic accuracy error contribution to system performance is expressd bellow: Magnitude dynamic accuracy error = jEd1mMEAS 0 Ed1mREF j + max(Ed2mMEAS ; Ed2mREF) + Ed3mMEAS + Ed3mREF where, Sux ref means errors at calibration Sux meas means errors at DUT measurement Specications and Supplemental Characteristics 11-37 Dynamic Accuracy Phase Dynamic Accuracy Typical phase dynamic accuracy can be expressed by the following equations: Magnitude Dynamic Accuracy = Ed1p + Ed2p + Ed3p Ed1p = 1:00L2 Ed2p = 0:10 6:13 2 1005 Ed3p = L where, L = Measurement level (linear, relative to full scale level) Ed1p = Phase compression error (dominant at high measurement level range) Ed2p = Phase residual error (dominant at middle measurement level range) Ed3p = Phase A/D converter dierential nonlinearity error (dominant at low measurement level range) Determining Relative Phase Dynamic Accuracy Error Contribution Typical dynamic accuracy error contribution to system performance is expressd bellow: Phase dynamic accuracy error = jEd1pMEAS 0 Ed1pREF j + max(Ed2pMEAS ; Ed2pREF) + Ed3pMEAS + Ed3pREF where, Sux ref means errors at calibration Sux meas means errors at DUT measurement Six example graphs are provided: Figure 11-24 and Figure 11-25 show the typical magnitude and phase dynamic accuracy error with a reference power level of full scale, Figure 11-26 and Figure 11-27 with a reference power level of 020 dB from full scale, and Figure 11-28 and Figure 11-29 with a reference power level of 060 dB from full scale. 11-38 Specications and Supplemental Characteristics Dynamic Accuracy Dynamic Accuracy Error Contribution Figure 11-24. Typical Magnitude Dynamic Accuracy Error (@Reference Power Level=Full Scale) Figure 11-25. Typical Phase Dynamic Accuracy Error (@Reference Power Level=Full Scale) Specications and Supplemental Characteristics 11-39 Dynamic Accuracy Dynamic Accuracy Error Contribution Figure 11-26. Typical Magnitude Dynamic Accuracy Error (@Reference Power Level=020 dB from Full Scale) Figure 11-27. Typical Phase Dynamic Accuracy Error (@Reference Power Level=020 dB from Full Scale) 11-40 Specications and Supplemental Characteristics Dynamic Accuracy Dynamic Accuracy Error Contribution Figure 11-28. Typical Magnitude Dynamic Accuracy Error (@Reference Power Level=060 dB from Full Scale) Figure 11-29. Typical Phase Dynamic Accuracy Error (@Reference Power Level=060 dB from Full Scale) Specications and Supplemental Characteristics 11-41 Eects of Temperature Drift Eects of Temperature Drift Figure 11-30 to Figure 11-33 are graphs showing the eects of temperature drift on error-corrected measurement uncertainty values. Values are shown for changes of 61 C, 63 C and 65 C from the ambient temperature. Figure 11-30 and Figure 11-31 show total reection magnitude and phase uncertainty with temperature drift following an S11 one-port calibration. Figure 11-32 and Figure 11-33 shows the total transmission magnitude and phase uncertainty with temperature drift following a full two-port error correction. The graphs apply to measurements up to 500 MHz. 11-42 Specications and Supplemental Characteristics Eects of Temperature Drift Temperature Drift with S11 One-Port Calibration Figure 11-30. Total Reection Magnitude Uncertainty (@One-Port Cal) Figure 11-31. Total Refection Phase Uncertainty (@One-Port Cal) Specications and Supplemental Characteristics 11-43 Eects of Temperature Drift Temperature Drift with Full Two-Port Calibration Figure 11-32. Total Transmission Magnitude Uncertainty (@Full Two-Port Cal) Figure 11-33. Total Transmission Phase Uncertainty (@Full Two-Port Cal) 11-44 Specications and Supplemental Characteristics System performance with Dierent Test Sets and Connector Types System performance with Dierent Test Sets and Connector Types The tables in the following pages provides typical system performance for sytems using dierent test sets and dierent connector types. The values listed are for uncorrected measurements and for corrected measurements after measurement calibration. The linear value is shown in parenthesis with the dB value. Specications and Supplemental Characteristics 11-45 System performance with Dierent Test Sets and Connector Types Table 11-3. Typical System Performance for Devices with 7 mm Connectors 4395A with 87511A Test Set (300 kHz to 500 MHz) Symbol Error Terms D Directivity Ms Source Match Tr Reection Tracking Ml Load Match Tt Trans. Tracking C Cross Talk Rr1 Rt1 Rr2 Rt2 Nl Nh Am ,Ap Um ,Up St1 Sr1 St2 Sr2 Ttd Trd Tsw Msw Port1 Re. Connector Repeatability Port1 Trans. Connector Repeatability Port2 Re. Connector Repeatability Port2 Trans. Connector Repeatability Low-Level Noise 2 High Level Noise 2 , 4 Dynamic Accuracy Error Multiplexer Switching Uncertainty Port1 Cable Trans. Phase Stability5 Port1 Cable Re. Stability5 Port2 Cable Trans. Phase Stability5 Port2 Cable Re. Stability5 Trans. Tracking Drift Re. Tracking Drift Switch Tracking Switch Port Match Typical Residual after Accuracy Enhancement1 , 2 Uncorrected Response Only Response and Isolation One-Port Full two port 035 dB (1.82100 020 dB 2 ) (0.10) 63 dB (0.41) 020 dB (0.10) 63 dB (0.41) 0100 dB (1.021005 ) 035 dB (1.82100 020 dB 2 ) (0.10) 61 dB (0.12) 020 dB (0.10) 60.1 dB (0.01) 0100 dB (1.021005 ) 050 dB3 (3.22100 ) 020 dB 3 (0.10) 60.9 dB (0.11) 020 dB (0.10) 60.1 dB (0.01) 0110 dB (3.221006 ) 070 dB (3.221004 ) 070 dB (3.22100 ) 070 dB (3.22100 ) 070 dB (3.22100 ) 4 4 4 050 dB (3.221003 ) 040 dB (0.01) 60.05 dB (5.821003 ) { { { 0110 dB from full scale (3.22100 Magnitude:0.001 dB (1.22100 ) 6 050 dB (3.221003 ) 040 dB (0.01) 60.05 dB (5.821003 ) 042 dB (7.921003 ) 60.03 dB (5.821003 ) 0110 dB (3.221006 ) ) 4 See \Dynamic Accuracy" in Chapter 11. Magnitude:60.002 dB (2.3 21004 ) Phase:0.015 degrees 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) Magnitude: 0.01 dB/ C (1.221003 / C) Phase:6 6[0.1+0.152f(GHz)]degrees/ C Phase:6 6[0.1+0.152f(GHz)]degrees/ C Magnitude: 0.01 dB/ C (1.221003 / C) 60.03 dB (3.521003 ) 070 dB (3.221004 ) 1 Accuracy enhancement procedures are performed using 85031B 7 mm calibration kit. Enviromental temperature is 23 C 63 C at calibration: 61 C from calibration temperature must be maintained for valied measurement calibration. 2 With IF bandwidth of 10 Hz. 3 With impedance matched load. 4 High-level noise is the RMS of a continuous measurement of a short circuit or thru. 5 Arrived at by bending 11857D cables out perpendicular to front panel and reconnecting. Stability is much better with less exing. 6 Arrived at using 11857D cables and full 2-port calibration. Drift is much better without calbes and with 1-port calibration. For this case, drift typically is [0.1 + 0.05 2f (GHz)] 2 1 C, degrees. 11-46 Specications and Supplemental Characteristics System performance with Dierent Test Sets and Connector Types Table 11-4. Typical System Performance for Devices with 3.5 mm Connectors 4395A with 87511A Test Set (300 kHz to 500 MHz) Symbol Error Terms D Directivity Ms Source Match Tr Reection Tracking Ml Load Match Tt Trans. Tracking C Cross Talk Rr1 Rt1 Rr2 Rt2 Nl Nh Am ,Ap Um ,Up St1 Sr1 St2 Sr2 Ttd Trd Tsw Msw Port1 Re. Connector Repeatability Port1 Trans. Connector Repeatability Port2 Re. Connector Repeatability Port2 Trans. Connector Repeatability Low-Level Noise 2 High Level Noise 2 , 4 Dynamic Accuracy Error Multiplexer Switching Uncertainty Port1 Cable Trans. Phase Stability5 Port1 Cable Re. Stability5 Port2 Cable Trans. Phase Stability5 Port2 Cable Re. Stability5 Trans. Tracking Drift Re. Tracking Drift Switch Tracking Switch Port Match Typical Residual after Accuracy Enhancement1 , 2 Uncorrected Response Only Response and Isolation One-Port Full two port 035 dB (1.82100 020 dB 2 ) (0.10) 63 dB (0.41) 020 dB (0.10) 63 dB (0.41) 0100 dB (1.021005 ) 035 dB (1.82100 020 dB 2 ) (0.10) 61 dB (0.12) 020 dB (0.10) 60.1 dB (0.01) 0100 dB (1.021005 ) 040 dB 040 dB3 (0.01) 020 dB (0.10) 61 dB (0.12) 020 dB (0.10) 60.1 dB (0.01) 0110 dB (3.221006 ) 070 dB (3.221004 ) 070 dB (3.22100 ) 070 dB (3.22100 ) 070 dB (3.22100 ) 4 4 4 (0.01) 036 dB (0.02) 60.14 dB (0.016) { { 0110 dB (3.221006 ) 0110 dB from full scale (3.22100 Magnitude:0.001 dB (1.22100 ) 6 040 dB (0.01) 036 dB (0.02) 60.14 dB (0.016) 038 dB (0.013) 60.05 dB (1.621002 ) 0110 dB (3.221006 ) ) 4 See \Dynamic Accuracy" in Chapter 11. Magnitude:60.002 dB (2.3 21004 ) Phase:0.015 degrees 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) Magnitude: 0.01 dB/ C (1.221003 / C) Phase:6 6[0.1+0.152f(GHz)]degrees/ C Phase:6 6[0.1+0.152f(GHz)]degrees/ C Magnitude: 0.01 dB/C (1.221003 / C) 60.03 dB (3.521003 ) 070 dB (3.221004 ) 1 Accuracy enhancement procedures are performed using 85033C 3.5 mm calibration kit. Enviromental temperature is 23 C 63 C at calibration: 61 C from calibration temperature must be maintained for valied measurement calibration. 2 With IF bandwidth of 10 Hz. 3 With impedance matched load. 4 High-level noise is the RMS of a continuous measurement of a short circuit or thru. 5 Arrived at by bending 11857D cables out perpendicular to front panel and reconnecting. Stability is much better with less exing. 6 Arrived at using 11857D cables and full 2-port calibration. Drift is much better without calbes and with 1-port calibration. For this case, drift typically is [0.1 + 0.05 2f (GHz)] 2 1 C, degrees. Specications and Supplemental Characteristics 11-47 System performance with Dierent Test Sets and Connector Types Table 11-5. Typical System Performance for Devices with 50 Type-N Connectors 4395A with 87511A Test Set (300 kHz to 500 MHz) Symbol Error Terms D Directivity Ms Source Match Tr Reection Tracking Ml Load Match Tt Trans. Tracking C Cross Talk Rr1 Rt1 Rr2 Rt2 Nl Nh Am ,Ap Um ,Up St1 Sr1 St2 Sr2 Ttd Trd Tsw Msw Port1 Re. Connector Repeatability Port1 Trans. Connector Repeatability Port2 Re. Connector Repeatability Port2 Trans. Connector Repeatability Low-Level Noise 2 High Level Noise 2 , 4 Dynamic Accuracy Error Multiplexer Switching Uncertainty Port1 Cable Trans. Phase Stability5 Port1 Cable Re. Stability5 Port2 Cable Trans. Phase Stability5 Port2 Cable Re. Stability5 Trans. Tracking Drift Re. Tracking Drift Switch Tracking Switch Port Match Typical Residual after Accuracy Enhancement1 , 2 Uncorrected Response Only Response and Isolation One-Port Full two port 035 dB (1.82100 020 dB 2 ) (0.10) 63 dB (0.41) 020 dB (0.10) 63 dB (0.41) 0100 dB (1.021005 ) 035 dB (1.82100 020 dB 2 ) (0.10) 61 dB (0.12) 020 dB (0.10) 60.1 dB (0.01) 0100 dB (1.021005 ) 047 dB3 (4.52100 ) 020 dB 3 (0.10) 60.9 dB (0.11) 020 dB (0.10) 60.1 dB (0.01) 0110 dB (3.221006 ) 065 dB (5.621004 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 4 4 4 047 dB (4.521003 ) 035 dB (0.02) 60.06 dB (6.921003 ) { { { 0110 dB from full scale (3.22100 Magnitude:0.001 dB (1.22100 ) 6 047 dB (4.521003 ) 035 dB (0.02) 60.06 dB (6.921003 ) 042 dB (7.921003 ) 60.05 dB (6.921003 ) 0110 dB (3.221006 ) ) 4 See \Dynamic Accuracy" in Chapter 11. Magnitude:60.002 dB (2.3 21004 ) Phase:0.015 degrees 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) Magnitude: 0.01 dB/ C (1.221003 / C) Phase:6 6[0.1+0.152f(GHz)]degrees/ C Phase:6 6[0.1+0.152f(GHz)]degrees/ C Magnitude: 0.01 dB/ C (1.221003 / C) 60.03 dB (3.521003 ) 070 dB (3.221004 ) 1 Accuracy enhancement procedures are performed using 85032B 50 type-N calibration kit. Enviromental temperature is 23 C 63 C at calibration: 61 C from calibration temperature must be maintained for valied measurement calibration. 2 With IF bandwidth of 10 Hz. 3 With impedance matched load. 4 High-level noise is the RMS of a continuous measurement of a short circuit or thru. 5 Arrived at by bending 11857D cables out perpendicular to front panel and reconnecting. Stability is much better with less exing. 6 Arrived at using 11857D cables and full 2-port calibration. Drift is much better without calbes and with 1-port calibration. For this case, drift typically is [0.1 + 0.05 2f (GHz)] 2 1 C, degrees. 11-48 Specications and Supplemental Characteristics System performance with Dierent Test Sets and Connector Types Table 11-6. Typical System Performance for Devices with 75 Type-N Connectors 4395A with 87511B Test Set (300 kHz to 500 MHz) Symbol Error Terms D Directivity Ms Source Match Tr Reection Tracking Ml Load Match Tt Trans. Tracking C Cross Talk Rr1 Rt1 Rr2 Rt2 Nl Nh Am ,Ap Um ,Up St1 Sr1 St2 Sr2 Ttd Trd Tsw Msw Port1 Re. Connector Repeatability Port1 Trans. Connector Repeatability Port2 Re. Connector Repeatability Port2 Trans. Connector Repeatability Low-Level Noise 2 High Level Noise 2 , 4 Dynamic Accuracy Error Multiplexer Switching Uncertainty Port1 Cable Trans. Phase Stability5 Port1 Cable Re. Stability5 Port2 Cable Trans. Phase Stability5 Port2 Cable Re. Stability5 Trans. Tracking Drift Re. Tracking Drift Switch Tracking Switch Port Match Typical Residual after Accuracy Enhancement1 , 2 Uncorrected Response Only Response and Isolation One-Port Full two port 033 dB (2.22100 020 dB 2 ) (0.10) 63 dB (0.41) 020 dB (0.10) 63 dB (0.41) 0100 dB (1.021005 ) 033 dB (2.22100 020 dB 2 ) (0.10) 61 dB (0.12) 020 dB (0.10) 60.1 dB (0.01) 0100 dB (1.021005 ) 044 dB3 (6.32100 ) 020 dB 3 (0.10) 60.9 dB (0.11) 020 dB (0.10) 60.1 dB (0.01) 0104 dB (6.321006 ) 065 dB (5.621004 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 4 4 4 044 dB (6.321003 ) 035 dB (0.02) 60.06 dB (6.921003 ) { { { 0104 dB from full scale (6.32100 Magnitude:0.001 dB (1.22100 ) 6 044 dB (6.321003 ) 035 dB (0.02) 60.06 dB (6.921003 ) 042 dB (7.921003 ) 60.05 dB (6.921003 ) 0104 dB (6.321006 ) ) 4 See \Dynamic Accuracy" in Chapter 11. Magnitude:60.002 dB (2.3 21004 ) Phase:0.015 degrees 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) Magnitude: 0.01 dB/ C (1.221003 / C) Phase:6 6[0.1+0.152f(GHz)]degrees/ C Phase:6 6[0.1+0.152f(GHz)]degrees/ C Magnitude: 0.01 dB/C (1.221003 / C) 60.03 dB (3.521003 ) 070 dB (3.221004 ) 1 Accuracy enhancement procedures are performed using 85036B 75 type-N calibration kit. Enviromental temperature is 23 C 63 C at calibration: 61 C from calibration temperature must be maintained for valied measurement calibration. 2 With IF bandwidth of 10 Hz. 3 With impedance matched load. 4 High-level noise is the RMS of a continuous measurement of a short circuit or thru. 5 Arrived at by bending 11857D cables out perpendicular to front panel and reconnecting. Stability is much better with less exing. 6 Arrived at using 11857D cables and full 2-port calibration. Drift is much better without calbes and with 1-port calibration. For this case, drift typically is [0.1 + 0.05 2f (GHz)] 2 1 C, degrees. Specications and Supplemental Characteristics 11-49 System performance with Dierent Test Sets and Connector Types Table 11-7. Typical System Performance for Devices with 50 Type-N Connectors 4395A with 87512A Test Set (100 Hz to 500 MHz) Symbol Error Terms D Directivity Ms Source Match Tr Typical Residual after Accuracy Enhancement1 , 2 Uncorrected Response Only3 Response and Isolation3 One-Port one pass two port 040 dB { { { 024 dB 024 dB Reection Tracking (0.063) { 024 dB Ml Load Match 022 dB 022 dB4 022 dB Tt Trans. Tracking C Cross Talk Rr1 Rt1 Rr2 Rt2 Nl Port1 Re. Connector Repeatability Port1 Trans. Connector Repeatability Port2 Re. Connector Repeatability Port2 Trans. Connector Repeatability Low-Level Noise 2 Nh High Level Noise 2 , 5 Am ,Ap Dynamic Accuracy Error Um ,Up Multiplexer Switching Uncertainty St1 Port1 Cable Trans. Phase Stability6 Sr1 Port1 Cable Re. Stability6 St2 Port2 Cable Trans. Phase Stability6 Sr2 Ttd Trd Port2 Cable Re. Stability6 Trans. Tracking Drift Re. Tracking Drift (0.079) 60.8 dB (0.096) { (0.01) 025 dB (0.056) 60.83 dB (0.1) { (0.063) { (0.063) { (0.079) 60.2 dB (0.023) { (0.079) 60.2 dB (0.023) { { { 065 dB (5.62100 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 4 4 4 4 040 dB (0.01) 025 dB (0.056) 60.83 dB (0.1) 040 dB (0.01) 60.05 dB (5.821003 ) 0110 dB (3.221006 ) 0110 dB from full scale at 100 kHz (3.22100 ) 090 dB from full scale at <100 kHz (3.22100 ) Magnitude:0.003 dB (3.52100 ) 6 5 4 See \Dynamic Accuracy" in Chapter 11. Magnitude:60.017 dB (2.0 21003 ) Phase:0.1 degrees 0.05 2 f (GHz) degrees 070 dB (3.22100 4 ) 0.05 2 f (GHz) degrees 070 dB (3.22100 4 Magnitude: 0.01 dB/ C (1.121003 / C) Magnitude: 0.01 dB/ C (1.121003 / C) ) Phase:7 6[0.1+0.152f(GHz)]degrees/ C Phase:7 6[0.1+0.152f(GHz)]degrees/ C 1 Accuracy enhancement procedures are performed using 85032B 50 type-N calibration kit. Enviromental temperature is 23 C 63 C at calibration: 61 C from calibration temperature must be maintained for valied measurement calibration. 2 With IF bandwidth of 10 Hz. 3 Transmission Only 4 @ f 500 kHz. 5 High-level noise is the RMS of a continuous measurement of a short circuit or thru. 6 Arrived at by bending 11857D cables out perpendicular to front panel and reconnecting. Stability is much better with less exing. 7 Arrived at using 11857D cables and full 2-port calibration. Drift is much better without calbes and with 1-port calibration. For this case, drift typically is [0.1 + 0.05 2f (GHz)] 2 1 C, degrees. 11-50 Specications and Supplemental Characteristics System performance with Dierent Test Sets and Connector Types Table 11-8. Typical System Performance for Devices with 75 Type-N Connectors 4395A with 87512B Test Set (100 Hz to 500 MHz) Symbol D Ms Tr Ml Tt C Rr1 Rt1 Rr2 Rt2 Nl Error Terms Directivity Source Match Reection Tracking Load Match Trans. Tracking Cross Talk Port1 Re. Connector Repeatability Port1 Trans. Connector Repeatability Port2 Re. Connector Repeatability Port2 Trans. Connector Repeatability Low-Level Noise 2 Nh High Level Noise 2 , 3 Am ,Ap Dynamic Accuracy Error Um ,Up Multiplexer Switching Uncertainty St1 Port1 Cable Trans. Phase Stability4 Sr1 St2 Sr2 Ttd Trd Port1 Cable Re. Stability4 Port2 Cable Trans. Phase Stability4 Port2 Cable Re. Stability4 Trans. Tracking Drift Re. Tracking Drift Typical Residual after Accuracy Enhancement1 , 2 One-Port 040 dB (0.01) 025 dB (0.056) 60.83 dB (0.1) { { { 065 dB (5.621004 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 065 dB (5.62100 ) 4 4 4 0104 dB from full scale at 100 kHz (6.32100 ) 084 dB from full scale at <100 kHz (6.32100 ) 0.003 dB (3.52100 ) 6 5 4 See \Dynamic Accuracy" in Chapter 11. Magnitude:0.017 dB (221003 ) Phase:0.1 degrees [0.052f(GHz)] degrees 070 dB (3.22100 4 ) [0.052f(GHz)] degrees 070 dB (3.22100 4 Magnitude: 0.01 dB/ C (1.121003 / C) Magnitude: 0.01 dB/ C (1.121003 / C) ) Phase:5 6[0.1+0.152f(GHz)] degrees/ C Phase:5 6[0.1+0.152f(GHz)] degrees/ C 1 Accuracy enhancement procedures are performed using 85036B 75 type-N calibration kit. Enviromental temperature is 23 C 63 C at calibration: 61 C from calibration temperature must be maintained for valied measurement calibration. 2 With IF bandwidth of 10 Hz. 3 High-level noise is the RMS of a continuous measurement of a short circuit or thru. 4 Arrived at by bending 11857D cables out perpendicular to front panel and reconnecting. Stability is much better with less exing. 5 Arrived at using 11857D cables and full 2-port calibration. Drift is much better without calbes and with 1-port calibration. For this case, drift typically is [0.1 + 0.05 2f (GHz)] 2 1 C, degrees. Specications and Supplemental Characteristics 11-51 Determining Expected System performance Determining Expected System performance The uncertainty equations, dynamic accuracy calculations, and tables of system performance values provided in the preceding pages can be used to calculate the expected system performance. The following pages explain how to determine the residual errors of a particular system and combine them to obtain total error-corrected residual uncertainty values, using worksheets provided. The uncertainty graphs at the beginning of this System performance section are examples of the results that can be calculated using this information. Procedures Table 11-9 is a worksheet used to calculate the residual uncertainty in reection measurements. Table 11-10 is a worksheet for residual uncertainty in transmission measurements. Determine the linear values of the residual error terms and the nominal linear S-parameter data of the device under test as described below and enter these values in the worksheets. Then use the instructions and equations in the worksheets to combine the residual errors for total system uncertainty performance. S-parameter Values. Convert the S-parameters of the test device to their absolute linear terms. Noise Floor. See the Receiver Noise Level Performance Test in the Service Manual to determine the actual noise oor performance of your measurement setup. Crosstalk. See the Input Crosstalk Performance Test. Connect an impedance-matched load to each of the test ports and measure S21 or S12 after calibration. Turn on the marker statistics function, and measure the mean value of the trace. Use the mean value plus one standard deviation as the residual crosstalk value of your system. Dynamic Accuracy. Determine the absolute linear magnitude dynamic accuracy as described under Dynamic Accuracy In this chapter. Other Error Terms. See Table 11-3 through Table 11-8, depending on the test set and connector type in your system. Find the absolute linear magnitude of the remaining error terms. Combining Error Terms. Combine the above terms using the reection or transmission uncertainty equation in the worksheets. 11-52 Specications and Supplemental Characteristics Determining Expected System performance Table 11-9. Reection Measurement Uncertainty Worksheet In the columns below, enter the appropriate values for each term. Error Term Directivity Reection tracking Source match Load match Dynamic accuracy (magnitude) 1 Dynamic accuracy (phase) 1 Multiplexer Switching Uncertainty (magnitude) Multiplexer Switching Uncertainty (phase) S11 S21 S12 Noise oor High level noise Connector reection repeatability Connector transmission repeatability Magnitude drift due to temperature Phase drift due to temperature Cable reection stability Cable transmission phase stability Switch Tracking Switch Port Match Frequency: Symbol Linear Value dB Value D Tr Ms Ml Am Ap Um Up S11 S21 S12 Nl Nh Rr1 , Rr2 Rt1 , Rt2 Trd (mag) Trd(phase) Sr1 , Sr2 St1 , St2 Tsw Msw Magnitude Combine Systematic Errors. In the space provided, enter the appropriate linear values from the list of errors. Then combine these errors to obtain the total sum of systematic errors. + )= ( + )2( (1 + Tsw )2(D + Sr1 ) (Tsw + Tr )2S11 ( + )2 = (Msw + Sr1 + Ms )2S11 2S11 ( + + )2 2 = ( + + )2 2 = (Msw + Sr2 + Ml )2S21 2S12 ( + )2 = (Am +Um ) 2 S11 + + + + = Subtotal: k + l + m + n + o Combine Random Errors. In the space provided, enter the appropriate linear values from the list of errors. Then combine these errors in an RSS fashion to obtain a total sum of the random errors. 32Nl 32 = 32 2 = 32Nh 2S11 +22 2 + 2 2 = Rr1 + 22Rt1 2S11 + Rr1 2S11 2S11 2 2 = R r2 2S21 2S12 p p 2 + 2 + 2 + 2 w 2 + x2 + y2 + z2 = Subtotal: S + R Total Magnitude Errors: Erm (linear) = Vr + Trd (mag) 2 S11 Erm (log) = 20 Log(16Erm /S11 ) +( 20 Log(16 Phase Erp = Arcsin[(Vr 0 (Am +Um ) 2 S11 )/S11 ] + Trd (phase) + 22St1 + Ap + Up Arcsin[( 0( + )2 + = 2 )= )= / )/ ]+ +22 (k) (l) (m) (n) (o) (S) (w) (x) (y) (z) (R) (Vr ) dB + + =6 deg. 1 With IF bandwidth of 10 Hz. Specications and Supplemental Characteristics 11-53 Determining Expected System performance Table 11-10. Transmission Measurement Uncertainty Worksheet In the columns below, enter the appropriate values for each term. Symbol Error Term Crosstalk Transmission tracking Source match Load match Dynamic accuracy (magnitude) 1 Dynamic accuracy (phase) 1 Multiplexer Switching Uncertainty (magnitude) Multiplexer Switching Uncertainty (phase) S11 S21 S12 S22 Noise oor High level noise Connector reection repeatability Connector transmission repeatability Magnitude drift due to temperature Phase drift due to temperature Cable reection stability Cable transmission phase stability Switch Tracking Switch Port Match Frequency: Linear Value dB Value C Tt Ms Ml Am Ap Um Up S11 S21 S12 S22 Nl Nh Rr1 , Rr2 Rt1 , Rt2 Ttd (mag) Ttd (phase) Sr1 , Sr2 St1 , St2 Tsw Msw Magnitude Combine Systematic Errors. In the space provided, enter the appropriate linear values from the list of errors. Then combine these errors to obtain the total sum of systematic errors. C = (k) (Tsw + Tt ) 2 S21 ( + )2 = (l) (Msw + Sr1 + Ms )2S11 2S21 ( + + )2 2 = (m) ( + + )2 2 = (n) (Msw + Sr2 + Ml )2S21 2S22 ( + )2 = (o) (Am +Um ) 2 S21 + + + + = (S) Subtotal: k + l + m + n + o Combine Random Errors. In the space provided, enter the appropriate linear values from the list of errors. Then combine these errors in an RSS fashion to obtain a total sum of the random errors. 32 = (w) 3 2 Nl 3 2 Nh 2 S21 32 2 = (x) Rt1 2S21 + Rr1 2S11 2S21 2 + 2 2 = (y) 2 + 2 2 = (z) R t2 2S21 + Rr2 2S22 2S21 p p 2 + 2 + 2 + 2 = w 2 + x2 + y2 + z2 (R) S+R Total Magnitude Errors: Etm (linear) = Vt + Ttd (mag) 2 S21 Etm (log) = 20 Log(16Etm /S21 ) +( 20 Log(16 Phase Etp = Arcsin[(Vt 0 (Am +Um ) 2 S21 )/S21 ] + Ttd (phase) + St1 + St2 + Ap + Up Arcsin[( 0( 1 With IF bandwidth of 10 Hz. 11-54 Specications and Supplemental Characteristics + )2 + = 2 )= )= / )/ ]+ + + (Vt ) dB + + =6 deg. 12 Accessories and Options Options Available DC SOURCE (Option 001) DC SOURCE supplies up to 640 V / 6100 mA of DC voltage/current. High Stability Frequency Reference (Option 1D5) This option, a 10 MHz crystal in temperature stabilized oven, improves the source signal frequency accuracy and stability. This option can be retrotted using the 4395U Upgrade Kit Option 1D5. Time-Gated Spectrum Analyzer (Option 1D6) This option allows the capability of intermittent or burst signal spectrum measurement. This option can be retrotted using the 4395U Upgrade Kit Option 1D6. 50 to 75 Input Impedance Conversion (Option 1D7) This option oers 75 input impedance for the spectrum measurement. The 11852B option 004 50 to 75 minimum loss pads and 50 to 75 Supplemental characteristics are supplied with this option. This option can be retrotted using the 4395U Upgrade Kit Option 1D7. Impedance Measurement Function (Option 010) This option allows the capability of impedance measurement function. This option can be retrotted using the 43961A Impedance Test Kit. This option can be retrotted using the 4396U Upgrade Kit Option 010. Handle Kit (Option 1CN) This option is a rack mount kit containing a pair of handles and the necessary hardware to mount the instrument. Rack Mount Kit (Option 1CM) This option is a rack mount kit containing a pair of anges and the necessary hardware to mount the instrument, with handles detached, in an equipment rack with 482.6 mm (19 inches) horizontal spacing. Rack Mount and Handle Kit (Option 1CP) This option is a rack mount kit containing a pair of anges, and the necessary hardware to mount the instrument with handles attached in an equipment rack with 482.6 mm (19 inches) horizontal spacing. Accessories and Options 12-1 Measurement accessories available Measurement accessories available Test Sets 87511A/B S Parameter Test Set These test sets contain the hardware required to measure all four S-parameters of a two-port 50 or 75 device. An RF switch in the test set is controlled by the analyzer so that reverse measurement can be made without changing the connections to the DUT (device under test). Each test set also contains two internal dc bias tees for biasing active devices. The test port connectors for the 87511A are precision 7 mm connectors, and the 87511B test port connectors are 75 type-N(f). 87512A/B Transmission/Reection Test Set These test sets contain the hardware required to measure simultaneous transmission and reection characteristics of a 50 or 75 device in one direction only. The test port connector is 50 type-N(f) on the 87512A and 75 type-N(f) on the 87512B. Active Probes 41800A Active Probe (5 Hz to 500 MHz) This is a high input impedance probe for in-circuit measurements that cover the frequency range of 5 Hz to 500 MHz. 41802A 1 M Input Adapter (5 Hz to 100 MHz) This adapter allows use of a high impedance probe. It has a frequency range of 5 Hz to 100 MHz. 1141A Dierential Probe This is an FET dierential probe with 200 MHz bandwidth and 3000:1 cmrr. The 1141A must be used with the 1142A Probe Control and Power Module. Power Splitters 11850C,D Three-way Power Splitters These are four-port, three-way power splitters. One output arm is used as the reference for the network analyzer in making ratio measurements and the other two output arms are test channels. The 11850C has a frequency range of DC to 3 GHz and an impedance of 50 . The 11850D has a frequency range of DC to 2 GHz and an impedance of 75 . 11667A Power Splitter This is a two-way power splitter with one output arm used for reference and one for test. It has a frequency range of DC to 18 GHz and an impedance of 50 . 12-2 Accessories and Options Measurement accessories available Calibration Kits The following calibration kits contain the precision standards (and the required adapters) for the indicated connector types. The standards facilitate measurement calibration (also called vector error correction). Refer to the applicable data sheet and ordering guide for additional information. Part numbers for the standards are in their respective manuals. 85033D 3.5 mm Calibration Kit 85031B 7 mm Calibration Kit 85032B 50 Type-N Calibration Kit 85036B 75 Type-N Calibration Kit Cables The following RF cables are used to return the transmitted signal to the test set when measuring two-port devices. These cables provide shielding for high dynamic range measurements. 11857D 7 mm Test Port Return Cable Set These are a pair of test port return cables for use with the 87511A Option 001 S-parameter test set. The cables can be used when measuring devices with connectors other than 7 mm by using the appropriate precision adapters. 11857B 75 Type-N Test Port Return Cable Set These are a pair of test port return cables for use with the 87511B S-parameter test set. 11851B 50 Type-N RF Cable Set This kit contains the three phase-matched 50 type-N cables necessary to connect the 87512A transmission/reection test kits or a power splitter to the analyzer. It also contains an RF cable used to return the transmitted signal of a two-port device to the network analyzer. BNC Cables P/N 8120-1838 50 BNC Cable (30 cm) P/N 8120-1839 50 BNC Cable (61 cm) P/N 8120-1840 50 BNC Cable (122 cm) Adapters 11852B 50 to 75 Minimum Loss Pad (DC to 2 GHz) This device converts the impedance from 50 (type-N, female) to 75 (type-N, male) or from 75 to 50 . It provides a low SWR impedance match between a 75 DUT and the analyzer or a 50 measurement accessory. An 11852B pad is included with the 87512B 75 transmission/reection test kit. Three 11852B pads are included with the 11850D 75 power splitter and one is included with the 4395A Option 1D7. Adapter Kits The following adapter kits contain the connection hardware required for making measurements on devices of the indicated connector type. 11853A 50 Type-N Adapter Kit 11854A 50 BNC Adapter Kit Accessories and Options 12-3 Measurement accessories available 11855A 75 Type-N Adapter Kit 11856A 75 BNC Adapter Kit 12-4 Accessories and Options System accessories available System accessories available Printer The analyzer can output displayed measurement results directly to supported peripherals, not using external computers. Supported printers are as follows. Table 12-1. Supported Printers and Printing Modes Printer Monochrome Printing Fixed Color Printing Variable Color Printing HP DeskJet 340J HP DeskJet 505 HP DeskJet 560C HP DeskJet 694C HP DeskJet 850C HP DeskJet 1200 HP DeskJet 1600CM p p p p p p p p p p p p p p p GPIB cable An GPIB cable is required to interface the analyzer with a computer, or other external instrument. The following cables are available: 10833A (1 m) 10833B (2 m) 10833C (3 m) 10833D (0.5 m) External Monitors The analyzer can control the built-in LCD and an external monitor simultaneously. Color monitors supporting VGA can be used as an external monitor. Accessories and Options 12-5 A Basic Measurement Theory This chapter provides additional information on analyzer features beyond the basics covered in the previous chapters. It deals with the following topics: System Overview Data Processing Flow Network Analyzer Basic Network Measurement Basic S-parameters Conversion Smith Chart Polar Chart Electrical Delay Averaging IF Band Reduction Group Delay Spectrum Analyzer Basic Detection Mode Swept and FFT Mode Resolution Bandwidth (rbw) Selectivity of the RBW Noise Measurement Gated Sweep for Spectrum Measurement Measurement and Display Points Limit Line Concept Marker GPIB Calibration for Network Measurement Basic Measurement Theory A-1 System Overview System Overview The 4395A has three analyzer modes; network, spectrum, and impedance (available with option 010). In network analyzer mode, the 4395A measures the reection and transmission characteristics of devices and networks by applying a known swept signal and measuring the response of the test device. The signal transmitted through the device or reected from its input is compared with the incident signal generated by a swept RF source. The signals are applied to a receiver for measurement, signal processing, and display. The network analyzer system consists of a source, signal separation devices, a receiver, and a display. In spectrum analyzer mode, the 4395A measures the amplitude and frequency of a signal spectral line by sweeping the tuning frequency of the receiver. The test signal is applied to a receiver through an input attenuator. The spectrum analyzer consists of an input attenuator, a receiver, and a display. Impedance analyzer mode is available with option 010, and requires the 43961A RF impedance test kit as well. In impedance analyzer mode, the 4395A applies test signals to the DUT through the impedance test kit, and determines the impedance characteristics of the DUT by a method called the I-V analysis method, that is, by measuring the voltage (V) and current across the DUT. The 4395A's impedance analyzer system consists of a signal source, a test kit (the 43961A RF impedance test kit), a receiver, and a data display device. Figure A-1 is a schematic block diagram that briey illustrates the 4395A's principle of operation. For more information, refer to Service Manual (English)(Agilent part number: 04395-90100), which describes the 4395A's principle of operation in greater detail with a complete block diagram. Figure A-1. Schematic block diagram A-2 Basic Measurement Theory Data Processing Data Processing Overview The 4395A's receiver converts the R, A, and B input signals into useful measurement information. This conversion occurs in two main steps. First, the high frequency input signal is translated to xed low frequency IF signals using analog mixing techniques (see the \Theory of Operation" in the Service Manual for details). Second, the IF signals are converted into digital data by an analog-to-digital converter (adc). From this point on, all further signal processing is performed mathematically by the analyzer microprocessor and digital signal processor. The following paragraphs describe the sequence of math operations and the resulting data arrays as the information ows from the ADC to the display. They provide a good foundation for understanding most of the measurement functions and the order in which they are performed. The 4395A has three data processing ow paths: one is for network analyzer mode, another for spectrum analyzer mode, and the other is for impedance analyzer mode. The data ow is automatically changed when analyzer mode is changed. Figure A-2, Figure A-3, and Figure A-4 provide data processing ow diagrams that represent the ow of numerical data from IF detection to display. The data passes through several math operations (shown as single-line boxes). Most of these operations can be selected and controlled through the front panel MEASUREMENT block menus. The data is also stored in data arrays (shown as double-line boxes). These arrays are places in the ow path where the data is accessible via GPIB or using the internal disk drive or the memory disk. Note While only a single ow path is shown, two identical paths are available that correspond to channel 1 and channel 2. When the channels are uncoupled, each channel can be independently controlled so that the data processing operations for one can be dierent from the other. Data Processing for Network Measurement Basic Measurement Theory A-3 Data Processing Figure A-2. Data Processing for Network Measurement Digital Filter The digital lter detects the IF signal by performing a discrete Fourier transform (DFT) on the digital data. The samples are converted into complex number pairs (real plus imaginary, R+jI) that represent both the magnitude and phase of the IF signal. The lter shape can be altered by selecting the IF bandwidth in Hz from the 10, 30, 100, 300, 1 k, 3 k, 10 k, and 40 k choices. Changing the lter shape is a highly eective technique for noise reduction. Ratio Calculations These calculations are performed if the selected measurement is a ratio of two inputs (for example, A/R or B/R). This is simply a complex divide operation. If the selected measurement is absolute (for example, A or B), no operation is performed. The R, A, and B values are also split into channel data at this point. A-4 Basic Measurement Theory Data Processing Frequency Characteristics Correction by Corrective Data Arrays This corrects the frequency response for absolute measurement value, using corrective data arrays. If the selected measurement is ratio (for example, A/R or B/R), no operation is performed. Averaging This is one of the noise reduction techniques. This calculation involves taking the complex exponential average of up to 999 consecutive sweeps. See \Averaging (Sweep Averaging)" under the heading \Network Measurement Basics" in this chapter. Raw Data Arrays These arrays store the results of all the preceding data processing operations. When full 2-port error correction is on, the raw data arrays contain all four S-parameter measurements required for accuracy enhancement. When the channels are uncoupled (coupled channels off), there may be as many as eight raw data arrays. These arrays are directly accessible via GPIB, or using the internal disk drive or the memory disk. Note that the numbers here are still complex pairs. Calibration Coecient Arrays When a measurement calibration has been performed and correction is turned on, error correction removes the repeatable systematic errors (stored in the calibration coecient arrays) from the raw data arrays. This can vary from simple vector normalization to full 12-term error correction. The calibration coecient arrays themselves are created during a measurement calibration using data from the raw data arrays. These are subsequently used whenever correction is on, and are accessible via GPIB, or using the internal disk drive or the memory disk. Data Arrays The results of error correction are stored in the data arrays as complex number pairs. These arrays are accessible via GPIB or by using the internal disk drive or the memory disk. Memory Arrays If the data-to-memory operation is performed (using the DATA!MEMORY softkey), the data arrays are copied into the memory arrays (data trace arrays are also copied into the memory trace array at same time). These arrays are accessible using the internal disk drive or the memory disk. When accessed via GPIB, these arrays are read-only. If memory is displayed, the data from the memory arrays goes through the same data processing ow path as the data from the data arrays. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Electrical Delay and Phase Oset This involves adding or subtracting a linear phase in proportion to frequency. This is equivalent to \line-stretching" or articially moving the measurement reference plane. For more information, see \Electrical Delay" under the heading \Network Measurement Basics" in this chapter. . Conversion Transforms S-parameter measurement data into equivalent complex impedance (Z) or admittance (Y) values, to inverse S-parameters (1/S), or to phase multiples of 4, 8, or 16. See \Conversion Function" under the heading \Network Measurement Basics" in this chapter. . Basic Measurement Theory A-5 Data Processing Format This converts complex number pairs into a scalar representation for display, according to the selected format. This includes group delay calculations. Note that, once complex data has been formatted, it cannot be restored. See \Group Delay" for information on group delay principles. Data Hold This keeps the maximum or minimum value at each display point when the data hold function is turned on. Data Math This calculates the complex ratio of the two (data/memory), the dierence (data0memory), or summation (data+memory) when the data math function is selected. In addition, this function multiplies the ratio, dierence, or summation by a constant, or subtracts a constant from them. Data Trace Arrays The results are stored in the data trace arrays. It is important to note those marker values and marker functions are all derived from the data trace arrays. Limit testing is also performed on this array. The data trace arrays are accessible via GPIB, or using the internal disk drive or the memory disk. Memory Trace Arrays If the data-to-memory operation is performed, the data trace arrays are copied into the memory trace arrays (data arrays are also copied into the memory array at same time). These arrays are accessible using the internal disk drive or the memory disk. When accessed via GPIB, these arrays are read-only. Scaling These operations prepare the formatted data for display on the LCD. This is where the appropriate reference line position, reference line value, and scale calculations are performed. A-6 Basic Measurement Theory Data Processing Data Processing for Spectrum Measurement Figure A-3. Data Processing for Spectrum Measurement Decimation Windowing This function reduces the sampling rate to resolve the spectrum closer than the frequency resolution (which is decided by an inherent sampling rate and nite sampling number). Fast Fourier Transform (fft) This operation transforms a time domain signal into a frequency domain data using the Fast Fourier Transform. Basic Measurement Theory A-7 Data Processing Absolute Squared (ABS2 ) This calculates the power of the spectrum. Video Averaging Video Averaging is one of the noise reduction techniques. The video bandwidth can be selected to be RBW/1, RBW/3, RBW/10, RBW/100, or RBW/300. Detection This detects the value of a given display point in one of three modes: positive, negative, and sample. For more information, see \Detection Modes" under the heading \Network Measurement Basics" in this chapter. Attenuator Adjustment This adjustment corrects the value to what it was before being attenuated. Averaging Refer to \Averaging" under \Data Processing for Network Measurement" in this chapter. Frequency Characteristics Level Correction This process digitally corrects for frequency response errors in the analog down-conversion path. Raw Data Arrays These arrays store the results of all the data produced by the peak detector. These arrays are directly accessible via GPIB or by using the internal disk drive or the memory disk. In spectrum analyzer mode, row data arrays hold only the real number part of values. Memory Arrays If the data-to-memory operation is performed (using the DATA!MEMORY softkey), the data arrays are copied into the memory arrays (data trace arrays are also copied into the memory trace arrays at same time). These arrays are accessible using the internal disk drive or the memory disk. When accessed via GPIB, these arrays are read-only. are also output via GPIB, but data cannot be input into them via GPIB. If memory is displayed, the data from the memory arrays goes through the same data processing ow path as the data from the data arrays. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Format/Unit conversion This converts the measured values (dB value) to other unit (dBV, dBV, watt, an d volt). When noise measurement is selected, this divides measured values by the equivalent noise bandwidth to measure noise level directly. Data Hold Refer to \Data Hold" under \Data Processing for Network Measurement" in this chapter. Data Math Refer to \Data Math" under \Data Processing for Network Measurement" in this chapter. A-8 Basic Measurement Theory Data Processing Data Trace Array Refer to \Data Trace Array" under \Data Processing for Network Measurement" in this chapter. Note that, in spectrum analyzer mode, data trace arrays hold only the real number part of data. Memory Trace Array Refer to \Memory Trace Array" under \Data Processing for Network Measurement" in this chapter. Note that, in spectrum analyzer mode, memory trace arrays hold only the real number part of data. Scaling Refer to \Scaling" under \Data Processing for Network Measurement" in this chapter. Basic Measurement Theory A-9 Data Processing Data Processing for Impedance Measurement Figure A-4. Data Processing for Impedance Measurement Digital Filter Refer to \Digital Filter" under \Data Processing for Network Measurement" in this chapter. Voltage/Current Ratio This is simply a complex divide operation. The R and A values are split into channel data at this point. A-10 Basic Measurement Theory Data Processing I-V to Reection Coecient Conversion Converts the calculated V/I (voltage/current ratio) into 0 (reection coecient) data. The 4395A uses the reection coecient as its internal data. Calibration Coecient Arrays/Calibration During calibration, the 4395A measures three types of standards and stores them in the calibration coecient arrays. This data is used to carry out S11 1 port calibration against the 0 value determined through the I-V ! 0 conversion and to determine the APC-7 calibration level of the 43961A. Averaging Refer to \Averaging" under \Data Processing for Network Measurement" in this chapter. Raw Data Arrays These arrays store the results of all the preceding data processing operations as reection coecients (0). These arrays are directly accessible via GPIB, or using the internal disk drive or the memory disk. Note that the numbers here are still complex pairs. Fixture Compensation Coecient Arrays/Fixture Compensation During xture compensation, 4395A measures three types of standards and stores them in the xture compensation coecient arrays. This data is used to remove errors attributable to the xture. These arrays are directly accessible via GPIB, or using the internal disk drive or the memory disk. Data Arrays The results of xture compensation are stored in the data arrays as complex number pairs. These arrays are accessible via GPIB or by using the internal disk drive or the memory disk. Memory Arrays If the data-to-memory operation is performed (using the DATA!MEMORY softkey), the data arrays are copied into the memory arrays (data trace arrays are also copied into the memory trace arrays at same time). These arrays are accessible using the internal disk drive or the memory disk. When accessed via GPIB, these arrays are read-only. If memory is displayed, the data from the memory arrays goes through the same data processing ow path as the data from the data arrays. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Conversion When impedance or admittance is specied as a measurement parameter, the 4395A converts the corresponding reection coecient into the impedance or admittance value. In this case, however, the raw data, data, and memory arrays store the data as reection coecients, not as an impedance value. Format Refer to \Format" under \Data Processing for Network Measurement" in this chapter. Data Hold Refer to \Data Hold" under \Data Processing for Network Measurement" in this chapter. Basic Measurement Theory A-11 Data Processing Data Math Refer to \Data Math" under \Data Processing for Network Measurement" in this chapter. Data Trace Array Refer to \Data Trace Array" under \Data Processing for Network Measurement" in this chapter. Memory Trace Array Refer to \Memory Trace Array" under \Data Processing for Network Measurement" in this chapter. Scaling Refer to \Scaling" under \Data Processing for Network Measurement" in this chapter. A-12 Basic Measurement Theory Network Measurement Basics Network Measurement Basics S-parameters S-parameters (scattering parameters) are a convention that characterizes the way a device modies signal ow. A brief explanation is provided here of the S-parameters of a two-port device. For additional details see Agilent Technologies Application Notes A/N 95-1 and A/N 154. S-parameters are always a ratio of two complex (magnitude and phase) quantities. S-parameter notation identies these quantities using the numbering convention: S out in Where the rst number (out) refers to the port where the signal is emerging and the second number (in) is the port where the signal is incident. For example, the S-parameter S21 identies the measurement as the complex ratio of the signal emerging at port 2 to the signal incident at port 1. Figure A-5 is a representation of the S-parameters of a two-port device, together with an equivalent ow graph. In the illustration, \a" represents the signal entering the device and \b" represents the signal emerging. Note that a and b are not related to the A and B input ports on the analyzer. Figure A-5. S-Parameters of a Two-Port Device S-parameters are exactly equivalent to the more common description terms below, requiring only that the measurements are taken with all DUT ports properly terminated. Basic Measurement Theory A-13 Network Measurement Basics S-Parameter Denition Test Set Description Direction 1 S Input reection Coecient FWD 1j2 2 S Forward gain FWD 1j2 1j1 S Reverse gain REV 2 2 S Output reection coecient REV 2j1 11 21 12 22 b a b a b a b a a =0 a =0 a =0 a =0 Conversion Function This function converts the measured reection or transmission data to the equivalent complex impedance (Z) or admittance (Y) values. This is not the same as a two-port Y or Z parameter conversion, as only the measured parameter is used in the equations. Two simple one-port conversions are available, depending on the measurement conguration. An S11 or S22 trace measured as reection can be converted to an equivalent parallel impedance or admittance using the model and equations shown in Figure A-6. Figure A-6. Reection Impedance and Admittance Conversions In a transmission measurement, the data can be converted to its equivalent series impedance or admittance using the model and equations shown in Figure A-7. Figure A-7. Transmission Impedance and Admittance Conversions Avoid using Smith chart, SWR, and delay formats for displaying Z and Y conversions, as these formats are not easily interpreted. Marker values are impedance values in units for Z conversions, or admittance values in S units for Y conversions in any format. A-14 Basic Measurement Theory Network Measurement Basics Smith Chart A Smith chart is used in reection measurements to provide a readout of the data in terms of impedance. The intersecting lines on a Smith chart represent constant resistance and constant reactance values, normalized to the characteristic impedance, Z0 , of the system. Reactance values in the upper half of the Smith chart circle are positive (inductive) reactance, and in the lower half of the circle are negative (capacitive) reactance. Polar Chart Each point on the polar format corresponds to a particular value of both magnitude and phase. Quantities are read vectorally: the magnitude at any point is determined by its displacement from the center (which has zero value), and the phase by the angle counterclockwise from the positive x-axis. Magnitude is scaled in a linear fashion, with the value of the outer circle usually set to a ratio value of 1. Because there is no frequency axis, frequency information is read from the markers. Electrical Delay The electrical delay function simulates a variable length loss-free transmission line that can be added to or removed from a receiver input to compensate for interconnecting cables, etc. This function is similar to the mechanical or analog \line stretchers" of conventional network analyzers. Delay is annotated in units of time with secondary labeling in electrical length, associated with equivalent length of the transmission line if a value for VELOCITY FACTOR (see below) is specied. To obtain the characteristics of the DUT itself free of the inuence of interconnecting cables, use ELECTRICAL DELAY under ELECTRICAL DELAY MENU , and enter the following setting: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Electrical delay1t = where: F (Hz) 1 (degree) 1 [sec] F 2 360 Measuring frequency Dierence between measuring frequency without cables and that with the cables connected In this case, the 4395A displays the electrical length of the interconnecting cable to compensate for, along with the value of electrical delay: 1l = vo 2 1t[m] where: vo (=2.997925E8) (m/sec) light velocity in vacuum If the average relative permittivity (r ) of the DUT is known over the frequency span, the length calculation can be adjusted to reect the actual length of the DUT more closely. This can be done by entering the relative velocity factor for the DUT using VELOCITY FACTOR under the 4Cal5 key: 1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN p r assuming a relative permeability of 1. Basic Measurement Theory A-15 Network Measurement Basics Averaging (Sweep Averaging) Averaging computes each data point based on an exponential average of consecutive sweeps weighted by a user-specied averaging factor. Each new sweep is averaged into the trace until the total number of sweeps is equal to the averaging factor, for a fully averaged trace. Each point on the trace is the vector sum of the current trace data and the data from the previous sweep. A high averaging factor gives the best signal-to-noise ratio, but slows the trace update time. Doubling the averaging factor reduces the noise by 3 dB. The algorithm used for averaging is: S(n) 1 A(n) = + (1 0 ) 2 A(n01) n n where: A(n) = current average (1 n F) S(n) = current measurement (1 n F) F = average factor IF Band Reduction IF bandwidth reduction lowers the noise oor by reducing the receiver input bandwidth. It has an advantage over averaging in reliably ltering out unwanted responses such as spurs, odd harmonics, higher frequency spectral noise, and line-related noise. Sweep-to-sweep averaging, however, is better at ltering out very low frequency noise. A tenfold reduction in IF bandwidth (from 200 Hz to 20 Hz, for example) lowers the measurement noise oor by about 10 dB. Another dierence between sweep-to-sweep averaging and variable IF bandwidth is the sweep time. Averaging displays the rst complete trace faster but takes several sweeps to reach a fully averaged trace. IF bandwidth reduction lowers the noise oor in one sweep, but the sweep time may be slower. Group Delay For many networks, the linearity of the phase shift over a range of frequencies is an important parameter. Group delay is the measurement of signal transmission time through a test device. It is dened as the derivative of the phase characteristic with respect to frequency. Because the derivative is the instantaneous slope (or rate of change of phase with frequency), a perfectly linear phase shift results in a constant slope, and therefore a constant group delay (Figure A-8). A-16 Basic Measurement Theory Network Measurement Basics Figure A-8. Constant Group Delay Note, however, that the phase characteristic typically consists of both linear (rst order) and higher order (deviations from linear) components. The linear component can be attributed to the electrical length of the test device and represents the average signal transit time. The higher order components are interpreted as variations in transit time for dierent frequencies, and represent a source of signal distortion (Figure A-9). Figure A-9. Higher Order Phase Shift The 4395A computes group delay from the phase slope. Phase data is used to nd the phase deviation, 1', at the center point of a specied frequency aperture, 1f, to obtain an approximation for the rate of change of phase with frequency (Figure A-10). This value, g , represents the group delay in seconds assuming linear phase change over 1f. Basic Measurement Theory A-17 Network Measurement Basics Figure A-10. Rate of Phase Change Versus Frequency When deviations from linear phase are present, changing the frequency step can result in dierent values for group delay. Note that in this case the computed slope varies as the aperture 1f is increased (Figure A-11). A wider aperture results in loss of the ne grain variations in group delay. This loss of detail is the reason that in any comparison of group delay data it is important to know the aperture used to make the measurement. Figure A-11. Variations in Frequency Aperture In determining the group delay aperture, there is a tradeo between resolution of ne detail and the eects of noise. Noise can be reduced by increasing the aperture, but this will tend to smooth out the ne detail. More detail will become visible as the aperture is decreased, but the noise will also increase, possibly to the point of obscuring the detail. A good practice is to use a smaller aperture to assure that small variations are not missed, then increase the aperture to smooth the trace. A-18 Basic Measurement Theory Spectrum Measurement Basics Spectrum Measurement Basics Detection Modes The analyzer displays the value measured at the display point specied by NOP. However, analyzer sweeps with the resolution specied by RBW. Detection chooses one level measured between display points for displaying the trace. One of three detection modes can be selected: Positive Peak Mode Negative Peak Modes Sample Mode These modes are as described in the following subsections. Positive and Negative Peak Modes Positive and negative peak modes store signal maximums and minimums between the display points, respectively, in a data array. Sample Mode In the sample mode, the signal value at the display point is placed in a data array. Sample mode is used to measure noise level. Swept Spectrum Analyzers versus FFT Analyzers Usually, two analyzers are used to analyze waveforms transformed from the time domain test signal to the frequency domain; one is a swept spectrum analyzer and the other is an FFT analyzer. When measuring signals over a wide frequency span with a wide RBW, swept spectrum analyzers are better than FFT analyzers. This is true because the FFT analyzer requires a large memory and a fast AD converter to measure the signal and therefore, is not practical. When measuring signals with narrow RBW, FFT analyzers are better than swept spectrum analyzers because the swept spectrum analyzer requires much more time to measure (sweep) the signal. The FFT analyzer can measure the signal in very short time. In spectrum analyzer mode, the 4395A operates as a step FFT analyzer which supports high-speed sweep throughout the entire RBW. Basic Measurement Theory A-19 Spectrum Measurement Basics Figure A-12. Swept Spectrum Analyzers versus Step FFT Analyzers A-20 Basic Measurement Theory Spectrum Measurement Basics Selectivity of the RBW The selectivity of the RBW is the ratio of the 60 dB bandwidth to 3 dB bandwidth (RBW) of the lter. The selectivity denes the shape of the lter. This factor is important when resolving small signal that is adjacent to a large signal. The small adjacent signal is hidden by the large signal even when the resolution bandwidth is set to smaller than the dierence of frequency between the signals. To resolve small adjacent signals, the resolution bandwidth must be set so that the small signal is not hidden by the large signals as shown in Figure A-13. Figure A-13. Resolving Small Adjacent Signal Because the 4395A uses a digital lter technique, the selectivity of the analyzer is better (smaller) than a conventional spectrum analyzer (which uses analog lter technique). This means the 4395A can detect a small signal that could not be detected by a conventional spectrum analyzer. Basic Measurement Theory A-21 Spectrum Measurement Basics Noise measurement Noise Format and Marker Noise Form When a spectrum analyzer measures noise, the power shown by an analyzer is in proportion to RBW (because spectrum analyzers measure total power coming thorough RBW). For noise measurement, the measurement value is usually normalized by an equivalent noise bandwidth of an RBW lter (frequency). The noise format automatically normalizes noise power by the equivalent noise bandwidth and displays the trace on the screen. The marker noise form also reads out the noise level normalized, even if the format is the spectrum. Sample Detection Mode for Noise Measurement For noise measurement, the sample detection mode is best. Because the power of noise is uniformly distributed over frequency, it is not necessary to measure all the frequencies between the display points. It is sucient to measure only the display points. This is why the sample detection mode is used for noise measurement. VBW for Noise Measurement You should specify a smaller VBW when using the 4395A to measure noise levels. To obtain accurate noise level measurements, it is essential to determine the average value over a relatively long period. With a smaller VBW, the 4395A can determine the average time domain at each measurement point. A-22 Basic Measurement Theory I-V Measurement Method Impedance Measurement Basics I-V Measurement Method Basic Concept of I-V Method Figure A-14. I-V Measurement Method The unknown impedance, Z, can be calculated from the measured voltage and current using Ohm's law: (See circuit A in Figure A-14.) Z= V I The current, I, can be also obtained by the voltage level of the known resistance, R0. Z= V1 V = 1 R0 I V2 See circuit B in Figure A-14. The 4395A uses circuit B to determine the unknown impedance. How This Is Dierent From Impedance Conversion in the Network Analyzer Mode The network analyzer part of the 4395A has an impedance conversion feature that converts the reection coecient to impedance. The reection is determined by the impedance of the DUT. 100 (01 0 1) Z = R0 1+0 If the DUT impedance is equal to the characteristic impedance, there is no reection. When the impedance is an innite value like OPEN, the all input signal is reected. When the impedance is greater than characteristic impedance, the measurement error is increased. For example, for an impedance of 2 k , a 1 percent error in the reection coecient is converted to a 24 percent error in impedance. Basic Measurement Theory A-23 I-V Measurement Method However, with the I-V method, the measurement error does not depend on the impedance of the DUT because the I-V method measures the impedance directly from the ratio of the voltage and current. Using the I-V method, you can measure a wide range impedance with constant accuracy. This is the major advantage of the I-V method. The 4395A, when combined with the 43961A, uses a RF I-V measurement method to measure the impedance of a DUT at higher frequencies. While the RF I-V measurement method is based on the same principal as the I-V measurement method, it is possible to operate at higher frequencies by using an impedance matched measurement circuit (50 ) and a precision coaxial test port. A-24 Basic Measurement Theory Impedance Measurement Scheme Impedance Measurement Scheme Measurement Block Diagram With the 43961A connected, the measurement circuit is as shown in Figure A-15. Figure A-15. Impedance Test Kit Block Diagram The source signal is output from RF OUT port. VV voltmeter is R port receiver that measures a voltage. VI voltmeter is A port receiver that measures a voltage of R0 to obtain a current. Test Signal Level at DUT The test signal level actually applied to the DUT depends on the test signal level from the 4395A, the output impedance, the insertion loss of the Impedance Test Kit, and the impedance of the DUT. Figure A-16 shows the simplied equivalent circuit of the 4395A and 43961A. Figure A-16. Test Signal Level Basic Measurement Theory A-25 Impedance Measurement Scheme The output signal is divided by the input impedance (R0 ) and the impedance of the DUT. You can use the following equation to determine the signal level actually applied to the DUT: VDUT = VSET ZDUT 2 (Z DUT + R0 ) [V ] Where, VDUT Voltage level that is actually applied to the DUT. VSET Voltage level that is set. See below. ZDUT Impedance of the DUT. R0 Input impedance, 50 . The 4395A denes the output level as the level when the RF OUT port is 50 terminated. Therefore, you can calculate the voltage from dBm, VSET = Where, PSET q P 10 10 SET 2 0:001 2 R0 Output power setting level. [dBm] A-26 Basic Measurement Theory Measurement Points and Display Points Measurement Points and Display Points In a network measurement, the analyzer measures at only the display points specied by NOP. In a spectrum measurement, the analyzer measures all the frequencies between the display points (except for sampling detection mode). This is done so that the analyzer can detect spectrums existing between the display points Figure A-17. Measurement Points and Display Points Basic Measurement Theory A-27 Channel Coupling Channel Coupling When the 4395A is operating in network analyzer mode, you can couple the two channels so that the sweep parameters are linked across the two channels. But, when one channel measures a ratio measurement and the other one measures an absolute measurement (for example A/R and B), sweep parameters can not be linked. In channel coupling mode, the following parameters are linked: Frequency Number of points Source power level Number of groups IF bandwidth Sweep time Trigger type Sweep type In addition, if both channels have the same input parameter (such as S11 or A/R), the following parameters are linked: Calibration type Calibration coecient The following parameters always have the same value between the two channels, whether or not the channels are coupled: Trigger source List sweep table Calibration kit type and data The following parameters are always set for each channel independently, whether or not the channels are coupled: Measurement parameter Display Format Title Traces displayed Scale value Electrical delay Phase oset Averaging (on/o, factor) Linking of sweep parameter values for the two channels is independent of the DUAL CHAN on OFF softkey under the 4Display5 key and of the MKR [UNCOUPLED] / [COUPLED] softkey under the 4Marker5 key. COUPLED CH OFF becomes an alternate sweep function when dual channel display is on. In this mode, the 4395A alternates between the two sets of sweep parameter values for measurement of data and both are displayed. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN A-28 Basic Measurement Theory Limit Line Concept Limit Line Concept These are lines drawn on the display to represent upper and lower limits or device specications with which to compare the DUT. Limits are dened by specifying several segments, where each segment is a portion of the sweep parameter span. Each limit segment has an upper and a lower starting limit value. Limits can be dened independently for the two channels with up to 18 segments for each channel (a total of 36 for both channels). These can be in any combination of the two limit types. Limit testing compares the measured data with the dened limits, and provides pass or fail information for each measured data point. An out-of-limit test condition is indicated in the following ways: Displaying a FAIL message on the screen Emitting a beep Displaying an asterisk in tabular listings of data Writing a bit into GPIB event status register B (for more information on GPIB event status registers, refer to 4395A Programming Guide) Limits are entered in tabular form. Limit lines and limit testing can be either on or off while limits are dened. As new limits are entered, the tabular columns on the display are updated, and the limit lines (if on) are modied to the new denitions. The complete limit set can be oset in either sweep parameter or amplitude value. How Limit Lines are Entered Before limit lines can be explained, the concept of \segments" must be understood. A segment is the node of two limit lines. Figure A-18. The Concept of Segments as a Point between Two Sets of Limit Lines Basic Measurement Theory A-29 Limit Line Concept As you can see in Figure A-18, segments are distinct points that dene where limit lines begin or end. Limit lines span the distance between segments and represent the upper and lower test limits. Figure A-18 shows another important aspect of limit lines. The far left hand side of a set of limit lines will continue from the minimum sweep parameter value (start) and the far right hand side of a set of limit lines will continue until the maximum sweep parameter value (stop). A segment is placed at a specic sweep parameter value (a single frequency for example). The rst segment denes the limit line value from the minimum sweep parameter value. Once its sweep parameter value is entered, the upper and lower test limit (+5 dB and 05 dB for example) need to be supplied. Dening a second segment denes where the rst set of limit lines ends. This process is repeated to create dierent sets of limit lines, each having new upper and lower limits. Up to 18 segments can be entered. Limits can be dened independently for the two channels. The example in Figure A-18 shows a combination of limit lines that change instantly and gradually. Segment 1 is at 2 MHz and has an upper and lower limit of +5 and 05 dB, respectively. Notice the upper and lower limit lines start at the start frequency (1 MHz) and end at segment 1. Segment 2 is also at 2 MHz with dierent upper and lower limits of +10 dB and 010 dB, changing the limit values instantly. Segment 3 is at 3 MHz with the same limit value as segment 2 to obtain a at limit lines. Segment 4 is at 4 MHz with upper and lower limit values of +15 dB and 015 dB, changing the limit values gradually. Notice the upper and lower limit lines start at the segment and continue until the stop frequency (5 MHz). Note Limit lines cannot be cut. Therefore, when limit lines are needed partially along the sweep parameter axis, the non-limit-testing portion must also be entered. Set the non-limit-testing portion by forcing the upper and lower limit values out of range (+500 dB and 0500 dB for example). Both an upper limit and a lower limit (or delta limits) must be dened. If only one limit is required for a particular measurement, force the other limit out of range (+500 dB or 0500 dB for example). Turning ON/OFF Limit Line/Limit Test Limit lines and limit testing features are off unless explicitly turned on by the user. After entering the limit line information, you can turn on the limit line feature and optionally the limit testing features. Turning these features off has no eect on the entered limit line information. Segments Entering Order Needs Notice Generally, the segments do not have to be entered in any particular order. The analyzer automatically sorts them and lists them on the display in increasing order of sweep parameter value. One exception is when two segments have the same sweep parameter value as described in Figure A-18. If the same sweep parameter values exist, the analyzer draws the limit lines according to entered segment order. For example, in Figure A-18, segment 1 should be entered in advance of segment 2. A-30 Basic Measurement Theory Limit Line Concept Saving the Limit Line Table Limit line information is lost if the LINE switch is turned o. However, the 4Save5 and 4Recall5 keys can save limit line information along with all other current analyzer settings. Limit line table information can be saved on a disk. Osetting the Sweep Parameter or Amplitude of the Limit Lines All limit line entries can be oset in either sweep parameter or amplitude values. The oset aects all segments simultaneously. Supported Display Formats Limit lines are displayed only in Cartesian format. In polar and Smith chart formats, limit testing of one value is available. The value tested depends on the marker mode and is the magnitude or the rst value in a complex pair. The message \NO LIMIT LINES DISPLAYED" is shown on the display in polar and Smith formats. Use a Sucient Number of Points or Errors May Occur Limits are checked only at the actual measured data points. If you do not select a sucient number of points, it is possible for a device to be out of specication without a limit test failure indication. To avoid this, be sure to specify a high enough number of points. In addition, if specic sweep parameter points must be checked, use the list sweep features described in \Reducing Sweep Time (Using List Sweep)" in Chapter 9 so that the actual measured data points are checked. Displaying, Printing, or Plotting Limit Test Data The \list values" feature in the copy menu prints or displays a table of each measured sweep parameter value. The table includes limit line and limit test information (if these functions are turned on). If limit testing is on, an asterisk \3" is listed next to any measured value that is out of limits. If the limit lines are on, and other listed data allows sucient space, the following information is also displayed: Upper limit and lower limit The margin by which the device passes or fails the nearest limit Results of Plotting or Printing the Display with Limit Lines ON If limit lines are on, they are shown when you print or plot the display. If limit testing is on, the PASS or FAIL message is included as well. Basic Measurement Theory A-31 Markers Markers Three Types of Markers Three types of markers are provided for each channel. The rst is the movable marker that is displayed on the screen (as 5) when 4Marker5, 4Maker!5, 4Search5, or 4Utility5 is pressed. When a marker is turned on and no other function is active, the marker can be controlled with the knob, or the step keys. The second is the sub-markers that appear at the present marker position when a softkey in the sub-marker menu is pressed. The seven sub-markers can be displayed for each channel at same time (a total of 14). The third is the 1marker that denes a reference position of the delta mode. This type of marker includes three variations: 1marker(normal), tracking 1marker, and xed 1marker. Marker Value Markers have a sweep parameter value (the x-axis value in a Cartesian format) and a measurement value (the y-axis value in a Cartesian format). In a polar, Smith, or admittance chart format, the second part of a complex data pair is also provided as an auxiliary measurement value. The marker can be moved to any point on the trace, Its measurement and sweep parameter values are displayed at the top right corner of the graticule for each displayed channel (in units appropriate to the display format). The displayed marker measurement values are valid even when the measured data is above or below the range displayed on the graticule. When marker list is turned on, sweep parameter values and measurement values of all markers are listed on the graticule. In a polar, Smith , or admittance chart format, auxiliary measurement values of all markers are also listed. Marker Time Mode When marker time mode is turned on, the x-axis is changed to the time scale. The start point of the x-axis is 0 seconds and the stop point indicates the sweep time. The markers have a time instead of a sweep parameter value. Continuous/Discrete Mode Marker values of the network analyzer are normally continuous (that is, they are interpolated between measured points). Alternatively, they can be set to read only discrete measured points. The marker of the spectrum analyzer always reads only the discrete measured point. Marker on the Data Trace or on the Memory Trace If both data and memory are displayed, you can select which marker values apply to the data trace or the memory trace. If data or memory is displayed (not both), the marker values apply to the trace displayed. In a data math display (data+memory, data0memory, or data/memory), the marker values apply to the trace resulting from the memory math function. A-32 Basic Measurement Theory Markers 1Mode With the use of a delta marker, a delta marker mode is available that displays both the sweep parameter and measurement values of the marker relative to the reference. Any position on the trace or a xed point can be designated as the delta marker. The 1marker can be put on a current position of the marker. If the delta reference is the xed 1marker, both its sweep parameter value and its magnitude value (y-axis value) can be set arbitrarily anywhere in the display area (not necessarily on the trace). If the delta marker is the tracking 1marker, its sweep parameter value can be controlled and its measurement value is the value of the trace at that sweep parameter value. Marker Search Function Markers can search for the trace maximum/minimum, mean point, any other point, peak maximum/minimum or peak-to-peak value of all or part of the trace. The marker and sub-markers can be used together to search for specied bandwidth cuto points and calculate the bandwidth. Statistical analysis uses markers to provide a readout of the mean, standard deviation, and peak-to-peak values of all or part of the trace. Width Function The bandwidth search feature analyzes a bandpass or band reject trace and calculates the center point, bandwidth, and Q (quality factor) for the specied bandwidth. These parameters depend on the 1marker mode. The following table shows how each parameter is determined for each 1marker mode. Table A-1. Obtaining Parameters in 1 Marker Mode Parameter Tracking 1 marker Fixed 1 marker FFFFFFFFFFFFFFFFFFFFFFFFFFFFF BW Displays the bandwidth value set by WIDTH VALUE . center Displays the center sweep parameter value between the cuto points (this is marked by sub-marker 1). Q Displays the Q value (= cent/BW) of the trace. Insertion Loss Displays the absolute value of the marker. 1F (Left) Displays the sweep parameter value dierence Displays the sweep parameter value dierence between marker 2 and the xed 1marker. between marker 2 and the center frequency specied by the 4Center5 key. 1F (Right) Displays the sweep parameter value dierence Displays the sweep parameter value dierence between marker 3 and the xed 1marker. between marker 3 and center frequency specied by the 4Center5 key. Displays the dierence between the marker and the xed 1marker. Figure A-19 shows an example of the bandwidth search feature. Basic Measurement Theory A-33 Markers Figure A-19. Bandwidth Search Example A-34 Basic Measurement Theory Markers Peak Denition The search function provides the dene peak feature, which species the properties of the peaks searched for by the peak search function. The dene peak feature also allows the peak search function to discriminate peaks from noise. The peak denitions are dierent for the network analyzer mode and the spectrum analyzer mode. Peak Denition for Network Analyzer Mode The following parameters are used in the peak denition for the network measurement: Peak polarity (positive or negative) 1X, 1Y (gradient) Threshold value The search functions search for a peak where the parameters of the peak match the following conditions: The search functions search for a peak where the parameters of the peak match the following conditions: 11XY 2SP AN min(1yL , 1yR ) (NOP 01) and Threshold Peak Amplitude Value where: 1yL, 1yR are the dierence in amplitude value between a peak and the adjacent measurement points on both sides. That is, the search functions search for a peak where, the gradient is greater than 1Y/1X, and the amplitude is greater than the threshold value. The search functions ignore a peak when the amplitude value is less than the threshold even if the peak polarity is set to negative. Figure A-20. Peak Denition for Network Analyzer Mode Basic Measurement Theory A-35 Markers Peak Denition for Spectrum Analyzer Mode The following parameters are used in the peak denition for the spectrum measurement: 1Y (dierence of amplitude between a peak and an adjacent local minimum point) Threshold value The search functions search for a peak where the parameters of the peak match the following conditions: 1Y min(max(1yL , 1yR ), 1yTH ) where: 1yL , 1yR are the dierence in amplitude value between a peak and the adjacent local minimum point. 1yTH is the dierence between a peak and the threshold value. That is, the search functions search for a peak where the dierence of amplitude between the peak and the smaller of the adjacent local minimum points is greater than 1Y, and the dierence between the peak and the threshold is greater than 1Y. The peak polarity is always positive for the spectrum analyzer peak search functions. Figure A-21. Peak Denition for Spectrum Analyzer Mode A-36 Basic Measurement Theory GPIB GPIB The analyzer is factory-equipped with a remote programming digital interface using the General Purpose Interface Bus (GPIB). This allows the analyzer to be controlled by an external computer that sends commands or instructions to and receives data from the analyzer using the GPIB. In this way, a remote operator has the same control of the instrument available to a local operator from the front panel, except for the line power switch. In addition, the analyzer itself can use GPIB to directly control compatible peripherals, without the use of an external controller. It can output measurement results directly to a compatible printer or plotter. This section provides an overview of GPIB operation. More complete information on programming the analyzer remotely over GPIB is provided in Programming Manual. The Programming Manual includes examples of remote measurements using an HP 9000 series 200 or 300 computer with BASIC programming. The Programming Manual assumes familiarity with front panel operation of the instrument. A complete general description of the GPIB is available in Tutorial Description of the General Purpose Interface Bus, Agilent publication 5952-0156. For more information on the IEEE 488.1 standard, see IEEE Standard Digital Interface for Programmable Instrumentation, published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York 10017, USA. How GPIB Works The GPIB uses a party-line bus structure in which up to 15 devices can be connected on one contiguous bus. The interface consists of 16 signal lines and 6 grounded lines in a shielded cable. With this cabling system, many dierent types of devices including instruments, computers, plotters and printers can be connected in parallel. Every GPIB device must be capable of performing one or more of the following interface functions: Talker A talker is a device capable of sending device-dependent data when addressed to talk. There can be only one active talker at any given time. Examples of this type of device are voltmeters, counters, and tape readers. The analyzer is a talker when it sends trace data or marker information over the bus. Listener A listener is a device capable of receiving device-dependent data when addressed to listen. There can be any number of active listeners at any given time. Examples of this type of device are printers, power supplies, and signal generators. The analyzer is a listener when it is controlled over the bus by a computer. Controller A controller is a device capable of managing the operation of the bus and addressing talkers and listeners. There can be only one active controller at any time. Examples of controllers include desktop computers and minicomputers. In a multiple-controller system, active control can be passed between controllers, but there can only be one system controller that acts as the master, and can regain active control at any time. The analyzer is an active controller when it plots or prints in the addressable mode. The analyzer is a system controller when it is in the system controller mode. Basic Measurement Theory A-37 GPIB GPIB Requirements Number of Interconnected Devices: Interconnection Path/ Maximum Cable Length: Message Transfer Scheme: Data Rate: Address Capability: Multiple Controller Capability: 15 maximum. 20 meters maximum or 2 meters per device, whichever is less. Byte serial/bit parallel asynchronous data transfer using a 3-line handshake system. Maximum of 1 megabyte per second over limited distances with tri-state drivers. Actual data rate depends on the transfer rate of the slowest device involved. Primary addresses: 31 talk, 31 listen. A maximum of 1 active talker and 14 active listeners at one time. In systems with more than one controller (like the analyzer system), only one can be active at any given time. The active controller can pass control to another controller, but only one system controller is allowed. GPIB Capabilities of the 4395A As dened by the IEEE 488.1 standard, the analyzer has the following capabilities: SH1 Full source handshake. AH1 Full acceptor handshake. T6 Basic talker, answers serial poll, unadresses if MLA is issued. No talk-only mode. TE0 Does not have extended address of talker. L4 Basic listener, unadresses if MTA is issued. No listen-only mode. LE0 Does not have extended address of listener. SR1 Complete service request (SRQ) capabilities. RL1 Complete remote/local capability including local lockout. PP0 Does not respond to parallel poll. DC1 Complete device clear. DT1 Responds to a group execute trigger. C1, C2, C3, C4 System controller capabilities in system controller mode. C11 Pass control capabilities in addressable mode. E2 Tri-state drivers. A-38 Basic Measurement Theory GPIB Bus Mode The analyzer uses a single-bus architecture. The single bus allows both the analyzer and the host controller to have complete access to the peripherals in the system. Figure A-22. Analyzer Single Bus Concept Two dierent modes are possible, system controller and addressable. System This mode allows the analyzer to control peripherals directly in a stand-alone environment (without an external controller). This mode can only be selected Controller manually from the analyzer front panel. Use this mode for operation when no computer is connected to the analyzer. Printing and plotting use this mode. Addressable This is the traditional programming mode, in which the computer is involved in all peripheral access operations. When the external controller is connected to the analyzer through GPIB (as shown in Figure A-22), this mode allows you to control the analyzer over GPIB in the talker mode in order to send data, and in the listener mode to receive commands. It also allows the analyzer to take or pass control in order to plot and print. Setting Addresses In GPIB communications, each instrument on the bus is identied by an GPIB address. This address code must be unique to each instrument on the bus. These addresses are not aected when you press 4Preset5 or cycle the power. For more information on how to set the address, refer to the description of the 4Local5 key in Appendix B \Softkey Reference". Basic Measurement Theory A-39 Calibration for Network Measurement Calibration for Network Measurement Introduction Network measurement calibration is an accuracy enhancement procedure that eectively reduces the system errors that cause uncertainty in measuring a DUT. It measures known standard devices, and uses the results of these measurements to characterize the system. This section explains the theoretical fundamentals of accuracy enhancement and the sources of measurement errors. It describes the dierent measurement calibration procedures available in the analyzer, which errors they correct, and the measurements for which each should be used. The later part of this section provides further information on characterizing systematic errors and using error models to analyze the overall measurement performance. Accuracy Enhancement If it were possible for a perfect measurement system to exist, it would have innite dynamic range, isolation, and directivity characteristics, no impedance mismatches in any part of the test setup, and at frequency response. Vector accuracy enhancement, also known as measurement calibration or error correction, provides the means to simulate a perfect measurement system. In any high frequency measurement, there are measurement errors associated with the system that contribute uncertainty to the results. Parts of the measurement setup such as interconnecting cables and signal separation devices (as well as the analyzer itself) all introduce variations in magnitude and phase that can mask the actual performance of the DUT. For example, crosstalk due to the channel isolation characteristics of the analyzer can contribute an error equal to the transmission signal of a high-loss test device. For reection measurements, the primary limitation of dynamic range is the directivity of the test setup. The measurement system cannot distinguish the true value of the signal reected by the DUT from the signal arriving at the receiver input due to leakage in the system. For both transmission and reection measurements, impedance mismatches within the test setup cause measurement uncertainties that appear as ripples superimposed on the measured data. Measurement calibration simulates a perfect analyzer system. It measures the magnitude and phase responses of known standard devices, and compares the measurement with actual device data. It uses the results to characterize the system and eectively remove the system errors from the measurement data of a test device, using vector math capabilities internal to the analyzer. When measurement calibration is used, the dynamic range and accuracy of the measurement are limited only by system noise and stability, connector repeatability, and the accuracy to which the characteristics of the calibration standards are known. Sources of Measurement Errors Network analysis measurement errors can be separated into systematic, random, and drift errors. Correctable systematic errors are the repeatable errors that the system can measure. These are errors due to mismatch and leakage in the test setup, isolation between the reference and test signal paths, and system frequency response. The system cannot measure and correct for the non-repeatable random and drift errors. These errors aect both reection and transmission measurements. Random errors are measurement variations due to noise and connector repeatability. Drift errors include frequency drift, A-40 Basic Measurement Theory Calibration for Network Measurement temperature drift, and other physical changes in the test setup between calibration and measurement. The resulting measurement is the vector sum of the DUT response plus all error terms. The precise eect of each error term depends upon its magnitude and phase relationship to the actual test device response. In most high frequency measurements the systematic errors are the most signicant source of measurement uncertainty. Because each of these errors can be characterized, their eects can be eectively removed to obtain a corrected value for the test device response. For the purpose of vector accuracy enhancement these uncertainties are quantied as directivity, source match, load match, isolation (crosstalk), and frequency response (tracking). Each of these systematic errors is described below. Random and drift errors cannot be precisely quantied, so they must be treated as producing a cumulative uncertainty in the measured data. Directivity Normally a device that can separate the reverse from the forward traveling waves (a directional bridge or coupler) detects the signal reected from the DUT. Ideally the coupler would completely separate the incident and reected signals, and only the reected signal would appear at the coupled output (Figure A-23-a). Figure A-23. Directivity However, an actual coupler is not perfect (Figure A-23-b). A small amount of the incident signal appears at the coupled output due to leakage as well as to reection from the termination in the coupled arm. Also, reections from the main coupler output connector appear at the coupled output, adding uncertainty to the signal reected from the device. The gure of merit for how well a coupler separates forward and reverse waves is directivity. The greater the directivity of the device, the better the signal separation. Directivity is the vector sum of all leakage signals appearing at the analyzer receiver input due to the inability of the signal separation device to separate incident and reected waves, and to residual reection eects of test cables and adapters between the signal separation device and the measurement Basic Measurement Theory A-41 Calibration for Network Measurement plane. The error contributed by directivity is independent of the characteristics of the test device and it usually produces the major ambiguity in measurements of low reection devices. Source Match Source match is dened as the vector sum of signals appearing at the analyzer receiver input due to the impedance mismatch at the test device looking back into the source. Source match is degraded by adapters and extra cables. A non-perfect source match leads to mismatch uncertainties that aect both transmission and reection measurements. Source match is most often given in terms of return loss in dB (therefore, the larger the number, the smaller the error. In a reection measurement, the source match error signal is caused by some of the reected signal from the DUT being reected from the source back toward the DUT and re-reected from the DUT (Figure A-24). In a transmission measurement, the source match error signal is caused by reection from the test device that is re-reected from the source. Figure A-24. Source Match The error contributed by source match is a mismatch error caused by the relationship between the actual input impedance of the test device and the equivalent match of the source. It is a factor in both transmission and reection measurements. Mismatch uncertainty is particularly a problem in measurements where there is a large impedance mismatch at the measurement plane. A-42 Basic Measurement Theory Calibration for Network Measurement Load Match Load match error results from an imperfect match at the output of the test device. It is caused by impedance mismatches between the test device output port and port 2 of the measurement system. As illustrated in Figure A-25, some of the transmitted signal is reected from port 2 back to the test device. A portion of this wave can be re-reected to port 2, or part can be transmitted through the device in the reverse direction to appear at port 1. If the DUT has low insertion loss (for example a transmission line), the signal reected from port 2 and re-reected from the source causes a signicant error because the DUT does not attenuate the signal signicantly on each reection. Load match is usually given in terms of return loss in dB (therefore, the larger the number, the smaller the error). Figure A-25. Load Match The error contributed by load match depends on the relationship between the actual output impedance of the test device and the eective match of the return port (port 2). It is a factor in all transmission measurements and in reection measurements of two-port devices. Load match and source match are usually ignored when the test device insertion loss is greater than about 6 dB. This happens because the error signal is greatly attenuated each time it passes through the DUT. However, load match eects produce major transmission measurement errors for a test device with a highly reective output port. Isolation (Crosstalk) Leakage of energy between analyzer signal paths contributes to error in a transmission measurement much as directivity does in a reection measurement. Isolation is the vector sum of signals appearing at the analyzer receivers due to crosstalk between the reference and test signal paths, including signal leakage within the test set and in both the RF and IF sections of the receiver. The error contributed by isolation depends on the characteristics of the DUT. Isolation is a factor in high-loss transmission measurements. However, analyzer system isolation is more than sucient for most measurements, and correction for it may be unnecessary. For measuring devices with high dynamic range, accuracy enhancement can provide improvements in isolation that are limited only by the noise oor. Basic Measurement Theory A-43 Calibration for Network Measurement Frequency Response (Tracking) This is the vector sum of all test setup variations in which magnitude and phase change as a function of frequency. This includes variations contributed by signal separation devices, test cables, and adapters, and variations between the reference and test signal paths. This error is a factor in both transmission and reection measurements. For further explanation of systematic error terms and the way they are combined and represented graphically in error models, see the later section, titled Accuracy Enhancement Fundamentals - Characterizing Systematic Errors. Compensation for Measurement Errors There are twelve dierent error terms for a two-port measurement that can be corrected by accuracy enhancement in the analyzer. These are directivity, source match, load match, isolation, reection tracking, and transmission tracking, each in both the forward and reverse direction. The analyzer has several dierent measurement calibration routines to characterize one or more of the systematic error terms and remove their eects from the measured data. The procedures range from a simple frequency response calibration to a full two-port calibration that eectively removes all twelve error terms. The Response Calibration eectively reduces the frequency response errors of the test setup for reection or transmission measurements. This calibration procedure may be adequate for measurement of well-matched low-loss devices. This is the simplest error correction to perform, and should be used when extreme measurement accuracy is not required. The Response and Isolation Calibration eectively removes frequency response and crosstalk errors in transmission measurements, or frequency response and directivity errors in reection measurements. This procedure may be adequate for measurement of well-matched high-loss devices. The S11 and S22 One-Port Calibration procedures provide directivity, source match, and frequency response vector error correction for reection measurements. These procedures provide high accuracy reection measurements of one-port devices or properly terminated two-port devices. The Full Two-Port Calibration provides directivity, source match, load match, isolation, and frequency response vector error correction, in both forward and reverse directions, for transmission and reection measurements of two-port devices. This calibration provides the best magnitude and phase measurement accuracy for both transmission and reection measurements of two-port devices, and requires an S-parameter test set. The One-Path Two-Port Calibration provides directivity, source match, load match, isolation, and frequency response vector error correction in one direction. It is used for high accuracy transmission and reection measurements using a transmission/reection test kit, such as the 87512A, B. (The DUT must be manually reversed between sweeps to accomplish measurements in both the forward and reverse directions.) All the calibration procedures described above are accessed from the 4CAL5 key. A-44 Basic Measurement Theory Calibration for Network Measurement Modifying Calibration Kits For most applications, use the default cal kit models. Modifying calibration kits is necessary only if unusual standards are used or the very highest accuracy is required. Unless a cal kit model is provided with the calibration devices used, a solid understanding of error correction and the system error model are essential to making modications. Read all of this section. During measurement calibration, the analyzer measures actual, well-dened standards and mathematically compares the results with ideal \models" of those standards. The dierences are separated into error terms which are later reduced during error correction. Most of the dierences are due to systematic errors - repeatable errors introduced by the analyzer, test set, and cables - which are correctable. However, the dierence between the standard's mathematical model and its actual performance has an adverse aect; it reduces the system's ability to remove systematic errors, and thus degrades error-corrected accuracy. Therefore, in addition to the default cal kit models, a \user kit" is provided that can be modied to an alternate calibration standards model. Several situations exist that may require a user-dened cal kit: You use a connector interface dierent from the four built-in cal kits. (Examples: SMA, or BNC.) You are using standards (or combinations of standards) that are dierent from the predened cal kits. (For example, using three oset SHORTs instead of an OPEN, SHORT, and LOAD to perform a 1-port calibration.) You want to improve the built-in standard models for predened kits. Remember that the more closely the model describes the actual performance of the standard, the better the calibration. (Example: The 7 mm LOAD is determined to be 50.4 instead of 50.0 .) Unused standards for a given cal type can be eliminated from the default set, to eliminate possible confusion during calibration. (Example: A certain application requires calibrating a male test port. The standards used to calibrate a female test port can be eliminated from the set, and will not be displayed during