User manual | ABB ACS800 Pump Control Application Program pump control Firmware Manual

Add to My manuals
236 Pages

Below you will find brief information for pump control ACS800 Pump Control Application Program. This manual provides information on how to start up and control the drive. It also covers topics such as parameter settings, diagnostics, and fault tracing. The manual is written in a clear and concise way, with detailed explanations of all features. The manual is suitable for both experienced users and beginners.

advertisement

ACS800 Pump Control Application Program Firmware Manual | Manualzz

ACS800

Firmware Manual

ACS800 Pump Control Application Program 7.1 (+N687)

ACS800 Pump Control

Application Program 7.1

Firmware Manual

© 2006 ABB Oy. All Rights Reserved.

3AFE68478952 REV B

EN

EFFECTIVE: 07.04.2006

Table of contents

Table of contents

Introduction to this manual

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Start-up; and control through the I/O

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

How to start-up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

How to perform the ID Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Control panel

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Status row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

How to upload data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

How to set the contrast of the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table of contents

5

6

Program features

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Programmable analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Update cycles in the Pump Control Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Programmable analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Update cycles in the Pump Control Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Update cycles in the Pump Control Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Update cycles in the Pump Control Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Pump/Fan control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Process PI control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Sleep function for process PI control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Example: Sleep function for a PI controlled pressure boost pump . . . . . . . . . . . . . . . . . . . . . . 46

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Multipump control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Level control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Flow calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Anti-jam function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table of contents

7

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Automatic Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

DC Magnetising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Flux Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Flux Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Critical frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Constant frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Hexagonal motor flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

AI<Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Panel Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

External Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Motor Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Pressure monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Stall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Underload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Motor Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Earth Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Preprogrammed Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table of contents

8

Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Adaptive Programming using function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Application macros

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Multipump macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

PFC TRAD macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Operation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Level control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Hand/Auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Operation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

01 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

02 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

03 INTERNAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

05 PFC WORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

09 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

11 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

12 CONSTANT FREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13 ANALOGUE INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

15 ANALOGUE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

16 SYSTEM CTR INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

20 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

21 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

23 SPEED CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

25 CRITICAL FREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

26 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

30 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

31 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table of contents

9

32 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

33 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

40 PI-CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

41 PFC-CONTROL 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

42 PFC-CONTROL 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

43 SLEEP FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

44 PFC PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

45 FLOWCONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

46 ANTI JAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

47 LEVEL CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

51 COMM MOD DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

52 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

60 MASTER-FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

65 SHARE IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

70 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

83 ADAPT PROG CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

84 ADAPTIVE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

85 USER CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

90 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

92 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

95 HARDWARE SPECIFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

96 ANALOGUE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

98 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

99 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Fault tracing

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Pump control application examples

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

2-pump station with 1 drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Sheet 1 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Sheet 2 of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Sheet 3 of 3 (Pressure sensor connection examples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Multipump configuration with 2 (or more) drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Wiring diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Optical fibre connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Level control configuration with 2 drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Wiring diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Pump station remote-controlled through the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Table of contents

10

Fieldbus control

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Control through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Setting up an Advant Fieldbus 100 (AF 100) connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

The fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Block diagram: Control data input from fieldbus (for type Nxxx fieldbus adapters) . . . . . . . . . 203

Block diagram: Actual value selection for fieldbus (for type Nxxx fieldbus adapters) . . . . . . . 204

Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

ABB Drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Diverse status, fault, alarm and limit words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Analogue extension module

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Speed control through the analogue extension module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Basic checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Settings of the analogue extension module and the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Parameter settings: bipolar input in basic speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Additional data: actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Table of contents

11

Introduction to this manual

Chapter overview

This chapter includes a description of the contents of the manual. In addition, it contains information about the compatibility, safety, intended audience, and related publications.

Compatibility

This manual is compatible with the ACS800 Pump Control Application Program version 7.1 (firmware package version AHXR7150 – see parameter

33.01

).

Safety instructions

Follow all safety instructions delivered with the drive.

• Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the

Hardware Manual.

• Read the software function specific warnings and notes before changing the default settings of a function. For each function, the warnings and notes are given in this manual in the subsection describing the related user-adjustable parameters.

Reader

The reader of the manual is expected to know the standard electrical wiring practices, electronic components, and electrical schematic symbols.

Contents

The manual consists of the following chapters:

Start-up; and control through the I/O

instructs in setting up the application program, and how to start, stop and regulate the speed of the drive.

Control panel

gives instructions for using the panel.

Program features

contains the feature descriptions and the reference lists of the

user settings and diagnostic signals.

Application macros

contains a short description of each macro together with a

connection diagram.

Actual signals and parameters

describes the actual signals and parameters of the

drive.

Fault tracing

lists the warning and fault messages with the possible causes and

remedies.

Introduction to this manual

12

Fieldbus control

describes the communication through the serial communication

links.

Pump control application examples

presents an existing two-pump PFC

application.

Analogue extension module

describes the communication between the drive and an RAIO analogue I/O extension module (optional).

Additional data: actual signals and parameters

contains more information on the

actual signals and parameters.

Related Publications

In addition to this manual, the ACS800 user documentation includes the following manuals:

• Hardware manuals

• Several user’s manuals for the optional devices for the ACS800.

Introduction to this manual

13

Start-up; and control through the I/O

Chapter overview

The chapter instructs how to:

• do the start-up

• start, stop, change the direction of rotation, and adjust the speed of the motor through the I/O interface

• perform an Identification Run for the drive.

How to start-up the drive

A step-by-step instruction for starting up the drive follows. Before you begin, ensure you have the motor nameplate data at hand.

Note: Before beginning the start-up, ensure that all active interlock inputs (if any) are

ON at the digital I/O terminals of the RMIO board of the drive. See the chapter

Actual signals and parameters

, parameter

42.04

.

SAFETY

The start-up may only be carried out by a qualified electrician.

The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions.

Check the installation. See the installation checklist in the appropriate hardware/installation manual.

Check that the starting of the motor does not cause any danger.

De-couple the driven machine if:

- there is a risk of damage in case of incorrect direction of rotation, or

- a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)

POWER-UP

Apply mains power. The control panel first shows the panel identification data …

… then the Identification Display of the drive …

CDP312 PANEL Vx.xx

.......

ACS800 xx kW

ID NUMBER 1

… then the Actual Signal Display.

Drive set-up can now be started.

1 -> 0.0 rpm O

ACT VAL1 0.00 bar

CURRENT 0.00 A

FREQ 0.00 Hz

Start-up; and control through the I/O

14

MANUAL START-UP DATA ENTERING (parameter group 99)

Select the language. The general parameter setting procedure is described below.

The general parameter setting procedure:

- Press PAR to select the Parameter Mode of the panel.

- Press the double-arrow keys ( or ) to scroll the parameter groups.

- Press the arrow keys ( or ) to scroll parameters within a group.

- Activate the setting of a new value by ENTER.

- Change the value by the arrow keys ( or ), fast change by the doublearrow keys ( or ).

- Press ENTER to accept the new value (brackets disappear).

Select the Application Macro. The general parameter setting procedure is given above.

1 -> 0.0 Hz O

99 START-UP DATA

01 LANGUAGE

ENGLISH

1 -> 0.0 Hz O

99 START-UP DATA

01 LANGUAGE

[ENGLISH]

1 -> 0.0 Hz O

99 START-UP DATA

02 APPLICATION MACRO

[ ]

Select the motor control mode. The general parameter setting procedure is given above.

DTC is suitable in most cases. The SCALAR control mode is recommended

- for multimotor drives when the number of the motors connected to the drive is variable

- when the nominal current of the motor is less than 1/6 of the nominal current of the inverter

- when the inverter is used for test purposes with no motor connected.

Enter the motor data from the motor nameplate:

3

V

690 Y

400 D

660 Y motor

Hz kW

50

50

50

30

30

30

M2AA 200 MLA 4

IEC 200 M/L 55 r/min

1475

1475

No

Ins.cl. F

A

32.5

56

IP 55 cos

IA/IN t E/s

0.83

0.83

1470 34 0.83

380 D

415 D

440 D

Cat. no

50

50

60

30

30

35

1470

1475

1770

59

54

59

3GAA 202 001 - ADA

0.83

0.83

0.83

6312/C3

ABB Motors

6210/C3

IEC 34-1

180

380 V mains voltage

1 -> 0.0 Hz O

99 START-UP DATA

04 MOTOR CTRL MODE

[DTC]

Note: Set the motor data to exactly the same value as on the motor nameplate.

For example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter

99.08 MOTOR NOM

SPEED to 1500 rpm results in the wrong operation of the drive.

- motor nominal voltage

Allowed range: 1/2 · U

N

2 · U

N of ACS800. (U

N

refers to the highest voltage in each of the nominal voltage ranges: 415 VAC for 400 VAC units, 500 VAC for 500

VAC units and 690 VAC for 600 VAC units.)

- motor nominal current

Allowed range: approx. 1/6 × I

2hd

2 × I

2hd of ACS800

1 -> 0.0 Hz O

99 START-UP DATA

05 MOTOR NOM VOLTAGE

[ ]

1 -> 0.0 Hz O

99 START-UP DATA

06 MOTOR NOM CURRENT

[ ]

Start-up; and control through the I/O

15

- motor nominal frequency

Range: 8

300 Hz

1 -> 0.0 Hz O

99 START-UP DATA

07 MOTOR NOM FREQ

[ ]

- motor nominal speed

Range: 1

18000 rpm

1 -> 0.0 Hz O

99 START-UP DATA

08 MOTOR NOM SPEED

[ ]

-motor nominal power

Range: 0

9000 kW

1 -> 0.0 Hz O

99 START-UP DATA

09 MOTOR NOM POWER

[ ]

When the motor data has been entered, a warning appears. It indicates that the motor parameters have been set, and the drive is ready to start the motor identification (ID Magnetisation or ID Run).