calibration.) Glossary This section provides a glossary of terms related to calibration. A standard is a specic, well-dened, physical device used to determine systematic errors. A standard type is one of ve basic types that dene the form or structure of the model to be used with that standard (for example, a SHORT or a LOAD). Standard coecients are numerical characteristics of the standards used in the model selected. A standard class is a grouping of one or more standards that determines which standards are used in a particular calibration procedure. Dening the Standards Standard denition is the process of mathematically modeling the electrical characteristics (delay, attenuation, and impedance) of each calibration standard. These electrical characteristics (coecients) can be mathematically derived from the physical dimensions and material of each calibration standard, or from its actual measured response. The parameters of the standards can be listed in Standards Denitions, Table A-2. Basic Measurement Theory A-45 Calibration for Network Measurement Table A-2. Standard Denitions Standard NO. Type C0 210015 F Oset Oset Oset Standard C2 Delay Loss Z0 Label 210027 F/Hz 210036 F/Hz2 ps M /s C1 1 2 3 4 5 6 7 8 Each standard must be identied as one of ve \types": OPEN, SHORT, LOAD, DELAY/THRU, or arbitrary impedance. Standard Types OPEN OPENs assigned a terminal impedance of innite ohms, but delay and loss osets may still be added. For information of the delay and loss osets, see the \Oset and Delay" paragraph. As a reection standard, an OPEN oers the advantage of broadband frequency coverage. However, an OPEN rarely has perfect reection characteristics because fringing (capacitance) eects cause phase shift that varies with frequency. This can be observed in measuring an OPEN termination after calibration, when an arc in the lower right circumference of the Smith chart indicates capacitive reactance. These eects are impossible to eliminate, but the calibration kit models include the OPEN termination capacitance at all frequencies for compatible calibration kits. The capacitance model is a second order polynomial (squared term), as a function of frequency, where the polynomial coecients are user-denable. The capacitance model equation is: C = C0 + C1 2 F + C2 2 F 2 where F is the measurement frequency. SHORT SHORTs are assigned a terminal impedance of 0 , but delay and loss osets may still be added. LOAD LOADs are assigned a terminal impedance equal to the system characteristic impedance Z0 , but delay and loss osets may still be added. If the LOAD impedance is not Z0, use the arbitrary impedance standard denition. DELAY/THRU DELAY/THRUs are assigned a transmission line of specied length, for calibrating transmission measurements. ARBITARY IMPEDANCE A-46 Basic Measurement Theory Calibration for Network Measurement ARBITRARY IMPEDANCEs are assigned a standard type (LOAD), but with an arbitrary impedance (dierent from system Z0 ). Oset and Delay Osets may be specied with any standard type. This means dening a uniform length of transmission line to exist between the standard being dened and the actual measurement plane. For reection standards, the oset is assumed to be between the measurement plane and the standard (one-way only). For transmission standards, the oset is assumed to exist between the two reference planes (in eect, the oset is the THRU). Three characteristics of the oset can be dened: its delay (length), loss, and impedance. Oset Delay species the one-way electrical delay from the measurement (reference) plane to the standard, in seconds (s). (In a transmission standard, oset delay is the delay from plane to plane.) Delay can be calculated from the precise physical length of the oset, the permittivity constant of the medium, and the speed of light. Oet Loss species energy loss, due to skin eect, along a one-way length of coaxial cable oset. The value of loss is entered as ohms/nanosecond (or Giga ohms/second) at 1 GHz. Oset Z0 species the characteristic impedance of the coaxial cable oset. This is not the impedance of the standard itself. Note Numerical data for most Agilent Technologies calibration kits is provided in the calibration kit manuals. Specifying the Standard Class Once a standard is specied, it must be assigned to a standard class. This is a group of from one to seven standards that is required to calibrate for a single error term. The standards within a single class are assigned to locations A through G as listed on the Standard Class Assignments Table (Table A-3). A class often consists of a single standard, but may be composed of more than one standard. Table A-3. Standard Class Assignments Table Class A B C D E F G Standard Class label S11A S11B S11C S22A S22B S22C Forward Transmission Reverse Transmission Forward Match Reverse Match Response Response & Isolation Basic Measurement Theory A-47 Calibration for Network Measurement The number of standard classes required depends on the type of calibration being performed, and is identical to the number of error terms corrected. (Examples: A response cal requires only one class, and the standards for that class may include an OPEN, or SHORT, or THRU. A 1-port cal requires three classes. A full 2-port cal requires 10 classes, not including two for isolation.) The number of standards that can be assigned to a given class may vary from none (class not used) to one (simplest class) to seven. When a certain class of standards is required during calibration, the analyzer will display the labels for all the standards in that class (except when the class consists of a single standard). This does not, however, mean that all standards in a class must be measured during calibration. Only a single standard per class is required. Note that it is often simpler to keep the number of standards per class to the bare minimum needed (often one) to avoid confusion during calibration. Standards are assigned to a class simply by entering the standard's reference number (established while dening a standard) under a particular class. Each class can be given a user-denable label. Note The class assignments table can be displayed on screen and printed using 4COPY5 function. Note Agilent Technologies strongly recommends that you read application note 8510-5A before attempting to view or modify calibration standard denitions. The part number of this application note is 5956-4352. Although the application note is written for the 8510 family of network analyzers, it also applies to the 4395A. A-48 Basic Measurement Theory Calibration for Network Measurement Accuracy Enhancement Fundamentals-Characterizing Systematic Errors One-Port Error Model In a measurement of the reection coecient (magnitude and phase) of an unknown device, the measured data diers from the actual, no matter how carefully the measurement is made. Directivity, source match, and reection signal path frequency response (tracking) are the major sources of error (Figure A-26). Figure A-26. Sources of Error in a Reection Measurement Measuring reection coecient. The reection coecient is measured by rst separating the incident signal (I) from the reected signal (R), then taking the ratio of the two values (Figure A-27). Ideally, (R) consists only of the signal reected by the test device (S11A ). Figure A-27. Reection Coecient Directivity Error. However, all of the incident signal does not always reach the unknown (see Figure A-28). Some of (I) may appear at the measurement system input due to leakage through the test set or other signal separation device. Also, some of (I) may be reected by imperfect adapters between signal separation and the measurement plane. The vector sum of the leakage and miscellaneous reections is directivity, EDF . Understandably, the measurement is distorted when the directivity signal combines vectorally with the actual reected signal from the unknown, S11A . Basic Measurement Theory A-49 Calibration for Network Measurement Figure A-28. Eective Directivity EDF Source match error. Because the measurement system test port is never exactly the characteristic impedance (50 or 75 ), some of the reected signal is re-reected o the test port, or other impedance transitions further down the line, and back to the unknown, adding to the original incident signal (I). This eect causes the magnitude and phase of the incident signal to vary as a function of S11A and frequency. Leveling the source to produce constant (I) reduces this error, but because the source cannot be exactly leveled at the test device input, leveling cannot eliminate all power variations. This re-reection eect and the resultant incident power variation are caused by the source match error, ESF (Figure A-29). Figure A-29. Source Match ESF Frequency response error. Frequency response (tracking) error is caused by variations in magnitude and phase atness versus frequency between the test and reference signal paths. These are due mainly to imperfectly matched receiver circuits and dierences in length and loss between incident and test signal paths. The vector sum of these variations is the reection signal path tracking error, ERF (Figure A-30). A-50 Basic Measurement Theory Calibration for Network Measurement Figure A-30. Reection Tracking ERF How calibration standards are used to quantify these error terms. It can be shown that these three errors are mathematically related to the actual data, S11A, and measured data, S11M , by the following equation: S11A(ERF ) S11M = EDF + 1 0 ESF S11A If the value of these three \E" errors and the measured test device response were known for each frequency, the above equation could be solved for S11A to obtain the actual test device response. Because each of these errors changes with frequency, their values must be known at each test frequency. These values are found by measuring the system at the measurement plane using three independent standards whose S11A is known at all frequencies. The rst standard applied is a \perfect load" that makes S11A = 0 and essentially measures directivity (Figure A-31). \Perfect load" implies a reection-free termination at the measurement plane. All incident energy is absorbed. With S11A = 0 the equation can be solved for EDF , the directivity term. In practice, of course, the \perfect load" is dicult to achieve, although very good broadband LOADs are available in the 4296A compatible calibration kits. Figure A-31. \Perfect Load" Termination Because the measured value for directivity is the vector sum of the actual directivity plus the actual reection coecient of the \perfect load," any reection from the termination represents an error. System eective directivity becomes the actual reection coecient of the \perfect load" (Figure A-32). In general, any termination having a return loss value greater than the uncorrected system directivity reduces reection measurement uncertainty. Basic Measurement Theory A-51 Calibration for Network Measurement Figure A-32. Measured Eective Directivity Next, a SHORT termination whose response is known to a very high degree establishes another condition (Figure A-33). Figure A-33. Short Circuit Termination The OPEN gives the third independent condition. In order to accurately model the phase variation with frequency due to radiation from the OPEN connector, a specially designed shielded OPEN is used for this step. (The OPEN capacitance is dierent with each connector type). Now the values for EDF , directivity, ESF , source match, and ERF , reection frequency response, are computed and stored (Figure A-34). A-52 Basic Measurement Theory Calibration for Network Measurement Figure A-34. Open Circuit Termination Now the unknown is measured to obtain a value for the measured response, S11M , at each frequency (Figure A-35). Figure A-35. Measured S11 This is the one-port error model equation solved for S11A. Because the three errors and S11M are now known for each test frequency, S11A can be computed as follows: S11A = S11M 0 EDF ESF (S11M 0 EDF ) + ERF For reection measurements on two-port devices, the same technique can be applied, but the test device output port must be terminated in the system characteristic impedance. This termination should be at least as good (have as low a reection coecient) as the LOAD used to determine directivity. The additional reection error caused by an improper termination at the test device output port is not incorporated into one-port error model. Basic Measurement Theory A-53 Calibration for Network Measurement Two-Port Error Model The error model for measurement of the transmission coecients (magnitude and phase) of a two-port device is derived in a similar manner. The major sources of error are frequency response (tracking), source match, load match, and isolation (Figure A-36). These errors are eectively removed using the full two-port error model Figure A-36. Major Sources of Error Measuring Transmission Coecient. The transmission coecient is measured by taking the ratio of the incident signal (I) and the transmitted signal (T) (Figure A-37). Ideally, (I) consists only of power delivered by the source, and (T) consists only of power emerging at the test device output. Figure A-37. Transmission Coecient Load Match Error. As in the reection model, source match can cause the incident signal to vary as a function of test device S11A . Also, because the test setup transmission return port is never exactly the characteristic impedance, some of the transmitted signal is reected from the test set port 2, and from other mismatches between the test device output and the receiver input, to return to the test device. A portion of this signal may be re-reected at port 2, thus aecting S21M , or part may be transmitted through the device in the reverse direction to appear at port 1, thus aecting S11M . This error term, which causes the magnitude and phase of the transmitted signal to vary as a function of S22A, is called load match, ELF (Figure A-38). A-54 Basic Measurement Theory Calibration for Network Measurement Figure A-38. Load Match ELF The measured value, S21M , consists of signal components that vary as a function of the relationship between ESF and S11A as well as ELF and S22A , so the input and output reection coecients of the test device must be measured and stored for use in the S21A error correction computation. Thus, the test setup is calibrated as described above for the reection to establish the directivity, EDF , source match, ESF , and reection frequency response, ERF , terms for the reection measurements. Now, that a calibrated port is available for reection measurements, the THRU is connected and load match, ELF , is determined by measuring the reection coecient of the THRU connection. Transmission signal path frequency response is then measured with the THRU connected. The data is corrected for source and load match eects, then stored as transmission frequency response, ETF . Isolation Errors. Isolation, EXF , represents the part of the incident signal that appears at the receiver without actually passing through the test device (Figure A-39). Isolation is measured with the test set in the transmission conguration and with terminations installed at the points where the test device will be connected. Figure A-39. Isolation EXF Error Terms the 4395A Can Reduce. Thus there are two sets of error terms, forward and reverse, with each set consisting of six error terms, as follows: Forward Directivity, EDF Isolation, EXF Source Match, ESF Load Match, ELF Transmission Tracking, ETF Basic Measurement Theory A-55 Calibration for Network Measurement Reection Tracking, ERF Reverse Directivity, EDR Isolation, EXR Source Match, ESR Load Match, ELR Transmission Tracking, ETR Reection Tracking, ERR The 87511A, B S-parameter Test sets can measure both the forward and reverse characteristics of the test device without the need to manually remove and physically reverse it. With these test sets, the full two-port error model illustrated in Figure A-40 eectively removes both the forward and reverse error terms for transmission and reection measurements. The 87512A, B Transmission/Reection Test kits cannot switch between forward and reverse directions, so the reverse error terms cannot be automatically measured. Therefore, with the one-path two-port calibration, the forward error terms are duplicated and used for both forward and reverse measurements by manually reversing the test device. Figure A-40. Full Two-Port Error Model The following equations show the full two-port error model equations for all four S-parameters of a two-port device. Note that the mathematics for this comprehensive model use all forward and reverse error terms and measured values. Thus, to perform full error correction for any one parameter, all four S-parameters must be measured. A-56 Basic Measurement Theory Calibration for Network Measurement S11A = S21A = S12A = 1+ 1+ 1+ S11M 0EDF ERF S11M 0EDF ERF S11M 0EDF ERF S22A = 1+ S11M 0EDF ERF 1+ ESF ESF S22M 0EDR ERR 1+ 1+ ESF 1+ h 1+ ESF 1+ i 0 ESR S21M 0EXF ETF 0 ESR 0 ELF ESR ESF ESF S22M 0EDR ERR 0 0 ELR ESR 0 i ESR 0 0 S12M 0EXR ETR S21M 0EXF ETF S21M 0EXF ETF S12M 0EXR ETR S21M 0EXF ETF S21M 0EXF ETF S21M 0EXF ETF S22M 0EDR ERR S11M 0EDF ERF ESR S22M 0EDR ERR S11M 0EDF ERF S22M 0EDR ERR S22M 0EDR ERR 1+ 1+ S22M 0EDR ERR S11M 0EDF ERF h S21M 0EXF ETF ELF S12M 0EXR ETR ELF ELR S12M 0EXR ETR ELF ELR S12M 0EXR ETR S12M 0EXR ETR ELF ELR S12M 0EXR ETR ELR ELF ELR In addition to the errors removed by accuracy enhancement, other systematic errors exist due to limitations of dynamic accuracy, test set switch repeatability, and test cable stability. These, combined with random errors, also contribute to total system measurement uncertainty. Therefore, after accuracy enhancement procedures are performed, residual measurement uncertainties remain. Basic Measurement Theory A-57 Saving and Recalling Instrument States and Data Saving and Recalling Instrument States and Data This section describes storage devices, the save and recall functions, and the information you need to save instrument states and data into les. Additional information on how to save and recall instrument states is provided in the \To Save and Recall the Settings and Data" in Chapter 8. Note The 4Save5 and 4Recall5 keys do not access Instrument BASIC programs. Instrument BASIC has its own menus (under the 4System5 key) for accessing the built-in disk drive and the memory disk. See Programming Manual for detail. Storage Devices The analyzer supports two storage devices, a built-in exible disk drive and a memory disk. The exible disk drive should be used to store large numbers of les and long term data storage. The memory disk should be used to store temporary tentative data and instrument states and to store or retrieve data quickly. Note Use the built-in exible disk to store important data because the memory disk data is lost when the power is turned o. Disk Requirements The analyzer's disk drive uses a 720 Kbyte , or 1.44 Mbyte 3.5 inch micro-exible disk. Disk Formats The analyzer's built-in disk drive can access both LIF (logical interchange format) and DOS formatted disks. The disk drive and the memory disk can also initialize a new disk in either LIF or DOS format. Note that the analyzer can initalize 1.44 Mbyte disks only. The following list shows the applicable DOS formats for the analyzer. 720 Kbyte, 80 tracks, double-sided, 9 sectors/track 1.44 Mbyte, 80 tracks, double-sided, 18 sectors/track Memory Disk Capacity The memory disk capacity is 512 Kbyte. The memory disk capacity can be changed. This capacity includes the directory area. The capacity of data area depends on the disk format type. A-58 Basic Measurement Theory File Types And Data Saved Copy Files Between the Memory Disk and the Flexible Disk A copy function is provided to copy les between the memory disk and the exible disk. FILE UTILITIES in the SAVE menu displays the softkeys used to copy les. The GPIB command FILC is also available to copy les. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Note When you copy les using this function, use the same disk format type for both the memory disk and the exible disk. This copy function cannot copy les when the format of the memory disk is dierent from the format of the exible disk. File Types And Data Saved Binary Files and ASCII Files The analyzer supports two le formats, binary and ASCII, that are used to save data on a disk. Binary les are used to save measurement conditions and data using the SAVE function and to retrieve binary data using the RECALL function. External controllers and Instrument BASIC can read measurement data from binary data les. ASCII measurement data or screen image les can be read by commonly available IBM PC based software for data analysis or other secondary functions. The RECALL function cannot read ASCII les. Note When saving internal data arrays, note that ASCII data les cannot be recalled on the analyzer. If you need to recall the data, save the le in binary format. This binary data can be recalled and saved as an ASCII le at any time. Data Groups Instrument States and Internal Data Arrays (STATE) This group consists of the instrument states that include raw calibration coecients (network analyzer only), the data arrays, and the memory arrays. (Binary Files Only) Internal Data Arrays (DATA ONLY) The internal data arrays that are stored in the analyzer's memory consists of the following six data arrays. See \Data Processing" for complete information on each data array and their relationships.(Binary and ASCII Files) Raw data arrays contain raw, uncalibrated measurement data. Calibration Coecients arrays contain the expanded calibration coecients obtained by calibration of the network analyzer. Data arrays contain the calibrated data obtained using the calibration coecients. Memory arrays contain the memory data arrays obtained using the DATA!MEM operation. Data Trace arrays contain the formatted data. Memory Trace arrays contain the formatted data of the \memory arrays." These arrays can be saved selectively to suit the application. For example, when measuring several devices with the same measurement settings, you may need to save only the trace Basic Measurement Theory A-59 File Types And Data Saved arrays for each device. Saving only the necessary arrays reduces the disk space required and the disk access time. In addition, saving internal data also allows the analysis of the measurement results using an external controller. See \File Structure of Internal Data Arrays File for Binary Files" for more information. Graphics image (GRAPHICS) The analyzer saves the graphics image of the screen as a graphics le in the TIFF (Tagged Image File Format) format. The TIFF format is used in a wide range of drawing software programs (in binary format only). File Type and Data Group Combinations You can select and save to a disk one of the following four combinations of the two le types and the four data groups. Binary File Instrument states and internal data arrays (STATE) Internal data arrays (DATA ONLY binary) Graphics image (GRAPHICS) ASCII File Internal data arrays (DATA ONLY ascii) Note DATA ONLY does not save instrument settings such as start and stop frequencies. BE CAREFUL! Always make sure that you save the existing STATE if you want to use the setup again. A-60 Basic Measurement Theory File Names File Names All data saved using the built-in disk drive and the memory disk has an identifying le name. A le name consists of the lower and upper case alphabet, numbers, and valid symbol characters. Up to 8 characters can be used for a le name. The following table shows the valid characters for LIF and DOS le names. Table A-4. Valid Characters for File Names Valid Characters Description LIF DOS Format A-Z A-Z Upper case alphabet a-z a-z Lower case alphabet 0-9 0-9 Numeric characters $ & # % ' ! () - @ ^ fg ~ Symbol characters One of the following suxes or extensions is automatically added to the le name depending on the data group type stored in the le. Table A-5. Suxes and Extensions Added Automatically Data Groups Suxes for LIF Extensions for DOS FFFFFFFFFFFFFF Instrument States and Internal Data Arrays ( STATE ) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Internal Data Arrays ( DATA ONLY (binary) ) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Internal Data Arrays as an ASCII File ( DATA ONLY (ASCII) ) FFFFFFFFFFFFFFFFFFFFF Graphics Image as an TIFF File ( GRAPHICS ) _S .STA _D .DTA _I .TXT _T .TIF Auto Recall Function When the 4395A is turned on, it looks for a le named \AUTOREC" from the built-in exible disk or memory disk, and if found, the 4395A automatically reads the le to retrieve its data. Note When you save the AUTOREC le into the memory disk, you must perform memory disk backup operation. Otherwise, the AUTOREC le is lost when the power is turned o. When the 4395A is turned ON, the 4395A looks for the AUTOREC le on the exible disk rst. If there is no AUTOREC le on the exible disk, the 4395A looks for it on the memory disk. Basic Measurement Theory A-61 File Structure File Structure File Structure of Internal Data Arrays File for Binary Files Note Binary and ASCII le structures are not compatible. When internal data arrays are saved as a binary le, the arrays' le consists of a le header at the top of the le and the data groups following the le header. File Header Every internal data array le begins with a le header. Figure A-41 shows the header structure. Figure A-41. File Header Structure Six data switches dene the data groups that follow the le head. Each one-byte switch is either 1 or 0 (decimal value) if the applicable data group exists or not, respectively. The data group to be followed is in the same order of these switches. For example, when the data switches, RAW DATA and DATA TRACE are 1 (on), while the others are off, only the RAW DATA and DATA TRACE (in this order) groups will follow the header. Data Group Data group of each channel begins with a header and consists of the same structured data segments. The number of data segments depends on the data group type as follows: RAW DATA of the network analyzer consists of a header and four data segments per channel as shown in Figure A-42. They will follow the le header in this order: A-62 Basic Measurement Theory File Structure Figure A-42. RAW Data Group Structure for the Network Analyzer RAW DATA of the spectrum analyzer consists of a header and a data segment by a channel as shown in Figure A-43. They will follow the le header in this order: Figure A-43. RAW Data Group Structure for the Spectrum Analyzer CAL of the network analyzer consists of 12 data segments by a channel as shown in Figure A-44. The rst half of the segments are for channel 1 and the second half of the segments are for channel 2. The contents of each segment depend on the type of calibration performed. CAL data is available for only the network analyzer. Basic Measurement Theory A-63 File Structure Figure A-44. CAL Data Group Structure for the Network Analyzer Figure A-45. CAL Data Group Structure for the Spectrum Analyzer DATA consists of a header and a data segment by a channel. MEMORY consists of a header and a data segment by a channel. DATA TRACE consists of a header and a data segment by a channel. A-64 Basic Measurement Theory File Structure MEMORY TRACE consists of a header and a data segment by a channel. Figure A-46. DATA, MEMORY, DATA TRACE and MEMORY TRACE Data Group Structure Analyzer Type is a two-byte INTEGER value. This shows the analyzer type of each channel. \0" is set when the network analyzer is selected and \1" is set when the spectrum analyzer is selected. Number Of Points (NOP) is a two-byte INTEGER value. This number is equal to the number of complex or real data that follows the NOP. DATA is a set of the values for each measurement point. The values are IEEE 754 double precision oating number. When the network analyzer mode is selected, the values are two numbers (the rst value is the real part, the second value is the imaginary part). The data size in bytes can be determined by 162NOP. When the spectrum analyzer mode is selected, the values are one number and the data size in bytes can be determined by 82NOP. Basic Measurement Theory A-65 File Structure File Structure of Internal Data Arrays File for ASCII File Numerical data and strings in an ASCII data le are separated by a tab, and a string is bound by double quotation marks. Status Block and Data Block An ASCII data le consists of a status block and data blocks. The status block consists of two lines, the revision number and the date code. The data block consists of three parts, the state part, the title line, and the data part. State The state part consists of the following instrument states: Channel number Title on the screen Measurement type Format type (and Unit) Number of points Sweep time Sweep type Source power or CW frequency IF, or RBW and VBW bandwidth Title The title part consists of the data array names saved. Data array names are described in the next section. Data The data part consists of sweep parameter and numerical data of data arrays. Table A-6 shows an example of an ASCII data le. A-66 Basic Measurement Theory File Structure Table A-6. Contents of ASCII Files Block Names Contents Status Block State Data Block Title Data6 , 7 "4395A REV1.00" "DATE: mmm dd yyyy"1 "CHANNEL: 1" "TITLE: This is a title." 2 "MEAS TYPE: A/R" "FORMAT TYPE: LOG MAG" "NUMBER of POINTS: 201" "SWEEP TIME: 12.2 ms" "SWEEP TYPE: LIST FREQ" "SOURCE POWER: 0 dBm"3 "BANDWIDTH: 3 kHz" "Frequency" !"Raw [S11] Real"!"Raw [S11] Imag"!1114 , 5 3.00000E+5!8.20007E-1!4.09729E-1!1114 1.52238E+7!9.32143E-1!-4.1914E-2!111 .. .. .. 1 This is the date when the le is saved. 2 This line is listed when the title is dened (displayed). 3 Shows the power level of the source for a frequency sweep. If power sweep is selected, the CW frequency is listed (for example "CW FREQ: 100 MHz"). 4 \!" means tab code. Data is separated by the tab code. 5 This line lists the names of the data array saved in this le. Titles used in the ASCII les are shown in Table A-7 through Table A-10. 6 Each line lists the measurement data at each measurement point. The number of lines in the data block is the same as the number of points. 7 In the network analyzer mode, complex data is saved. In the spectrum analyzer mode, only real data is saved. Basic Measurement Theory A-67 File Structure File Structure for Single Channel and Dual Channel If you save an ASCII le when DUAL CHANNEL is turned OFF, the ASCII data le consists of the active channel's data. If DUAL CHANNEL is turned ON, the ASCII data le consists of the data of both channels 1 and 2. The channel 2 data follows the channel 1 data as follows: File Structures for Single and Dual Channels Dual Channel ON Dual Channel OFF Status Block Status Block Data Block of Active Channel Data Block of Channel 1 (end of le) Status Block Data Block of Channel 2 Data Array Names for the Spectrum Analyzer Data array names are used in the title line of the data block. Each data array of the spectrum analyzer has one name, Table A-7 lists all names. Table A-7. Data Groups and Data Array Names for Spectrum Analyzer Data Groups Data Array Names Raw Data Data Memory Data Trace Memory Trace Raw Data Memory Data Trace Memory Trace A-68 Basic Measurement Theory Descriptions Raw data array. Corrected Data arrays Corrected Memory arrays Data Trace arrays Memory Trace arrays File Structure Data Array Names for the Network Analyzer Data array names are used in the title line of the data block. Each real and imaginary part of the internal data array of the network analyzer has one name, Table A-8 lists all names. Table A-8. Data Groups and Data Array Names for the Network Analyzer Mode Data Groups Raw Data Calibration Data1 Data Memory Data Trace Memory Trace Descriptions Data Array Names Real Part Imaginary Part Raw[S11] Real Raw[S21] Real Raw[S12] Real Raw[S22] Imag Cal[1] Real Cal[2] Real Cal[3] Real Cal[4] Real Cal[5] Real Cal[6] Real Cal[7] Real Cal[8] Real Cal[9] Real Cal[10] Real Cal[11] Real Cal[12] Real Data Real Memory Real Data Trace Real Memory Trace Real Raw[S11] Imag Raw[S21] Imag Raw[S12] Imag Raw[S22] Imag Cal[1] Imag Cal[2] Imag Cal[3] Imag Cal[4] Imag Cal[5] Imag Cal[6] Imag Cal[7] Imag Cal[8] Imag Cal[9] Imag Cal[10] Imag Cal[11] Imag Cal[12] Imag Data Imag Memory Imag Data Trace Imag Memory Trace Imag Raw data arrays for S11 meas. Raw data arrays for S21 meas. Raw data arrays for S12 meas. Raw data arrays for S22 meas. Er,2 Et,2 Ex,3 Ed,3 , 4 or Edf5 Et,3 Er,3 Es,4 or Esf5 Er4 or Erf5 Exf5 Elf5 Etf5 Edr5 Esr5 Err5 Exr5 Elr5 Etr5 Corrected Data arrays Corrected Memory arrays Data Trace arrays Memory Trace arrays 1 For more information on calibration, see \Calibration for Network Measurement". Calibration data is available for only network analyzer mode. 2 When response calibration is used. 3 When response and isolation calibration are used. 4 When 1 port calibration is used. 5 When 2 port calibration is used. Data Groups of the Spectrum Analyzer Every data group of the spectrum analyzer consists of one data array. Data Groups of the Network Analyzer Every data group of the network analyzer consists of data arrays. The number of data arrays depends on the data group types. The saved data arrays RAW and CAL depend on the instrument state. RAW DATA of the network analyzer consists of eight data arrays. The data arrays saved depend on the calibration type and the measurement type. If RAW DATA is saved in an ASCII data le when 2-port calibration is used, all eight RAW data arrays will be saved in the ASCII data le for any measurement type. If another calibration type is used, the data arrays saved depend on the measurement type. Table A-9 lists the RAW data array combinations that are saved for each measurement type selected. Basic Measurement Theory A-69 Save Data Format Table A-9. Network Measurement Type Versus Raw Data Saved Raw Data Arrays Saved1 Measurement Type A/R B/R A/B A B R S11 S12 S21 S22 "Raw[S11] "Raw[S21] "Raw[S12] "Raw[S11] "Raw[S21] "Raw[S12] "Raw[S11] "Raw[S12] "Raw[S21] "Raw[S22] Real","Raw[S11] Real","Raw[S21] Real","Raw[S12] Real","Raw[S11] Real","Raw[S21] Real","Raw[S12] Real","Raw[S11] Real","Raw[S12] Real","Raw[S21] Real","Raw[S22] Imag" Imag" Imag" Imag" Imag" Imag" Imag" Imag" Imag" Imag" 1 When 2-port calibration is turned ON, all Raw Data is saved. CAL DATA of the network analyzer consists of twenty data arrays. The data arrays saved depend on the calibration type used. Table A-10 lists the CAL data arrays that are saved for each calibration type selected. Table A-10. Calibration Type for Network Measurement Versus CAL Data Saved Calibration Type Response Response and Isolation 1 port Calibration 2 port Calibration CAL Data Saved "Cal[1] "Cal[1] "Cal[2] "Cal[1] "Cal[2] "Cal[3] "Cal[1] "Cal[2] "Cal[3] "Cal[4] "Cal[5] "Cal[6] "Cal[7] "Cal[8] "Cal[9] "Cal[10] "Cal[11] "Cal[12] Real","Cal[1] Imag" Real","Cal[1] Imag" Real","Cal[2] Imag" Real","Cal[1] Imag" Real","Cal[2] Imag" Real","Cal[3] Imag" Real","Cal[1] Imag" Real","Cal[2] Imag" Real","Cal[3] Imag" Real","Cal[4] Imag" Real","Cal[5] Imag" Real","Cal[6] Imag" Real","Cal[7] Imag" Real","Cal[8] Imag" Real","Cal[9] Imag" Real","Cal[10] Imag" Real","Cal[11] Imag" Real","Cal[12] Imag" 1 For more information on error terms, refer to \Calibration for Network Measurement". DATA of the network analyzer consists of two data arrays. MEMORY of the network analyzer consists of two data arrays. DATA TRACE of the network analyzer consists of two data arrays. MEMORY TRACE of the network analyzer consists of two data arrays. A-70 Basic Measurement Theory Error Terms1 Er or Et Ex or Ed Et or Er Ed Es Er Edf Esf Erf Exf Elf Etf Edr Esr Err Exr Elr Etr Save Data Format Save Data Format NNNNNNNNNNNNNNNNNNNNNNNNNNNNN When you store the internal data array by 4Save5 DATA ONLY , the stored binary le format is same as the network/spectrum analyzer except for the calibration and xture compensation coecients. This section provides the information about the save le format of the calibration and the xture compensation coecients. CAL Data Group This group consists of the calibration and the xture compensation coecients data segements by a channel as shown in Figure A-47. The rst half of the segments are for channel 1 and the second half of the segments are for channel 2. The contents of each segment depend on the type of calibration performed. Figure A-47. CAL Data Group Structure Basic Measurement Theory A-71 B Softkey Reference Softkey Reference B-1 4Chan 15 4Chan 25 4Meas5 4Chan 15 Description Select the channel 1 for an active channel. 4Chan 25 Select the channel 2 for an active channel. Front Panel Key 4Meas5 Network Analyzer ??????????????????????????????? NETWORK: A/R ???????? B/R ???????? A/B Calculates and displays the complex ratio of the signal at input A to the reference signal at input R. Calculates and displays the complex ratio of the signal at input B to the reference signal at input R. Calculates and displays the complex ratio of input A to input B. ???????????? MORE ??????????????????????????? NETWORK: R Measures the absolute power amplitude at input R. ???? A Measures the absolute power amplitude at input A. ???? Measures the absolute power amplitude at input B. B ???????????? MORE CONVERSION [OFF] ! See Conversion menu ?????????????????????????????? S-PARAMETERS ! See S-parameters menu ?????????????????????????????????? ANALYZER TYPE ! See Analyzer type menu ?????????????????????????????????????? CONVERSION [OFF] ! See Conversion menu ?????????????????????????????? S-PARAMETERS ! See S-parameters menu ?????????????????????????????????????? ANALYZER TYPE ! See Analyzer type menu NA S-parameters menu ?????????????????????????????????????????? Re: FWD S11 [A/R] ?????????????????????????????????? ????????????????????????????????????????? Trans:FWD S21 [B/R] ????????????????????????????????????????? Trans:REV S12 [A/R] ????????????????????????????????????????? Re: REV S22 [B/R] ???????????????????????????? INPUT PORTS ! See Input port menu CONVERSION [OFF] ! See Conversion menu ?????????????????????????????????? ANALYZER TYPE ! See Analyzer type menu Conversion menu ???????????????????????????????????? CONVERSION OFF Congures the S-parameter test set to measure S11 (the complex reection coecient, magnitude and phase, of the DUT input). ConguresCongures the S-parameter test set for measurement of S21 (the complex forward transmission coecient, magnitude and phase, of the DUT). Congures the S-parameter test set to measure S12 (the complex reverse transmission coecient, magnitude and phase, of the DUT). Denes the measurement as S22 (the complex reection coecient, magnitude, and phase, of the output of the DUT) ?????????????????????????????????????? Turns o all parameter conversion operations. ??????????? Z:Re Converts reection data to its equivalent impedance values. ?????????????? Z:Trans Converts transmission data to its equivalent impedance values. ??????????? Y:Re Converts reection data to its equivalent admittance values. ?????????????? Y:Trans Converts transmission data to its equivalent admittance values. ????????? Expresses the data in inverse S-parameter values. 1 S ???????????? MORE B-2 Softkey Reference Description Front Panel Key 4Meas5 Continued ????????????????????????????????????????????? CONVERSION 4xPHASE Multiplies phase data by a factor of 4. ?????????????????? 8xPHASE Multiplies phase data by a factor of 8. ???????????????????? Multiplies phase data by a factor of 16. 16xPHASE ????????????????? RETURN ????????????????? RETURN Analyzer type menu ??????????????????????????????????????????? NETWORK ANALYZER ???????????????????????????????????????????? SPECTRUM ANALYZER ?????????????????????????????????????????????? IMPEDANCE ANALYZER Selects the network analyzer mode as the analyzer type.1 Selects the spectrum analyzer mode as the analyzer type.1 Selects the impedance analyzer mode as the analyzer type.1 ????????????????? RETURN Spectrum Analyzer ???????????????????????????? SPECTRUM: R Measures the spectrum at input R. ???? A Measures the spectrum at input A. ???? B Measures the spectrum at input B. ????????????????????????????????????????????? Displays the detection menu that is used to select the type of detection mode (positive, negative, or sample mode). The detection mode dened is shown in brackets under the softkey label. Selects positive peak mode as the detection technique for displaying trace information. DETECTION [POSITIVE] ???????????????????????????????????????????? DETECTION:POS PEAK ??????????????????????? NEG PEAK Selects negative peak mode for detection technique. ????????????????? Selects sample mode for detection technique. SAMPLE ????????????????? RETURN ?????????????????????????????????? ANALYZER TYPE menu ! See Analyzer type 1 Changing analyzer type will preset all the parameters for the active channel. Softkey Reference B-3 Description Front Panel Key 4Meas5 Continued Impedance Analyzer ZA More menu 1/5 ??????????????????????????????????????????????? IMPEDANCE: MAG(|Z|) Measures absolute magnitude value of impedance. ???????????????????? PHASE( z ) Measures absolute phase value of impedance. ??????????????????? RESIST(R) Measures resistance value (R). ??????????????????? REACT(X) Measures reactance value (X). ???????????????????? Displays the Impedance Measurement Menu (2/5). MORE 1/5 ?????????????????????????????????? FIXTURE [NONE] ! See Fixture menu ANALYZER TYPE ! See Analyzer type menu ZA More menu 2/5 ???????????????????????????????????????????????? ADMITTNCE: MAG(|Y|) ?????????????????????????????????? Displays the Fixture Menu that is used to select a test xture connected with the analyzer. The selected test xture is displayed in brackets ([]). Displays the Analyzer Type Menu that selects the network, spectrum, or impedance analyzer mode of operation. Selects an admittance parameter as the measurement parameter. Measures absolute magnitude value of admittance (jYj). ???????????????????? PHASE( y ) Measures phase value of admittance ( y). ???????????????????????? CONDUCT(G) Measures conductance value (G). ??????????????????????? SUSCEPT(B) Measures susceptance value (B). ???????????????????? Displays the Impedance Measurement Menu (3/5). MORE 2/5 ?????????????????????????????????? FIXTURE [NONE] ! See Fixture menu ANALYZER TYPE ! See Analyzer type menu ZA More menu 3/5 ??????????????????????????????????? REFL.COEF: |0| ?????????????????????????????????? Selects a reection coecient as the measurement parameter. Measures absolute magnitude value of reection coecient (j0j). ????????????????????? PHASE( 0) Measures phase value of reection coecient ( ). ?????????????????? REAL(0x ) Measures real part of reection coecient (0x ). ?????????????????? IMAG(0y ) Measures imaginary part of reection coecient (0y ). ???????????????????? Displays the Impedance Measurement Menu (4/5). MORE 3/5 ?????????????????????????????????? FIXTURE [NONE] ?????????????????????????????????? ! See Fixture menu ! See Analyzer type ANALYZER TYPE menu ZA More menu 4/5 ????????????????????????????????????????? CAPCITNCE: PRL(Cp) Selects a capacitance or inductance as the measurement parameter. Measures parallel capacitance (Cp ), which is used for small capacitance measurement. ??????????????? SER(Cs) Measures series capacitance (Cs ), which is used for large capacitance measurement. ?????????????????????????????????????????? INDUCTNCE: PRL(Lp) Measures parallel inductance (Lp ), which is used for large inductance measurement. ??????????????? Measures series inductance (Ls ), which is used for small inductance measurement. SER(Ls) ???????????????????? MORE 4/5 ?????????????????????????????????? FIXTURE [NONE] ?????????????????????????????????? ! See Fixture menu ! See Analyzer type ANALYZER TYPE menu ZA More menu 5/5 ???????????????????????????????????????? RESISTNCE: PRL(Rp) ??????????????? SER(Rs) ?????????????????????????? D FACTOR(D) Displays the Impedance Measurement Menu (5/5). Selects a resistance, D, and Q as the measurement parameter. Measures parallel resistance (Rp ), which is used for large resistance, large inductance, or small capacitance. Measures series resistance (Rs ), which is used for small resistance, small inductance, or large capacitance. Measures dissipation factor (D). ?????????????????????????? Q FACTOR(Q) Measures quality factor (Q). ???????????????????? Displays the Impedance Measurement Menu (1/5). MORE 5/5 ?????????????????????????????????? FIXTURE [NONE] ?????????????????????????????????? ANALYZER TYPE menu ! See Fixture menu ! See Analyzer type B-4 Softkey Reference Description Front Panel Key 4Meas5 Continued Fixture menu ??????????????????????????????????? SELECT FIXTURE Displays the Select Fixture Menu. ????????????????????????????????? FIXTURE: NONE Sets zero as electrical length value. ???????????? 16191 Sets the electrical length that is suitable for the 16191A. ???????????? 16192 Sets the electrical length that is suitable for the 16192A. ???????????? 16193 Sets the electrical length that is suitable for the 16193A. ???????????? 