Select the motor identification method.

The default value NO (ID Magnetisation only) is sufficient for most applications. It is applied in this basic start-up procedure.

The ID Run (STANDARD or REDUCED) should be selected instead if:

- The operation point is near zero speed, and/or

- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.

For more information, see the subsection How to perform the ID Run below.

1 -> 0.0 Hz O

** WARNING **

ID MAGN REQ

1 -> 0.0 Hz O

99 START-UP DATA

10 MOTOR ID RUN

[NO]

IDENTIFICATION MAGNETISATION (with Motor ID Run selection ID MAGN)

Press the LOC/REM key to change to local control (L shown on the first row).

Press the to start the Identification Magnetisation. The motor is magnetised at zero speed for 20 to 60 s. Two warnings are displayed:

The upper warning is displayed while the magnetisation is in progress.

The lower warning is displayed after the magnetisation is completed.

DIRECTION OF ROTATION OF THE MOTOR

1 L-> 0.0 Hz I

** WARNING **

ID MAGN

1 L-> 0.0 Hz O

** WARNING **

ID DONE

Check the direction of rotation of the motor.

- Press ACT to get the status row visible.

- Increase the speed reference from zero to a small value by pressing REF and then the arrow keys ( , , or ).

- Press to start the motor.

- Check that the motor is running in the desired direction.

- Stop the motor by pressing .

1 L->[xxx] Hz I

ACT VAL1 xxx bar

CURRENT xx A

FREQ xx Hz

Start-up; and control through the I/O

16

To change the direction of rotation of the motor:

- Disconnect mains power from the drive, and wait 5 minutes for the intermediate circuit capacitors to discharge. Measure the voltage between each input terminal (U1, V1 and W1) and earth with a multimeter to ensure that the frequency converter is discharged.

- Exchange the position of two motor cable phase conductors at the motor terminals or at the motor connection box.

- Verify your work by applying mains power and repeating the check as described above.

forward direction reverse direction

FREQUENCY LIMITS AND ACCELERATION/DECELERATION TIMES

Set the minimum frequency.

1 L-> 0.0 Hz O

20 LIMITS

01 MINIMUM FREQ

[ ]

Set the maximum frequency.

1 L-> 0.0 Hz O

20 LIMITS

02 MAXIMUM FREQ

[ ]

Set the acceleration time 1.

Note: Also set acceleration time 2 if two acceleration times will be used in the application.

1 L-> 0.0 rpm O

22 ACCEL/DECEL

02 ACCEL TIME 1

[ ]

Set the deceleration time 1.

Note: Also set deceleration time 2 if two deceleration times will be used in the application.

1 L-> 0.0 rpm O

22 ACCEL/DECEL

03 DECEL TIME 1

[ ]

The drive is now ready for use.

Start-up; and control through the I/O

17

How to control the drive through the I/O interface

The table below instructs how to operate the drive through the digital and analogue inputs, when:

• the motor start-up is performed, and

• the default (PFC TRAD macro) parameter settings are valid.

PRELIMINARY SETTINGS

Ensure the PFC TRAD macro is active.

Ensure the control connections are wired according to the connection diagram given for the PFC TRAD macro.

See parameter 99.02.

See the chapter

Application macros

.

Ensure the drive is in external control mode. Press the LOC/REM key to change between external and local control.

STARTING AND CONTROLLING THE SPEED OF THE MOTOR

Start by switching digital input DI6 on.

1 -> 0.0 Hz I

ACT VAL1 0.00 bar

CURRENT 0.00 A

FREQ 0.00 Hz

Regulate the speed by adjusting the voltage of analogue input AI1.

In External control, there is no L visible on the first row of the panel display.

1 -> 45.0 Hz I

ACT VAL1 10.00 bar

CURRENT 80.00 A

FREQ 45.00 Hz

STOPPING THE MOTOR

Switch off digital input DI6.

1 -> 45.0 Hz O

ACT VAL1 0.00 bar

CURRENT 0.00 A

FREQ 0.00 Hz

Start-up; and control through the I/O

18

How to perform the ID Run

The drive performs the ID Magnetisation automatically at the first start. In most applications there is no need to perform a separate ID Run. The ID Run (Standard or

Reduced) should be selected if:

• The operation point is near zero speed, and/or

• Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.

The Reduced ID Run is to be performed instead of the Standard if it is not possible to disengage the driven machine from the motor.

ID Run Procedure

Note: If parameter values (Group 10 to 98) are changed before the ID Run, check that the new settings meet the following conditions:

• 20.01 MINIMUM FREQUENCY < 0 Hz.

• 20.02 MAXIMUM FREQUENCY > 80% of motor rated frequency

• 20.03 MAXIMUM CURRENT > 100% · I hd

• 20.04 MAXIMUM TORQUE > 50%

• Ensure that the panel is in the local control mode (L displayed on the status row).

Press the LOC/REM key to switch between modes.

• Change the ID Run selection to STANDARD or REDUCED.

1 L -> 45.0 Hz O

99 START-UP DATA

10 MOTOR ID RUN

[STANDARD]

• Press ENTER to verify selection. The following message will be displayed:

1 L -> 45.0 Hz O

ACS800 55 kW

**WARNING**

ID RUN SEL

• To start the ID Run, press the key. The Run Enable signal must be active

(see parameter 16.01 RUN ENABLE). With the PFC TRAD macro, the interlocks must be on (see parameter 81.20 INTERLOCKS).

Warning during the ID Run Warning when the ID Run is started

1 L -> 45.0 Hz I

ACS800 55 kW

**WARNING**

MOTOR STARTS

1 L -> 45.0 Hz I

ACS800 55 kW

**WARNING**

ID RUN

Warning after a successfully completed ID Run

1 L -> 45.0 Hz I

ACS800 55 kW

**WARNING**

ID DONE

Start-up; and control through the I/O

19

In general, it is recommended not to press any control panel keys during the ID Run.

However:

• The Motor ID Run can be stopped at any time by pressing the control panel stop key ( ).

• After the ID Run is started with the start key ( ), it is possible to monitor the actual values by first pressing the ACT key and then a double-arrow key ( ).

Start-up; and control through the I/O

20

Start-up; and control through the I/O

Control panel

Chapter overview

The chapter describes how to use the control panel CDP 312R.

The same control panel is used with all ACS800 series drives, so the instructions given apply to all ACS800 types. The display examples shown are based on the

Standard Application Program; displays produced by other application programs may differ slightly.

Overview of the panel

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

ACT PAR FUNC DRIVE

ENTER

7

LOC

REM

I

4

6

RESET

0

5

3

REF

1

2

6

7

4

5

2

3

No.

1

The LCD type display has 4 lines of 20 characters.

The language is selected at start-up (parameter

99.01

).

The control panel has four operation modes:

- Actual Signal Display Mode (ACT key)

- Parameter Mode (PAR key)

- Function Mode (FUNC key)

- Drive Selection Mode (DRIVE key)

The use of single arrow keys, double arrow keys and ENTER depend on the operation mode of the panel.

The drive control keys are:

Use

Start

Stop

Activate reference setting

Forward direction of rotation

Reverse direction of rotation

Fault reset

Change between Local / Remote (external) control

21

Control panel

22

Panel operation mode keys and displays

The figure below shows the mode selection keys of the panel, and the basic operations and displays in each mode.

Actual Signal Display Mode

ACT

Act. signal / Fault history selection

Act. signal / Fault message scrolling

1 L -> 1242.0 rpm O

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Enter selection mode

Accept new signal

ENTER

Parameter Mode

PAR

Group selection

Fast value change

Parameter selection

Slow value change

Enter change mode

Accept new value

1 L -> 1242.0 rpm O

10 START/STOP/DIR

01 EXT1 STRT/STP/DIR

DI1,2

Function Mode

ENTER

FUNC

Row selection

Page selection

1 L -> 1242.0 rpm O

Motor Setup

Application Macro

Speed Control EXT1

ENTER

Drive Selection Mode

DRIVE

ENTER

Function start

Drive selection

ID number change

Enter change mode

Accept new value

ACS 800 75 kW

PFC Application

AHXR7110

ID NUMBER 1

Status row

Actual signal names and values

Status row

Parameter group

Parameter

Parameter value

Status row

List of functions

Device type

SW version / application version and ID number

Status row

The figure below describes the status row digits.

Drive ID number

Drive control status

L = Local control

R = Remote control

“ “ = External control

1 L -> 1242.0 rpm I

Direction of rotation

->

= Forward

<-

= Reverse

Drive reference

Drive status

I = Running

O = Stopped

“ “ = Run disabled

Control panel

23

Drive control with the panel

The user can control the drive with the panel as follows:

• start, stop, and change direction of the motor

• give the motor speed reference or torque reference

• give a process reference (when the process PID control is active)

• reset the fault and warning messages

• change between local and external drive control.

The panel can be used for control of the drive control always when the drive is under local control and the status row is visible on the display.

How to start, stop and change direction

Step Action

1.

To show the status row.

2.

3.

4.

5.

6.

To switch to local control.

(only if the drive is not under local control, i.e. there is no L on the first row of the display.)

To stop

To start

To change the direction to reverse.

To change the direction to forward.

ACT

FUNC

LOC

REM

I

0

PAR

Display

1 ->1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->1242.0 rpm O

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L <-1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Control panel

24

How to set speed reference

Step Action

1.

To show the status row.

2.

3.

To switch to local control.

(Only if the drive is not under local control, i.e. there is no L on the first row of the display.)

To enter the Reference Setting function.