16194 Sets the electrical length that is suitable for the 16194A. ??????????? Sets the electrical length, which is a user dened value. USER ????????????????? RETURN ?????????????????????????????????????????????? SAVE USER FXTR KIT Saves electrical length and label as a user dened xture. ???????????????????????????????? Displays the Modify User Fixture Menu, which are used to dene the electrical length and label of a selected xture. Sets the extension value of the user xture. MODIFY [NONE] ???????????????????????????????????????? DEFINE EXTENTION ????????????????????????????????? LABEL FIXTURE Sets the label name of the user xture. ????????????????????????????????????????????? Completes the procedure of the user xture denition. KIT DONE (MODIFIED) ????????????????? RETURN 4Format5 Softkey Reference B-5 Description Front Panel Key 4Format5 Network Analyzer ????????????????????????????????????? FORMAT:LOG MAG ?????????????? PHASE ?????????????? DELAY Displays the log magnitude format. Displays a Cartesian format of the phase portion of the data (measured in degrees). This format displays the phase shift versus frequency. Selects the group delay format. Activated markers give values in seconds. ????????????????????????????? SMITH CHART Displays a Smith chart format. ?????????????????????????????? Displays a polar format. POLAR CHART ???????????? MORE ??????????????????????????????????? FORMAT:LIN MAG Displays the linear magnitude format. ????????? Reformats a reection measurement into its equivalent SWR (standing wave ratio) value. Displays only the real (resistive) portion of the measured data on a Cartesian format. This is similar to the linear magnitude format, but can show both positive and negative values. Displays only the imaginary (reactive) portion of the measured data on a Cartesian format. This format is similar to the real format except that reactance data is displayed on the trace instead of impedance data. Displays an admittance Smith chart format and displays the circle data menu. SWR ???????????? REAL ??????????????????????? IMAGINARY ?????????????????????????????????????????? ADMITTANCE CHART ????????????????? RETURN ??????????????????????????????????????? PHASE UNIT [DEG] ????????????????????????????????????????? EXP PHASE ON o ??????????????????????????????????????? PHASE UNIT [DEG] Selects the unit for phase measurement as DEG (degree) or RAD (radian). The unit selected is shown in brackets. Turns the expanded phase ON or OFF. EXP PHASE ON o Selects the unit for phase measurement as DEG (degree) or RAD (radian). The unit selected is shown in brackets. Turns the expanded phase ON or OFF. Spectrum Analyzer ?????????????????????????????????????? FORMAT:SPECTRUM Activates a spectrum measurement. ????????????????????????????????????????? ????????????? NOISE ??????????????????????? UNIT: dBm Activates a noise level measurement. If the marker is placed in the noise, the rms noise level is read out normalized to a 1 Hz noise power bandwidth. Selects dBm as amplitude unit. ??????????? VOLT Selects volt as amplitude unit. ????????? dBV Selects dBV as amplitude unit. ??????????? dBuV Selects dBV as amplitude unit. ??????????? WATT Selects watt as amplitude unit. ??????????? VOLT Selects volt as amplitude unit. Impedance Analyzer ???????????????????????????????????????? FORMAT:LIN Y-AXIS Displays the linear magnitude format. ???????????????????????? LOG Y-AXIS Displays the logarithmic scale format. ?????????????????????????????? POLAR CHART Displays a polar format. ????????????????????????????? SMITH CHART Displays a Smith chart format. ?????????????????????????????????????????? ADMITTANCE CHART Displays an admittance Smith chart format. ??????????????????????????????????? COMPLEX PLANE Displays a complex plane format. ??????????????????????????????????????? Selects the unit for phase measurement as DEG (degree) or RAD (radian). The unit selected is shown in brackets. Turns the expanded phase ON or OFF. PHASE UNIT [DEG] ????????????????????????????????????????? EXP PHASE ON o B-6 Softkey Reference 4Display5 Front Panel Key Description 4Display5 ??????????????????????????????????????????? DUAL CHAN on OFF Toggles between the display of both measurement channels or the active channel only. ??????????????????????????????????????? This is used in conjunction with SPLIT DISP ON o to display both channels. ????????????????????????????? Displays the current measurement data trace for the active channel. DISPLAY[DATA] ?????????????????????????????? DISPLAY: DATA Displays the current measurement data trace for the active channel. ?????????????????? Displays the trace memory for the active channel. If no data is stored in memory for this channel, a warning message is displayed. Displays both the current data and the memory traces. MEMORY ???????????????????????????????????????? DATA and MEMORY DATA!MEMORY ??????????????????????????????? ???????????????????????????????????? Stores the current active measurement data in the memory of the active channel. It then becomes the memory trace (for use in subsequent math manipulations or display). When NOP is changed, the memory trace can no longer be used and the data trace will be displayed. OVERLAY TRACES DATA!OVERLAY ???????????????????????????????? ?????????????????????????????????????????? SELECT PEN COLOR ???????????????????????????????????? CLEAR GRAPHICS Displays the current data trace on the LCD. The displayed trace is treated as an image and is not updated when measurement sweep newly occurs. Also, marker cannot be used to read measurement data at each display point. ???????????????????????????????? Species the pen to be used in displaying a overlay trace by DATA!OVERLAY . Erases the image of all overlay traces displayed using DATA!OVERLAY . ???????????????????????????????? ????????????????? RETURN ????????????????????????????????????? DATA HOLD [OFF] ??????????????????????? HOLD: OFF Displays the following menu to specify the data hold function setting. The selected option is shown in brackets in the softkey label. Changing the option will clear the data which is currently held. Turns o the hold function. ?????????? MAX Holds the maximum values at each display point. ????????? Holds the minimum values at each display point. MIN ????????????????? RETURN ???????????????????????????????????????? DATA MATH [DATA] ??????????????? Displays the following softkeys and the OFFSET softkey to dene the oset value using the data math function. The data math function selected is shown in brackets ??????????? ????????????? ( [DATA] shows that the data math function selected DATA ). ?????????????????????????????????????? DATA MATH: DATA Turns o all data math functions. ??????????????????????? DATA+MEM Adds the memory to the data. ??????????????????????? Subtracts the memory from the data. ????????????????????? DATA/MEM Divides the data by the memory. ?????????????????????????????????????????????? Returns gain and oset value back to the default values (gain=1, oset=0). DATA0MEM DEFAULT GAIN & OFS ??????????????? OFFSET MKR!OFFSET ???????????????????????????? Enters the marker's amplitude value into the oset value. ??????????????????????????????? Denes the imaginary part of the oset value when using the Smith, Polar, and admittance chart format. If the format is not one of the above formats, this softkey performs no function. Denes the imaginary part of the oset value when using the Smith, Polar, and admittance chart format. If the format is not one of the above formats, this softkey performs no function. OFFSET VALUE ?????????????????????????????????????????? AUX OFFSET VALUE ????????????????? RETURN ??????????? GAIN Denes the gain value for the data math function. ????????????????? RETURN ???????????? MORE ! Display more menu Softkey Reference B-7 Front Panel Key Description 4Display5 Continued NA/SA Display more menu ??????????????????????????????????????? SPLIT DISP ON o ?????????????????????????????????????????????????? Toggles between a full-screen single graticule display of one or both channels, and a split display with two half-screen graticules one above the other. The split display can ?????????????????????????????????? be used in conjunction with DUAL CHAN ON to show the measured data of each channel simultaneously on separate graticules. DISP ALLOC [ALL INST] ???????????????????????????????????? ALL INSTRUMENT Selects a full screen single screen or two half-screen graticules. ????????????????????????????????????????????????????? HALF INSTR HALF BASIC Selects two half-screens, one graticule display above the HP Instrument BASIC display. ??????????????????????? ALL BASIC Selects a full screen single HP Instrument BASIC display. ????????????????????????????? Selects a full screen graticule and three status lines for HP Instrument BASIC under the graticule. BASIC STATUS ????????????????? RETURN ???????????? TITLE ! See Enter text menu ADJUST DISPLAY ! See Adjust display menu ???????????????????????????????????????? FREQUENCY BLANK ?????????????????????????????????? Displays the title menu in the softkey labels and the character set in the active entry area to display the title in the active channel title area on the screen. Blanks the displayed frequency notation for security purposes. Frequency labels cannot be restored except by pressing 4Preset5 or by turning the power o and then on. ????????????????? RETURN ZA Display more menu ??????????????????????????????????????? SPLIT DISP ON o ?????????????????????????????????????????????????? DISP ALLOC [ALL INST] Toggles between a full-screen single graticule display of one or both channels, and a split display with two half-screen graticules one above the other. The split display can ?????????????????????????????????? be used in conjunction with DUAL CHAN ON to show the measured data of each channel simultaneously on separate graticules. Displays the following menu to allocate the BASIC screen area on the display. ???????????????????????????????????? ALL INSTRUMENT Selects a full screen single screen or two half-screen graticules. ????????????????????????????????????????????????????? HALF INSTR HALF BASIC Selects two half-screens, one graticule display above the HP Instrument BASIC display. ??????????????????????? ALL BASIC Selects a full screen single HP Instrument BASIC display. ????????????????????????????? Selects a full screen graticule and three status lines for HP Instrument BASIC under the graticule. BASIC STATUS ????????????????? RETURN B-8 Softkey Reference Description Front Panel Key 4Display5 Continued ?????????????????????????????????????? EQUIV CKT MENU ????????????????????????????????????????????? SELECT EQV CKT [A] Displays the Equivalent Circuit Menu. Displays the Select Equivalent Circuit Menu. ??????????????? CKT A Selects equivalent circuit A, which is used for inductors with high core loss. ???? B Selects equivalent circuit B, which is used for inductors in general and resistors. ???? C Selects equivalent circuit C, which is used for high-value resistors. ???? D Selects equivalent circuit D, which is used for capacitors. ???? E Selects equivalent circuit E, which is used for resonators. ????????????????????????????????????????????????????? Calculates the equivalent circuit parameters. While the calculation is being performed, the message Calculating EQV parameters is displayed. After the calculation is completed, the values of the equivalent parameters are displayed. Simulates the frequency characteristics by using the current equivalent circuit parameters and shows simulation results on the screen using memory trace. In other words, simulation results are stored into the memory trace. CALCULATE EQV PARAMS ??????????????????????????????????????? SIMULATE F-CHRST ????????????????? RETURN ????????????????????????????????????????? DISP PARM on OFF Calculates and displays the equivalent circuit parameters. ????????????????????????????????????????????? Shows the menu below to specify parameters for the selected equivalent circuit. DEFINE EQV PARAMS ???????????????????????????????? PARAMETER R1 Sets R1 value. ?????? C1 Sets C1 value. ?????? L1 Sets L1 value. ?????? C0 Sets C0 value. ??????????????????????????????????????? Simulates the frequency characteristics by using the current equivalent circuit parameters and shows simulation results on the screen using memory trace. In other words, simulation results are stored into the memory trace. SIMULATE F-CHRST ????????????????? RETURN ????????????????????????????????????????????????????? CALCULATE EQV PARAMS ??????????????????????????????????????? SIMULATE F-CHRST ????????????????? RETURN ???????????? TITLE ! See Enter text menu ADJUST DISPLAY ! See Adjust display menu ???????????????????????????????????????? FREQUENCY BLANK ?????????????????????????????????? Calculates the equivalent circuit parameters. While the calculation is being performed, the message Calculating EQV parameters is displayed. After the calculation is completed, the values of the equivalent parameters are displayed. Simulates the frequency characteristics by using the current equivalent circuit parameters and shows simulation results on the screen using memory trace. In other words, simulation results are stored into the memory trace. Returns to the Equivalent Circuit Menu. Displays the title menu in the softkey labels and the character set in the active entry area to display the title in the active channel title area on the screen. Blanks the displayed frequency notation for security purposes. Frequency labels cannot be restored except by pressing 4Preset5 or by turning the power o and then on. ????????????????? RETURN Softkey Reference B-9 Front Panel Key Description 4Display5 Continued Adjust display menu ????????????????????? INTENSITY Sets the display intensity as a percentage of the brightest setting. ?????????????????????????????????????????????????? BACKGROUND INTENSITY Sets the background intensity of the display as a percentage of the white level. ????????????????????????????????? Displays the menu used for color modication of the display elements. MODIFY COLORS ????????????????????? CH1 DATA Selects channel 1 data trace for color modication and displays the color adjust menu. ??????????????????????????????????????????????? Selects channel 1 memory trace and limit line for color modication and displays the color adjust menu. Selects channel 2 data trace for color modication and displays the color adjust menu. CH1 MEM/ LIMIT LINE ????????????????????? CH2 DATA ??????????????????????????????????????????????? CH2 MEM/ LIMIT LINE ?????????????????????? GRATICULE ??????????????????? WARNING ???????????? Selects channel 2 memory and the reference line and limit line for color modication and displays the color adjust menu. Selects the graticule and a portion of softkey text (where there is a choice of a feature being ON or OFF) for color modication and displays the color adjust menu. Selects the warning annotation for color modication and displays the color adjust menu. MORE ??????????? TEXT ????????????? IBASIC ???????????? Selects all the non-data text for color modication (for example: softkey labels) and displays the color adjust menu. Selects the text on the BASIC screen for color modication and displays the color adjust menu MORE ?????????????? PEN 1 Selects pen 1 for color modication and displays the color adjust menu. ?????????????? PEN 2 Selects pen 2 for color modication and displays the color adjust menu. ?????????????? PEN 3 Selects pen 3 for color modication and displays the color adjust menu. ?????????????? PEN 4 Selects pen 4 for color modication and displays the color adjust menu. ?????????????? PEN 5 Selects pen 5 for color modication and displays the color adjust menu. ?????????????? Selects pen 6 for color modication and displays the color adjust menu. PEN 6 ????????????????? RETURN ????????????????? RETURN ????????????????? RETURN ??????????????????????????????????? DEFAULT COLORS Returns all the color settings back to the factory-set default values. ???????????????????????????? SAVE COLORS Saves the modied version of the color set to the non-volatile memory. ?????????????????????????????????? Recalls the previously saved modied version of the color set from the non-volatile ?????????????????????????????????? memory. RECALL COLORS appears only when a color set has been saved. RECALL COLORS ????????????????? RETURN Color adjust menu ?????????? TINT Adjusts the hue of the chosen attribute. ????????????????????????? BRIGHTNESS Adjusts the brightness of the color being modied. ?????????????? COLOR Adjusts the degree of whiteness of the color being modied. ????????????????????????????? Resets the color being modied to the default color. RESET COLOR ????????????????? RETURN B-10 Softkey Reference 4Scale Ref5 Front Panel Key Description 4Scale Ref5 Network Analyzer ??????????????????????????? AUTO SCALE ????????????????????? SCALE/DIV ???????????????????????????????????????????? REFERENCE POSITION ??????????????????????????????????????? REFERENCE VALUE MKR!REFERENCE ???????????????????????????????????? ??????????????????????????????????????? SCALE FOR [DATA] ?????????????????????????????????????????????? D&M SCALE [COUPLE] ???????????????????????????????????????? ATTENUATOR MENU ???????????????????????? Brings the trace data (dened by the SCALE FOR key) in view on the display with one keystroke. Sweep values are not aected, only scale and reference values. The analyzer determines the smallest possible scale factor that will put all displayed data onto the vertical graticule. Changes the response value scale per division of the displayed trace. In Smith, polar, and admittance chart formats, this refers to the full scale value at the outer circumference and is identical to the reference value. Sets the position of the reference line on the graticule of a Cartesian display (with 0 at the bottom line of the graticule and 10 at the top line). It has no eect on a Smith, polar or admittancechart format. The reference position is indicated with a small triangle just outside the graticule, on the left. Changes the value of the reference line, moving the measurement trace correspondingly. In Smith, polar and admittance chart formats, the reference value is the same as the scale and is the value of the outer circle. Makes the reference value equal to the marker's absolute value(regardless of the delta marker value). The marker is eectively moved to the reference line position. In Smith, polar and admittance chart formats this function makes the full scale value at the outer circle equal to the marker response value. Selects one of the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. Couples or uncouples the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. This is valid only for those traces obtained by the display menu accessed from the 4Display5 key. Displays the menu to control the attenuation at the following ports. ??????????????????? ATTEN R Controls the attenuation at port R. ???????????????????? ATTEN A Controls the attenuation at port A. ??????????????????? ATTEN B Controls the attenuation at port B. ?????????????????????????????????????????????? Controls the attenuation at port 1 of an S-parameter test set that is connected to the analyzer. Controls the attenuation at port 2 of an S-parameter test set that is connected to the analyzer. TEST SET ATTEN PT1 ?????????????????????????????????????????????? TEST SET ATTEN PT1 ????????????????? RETURN Softkey Reference B-11 Description Front Panel Key 4Scale Ref5 Continued Spectrum Analyzer ??????????????????????????????????????? PEAK!REFERENCE ????????????????????? SCALE/DIV ??????????????????????????????????????? REFERENCE VALUE ??????????????????????????????????????? SCALE FOR [DATA] ?????????????????????????????????????????????? D&M SCALE [COUPLE] ???????????????????????????????????????? ATTENUATOR MENU Searches for a peak using the marker and applies a sweep parameter at the marker to the reference value of the sweep parameters for the destination channel. The sweep parameter specied is an absolute value;not a dierence even if a 1marker is used. Changes the response value scale per division of the displayed trace. Changes the value of the reference line, moving the measurement trace correspondingly. In Smith, polar and admittance chart formats, the reference value is the same as the scale and is the value of the outer circle. Selects one of the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. Couples or uncouples the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. This is valid only for those traces obtained by the display menu accessed from the 4Display5 key. Displays the menu to control the attenuation at the following ports. ??????????????????? ATTEN R Controls the attenuation at port R. ???????????????????? ATTEN A Controls the attenuation at port A. ??????????????????? ATTEN B Controls the attenuation at port B. ??????????????????????????????????????? Sets the automatic and manual spectrum analyzer input attenuator of an input port. ATT AUTO on OFF When the automatic attenuator is selected, the value selected ensures that the level meets the following equation: Attnuator value(dB) = (Reference value) 0 (20dB) ????????????????? RETURN Impedance Analyzer ??????????????????????????? AUTO SCALE ????????????????????? SCALE/DIV ???????????????????????????????????????????? REFERENCE POSITION ??????????????????????????????????????? REFERENCE VALUE MKR!REFERENCE ???????????????????????????????????? ??????????????????????????????????????? SCALE FOR [DATA] B-12 Softkey Reference ???????????????????????? Brings the trace data (dened by the SCALE FOR key) in view on the display with one keystroke. Sweep values are not aected, only scale and reference values. The analyzer determines the smallest possible scale factor that will put all displayed data onto the vertical graticule. Changes the response value scale per division of the displayed trace. In Smith, polar, and admittance chart formats, this refers to the full scale value at the outer circumference and is identical to the reference value. Sets the position of the reference line on the graticule of a Cartesian display (with 0 at the bottom line of the graticule and 10 at the top line). It has no eect on a Smith, polar or admittance chart format. The reference position is indicated with a small triangle and a dashed line just outside the graticule, on the left. Changes the value of the reference line, moving the measurement trace correspondingly. In Smith, polar and admittance chart formats, the reference value is the same as the scale and is the value of the outer circle. Makes the reference value equal to the marker's absolute value(regardless of the delta marker value). The marker is eectively moved to the reference line position. In Smith, polar and admittance chart formats this function makes the full scale value at the outer circle equal to the marker response value. Selects one of the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. Front Panel Key Description 4Scale Ref5 Continued ???????????? MORE ??????????????????????????? AUTO SCALE ????????????????????? SCALE/DIV ???????????????????????? TOP VALUE ???????????????????????????????? BOTTOM VALUE MKR!REFERENCE ???????????????????????????????????? ??????????????????????????????????????? SCALE FOR [DATA] ?????????????????????????????????????????????? D&M SCALE [COUPLE] ???????????????????????? Brings the trace data (dened by the SCALE FOR key) in view on the display with one keystroke. Sweep values are not aected, only scale and reference values. The analyzer determines the smallest possible scale factor that will put all displayed data onto the vertical graticule. Changes the response value scale per division of the displayed trace. In Smith, polar, and admittance chart formats, this refers to the full scale value at the outer circumference and is identical to the reference value. Changes the value at the top line of the graticule, moving the measurement trace correspondingly. Changes the value at the bottom line of the graticule, moving the measurement trace correspondingly. Makes the reference value equal to the marker's absolute value(regardless of the delta marker value). The marker is eectively moved to the reference line position. In Smith, polar and admittance chart formats this function makes the full scale value at the outer circle equal to the marker response value. Selects one of the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. Couples or uncouples the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. This is valid only for those traces obtained by the display menu accessed from the 4Display5 key. ???????????? MORE ??????????????????????????? AUTO SCALE ????????????????????? SCALE/DIV ????????????????????????????????????????????? REFERENCE X VALUE ????????????????????????????????????????????? REFERENCE Y VALUE MKR!REFERENCE ???????????????????????????????????? ??????????????????????????????????????? SCALE FOR [DATA] ?????????????????????????????????????????????? D&M SCALE [COUPLE] ???????????????????????? Brings the trace data (dened by the SCALE FOR key) in view on the display with one keystroke. Sweep values are not aected, only scale and reference values. The analyzer determines the smallest possible scale factor that will put all displayed data onto the vertical graticule. Changes the response value scale per division of the displayed trace. In Smith, polar, and admittance chart formats, this refers to the full scale value at the outer circumference and is identical to the reference value. Changes the value of the center position of the X axis, moving the measurement trace correspondingly. Changes the value of the center position of the Y axis, moving the measurement trace correspondingly. Makes the reference value equal to the marker's absolute value(regardless of the delta marker value). The marker is eectively moved to the reference line position. In Smith, polar and admittance chart formats this function makes the full scale value at the outer circle equal to the marker response value. Selects one of the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. Couples or uncouples the \DATA" and \MEMORY" traces to be scaled by prior functions in this menu. This is valid only for those traces obtained by the display menu accessed from the 4Display5 key. ???????????? MORE Softkey Reference B-13 4Bw/Avg5 B-14 Softkey Reference Description Front Panel Key 4Bw/Avg5 Network Analyzer ??????????????????????????????????????????? AVERAGING RESTART ????????????????????????????????????????? AVERAGING on OFF Resets the sweep-to-sweep averaging and restarts the sweep count at 1 at the beginning of the next sweep. The sweep count for averaging is displayed at the left of the display. Turns the averaging function on or o for the active channel. ???????????????????????????????????????? AVERAGING FACTOR Makes the averaging factor the active function. Any value up to 999 can be used. ????????????????????????????????????? IF BW auto MAN When the sweep type is log frequency ( LOG FREQ ), you can choose automatic mode or manual mode for IF bandwidth. (In other sweep types, IF bandwidth is xed to manual mode.) In auto mode, IF bandwidth is automatically set equal to or less than 1/5 of each measurement frequency. If you want to set an upper limit of IF bandwidth in ?????????????????????????????????????? auto mode, press AUTO IFBW LIMIT and enter the upper limit with entry keys. ?????????????? IF BW Selects the bandwidth value for IF bandwidth reduction. ?????????????????????????????????????? AUTO IFBW LIMIT Sets an upper limit for IF bandwidth when IF bandwidth is set to auto mode. ?????????????????????????????????????????????????? Sets the aperture for the group delay measurements as a percentage of the span. GROUP DELY APERTURE Spectrum Analyzer ??????????????????????????????????????????? AVERAGING RESTART ????????????????????????????????????????? AVERAGING on OFF ???????????????????????????????????????? AVERAGING FACTOR ????????????????????????????????????????? RES BW AUTO man ?????????????????? RES BW ??????????????????????????????????? RBW/SPAN RATIO ??????????????????????????????????? VBW TYPE [LIN] ?????????????????????? Resets the sweep-to-sweep averaging and restarts the sweep count at 1 at the beginning of the next sweep. The sweep count for averaging is displayed at the left of the display. Turns the averaging function on or o for the active channel. Whenever an instrument state change aecting the measured data is made, the sweep count for averaging is reset to 1. Makes averaging factor the active function. Any value up to 999 can be used. Toggles between automatic and manual resolution bandwidth settings. The automatic resolution bandwidth species the resolution bandwidth from SPAN and RBW/SPAN ratio. Selecting the automatic setting in the zero span can fail, showing an error message. Selects the bandwidth value for resolution bandwidth reduction. Makes the RBW/SPAN ratio the active function. The RBW/SPAN ratio species resolution bandwidth in AUTO mode. Selects one of the Linear and logarithm types of the post detection lter (VBW). ?????????? [LIN] The Linear type of VBW is selected. The analyzer enters the power (linear value) to be measured to the post-detection lter. In other words, the analyzer calculates logarithms of power after the post-detection lter. ??????????? The logarithm type of VBW is selected. The analyzer enters the logarithm value of power to be measured to the post-detection lter, as same as a conventional analog spectrum analyzer, which uses a log-amplier. (The analyzer calculates logarithms of power before the post-detection lter.) The logarithm VBW makes measurement result 2.5 dB lower than the actual value. Changes the spectrum analyzer's post-detection lter. [LOG] ?????????????????????? VIDEO BW Impedance Analyzer ??????????????????????????????????????????? AVERAGING RESTART ????????????????????????????????????????? AVERAGING on OFF ???????????????????????????????????????? AVERAGING FACTOR Resets the sweep-to-sweep averaging and restarts the sweep count at 1 at the beginning of the next sweep. The sweep count for averaging is displayed at the left of the display. Turns the averaging function on or o for the active channel. Whenever an instrument state change aecting the measured data is made, the sweep count for averaging is reset to 1. Makes averaging factor the active function. Any value up to 999 can be used. ?????????????????????? ????????????????????????????????????? IF BW auto MAN When the sweep type is log frequency ( LOG FREQ ), you can choose automatic mode or manual mode for IF bandwidth. (In other sweep types, IF bandwidth is xed to manual mode.) In auto mode, IF bandwidth is automatically set equal to or less than 1/5 of each measurement frequency. If you want to set an upper limit of IF bandwidth in ?????????????????????????????????????? auto mode, press AUTO IFBW LIMIT and enter the upper limit with entry keys. ?????????????? IF BW Selects the bandwidth value for resolution bandwidth reduction. ?????????????????????????????????????? Sets an upper limit for IF bandwidth when IF bandwidth is set to auto mode. AUTO IFBW LIMIT Softkey Reference B-15 4Cal5 Front Panel Key Description 4Cal5 Network Analyzer ??????????????????????????????????????????? CORRECTION on OFF ????????????????????????????????????? CALIBRATE MENU Cal menu ! See NA ??????????????????????????????????????????????????? RESUME CAL SEQUENCE ???????????????????????????????? CAL KIT [7mm] kit menu ! See NA Cal ???????????? Turns error correction on or o. The analyzer uses the most recent calibration data for the displayed parameter. Displays the menu that provides several accuracy enhancement procedures ranging from a simple frequency response calibration to a full two-port calibration. At the completion of a calibration procedure, correction is automatically turned on, and the notation \Cor" or \C2" is displayed at the left of the screen. Eliminates the need to restart a calibration sequence that was interrupted to access some other menu. Goes back to the point where the calibration sequence was interrupted. Displays the menu that selects one of the default calibration kits available for dierent connector types. This in turn displays additional softkeys used to dene calibration standards other than those in the default kits (see \Modifying Calibration Kits" in Appendix A). When a calibration kit has been specied, its connector type is displayed in brackets in the softkey label. MORE ?????????????????????????????????????? PORT EXTENSIONS ?????????????????????????????????????????? EXTENSIONS on OFF ??????????????????????????????????????????? EXTENSION INPUT R ??????????????????????????????????????????? EXTENSION INPUT A ??????????????????????????????????????????? EXTENSION INPUT B ????????????????????????????????????????? EXTENSION PORT 1 ????????????????????????????????????????? EXTENSION PORT 2 Goes to the reference plane menu that extends the apparent location of the measurement reference plane or input. Toggles the reference plane extension mode. When this function is on, all extensions dened below are enabled; when o, none of the extensions are enabled. Adds electrical delay in seconds to extend the reference plane at input R to the end of the cable. This is used for all R input measurements (including S-parameters). Adds electrical delay to the input A reference plane for all A input measurements (including S-parameters). Adds electrical delay to the input B reference plane for all B input measurements (including S-parameters). Extends the reference plane for measurements of S11 , S21 , and S12 . Extends the reference plane for measurements of S22 , S12 , and S21 . ????????????????? RETURN ????????????????????????????????????? VELOCITY FACTOR Enters the velocity factor used by the analyzer to calculate equivalent electrical length. ??????????????? Sets the characteristic impedance used by the analyzer in calculating measured impedance with Smith chart markers and conversion parameters. If the test set used is an 85046B test set, or an 87512B Transmission/Reection Test Kit, set Z0 to 75 . Characteristic impedance must be set correctly before calibration procedures are performed. Displays softkeys to add or subtract a linear phase slope relative to frequency or a constant phase. SET Z0 ?????????????????????????????????????????????????????? ELECTRICAL DELAY MENU MKR!DELAY ?????????????????????????? ???????????????????????????????????????? ELECTRICAL DELAY ??????????????????????????????? PHASE OFFSET ????????????????? RETURN ????????????????? RETURN B-16 Softkey Reference Enters the group delay at the marker point of a xed frequency aperture, 20 % of the span, to the electrical delay to balance the phase of the DUT. This eectively attens the phase trace around the marker and can measure electrical length or deviation from linear phase. Additional electrical delay adjustment is required for DUTs without constant group delay over the measured frequency span. Because this feature adds phase to a variation in phase versus frequency, it is applicable only for ratioed input Adjusts the electrical delay to balance the phase shift of the DUT. Adds or subtracts a phase oset that is constant with frequency (rather than linear). This is ???????????????????????????????????????? ?????????????????????????????????? independent of MARKER!DELAY and ELECTRICAL DELAY Front Panel Key Description 4Cal5 Continued NA Cal menu ?????????????????????????????????? CALIBRATE:NONE ????????????????????? RESPONSE ????????????? SHORT This softkey is underlined if no calibration has been performed or if the calibration data has been cleared. Unless a calibration is saved on the internal disk, the calibration data is lost when 4Preset5 is pressed, power is cycled on and o, or if an instrument state is recalled. Displays the frequency response calibration. This is the simplest and fastest accuracy enhancement procedure. However, it should only be used when extreme accuracy is not required. It eectively removes the frequency response errors of the test setup for reection or transmission measurements. Measures SHORT standard of 7 mm or 3.5 mm cal kit for the response calibration. ???????????? OPEN Measures OPEN standard of 7 mm or 3.5 mm cal kit for the response calibration. ???????????? THRU Measures THRU standard of 7 mm or 3.5 mm cal kit for the response calibration. ???????????????????????????????????? Completes the response ?????????????????????????????????? calibration and computes and stores the error coecients. The correction menu is displayed with CORRECTION ON . DONE: RESPONSE ?????????????????????????????????????????? RESPONSE & ISOL'N ????????????????????? RESPONSE Displays the menus used to perform a response and isolation measurement calibration (used to measure devices with wide dynamic range). This procedure eectively reduces the same errors as the response calibration. In addition, it eectively reduces the isolation (crosstalk) error in transmission measurements or the directivity error in reection measurements. In addition to the devices required for a simple response calibration, an isolation standard is required. The standard normally used to correct for isolation is an impedance-matched LOAD (usually 50 or 75 ) standard. Response and directivity calibration procedures for reection and transmission measurements are provided in the \Performing a Response \& Isolation Calibration" in Chapter 7. Displays the response standard menu that measures the standard for response calibration. ???????????????????????? ISOL'N STD Displays the menu that performs an isolation measurement calibration. ?????????????????????????????????????????????????? Completes the response and isolation calibration and computes and stores the error coecients. ?????????????????????????????????? The correction menu is displayed with CORRECTION ON . DONE RESP ISOL'N CAL ??????????????????????? S11 1-PORT ???????????????????????? (S11): OPEN ????????????? SHORT ???????????? LOAD ???????????????????????????????????????? DONE: 1-PORT CAL ??????????????????????? S22 1-PORT ???????????????????????? (S22): OPEN ????????????? SHORT ???????????? LOAD ???????????????????????????????????????? DONE: 1-PORT CAL Provides a measurement calibration for reection-only measurements of one-port devices or properly terminated two-port devices, at port 1 of an S-parameter test set or the test port of a transmission/reection test kit. This procedure eectively reduces the directivity, source match, and frequency response errors of the test setup. It provides a higher level of measurement accuracy than the response and isolation calibration. It is the most accurate calibration procedure for reection-only measurements. Three standard devices are required: a SHORT, an OPEN, and an impedance-matched LOAD. The procedure for performing an S11 one-port calibration is described in the \Performing an S11 1-Port Calibration" in Chapter 7. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the OPEN standard and then the softkey label is underlined. Or, this softkey displays the open standard menu that selects an OPEN standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the SHORT standard and then the softkey label is underlined. Or, this softkey displays the short standard menu that selects a SHORT standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the LOAD standard and then the softkey label is underlined. Or, this softkey displays the load standard menu that selects a LOAD standard and measures the standard when the cal kit is 50 or 75 type-N. Completes the 1-port calibration. The error coecients are computed and stored. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. ??????????????????????? This softkey is similar to S11 1-PORT . It is used for reection-only measurements of one-port devices or properly terminated two-port devices in the reverse direction (that is, for devices connected to port 2 of the S-parameter test set). When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the OPEN standard and then the softkey label is underlined. Or, this softkey displays the open standard menu that selects an OPEN standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the SHORT standard and then the softkey label is underlined. Or, this softkey displays the short standard menu that selects a SHORT standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the LOAD standard and then the softkey label is underlined. Or, the softkey displays the load standard menu that selects a LOAD standard and measures the standard when the cal kit is 50 or 75 type-N. Completes the 1-port calibration. The error coecients are computed and stored. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. Softkey Reference B-17 Front Panel Key Description 4Cal5 Continued ??????????????????????????? FULL 2-PORT ?????????????????????? REFLECT'N ???????????????????????? (S11): OPEN ????????????? SHORT ???????????? LOAD ???????????????????????? (S22): OPEN ????????????? SHORT ???????????? LOAD ???????????????????????????????????? REFLECT'N DONE ?????????????????????????????? TRANS-MISSION ????????????????????????????????????????? FWD. TRANS. THRU ???????????????????????????????????????? FWD. MATCH THRU ???????????????????????????????????????? REV. TRANS. THRU ??????????????????????????????????????? REV. MATCH THRU ????????????????????????????? TRANS. DONE ????????????????????? ISOLATION Displays the series of menus used to perform a complete calibration to measure all four S-parameters of a two-port device. This is the most accurate calibration for measurements of two-port devices. It eectively reduces all correctable systematic errors (directivity, source match, load match, isolation, reection tracking, and transmission tracking) in both the forward and the reverse direction. Isolation correction can be omitted for measurements of devices with limited dynamic range. Start the reection calibration for full 2-port calibration and displays the menu that measures one port standards for reection calibration. When the cal kit is a 7 mm or 3.5 mm cal kit this softkey measures the OPEN standard and then the softkey label is underlined. Or, this softkey displays the open standard menu that selects an OPEN standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the short standard and then the softkey label is underlined. Or, the softkey displays the short standard menu that selects a SHORT standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the load standard and then the softkey label is underlined. Or, this softkey displays the load standard menu that selects a LOAD standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the OPEN standard and then softkey label is underlined. Or, this softkey displays the OPEN standard menu that selects an the OPEN standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit, this softkey measures the short standard and then the softkey label is underlined. Or, this softkey displays the short standard menu that selects a SHORT standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit this softkey measures the load standard and then the softkey label is underlined. Or, this softkey displays the load standard menu that selects a LOAD standard and measures the standard when the cal kit is 50 or 75 type-N. Completes the reection calibration for the full 2-port calibration. The error coecients are ?????????????????????? computed and stored. Full 2-Port menu is displayed, with the REFLECT'N softkey underlined. If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. Starts the transmission calibration and displays the menu that measures frequency response and load match for transmission calibration. ????????????????????????????????????????? Measures S21 frequency response, and then FWD. TRANS. THRU is underlined. If the cal kit is a????????????????????????????????????????? user kit and two or more standards are assigned to the forward transmission class, FWD. TRANS. THRU displays the THRU standard menu that selects the THRU standard and measures it. ???????????????????????????????????????? Measures S11 load match, and then FWD. MATCH THRU is underlined. If the cal kit is a user ???????????????????????????????????????? kit and two or more standards are assigned to the forward match class, FWD. MATCH THRU displays the THRU standard menu that selects the THRU standard and measures it. ???????????????????????????????????????? Measures S12 frequency response, and then REV. TRANS. THRU is underlined. If the cal kit is a???????????????????????????????????????? user kit and two or more standards are assigned to the reverse transmission class, REV. TRANS. THRU displays the THRU standard menu that selects the THRU standard and measures it. ??????????????????????????????????????? Measures S22 load match, and then REV. MATCH THRU is underlined. If the cal kit is a user kit ??????????????????????????????????????? and two or more standards are assigned to the reverse match class, REV. MATCH THRU displays the THRU standard menu that selects the THRU standard and measures it. Completes transmission calibration. The error coecients????????????????????????????? are calculated and stored. Full 2-Port ????????????????????????????? menu is displayed, with TRANSMISSION underlined. If TRANS. DONE is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. Starts the isolation calibration and displays the menu that measures isolation. ????????????????????????????????? OMIT ISOLATION Omits correction for isolation from the calibration when it is not required. ???????????????????????????????????????????????? FWD.ISOL'N ISOL'N STD Measures S21 isolation and then FWD.ISOL'N ISOL'N STD is underlined. ??????????????????????????????????????????????? REV.ISOL'N ISOL'N STD Measures S12 isolation and then REV.ISOL'N ISOL'N STD is underlined. ??????????????????????????????????? Completes isolation calibration. The error coecients are calculated and stored. The full 2-port ????????????????????? ??????????????????????????????????? menu is displayed, with ISOLATION underlined. If ISOLATION DONE is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. ISOLATION DONE B-18 Softkey Reference ???????????????????????????????????????????????? ??????????????????????????????????????????????? Front Panel Key Description 4Cal5 Continued ???????????????????????????????????????? DONE: 2-PORT CAL ?????????????????????????????????????? ONE PATH 2-PORT ?????????????????????? REFLECT'N ???????????????????????? (S11): OPEN ????????????? SHORT ???????????? LOAD ???????????????????????????????????? REFLECT'N DONE ?????????????????????????????? TRANS-MISSION ????????????????????????????????????????? FWD. TRANS. THRU ???????????????????????????????????????? FWD. MATCH THRU ????????????????????????????? TRANS. DONE ????????????????????? ISOLATION Completes the full 2-port calibration. The error coecients are computed and stored. The ?????????????????????????????????? correction menu is displayed with CORRECTION ON and the notation C2 is displayed at the left ???????????????????????????????????????? of the screen. If DONE: 2-PORT CAL is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed Displays the series of menus used to perform a high-accuracy, two-port calibration without an S-parameter test set. This calibration procedure eectively reduces directivity, source match, load match, isolation, reection tracking, and transmission tracking errors in one direction only. Isolation correction can be omitted for measurements of devices with limited dynamic range. (The DUT must be manually reversed between sweeps to accomplish measurement of both input and output responses.) The required standards are a SHORT, an OPEN, a THRU, and an impedance-matched LOAD. The procedure for performing a one-path 2-port calibration is described in the \Performing a 1-Path 2-Port Calibration" in Chapter 7. Start the reection calibration for full 2-port calibration and displays the menu that measures one port standards for reection calibration. When the cal kit is a 7 mm or 3.5 mm cal kit this softkey measures the OPEN standard and then the softkey label is underlined. Or, this softkey displays the open standard menu that selects an OPEN standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit this softkey measures the SHORT standard and then the softkey label is underlined. Or, this softkey displays the short standard menu that selects a SHORT standard and measures the standard when the cal kit is 50 or 75 type-N. When the cal kit is a 7 mm or 3.5 mm cal kit this softkey measures the LOAD standard and then the softkey label is underlined. Or, this softkey displays the load standard menu that selects a load standard and measures the standard when the cal kit is 50 or 75 type-N. Completes the reection calibration for the one-path 2-port calibration. The error coecients are ?????????????????????? computed and stored. One-path 2-Port menu is displayed, with the REFLECT'N softkey underlined. If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. Starts the transmission calibration and displays the menu that measures frequency response and load match for transmission calibration. Measures S21 frequency response, and then the softkey is underlined. If the cal kit is user kit and two or more standards are assigned to the forward transmission class, this softkey displays the THRU standard menu that selects the THRU standard and measures it. Measures S11 load match, and then the softkey is underlined. If the cal kit is user kit and two or more standards are assigned to the forward match class, this softkey displays the THRU standard menu that selects the THRU standard and measures it. Completes transmission calibration.????????????????????????????? The error coecients are calculated and stored. The one-path, 2-Port menu is displayed, with the TRANSMISSION softkey underlined. If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. Starts the isolation calibration and displays the menu that measures isolation. ????????????????????????????????? OMIT ISOLATION Omits correction for isolation from the calibration when it is not required. ???????????????????????????????????????????????? FWD.ISOL'N ISOL'N STD Measures S21 isolation and then the softkey label is underlined. ??????????????????????????????????????????????? REV.ISOL'N ISOL'N STD Measures S12 isolation and then the softkey label is underlined. ??????????????????????????????????? Completes isolation calibration. The error coecients are calculated and stored. One-path 2-port ????????????????????? menu is displayed, with the ISOLATION softkey underlined. If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. Completes the one-path 2-port calibration. The error coecients are computed and stored. The ?????????????????????????????????? correction menu is displayed with CORRECTION ON , and the notation C2 is displayed at the left of the screen. If this key is pressed without measuring all the required standards, the message CAUTION:ADDITIONAL STANDARDS NEEDED is displayed. ISOLATION DONE ???????????????????????????????????????? DONE: 2-PORT CAL Softkey Reference B-19 Front Panel Key Description 4Cal5 Continued Response standard menu ????????????? SHORT Measures SHORT standard of 7 mm or 3.5 mm cal kit for the response calibration. ???????????? OPEN Measures OPEN standard of 7 mm or 3.5 mm cal kit for the response calibration. ???????????? THRU Measures THRU standard of 7 mm or 3.5 mm cal kit for the response calibration. ???????????????????????????????? DONE:RESPONSE Completes the response ?????????????????????????????????? calibration and computes and stores the error coecients. The correction menu is displayed with CORRECTION ON . ??????????????????? Measures SHORT standard??????? of type-N cal kits connected to the type-N male test port connector for the response calibration. [M] indicates that the test port connector is male, it does not indicate the connector type of the standard. Measures SHORT standard of ?????? type-N cal kits connected to the type-N female test port connector for the response calibration. [F] indicates that the test port connector is female, it does not indicate the connector type of the standard. Measures OPEN standard ??????? of type-N cal kits connected to the type-N male test port connector for the response calibration. [M] indicates that the test port connector is male, it does not indicate the connector type of the standard.calibration. Measures OPEN standard ?????? of type-N cal kits connected to the type-N female test port connector for the response calibration. [F] indicates that the test port connector is female, it does not indicate the connector type of the standard. Measures THRU standard of type-N cal kits for the response calibration. SHORT[M] ?????????????????? SHORT[F] ????????????????? OPEN[M] ???????????????? OPEN[F] ???????????? THRU ???????????????????????????????? DONE:RESPONSE Completes the response ?????????????????????????????????? calibration and computes and stores the error coecients. The correction menu is displayed with CORRECTION ON . ??????????????????????????? These softkeys measure the standard dened by the user for the response calibration. When only one standard is assigned to the response calibration, this softkey menu is not displayed and the standard is measured immediately. dened std 1 ??????????????????????????? dened std 2 ??????????????????????????? dened std 3 ??????????????????????????? dened std 4 ??????????????????????????? dened std 5 ??????????????????????????? dened std 6 ??????????????????????????? dened std 7 ???????????????????????????????? DONE:RESPONSE B-20 Softkey Reference Completes the response ?????????????????????????????????? calibration and computes and stores the error coecients. The correction menu is displayed with CORRECTION ON . Front Panel Key Description 4Cal5 Continued OPEN standard menu ????????????????? OPEN[M] ???????????????? OPEN[F] ??????????????????????? DONE:OPEN ??????????????????????????? dened std 1 ??????????????????????????? Measures OPEN standard ??????? of type-N cal kits connected to the type-N male test port connector for the response calibration. [M] indicates that the test port connector is male, it does not indicate the connector type of the standard. Measures OPEN standard ?????? of type-N cal kits connected to the type-N female test port connector for the response calibration. [F] indicates that the test port connector is female, it does not indicate the connector type of the standard. Completes the OPEN calibration and computes and stores the error coecients. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . These softkeys measure the standard dened by the user for the OPEN calibration. When only one standard is assigned to the OPEN calibration, this softkey menu is not displayed and the standard is measured immediately. dened std 2 ??????????????????????????? dened std 3 ??????????????????????????? dened std 4 ??????????????????????????? dened std 5 ??????????????????????????? dened std 6 ??????????????????????????? dened std 7 ??????????????????????? DONE:OPEN SHORT standard menu ??????????????????? SHORT[M] ?????????????????? SHORT[F] Completes the OPEN calibration and computes and stores the error coecients. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . Measures SHORT standard??????? of type-N cal kits connected to the type-N male test port connector for the response calibration. [M] indicates that the test port connector is male, it does not indicate the connector type of the standard. Measures SHORT standard of ?????? type-N cal kits connected to the type-N female test port connector for the response calibration. [F] indicates that the test port connector is female, it does not indicate the connector type of the standard. ????????????????????????? DONE:SHORT Completes the SHORT calibration and computes and stores the error coecients. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . ??????????????????????????? These softkeys measure the standard dened by the user for the SHORT calibration. When only one standard is assigned to the SHORT calibration, this softkey menu is not displayed and the standard is measured immediately. dened std 1 ??????????????????????????? dened std 2 ??????????????????????????? dened std 3 ??????????????????????????? dened std 4 ??????????????????????????? dened std 5 ??????????????????????????? dened std 6 ??????????????????????????? dened std 7 ????????????????????????? DONE:SHORT Completes the SHORT calibration and computes and stores the error coecients. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . Softkey Reference B-21 Front Panel Key Description 4Cal5 Continued LOAD standard menu ??????????????????????????? These softkeys measure the standard dened by the user for the LOAD calibration. When only one standard is assigned to the LOAD calibration, this softkey menu is not displayed and the standard is measured immediately. dened std 1 ??????????????????????????? dened std 2 ??????????????????????????? dened std 3 ??????????????????????????? dened std 4 ??????????????????????????? dened std 5 ??????????????????????????? dened std 6 ??????????????????????????? dened std 7 ??????????????????????? DONE:LOAD Completes the LOAD calibration and computes and stores the error coecients. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . THRU standard menu These softkeys measure the standard dened by the user for the THRU calibration. When only one standard is assigned to the THRU calibration, this softkey menu is not displayed and the standard is measured immediately. ??????????????????????????? dened std 1 ??????????????????????????? dened std 2 ??????????????????????????? dened std 3 ??????????????????????????? dened std 4 ??????????????????????????? dened std 5 ??????????????????????????? dened std 6 ??????????????????????????? dened std 7 ??????????????????????? DONE:THRU B-22 Softkey Reference Completes the THRU calibration and computes and stores the error coecients. The correction ?????????????????????????????????? menu is displayed with CORRECTION ON . Description Front Panel Key 4Cal5 Continued NA Cal kit menu ???????????????????????????? CAL KIT:7mm Selects the 7 mm cal kit model. ????????????? 3.5mm Selects the 3.5 mm cal kit model. ????????????????? N 50 Selects the 50 type-N model. ????????????????? N 75 Selects the 75 type-N model. ????????????????????? Selects a cal kit model dened or modied by the user. For information, see \Modifying Calibration Kits" in Appendix A. Stores the user-modied or user-dened kit into memory, after it has been modied. USER KIT ????????????????????????????????? SAVE USER KIT ?????????????????????????????? MODIFY [7mm] ?????????????????????????????????????? DEFINE STANDARD STD NO.1 [SHORT] ! NA/ZA Standard type menu ???????????????????????????????????? STD NO.2 [OPEN] ! NA/ZA Standard type menu ??????????????????????????????????? STD NO.3 [LOAD] ! NA/ZA Standard type menu ???????????????????????????????????????????? STD NO.4 [DEL/THRU] ! NA/ZA Standard type menu ??????????????????????????????????? STD NO.5 [LOAD] ! NA/ZA Standard type menu ??????????????????????????????????? STD NO.6 [LOAD] ! NA/ZA Standard type menu ????????????????????????????????????? STD NO.7 [SHORT] ! NA/ZA Standard type menu ???????????????????????????????????? STD NO.8 [OPEN] ! NA/ZA Standard type menu ??????????????????????????????? SPECIFY CLASS ????????????????????????????????????? ?????????????????????????????? SPECIFY: S11A ?????????? S11B ?????????? S11C ?????????????????????????????? SPECIFY: S22A ?????????? S22B ?????????? S22C ???????????? Displays the modify cal kit menu, where a default cal kit can be user-modied. Makes the standard number the active function and brings up the dene standard number menus. The standard number (1 to 8) is an arbitrary reference number used to reference standards when specifying a class. Each number is similar to a register in that it holds specic information. Each contains the selected type of device (OPEN, SHORT, or THRU) and the electrical model for that device. Selects standard No.1 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.2 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.3 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.4 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.5 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.6 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.7 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.8 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Displays softkeys that assign a standard to a standard class. After the standards are modied, use ??????????????????????????????? SPECIFY CLASS to specify that a class consists of specic standards. Enters the standard numbers for the rst class required for an S11 1-port calibration. (For predened cal kits, this is OPEN (for the 7 mm) or OPENS (for type-N).) Enters the standard numbers for the second class required for an S11 1-port calibration. (For predened cal kits, this is SHORT (for the 7 mm) or SHORTS (for the type-N) .) Enters the standard numbers for the third class required for an S11 1-port calibration. (For predened kits, this is LOAD.) Enters the standard numbers for the rst class required for an S22 1-port calibration. (For predened cal kits, this is OPEN (for the 7 mm) or OPENS (for the type-N).) Enters the standard numbers for the second class required for an S22 1-port calibration. (For predened cal kits, this is SHORT (for the 7 mm) or SHORTS (for the type-N).) Enters the standard numbers for the third class required for an S22 1-port calibration. (For predened kits, this is LOAD.) MORE Softkey Reference B-23 Description Front Panel Key 4Cal5 Continued ????????????????????????????????????????? SPECIFY:FWD.TRANS. ??????????????????????? REV.TRANS. ???????????????????????? FWD.MATCH ??????????????????????? REV.MATCH ????????????????????? RESPONSE ??????????????????????????????????????? RESPONSE & ISO'N ????????????????? Enters the standard numbers for the forward transmission (THRU) calibration. (For predened kits, this is THRU.) Enters the standard numbers for the reverse transmission (THRU) calibration. (For predened kits, this is THRU.) Enters the standard numbers for the forward match (THRU) calibration. (For predened kits, this is THRU.) Enters the standard numbers for the reverse match (THRU) calibration. (For predened kits, this is THRU.) Enters the standard numbers for a response calibration. This calibration corrects for frequency response in either reection or transmission measurements (depending on the parameter being measured when a calibration is performed). (For predened kits, the standard is either OPEN or SHORT for reection measurements or THRU for transmission measurements.) Enters the standard numbers for a response and isolation calibration. This calibration corrects for frequency response and directivity in reection measurements or frequency response and isolation in transmission measurements. RETURN ????????????????????????????????????????????? CLASS DONE (SPEC'D) ????????????????????????????????????????????? CLASS DONE (SPEC'D) ????????????????????????????? LABEL CLASS ??????????????????????????? LABEL: S11A ?????????? S11B ?????????? S11C ??????????????????????????? LABEL: S22A ?????????? S22B ?????????? S22C ???????????? Completes the class assignment and stores it. Completes the class assignment and stores it. Displays softkeys that give the class a meaningful label for future reference. These labels become softkey labels during a measurement calibration. A label can be up to ten characters long. Displays the letter menu to dene the label for the rst class required for an S11 1-port calibration. Displays the letter menu to dene the label for the second class required for an S11 1-port calibration. Displays the letter menu to dene the label for the third class required for an S11 1-port calibration. Displays the letter menu to dene the label for the rst class required for an S22 1-port calibration. Displays the letter menu to dene the label for the second class required for an S22 1-port calibration. Displays the letter menu to dene the label for the third class required for an S22 1-port calibration. MORE ?????????????????????????????????????? LABEL:FWD.TRANS. Displays the letter menu to dene the label for the forward transmission (THRU) calibration. ??????????????????????? REV.TRANS. Displays the letter menu to dene the label for the reverse transmission (THRU) calibration. ???????????????????????? FWD.MATCH Displays the letter menu to dene the label for the forward match (THRU) calibration. ??????????????????????? REV.MATCH Displays the letter menu to dene the label for the reverse match (THRU) calibration. ????????????????????? RESPONSE Displays the letter menu to dene the label for the response calibration. ??????????????????????????????????????? RESPONSE & ISO'N Displays the letter menu to dene the label for the response and isolation calibration. ???????????????????????????? Completes the procedure to dene labels and store them. LABEL DONE ???????????????????????????? LABEL DONE ??????????????????????? LABEL KIT ????????????????????????????????????????????? KIT DONE (MODIFIED) ????????????????? RETURN B-24 Softkey Reference Completes the procedure to dene labels and store them. Displays the letter menu to dene a label for a new calibration kit. This label appears in the ???????????????? CAL KIT softkey label in the correction menu and the MODIFY label in the select cal kit menu. It is saved with calibration data. Completes the procedure to dene user cal kit. ?????????????????? Front Panel Key Description 4Cal5 Continued NA/ZA Standard type menu ???????????????????????????????????? STD TYPE: OPEN ?????? C0 ?????? C1 ?????? C2 ?????????????????????????????????? SPECIFY OFFSET Specify oset menu ???????????????????????? LABEL STD ! NA/ZA ???????????????????????????????????????????? STD DONE (DEFINED) ????????????? SHORT ?????????????????????????????????? SPECIFY OFFSET Specify oset menu ???????????????????????? LABEL STD ! NA/ZA ???????????????????????????????????????????? STD DONE (DEFINED) ???????????? LOAD ?????????????????????????????????? SPECIFY OFFSET Specify oset menu ???????????????????????? LABEL STD ! NA/ZA ???????????????????????????????????????????? STD DONE (DEFINED) ????????????????????????? DELAY/THRU ?????????????????????????????????? SPECIFY OFFSET Specify oset menu ???????????????????????? LABEL STD ! NA/ZA ???????????????????????????????????????????? STD DONE (DEFINED) ???????????????????????????????????????????????? ARBITRARY IMPEDANCE ?????????????????????????????????????????????? Denes the standard type as an OPEN (used for calibrating reection measurements). OPENs are assigned a terminal impedance of innite ohms (but delay and loss osets can still be added). Pressing this key also displays a menu for dening the OPEN (including its capacitance). Enters the C0 term, which is the constant term of the quadratic equation and is scaled by 10015 Farads. Enters the C1 term, expressed in F/Hz (Farads/Hz) and scaled by 10027 . Enters the C2 term, expressed in F/Hz2 and scaled by 10036 . Displays the specify oset menu that denes osets in delay, loss, and standard impedance (Z0 ) for each standard type. Displays the letter menu to dene a label for each standard. Terminates the standard denition. Press this after each standard is dened (including osets). Denes the standard type as a SHORT, for calibrating reection measurements. SHORTs are assigned a terminal impedance of 0 . However, delay and loss osets can still be added. Displays the specify oset menu that denes osets in delay, loss, and standard impedance (Z0 ) for each standard type. Displays the letter menu to dene a label for each standard. Terminates the standard denition. Press this after each standard is dened (including osets). Denes the standard type as a LOAD (termination). LOADs are assigned a terminal impedance equal to the system characteristic impedance Z0 . However, delay and loss osets can still be added. If the LOAD impedance is not Z0 , use the arbitrary impedance standard denition. Displays the specify oset menu that denes osets in delay, loss, and standard impedance (Z0 ) for each standard type. Displays the letter menu to dene a label for each standard. Terminates the standard denition. Press this after each standard is dened (including osets). Denes the standard type as a transmission line of specied length, for calibrating transmission measurements. Displays the specify oset menu that denes osets in delay, loss, and standard impedance (Z0 ) for each standard type. Displays the letter menu to dene a label for each standard. Terminates the standard denition. Press this after each standard is dened (including osets). Denes the standard type to be a LOAD with an arbitrary impedance (dierent from system Z0 ). TERMINAL IMPEDANCE Species the (arbitrary) impedance of the standard in ohms. ?????????????????????????????????? Displays the specify oset menu that denes osets in delay, loss, and standard impedance (Z0 ) for each standard type. Displays the letter menu to dene a label for each standard. SPECIFY OFFSET Specify oset menu ???????????????????????? LABEL STD ! NA/ZA ???????????????????????????????????????????? STD DONE (DEFINED) Terminates the standard denition. Press this after each standard is dened (including osets). ????????????????? RETURN Softkey Reference B-25 Description Front Panel Key 4Cal5 Continued See NA/ZA Specify oset menu ??????????????????????????????? OFFSET DELAY ??????????????????????????? OFFSET LOSS ??????????????????????? OFFSET Z0 ??????????????????????????????????????? Species the one-way electrical delay from the measurement (reference) plane to the standard in seconds (s). (In a transmission standard, oset delay is the delay from plane to plane.) Delay can be calculated from the precise physical length of the oset, the permittivity constant of the medium, and the speed of light. Species energy loss, due to skin eect, along a one-way length of coaxial cable oset. The value of loss is entered as /second at 1 GHz. Species the characteristic impedance of the coaxial cable oset. STD OFFSET DONE Completes procedure to specify oset value of standard. Impedance Analyzer ????????????????????????????????????? CALIBRATE MENU Displays the Calibration Operation Menu that is used to perform a calibration measurement. ???????????? OPEN Measures OPEN standard of the cal kit for calibration. ????????????? SHORT Measures SHORT standard of the cal kit for calibration. ???????????? LOAD Measures LOAD standard of the cal kit for calibration. ???????????????????????????????????????? Completes calibration and then computes and stores the error coecients. DONE: CORRECTION ??????????????????????????????????????????????????? RESUME CAL SEQUENCE ???????????????????????????????????? FIXTURE COMPEN ??????????????????????????????? COMPEN MENU ???????????? OPEN Eliminates the need to restart a calibration sequence that was interrupted to access some other menu. Goes back to the point where the calibration sequence was interrupted. This key also displays the Calibrate Menu which are used to perform a resumed calibration measurement. Displays the Fixture Compensation Menu that is used to perform the xture compensation measurement in order to reduce measurement errors existing in the test xture. Displays the Compensation Operation Menu which are used to perform a xture compensation measurement. Measures OPEN for the xture compensation. ????????????? SHORT Measures SHORT standard for the xture compensation. ???????????? LOAD Measures LOAD standard for the xture compensation. ???????????????????????????????? Completes the xture compensation measurement and then computes and stores the compensation coecients. Goes back to the point where the xture compensation sequence was interrupted when that was interrupted to access some other menu. Turns OPEN xture compensation ON or OFF. DONE: COMPEN ????????????????????????????????????????? RESUME COMP SEQ ????????????????????????????? OPEN on OFF ??????????????????????????????? SHORT on OFF Turns SHORT xture compensation ON or OFF. ????????????????????????????? LOAD on OFF Turns LOAD xture compensation ON or OFF. ????????????????? Returns to the Calibration Menu. RETURN ?????????????????????????????????????????? CAL KIT [IMP 7mm] ????????????????????????????????????????? CAL KIT: IMP 7mm Displays the Cal Kit Menu that selects the default calibration kit and a user kit. This key displays additional softkeys used to dene calibration standards other than those in the default kits. When a calibration kit has been specied, its label is displayed in brackets in the softkey label. Selects the 7 mm cal kit model. ????????????? 3.5mm Selects the 3.5 mm cal kit model. ????????????????? N 50 Selects the 50 type-N model. ????????????????? N 75 Selects the 75 type-N model. ????????????????????? Selects a cal kit model dened or modied by the user. For information, see \Modifying Calibration Kits" in Appendix A. Stores the user-modied or user-dened kit into memory, after it has been modied. USER KIT ????????????????????????????????? SAVE USER KIT ?????????????????????????????? MODIFY [7mm] B-26 Softkey Reference Displays the modify cal kit menu, where a default cal kit can be user-modied. Description Front Panel Key 4Cal5 Continued ?????????????????????????????????????? DEFINE STANDARD ????????????????????????????????????? STD NO.1 [SHORT] ???????????????????????????????????? STD NO.2 [OPEN] ??????????????????????????????????? STD NO.3 [LOAD] ???????????????????????????????????????????? STD NO.4 [DEL/THRU] ??????????????????????????????????? STD NO.5 [LOAD] ??????????????????????????????????? STD NO.6 [LOAD] ????????????????????????????????????? STD NO.7 [SHORT] ???????????????????????????????????? STD NO.8 [OPEN] ??????????????????????????????? SPECIFY CLASS Makes the standard number the active function and brings up the dene standard number menus. The standard number (1 to 8) is an arbitrary reference number used to reference standards when specifying a class. Each number is similar to a register in that it holds specic information. Each contains the selected type of device (OPEN, SHORT, or THRU) and the electrical model for that device. Selects standard No.1 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.2 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.3 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.4 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.5 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.6 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.7 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Selects standard No.8 as the standard denition. The standard type you selected is shown in the softkey label enclosed with brackets. Displays Specify Class Menu. ????????????????????????????????? SPECIFY: IMP A Enters the standard numbers for the rst class required for an impedance calibration. ?????????????? IMP B Enters the standard numbers for the second class required for an impedance calibration. ?????????????? IMP C Enters the standard numbers for the third class required for an impedance calibration. ????????????????????????????????????????????? Completes the class assignment and stores it. CLASS DONE (SPEC'D) ????????????????????????????? LABEL CLASS LABEL: IMP A ! See Enter text menu ?????????????? IMP B ! See Enter text menu ?????????????? IMP C ! See Enter text menu ???????????????????????????? LABEL DONE ??????????????????????????????? ??????????????????????? LABEL KIT ????????????????????????????????????????????? KIT DONE (MODIFIED) Displays Label Class Menu. Denes a label for the rst class required for an impedance calibration. (For predened cal kits, this is OPEN.) Denes a label for the second class required for an impedance calibration. (For predened cal kits, this is SHORT.) Denes a label for the third class required for an impedance calibration. (For predened cal kits, this is LOAD.) Completes setting the label of class. Displays the letter menu to dene a label for a new calibration kit. This label appears in the ???????????????? ?????????????????? CAL KIT softkey label in the correction menu and the MODIFY label in the select cal kit menu. It is saved with calibration data. Completes the procedure to dene user cal kit. ????????????????? RETURN Softkey Reference B-27 Description Front Panel Key 4Cal5 Continued ?????????????????????????????????????????? COMPEN KIT [USER] ??????????????????????????????????????? SAVE COMPEN KIT ??????????????????????????????? MODIFY [USER] ?????????????????????????????????????? DEFINE STANDARD Displays the Compensation Kit Menu that is used to dene user-dene OPEN, SHORT, and LOAD for xture compensation measurement. When a set of user-dened OPEN, SHORT, and LOAD values has been specied, its label is displayed in brackets in the softkey label. Stores the user-modied or user-dened OPEN, SHORT, and LOAD for xture compensation into memory, after it has been modied. Displays the Modify Compensation Kit Menu. Displays the Dene Compensation Standard Menu. ??????????????????????????????????????? OPEN: CONDUCT(G) Sets a conductance value (G) of OPEN. ?????????????? CAP.(C) Sets a capacitance value (C) of OPEN. ???????????????????????????????????? SHORT: RESIST.(R) Sets a resistance value (R) of SHORT. ????????????????????? INDUCT.(L) Sets an inductance value (L) of SHORT. ?????????????????????????????????? LOAD: RESIST.(R) Sets a resistance value (R) of LOAD. ????????????????????? INDUCT.(L) Sets an inductance value (L) of LOAD. ???????????????????????????????????????????? Completes the procedure to dene user-dened OPEN, SHORT, and LOAD. STD DONE (DEFINED) ??????????????????????? LABEL KIT ????????????????????????????????????????????? KIT DONE (MODIFIED) ????????????????? Displays the Letter Menu ??????????????????????????? to dene a label for a new set of user-dened OPEN, SHORT, and LOAD. ???????????????? This label appears in the COMPEN KIT softkey label in the Calibration Menu and the MODIFY label in the Compensation Kit Menu. It is saved with the data of OPEN, SHORT, and LOAD. Completes the procedure to dene user-dened OPEN, SHORT, and LOAD for xture compensation. RETURN ???????????? MORE ???????????????????????????????????? PORT EXTENSION ??????????????????????????????????????? EXTENSION ON o ?????????????????????????????????????? EXTENSION VALUE ????????????????? Displays the Port Extensions Menu that is used to extend the apparent location of the measurement reference plane. Turns port extension ON or OFF. When this function is ON, all extensions dened below are enabled; when OFF, none of the extensions are enabled. Makes the port extension value the active function. This function is used to add electrical delay in seconds to extend the reference plane at the APC-7 connector on the test head to the end of the cable. RETURN ????????????????????????????????????? VELOCITY FACTOR Enters the velocity factor used by the analyzer to calculate equivalent electrical length. ??????????????? Sets the characteristic impedance used by the analyzer in calculating measured impedance with Smith chart markers and conversion parameters. If the test set used is an 85046B test set, or an 87512B Transmission/Reection Test Kit, set Z0 to 75 . Characteristic impedance must be set correctly before calibration procedures are performed. SET Z0 ????????????????? RETURN Spectrum Analyzer ????????????????????????????????????? LVL CAL DATA R ????????????????????????????????????? LVL CAL DATA A Set the level calibration data for the input port R. Set the level calibration data for the input port A. ????????????????????????????????????? LVL CAL DATA B Set the level calibration data for the input port B. ??????????????? Set the input impedance to either 50 or 75 . SET Z0 B-28 Softkey Reference 4Sweep5 Front Panel Key Description 4Sweep5 Network/Impedance Analyzer ?????????????????????????????????????????????????? SWEEP TIME AUTO man ??????????????????????????? SWEEP TIME ??????????????? : h:m:s Toggles between automatic and manual sweep time. The automatic sweep time selects the optimum sweep time automatically. ???????????? Activates the sweep time function and displays the :h:m:s softkey. Enters \:" for the manual sweep time entry. ????????????????? RETURN ?????????????????????????????????????????? NUMBER OF POINTS ??????????????????????????????????????????? COUPLED CH ON o ????????????????????????????????????????? Sets the number of data points per sweep. Using fewer points allows a faster sweep time but the displayed trace shows less horizontal detail. Using more points gives greater data density and improved trace resolution, but slows the sweep. ???????????????????????????????????? Toggles channel coupling of the sweep parameter values. With COUPLED CH ON (the preset condition), both channels have the same sweep parameter values (the inactive channel takes on the sweep parameter values of the active channel). If the channel's analyzer modes are dierent, the channels cannot be coupled. SWEEP TYPE MENU ???????????????????????????????????????????????? SWEEP TYPE:LIN FREQ Activates linear frequency sweep mode. ?????????????????????? Activates logarithmic frequency sweep mode. The source is stepped in logarithmic increments and the data is displayed on a logarithmic graticule. Activates frequency list mode. If the list is not dened, this softkey performs no function. Activates power sweep mode. Used to characterize power-sensitive DUTs. In this mode, power is swept at a single frequency from a start power value to a stop power value. Values are selected using the 4START5 and 4STOP5 keys and the entry block. LOG FREQ ?????????????????????? LIST FREQ ??????????????????????????????? POWER SWEEP ????????????????????? EDIT LIST ??????????????????? SEGMENT ?????????? EDIT ! See NA/ZA segment menu ???????????????? DELETE ?????????? ADD ! See NA/ZA segment menu ????????????????????????? CLEAR LIST ??????????????????????? LIST DONE ???????????????????????????????? SEGMENT WAIT ???????????????????????????????????????????? LIST DISP [FREQ BS] ????????????????? Displays the following softkeys to dene or modify the frequency sweep list. Determines a segment on the list to be modied. Enter the number of a segment in the list, or use the step keys to scroll the pointer \>" at the left to the required segment number. The indicated segment can then be edited or deleted. Displays the segment menu for spectrum analyzer. The segment indicated by the pointer \>" at the left can be modied. Deletes the segment indicated by the pointer \>". Adds a new segment to be dened with the segment menu for spectrum analyzer. If the list is empty, a default segment is added and the edit segment menu is displayed so it can be modied. If the list is not empty, the segment indicated by the pointer \>" is copied and the edit segment menu is displayed. Displays the clear list menu. Denes the frequency sweep list and returns to the sweep type menu. Species the time to keep the analyzer waiting for measurement start after the setting for each segment is completed. When the sweeping mode is set to the frequency list sweep, displays contents of the trace based on either rules: ??????????????????? FREQ BS The trace is sorted based on the sweep parameter. ?????????????????????? The trace is sorted the order of acquisition. ORDER BS RETURN Softkey Reference B-29 Front Panel Key Description 4Sweep5 Continued NA/ZA segment menu ??????????????????????????????????? SEGMENT: START Sets the start frequency of a segment. ??????????? STOP Sets the stop frequency of a segment. ???????????????? CENTER Sets the center frequency of a segment. ??????????? Sets the frequency span of a segment about a specied center frequency. SPAN MKR!MENU ????????????????????????? MKR!START ????????????????????????? MKR!STOP ??????????????????????? MKR!CENTER ????????????????????????????? Sets the sweep parameter start value to the sweep parameter value of the marker. Sets the sweep parameter stop value to the sweep parameter value of the marker. Changes the CENTER to the marker's sweep parameter value. ????????????????? RETURN ???????????? MORE ???????????????????????????????????????? NUMBER of POINTS Sets the number of data points per sweep. ??????????????? POWER Sets the power level segment by segment. ?????????????? IF BW Sets the IF bandwidth segment by segment. ?????????????????????????? DC VOLTAGE Sets DC voltage for the DC SOURCE port segment by segment. ??????????????????????????? Sets DC current for the DC SOURCE port segment by segment. DC CURRENT ????????????????? RETURN ??????????????????????????????? SEGMENT QUIT Returns to the previous softkey menu without saving the modied segment. ????????????????????????????????? Saves the modied segment and returns to the previous softkey menu. SEGMENT DONE B-30 Softkey Reference Description Front Panel Key 4Sweep5 Continued Spectrum Analyzer ?????????????????????????????????????????????????? SWEEP TIME AUTO man ??????????????????????????? SWEEP TIME ??????????????? : h:m:s Shows sweep time mode setting. Sweep time mode in spectrum analyzer mode is xed to auto mode in normal span measurement, and to manual mode in zero span measurement. You cannot change the sweep time mode. The automatic sweep time selects the optimum sweep time automatically. ???????????? Activates the sweep time function and displays the :h:m:s softkey. Enters \:" for the manual sweep time entry. ????????????????? RETURN ?????????????????????????????????????????? NUMBER OF POINTS ????????????????????????????????????????? SWEEP TYPE MENU ???????????????????????????????????????????????? SWEEP TYPE:LIN FREQ ?????????????????????? LIST FREQ ????????????????????? EDIT LIST ??????????????????? SEGMENT ?????????? EDIT ! See SA segment menu ???????????????? DELETE ?????????? ADD ! See SA segment menu ????????????????????????? CLEAR LIST ??????????????????????? LIST DONE ???????????????????????????????? SEGMENT WAIT ???????????????????????????????????????????? LIST DISP [FREQ BS] ????????????????? Sets the number of data points per sweep. Using fewer points allows a faster sweep time but the displayed trace shows less horizontal detail. Using more points gives greater data density and improved trace resolution, but slows the sweep. Displays the sweep type menu. Using the softkeys on this menu, one of the following four sweep types can be selected for the network analyzer mode: Activates linear frequency sweep mode. Activates frequency list mode. If the list is not dened, this softkey performs no function. Displays the following softkeys to dene or modify the frequency sweep list: Determines a segment on the list to be modied. Enter the number of a segment in the list, or use the step keys to scroll the pointer \>" at the left to the required segment number. The indicated segment can then be edited or deleted. Provides the segment menu for network analyzer. The segment indicated by the pointer \>" at the left can be modied. Deletes the segment indicated by the pointer \>". Adds a new segment to be dened with the segment menu for network analyzer. If the list is empty, a default segment is added and the edit segment menu is displayed so it can be modied. If the list is not empty, the segment indicated by the pointer \>" is copied and the edit segment menu is displayed. Displays the clear list menu. Denes the frequency sweep list and returns to the sweep type menu. Species the time to keep the analyzer waiting for measurement start after the setting for each segment is completed. When the sweeping mode is set to the frequency list sweep, displays contents of the trace based on either rules: ??????????????????? FREQ BS The trace is sorted based on the sweep parameter. ?????????????????????? The trace is sorted the order of acquisition. ORDER BS RETURN Softkey Reference B-31 Front Panel Key Description 4Sweep5 Continued SA segment menu ??????????????????????????????????? SEGMENT: START Sets the start frequency of a segment. ??????????? STOP Sets the stop frequency of a segment. ???????????????? CENTER Sets the center frequency of a segment. ??????????? SPAN Sets the frequency span of a segment about a specied center frequency. ????????????????????????? Displays the menu below to set the sweep parameters using the marker. MKR!MENU MKR!START ????????????????????????? MKR!STOP ??????????????????????? MKR!CENTER ????????????????????????????? Sets the sweep parameter start value to the sweep parameter value of the marker. Sets the sweep parameter stop value to the sweep parameter value of the marker. Changes the CENTER to the marker's sweep parameter value. ????????????????? RETURN ???????????? MORE ???????????????????????????????????????? NUMBER of POINTS Sets the number of data points per sweep. ?????????????????? RES BW Sets the IF bandwidth segment by segment. ?????????????????????????? DC VOLTAGE Sets DC voltage for the DC SOURCE port segment by segment. ??????????????????????????? Sets DC current for the DC SOURCE port segment by segment. DC CURRENT ????????????????? RETURN ??????????????????????????????? SEGMENT QUIT Returns to the previous softkey menu without saving the modied segment. ????????????????????????????????? Saves the modied segment and returns to the previous softkey menu. SEGMENT DONE 4Source5 B-32 Softkey Reference Description Front Panel Key 4Source5 Network/Impedance Analyzer ??????????????? POWER Activates the power level function. ???????????????????? CW FREQ Sets the frequency for the power sweep. ?????????????????????????????????????? Sets the DC SOURCE port to control either voltage or current. DC SRC [VOLTAGE] ?????????????????? VOLTAGE The DC SOURCE port controls voltage (voltage control mode). ??????????????????? ??????????????? POWER The DC SOURCE port controls current (current control mode). CURRENT Activates the power level function. ???????????????????? CW FREQ Sets the frequency for the power sweep. ???????????????????????????????????????? Sets the DC SOURCE port to control either voltage or current. DC SRC [CURRENT] ??????????? VOLT The DC SOURCE port controls voltage (voltage control mode). ??????????? ??????????????????????????? DC CURRENT ??????????????????????????????????????? DC VOLTAGE LIMIT ????????????????????????????????? DC OUT ON o ?????????????????????????? DC VOLTAGE ????????????????????????????????????????? DC CURRENT LIMIT ????????????????????????????????? DC OUT ON o Spectrum Analyzer ??????????????? POWER ????????????????????????????????? RF OUT o ON ?????????????????????????? DC VOLTAGE ????????????????????????????????????????? DC CURRENT LIMIT ?????????????????????????????????????? DC SRC [VOLTAGE] The DC SOURCE port controls current (current control mode). CURR Sets DC current for the DC SOURCE port. Sets the upper limit of the current for the DC SOURCE port when ???????????????????????????????????????? DC SRC [CURRENT] is selected. This command also denes the upper limit value for altered polarity because the specied value is regarded as an absolute value. Turns the DC SOURCE port ON or OFF. Sets DC voltage for the DC SOURCE port. Sets the upper limit of the voltage for the DC SOURCE port when DC SRC [VOLTAGE] is selected. This command also denes the upper limit value for altered polarity because the specied value is regarded as an absolute value. Turns the DC SOURCE port ON or OFF. ?????????????????????????????????????? Activates the power level function and sets the RF output power level of the analyzer's internal source. The allowable range is 070 dBm to +20 dBm. Toggles the signal output on the RF OUT port ON or OFF. In the network analyzer mode, if the RF output is turned OFF, the status notation \P#" is displayed. The signal output setting is changed after the 4395A detects the trigger signal. Sets DC voltage for the DC SOURCE port. Sets the upper limit of the voltage for the DC SOURCE port when ?????????????????????????????????????? DC SRC [VOLTAGE] is selected. This command also denes the upper limit value for altered polarity because the specied value is regarded as an absolute value. Sets the DC SOURCE port to control either voltage or current. ??????????????? POWER Activates the power level function. ???????????????????? CW FREQ Sets the frequency for the power sweep. ??????????????????????????? DC CURRENT Sets DC current for the DC SOURCE port. ??????????????????????????????????????? ets the upper limit of the current for the DC SOURCE port when ???????????????????????????????????????? DC SRC [CURRENT] is selected. This command also denes the upper limit value for altered polarity because the specied value is regarded as an absolute value. Sets the DC SOURCE port to control either voltage or current. DC VOLTAGE LIMIT ???????????????????????????????????????? DC SRC [CURRENT] ????????????????????????????????? DC OUT ON o ????????????????????????????????? DC OUT ON o Turns the DC SOURCE port ON or OFF. Turns the DC SOURCE port ON or OFF. Softkey Reference B-33 4Trigger5 Front Panel Key Description 4Trigger5 Network/Impedance Analyzer ?????????????????????????? SWEEP:HOLD Freezes the data trace on the display and the analyzer stops sweeping and taking data. The notation \Hld" is displayed at the left of the graticule. If??????????????? the \3" indicator is on (at the left side of the display), trigger a new sweep by pressing SINGLE . ??????????????? SINGLE Makes one sweep of data and returns to the hold mode. ?????????????????????????????????????????? Triggers a user-specied number of sweeps and returns to the hold mode. If averaging is on, set the number of groups at least equal to the averaging factor selected to allow measurement of a fully averaged trace. Entering the number of groups resets the averaging counter to 1. Triggers the sweep automatically and continuously (the trace is updated with each sweep). This is the standard sweep mode. Displays the menu used to select the trigger source. The trigger source is common to both channels. Selects the internal trigger. NUMBER of GROUPS ?????????????????????????? CONTINUOUS ?????????????????????????????????????????? TRIGGER:[FREE RUN] ?????????????????????? FREE RUN ?????????????????????? EXTERNAL Selects the external trigger input from the BNC on the rear panel. ?????????????????? MANUAL Selects the manual trigger. ?????????????????????????????????????????????????? Toggles the trigger event mode. This function is available in the network analyzer mode only. When in the spectrum analyzer mode, this softkey does not appear on the menu. TRIG EVENT[ON SWEEP] ??????????????????????? [ON POINT] Shows the analyzer triggers each data point in a sweep. ????????????????????????? ???????????????????????????????????????????? TRIG PLRTY POS neg Shows the analyzer triggers a sweep. [ON SWEEP] Selects the trigger signal polarity of an externally generated signal connected to the rear panel EXT TRIGGER input. ?????????????????? POS neg (positive) Shows the sweep is started with a low-to-high transition of a TTL signal. ?????????????????? pos NEG (negative) Shows the sweep is started with a high-to-low transition of a TTL signal. ????????????????? RETURN ??????????????????????????????????????? MEASURE RESTART Aborts the sweep in progress and then restarts the measurement. This can be used to update a measurement following an adjustment of the DUT or test signal source. When a full two-port calibration is in use in the network analyzer mode, ??????????????????????????????????????? MEASURE RESTART initiates an update of both the forward and reverse S-parameter data. If the analyzer is??????????????????????????????????????? measuring a number of groups, the sweep counter is reset to 1. If averaging is on, MEASURE RESTART resets the sweep-to-sweep averaging and is ??????????????????????????????????????????? eectively the same as AVERAGING RESTART . ???????????? ??????????????????????????????????????? If the sweep trigger is in the HOLD mode, MEASURE RESTART executes a single ?????????????????????????? sweep. If DUAL CHAN is on (screen displays both measurement channels), ??????????????????????????????????????? MEASURE RESTART executes a single sweep of both channels even if ??????????????????????????? COUPLED CH is o. B-34 Softkey Reference Description Front Panel Key 4Trigger5 Continued Spectrum Analyzer ?????????????????????????? SWEEP:HOLD Freezes the data trace on the display and the analyzer stops sweeping and taking data. The notation \Hld" is displayed at the left of the graticule. If??????????????? the \3" indicator is on (at the left side of the display), trigger a new sweep by pressing SINGLE . ??????????????? SINGLE Makes one sweep of data and returns to the hold mode. ?????????????????????????????????????????? NUMBER of GROUPS Triggers a user-specied number of sweeps and returns to the hold mode. ?????????????????????????? Triggers the sweep automatically and continuously (the trace is updated with each sweep). This is the standard sweep mode. Displays the menu used to select the trigger source. The trigger source is common to both channels. Selects the internal trigger. CONTINUOUS ?????????????????????????????????????????? TRIGGER:[FREE RUN] ?????????????????????? FREE RUN ?????????????????????? EXTERNAL Selects the external trigger input from the BNC on the rear panel. ?????????????????? MANUAL Selects the manual trigger. ????????????????????????????? Displays the menu used specify the gate trigger mode, the gate delay, and the gate length. To select the gate trigger mode, the following two softkeys are provided: (Option 1D6 only) Selects the level gate trigger mode. GATE [LEVEL] ??????????????????????????????????? GATE CTL:LEVEL ???????????? EDGE Selects the edge gate trigger mode. ??????????????????????????? GATE DELAY Sets the gate delay. (Option 1D6 only) ?????????????????????????????? Sets the gate length. (Option 1D6 only) GATE LENGTH ????????????????? RETURN ???????????????????????????????????????????? TRIG PLRTY POS neg Selects the trigger signal polarity of an externally generated signal connected to the rear panel EXT TRIGGER input. ?????????????????? POS neg (positive) Shows the sweep is started with a low-to-high transition of a TTL signal. ?????????????????? pos NEG (negative) Shows the sweep is started with a high-to-low transition of a TTL signal. ????????????????? RETURN ??????????????????????????????????????? MEASURE RESTART Aborts the sweep in progress and then restarts the measurement. This can be used to update a measurement following an adjustment of the DUT or test signal source. 4Center5 4Span5 4Start5 4Stop5 Softkey Reference B-35 Description Front Panel Key 4Center5 ????????????????????????????????????????????? STEP SIZE AUTO man Toggles CENTER step policy. ???????????? AUTO Sets the step policy to be 1-2-5 step. ?????????? Sets the step policy to linear step specied with ???????????????????????????????????????? CENTER STEP SIZE . (frequency sweep only) MAN ???????????????????????????????????????? CENTER STEP SIZE Changes the step size for the center frequency function. ???????????????????????????????????? Changes the CENTER step size to the marker's sweep parameter value. MKR!CNTR STEP MKR1!CNTR STEP ?????????????????????????????????????? Changes the CENTER step size to the dierence between the marker and the delta-marker values. Changes the CENTER to the marker's sweep parameter value. MKR!CENTER ????????????????????????????? MKR1!CENTER ??????????????????????????????? Changes the CENTER to the dierence between the marker and the delta-marker values. Searches for a peak using the marker and then changes the CENTER to the sweep parameter value of that peak. PEAK!CENTER ??????????????????????????????? 4Span5 ???????????????????????? Sets the SPAN to the maximum range. The maximum range depends on the analyzer mode. The following table shows the maximum range of SPAN for each condition: Sets the SPAN to zero. FULL SPAN ???????????????????????? ZERO SPAN MKR1!SPAN ?????????????????????????? Changes the SPAN to the dierence between the marker and the delta-marker values. 4Start5 Denes the start value of the frequency range or power range of the sweep parameter. When pressed, its function becomes the active function. The value is displayed in the active entry area and can be changed with the knob, step keys, or numeric keypad. Current sweep parameter values for the active channel are also displayed along the bottom of the graticule. In power sweep, the sweep parameter value is in dBm. Denes the stop value of the frequency range or power range of the sweep parameter. When pressed, its function becomes the active function. The value is displayed in the active entry area and can be changed with the knob, step keys, or numeric keypad. Current sweep parameter values for the active channel are also displayed along the bottom of the graticule. In power sweep, the sweep parameter value is in dBm. 4Stop5 ! 4Marker5 4Marker 5 B-36 Softkey Reference Description Front Panel Key 4Marker5 Network/Impedance Analyzer ???????????????????? SUB MKR ! See Sub-marker menu ???????????????????????????????????? CLEAR SUB MKR ! See Sub-marker menu Displays the sub-marker menu that is used to turn on sub-markers. Displays the sub-marker menu that is used to turn o sub-markers. ????????????????????????????? PRESET MKRS Turns o all markers and cancels all setting of the marker functions. ????????????????????????????????? Selects a trace from data or memory to be applied for the marker values. MKR ON [DATA] ????????????? [DATA] Shows that the data trace is selected. ????????????? ???????????????????????????????????? MKR [UNCOUPLE] [MEM] Shows that the memory trace is selected. Toggles between the coupled and uncoupled marker mode. ??????????????????? [COUPLE] Couples the marker sweep parameter values for the two display channels. Even if the sweep parameter is uncoupled and two sets of sweep parameter values are shown, the markers track the same sweep parameter values on each channel as long as they are within the displayed sweep parameter range. ???????????????????????? Allows the marker sweep parameter values to be controlled independently on each channel. Toggles between the continuous and discontinuous marker mode. This softkey appears only in the network analyzer mode.1 [UNCOUPLE] ????????????????????????? MKR [CONT] ?????????????????????? [DISCRETE] Places markers only on the measured trace points as determined by the sweep parameter settings. ?????????????? Interpolates between the measured points to allow the markers to be placed at any point on the trace. Displayed marker values are also interpolated. This is the default marker mode (network analyzer only). [CONT] ????????????????????????????? 1MODE MENU ???????????? 1MKR Displays the delta mode menu that is used to dene the dierence in values between the marker and a 1marker. Puts the delta-maker on the current position of the marker. ??????????????????????????? FIXED 1MKR Sets a user-specied xed reference marker, and turns on the 1marker mode. ?????????????????????????????????? Puts a 1marker at the present active marker position and turns on the tracking 1marker. Turns o the delta marker mode. TRACKING 1MKR ????????????????????????? 1MODE OFF ?????????????????????????????????????????? FIXED 1MKR VALUE ????????????????????????????????????????????????????? FIXED 1MKR AUX VALUE ????????????????? Changes the amplitude value of the xed 1marker. Fixed 1marker amplitude values are always uncoupled in the two channels. Changes the auxiliary amplitude value of the xed 1marker (used only with a polar, Smith, or admittance format in the network analyzer mode). Fixed 1marker auxiliary amplitude values are always uncoupled in the two channels. When the spectrum analyzer mode is selected, this softkey does not appear in this menu. RETURN 1 In the spectrum analyzer mode, the marker is always in the discontinuous mode. Softkey Reference B-37 Description Front Panel Key 4Marker5 Continued Spectrum Analyzer ???????????????????? SUB MKR ! See Sub-marker menu ???????????????????????????????????? CLEAR SUB MKR ! See Sub-marker menu Displays the sub-marker menu that is used to turn on sub-markers. Displays the sub-marker menu that is used to turn o sub-markers. ????????????????????????????? PRESET MKRS Turns o all markers and cancels all setting of the marker functions. ????????????????????????????????? Selects a trace from data or memory to be applied for the marker values. MKR ON [DATA] ????????????? [DATA] Shows that the data trace is selected. ????????????? ???????????????????????????????????? MKR [UNCOUPLE] [MEM] Shows that the memory trace is selected. Toggles between the coupled and uncoupled marker mode. ??????????????????? [COUPLE] Couples the marker sweep parameter values for the two display channels. Even if the sweep parameter is uncoupled and two sets of sweep parameter values are shown, the markers track the same sweep parameter values on each channel as long as they are within the displayed sweep parameter range. ???????????????????????? Allows the marker sweep parameter values to be controlled independently on each channel. Displays the delta mode menu that is used to dene the dierence in values between the marker and a 1marker. Puts the delta-maker on the current position of the marker. [UNCOUPLE] ????????????????????????????? 1MODE MENU ???????????? 1MKR ??????????????????????????? FIXED 1MKR ?????????????????????????????????? TRACKING 1MKR ????????????????????????? 1MODE OFF ?????????????????????????????????? 1MKR SWP PRM ?????????????????????????????????????????? FIXED 1MKR VALUE ????????????????????????????????????????????????????? FIXED 1MKR AUX VALUE ????????????????? Sets a user-specied xed reference marker. The sweep parameter and amplitude values can be set arbitrarily and can be anywhere in the display area. Unlike other markers, the xed 1marker need not be on the trace. The xed 1marker is indicated by a small triangle 1, and the marker sweep parameter and measurement values are shown relative to this point. The notation 1Mkr is displayed at the top right corner of the graticule. Puts a 1marker at the present active marker position and turns on the tracking 1marker. Turns o the delta marker mode. Changes the sweep parameter value of the xed 1marker. Fixed 1marker sweep parameter values can be dierent for the two channels if the channel markers are uncoupled. Changes the amplitude value of the xed 1marker. Fixed 1marker amplitude values are always uncoupled in the two channels. Changes the auxiliary amplitude value of the xed 1marker (used only with a polar, Smith, or admittance format in the network analyzer mode). When the spectrum analyzer mode is selected, this softkey does not appear in this menu. RETURN Sub-marker menu ????????????????????????? SUB MKR 1 ??? 2 ??? 3 ??? 4 ??? 5 ??? 6 ??? 7 ????????????????? RETURN B-38 Softkey Reference These keys put a sub-marker at the present marker position. 