ACT

FUNC

PAR

LOC

REM

REF

4.

5.

To change the reference.

(slow change)

(fast change)

To save the reference.

(The value is stored in the permanent memory; it is restored automatically after power switch-off.)

ENTER

Display

1 ->1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->[1242.0 rpm]I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L ->[1325.0 rpm]I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L -> 1325.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Control panel

Actual signal display mode

In the Actual Signal Display Mode, the user can:

• show three actual signals on the display at a time

• select the actual signals to display

• view the fault history

• reset the fault history.

The panel enters the Actual Signal Display Mode when the user presses the ACT key, or if he does not press any key within one minute.

How to select actual signals to the display

Step Action

1.

To enter the Actual Signal Display Mode.

2.

3.

4.

To select a row (a blinking cursor indicates the selected row).

To enter the actual signal selection function.

To select an actual signal.

To change the actual signal group.

ACT

ENTER

Display

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L -> 1242.0 rpm I

1 ACTUAL SIGNALS

04 CURRENT

80.00 A

1 L -> 1242.0 rpm I

1 ACTUAL SIGNALS

05 TORQUE 70.00 %

25

5.a

To accept the selection and to return to the Actual Signal

Display Mode.

5.b

To cancel the selection and keep the original selection.

The selected keypad mode is entered.

ENTER

ACT PAR

FUNC DRIVE

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

TORQUE 70.00 %

POWER 75.00 %

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Control panel

26

2.

How to display the full name of the actual signals

Step Action

1.

To display the full name of the three actual signals.

To return to the Actual Signal Display Mode.

Hold

ACT

Release

ACT

Display

1 L -> 1242.0 rpm I

FREQUENCY

CURRENT

POWER

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

How to view and reset the fault history

Note: The fault history cannot be reset if there are active faults or warnings.

Step Action

1.

To enter the Actual Signal Display Mode.

2.

3.

4.

To enter the Fault History Display.

To select the previous (UP) or the next fault/warning

(DOWN).

To clear the Fault History.

To return to the Actual Signal Display Mode.

ACT

RESET

Display

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

1 L -> 1242.0 rpm I

1 LAST FAULT

+OVERCURRENT

6451 H 21 MIN 23 S

1 L -> 1242.0 rpm I

2 LAST FAULT

+OVERVOLTAGE

1121 H 1 MIN 23 S

1 L -> 1242.0 rpm I

2 LAST FAULT

H MIN S

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Control panel

How to display and reset an active fault

WARNING! If an external source for start command is selected and it is ON, the drive will start immediately after fault reset. If the cause of the fault has not been removed, the drive will trip again.

Step

1.

Action

To display an active fault.

2.

To reset the fault.

Press Key

ACT

RESET

Display

1 L -> 1242.0 rpm

ACS 801 75 kW

** FAULT **

ACS800 TEMP

1 L -> 1242.0 rpm O

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

About the fault history

The fault history restores information on the latest events (faults, warnings and resets) of the drive. The table below shows how the events are stored in the fault history.

27

Sign

A Fault History View

Name and code

Sequential number

(1 is the most recent event)

Poweron time

Event

Drive detects a fault and generates a fault message

User resets the fault message.

1 L -> 1242.0 rpm I

2 LAST FAULT

+DC OVERVOLT (3210)

1121 H 1 MIN 23 S

Drive generates a warning message.

Drive deactivates the warning message.

Information on display

Sequential number of the event and

LAST FAULT text.

Name of the fault and a “+” sign in front of the name.

Total power-on time.

Sequential number of the event and

LAST FAULT text.

-RESET FAULT text.

Total power-on time.

Sequential number of the event and

LAST WARNING text.

Name of the warning and a “+” sign in front of the name.

Total power-on time.

Sequential number of the event and

LAST WARNING text.

Name of the warning and a “-” sign in front of the name.

Total power-on time.

Control panel

28

Parameter mode

In the Parameter Mode, the user can:

• view the parameter values

• change the parameter settings.

The panel enters the Parameter Mode when the user presses the PAR key.

How to select a parameter and change the value

Step Action

1.

To enter the Parameter Mode.

PAR

2.

3.

4.

5.

To select a group.

To select a parameter within a group.

To enter the parameter setting function.

To change the parameter value.

- (slow change for numbers and text)

- (fast change for numbers only)

ENTER

Display

1 L -> 1242.0 rpm O

10 START/STOP/DIR

01 EXT1 STRT/STP/DIR

DI1,2

1 L -> 1242.0 rpm O

11 REFERENCE SELECT

01 KEYPAD REF SEL

REF1 (rpm)

1 L -> 1242.0 rpm O

11 REFERENCE SELECT

03 EXT REF1 SELECT

AI1

1 L -> 1242.0 rpm O

11 REFERENCE SELECT

03 EXT REF1 SELECT

[AI1]

1 L -> 1242.0 rpm O

11 REFERENCE SELECT

03 EXT REF1 SELECT

[AI2]

6a.

To save the new value.

ENTER

1 L -> 1242.0 rpm O

11 REFERENCE SELECT

03 EXT REF1 SELECT

AI2

6b.

To cancel the new setting and keep the original value, press any of the mode selection keys.

The selected mode is entered.

ACT PAR

1 L -> 1242.0 rpm O

11 REFERENCE SELECT

03 EXT REF1 SELECT

AI1

FUNC DRIVE

Control panel

Function mode

In the Function Mode, the user can:

• upload the drive parameter values and motor data from the drive to the panel.

• download group 1 to 97 parameter values from the panel to the drive.

1)

• adjust the contrast of the display.

The panel enters the Function Mode when the user presses the FUNC key.

29

1)

The parameter groups 98, 99 and the results of the motor identification are not included by default. The restriction prevents downloading of unsuitable motor data. In special cases it is , however, possible to download all. For more information, please contact your local ABB representative.

Control panel

30

How to upload data from a drive to the panel

Note:

• Upload before downloading.

• Ensure the program versions of the destination drive are the same as the

versions of the source drive, see parameters 33.01

and

33.02

.

• Before removing the panel from a drive, ensure the panel is in remote operating mode (change with the LOC/REM key).

• Stop the drive before downloading.

Step

1.

2.

3.

4.

Before upload, repeat the following steps in each drive:

• Setup the motors.

• Activate the communication to the optional equipment. (See parameter group 98

OPTION MODULES

.)

Before upload, do the following in the drive from which the copies are to be taken:

• Set the parameters in groups 10 to 97 as preferred.

• Proceed to the upload sequence (below).

Action

Enter the Function Mode.

Press Key

Enter the page that contains the upload, download and contrast functions.

Select the upload function (a flashing cursor indicates the selected function).

Enter the upload function.

FUNC

ENTER

Display

1 L -> 1242.0 rpm O

Motor Setup

Application Macro

Speed Control EXT1

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

1 L -> 1242.0 rpm O

UPLOAD <=<=

5.

Switch to external control.

(No L on the first row of the display.)

LOC

REM

1 -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

6.

Disconnect the panel and reconnect it to the drive into which the data will be downloaded.

Control panel

Step

1.

2.

3.

4.

5.

6.

How to download data from the panel to a drive

Consider the notes in section

How to upload data from a drive to the panel

above.

Display Action

Connect the panel containing the uploaded data to the drive.

Ensure the drive is in local control (L shown on the first row of the display). If necessary, press the LOC/REM key to change to local control.

Press Key

LOC

REM

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Enter the Function Mode.

Enter the page that contains the upload, download and contrast functions.

Select the download function (a flashing cursor indicates the selected function).

Start the download.

FUNC

ENTER

1 L -> 1242.0 rpm O

Motor Setup

Application Macro

Speed Control EXT1

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

1 L -> 1242.0 rpm O

DOWNLOAD =>=>

31

Control panel

32

1.

2.

3.

4.

5.

6.a

6.b

How to set the contrast of the display

Step Action

Enter the Function Mode.

Enter the page that contains the upload, download and contrast functions.

Select a function (a flashing cursor indicates the selected function).

Enter the contrast setting function.

Adjust the contrast.

Accept the selected value.

Cancel the new setting and retain the original value by pressing any of the mode selection keys.

The selected mode is entered.

FUNC

ENTER

ENTER

ACT

PAR

FUNC DRIVE

Display

1 L -> 1242.0 rpm O

Motor Setup

Application Macro

Speed Control EXT1

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 4

1 L -> 1242.0 rpm O

CONTRAST [4]

1 L -> 1242.0 rpm

CONTRAST [6]

1 L -> 1242.0 rpm O

UPLOAD <=<=

DOWNLOAD =>=>

CONTRAST 6

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Control panel

33

Drive selection mode

In normal use the features available in the Drive Selection Mode are not needed; the features are reserved for applications where several drives are connected to one panel link. (For more information, see the Installation and Start-up Guide for the

Panel Bus Connection Interface Module, NBCI, Code: 3AFY 58919748 [English]).

In the Drive Selection Mode, the user can:

• Select the drive with which the panel communicates through the panel link.

• Change the identification number of a drive connected to the panel link.

• View the status of the drives connected on the panel link.

The panel enters the Drive Selection Mode when the user presses the DRIVE key.

Each on-line station must have an individual identification number (ID). By default, the ID number of the drive is 1.

Note: The default ID number setting of the drive should not be changed unless the drive is to be connected to the panel link with other drives on-line.

How to select a drive and change its panel link ID number

Step Action

1.

To enter the Drive Selection Mode.

DRIVE

Display

ACS800 75 kW

PFC Application

AHXR715B

ID NUMBER 1

2.

To select the next drive/view.

The ID number of the station is changed by first pressing

ENTER (the brackets round the ID number appear) and then adjusting the value with arrow buttons. The new value is accepted with ENTER. The power of the drive must be switched off to validate its new ID number setting.