4Marker!5 Front Panel Key MKR!CENTER ????????????????????????????? MKR!START ????????????????????????? MKR!STOP ??????????????????????? MKR!REFERENCE ???????????????????????????????????? PEAK!CENTER ??????????????????????????????? ??????????????????????? MKR ZOOM ?????????????????????????????????????????? ZOOMING APERTURE MKR!XCH MENU Description Changes the sweep parameter center value of the destination channel to the sweep parameter value of the marker and centers the new span about that value. Changes the sweep parameter start value of the destination channel to the sweep parameter value of the marker. Changes the sweep parameter stop value of the destination channel to the sweep parameter value of the marker. Sets the reference value of the destination channel to the marker's amplitude value. The reference position is not changed even the network analyzer mode is selected. In the polar, Smith, or admittance chart format of the network analyzer mode, the full scale value at the outer circle is changed to the marker amplitude value. Changes the sweep parameter center value of the destination channel to the sweep parameter value of the peak. Moves the marker to the center and changes the sweep parameter span value of the destination channel to the value specied by the zooming aperture. Performing this function is similar to zooming in on the signal in the center of the sweep range. Sets the zooming aperture value as a percentage of the span. ???????????????????????????????????? MKR!XCH CENTER ???????????????????????????????????????? MKR!XCH START ???????????????????????????????????? MKR!XCH STOP ?????????????????????????????????? PEAK!XCH CENTER ?????????????????????????????????????????? ?????????????????????????????????? MKR XCH ZOOM ?????????????????????????????????????????? ZOOMING APERTURE Applies a sweep parameter at the marker to the center value of the sweep parameters for the channel that is not active. Applies a sweep parameter at the marker to the start value of the sweep parameters for the channel that is not active. Applies a sweep parameter at the marker to the stop value of the sweep parameters for the channel that is not active. Searches for a peak using the marker and applies a sweep parameter at the marker to the center value of the sweep parameters for the channel that is not active. Applies a sweep parameter at the marker to the center value of the sweep parameters for the channel that is not active, and changes the sweep parameter span value of the channel to \sweep parameter span 2 zooming aperture." Sets the zooming aperture value as a percentage of the span. ????????????????? RETURN 4Search5 Softkey Reference B-39 Description Front Panel Key 4Search5 Network/Impedance Analyzer ??????????????????????????????? SEARCH: PEAK ! See Peak menu ?????????? MAX Moves the marker to the maximum or minimum peak and displays the peak menu that is used to search for the next peak. Moves the marker to the maximum amplitude point on the trace. ????????? MIN Moves the marker to the minimum amplitude point on the trace. ???????????????? Moves the marker to a specied target point on the trace and displays to the target menu that is used to search right and search left to resolve multiple solutions. This softkey appears in the network analyzer mode only. Makes the target value to the active function to enter a value and moves the marker to a specied target point on the trace. TARGET ???????????????? TARGET The target value is in units appropriate to the current format. The default target value is 03 dB. In delta marker mode, the target value is the value relative to the 1marker. If no 1marker is on, the target value is an absolute value. Searches the trace for the next occurrence of the target value to the left. ????????????????????????????? SEARCH LEFT ??????????????????????????????? SEARCH RIGHT ???????????????????? SUB MKR ! See Sub-marker menu Searches the trace for the next occurrence of the target value to the right. ????????????????? RETURN ??????????????????????????????????? MULTIPLE PEAKS ! See Print setup menu ????????????????????????????? Displays softkeys that are used to search multiple peaks and to dene peaks to be searched. WIDTHS [OFF] ???????????????????????? SEARCH IN Searches for the cuto point on the trace that is within the current cuto points. ??????????????????????????? This softkey searches for the cuto point on the trace outside of the current cuto points. Turns on the bandwidth search feature and calculates the center sweep parameter value, bandwidth, Q, insertion loss, and cuto point deviation from the center of a bandpass or band reject shape on the trace. The amplitude value that denes the ????????????????????????????? passband or reject band is set using the WIDTH VALUE softkey. SEARCH OUT ?????????????????????????????????? WIDTHS on OFF ???????????????? The 1marker is automatically changed to the tracking 1marker when WIDTHS is ???????????????? turned on. When WIDTHS is ON, the (normal) 1marker cannot be selected. Sets an amplitude parameter (for example, 03 dB) that denes the start and stop points for a bandwidth search. The bandwidth search feature analyzes a bandpass or band reject trace and calculates the center point, bandwidth, and Q (quality factor) for the specied bandwidth. Bandwidth units are in the units of the current format. When the tracking 1marker or the xed 1marker is on, the bandwidth value specied is the dierence from the 1marker. For more information on the width function, see \Width Function" in Appendix A. Sets the width value to the value that equals the marker value divided by square root of 2. Sets the width value to the value that equals the marker value multiplied by square root of 2. Sets the width value to the value that equals the marker value divided by 2. ????????????????????????????? WIDTH VALUE p ??????????????????????? MKRVAL/ 2 p ???????????????????????? MKRVAL* 2 ???????????????????? MKRVAL/2 ????????????????? RETURN ????????????????? RETURN ???????????????????????????????????????????? SRCH TRACK on OFF Toggles the search tracking. This is used in conjunction with other search features to track the search of each new sweep. ??????? ON Makes the analyzer search every new trace for the specied target value and puts the active marker on that point. ????????? When the target is found on the current sweep, it remains at the same sweep parameter value regardless of changes in trace amplitude values in subsequent sweeps. OFF ?????????????????????????????????????????? SRCH RANGE MENU menu ! See Search range B-40 Softkey Reference Displays the Search Range Menu. Description Front Panel Key 4Search5 Continued Peak menu ???????????? PEAK Moves the marker to the maximum or minimum peak. ????????????????????????? NEXT PEAK Moves the marker to the next peak. ?????????????????????????????????????? NEXT PEAK LEFT Moves the marker to the peak on the left of the present marker position. ???????????????????????????????????????? NEXT PEAK RIGHT Moves the marker to the peak on the right of the present marker position. ????????????????????????????????????? Displays the peak denition menu. PEAK DEF MENU ! See Peak denition menu ???????????????????? SUB MKR ! See Sub-marker menu Displays the sub-marker menu that is used to turn on sub-markers. ????????????????? RETURN Print setup menu ???????????????????????????????????????????? SEARCH: PEAKS ALL ???????????????????????????? PEAKS RIGHT ?????????????????????????? PEAKS LEFT PEAK DEF MENU ! See Peak denition menu ???????????????????????????????????????????? SRCH TRACK on OFF ????????????????????????????????????? Searches for eight maximum or minimum peaks using the marker and the sub-markers. Searches to the right of the peak for the nearest seven peaks from the maximum or minimum peak. Searches to the left of the peak for the nearest seven peaks from the maximum or minimum peak. Displays the peak denition menu. Toggles the search tracking. This is used in conjunction with other search features to track the search of each new sweep. ??????? ON Makes the analyzer search every new trace for the specied target value and puts the active marker on that point. ????????? When the target is found on the current sweep, it remains at the same sweep parameter value regardless of changes in trace amplitude values in subsequent sweeps. OFF ????????????????? RETURN Search range menu ????????????????????????????????????????? PART SRCH on OFF MKR1!SEARCH RNG ?????????????????????????????????????????? MKR!LEFT RNG ?????????????????????????????????? MKR!RIGHT RNG ???????????????????????????????????? ????????????????? Turns partial search on or o. The search range is displayed by two small triangles, \4", at the bottom of the graticule. If no search range is dened, the search range is the entire trace. Sets the partial search range to the range between the marker and 1marker. Sets the left (lower) border of the partial search range at the current position of the marker. Sets the right (higher) border of the partial search range at the current position of the marker. RETURN NA/ZA Dene peak menu ????????????????????????????????????????? THRESHOLD on OFF ??????????????????????????????????????? THRESHOLD VALUE MKR!THRESHOLD Toggles the threshold on and o. When turning on, the analyzer will search a peak whose amplitude value is greater than or equal to the threshold. Sets the threshold values. ???????????????????????????????????? Changes the threshold value to the amplitude value of the present marker position. ?????????????????????????????????????????????? Selects the peak polarity for the marker search functions. PEAK PLRTY POS neg ???????? POS Selects a positive peak ????????? ???????????????????????????????? PEAK DEF: 1X ???????????????????????????????? Selects a negative peak NEG Sets the peak delta 1X value that is used to dene the peak. PEAK DEF: 1Y Sets the peak delta 1Y value that is used to dene the peak. ??????????????????????????????????????? Changes the peak delta value to the smaller value of the dierence of amplitude values between the present maker position and both side display points of the marker. MKR!PEAK DELTA ????????????????? RETURN Softkey Reference B-41 Description Front Panel Key 4Search5 Continued Spectrum Analyzer ??????????????????????????????? SEARCH: PEAK ! See Peak menu Moves the marker to the maximum or minimum peak. ?????????? MAX Moves the marker to the maximum amplitude point on the trace. ????????? Moves the marker to the minimum amplitude point on the trace. MIN ??????????????????????????????????? MULTIPLE PEAKS ! See Print setup menu ???????????????????????????????????????????? SGNL TRACK on OFF Displays softkeys that are used to search multiple peaks. Toggles signal tracking on and o. ????????? [ON] Moves the signal that is nearest to the marker to the center of the screen and keeps the signal there. ??????????? ???????????????????????????????????????????? SRCH TRACK on OFF Turns o the signal tracking. [OFF] Toggles the search tracking. This is used in conjunction with other search features to track the search of each new sweep. ??????? ON Makes the analyzer search every new trace for the specied target value and puts the active marker on that point. ????????? When the target is found on the current sweep, it remains at the same sweep parameter value regardless of changes in trace amplitude values in subsequent sweeps. OFF ?????????????????????????????????????????? SRCH RANGE MENU menu SA Dene peak menu ????????????????????????????????????????? THRESHOLD on OFF ! See Search range ??????????????????????????????????????? THRESHOLD VALUE MKR!THRESHOLD Displays the search range menu. Toggles the threshold on and o. When turning on, the analyzer will search a peak whose amplitude value is greater than or equal to the threshold. Sets the threshold values. ???????????????????????????????????? Changes the threshold value to the amplitude value of the present marker position. ???????????????????????????????? Sets the peak delta 1Y value that is used to dene the peak. PEAK DEF: 1Y ????????????????? RETURN 4Utility5 B-42 Softkey Reference Front Panel Key Description 4Utility5 Network/Impedance Analyzer ?????????????????????????????????????? MKR LIST on OFF ??????????????????????????????????????? STATISTICS on OFF ??????????????????????????????????????? MKR TIME on OFF ??????????????????????????????????????? SMTH/POLAR MENU ???????????????????????? REAL IMAG Toggles the marker list function on and o. In 1 mode, this also lists 1marker. Calculates and displays the mean, standard deviation, and peak-to-peak values of the section of the displayed trace in the search range. If Partial Search is o, the statistics are calculated for the entire trace. The statistics are absolute values. Sets the x-axis units to time, (the start point is zero and the stop point is the value of the sweep time). The marker indicates the elapsed time since the sweep started. This function is useful for testing a DUT's time transition characteristics at a certain xed frequency by setting the span to zero. Displays softkeys to select a form of complex marker value on Smith, polar, and admittance chart. Displays the values of the marker on a Smith chart as a real and imaginary pair. ??????????????????????????????????? LIN MAG PHASE Displays a readout of the linear magnitude and the phase of the marker. ???????????????????????????????????? LOG MAG PHASE Displays the logarithmic magnitude value and the phase of the marker. ??????????? Converts the marker values into rectangular form. The complex impedance values of the active marker are displayed in terms of resistance, reactance, and equivalent capacitance or inductance. Displays the complex admittance values of the marker in rectangular form. The marker values are displayed in terms of conductance (in Siemens), susceptance, and equivalent capacitance or inductance. Displays the SWR and phase of the marker. Magnitude values are expressed in dB and phase values in degrees. R+jX ??????????? G+jB ????????????????????????? SWR PHASE ????????????????? RETURN Spectrum Analyzer ?????????????????????????????????????? MKR LIST on OFF ??????????????????????????????????????? STATISTICS on OFF ??????????????????????????????????????? MKR TIME on OFF ???????????????????????????????????????????? NOISE FORM on OFF ???????????????????????????????????? Toggles the marker list function on and o. In 1 mode, this also lists 1marker. Calculates and displays the mean, standard deviation, and peak-to-peak values of the section of the displayed trace in the search range. If Partial Search is o, the statistics are calculated for the entire trace. The statistics are absolute values. Sets the x-axis units to time, (the start point is zero and the stop point is the value of the sweep time). The marker indicates the elapsed time since the sweep started. This function is useful for testing a DUT's time transition characteristics at a certain xed frequency by setting the span to zero. Toggles the noise marker on and o. This marker reads out the average noise level (referenced to a 1 Hz noise power bandwidth) at the marker position. 1Marker reads out spectrum value even if the noise form is turned on. MKR UNIT MENU ???????????????????? UNIT:dBm Selects dBm for the marker readout unit. ????????? dBV Selects dBV for the marker readout unit. ??????????? dBuV Selects dBV for the marker readout unit. ??????????? WATT Selects watt for the marker readout unit. ??????????? Selects volt for the marker readout unit. VOLT ????????????????? RETURN Softkey Reference B-43 4System5 Front Panel Key Description 4System5 ????????????? IBASIC Displays the menu used to operate HP Instrument BASIC. ????????? Step Allows you to execute one program line at a time. ????????????????? Continue Resumes program execution from the point where it paused. ???????? Run Starts a program from its beginning. ??????????? Pause Pauses program execution after the current program line is executed. ????????? Stop Stops program execution after the current line. To restart the program, press Run . ????????? Enters into the EDIT mode. In the EDIT mode, the following softkeys are displayed on the softkey menu area. Produces the command ASSIGN @Hp4395 TO 800 at the cursor's current position. Edit ?????????????????????????????????? ASSIGN @Hp4395 ???????? ???????????????????????????????????? OUTPUT @Hp4395 Produces the command OUTPUT @Hp4395;"" at the cursor's current position. ????????????????????????????????? ENTER @Hp4395 Produces the command ENTER @Hp4395; at the cursor's current position. ????????? END Produces the command END. ??????????????????????? Allows you to move the cursor to any line number or to a label. After pressing ??????????????????????? GOTO LINE , type a line number or a label and then press 4Return5. The cursor moves to the specied line or label. Recalls the last deleted line. GOTO LINE ???????????????????????????? RECALL LINE ????????????????????? END EDIT ???????????????????????????????????? COMMAND ENTRY ????????????????????????????????? SELECT LETTER Exits the edit mode. Displays the softkeys that are used to enter BASIC commands. The active entry area displays the letters, digits, and some special characters. Three sets of letters can be scrolled using the step keys, 4*5 and 4+5. Selects the character pointed to by \"". ????????????? SPACE Inserts a space. ?????????????????????????? BACK SPACE Deletes the last character entered. ???????????????????????????? ERASE TITLE Deletes all characters entered. ???????????? DONE Terminates command entry and executes the command you entered. ????????????????? Cancels command and returns to the previous menu. CANCEL ??????????????????????????????????? ON KEY LABELS ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] B-44 Softkey Reference Description Front Panel Key 4System5 Continued ?????????????????????????????????? PROGRAM MENU ??????????????????????????????? Display the list of the executable programs. Pressing the key with a program name aside will executing the corresponding program. [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ??????????????????????????????? [USER DEFINE] ????????????????????????? NEXT FILES ???????????????????????????????????? STOR DEV [DISK] ?????????????????????????? LIMIT MENU ! See Lmit test menu ????????????????????????????????????? RECALL MESSAGE ???????????? Selects between the exible disk drive and the memory???????????????????? disk as the storage device. ????????????? [DISK] shows the built-in exible disk is selected and [MEMORY] shows the memory disk is selected. Displays the series of menus that denes limits or specications used to test a DUT. Recalls error messages displayed in the message area. Last 32 messages maximum can be hold in the memory. MORE ???????????????????????? SET CLOCK ???????????????????????????????? TIME HH:MM:SS ???????????? HOUR ????????? MIN ???????? SEC ?????????????? ENTER ????????????????? CANCEL ????????????????????????????????? DATE DD/MM/YY ??????????????? MONTH ????????? DAY ???????????? YEAR Displays the series of menus that set an internal clock. Displays the current time on the active entry area and displays the next page to adjust time. Enables changing the hour setting using the knob or the numeric entry keys.1 Enables changing the minute setting using the knob or the numeric entry keys.1 Enables changing the second setting using the knob or the numeric entry keys.1 Displays the current time on the active entry area and displays the next page to adjust time. Returns to the previous page. Pressing this key does not aect the internal clock setting. Displays the current date on the active entry area to adjust date. Enables changing the month setting using the knob or the numeric entry keys.1 Enables changing the day setting using the knob or the numeric entry keys.1 Enables changing the year setting using the knob or the numeric entry keys.1 ?????????????? ENTER Displays the current date on the active entry area to adjust date. ????????????????? returns to the previous page. Pressing this key does not aect the internal clock setting. CANCEL ???????????????????????????????????????????????? DATE MODE:MonDayYear Changes the displayed date to the \month:day:year" format. ??????????????????????? Changes the displayed date to the \day:month:year" format. DayMonYear ????????????????? RETURN ????????????????????????????????????????? BEEP DONE ON o ??????????????????????????????????????????? BEEP WARN on OFF ????????????????????????????????????????? FIRMWARE VERSION Toggles an annunciator that sounds to indicate the completion of operations such as calibration or instrument state save. Toggles the warning annunciator. When the annunciator is on it sounds a warning when a cautionary message is displayed. Displays the rmware revision in the message area. ????????????????? RETURN FFFFFFFFFFFFFF 1 After you change the hour setting, press ENTER to restart the clock. Softkey Reference B-45 Front Panel Key Description 4System5 Continued Lmit test menu ????????????????????????????????????????? LIMIT LINE on OFF ????????????????????????????????????????? LIMIT TEST on OFF ???????????????????????????????????????? BEEP FAIL on OFF ???????????????????????????????????? EDIT LIMIT LINE ??????????????????? SEGMENT ?????????? EDIT ???????????????? DELETE ?????????? ADD ????????????????????????? CLEAR LIST Turns limit lines on or o. If limits have been dened and limit lines are turned on, the limit lines are displayed for visual comparison of the measured data in all Cartesian formats. Turns limit testing on or o. When limit testing is on, the data is compared with the dened limits at each measured point. Limit tests occur at the end of each sweep, whenever the data is updated, and when limit testing is rst turned on. Limit testing is available for both magnitude and phase values in Cartesian formats. In the polar, Smith, and admittance chart formats of the network analyzer, the value tested depends on the marker mode and is the magnitude or the rst value in a complex pair. The message \NO LIMIT LINES DISPLAYED" is displayed in polar, Smith , and admittance chart formats if limit lines are turned on. Turns the limit fail beeper on or o. When limit testing is on and the fail beeper is on, a beep is emitted each time a limit test is performed and a failure detected. Displays a table of limit segments on the lower half of the display. The edit limits menu is displayed so that limits can be dened or changed. Species which limit segment in the table to edit. A maximum of eight sets of segment values are displayed at one time and the list can be scrolled up or down to show other segment entries. The pointer \>" shows the segment that can be edited or deleted. The pointer can be moved using the entry block.?????????? If the table of limits is designated EMPTY, ?????????? new segments can be added using ADD or EDIT . Displays the limit line entry menu that denes or modies the sweep parameter value and limit values of a specied segment. If the table is empty, a default segment is displayed. Deletes the segment indicated by the pointer \ > ." Displays the edit segment menu and adds a new segment to the end of the list. The new segment is??????????????????? initially a duplicate of the segment indicated by the pointer \> " and selected using SEGMENT . If the table is empty, a default segment is displayed. The maximum number of segments is 18. Displays the following softkeys and clears all the segments in the limit test. ??????????????????????????????????? CLEAR LIST YES Clears all the segments in the limit line and returns to the previous menu. ??????? Cancels clearing the segment and returns to the edit limit menu. NO ???????????? DONE ??????????????????????????????????????????? LIMIT LINE OFFSETS ??????????????????????????????????????????? SWP PARAM OFFSET ????????????????????????????????????????? AMPLITUDE OFFSET MKR!AMP.OFS. ??????????????????????????????? ????????????????? RETURN ????????????????? RETURN B-46 Softkey Reference Sorts the limit segments and displays them on the display in increasing order of sweep parameter values. Displays the following three softkeys that oset the complete limit set in either sweep parameter or amplitude value. Adds to or subtracts an oset from the sweep parameter value. This allows limits already dened to be used for testing in a dierent sweep parameter range. Adds or subtracts an oset in amplitude value. This allows previously dened limits to be used at a dierent power level. Move the limits so that they are centered an equal amount above and below the marker at that sweep parameter value. Description Front Panel Key 4System5 Continued Limit line entry menu ????????????????????????? SWP PARAM MKR!SWP PARAM ?????????????????????????????????????? ??????????????????????????? UPPER LIMIT Sets the starting sweep parameter value of a segment using the entry block controls. Changes the segment sweep parameter value to the present marker sweep parameter value. Sets the upper limit value for the segment. Upper and lower limits must be dened. If no upper limit is required for a particular measurement, force the upper limit value out of range (for example +500 dB). ??????????????????????????? ???????????????????????????? When UPPER LIMIT or LOWER LIMIT is pressed, all the segments in the table are displayed in terms of upper and lower limits, even if they were dened as delta limits and middle value. ???????????????????????????? LOWER LIMIT ??????????????????????????? DELTA LIMIT If you attempt to set an upper limit that is lower than the lower limit, or vice versa, both limits will be automatically set to the same value. Sets the limits an equal amount above and below a specied middle value, instead of setting upper and lower limits separately. If no upper lower is required for a particular measurement, force the lower limit value out of range (for example 0500 dB). Sets the limits an equal amount above and below a specied middle value, instead of setting upper and lower limits separately. This is used in conjunction with ?????????????????????????????????????????? ??????????????????????????????? MIDDLE VALUE or MARKER ! MIDDLE , to set limits for testing a device that is specied at a particular value plus or minus an equal tolerance. ????????????????????????????? ??????????????????????????????? MIDDLE VALUE MKR!MIDDLE ???????????????????????????? ???????????? DONE ??????????????????????????????? When DELTA LIMITS or MIDDLE VALUE is pressed, all the segments in the table are displayed in these terms, even if they were dened as upper and lower limits. ????????????????????????????? Sets the midpoint for DELTA LIMITS . It uses the entry controls to set a specied amplitude value vertically centered between the limits. ????????????????????????????? Sets the midpoint for DELTA LIMITS using the marker to set the middle amplitude value of a limit segment. Move the limits so that the limits are automatically set an equal amount above and below the present marker amplitude value. Terminates a limit segment denition and returns to the last menu. 4Local5 4Preset5 Softkey Reference B-47 Front Panel Key Description 4Local5 ???????????????????????????????????????????? SYSTEM CONTROLLER ??????????????????????????????????????????? ADDRESS-ABLE ONLY ????????????????????????????????? SET ADDRESSES ??????????????????????????????? ADDRESS:INSTR ???????????????????????????????????????????? ADDRESS:CONTROLLER Sets the analyzer as the system controller. This mode is used when peripheral devices are to be used and there is no external controller. This mode can only be selected manually from the analyzer's front panel and can be used only if no active system controller is connected to the system through GPIB. If you try to set system controller mode when another system controller is present, the message \CAUTION: CAN'T CHANGE - ANOTHER CONTROLLER ON BUS" is displayed. Sets the analyzer as addressable only. This mode is used when an external controller controls peripheral devices or the analyzer. This mode is also used when the external computer passes control of the bus to the analyzer. Displays the following softkeys: Sets the GPIB address of the analyzer using the entry controls. There is no physical address switch to set in the analyzer. Sets the GPIB address the analyzer will use to communicate with the external controller. ????????????????? RETURN 4Preset5 Presets the instrument state to the preset default value. The preset default values are listed in Appendix C. 4Preset5 has no eect on the following states: Analyzer Type Display Allocation Title Display Adjustment Color Adjustment Clock Time/Date Limit Line Table GPIB Address GPIB Mode (system controller and addressable) User Cal Kit Denition 4Copy5 B-48 Softkey Reference Description Front Panel Key 4Copy5 ?????????????????????????????????????? PRINT [STANDARD] ??????????????????????????? COPY ABORT ????????????????????????????????????????? COPY TIME on OFF ???????????????????????????? PRINT SETUP ! See Print setup menu ??????????????????????????????????????? ORIENT [PORTRAIT] ????????????????????? Copies one page of the tabular listings to a printer. Either STANDARD , for a black and ?????????????? white printer, or COLOR , for a color printer, is shown in brackets(\[ ]"). This identies which printer is selected as the default in the print setup menu. The default setting at power on is standard. Default text for a color printer is black. Aborts printing in progress. Turns the \time stamp" on or o for a print. The time and date are printed out rst, followed by the information shown on the display. Displays the print setup menu. This menu allows you to copy the display to a printer capable of graphics or tabular listing. For information on compatible printers, see Chapter 12. Species the orientation of printer sheets. If your printer does not support landscape printing, this setting is ignored. ???????????????????? PORTRAIT Portrait orientation ???????????????????????? Landscape orientation LANDSCAPE ????????????????????????????????????????? FORM FEED ON o ???????????? MORE ! See Copy more menu Copy cal kit menu ?????????????????????????????????????????????? STANDARD DEFINITION ! See Copy standard no. menu ???????????????????????????????????????? CLASS ASSIGNMENT ????????????????? Species whether to deliver a sheet after one screen is printed out by switching on/o. When the sheet orientation is specied to LANDSCAPE, the FORMFEED setting is ignored and sheets are always ejected after each screen printout. Displays the menu that selects which standard settings are to be hard copied. Shows the tabular listing of the cal kit class assignment and provides the screen menu to prepare for hard copy. RETURN Copy limit test menu ???????????????????????????? DISPLAY LIST Displays the limit testing table and the screen menu to prepare for hard copy. ???????????????????????????????????????????????????? DISP MODE: UPR & LWR Selects the upper and lower formats that display the upper limit and lower limit values. ???????????????????????? Selects the middle and delta formats that display the middle value and the maximum deviation (limit value) from the middle value. MID & DLT ????????????????? RETURN Copy list sweep menu ???????????????????????????? DISPLAY LIST Displays the limit testing table and leads to the screen menu to prepare for hard copy. ?????????????????????????????????????????????? DISP MODE: ST & SP Selects the start/stop format to list the sweep parameter. ??????????????????????????? Selects the center/span format to list the sweep parameter. CTR & SPAN ????????????????? RETURN Copy standard no. menu These softkeys provide the tabular listing of the standard denitions of the standard ??? ??? number 1 to 8 and provide the screen menu to prepare for hard copy. ???????????????????? STD NO.1 ???????????????????? STD NO.2 ???????????????????? STD NO.3 ???????????????????? STD NO.4 ???????????????????? STD NO.5 ???????????????????? STD NO.6 ???????????????????? STD NO.7 ???????????????????? STD NO.8 Softkey Reference B-49 Description Front Panel Key 4Copy5 Continued Print setup menu ??????????????????????????????????? PRINT STANDARD ?????????????? COLOR ????????????????????????????????????????????? PRINT COLOR [FIXED] ???????? DPI ??????????????????????????? TOP MARGIN ????????????????????????????? LEFT MARGIN ????????????????????????????????? DEFAULT SETUP Sets the print command to the default selection (a standard printer that prints in black only or a PaintJet color printer to yield a black-only print). Sets the print command to a default of color. ??????????????? Form feed: Sheet orientation: Softkey label printing: Top margin: Left margin: ????????????????? ?????????????????????? Toggles the printing color between [FIXED] and [VARIABLE]. If FIXED is selected, the ???????????????????? analyzer prints a hard copy with default colors. If VARIABLE is selected, the analyzer prints a hard copy with colors as similar as possible to the display colors (that can be adjusted).1 Species the resolution of a printer used for printing by dpi. The range of settable resolution is between 75 and 600 dpi. Species the top margin of printing by inch. The settable margin range is between 0 and 5 inches in step of 0.1 inch. Species the resolution of a printer used for printing by dpi. The range of settable resolution is between 75 and 600 dpi. Resets the printing parameters to their default values. These defaults are as follows: ON Portraint OFF 1.0 inch 1.0 inch RETURN Screen menu ?????????????????????????????????????? PRINT [STANDARD] ??????????????????????????? COPY ABORT ????????????????????????????????????????? COPY TIME on OFF ???????????????????????????? PRINT SETUP ! See Print setup menu ???????????????????????? NEXT PAGE Copies one page of the tabular listings to a compatible HP graphics printer. Either ?????????????? ????????????????????? STANDARD , for a black and white printer, or COLOR , for a color printer, is shown in brackets(\[ ]"). This identies which printer is selected as the default in the print setup menu. The default setting at power on is standard. Default text for a color printer is black. Aborts printing in progress. Turns printing time and date on or o. The time and date are printed rst then the information displayed. Displays the print setup menu. This menu allows you to copy the display to a printer capable of graphics or tabular listing. For information on compatible printers, see Chapter 12. Displays the next page of information in a tabular listing . ???????????????????????? PREV PAGE Displays the previous page of information in a tabular listing. ????????????????????????????????????? Turns o the tabular listing and returns the measurement display to the screen. RESTORE DISPLAY 1 Because of the limited number of printer ink colors, the printed color is not always the same as the displayed color. B-50 Softkey Reference Front Panel Key Description 4Copy5 Continued NA Copy more menu ??????????????????????????? LIST VALUES ! See Screen menu ??????????????????????????????????????????????????? OPERATING PARAMETERS menu ! See Screen Displays the screen menu. This softkey provides a tabular listing????????????????????????????????? of all the measured ?????????????????????????? data points and their current values. When DUAL CHAN and COUPLED CHAN are ??????? ON , the measured values of both channels are listed at same time. When ??????? ???????????????????????? ???????????????????????? LIMIT LINE and LIMIT TEST are ON , the limit information is also listed together with the measured values. At the same time, the screen menu is displayed to enable hard copy listings and access new pages of the table. Displays the screen menu.Provides a tabular listing on the display of the key parameters for both channels. The screen menu is presented to allow hard copy listings and access new pages of the table. ??????????????????????????????????????????????????? Parameters listed by OPERATION PARAMETERS CAL KIT DEFINITION ! See Copy cal kit menu ????????????????????????????????????????? LIST SWEEP TABLE ! See Copy list sweep menu ??????????????????????????????????????? LIMIT TEST TABLE ! See Copy limit test menu ????????????????? RETURN ??????????????????????????????????????????? Number of points Sweep time Source power Port-1 and 2 attenuator Bandwidth Averaging factor Averaging switch Group delay aperture Calibration kit Z0 Calibration type Sweep conditions when the calibration was performed Phase oset Port 1 and 2 extension Input R, A, and B extension Velocity factor Displays the copy cal kit menu that prints the calibration kit denitions. Displays the copy list sweep menu that can display a tabular listing of the list sweep table and print it. Displays the copy limit test menu that can display a tabular listing of the limit value for limit testing and print it. Softkey Reference B-51 Front Panel Key Description 4Copy5 Continued SA Copy more menu ??????????????????????????? LIST VALUES ! See Screen menu ??????????????????????????????????????????????????? OPERATING PARAMETERS menu ! See Screen LIST SWEEP TABLE ! See Copy list sweep menu ??????????????????????????????????????? LIMIT TEST TABLE ! See Copy limit test menu ????????????????? RETURN ????????????????????????????????????????? ZA Copy more menu ??????????????????????????? LIST VALUES ! See Screen menu ??????????????????????????????????????????????????? OPERATING PARAMETERS menu ! See Screen CAL KIT DEFINITION ! See Copy cal kit menu ??????????????????????????????????????????????????? COMPEN KIT DEFINITION ! See Copy compen kit menu ????????????????????????????????????????? LIST SWEEP TABLE ! See Copy list sweep menu ??????????????????????????????????????? LIMIT TEST TABLE ! See Copy limit test menu ????????????????? RETURN ??????????????????????????????????????????? 4Save5 B-52 Softkey Reference Displays the screen menu. This softkey provides a tabular listing????????????????????????????????? of all the measured ?????????????????????????? data points and their current values. When DUAL CHAN and COUPLED CHAN are ??????? ON , the measured values of both channels are listed at same time. When ??????? ???????????????????????? ???????????????????????? LIMIT LINE and LIMIT TEST are ON , the limit information is also listed together with the measured values. At the same time, the screen menu is displayed to enable hard copy listings and access new pages of the table. Displays the screen menu.Provides a tabular listing on the display of the key parameters for both channels. The screen menu is presented to allow hard copy listings and access new pages of the table. Displays the copy list sweep menu that can display a tabular listing of the list sweep table and print it. Displays the copy limit test menu that can display a tabular listing of the limit value for limit testing and print it. Displays the screen menu. This softkey provides a tabular listing????????????????????????????????? of all the measured ?????????????????????????? data points and their current values. When DUAL CHAN and COUPLED CHAN are ??????? ON , the measured values of both channels are listed at same time. When ??????? ???????????????????????? ???????????????????????? LIMIT LINE and LIMIT TEST are ON , the limit information is also listed together with the measured values. At the same time, the screen menu is displayed to enable hard copy listings and access new pages of the table. Displays the screen menu.Provides a tabular listing on the display of the key parameters for both channels. The screen menu is presented to allow hard copy listings and access new pages of the table. Displays the copy cal kit menu that prints the calibration kit denitions. Displays the copy compen kit menu that prints the calibration kit denitions. Displays the copy list sweep menu that can display a tabular listing of the list sweep table and print it. Displays the copy limit test menu that can display a tabular listing of the limit value for limit testing and print it. Description Front Panel Key 4Save5 ????????????? STATE Species saving the instrument states, the calibration coecients and measurement data. ???????????????????????? DATA ONLY ???????????????????????????? SAVE BINARY Species saving the internal data arrays which are dened using the ????????????????????????????????????????? DEFINE SAVE DATA key. ???????????????????????? Species saving the internal data arrays as an ASCII le. The arrays saved are dened ????????????????????????????????????????? by the DEFINE SAVE DATA key. SAVE ASCII ????????????????????????????????????????? DEFINE SAVE DATA data menu ???????????????????????????????????? STOR DEV [DISK] ! See Dene save ????????????????? Selects between the exible disk drive and the memory???????????????????? disk as the storage device. ????????????? [DISK] shows the built-in exible disk is selected and [MEMORY] shows the memory disk is selected. RETURN ???????????????????? GRAPHICS Species the le format for saving the screen currently displayed as the TIFF format. The traces and background are saved in specied colors. Softkeys are also saved. Displays the Re-save File menu used to update a le that is already saved. ???????????????????????????? RE-SAVE FILE ?????????????????????????????????????????????? BACK UP MEMO DISK Stores the contents of the memory disk in the backup memory ??????????????????????????????? FILE UTILITIES ?????????????????????????? PURGE FILE Displays the Purge File menu used to remove a le saved on the disk. ???????????????????????????????????????? Species creating a new directory in a DOS format disk. This function is not available for LIF les. Species changing the current directory of a DOS format disk. This function is not available for LIF les. Copies les. When a le is copied between the exible disk and the memory disk, the disk formats of the disk and the memory disk must be same format. Displays the Initialize menu. CREATE DIRECTORY ?????????????????????????????????????????? CHANGE DIRECTORY ??????????????????????? COPY FILE ! See Select le menu ????????????????????????????????? INITIALIZE DISK ???????????????????????????????? INIT DISK: YES Initializes the ?????????? disk or the memory disk. When the exible disk is selected for initialization, DISK is displayed in the softkey label, When the memory disk is selected, ?????????????????? MEMORY is displayed. ???????????????????????????? Toggles the disk format between the LIF and DOS formats that are used when initializing a new disk. Selects between the exible disk drive and the memory???????????????????? disk as the storage device. ????????????? [DISK] shows the built-in exible disk is selected and [MEMORY] shows the memory disk is selected. FORMAT [LIF] ???????????????????????????????????? STOR DEV [DISK] ????????????????? RETURN ???????????????????????????????????? STOR DEV [DISK] ????????????????? Selects between the exible disk drive and the memory???????????????????? disk as the storage device. [DISK] shows the built-in exible disk is selected and [MEMORY] shows the memory disk is selected. ????????????? RETURN ???????????????????????????????????? STOR DEV [DISK] Dene save data menu ??????????????????????????? RAW on OFF Selects between the exible disk drive and the memory???????????????????? disk as the storage device. [DISK] shows the built-in exible disk is selected and [MEMORY] shows the memory disk is selected. ????????????? Toggles saving or not saving the raw data arrays. ??????????????????????????? CAL on OFF Toggles saving or not saving the calibration coecients arrays. ????????????????????????????? Toggles saving or not saving the data arrays. DATA on OFF ???????????????????????????? MEM on OFF Toggles saving or not saving the memory arrays. ???????????????????????????????????????????? DATA TRACE on OFF Toggles saving or not saving the trace arrays. ??????????????????????????????????????????? Toggles saving or not saving the memory trace arrays. MEM TRACE on OFF ????????????????? RETURN Softkey Reference B-53 Front Panel Key Description 4Save5 Continued Purge le Yes/No menu ?????????????????????????? PURGE: YES ??????? NO Removes the le and returns to the previous menu. Returns to the previous menu without purging the le. Select le menu ??????????????????? le name ??????????????????? le name ??????????????????? le name ??????????????????? le name ??????????????????? le name ??????????????????? le name Displays the next le names in the softkey label. ????????????????????????? NEXT FILES ????????????????? RETURN 4Recall5 Front Panel Key Description 4Recall5 ??????????????????? le name Selects a le to be loaded and loads the instrument state or data. ??????????????????? le name ??????????????????? le name ??????????????????? le name ??????????????????? le name ??????????????????? le name ????????????????????????? NEXT FILES ???????????????????????????????????? STOR DEV [DISK] B-54 Softkey Reference Selects between the exible disk drive and the memory???????????????????? disk as the storage device. ????????????? [DISK] shows the built-in exible disk is selected and [MEMORY] shows the memory disk is selected. C Input Range and Default Settings When the 4Preset5 key is pressed, or the analyzer is turned ON, the analyzer reverts to a known state. There are subtle dierences between the preset state and the power-up state. Some power-up states are recalled from non-volatile memory (battery backup memory). If power to the non-volatile memory is lost, the analyzer will have certain parameters set to factory settings. \Results of Power Loss to Battery Backup Memory (Factory Setting)" lists the factory settings. The operating time of the battery backup memory is approximately 72 hours(typical). The battery is automatically recharged while the instrument is ON. The recharge time (time required to fully recharge the battery) is approximately 1 hour(typical). This appendix also contains Table C-2 to Table C-7 which provide descriptions of the calibration kits predened for the calibraion functions of the network analyzer. When line power is cycled the analyzer performs a self-test routine. Upon successful completion of the self-test routine, the instrument state is set to the following preset conditions. The same conditions are true following a \PRES" or \3RST" command over the GPIB bus. Active Channel Block 4Chan 15 and 4Chan 25 Function Active Channel Range Chan 1, Chan2 Preset Value Chan 1 Power ON default Chan 1 Input Range and Default Settings C-1 Measurement Block Measurement Block 4Meas5 Function Range Resolution Power ON default Preset Value Ch1:A/R, Ch2:B/R S11 1 Ch1:A/R, Ch2:B/R Ch1:S11 , Ch2:S21 1 O, Z:Re, Z:Trans, Y:Re, Y:Trans, 1/S, 42Phase, 8 2Phase, 162Phase O O Analyzer Type Network, Spectrum, Impedance Analyzer type of the Analyzer type of the active channel before active channel when the power is turned presetting2 OFF2 SA:Input Ports R, A, B R R SA:Detection POS PEAK, NEG PEAK, SAMPLE POS PEAK POS PEAK ZA:Meas Parameter j Zj , z , R, X, jYj, y , G, B, j0j, 0 , 0x , 0y , Cp , Cs , Lp , Ls , Rp, Rs , D, Q Ch1:jZj, Ch2:z Ch1:jZj, Ch2:z ZA:Fixture NONE, 16191, 16192, 16193, 16194, USER NONE NONE NA:Input Ports A/R, B/R, A/B, R, A, B NA:S-parameters S11 , S21 , S12 , S22 NA: Conversion 1 When an S-parameter test set is connected to the analyzer. 2 Both channel 1 and 2 4Format5 Function Range Resolution Preset Value Power ON default NA:Format LOG MAG, PHASE, DELAY, SMITH CHART, POLAR CHART, LIN MAG, SWR, REAL, IMAGINARY, ADMITTANCE CHART Ch1: LOG MAG Ch2: PHASE Ch1: LOG MAG Ch2: PHASE NA/ZA:Phase Unit DEG, RAD DEG DEG NA/ZA:Expand Phase ON, OFF OFF OFF SA: Format SPECTRUM, NOISE SPECTRUM SPECTRUM SA: Unit dBm, dBV, dBV, WATT, WATT LOG Y-AXIS, VOLT, VOLT LOG Y-AXIS dBm dBm ZA:Format LIN Y-AXIS, LOG Y-AXIS, POLAR CHART, SMITH CHART, ADMITTANCE CHART, COMPLEX PLANE LIN Y-AXIS LIN Y-AXIS C-2 Input Range and Default Settings Measurement Block 4Display5 Function Range Resolution Preset Value Power ON default Dual Channel ON, OFF OFF OFF Display DATA, MEMORY, DATA & MEMORY DATA DATA Data Hold OFF, MAX, MIN OFF OFF Data Math DATA, DATA+MEM, DATA0MEM, DATA/MEM, OFF OFF Gain 1 1 0 0 Aux Oset 6100 to 61/1000 6500 k to 61p 6500, 5 digits 0 0 Split Display ON, OFF ON ON Display Allocation All INSTRUMENT, HALF INSTR HALF BASIC, All BASIC, BASIC STATUS No eect All INSTRUMENT Title Max 53 characters No title (No title) Frequency Blank ON (can not be turn O until presetting) OFF OFF Intensity 0 to 100 % No eect 100 % Background Intensity 0 to 100 % No eect 0% Ch1 Data Color No eect Yellow Ch1 Memory/Limit Line Color No eect Green Ch2 Data Color No eect Cyan Ch2 Memory/Limit Line Color No eect Salmon Pink Graticule Color No eect Gray Warning Color No eect Red Text Color No eect White IBASIC Text Color No eect Green Pen 1 Color No eect White Pen 2 Color No eect Red Pen 3 Color No eect Yellow Pen 4 Color No eect Green Pen 5 Color No eect Cyan Pen 6 Color No eect Modied Blue Oset Input Range and Default Settings C-3 Measurement Block Function Range Resolution Preset Value Power ON default Tint 0 to 100 Default settings for each colors Default settings for each colors Brightness 0 to 100 Default settings for each colors Default settings for each colors Color 0 to 100 Default settings for each colors Default settings for each colors ZA:Display Equivalent ON, OFF Circuit OFF OFF ZA:Equivalent Circuit CKT A, CKT B, CKT C, CKT D, CKT E CKT A CKT A ZA:Display Equivalent ON, OFF Parameter 01a1 to +1a ZA:Parameter R1 OFF OFF 1a 0 0 ZA:Parameter C1 1a 0 0 1a 0 0 1a 0 0 ZA:Parameter L1 ZA:Parameter C0 01a to +1a 01a to +1a 01a to +1a 1 a=10018 C-4 Input Range and Default Settings Measurement Block 4Scale Ref5 Function Range Resolution Preset Value Power ON default Scale / Div NA: Log Mag 0.001 to 500 0.001 10 10 NA: Phase 1 p to 500 1p 90 90 NA: Delay 10 f to 10 10 f 10 n 10 n NA: Smith Chart 10 p to 10 k 10 p 1 1 NA: Polar Chart 10 p to 10 k 10 p 1 1 NA: Lin Mag 1 f to 100 M 0.1f 100 m 100 m NA: SWR 1 f to 100 M 0.1f 1 1 NA: Real 1 f to 100 M 0.1f 200 m 200 m NA: Imaginary 1 f to 100 M 0.1f 200 m 200 m NA: Exp Phase 1 f to 100 M 0.1f 90 90 NA: Admittance Chart 10 p to 10 k 10 p 1 1 SA: Unit dBm 0.1 to 20 0.1 10 10 SA: Unit dBV 0.1 to 20 0.1 10 10 SA: Unit dBV 0.1 to 20 0.1 10 10 SA: Unit WATT 1 f to 100 M 0.1 f 1 1 SA: Unit WATT Log Y-axis 0.001 to 100 0.00001 10 10 SA: Unit Volt 1 f to 100 M 0.1 f 1 1 SA: Unit Volt Log Y-axis 0.001 to 100 0.00001 10 10 ZA: Lin Y-axis 1 f to 100 M 1f 100 m 100 m ZA: Log Y-axis 1 f to 100 M 1f 10 10 ZA: Polar Chart 10 f to 500 M 10 f 1 1 ZA: Smith Chart 10 f to 500 M 10 f 1 1 ZA: Admittance Chart 10 f to 500 M 10 f 1 1 ZA: Complex Plane 1 f to 100 M 1f 50 50 ZA: Exp Phase 1 f to 100 M 1f 90 90 Input Range and Default Settings C-5 Measurement Block Function Range Resolution Preset Value Power ON default Scale / Div (continued) ZA: IMPEDANCE: MAG(jZj) 0 to 10 0.01 1k 1k ZA: RESIST(R) 0 to 10 0.01 1k 1k ZA: REACT(X) 0 to 10 0.01 1k 1k ZA: RESISTNCE: PRL(Rp ) 0 to 10 0.01 100 k 100 k ZA: SER: PRL(Rs ) 0 to 10 0.01 100 k 100 k ZA: ADMITTNCE MAG (jYj) 0 to 10 0.01 0.1 0.1 ZA: CONDUCT(G) 0 to 10 0.01 0.1 0.1 ZA: SUSCEPT(B) 0 to 10 0.01 0.1 0.1 ZA: REFL.COEF:MAG(j0j) 0 to 10 0.01 0.2 0.2 ZA: REAL(0x) 0 to 10 0.01 0.2 0.2 ZA: IMAG(0y) 0 to 10 0.01 0.2 0.2 ZA: CAPCITNCE:PRL(Cp) 0 to 10 0.01 100 100 ZA: SER(Cs ) 0 to 10 0.01 100 100 ZA: INDUCTNCE:PRL(Lp) 0 to 10 0.01 1 1 ZA: SER(Ls ) 0 to 10 0.01 1 1 ZA: PHASE(z ) 0 to 10 0.01 36 36 ZA: PHASE(y ) 0 to 10 0.01 36 36 ZA: PHASE(r ) 0 to 10 0.01 36 36 ZA: D FACTOR(D) 0 to 10 0.01 0.1 0.1 ZA: Q FACTOR(Q) 0 to 10 0.01 100 100 C-6 Input Range and Default Settings Measurement Block Function Range Resolution Preset Value Power ON default Reference Value 0.1 m 0 0 0.1 m 0 0 NA: Delay 0500 to 500 0500 M to 500 M 00.5 to 0.5 1f 0 0 NA: Smith Chart 10 n to 500 1n 1 1 NA: Polar Chart 10 n to 500 1n 1 1 NA: Lin Mag 0.1 m 0 0 0.1 m 1 1 0.1 m 0 0 0.1 m 0 0 NA: Exp Phase 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0.1 m 0 0 NA: Admitttance Chart 10 n to 500 1n 1 1 SA: Unit dBm 0.1 0 0 0.1 0 0 SA: Unit dBV(75 ) 0100 to 30 0113.0 to 17.0 0111.2 to 18.8 0.1 0 0 SA: Unit dBV(50 ) 7.0 to 137.0 0.1 0 0 SA: Unit dBV(75 ) 8.8 to 138.8 0.1 0 0 SA: Unit WATT 10 p 0 0 SA: Unit WATT Log Y-axis 010 p to 1.0 01000 to 1000 0.01 m 0 0 SA: Unit Volt(50 ) 2.236 to 7.071 1n 0 0 SA: Unit Volt(75 ) 2.739 to 8.660 1n 0 0 SA: Unit Volt Log Y-axis 0.01 m 0 0 1f 0 0 ZA: Log Y-axis 01000 to 1000 0500 M to 500 M 0500 M to 500 M 1f 0 0 ZA: Polar Chart 10 f to 500 1p 1 1 ZA: Smith Chart 10 f to 500 1p 1 1 ZA: Admittance Chart 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 1f 1 1 1f 1 1 1f 0 0 NA: Log Mag NA: Phase NA: SWR NA: Real NA: Imaginary SA: Unit dBV(50 ) ZA: Lin Y-axis ZA: Complex Plane ZA: Exp Phase Input Range and Default Settings C-7 Measurement Block Function Range Resolution Preset Value Power ON default Reference Value (continued) ZA: IMPEDANCE: MAG(jZj) ZA: RESIST(R) ZA: REACT(X) ZA: RESISTNCE: PRL(RP ) ZA: SER: PRL(Rs ) ZA: ADMITTNCE MAG (jYj) ZA: CONDUCT(G) ZA: SUSCEPT(B) ZA: REFL.COEF:MAG(j0j) ZA: REAL(0x) ZA: IMAG(0y) ZA: CAPCITNCE:PRL(Cp) ZA: SER(Cs ) ZA: INDUCTNCE:PRL(Lp) ZA: SER(Ls ) ZA: PHASE(z ) ZA: PHASE(y ) ZA: PHASE(r ) ZA: D FACTOR(D) ZA: Q FACTOR(Q) 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M 0500 M to 500 M C-8 Input Range and Default Settings 1f 5k 5k 1f 5k 5k 1f 5k 5k 1f 500 k 500 k 1f 500 k 500 k 1f 500 m 500 m 1f 500 m 500 m 1f 500 m 500 m 1f 0 0 1f 0 0 1f 0 0 1f 500 500 1f 500 500 1f 5 5 1f 5 5 1f 0 0 1f 0 0 1f 0 0 1f 0.5 0.5 1f 500 500 Measurement Block Function Range Resolution Preset Value Power ON default Reference Position NA: Log Mag 0 to 10 0.01 5 5 NA: Phase 0 to 10 0.01 5 5 NA: Delay 0 to 10 0.01 5 5 NA: Smith Chart 0 to 10 0.01 5 5 NA: Polar Chart 0 to 10 0.01 5 5 NA: Lin Mag 0 to 10 0.01 0 0 NA: SWR 0 to 10 0.01 1 1 NA: Real 0 to 10 0.01 5 5 NA: Imaginary 0 to 10 0.01 5 5 NA: Exp Phase 0 to 10 0.01 5 5 NA: Admittance Chart 0 to 10 0.01 5 5 SA: Unit dBm 10 (xed) | 10 10 SA: Unit dBV 10 (xed) | 10 10 SA: Unit WATT 10 (xed) | 10 10 SA: Unit WATT Log Y-axis 10 (xed) | 10 10 SA: Unit Volt 10 (xed) | 10 10 SA: Unit Volt Log Y-axis ZA:1 10 (xed) | 10 10 0 to 10 0.01 5 5 1 Except for Log Y-axis or Complex Plane. Top Value Analyzer Mode:ZA, Format:Log Y-axis Input Range and Default Settings C-9 Measurement Block Function IMPEDANCE: MAG(jZj) RESIST(R) REACT(X) RESISTNCE: PRL(RP ) SER: PRL(Rs ) ADMITTNCE MAG (jYj) CONDUCT(G) SUSCEPT(B) REFL.COEF:MAG(j0j) REAL(0x) IMAG(0y) CAPCITNCE:PRL(Cp) SER(Cs ) INDUCTNCE:PRL(Lp) SER(Ls ) PHASE(z ) PHASE(y ) PHASE(r ) D FACTOR(D) Q FACTOR(Q) Range 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G Resolution Power ON default 1f 1M 1M 1f 1M 1M 1f 1M 1M 1f 1M 1M 1f 1M 1M 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1m 1m 1f 1m 1m 1f 10 10 1f 10 10 1f 200 200 1f 200 200 1f 200 200 1f 1 1 1f 1000 1000 Bottom Value Analyzer Mode:ZA, Mode:Log Y-axis C-10 Input Range and Default Settings Preset Value Measurement Block Function Range IMPEDANCE: MAG(jZj) RESIST(R) REACT(X) RESISTNCE: PRL(RP ) SER: PRL(Rs ) ADMITTNCE MAG (jYj) CONDUCT(G) SUSCEPT(B) REFL.COEF:MAG(j0j) REAL(0x ) IMAG(0y ) CAPCITNCE:PRL(Cp ) SER(Cs ) INDUCTNCE:PRL(Lp ) SER(Ls ) PHASE(z ) PHASE(y ) PHASE(r ) D FACTOR(D) Q FACTOR(Q) Function 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G 01 G to 1 G Range Resolution Preset Value Power ON default 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1n 1n 1f 1n 1n 1f 10 p 10 p 1f 10 p 10 p 1f 1 1 1f 1 1 1f 1 1 1f 1 1 1f 1 1 Resolution Preset Value Power ON default Reference X,Y Value ZA: Complex Plane 01 G to 1 G 0.1 f 0 0 Input Range and Default Settings C-11 Measurement Block Function Range Resolution Preset Value Power ON default NA: Scale for Data, Memory Data Data NA: Scale Couple On, O On On NA: Electrical delay 0 0 NA: Phase oset 00.01 to 0.01 6360 0 0 SA: Attenuator mode Manual, Auto Auto Auto SA: Attenuator at R input 0, 10, 20, 30, 40, 50 dB 10 dB 20 dB 20 dB SA: Attenuator at A input 0, 10, 20, 30, 40, 50 dB 10 dB 20 dB 20 dB SA: Attenuator at B and B inputs 0, 10, 20, 30, 40, 50 dB 10 dB 20 dB 20 dB SA: Scale for Data, Memory Data Data SA: Scale Couple On, O On On SA: Max. mixer level 0100 to 010 dBm 010.0 010.0 ZA: Scale for Data, Memory Data Data ZA: Scale Couple On, O On On C-12 Input Range and Default Settings 1f 10 dB Measurement Block 4Bw/Avg5 Function Range Resolution Preset Value Power ON default NA: Band width 2, 10, 30, 100, 300, 1 k, 3 k, 10 k, 30 kHz 30 kHz 30 kHz NA: Averaging On, O O O NA: Averaging factor 1 to 999 16 16 NA: Group delay aperture 0.25 to 20 % of span 1% 1% SA: Resolution Band width span=0 3 k, 5 k, 10 k, 20 k, 40 k, 100 k, 200 k, 400 k, 800 k, 1.5 M, 3 M 3 MHz 3 MHz SA: Resolution Band width span>0 1 to 12106 Hz 1-3 step, Auto 1 M (Auto) 1 M (Auto) SA: Averaging On, O O O SA: Averaging factor 1 to 999 16 16 SA: RBW/SPAN ratio 0.01 to 10 % of span 0.2 % 0.2 % SA: Video Band Width 0.003 to 12106 Hz 1-3 step 1M 1M ZA: Band width 2, 10, 30, 100, 300, 1 k, 3 k, 10 k, 30 kHz 1 kHz 1 kHz ZA: Averaging On, O O O ZA: Averaging factor 1 to 999 16 16 4Cal5 Input Range and Default Settings C-13 Sweep Block Function Range Resolution Preset Value Power ON default NA: Correction On, OFF O O NA: Calibration Type None, Response, S11 1port, S22 1port, Full 2port, One path 2port None None NA: Calibration Kit 7 mm, 3.5 mm, N50 , N75 , User kit 7 mm 7 mm NA: System Impedance 1 m to 52106 50 50 NA: Velocity factor 0.0 to 10.0 1f 1 1 NA: Port1 extension 00.01 to 0.01 00.01 to 0.01 00.01 to 0.01 00.01 to 0.01 00.01 to 0.01 1f 0 0 1f 0 0 1f 0 0 1f 0 0 1f 0 0 SA: System Impedance 50, 75 50 50 SA: Input Z 50, 75 50 50 ZA: Correction On, OFF O O ZA: Calibration Kit 7 mm, 3.5 mm, N50 , N75 , User kit 7 mm 7 mm 50 50 NA: Port2 extension NA: Input R extension NA: Input A extension NA: Input B extension ZA: System Impedance 50 Sweep Block 4Sweep5 C-14 Input Range and Default Settings Sweep Block Function Range Resolution Preset Value Power ON default NA: Sweep time mode Auto, Man Auto Auto NA: NOP 2 to 801 201 201 NA: Coupled Channel On, O On On NA: Sweep type Lin-Freq, Log-Freq, List-Freq, Power Lin-Freq Lin-Freq NA: List edit mode (sweep range) Start-stop, Center-Span Start-stop Start-stop NA: List edit mode (resolution) NOP, Step size NOP NOP SA: Sweep time mode Auto, Man Auto Auto SA: NOP for zero span1 2 to 801 801 801 SA: Sweep type Lin-Freq, List-Freq Lin-Freq Lin-Freq SA: List edit mode Start-stop, Center-Span Start-stop Start-stop ZA: Sweep time mode Auto, Man Auto Auto ZA: NOP 2 to 801 201 201 ZA: Coupled Channel On, O On On ZA: Sweep type Lin-Freq, Log-Freq, List-Freq, Power Lin-Freq Lin-Freq 1 NOP is automatically set and can not be changed by user, except for ZERO SPAN. 4Source5 Function Range 050 to +15 dBm Resolution Preset Value Power ON default 0.1 dB 0 dBm 0 dBm NA: Attenuator port 1 0 to 70 dB 10 dB 0 0 NA: Attenuator port 2 0 to 70 dB 10 dB 0 0 NA: CW frequency 10 Hz to 510 MHz 1 mHz 250 MHz 250 MHz SA: Power 0 50 to + 15 dBm 0.1 dB 0 dBm 0 dBm SA: Power OUT On, O O O ZA: Power 050 to +15 dBm 0.1 dB 0 dBm 0 dBm ZA: CW frequency 10 Hz to 510 MHz 1 mHz 250 MHz 250 MHz NA: Power Input Range and Default Settings C-15 Sweep Block 4Trigger5 Function Range Resolution Preset Value Power ON default Trigger type Continuos, Number of groups, Single, Hold, Continuous Continuous NA: Trigger Source Free run, External, Manual, GPIB Free run Free run NA: Trigger event On point, On sweep On sweep On sweep Trigger polarity Positive, Negative Positive Positive Gate type Level, Edge level Level Gate delay 0.8 s to 3.2 s 0.8 s 0.8 sec Gate length 6 s to 3.2 s 100 s 100 sec SA: Trigger Source Free run, External, Manual, GPIB, Level Gate1 , Edge Gate1 Free run Free run 1 With option 1D6. 4Center5 Function Range NA: Center Frequency 0 Hz to 510 MHz NA: Step Size mode Resolution 1 mHz On(1-2-5 step), O(linear) SA: Center Frequency 10 Hz to 510 MHz SA: Step Size mode On(1-2-5 step), O(linear) Center step size 1 mHz to 510 MHz ZA: Step Size mode On(1-2-5 step), O(linear) 1 mHz 1 mHz Preset Value Power ON default 250 MHz 250 MHz On On 250 MHz 250 MHz O O 10 MHz 10 MHz On On 4Span5 Function Range NA: Span Frequency 0 Hz to 509.99999 MHz NA: Span power 0 to 20 dB SA: Span Frequency 0 Hz to 510 MHz ZA: Span Frequency 0 Hz to 509.99999 MHz C-16 Input Range and Default Settings Resolution 1 mHz Preset Value Power ON default 499.99999 MHz 499.99999 MHz 20 dB 20 dB 1 mHz 500 MHz 500 MHz 1 mHz 499.99999 MHz 499.99999 MHz Marker Block 4Start5 & 4Stop5 Function Range Resolution Preset Value Power ON default NA: Start Frequency 10 Hz to 510 MHz 1 mHz 10 Hz 10 Hz NA: Stop Frequency 10 Hz to 510 MHz 1 mHz 500 MHz 500 MHz NA: Start power 0.1 dBm 020 dBm 020 dBm NA: Stop power 050 to +15 dBm 050 to +15 dBm 0.1 dBm 0 dBm 0 dBm SA: Start Frequency 0 Hz to 510 MHz 1 mHz 0 Hz 0 Hz SA: Stop Frequency 0 Hz to 510 MHz 1 mHz 500 MHz 500 MHz ZA: Start Frequency 10 Hz to 510 MHz 1 mHz 100 kHz 100 kHz ZA: Stop Frequency 10 Hz to 510 MHz 1 mHz 500 MHz 500 MHz Marker Block 4Marker5 Input Range and Default Settings C-17 Marker Block Function Range Resolution Preset Value Power ON default Marker position START to STOP CENTER1 Number of Marker 1 O O Number of Sub-marker 7 All OFF All OFF Delta-marker O, On, FIX, TRAC O O Marker on O, On O O NA: Marker mode Cont, Disc Cont Cont CENTER CENTER NA: Fixed1mkr START to STOP position(Sweep prmtr) CENTER1 NA: Fixed1mkr position(Value) The same as the reference value (0) (0) NA: Fixed1mkr position(AUX value) The same as the reference value (0) (0) NA: Marker coupled On, O On On SA: Fixed1mkr The same as the reference value position(Sweep prmtr) (0) (0) SA: Fixed1mkr position(Value) The same as the reference value (0) (0) SA: Marker coupled On, O O O ZA: Marker coupled On, O On On 1 Zero will be returned if the marker position is read using GPIB command after presetting and before the marker turn to ON. !5 4Marker Function Range Destination channel Ch1, Ch2 Zooming aperture 0 to 100 % of SPAN 4Search5 C-18 Input Range and Default Settings Resolution 0.01 Preset Value Power ON default Ch1 Ch1 10 % 10 % Marker Block Function Range Resolution Preset Value Power ON default Search range START to STOP Full SPAN Full SPAN NA: Peak polarity Positive, Negative Positive Positive NA: Width On, O O O NA: Width value 6500 dB 03 dB 03dB SA: Signal track On, O O O NA: Peak def:1X 1 n to 1 G 10 MHz 10 MHz NA: Peak def:1Y Depends on format 1 dB 1 dB SA: Peak def:1Y Depends on format 15 dB 15 dB Threshold On, O O O NA: Threshold value The same as the reference value SA: Threshold value The same as the reference value 0100 dB 0100 dBm 0100 dB 0100 dBm Part search On, O O O ZA: Peak polarity Positive, Negative Positive Positive ZA: Width On, O O O ZA: Width value 6500 dB 03 dB 03dB ZA: Peak def:1X 1 n to 1 G 10 MHz 10 MHz ZA: Peak def:1Y Depends on format 1 dB 1 dB 4Utility5 Function Range Resolution Preset Value Power ON default Marker list On, O O O NA: Statistics On, O O O Marker time On, O O O SA: Statistics On, O O O SA: Noise form On, O O O Input Range and Default Settings C-19 Instrument State Block Instrument State Block 4System5 Function Range Resolution Power ON default Preset Value Clock time 00:00:00 to 23:59:59 0:00:00 0:00:00 Clock date 1900 to 2099(year),01 to 12(month),01 to 31(day) 1997,01,01 1997,01,01 Date format DAYMYEAR,MONDYEAR MONDYEAR MONDYEAR Beeper done On, O On On Beeper warning On, O O O Limit Line On, O O O Limit test On, O O O Beep Fail On, O O O No eect Empty 0 0 0 0 Limit line table Limit line oset (Sweep prmtr) 01 G to 1 GHz Limit line oset (Amp) 01 G to 1 G 1 mHz 4Copy5 Function Range Resolution Preset Value Power ON default Print mode Standard, Color Standard Standard Copy time On, O O O Print color Fixed, Variable Fixed Fixed Print resolution 75 to 600 5 dpi 75 75 Print margin(Left) 0 to 5 0.01 inch 1.0 1.0 Print margin(Top) 0 to 5 0.01 inch 1.0 1.0 Limit test table UL, MDT UL UL List sweep table (sweep prmtr) STSP, CTSP STSP STSP C-20 Input Range and Default Settings Predened Calibration Kits 4Save5 Function Range Resolution Preset Value Power ON default Initialize disk format LIF, DOS LIF LIF Graphics extension 3 characters .TIF .TIF ASCII data extension 3 characters .TXT .TXT Dene Save:Raw On, O O O Dene Save:Cal On, O O O Dene Save:Data On, O O O Dene Save:Mem On, O O O Dene Save:Trace data On, O On On Dene Save:Trace mem On, O On On 4Local5 Function Range Resolution Preset Value Power ON default GPIB address 0 to 30 No eect No eect GPIB mode System controller, Addressable No eect No eect Results of Power Loss to Battery Backup Memory (Factory Setting) Function Factory Setting GPIB address for 4395A 17 GPIB address for controller 21 Calibration kit denitions Factory set default (See the following tables) Real time clock date 09/01/1997 Analyser type Network Analyzer mode Input Range and Default Settings C-21 Predened Calibration Kits Predened Calibration Kits Table C-1. 3.5 mm Standard Cal Kit STANDARD TYPE NO. 1 SHORT 2 OPEN 3 C0 210-15 F C1 210-27 F/Hz OFFSET OFFSET OFFSET STANDARD C2 DELAY LOSS Z0 LABEL 210-36 F/Hz2 ps G /s 16.695 1.3 50 SHORT 14.491 1.3 50 OPEN LOAD 0 1.3 50 BROADBAND 4 DELAY/THRU 0 1.3 50 THRU 5 LOAD 0 1.3 50 SLIDING 6 LOAD 0 1.3 50 LOWBAND 7 SHORT 0 1.3 50 SHORT 8 OPEN 0 1.3 50 OPEN 53 150 79.4 0 0 40 Table C-2. 7 mm Standard Cal Kit STANDARD NO. TYPE 1 SHORT 2 OPEN 3 C0 210-15 F C1 210-27 F/Hz OFFSET OFFSET OFFSET STANDARD C2 DELAY LOSS Z0 LABEL 210-36 F/Hz2 ps M /s 0 700 50 SHORT 0 700 50 OPEN LOAD 0 700 50 BROADBAND 4 DELAY/THRU 0 700 50 THRU 5 LOAD 0 700 50 SLIDING 6 LOAD 0 700 50 LOWBAND 7 SHORT 0 700 50 8 OPEN 0 700 50 92.85 0 79.4 0 7.2 40 OPEN Table C-3. 50 Type-N Standard Cal Kit STANDARD TYPE NO. 1 SHORT 2 OPEN 3 C0 210-15 F C1 210-27 F/Hz OFFSET OFFSET OFFSET STANDARD LABEL Z0 DELAY LOSS C2 M /s 210-36 F/Hz2 ps 0 700 50 SHORT[M] 0 700 50 OPEN[M] LOAD 0 700 50 BROADBAND 4 DELAY/THRU 0 700 50 THRU 5 LOAD 0 700 50 SLIDING 6 LOAD 0 700 50 LOWBAND 7 SHORT 17.544 700 50 SHORT[F] 8 OPEN 17.544 700 50 OPEN[F] 108 62 C-22 Input Range and Default Settings 55 17 130 28 Predened Calibration Kits Table C-4. 75 Type-N Standard Cal Kit STANDARD TYPE NO. C0 210-15 F C1 210-27 F/Hz OFFSET OFFSET OFFSET STANDARD LABEL C2 DELAY LOSS Z0 210-36 F/Hz2 ps M /s 1 SHORT 0 2 OPEN 3 LOAD 0 4 DELAY/THRU 0 5 LOAD 0 6 LOAD 0 7 SHORT 17.544 8 OPEN 63.5 41 84 40 56 5 0 17.544 1.132103 75 SHORT[M] 3 75 OPEN[M] 1.132103 75 BROADBAND 1.132103 75 THRU 3 75 SLIDING 1.132103 75 LOWBAND 1.132103 75 SHORT[F] 3 75 OPEN[F] 1.13210 1.13210 1.13210 Input Range and Default Settings C-23 Predened Calibration Kits Predened Standard Class Assignments Table C-5. Standard Class Assignments Table (7 mm and 3.5 mm) CLASS A B C D E F G STANDARD CLASS LABEL S11A 2 OPEN S11B 1 SHORT S11C 3 LOAD S22A 2 OPEN S22B 1 SHORT S22C 3 LOAD Forward Transmission 4 THRU Reverse Transmission 4 THRU Forward Match 4 THRU Reverse Match 4 THRU Response 1 2 4 RESPONSE Response & Isolation 1 2 4 RESPONSE Table C-6. Standard Class Assignments Table (50 Type-N) CLASS A B S11A 2 8 OPENS S11B 1 7 SHORTS S11C 3 S22A 2 8 OPENS S22B 1 7 SHORTS S22C 3 LOAD Forward Transmission 4 THRU Reverse Transmission 4 THRU Forward Match 4 THRU Reverse Match 4 THRU Response 1 7 2 8 4 RESPONSE Response & Isolation 1 7 2 8 4 RESPONSE C-24 Input Range and Default Settings C D E F G STANDARD CLASS LABEL LOAD Predened Calibration Kits Table C-7. Standard Class Assignments Table (75 Type-N) CLASS A B C D E F G STANDARD CLASS LABEL S11A 2 8 OPENS S11B 1 7 SHORTS S11C 3 S22A 2 8 OPENS S22B 1 7 SHORTS S22C 3 LOAD Forward Transmission 4 THRU Reverse Transmission 4 THRU Forward Match 4 THRU Reverse Match 4 THRU Response 1 7 2 8 4 RESPONSE Response & Isolation 1 7 2 8 4 RESPONSE LOAD Input Range and Default Settings C-25 D Manual Changes Introduction This appendix contains the information required to adapt this manual to earlier versions or congurations of the analyzer than the current printing date of this manual. The information in this manual applies directly to the 4395A Network/Spectrum Analyzer serial number prex listed on the title page of this manual. Manual Changes To adapt this manual to your 4395A, see Table D-1 and Table D-2, and make all the manual changes listed opposite your instrument's serial number and rmware version. Instruments manufactured after the printing of this manual may be dierent from those documented in this manual. Later instrument versions will be documented in a manual changes supplement that will accompany the manual shipped with that instrument. If your instrument's serial number is not listed on the title page of this manual or in Table D-1, it may be documented in a yellow MANUAL CHANGES supplement. In additions to change information, the supplement may contain information for correcting errors (Errata) in the manual. To keep this manual as current and accurate as possible, Agilent Technologies recommends that you periodically request the latest MANUAL CHANGES supplement. For information concerning serial number prexes not listed on the title page or in the MANUAL CHANGE supplement, contact the nearest Agilent Technologies oce. Turn on the line switch or execute the *IDN? command by GPIB to conrm the rmware version. See the GPIB Command Reference manual for information on the *IDN? command. Table D-1. Manual Changes by Serial Number Serial Prex or Number Make Manual Changes JP1KE Table D-2. Manual Changes by Firmware Version Version Make Manual Changes Manual Changes D-1 Serial Number Serial Number Agilent Technologies uses a two-part, nine-character serial number that is stamped on the serial number plate (see Figure D-1) attached to the rear panel. The rst ve characters are the serial prex and the last ve digits are the sux. Figure D-1. Serial Number Plate (sample) D-2 Manual Changes Miscellaneous Changes Miscellaneous Changes The option system of the 4395A has changed since June 2002. Apply the following changes. New Option Number 700 (No DC Bias Source) 001 (Add DC Bias Source) 706 (No Time-gated Spectrum Analysis) 1D6 (Add Time-gated Spectrum Analysis) 800 (Standard Frequency Reference) 1D5 (High Stability Frequency Reference) 810 (Add Mini DIN Keyboard) 1CN (Handle Kit) 1CM (Rack Mount Kit) 1CP (Rack Mount & Handle Kit) 0BW (Add Service Manual) Old Option Number Standard same as the left number Standard 1 Remark 2 same as the left number Standard same as the left number 3 1A2 (Delete Mini DIN Keyboard) same as the left number same as the left number same as the left number same as the left number 4 1 In the previous system, an option for the DC bias source was available only for \Add". In the new option system, it is available for \Add" and \No", requiring the customer to select either of them. 2 In the previous system, an option for the time-gated spectrum analysis was available only for \Add". In the new option system, it is available for \Add" and \No", requiring the customer to select either of them. 3 In the previous system, an option for the frequency reference was available only for the high stability frequency reference. In the new option system, it is available for the high stability and standard references, requiring the customer to select either of them. 4 In the previous option system, the keyboard comes as one of standard accessories. In the new option system, it will be attached only when you choose option 810. The option system of the 4395A has changed since May 2003. Apply the following changes. New Option Number ABA (Add Manual set (English)) ABJ (Add Manual set (Japanese)) ABF (Add Manual set (French)) - Old Option Number ABA (Include Manual set (English)) ABJ (Include Manual set (Japanese)) ABF (Include Manual set (French)) 0B1 (Delete Manual Sets) 0B1 (Add Manual Sets) 1 Remark 1 1 2 1 In the previous system, the option number is used to choose the language of the operation manual set (standard accessory). In the new option system, it is used to add an operation manual set (optional accessory) of the language the customer desires. 2 No selection of addition/deletion is required for the operation manual set because it is only available as an optional accessory in the new option system. When 2 or more sets are required, specify option ABA,ABJ * (number of required sets). Manual Changes D-3 Error Messages This section lists the error messages that are displayed on the analyzer display or transmitted by the instrument over GPIB. Each error message is accompanied by an explanation, and suggestions are provided to help in solving the problem. Where applicable, references are provided to the related chapter of the appropriate manual. When displayed, error messages are preceded with the word \CAUTION:." That part of the error message has been omitted here for the sake or brevity. Some messages without the \CAUTION:" are for information only, and do not indicate an error condition. The messages are listed rst in alphabetical order because the displayed messages do not contain the message number. The messages are then listed in numerical order to make them easier to nd if they are read over the GPIB. In addition to error messages, The analyzer's status is indicated by status notations in the left margin of the display. Examples are 3, Cor, and Avg. Sometimes these appear together with error messages. A complete listing of status notations and their meanings is provided in Chapter 4 of this manual. Error Messages in Alphabetical Order 173 A ACTIVE/SYSTEM CONTROLLER REQUIRED When the 4395A and its peripherals are controlled using the Instrument BASIC, you must set the GPIB system's control mode to the system controller mode. 10 ADDITIONAL STANDARDS NEEDED Error correction for the selected calibration class cannot be computed until all the necessary standards have been measured. 84 ANALYZER TYPE MISMATCH The analyzer receives a command that is not available for the current analyzer type. Please conrm GPIB command or change analyzer type before sending the command. B 17 BACKUP DATA LOST Data checksum error on the battery backup memory has occurred. The battery is recharged for approximately 10 minutes after power was turned on. Messages-1 Error Messages in Alphabetical Order 0160 Block data error This error, as well as errors 0161 and 0168, are generated when analyzing the syntax of a block data element. This particular error message is used if the analyzer cannot detect a more specic error. 0168 Block data not allowed A legal block data element was encountered but was not allowed by the analyzer at this point in parsing. C 13 CALIBRATION ABORTED The calibration in progress was terminated due to a change of the active channel or stimulus parameters. 11 CALIBRATION REQUIRED No valid calibration coecients were found when you attempted to turn calibration on. 126 CAN'T CHANGE NUMBER OF POINTS The number of points of the spectrum analyzer mode cannot be to change manually, except in zero span. 133 CAN'T CHANGE ON LIST SWEEP When list sweep is selected, the following parameters are not allowed to be changed: CENTER, SPAN, START, STOP NOP IFBW or RBW POWER DC SOURCE Modify the list table to change these parameters in the list sweep. 97 CAN'T CHANGE WHILE DATA MATH ON The setting cannot be changed when the data math function is used. 99 CAN'T CHANGE WHILE DUAL CHAN OFF The Cross channel cannot be turned on when dual channel is o. Turn on the dual channel before the cross channel is turned on. 82 CAN'T CHANGE- ANOTHER CONTROLLER ON BUS The analyzer cannot assume the mode of system controller until the active controller is removed from the bus or relinquishes the bus. See Programming Manual. 134 CAN'T COUPLE IN CURRENT INPUTS When one channel measures a ratio measurement, and the other one measures an absolute measurement (for example: A/R and B), COUPLED CH can not be turned on. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Messages-2 Error Messages in Alphabetical Order 114 CAN'T SAVE GRAPHICS WHEN COPY IN PROGRESS If you attempt to save graphics when a print is in progress, this error message is displayed. 1 CAN'T SET RBW AUTO IN ZERO SPAN The RBW AUTO mode cannot be selected in the zero span. The RBW must be specied manually in the zero span. (spectrum analyzer mode only). 127 CAN'T SET SWEEP TIME AUTO IN ZERO SPAN The automatic sweep time cannot be in zero span of the spectrum analyzer mode. (The network analyzer mode allows that the automatic sweep time is turned on.) 0281 Cannot create program Indicates that an attempt to create a program was unsuccessful. A reason for the failure might include not enough memory. 0140 Character data error This error, as well as errors 0141 through 0148, are generated when analyzing the syntax of a character data element. This particular error message is used if the analyzer cannot detect a more specic error. 0148 Character data not allowed A legal character data element was encountered where prohibited by the analyzer. 0144 Character data too long The character data element contains more than twelve characters (see IEEE 488.2, 7.7.1.4). 0100 Command error This is a generic syntax error that the analyzer cannot detect more specic errors. This code indicates only that a command error, as dened in IEEE 488.2, 11.5.1.1.4, has occurred. 0110 Command header error An error was detected in the header. This error message is used when the analyzer cannot detect the more specic errors described for errors 0111 through 0119. 75 COMMAND IGNORED - SEGMENT NOT DONE YET The GPIB command the analyzer received is ignored, because the segment is editing (GPIB only). Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. (See Programming Manual.) 269 COMPENSATION ABORTED Compensation data acquisition process is aborted. 267 COMPENSTATION REQUIRED Compensation is required. Perform compansation to obtain compensation data. Messages-3 Error Messages in Alphabetical Order 50 CONT SWITCHING MAY DAMAGE MECH SW RF output power switch, input attenuator switch at input R/A/B, or internal mechanical switch in the S-parameter test set is switching sweep by sweep, because RF power level or the input attenuator setting is dierent between two channels and the dual channel is turn on, or continuous trigger mode is selected after full 2-port calibration is performed when 4395A is used with the S-parameter test set. To avoid premature wearing out of the output power switch, input attenuator switch, or internal switch of the S-parameter test set, change trigger type to HOLD, SINGLE, or NUMBER of GROUP to hold sweep after measurement required. Or, for example, turn o the dual channel, or set the power level and the input attenuator of both channels to the same setting. 135 COUPLED CHAN - BETWEEN NA&NA OR ZA&ZA The analyzer types of both channels must be the network analyzer mode or impedance analyzer mode when the coupled channel is turned on. It is not possible to turn the coupled channel on in spectrum analyzer mode. 74 CURRENT EDITING SEGMENT SCRATCHED The current editing segment for the list table and the limit line is scratched when the following cases occur (GPIB only) : When EDITLIST (edit list table) command is received while editing a segment for the list table. When EDITLIML (edit limit line) command is received while editing a segment for the limit line. Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. 16 CURRENT PARAMETER NOT IN CAL SET GPIB only. Correction is not valid for the selected measurement parameter. 0230 Data corrupt or stale D Possibly invalid data. New reading started but not completed since last access. 0225 Data out of memory The analyzer has insucient memory to perform the requested operation. 0222 Data out of range A legal program data element was parsed but could not be executed because the interpreted value was outside the legal range as dened by the analyzer (see IEEE 488.2, 11.5.1.1.5). 0231 Data questionable Indicates that measurement accuracy is suspect. 0104 Data type error The parser recognized an unallowed data element. For example, numeric or string data was expected but block data was encountered. Messages-4 Error Messages in Alphabetical Order 137 DC CURRENT LIMIT OCCURED The output current at DC SOURCE port is reached the upper limit; the output voltage is reduced so that the current does not exceed the upper limit. This message appears when the DC SOURCE port is used in voltage control mode. 136 DC SOURCE OVERLOAD The DC SOURCE output is overloded. 138 DC VOLTAGE LIMIT OCCURED The output voltage at DC SOURCE port is reached the upper limit; the output current is reduced so that the voltage does not exceed the upper limit. This message appears when the DC SOURCE port is used in current control mode. 37 DISPLAY BUFFER IS FULL The display buer is lled with the overlay traces or traces drawn by IBASIC DRAW/MOVE commands, etc. 117 DUPLICATE FILE EXTENSION The extension name entered is already used for other le types. Use other extension name. E 15 EXCEEDED 7 STANDARDS PER CLASS A maximum of seven standards can be dened for any class. 0200 Execution error This is the generic syntax error that the analyzer cannot detect more specic errors. This code indicates only that an execution error as dened in IEEE 488.2, 11.5.1.1.5 has occurred. 0123 Exponent too large The magnitude of the exponent was larger than 32000 (see IEEE 488.2, 7.7.2.4.1). 0257 File name error F Indicates that a legal program command or query could not be executed because the le name on the device media was in error. For example, an attempt was made to copy to a duplicate le name. The denition of what constitutes a le name error is device-specic. 0256 File name not found A legal program command could not be executed because the le name on the device media was not found: for example, an attempt was made to read or copy a nonexistent le. Messages-5 Error Messages in Alphabetical Order 143 FLOATING POINT ERROR OCCURED Indicate that a oating point error occured in the analyzer. Data processing may not be correct. This error message is used when an internal application was executed for illegal data sent from an external device, or when an internal software bug was detected. Contact your nearest Agilent Technologies oce. 83 FORMAT NOT VALID FOR MEASUREMENT The conversion function except the 1/S and the multiple phase modes is not valid for the Smith, admittance, and SWR formats. 131 FREQUENCY SWEEP ONLY The sweep type must be frequency sweep when the center step size is set. 0105 GET not allowed G A Group Execute Trigger (GET) was received within a program message (see IEEE 488.2, 7.7). 0240 Hardware error H Indicates that a legal program command or query could not be executed because of a hardware problem in the analyzer. Denition of what constitutes a hard ware problem is completely device-specic. This error message is used when the analyzer cannot detect the more specic errors described for errors 0241 through 0249. 0241 Hardware missing A legal program command or query could not be executed because of missing analyzer hardware. For example, an option was not installed. 0111 Header separator error A character that is not a legal header separator was encountered while parsing the header. For example, no white space followed the header, thus *SRE4 is an error. 0114 Header Sux out of range The value of a numeric sux attached to a program mnemonic makes the header invalid. 0224 Illegal parameter value I Used where exact value, from a list of possibilities, was expected. Messages-6 Error Messages in Alphabetical Order 0282 Illegal program name The name used to reference a program was invalid. For example, redening an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program. 0283 Illegal variable name An attempt was made to reference a nonexistent variable in a program. 0213 Init ignored A request for a measurement initiation was ignored as another measurement was already in progress. 141 INSUFFICIENT MEMORY If a lot of tasks is executed at same time, memory might be insucient for a while. (For example, running HP Instrument BASIC program, printing a screen, and sending or receiving data array by GPIB are required at same time.) Please wait until nishing some tasks then execute the next task. 0161 Invalid block data A block data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.6.2). For example, an END message was received before the length was satised. 0141 Invalid character data Either the character data element contains an invalid character or the particular element received is not valid for the header. 0121 Invalid character in number An invalid character for the data type being parsed was encountered. For example, an alpha character in a decimal numeric or a \9" in octal data. 0101 Invalid character A syntax element contains a character that is invalid for that type. For example, a header containing an ampersand (SENSE&). 154 INVALID DATE The date entered to set the real time clock is invalid. Reenter correct date. 112 INVALID FILE NAME GPIB only. The le name for the RECALL, PURGE, or RE-SAVE function must have a \_D" or \_S" extension for LIF format. 0103 Invalid separator The parser was expecting a separator and encountered an illegal character. For example, the semicolon was omitted after a program message unit, *RST:TRIG. Messages-7 Error Messages in Alphabetical Order 0151 Invalid string data A string data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.5.2). For example, an END message was received before the terminal quote character. 0131 Invalid sux The sux does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the sux is inappropriate for the analyzer. L 115 LIF-DOS COPY NOT ALLOWED If you try to copy a le between the memory disk and the exible disk when the format of the memory disk is dierent from the format of the exible disk, this message is displayed. 124 LIST TABLE EMPTY OR INSUFFICIENT TABLE The frequency list is empty. To implement the list frequency mode, add segments to the list table. 0250 Mass storage error M Indicates that a mass storage error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0257. 0311 Memory error An error was detected in the analyzer's memory. 0109 Missing parameter Fewer parameters were received than required for the header. For example, the *SRE command requires one parameter, so receiving only *SRE is not allowed. N 98 NO ACTIVE MARKER The marker! command cannot be execute when no marker is displayed on the screen. Turn on the marker before executing the marker! commands. 12 NO CALIBRATION CURRENTLY IN PROGRESS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The RESUME CAL SEQUENCE softkey is not valid unless a calibration is in progress. Start a new calibration. 268 NO COMPENSATION CURRENTLY IN PROGRESS No compensation is currently in progress. Messages-8 Error Messages in Alphabetical Order 119 NO DATA TRACE DISPLAYED NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The SCALE FOR [DATA] is selected when the data trace is not displayed. 93 NO DATA TRACE NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The MARKER ON [DATA] is selected when the data trace is not displayed. +0 No error The error queue is empty. Every error in the queue has been read (OUTPERRO? query) or the queue was cleared by power-on or the 3CLS command. 100 NO FIXED DELTA MARKER NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The FIXED 1MKR VALUE and FIXED 1MKR AUX VALUE softkey requires that xed delta marker is turned on. 96 NO MARKER DELTA - RANGE NOT SET The MKR1!SEARCH RNG softkey requires that delta marker is turned on. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 95 NO MARKER DELTA - SPAN NOT SET The MKR1!SPAN softkey requires that delta marker mode be turned on. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 120 NO MEMORY TRACE DISPLAYED NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The SCALE FOR [MEMORY] is selected when the memory trace is not displayed. 94 NO MEMORY TRACE NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The MARKER ON [MEMORY] is selected when the memory trace is not displayed. 113 NO STATE/DATA FILES ON DISK There are no les on the exible disk with extensions, \_D" or \_S" for LIF format, or \STA" or \.DTA" for DOS format. 116 NO STATE/DATA FILES ON MEMORY There are no les on the memory disk with extensions, \_D" or \_S" for LIF format, or \.STA" or \.DTA" for DOS format. 184 NOT ALLOWED IN SVC MODE The operation is not allowed in service mode. 55 NOT ENOUGH DATA The amount of data sent to the analyzer is less than that expected (GPIB only). 14 NOT VALID FOR PRESENT TEST SET The calibration requested is inconsistent with the test set present. This message occurs in the following situations: Messages-9 Error Messages in Alphabetical Order A full 2-port calibration is requested with a test set other than an S-parameter test set. A one-path 2-port calibration is requested with an S-parameter test set (this procedure is typically used with a transmission/reection test set). 34 NO VALID MEMORY TRACE If a memory trace is to be displayed or otherwise used, a data trace must rst be stored to memory. 0120 Numeric data error This error, as well as errors 0121 through 0129, are generated when parsing a data element that appears to be numeric, including the nondecimal numeric types. This particular error message is used if the analyzer cannot detect a more specic error. 0128 Numeric data not allowed A legal numeric data element was received, but the analyzer does not accept it in this position for a header. 146 O ON POINT NOT ALLOWD FOR THE CURRENT TRIG The trigger event mode cannot be changed to the ON POINT mode because the current trigger source setting does not allow the ON POINT mode. The ON POINT mode is available for only MANUAL, EXTERNAL, and BUS trigger sources of the network analyzer mode. 56 OPTION NOT INSTALLED This error occurs when an GPIB command which is optional command is sent and the analyzer is not installed the option (GPIB only). Please conrm options installed to the analyzer using *OPT? command (see Programming Manual.) 45 OVERLOAD ON INPUT A The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level. 44 OVERLOAD ON INPUT B The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level. 46 OVERLOAD ON INPUT R The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level. 0220 Parameter error P Indicates that a program data element related error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0221 through 0229. Messages-10 Error Messages in Alphabetical Order 0108 Parameter not allowed More parameters were received than expected for the header. For example, the *SRE command only accepts one parameter, so receiving *SRE 4,16 is not allowed. 48 PHASE LOCK LOOP UNLOCKED EXT REF Input of 10 MHz is not proper, or the instrument is needed to adjust or repair. Check the external reference signal rst. Contact your nearest Agilent Technologies oce for adjustment or repair. 193 POWER ON TEST FAILED Power on test failed. Contact your nearest Agilent Technologies oce. 26 PRINTER: not on, not connected, out of paper The printer does not respond to control. Check the supply to the printer, online status, sheets, and so on. 0284 Program currently running Certain operations dealing with programs may be illegal while the program is running. For example, deleting a running program might not be possible. 0280 Program error Indicates that a downloaded program-related execution error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0281 through 0289. 0112 Program mnemonic too long The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1). 0286 Program runtime error A program runtime error of the HP Instrument BASIC has occurred. To get a more specic error information, use the ERRM$ or ERRN command of the HP Instrument BASIC. 0285 Program syntax error Indicates that a syntax error appears in a downloaded program. The syntax used when parsing the downloaded program is device-specic. 0400 Query errors Q This is the generic query error that the analyzer cannot detect more specic errors. This code indicates only that a query error as dened in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred. 0410 Query INTERRUPTED A condition causing an interrupted query error occurred (see IEEE 488.2, 6.3.2.3). For example, a query followed by DAB or GET before a response was completely sent. Messages-11 Error Messages in Alphabetical Order 0420 Query UNTERMINATED A condition causing an unterminated query error occurred (see IEEE 488.2, 6.3.2.2). For example, the analyzer was addressed to talk and an incomplete program message was received by the controller. 0350 Queue overow A specic code entered into the queue in lieu of the code that caused the error. This code indicates that there is no room in the queue and an error occurred but was not recorded. 111 R RECALL ERROR: INSTR STATE PRESET A serious error, for example corrupted data, is detected on recalling a le, and this forced the analyzer to be PRESET. S 110 SAVE ERROR A serious error, for example physically damaged disk surface, is detected on saving a le. 76 SEGMENT START/STOP OVERLAPPED Segments are not allowed to be overlapped. Reenter appropriate value for start or stop value of segments to avoid that segment is not overlapped. 0330 Self-test failed A self-test failed. Contact your nearest Agilent Technologies oce or see the Service Manual for troubleshooting. 0221 Settings conict A legal program data element was parsed but could not be executed due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5). 128 SPAN = 0 ONLY The setup must be zero span and spectrum analyzer mode when turning on the RF OUTPUT. 0150 String data error This error, as well as errors 0151 and 0158, are generated when analyzing the syntax of a string data element. This particular error message is used if the analyzer cannot detect a more specic error. 0158 String data not allowed A string data element was encountered but was not allowed by the analyzer at this point in parsing. Messages-12 Error Messages in Alphabetical Order 0130 Sux error This error, as well as errors 0131 through 0139, are generated when parsing a sux. This particular error message is used if the analyzer cannot detect a more specic error. 0138 Sux not allowed A sux was encountered after a numeric element that does not allow suxes. 0134 Sux too long The sux contained more than 12 characters (see IEEE 488.2, 7.7.3.4). 0102 Syntax error An unrecognized command or data type was encountered. For example, a string was received when the analyzer was not expecting to receive a string. 0310 System error Some error, termed \system error" by the analyzer, has occurred. 0124 Too many digits T The mantissa of a decimal numeric data element contains more than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1). 77 TOO MANY SEGMENTS OR POINTS Frequency list mode is limited to 31 segments or 801 points. 64 TOO MANY SEGMENTS The maximum number of segments for the limit line table is 18. 0223 Too much data A legal program data element of block, expression, or string type was received that contained more data than the analyzer could handle due to memory or related device-specic requirements. 54 TOO MUCH DATA Either there is too much binary data to send to the analyzer when the data transfer format is FORM 2, FORM 3 or FORM 5, or the amount of data is greater than the number of points. 78 TOO SMALL POINTS OR TOO LARGE STOP STOP+SPAN/(NOP01) is out of sweep range. Increase NOP or change STOP value to lower frequency to avoid this error. 0210 Trigger error A trigger related error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0211 through 0219. Messages-13 Error Messages in Alphabetical Order 0211 Trigger ignored A GET, *TRG, or triggering signal was received and recognized by the analyzer but was ignored because of analyzer timing considerations. For example, the analyzer was not ready to respond. 0113 Undened header U The header is syntactically correct, but it is undened for the analyzer. For example, *XYZ is not dened for the analyzer. Messages-14 Error Messages in Numerical Order Error Messages in Numerical Order 0 - 100 +0 No error The error queue is empty. Every error in the queue has been read (OUTPERRO? query) or the queue was cleared by power-on or the 3CLS command. 1 CAN'T SET RBW AUTO IN ZERO SPAN The RBW AUTO mode cannot be selected in the zero span. The RBW must be specied manually in the zero span. (spectrum analyzer mode only). 10 ADDITIONAL STANDARDS NEEDED Error correction for the selected calibration class cannot be computed until all the necessary standards have been measured. 11 CALIBRATION REQUIRED No valid calibration coecients were found when you attempted to turn calibration on. 12 NO CALIBRATION CURRENTLY IN PROGRESS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The RESUME CAL SEQUENCE softkey is not valid unless a calibration is in progress. Start a new calibration. 13 CALIBRATION ABORTED The calibration in progress was terminated due to a change of the active channel or stimulus parameters. 14 NOT VALID FOR PRESENT TEST SET The calibration requested is inconsistent with the test set present. This message occurs in the following situations: A full 2-port calibration is requested with a test set other than an S-parameter test set. A one-path 2-port calibration is requested with an S-parameter test set (this procedure is typically used with a transmission/reection test set). 15 EXCEEDED 7 STANDARDS PER CLASS A maximum of seven standards can be dened for any class. 16 CURRENT PARAMETER NOT IN CAL SET GPIB only. Correction is not valid for the selected measurement parameter. 17 BACKUP DATA LOST Data checksum error on the battery backup memory has occurred. The battery is recharged for approximately 10 minutes after power was turned on. Messages-15 Error Messages in Numerical Order 26 PRINTER:not on, not connect, wrong address The printer does not respond to control. Check the supply to the printer, online status, sheets, and so on. 34 NO VALID MEMORY TRACE If a memory trace is to be displayed or otherwise used, a data trace must rst be stored to memory. 37 DISPLAY BUFFER IS FULL The display buer is lled with the overlay traces or traces drawn by IBASIC DRAW/MOVE commands, etc. 44 OVERLOAD ON INPUT B The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level. 45 OVERLOAD ON INPUT A The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level. 46 OVERLOAD ON INPUT R The power level at one of the four receiver inputs exceeds a certain level greater than the maximum input level. 48 PHASE LOCK LOOP UNLOCKED EXT REF Input of 10 MHz is not proper, or the instrument is needed to adjust or repair. Check the external reference signal rst. Contact your nearest Agilent Technologies oce for adjustment or repair. 50 CONT SWITCHING MAY DAMAGE MECH SW RF output power switch, input attenuator switch at input R/A/B, or internal mechanical switch in the S-parameter test set is switching sweep by sweep, because RF power level or the input attenuator setting is dierent between two channels and the dual channel is turn on, or continuous trigger mode is selected after full 2-port calibration is performed when 4395A is used with the S-parameter test set. To avoid premature wearing out of the output power switch, input attenuator switch, or internal switch of the S-parameter test set, change trigger type to HOLD, SINGLE, or NUMBER of GROUP to hold sweep after measurement required. Or, for example, turn o the dual channel, or set the power level and the input attenuator of both channels to the same setting. 54 TOO MUCH DATA Either there is too much binary data to send to the analyzer when the data transfer format is FORM 2, FORM 3 or FORM 5, or the amount of data is greater than the number of points. 55 NOT ENOUGH DATA The amount of data sent to the analyzer is less than that expected (GPIB only). Messages-16 Error Messages in Numerical Order 56 OPTION NOT INSTALLED This error occurs when an GPIB command which is optional command is sent and the analyzer is not installed the option (GPIB only). Please conrm options installed to the analyzer using *OPT? command (see Programming Manual.) 64 TOO MANY SEGMENTS The maximum number of segments for the limit line table is 18. 74 CURRENT EDITING SEGMENT SCRATCHED The current editing segment for the list table and the limit line is scratched when the following cases occur (GPIB only) : When EDITLIST (edit list table) command is received while editing a segment for the list table. When EDITLIML (edit limit line) command is received while editing a segment for the limit line. Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. 75 COMMAND IGNORED - SEGMENT NOT DONE YET The GPIB command the analyzer received is ignored, because the segment is editing (GPIB only). Send LIMSDON (limit segment done) or SDON (segment done) to terminate editing segment. (See Programming Manual.) 76 SEGMENT START/STOP OVERLAPPED Segments are not allowed to be overlapped. Reenter appropriate value for start or stop value of segments to avoid that segment is not overlapped. 77 TOO MANY SEGMENTS OR POINTS Frequency list mode is limited to 31 segments or 801 points. 78 TOO SMALL POINTS OR TOO LARGE STOP STOP+SPAN/(NOP01) is out of sweep range. Increase NOP or change STOP value to lower frequency to avoid this error. 82 CAN'T CHANGE- ANOTHER CONTROLLER ON BUS The analyzer cannot assume the mode of system controller until the active controller is removed from the bus or relinquishes the bus. See Programming Manual. 83 FORMAT NOT VALID FOR MEASUREMENT The conversion function except the 1/S and the multiple phase modes is not valid for the Smith, admittance, and SWR formats. 84 ANALYZER TYPE MISMATCH The analyzer receives a command that is not available for the current analyzer type. Please conrm GPIB command or change analyzer type before sending the command. Messages-17 Error Messages in Numerical Order 93 NO DATA TRACE NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The MARKER ON [DATA] is selected when the data trace is not displayed. 94 NO MEMORY TRACE NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The MARKER ON [MEMORY] is selected when the memory trace is not displayed. 95 NO MARKER DELTA - SPAN NOT SET The MKR1!SPAN softkey requires that delta marker mode be turned on. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 96 NO MARKER DELTA - RANGE NOT SET The MKR1!SEARCH RNG softkey requires that delta marker is turned on. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 97 CAN'T CHANGE WHILE DATA MATH ON The setting cannot be changed when the data math function is used. 98 NO ACTIVE MARKER The marker! command cannot be execute when no marker is displayed on the screen. Turn on the marker before executing the marker! commands. 99 CAN'T CHANGE WHILE DUAL CHAN OFF The Cross channel cannot be turned on when dual channel is o. Turn on the dual channel before the cross channel is turned on. 100 NO FIXED DELTA MARKER NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The FIXED 1MKR VALUE and FIXED 1MKR AUX VALUE softkey requires that xed delta marker is turned on. 101 - 200 110 SAVE ERROR A serious error, for example physically damaged disk surface, is detected on saving a le. 111 RECALL ERROR: INSTR STATE PRESET A serious error, for example corrupted data, is detected on recalling a le, and this forced the analyzer to be PRESET. 112 INVALID FILE NAME GPIB only. The le name for the RECALL, PURGE, or RE-SAVE function must have a \_D" or \_S" extension for LIF format. 113 NO STATE/DATA FILES ON DISK There are no les on the exible disk with extensions, \_D" or \_S" for LIF format, or \STA" or \.DTA" for DOS format. Messages-18 Error Messages in Numerical Order 114 CAN'T SAVE GRAPHICS WHEN COPY IN PROGRESS If you attempt to save graphics when a print is in progress, this error message is displayed. 115 LIF-DOS COPY NOT ALLOWED If you try to copy a le between the memory disk and the exible disk when the format of the memory disk is dierent from the format of the exible disk, this message is displayed. 116 NO STATE/DATA FILES ON MEMORY There are no les on the memory disk with extensions, \_D" or \_S" for LIF format, or \.STA" or \.DTA" for DOS format. 117 DUPLICATE FILE EXTENSION The extension name entered is already used for other le types. Use other extension name. 119 NO DATA TRACE DISPLAYED NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The SCALE FOR [DATA] is selected when the data trace is not displayed. 120 NO MEMORY TRACE DISPLAYED NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN The SCALE FOR [MEMORY] is selected when the memory trace is not displayed. 124 LIST TABLE EMPTY OR INSUFFICIENT TABLE The frequency list is empty. To implement the list frequency mode, add segments to the list table. 126 CAN'T CHANGE NUMBER OF POINTS The number of points of the spectrum analyzer mode cannot be to change manually, except in zero span. 127 CAN'T SET SWEEP TIME AUTO IN ZERO SPAN The automatic sweep time cannot be in zero span of the spectrum analyzer mode. (The network analyzer mode allows that the automatic sweep time is turned on.) 128 SPAN = 0 ONLY The setup must be zero span and spectrum analyzer mode when turning on the RF OUTPUT. 131 FREQUENCY SWEEP ONLY The sweep type must be frequency sweep when the center step size is set. 133 CAN'T CHANGE ON LIST SWEEP When list sweep is selected, the following parameters are not allowed to be changed: CENTER, SPAN, START, STOP NOP IFBW or RBW POWER DC SOURCE Messages-19 Error Messages in Numerical Order Modify the list table to change these parameters in the list sweep. 134 CAN'T COUPLE IN CURRENT INPUTS When one channel measures a ratio measurement, and the other one measures an absolute measurement (for example: A/R and B), COUPLED CH can not be turned on. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 135 COUPLED CHAN - BETWEEN NA&NA OR ZA&ZA The analyzer types of both channels must be the network analyzer mode or impedance analyzer mode when the coupled channel is turned on. It is not possible to turn the coupled channel on in spectrum analyzer mode. 136 DC SOURCE OVERLOAD The DC SOURCE output is overloded. 137 DC CURRENT LIMIT OCCURED The output current at DC SOURCE port is reached the upper limit; the output voltage is reduced so that the current does not exceed the upper limit. This message appears when the DC SOURCE port is used in voltage control mode. 138 DC VOLTAGE LIMIT OCCURED The output voltage at DC SOURCE port is reached the upper limit; the output current is reduced so that the voltage does not exceed the upper limit. This message appears when the DC SOURCE port is used in current control mode. 141 INSUFFICIENT MEMORY If a lot of tasks is executed at same time, memory might be insucient for a while. (For example, running HP Instrument BASIC program, printing a screen, and sending or receiving data array by GPIB are required at same time.) Please wait until nishing some tasks then execute the next task. 143 FLOATING POINT ERROR OCCURED Indicate that a oating point error occured in the analyzer. Data processing may not be correct. This error message is used when an internal application was executed for illegal data sent from an external device, or when an internal software bug was detected. Contact your nearest Agilent Technologies oce. 146 ON POINT NOT ALLOWD FOR THE CURRENT TRIG The trigger event mode cannot be changed to the ON POINT mode because the current trigger source setting does not allow the ON POINT mode. The ON POINT mode is available for only MANUAL, EXTERNAL, and BUS trigger sources of the network analyzer mode. 154 INVALID DATE The date entered to set the real time clock is invalid. Reenter correct date. 173 ACTIVE/SYSTEM CONTROLLER REQUIRED When the 4395A and its peripherals are controlled using the Instrument BASIC, you must set the GPIB system's control mode to the system controller mode. Messages-20 Error Messages in Numerical Order 184 NOT ALLOWED IN SVC MODE The operation is not allowed in service mode. 193 POWER ON TEST FAILED Power on test failed. Contact your nearest Agilent Technologies oce. 201 - 300 267 COMPENSTATION REQUIRED Compensation is required. Perform compansation to obtain compensation data. 268 NO COMPENSATION CURRENTLY IN PROGRESS No compensation is currently in progress. 269 COMPENSATION ABORTED Compensation data acquisition process is aborted. 270 COMPENSATION STD LIST UNDEFINED Compensation standard list is undened. 0100 Command error 01 - 0100 This is a generic syntax error that the analyzer cannot detect more specic errors. This code indicates only that a command error, as dened in IEEE 488.2, 11.5.1.1.4, has occurred. 0101 Invalid character 0101 - 0200 A syntax element contains a character that is invalid for that type. For example, a header containing an ampersand (SENSE&). 0102 Syntax error An unrecognized command or data type was encountered. For example, a string was received when the analyzer was not expecting to receive a string. 0103 Invalid separator The parser was expecting a separator and encountered an illegal character. For example, the semicolon was omitted after a program message unit, *RST:TRIG. 0104 Data type error The parser recognized an unallowed data element. For example, numeric or string data was expected but block data was encountered. Messages-21 Error Messages in Numerical Order 0105 GET not allowed A Group Execute Trigger (GET) was received within a program message (see IEEE 488.2, 7.7). 0108 Parameter not allowed More parameters were received than expected for the header. For example, the *SRE command only accepts one parameter, so receiving *SRE 4,16 is not allowed. 0109 Missing parameter Fewer parameters were received than required for the header. For example, the *SRE command requires one parameter, so receiving only *SRE is not allowed. 0110 Command header error An error was detected in the header. This error message is used when the analyzer cannot detect the more specic errors described for errors 0111 through 0119. 0111 Header separator error A character that is not a legal header separator was encountered while parsing the header. For example, no white space followed the header, thus *SRE4 is an error. 0112 Program mnemonic too long The header contains more than twelve characters (see IEEE 488.2, 7.6.1.4.1). 0113 Undened header The header is syntactically correct, but it is undened for the analyzer. For example, *XYZ is not dened for the analyzer. 0114 Header Sux out of range The value of a numeric sux attached to a program mnemonic makes the header invalid. 0120 Numeric data error This error, as well as errors 0121 through 0129, are generated when parsing a data element that appears to be numeric, including the nondecimal numeric types. This particular error message is used if the analyzer cannot detect a more specic error. 0121 Invalid character in number An invalid character for the data type being parsed was encountered. For example, an alpha character in a decimal numeric or a \9" in octal data. 0123 Exponent too large The magnitude of the exponent was larger than 32000 (see IEEE 488.2, 7.7.2.4.1). 0124 Too many digits The mantissa of a decimal numeric data element contains more than 255 digits excluding leading zeros (see IEEE 488.2, 7.7.2.4.1). Messages-22 Error Messages in Numerical Order 0128 Numeric data not allowed A legal numeric data element was received, but the analyzer does not accept it in this position for a header. 0130 Sux error This error, as well as errors 0131 through 0139, are generated when parsing a sux. This particular error message is used if the analyzer cannot detect a more specic error. 0131 Invalid sux The sux does not follow the syntax described in IEEE 488.2, 7.7.3.2, or the sux is inappropriate for the analyzer. 0134 Sux too long The sux contained more than 12 characters (see IEEE 488.2, 7.7.3.4). 0138 Sux not allowed A sux was encountered after a numeric element that does not allow suxes. 0140 Character data error This error, as well as errors 0141 through 0148, are generated when analyzing the syntax of a character data element. This particular error message is used if the analyzer cannot detect a more specic error. 0141 Invalid character data Either the character data element contains an invalid character or the particular element received is not valid for the header. 0144 Character data too long The character data element contains more than twelve characters (see IEEE 488.2, 7.7.1.4). 0148 Character data not allowed A legal character data element was encountered where prohibited by the analyzer. 0150 String data error This error, as well as errors 0151 and 0158, are generated when analyzing the syntax of a string data element. This particular error message is used if the analyzer cannot detect a more specic error. 0151 Invalid string data A string data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.5.2). For example, an END message was received before the terminal quote character. 0158 String data not allowed A string data element was encountered but was not allowed by the analyzer at this point in parsing. Messages-23 Error Messages in Numerical Order 0160 Block data error This error, as well as errors 0161 and 0168, are generated when analyzing the syntax of a block data element. This particular error message is used if the analyzer cannot detect a more specic error. 0161 Invalid block data A block data element was expected, but was invalid for some reason (see IEEE 488.2, 7.7.6.2). For example, an END message was received before the length was satised. 0168 Block data not allowed A legal block data element was encountered but was not allowed by the analyzer at this point in parsing. 0200 Execution error This is the generic syntax error that the analyzer cannot detect more specic errors. This code indicates only that an execution error as dened in IEEE 488.2, 11.5.1.1.5 has occurred. 0210 Trigger error 0201 - 0300 A trigger related error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0211 through 0219. 0211 Trigger ignored A GET, *TRG, or triggering signal was received and recognized by the analyzer but was ignored because of analyzer timing considerations. For example, the analyzer was not ready to respond. 0213 Init ignored A request for a measurement initiation was ignored as another measurement was already in progress. 0220 Parameter error Indicates that a program data element related error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0221 through 0229. 0221 Settings conict A legal program data element was parsed but could not be executed due to the current device state (see IEEE 488.2, 6.4.5.3 and 11.5.1.1.5). 0222 Data out of range A legal program data element was parsed but could not be executed because the interpreted value was outside the legal range as dened by the analyzer (see IEEE 488.2, 11.5.1.1.5). Messages-24 Error Messages in Numerical Order 0223 Too much data A legal program data element of block, expression, or string type was received that contained more data than the analyzer could handle due to memory or related device-specic requirements. 0224 Illegal parameter value Used where exact value, from a list of possibilities, was expected. 0225 Data out of memory The analyzer has insucient memory to perform the requested operation. 0230 Data corrupt or stale Possibly invalid data. New reading started but not completed since last access. 0231 Data questionable Indicates that measurement accuracy is suspect. 0240 Hardware error Indicates that a legal program command or query could not be executed because of a hardware problem in the analyzer. Denition of what constitutes a hard ware problem is completely device-specic. This error message is used when the analyzer cannot detect the more specic errors described for errors 0241 through 0249. 0241 Hardware missing A legal program command or query could not be executed because of missing analyzer hardware. For example, an option was not installed. 0250 Mass storage error Indicates that a mass storage error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0257. 0256 File name not found A legal program command could not be executed because the le name on the device media was not found: for example, an attempt was made to read or copy a nonexistent le. 0257 File name error Indicates that a legal program command or query could not be executed because the le name on the device media was in error. For example, an attempt was made to copy to a duplicate le name. The denition of what constitutes a le name error is device-specic. 0280 Program error Indicates that a downloaded program-related execution error occurred. This error message is used when the analyzer cannot detect the more specic errors described for errors 0281 through 0289. Messages-25 Error Messages in Numerical Order 0281 Cannot create program Indicates that an attempt to create a program was unsuccessful. A reason for the failure might include not enough memory. 0282 Illegal program name The name used to reference a program was invalid. For example, redening an existing program, deleting a nonexistent program, or in general, referencing a nonexistent program. 0283 Illegal variable name An attempt was made to reference a nonexistent variable in a program. 0284 Program currently running Certain operations dealing with programs may be illegal while the program is running. For example, deleting a running program might not be possible. 0285 Program syntax error Indicates that a syntax error appears in a downloaded program. The syntax used when parsing the downloaded program is device-specic. 0286 Program runtime error A program runtime error of the HP Instrument BASIC has occurred. To get a more specic error information, use the ERRM$ or ERRN command of the HP Instrument BASIC. 0310 System error 0301 - 0400 Some error, termed \system error" by the analyzer, has occurred. 0311 Memory error An error was detected in the analyzer's memory. 0330 Self-test failed A self-test failed. Contact your nearest Agilent Technologies oce or see the Service Manual for troubleshooting. 0350 Queue overow A specic code entered into the queue in lieu of the code that caused the error. This code indicates that there is no room in the queue and an error occurred but was not recorded. 0400 Query errors This is the generic query error that the analyzer cannot detect more specic errors. This code indicates only that a query error as dened in IEEE 488.2, 11.5.1.1.7 and 6.3 has occurred. 0401 - 0500 Messages-26 Error Messages in Numerical Order 0410 Query INTERRUPTED A condition causing an interrupted query error occurred (see IEEE 488.2, 6.3.2.3). For example, a query followed by DAB or GET before a response was completely sent. 0420 Query UNTERMINATED A condition causing an unterminated query error occurred (see IEEE 488.2, 6.3.2.2). For example, the analyzer was addressed to talk and an incomplete program message was received by the controller. Messages-27 Index Special characters #, 4-9 # , 4-8 3, 4-9 0O, 4-9 1L.F, A-33 1R.F, A-33 " , 4-9 g , A-17 1mode, A-33 1X, A-35 1Y, A-35, A-36 1 10833A gpib cable(1 m), 12-5 10833B gpib cable(2 m), 12-5 10833C gpib cable(3 m), 12-5 10833D gpib cable(0.5 m), 12-5 1141A dierential probe, 12-2 11667A power splitter, 12-2 11850C,D three-way power splitters, 12-2 11851B 50 type-n rf cable set, 12-3 11852B 50 to 75 minimum loss pad, 12-3 11853A 50 type-n adapter kit, 12-3 11854A 50 bnc adapter kit, 12-3 11855A 75 type-n adapter kit, 12-3 11856A 75 bnc adapter kit, 12-3 11857B 75 type-n test port return cable set, 12-3 11857D 7 mm test port return cable set, 12-3 1 M input adapter, 12-2 2 24-bit I/O interface , 11-22 24-bit I/O interface pin assignment, 11-22 24-bit i/o port, 4-12 4 41800A active probe, 12-2 41802A 1 M input adapter, 12-2 4395A overview, 1-1 4395A settings recalling , 3-29 saving , 3-27 4395U upgrade kit, 12-1 5 50 N(m)/75 N(f) minimum loss pad , 2-19 50 to 75 input impedance conversion (option 1D7), 12-1 7 75 measurement setting for spectrum , 2-19 8 85031B 7 mm calibration kit, 12-3 85032B 50 type-n calibration kit, 12-3 85033D 3.5 mm calibration kit, 12-3 85036B 75 type-n calibration kit, 12-3 87511A/B s parameter test set, 12-2 87512A, B , A-56 87512A/B transmission/reection test set, 12-2 8 bit i/o port pin assignments , 11-22 A A , 11-34 A , 6-7 A/B , 6-7 About This Guide, 1-1 absolute amplitude accuracy network analyzer , 11-4 absolute squared , A-8 accessory, 12-2 Activating channel , 3-35 active channel, 4-6 setting , 3-6, 3-19 ACTIVE CHANNEL block, 4-2 active entry area , 4-10 active probe available , 2-12 connecting , 2-12 active probes, 12-2 active state, 4-2 adapter, 12-3 adapter kit, 12-3 adding / subtracting ON Del, 4-9 additional amplitude error spectrum analyzer , 11-13 NNNNN NNNNNNNNNNN Index-1 addressable , A-39 admittance , 6-11 ADMITTANCE CHART , 6-10, 10-13 admittance conversion, A-14 admittance measurement , 10-13 advanced techniques, 9-1 aging spectrum analyzer , 11-7 allowable range, C-1 altitude , 11-25, 11-26 Am , 11-34 amplitude characteristics spectrum analyzer , 11-8 Amplitude delity spectrum analyzer, 11-8 AM signal measurement , 10-18 analyzer input terminals R, A, B, 4-4 analyzer mode selecting , 6-2 analyzer type setting to network , 3-5 setting to spectrum , 3-18 ANALYZER TYPE , 6-2, 10-2, 10-24, 10-31 Ap , 11-34 APC-7 connector , 7-15 aperture, A-18 aperture , 8-29 approximate , 11-1 A/R , 6-7 ARBITARY IMPEDANCE, A-46 ASCII le format, A-59 ASCII save , 8-21 attenuator, A-8 spectrum analyzer , 11-11 attenuator , 4-8 automatic scaling performing , 3-8 AUTOREC , A-61 auto recall , A-61 auto recall function , A-61 AUTO SCALE , 10-5 AUTO SCALE , 10-3 averaging, A-11, A-16 averaging , 9-13, A-5, A-8 AVERAGING FACTOR , 9-13 averaging ON Avg , 4-9 Avg , 4-9 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN B NNNNN B , 6-7 backup memory, C-1 backup memory, operating time, C-1 bandwidth , 10-3 Index-2 binary le format, A-59 block diagram, A-2 BNC Cables, 12-3 B/R , 6-7 built-in disk drive , 8-19 burst modulated signal, 8-38 bus , 4-9 BW, A-33 4Bw/Avg5 , 6-27 4Bw/Avg5, softkeys under, B-14 NNNNNNNNNNN C C , 11-34 C! , 4-9 C?, 4-9 C2 , 4-9 C2! , 4-9 C2? , 4-9 cable, 12-3 connecting, 2-9 cable reection stability , 11-34 cable transmission stability , 11-34 4Cal5 , 10-3 CALIBRATE MENU , 10-3 calibration, A-40 1-path 2-port , 7-8 frequency response , 10-3 full 2-port , 7-6 impedance analyzer, 11-14 impedance analyzer mode, 7-14 kit , 7-10, 7-19 network analyzer mode, 7-1 procedure , 10-3 response , 7-2 response & isolation , 7-2 S-11 1-port , 7-4 S-22 1-port , 7-5 thru , 10-3 transmission measurement , 10-3 calibration , 10-31 calibration coecient arrays , A-5 calibration coecient arrays/calibration, A-11 calibration coecients arrays , A-59 calibration data , 8-20 calibration, impedance analyzer mode , 10-25 calibration kit, 12-3, C-22 labling and saving, 7-13 verifying denition, 7-13 calibration method , 7-1 calibration output connector, 4-4, 12-1 CAL KIT , 7-10, 7-19 CAL OUT signal , 3-17 4Cal5, softkeys under, B-16 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN capturing unstable signal , 9-14 carrier to noise ratio , 8-37 cent, A-33 4Center5 , 6-15 center frequency marker! , 6-15 peak! , 6-17 center frequency , 6-15 4Center5, softkeys under, B-35 CENTER STEP SIZE , 6-17 center value , 4-8 4Chan 15 , 6-2 4Chan 15, softkeys under, B-2 4Chan 25 , 6-2 4Chan 25, softkeys under, B-2 CHAN COUP on OFF , 10-16 channel dual , 6-3 split , 6-3 channel coupling, A-28 channel, selecting active , 6-2 chip capacitor, evaluation, 10-24 class, A-45 class assignment, C-24 cleaning , 2-7 CLEAR SUB MKR , 8-4 Cm!, 4-9 Cm*, 4-9 Cm?, 4-9 Cmp, 4-9 coecient, A-45 color monitor , 4-12 complex plane format , 6-12 connecting active probe network analyzer mode, 2-12 spectrum analyzer mode, 2-12 connecting active probe , 2-12 connecting cables, 2-9 connecting DUT , 5-1 connecting DUT for impedance analyzer mode connecting impedance test kit, 5-8 connecting DUT for network analyzer mode bi-directional transmission and reection characteristics measurement, 5-2 directional transmission and reection characteristics measurement, 5-2 directional transmission characteristic measurement, 5-1 input/output signals in a circuit, 5-5 output signal in a circuit, 5-3 connecting DUT for spectrum analyzer mode direct measurement, 5-6 signal in a circuit, 5-6 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN connecting test set, 2-10 connectors , 4-11 Contents, 2-2 CONTINUOUS , 6-6, 9-13 continuous mode, A-32 controller , A-37 conversion , A-5, A-11 conversion function, A-14 converting to other unit, A-8 4Copy5, softkeys under, B-48 Cor , 4-9 CORRECTION ON off , 10-3 COUPLED CH on OFF , 10-5 COUPLED CH ON off , 10-4 coupling, A-28 Cpl, 4-7 cross channel ONXch, 4-7 crosstalk network analyzer , 11-3 spectrum analyzer , 11-12 crosstalk , A-41, A-43 crt , 11-20 crystal resonator, evaluation of, 10-31 CW FREQ , 6-7 cw frequency , 4-8 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN D D , 11-34 DATA and MEMORY , 8-14 data array , 8-20 data array names network analyzer, A-69 spectrum analyzer, A-68 data arrays, A-11 data arrays , A-5, A-59 data groups network analyzer, A-69 spectrum analyzer, A-69 data hold, A-11 maximum , 9-13 minimum , 9-13 data hold , A-6, A-8 DATA HOLD , 9-13 data math, A-12 data math , 11-20, A-6, A-8 DATA MATH , 8-15 DATA MATH [DATA] , 10-16 data math gain ON G3 , 4-9 data math oset ON 0O , 4-9 data math ON D+M, D/M, 4-9 data only, A-59 DATA ONLY , 8-19 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Index-3 data processing, A-3 impedance measurement, A-10 network measurement, A-3 spectrum measurement, A-7 DATA!MEMORY , 8-14 data trace array, A-12 data trace array , 8-20, A-9 data trace arrays , A-6, A-59 data transfer formats , 11-20 dBm/Hz , 8-35 DC bias , 8-51 DC bias sweep using list sweep function, 10-36 DC SOURCE , 4-4, 12-1 DC SOURCE INPUT , 8-51 dc voltage/current source, 11-21 decimation , A-7 default setting, C-1 DEG , 6-14 Del , 4-9 DELAY, A-46 DELAY , 6-10, 8-29 1mode, A-33 detection, A-8 detection mode, A-19 sample , 8-35 determining expected system performance, 11-52 deviation from linear phase network analyzer , 11-5 Deviation from the Linear Phase, 8-29 dierential probe, 12-2 digital lter, A-4, A-10 directivity , A-41, A-49 directivity EDF , A-55 directivity EDR , A-55 discrete mode, A-32 disk initialize , 8-22 preparing , 3-26 disk capacity , A-58 disk drive non-operating condition , 11-25 disk drive operating condition, 11-25 disk format , 11-20, A-58 display, 4-5 overlap channel , 6-3 split channel , 6-3 display , 11-20 displayed average noise level spectrum analyzer, 11-9 display format, 4-7 display formats impedance analyzer, 11-14 display points, A-27 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NNNNNNNNNNNNNNNNN Index-4 4Display5, softkeys under, B-7 D+M , 4-9 D/M , 4-9 D0M, 4-9 document guide, 1-2 DOS , 3-27, 8-19 DOS format, A-58 drift error, A-40 drift error , 11-33 DUAL CHAN , 6-3 DUT connecting , 3-3 DUT , 5-1 dynamic accuracy , 11-34, 11-37 dynamic accuracy (a/r, b/r) network analyzer , 11-4, 11-5 dynamic range spectrum analyzer, 11-9 dynamic range , 9-7 dynamic range, increasing , 6-26 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN E EDF , A-49 edge mode, 8-38 ELEC DELAY MENU , 8-29 electrical delay, A-15 electrical delay , 8-31, A-5 ELECTRICAL DELAY , 8-27, 8-29 electrical length, 10-26, 10-31 electrical length , 7-17 electrical length, measuring , 8-27 ELF , A-54 emc , 11-26 ENTRY keys, 4-2 environment operation, 2-7 equivalent circuit analysis , 8-53, 10-29, 10-33 equivalent circuit selection guide , 8-54 equivalent electrical length , 7-17 equivalent noise bandwidth , 8-35, A-22 ERF , A-50 Erm , 11-35 Erp , 11-35 error, A-40 error correction ON Cor , 4-9 error message, Messages-1 error model, A-49 ESF , A-50 ETF , A-55 event trigger network analyzer , 11-6 examples of applications , 10-1 EXF , A-55 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EXP PHASE on OFF , 6-12, 10-6 EXP PHASE on OFF , 6-10 ext , 4-9 extension , 8-21 extension cable , 8-31 extension cable, compensating for electrical delay , 8-31 EXTERNAL , 6-4 external DC bias source , 8-51 external monitor, 12-5 external monitor output, 11-25 external monitor terminal, 4-12 external program run/cont input , 4-12, 11-24 external reference, 4-10 external reference input , 4-11, 11-24 external trigger input , 4-13, 11-24 extrapolated xture compensation ON Cm!, 4-9 ExtRef, 4-10 EXT TRIGGER connector , 6-4 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN F factory setting, C-21 fast fourier transform , A-7 fast sweep indicator " , 4-9 FFT , A-7 FFT Mode, A-19 delity spectrum analyzer, 11-8 le copy , 8-22 purge , 8-21 le extension, A-61 le format DOS , 8-22, 8-23 LIF , 8-22, 8-23 le header, A-62 le name entering , 3-27 le name , A-61 lename , 3-28 le structure, A-62 le structure of ASCII le, A-66 single channel vs. dual channel, A-68 le types, A-59 lter , 8-25 lter measurement , 10-2 xture compensation performing , 7-18 xture compensation coecient arrays/xture compensation , A-11 xture compensation kit dening, 7-19 modication menu, 7-19 specifying, 7-20 xture compensation ON Cmp, 4-9 exible disk drive, 4-5 FM signal measurement , 10-21 format group delay , 8-29 network analyzer , 6-10 noise , 8-35 Smith chart , 6-10 Format, A-11 FORMAT, 4-7 format , A-6, A-8 4Format5 , 6-10, 6-14 4Format5, softkeys under, B-5 frequency center , 6-15 full span , 6-20 span , 6-19 zero span , 8-47 frequency characteristics spectrum analyzer , 11-7 frequency characteristics correction , A-5 frequency characteristics level correction, A-8 frequency deviation , 10-21 frequency range, 6-15 network analyzer , 11-3 setting , 3-7, 3-20 spectrum analyzer , 11-7 frequency readout accuracy spectrum analyzer , 11-7 frequency reference spectrum analyzer , 11-7 frequency resolution , 8-3 frequency response network analyzer , 11-5 spectrum analyzer , 11-8 frequency response , A-41, A-44, A-49, A-50, A-54 front panel, 4-1 full scale input level network analyzer , 11-3 full two-port calibration , A-44 fuse replacing, 2-4 fuse selection, 2-4 G NNNNNNNNNNNNNN GAIN , 8-35 gain compression measurement , 10-14 G3 , 4-9 gate control mode spectrum analyzer , 11-13 gate delay Index-5 spectrum analyzer , 11-13 gated, time, 8-38 gate length, 8-38 spectrum analyzer , 11-13 gate output spectrum analyzer , 11-13 gate output , 4-13 gate trigger averaging , 8-45 edge mode , 8-43 gate delay , 8-41 gate length , 8-41 level mode , 8-43 RBW , 8-44 VBW , 8-45 gate trigger , 8-41 gate trigger input spectrum analyzer , 11-13 gate trigger mode, 8-38 general characteristics , 11-24 glossary, A-45 G&O , 4-9 go/no-go testing , 9-8 GPIB, A-37 gpib , 11-20 GPIB address , A-39 gpib cable, 12-5 GPIB interface , 4-12 GPIB requirements, A-38 GRAPHICS, A-60 graphics le, A-60 group delay, A-16 group delay , 8-29 group delay aperture, setting , 8-30 group delay characteristics network analyzer , 11-6 H handle installing , 2-8 handle and rack mounting , 2-9 handle kit (option 1CN), 12-1 Hard copy , 11-20 hardcopy of LCD making , 3-14 harmonics displaying , 6-18 network analyzer , 11-2 searching , 3-25 header, A-62 high level noise , 11-34 high stability frequency reference (option 1D5), 12-1 Hld , 4-9 Index-6 HP DeskJet 1200 color printer, 12-5 HP DeskJet 1600CM color printer, 12-5 HP DeskJet 340J color printer, 12-5 HP DeskJet 505 printer, 12-5 HP DeskJet 560C color printer, 12-5 HP DeskJet 694C color printer, 12-5 HP DeskJet 850C color printer, 12-5 humidity , 11-25, 11-26 I IF band reduction, A-16 IF bandwidth impedance analyzer, 11-14 IF bandwidth , 9-6 IF Bandwidth (IFBW) network analyzer , 11-3 IF bandwidth, setting , 6-26 IF BW , 6-26, 9-6 IFBW , 4-9 IMAGINARY , 6-10 impedanc network analyzere , 11-3 impedance network analyzer , 11-2 spectrum analyzer , 11-12 impedance , 6-11 impedance analyzer quick start guide, 3-31 IMPEDANCE ANALYZER , 10-24, 10-31 impedance conversion, A-14 impedance measurement , 10-12 impedance measurement basics, A-23 Impedance Measurement Function (option 010), 12-1 impedance measurement scheme , A-25 impedance test kit connecting , 2-16 improving dynamic range , 9-6 incoming inspection , 2-2 initial achievable accuracy network analyzer , 11-1 spectrum analyzer , 11-7 initialize disk , 8-22 initialize memory disk , 8-23 input selecting for network mode , 3-6 selecting for spectrum mode , 3-19 input attenuator spectrum analyzer, 11-11 input attenuator , 4-8 input characteristics network analyzer , 11-3 spectrum analyzer , 11-12 input crosstalk NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN network analyzer , 11-3 input port, selecting , 6-7 INPUT Z , 2-19 insertion loss , 10-2 installation, 2-1 rack/handle , 2-8 instrument data arrays , A-59 instrument state , 8-19 INSTRUMENT STATE block, 4-2 instrument states saving/recalling, A-58 instrument states and internal data arrays , A-59 interface function , 11-20 internal reference output , 4-11, 11-24 interpolated error correction ON C?, 4-9 interpolated xture compensation ON Cm?, 4-9 interpreting trace, 8-2 I/O port, 11-21 i/o port , 4-12 isolation , A-41, A-43, A-54 isolation error , A-55 isolation EXF , A-55 isolation EXR, A-55 I-V measurement method , A-23 I-V to reection coecient conversion, A-11 NNNNNNNNNNNNNNNNNNNNNNN K keyboard connecting , 2-18 keyboard , 3-27 keyboard connector , 4-12, 11-21 L LCD, 4-5 LEFT PEAK , 10-22 level accuracy network analyzer , 11-1 spectrum analyzer , 11-8 level correction ON Cor, 4-9 level mode, 8-39 LIF , 3-27, 8-19 lif (logical inter change format) , A-58 limit line table , 9-9 to edit , 9-9 limit line concept , A-29 limit line test activating , 9-10 beep , 9-11 display line , 9-9 modify table , 9-10 oset line , 9-12 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN limit line test , 9-8 limit test, A-29 4LINE5 , 3-17 linear phase shift, A-16 line switch , 4-5 LIN FREQ , 6-6 linking paramters, A-28 LIN MAG , 6-10 liquid crystal display , 4-5 listener , A-37 list of contents, 2-2 list sweep editing a sweep list , 9-3 list sweep , 9-2 list sweep function, DC bias sweep using , 10-36 LIST VALUES , 8-17 LOAD, A-46 load match , A-41, A-43, A-54 load match ELF , A-55 load match ELR , A-55 load match error , A-54 4Local5, softkeys under, B-47 LOG FREQ , 6-6 LOG MAG , 6-10 loss, A-33 low level signal , 3-23 NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN M magnitude characteristics network analyzer , 11-4 magnitude dynamic accuracy , 11-34 magnitude multiplexer switching uncertainty , 11-34 man , 4-9 manual changes, D-1 marker, A-32 displaying dierence , 8-5 xed 1marker , 8-37 marker list , 8-4, 8-9 noise marker , 8-37 reading value , 3-12, 8-2 to center , 6-15 tracking 1marker , 8-50 1marker , 8-5 4Marker5 , 8-2 MARKER block, 4-2 marker couple ONCpl, 4-7 marker readout, 4-7 4Marker!5, softkeys under, B-36 marker search, A-33 4Marker5, softkeys under, B-36 marker statistics, 4-7 marker time mode , A-32 Index-7 marker value, A-32 Max, 4-7 Max , 4-9 max hold , 9-13 maximum hold ON Max, 4-9 maximum safe input level network analyzer , 11-4 spectrum analyzer , 11-13 4Meas5, softkeys under, B-2 measured inputs, 4-7 measurement 3 dB bandwidth , 8-25 cable electrical length , 8-32 carrier to noise ratio (C/N) , 8-37 noise level , 8-35 peak to peak of ripple , 8-7 ripple parameters , 8-7 time domain , 8-47 time gated , 8-41 zero span , 8-47 measurement basic impedance analyzer, A-23 network analyzer, A-13 spectrum analyzer, A-19 measurement basic accuracy (supplemental performance characteristics) , 11-16 MEASUREMENT block, 4-2 measurement block diagram impedance analyzer , A-25 measurement error, A-40 measurement functions impedance analyzer, 11-14 measurement parameter , 6-8 measurement parameters, setting, 10-27 measurement points, A-27 measurement port type impedance analyzer, 11-14 measurement techniques impedance analyzer, 8-51 network analyzer, 8-24 spectrum analyzer, 8-34 measurement throughput network analyzer, 11-6 MEMORY , 8-14 memory array , 8-20 memory arrays, A-11 memory arrays , A-5, A-8, A-59 memory disk initialize , 8-23 memory disk , A-58 memory trace , 8-15 memory trace array , 8-20, A-9, A-12 memory trace arrays , A-6, A-59 menu, 4-2 message area, 4-10 NNNNNNNNNNNNNNNNNNNN Index-8 Min , 4-7, 4-9 mini-DIN keyboard , 2-18 minimum hold ON Min, 4-9 MKR COUP on OFF , 10-16 MKR LIST , 8-4, 8-9 MKR!CENTER , 6-15 MKR!CNTR STEP , 6-17 MKR!DELAY , 8-29 MKR!LEFT RNG , 8-12 MKR!REFERENCE , 6-24 MKR!RIGHT RNG , 8-12 MKR TIME , 8-48 MKR!REFERENCE , 10-4 MKR1!SEARCH RNG , 8-12 MKR XCH ZOOM , 6-22 MKR ZOOM , 6-22, 10-22 Ml , 11-34 modifying calibration kit, A-45 modulating frequency , 10-18, 10-22 modulation index , 10-18 Ms , 11-34 Msw , 11-34 multiplexer switching impedance change network analyzer, 11-3 multiplexer switching uncertainty , 11-34 multiply trace , 8-15 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN N Neg , 4-9 negative peak detection ON Neg , 4-9 negative peak mode, A-19 network analyzer quick start guide, 3-1 NETWORK ANALYZER , 10-2 network measurement basics, A-13 NEXT PEAK , 8-8, 10-21 Nh , 11-34 Nl , 11-34 NOISE , 8-35 noise oor , 11-34 NOISE FORM , 8-37 noise level network analyzer, 11-3 noise marker , 8-37 noise measurement, A-22 noise sidebands network analyzer , 11-2 spectrum analyzer , 11-7 nominal , 11-1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN non-harmonics spurious network analyzer , 11-2 non-operation condition , 11-26 non-volatile memory, C-1 NOP, A-27 number of display points spectrum analyzer , 11-12 NUMBER of GROUPS , 6-6 Number of Points network analyzer, 11-6 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN O NNNNNNNNNNNNNNNNNNNN OFFSET , 10-16 OFFSET , 8-35 oset Delay , A-47 oset Loss , A-47 oset Z0 , A-47 one-path two-port calibration , A-44 one-port calibration , A-44 one-port error model , A-49 OPEN, A-46 opened cable reection , 8-32 OPERATING PARAMETERS , 8-17 operation condition , 11-25 operation environment, 2-7 option, 12-1 option 1CM rack mount kit , 2-9 option 1CN handle kit , 2-8 option 1CP rack mount & handle kit , 2-9 option 1D5 , 4-11, 4-13 option 1D6 spectrum analyzer , 11-13 option 1D6 , 4-13, 8-41 option 1D7 50 to 75 input impedance conversion , 2-19 oscilloscope , 8-41 other spurious spectrum analyzer , 11-10 output characteristics impedance analyzer, 11-14 network analyzer , 11-1 output connector, 4-4 overlaying multiple traces, 8-16 overview 4395A, 1-1 NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN P P , 4-9 P? , 4-9 parallel interface , 4-12 parameters, linking, A-28 Part Number, 2-2 PART SRCH , 8-7, 8-12 pass/fail , 4-8 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN peak dening peak specication , 8-10 setting to center , 6-17 to search multiple peaks , 8-9 to search single peak , 8-8 Peak , 4-7 PEAK ALL , 8-9 peak denition, A-35 PEAK DEF MENU , 10-4 PEAK DEF MENU , 8-10, 8-11 peak level read by marker , 3-22 reading , 3-22 peak mode, A-19 PEAK PLRTY POS neg , 10-4 peak polarity , A-35 PEAK!CENTER , 6-17 peak search , 10-5 PEAKS LEFT , 8-9 PEAKS RIGHT , 8-9 performance , 11-1 performance test, 4-1 performance test , 11-1 PHASE , 6-10 phase characteristics network analyzer , 11-5 phase deviation, measuring , 8-29 phase dynamic accuracy , 11-34 phase lock , 4-11 phase measurements , 10-5 phase multiplexer switching uncertainty , 11-34 phase oset , A-5 phase shift, A-16 PHASE UNIT [ ] , 6-10 PksA , 4-7 PksL , 4-7 PksR , 4-7 POLAR , 10-11 polar chart, A-15 polar chart , 10-11 POLAR CHART , 6-10 port extension, 8-59 port extension , 8-31 PORT EXTENSIONS , 8-31 positive peak mode, A-19 power , 6-14 POWER , 9-6 Power Cable, 2-5 power cable receptacle, 4-12 power level , 4-8, 9-6 power ON default, C-1 NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN Index-9 power range network analyzer , 11-1 power requirements, 2-5 power splitter, 12-2 available , 2-13 power sweep , 10-14 POWER SWEEP , 6-7 Power sweep linearity network analyzer, 11-2 precision frequency reference spectrum analyzer , 11-7 4Preset5, C-1 4Preset5 , 5-9 4Preset5 key , 4-3 4Preset5, softkeys under, B-47 preset state, C-1 Presetting , 3-29 print analyzer setting , 8-17 display image , 8-17 list values , 8-17 PRINT , 8-17 printer, 12-5 conguring and connecting , 3-14 printer control language, 11-21 Printer parallel port , 11-21 probe power , 11-21 PROBE POWER , 4-3 probe power supply, 4-3 pulse repetition width (PRI) , 8-41 pulse width (Tp ) , 11-24 purge le , 8-21 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN Q Q, A-33 Q factor , 8-57 quick start guide impedance analyzer, 3-31 network analyzer, 3-1 spectrum analyzer, 3-15 R NNNNN R , 6-7 rack/handle installation , 2-8 rack mount and handle kit (option 1CP), 12-1 rack mounting , 2-9 rack mount kit (option 1CM), 12-1 RAD , 6-14 random error, A-40 random error , 11-33 ratio , A-4 ratio accuracy network analyzer , 11-4 NNNNNNNNNNN Index-10 raw data , 8-20 raw data arrays, A-11 raw data arrays , A-5, A-8, A-59 RBW setting , 3-23, 8-44 RBW , 4-9, 6-27 RBW lter response time , 8-40 RBW selectivity, A-21 reading transition time using the marker , 8-48 REAL , 6-10 rear panel , 4-11 recall analyzer setting , 8-20 automatically when starting up, A-61 4Recall5, softkeys under, B-54 receiver characteristics network analyzer , 11-3 recharge time, C-1 reference level, 4-7 marker! , 6-24 setting , 6-24 reference oven output , 4-13, 11-24 REFERENCE VALUE , 6-24 Reference Value setting range spectrum analyzer, 11-8 reection coecient , 10-7, A-49 reection measurement , 10-7 reection repeatability , 11-34 reection tracking drift , 11-34 reection tracking ERF , A-55 reection tracking ERR , A-55 reection uncertainty equations , 11-35 Refl:FWD S11 [A/R] , 6-7 Refl:REV S22 [A/R] , 6-7 relative permittivity ("R ) , 8-28 REMOTE , 4-3 remote indicator , 4-3 repetitive sampling mode , 8-47 replacing fuse, 2-4 requirements power, 2-5 RES BW , 6-27 RES BW auto MAN , 6-27 residual crosstalk , 11-34 residual load match , 11-34 residual measurement error, 11-33 residual reection tracking , 11-34 residual response spectrum analyzer, 11-10 residual responses network analyzer , 11-5 residual source match , 11-34 NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN residual transmission tracking , 11-34 resolution , 8-3 resolution bandwidth (rbw) spectrum analyzer , 11-7 resolution bandwidth (RBW) , 6-27 RESPONSE , 7-2, 10-3 response and isolation calibration , A-44 response calibration performing , 3-10 response calibration , A-44 RESPONSE & ISOL'N , 7-2 response time , 8-40 return loss network analyzer , 11-2, 11-3 spectrum analyzer , 11-12 return loss , 10-7 RF OUT , 4-4 rf output ON P , 4-9 RF power level , 4-8 RIGTH PEAK , 10-22 ripple , 10-4 Rr1 , 11-34 Rr2 , 11-34 Rt1 , 11-34 Rt2 , 11-34 run/cont input , 4-12, 11-24 NNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN S S11 one-port calibration , A-44 S22 one-port calibration , A-44 safety , 11-26 sample detection , 8-35 sample detection mode, A-22 sample mode, A-19 sample peak detection ON Smp , 4-9 sampling mode , 8-47 save analyzer setting , 8-19 data array type , 8-20 display image , 8-21 extension , 8-21 measurement data , 8-19 save data format , A-71 4Save5, softkeys under, B-52 saving/recalling instrument states, A-58 scale spectrum analyzer , 11-12 scale and reference, 6-23 SCALE/DEV , 10-4 SCALE/DIV, 4-7 SCALE/DIV , 6-25 scale/division setting , 6-25 4Scale Ref5, softkeys under, B-11 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNN scaling, A-12 scaling , A-6, A-9 scan speed of 31.5 kHz, 4-12 scattering parameters , A-13 screen display, 4-5 search, A-33 multiple peaks , 8-9 peak denition , 8-10 range , 8-7 search range , 8-12 target value , 8-5 to dene peak shape , 8-11 search function using , 3-25 SEARCH:PEAK , 10-21 4Search5, softkeys under, B-39 search tracking ONMax, 4-7 search tracking ONMin, 4-7 search tracking ONPeak, 4-7 search tracking ONPksA, 4-7 search tracking ONPksL, 4-7 search tracking ONPksR, 4-7 search tracking ONTarg, 4-7 SEARCH TRK , 8-50 SEARCH TRK on OFF , 6-18 second harmonic distortion spectrum analyzer, 11-10 SEGMENT, A-29 segment , A-29 SEGMENT , 9-10 selectivity, A-21 spectrum analyzer , 11-7 selectivity, RBW, A-21 serial number, D-2 service mode Svc, 4-9 setting IF bandwidth , 9-6 setting measurement parameters , 10-27 Setting the analyzer type , 3-34 Setting the Trigger Signal Polarity , 6-5 set-up time , 8-40 set up time (SUT) , 8-41, 8-44 SET Z0 , 10-12 Sgnl, 4-7 SHORT, A-46 shorted cable reection , 8-32 signal delay (SD) , 8-41 signal track , 6-20, 9-14 signal tracking ONSgnl, 4-7 SIGNAL TRK , 6-20, 9-14 signal width ( ) , 8-41 SINGLE , 6-6, 9-13 SMITH , 10-12 Smith chart, A-15 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN Index-11 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN SMITH CHART , 6-10 Smith chart, displaying the trace as , 6-10 Smp , 4-9 SMTH/POLAR MENU , 6-11 softkey menu, 4-3 softkey reference, B-1 softkeys under 4Bw/Avg5, B-14 4Cal5, B-16 4Center5, B-35 4Chan 15, B-2 4Chan 25, B-2 4Copy5, B-48 4Display5, B-7 4Format5, B-5 4Local5, B-47 4Marker5, B-36 4Marker!5, B-36 4Meas5, B-2 4Preset5, B-47 4Recall5, B-54 4Save5, B-52 4Scale Ref5, B-11 4Search5, B-39 4Source5, B-32 4Span5, B-35 4Start5, B-35 4Stop5, B-35 4Sweep5, B-29 4System5, B-44 4Trigger5, B-34 4Utility5, B-42 source characteristics network analyzer, 11-1 source crosstalk network analyzer , 11-3 source match , A-41, A-42, A-49, A-50, A-54 source match ESF , A-55 source match ESR , A-55 4Source5, softkeys under, B-32 span narrowing , 6-20 setting , 6-19 zooming , 6-22 4Span5 , 6-19, 6-20 4Span5, softkeys under, B-35 span value , 4-8 s-parameter , A-13 S-parameter test set connecting , 2-11 S-parameter test set , 3-3 S parameter test set , 5-1 s-parameter test set interface , 11-24 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Index-12 s-parameter test set interface pin assignments , 11-25 (SPC) , 11-1 specications, 4-1 common to all analyzers, 11-20 impedance analyzer, 11-14 network analyzer, 11-1 spectrum analyzer, 11-7 specications , 11-1 spectral purity characteristics network analyzer , 11-2 spectrum analyzer quick start guide, 3-15 spectrum measurement basics, A-19 SPLIT DISP , 6-3 spreadsheet , 8-21 spurious responses spectrum analyzer , 11-10 Sr1 , 11-34 Sr2 , 11-34 St1 , 11-34 St2 , 11-34 stability (A/R, B/R, A/B) network analyzer, 11-5 network analyzer , 11-5 stabilizing trace, 9-13 standard, A-45 standard class assignment , 7-12 creating label, 7-13 label , 7-11 specifying , 7-12 standard class assignment, C-24 standard denition table , 7-10 standby for external trigger ext , 4-9 standby for GPIB trigger bus , 4-9 standby for manual trigger man , 4-9 4Start5, softkeys under, B-35 start value , 4-8 state, A-59 STATE , 8-19 STATISTICS , 8-7 status notations, 4-9 step size, specied, 6-17 4Stop5, softkeys under, B-35 stop value , 4-8 storage , 11-20 storage devices , A-58 sub-marker using , 8-4 SUB MKR , 8-4 sux , 3-30 Svc, 4-9 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN sweep linear , 6-6 log , 6-6 power , 6-7 to stop , 9-13 SWEEP block, 4-2 sweep characteristics network analyzer , 11-6 spectrum analyzer , 11-12 sweep conditions , 6-6 SWEEP: HOLD , 9-13 sweep hold ON Hld , 4-9 sweep parameters impedance analyzer, 11-14 4Sweep5, softkeys under, B-29 sweep time spectrum analyzer , 11-12 sweep time , 4-8 sweep type network analyzer , 11-6 spectrum analyzer , 11-12 sweep type , 6-6 swept harmonics , 8-50 swept Mode, A-19 switch port match , 11-34 switch tracking , 11-34 swr , 10-7 SWR , 6-10 system accessory, 12-5 systematic error, A-40 systematic error , 11-33 system controller , A-38, A-39 system error model , 11-34 system overview , A-2 system performance with typical test sets and connector types, 11-45 system performance , 11-28 system performance, determining expected, 11-52 4System5, softkeys under, B-44 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN T talker , A-37 Targ , 4-7 TARGET , 10-15 TARGET , 8-5 temperature , 11-25 temperature> , 11-26 temperature drift spectrum analyzer, 11-11 temperature drift , 11-42 temperature stability network analyzer , 11-1 NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN spectrum analyzer , 11-7 test xture connecting , 2-16, 7-15 setting electrical length , 7-17 user dened , 7-17 test xture, compensation, 10-26 test xture, setting the electrical length of , 10-26, 10-31 test set, 12-2 connecting, 2-10 test set I/O interface , 4-13 test signal level , A-25 test signal source connecting , 3-17 text with tab delimiter , 8-21 third order inter-modulation distortion spectrum analyzer, 11-10 THRESHOLD , 8-11 threshold value, A-35, A-36 THRU, A-46 THRU , 10-3 TIFF, A-60 TIFF , 8-21 time gated, 8-38 time gated spectrum analysis , 8-41 time-gated spectrum analyzer (option 1D6), 12-1 title , 4-10 To Select the Input Port, 6-8 Tr , 11-34 trace arithmetic , 8-15 trace math to add , 8-15 to divide , 8-15 to subtract , 8-15 trace math , 8-15 trace memory , 8-14 trace noise (A/R, B/R, A/B) network analyzer, 11-5 tracking , A-41, A-44, A-49, A-50, A-54 TRACKING 1MKR , 8-50 Trans:FWD S21 [B/R] , 6-7 transmission coecient , A-54 transmission/reection test kit , A-56 transmission/reection test set connecting , 2-10 transmission/reection test set , 3-3, 5-1 transmission repeatability , 11-34 transmission tracking drift , 11-34 transmission tracking ETF , A-55 transmission tracking ETR , A-55 transmission uncertainty equations , 11-36 Trans:REV S12 [B/R] , 6-7 Trd , 11-34 NNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Index-13 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN TRIG EVENT [ON POINT] , 6-5 4Trigger5 , 6-4 trigger event, generating on each display point, 6-5 trigger input , 4-13 trigger mode , 6-4 trigger mode, selecting , 6-4 trigger polarity, 8-38 trigger polarity , 11-24 trigger signal negative , 6-5 positive , 6-5 4Trigger5, softkeys under, B-34 trigger source external , 6-4 internal , 6-4 network analyzer , 11-6 spectrum analyzer , 11-12 trigger type network analyzer , 11-6 spectrum analyzer , 11-12 TRIG PLRTY , 6-5 Tsw , 11-34 Tt , 11-34 Ttd , 11-34 turning ON , 3-3, 3-17 Turning on the 4395A, 3-33 two-port error correction ON C2 , 4-9 two-port error model , A-54 two-port interpolated error correction ON C2?, 4-9 type, A-45 typical , 11-1 typical dynamic range spectrum analyzer , 11-10 typical system performance, 11-28 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN U U , 11-34 1MKR , 8-5 Um , 11-34 unabled to interpolated compensation ON C!, 4-9 unabled to two-port interpolated error correction ON C2! , 4-9 uncertainty spectrum analyzer, 11-11 uncertainty , 11-29 unit , 6-14 Up , 11-34 upgrade kit, 12-1 user-dened cal kit, A-45 4Utility5, softkeys under, B-42 NNNNNNNNNNNNNN V varactor diode, evaluation of, 10-36 VBW , 6-28 velocity factor, A-15 velocity factor , 8-28 VELOCITY FACTOR , 8-28 VGA , 11-25 video Averaging , A-8 video bandwidth spectrum analyzer , 11-7 video bandwidth (vbw) , 4-8 video bandwidth (VBW) , 6-28 VIDEO BW , 6-28 video output terminal, 4-12 video signal, 4-12 voltage , 6-14 voltage/current ratio, A-10 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNN W warm up time , 11-1, 11-25 weight , 11-26 wide band fm signal , 10-21 WIDTH , 8-25 width functions , 8-57 WIDTH on OFF , 10-3 width search, 8-57, A-33 width value, 4-7, 8-57 WIDTH VALUE , 10-4 windowing , A-7 With the S-Parameter Test Set , 6-7 NNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN X Xch, 4-7 Y Y conversion, A-14 Y conversion , 6-11 Y:Refl , 6-11 Y:Trans , 6-11 NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN Z Z conversion, A-14 Z conversion , 6-11 zooming displaying a zoomed trace on the other channel, 6-22 setting magnication factor , 6-22 zooming aperture, 6-22 zooming , 6-22 ZOOMING APERTURE , 6-22, 10-22 zooming function , 10-22 Z:Refl , 6-11 Z:Trans , 6-11 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNN Index-14 REGIONAL SALES AND SUPPORT OFFICES For more information about Agilent Technologies test and measurement products, applications, services, and for a current sales office listing, visit our web site: http://www.agilent.com/find/tmdir. You can also contact one of the following centers and ask for a test and measurement sales representative. 11/29/99 United States: Agilent Technologies Test and Measurement Call Center P.O.Box 4026 Englewood, CO 80155-4026 (tel) 1 800 452 4844 Canada: Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (tel) 1 877 894 4414 Europe: Agilent Technologies Test & Measurement European Marketing Organization P.O.Box 999 1180 AZ Amstelveen The Netherlands (tel) (31 20) 547 9999 Japan: Agilent Technologies Japan Ltd. Call Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan (tel) (81) 426 56 7832 (fax) (81) 426 56 7840 Latin America: Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. (tel) (305) 267 4245 (fax) (305) 267 4286 Australia/New Zealand: Agilent Technologies Australia Pty Ltd 347 Burwood Highway Forest Hill, Victoria 3131 (tel) 1-800 629 485 (Australia) (fax) (61 3) 9272 0749 (tel) 0 800 738 378 (New Zealand) (fax) (64 4) 802 6881 Asia Pacific: Agilent Technologies 24/F, Cityplaza One, 1111 King’s Road, Taikoo Shing, Hong Kong (tel) (852)-3197-7777 (fax) (852)-2506-9284 ">
Advertisement