The status display of all devices connected to the Panel

Link is shown after the last individual station. If all stations do not fit on the display at once, press the double-arrow up to view the rest of them.

ACS800 75 kW

PFC Application

AHXR715B

ID NUMBER 1

1o

3.

To connect to the last displayed drive and to enter another mode, press one of the mode selection keys.

The selected mode is entered.

ACT

FUNC

PAR

Status Display Symbols: o

= Drive stopped, direction forward

= Drive running, direction reverse

F = Drive tripped on a fault

1 L -> 1242.0 rpm I

FREQ 45.00 Hz

CURRENT 80.00 A

POWER 75.00 %

Control panel

34

Reading and entering packed boolean values on the display

Some actual values and parameters are packed boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the control panel, packed boolean values are read and entered in hexadecimal format.

In this example, bits 1, 3 and 4 of the packed boolean value are ON:

Bit 15 Bit 0

Boolean 0000 0000 0001 1010

Hex 0 0 1 A

Control panel

35

Program features

Chapter overview

The chapter describes program features. For each feature, there is a list of related user settings, actual signals, and fault and warning messages.

Local control vs. external control

The drive can receive start, stop and direction commands and reference values from the control panel or through digital and analogue inputs. An optional fieldbus adapter enables control over an open fieldbus link. A PC equipped with DriveWindow

®

can also control the drive.

Local Control

ACS800

External Control

Control panel

DriveWindow

®

CH3

(DDCS)

Standard I/O

Fieldbus

Adapter

Optional I/O

Module

RDCO

Board

Slot 1

Slot 1 or Slot 2

CH0

(DDCS)

AF 100 Interface

(Advant fieldbus connection only)

Local control

The control commands are given from the control panel keypad when the drive is in local control. L indicates local control on the panel display.

1 L ->1242 rpm I

The control panel always overrides the external control signal sources when used in local mode.

Program features

36

External control

When the drive is in external control, the commands are given through the standard

I/O terminals (digital and analogue inputs), optional I/O extension modules and/or the fieldbus interface. In addition, it is also possible to set the control panel as the source for the external control.

External control is indicated by a blank on the panel display or with an R in those special cases when the panel is defined as a source for external control.

1 ->1242 rpm I

External Control through the Input/

Output terminals, or through the fieldbus interfaces

1 R ->1242 rpm I

External Control by control panel

The user can connect the control signals to two external control locations, EXT1 or

EXT2. Depending on the user selection, either one is active at a time.

Settings

Panel key

LOC/REM

Parameter

11.02

10.01

11.03

10.02

11.06

Group 98 OPTION

MODULES

Additional information

Selection between local and external control.

Selection between EXT1 and EXT2.

Start, stop, direction source for EXT1.

Reference source for EXT1.

Start, stop, direction source for EXT2.

Reference source for EXT2.

Activation of the optional I/O and serial communication.

Diagnostics

Actual signals

01.11, 01.12

03.02

Additional information

EXT1 reference, EXT2 reference.

EXT1/EXT2 selection bit in a packed boolean word.

Program features

37

Block diagram: start, stop, direction source for EXT1

The figure below shows the parameters that select the interface for start, stop, and direction for external control location EXT1.

DI1 / Std IO

DI1

DI6 / Std IO

DI6

DI1 / DIO ext 1

DI2 / DIO ext 1

DI3 / DIO ext 1

DI1 / DIO ext 2

DI2 / DIO ext 2

DI3 / DIO ext 2

I/O Extensions

See group 98

OPTION

MODULES.

DI7 to DI12

Fieldbus adapter slot 1

CH0 / RDCO board

Standard ModBus Link

Control panel

Fb. selection

See the chapter

Fieldbus control.

COMM.

MODULE

KEYPAD

DI1 / Std IO = Digital input DI1 on the standard I/O terminal block

DI1 / DIO ext 1 = Digital input DI1 on digital I/O extension module 1

Select

10.01

EXT1

Start/stop/ direction

Block diagram: reference source for EXT1

The figure below shows the parameters that select the interface for the speed reference of external control location EXT1.

AI1 / Std IO

AI2 / Std IO

AI3 / Std IO

AI1, AI2, AI3

Fieldbus adapter slot 1

CH0 / RDCO board

Standard ModBus Link

Control panel

Fb. selection

See the chapter

Fieldbus control.

COMM.

MODULE

KEYPAD

AI1 / Std IO = Analogue input AI1 on the standard I/O terminal block

Select

11.03

EXT1

Reference

REF1 (rpm)

Program features

38

Reference types and processing

The drive can accept a variety of references in addition to the conventional analogue input signal and control panel signals.

• The drive accepts a bipolar analogue speed reference. This feature allows both the speed and direction to be controlled with a single analogue input. The minimum signal is full speed reversed and the maximum signal is full speed forward.

• The drive can form a reference out of two analogue input signals by using mathematical functions: Addition, subtraction, multiplication, minimum selection, and maximum selection.

It is possible to scale the external reference so that the signal minimum and maximum values correspond to a speed other than the minimum and maximum speed limits.

Settings

Parameter

Group 11 REFERENCE

SELECT

Group 20 LIMITS

Group 22 ACCEL/DECEL

Group 32 SUPERVISION

Additional information

External reference source, type and scaling.

Operating limits.

Acceleration and deceleration ramps.

Reference supervision.

Diagnostics

Actual signal

01.11, 01.12

Additional information

Values of external references.

Group 02 ACTUAL SIGNALS

The reference values in different stages of the reference processing chain.

Parameter

Group 14 RELAY OUTPUTS

Active reference / reference loss through a relay output.

Group 15 ANALOGUE

OUTPUTS

Reference value.

Program features

39

Programmable analogue inputs

The drive has three programmable analogue inputs: one voltage input (0/2 to 10 V or

-10 to 10 V) and two current inputs (0/4 to 20 mA). Each input can be inverted and filtered, and the maximum and minimum values can be adjusted.

Update cycles in the Pump Control Application Program

Input

AI / standard

AI / extension

Cycle

12 ms

12 ms

Settings

Parameter

Group 11 REFERENCE

SELECT

Group

13 ANALOGUE

INPUTS

30.01

Group 41 PFC-

CONTROL 1

Group 44 PFC

PROTECTION

Group 45

FLOWCONTROL

Group 47 LEVEL

CONTROL

98.06

98.08

98.09

Additional information

AI as a reference source.

Processing of the standard inputs.

Supervision of AI loss.

AI as a PI process control reference.

Pressure monitoring through AI.

Pressure measurement for flow calculation.

Level measurement through AI.

Activation of optional analogue inputs.

Optional AI signal type definition (bipolar or unipolar).

Optional AI signal type definition (bipolar or unipolar).

Diagnostics

Actual value

01.18

, 01.19

, 01.20

01.38, 01.39

Additional information

Values of standard inputs.

Value of optional inputs.

Program features

40

Programmable analogue outputs

Two programmable current outputs (0/4 to 20 mA) are available as standard, and two further outputs can be added by using an optional analogue I/O extension module. Analogue output signals can be inverted and filtered.

The analogue output signals can be proportional to motor speed, process speed

(scaled motor speed), output frequency, output current, motor torque, motor power, etc.

It is possible to write a value to an analogue output through a serial communication link.

Update cycles in the Pump Control Application Program

Output

AO / standard

AO / extension

Cycle

24 ms

24 ms

Settings

Parameter

Group 15 ANALOGUE

OUTPUTS

30.20

30.22

Group 96 ANALOGUE

OUTPUTS

Group 98 OPTION

MODULES

Additional information

AO value selection and processing (standard outputs).

Operation of an externally controlled AO in a communication break.

Supervision of the use of optional AO.

Optional AO value selection and processing.

Activation of optional I/O.

Diagnostics

Actual value

01.22, 01.23

01.28, 01.29

Additional information

Values of the standard outputs.

Values of the optional outputs.

Program features

41

Programmable digital inputs

The drive has six programmable digital inputs (DI1 to DI6) as standard. Six extra inputs (DI7 to DI12) are available if optional digital I/O extension modules are used.

Update cycles in the Pump Control Application Program

Input

DI / standard

DI / extension

Cycle

12 ms

12 ms

Settings

Parameter

Group 10 START/STOP/

DIR

Group 11 REFERENCE

SELECT

Group 12 CONSTANT

FREQ

Group 16 SYSTEM CTR

INPUT

22.01

30.03

30.05

43.01

98.03

… 98.04

Additional information

DI as start, stop, direction.

DI in reference selection.

DI in constant frequency selection.

DI as external Run Enable, fault reset or user macro change signal.

DI as acceleration and deceleration ramp selection signal.

DI as external fault source.

DI in motor overtemperature supervision function.

DI as sleep function activation signal (in PI process control).

Activation of the optional digital I/O extension modules.

Diagnostics

Actual value

01.17

01.40

Fault

I/O COMM ERR (7000)

Additional information

Values of the standard digital inputs.

Values of the optional digital inputs.

Communication loss to I/O.

Program features

42

Programmable relay outputs

As standard there are three programmable relay outputs. Four outputs can be added by using two optional digital I/O extension modules. By means of a parameter setting it is possible to choose which information to indicate through the relay output: ready, running, fault, warning, motor stall, etc.

It is possible to write a value to a relay output through a serial communication link.

Update cycles in the Pump Control Application Program

Output

RO / standard

RO / extension

Cycle

100 ms

100 ms

Settings

Parameter

Group 14 RELAY

OUTPUTS

30.21

Group 98 OPTION

MODULES

Diagnostics

Actual value

01.21

01.41

Additional information

RO value selections and operation times.

Operation of an externally controlled relay output on a communication break.

Activation of optional relay outputs.

Additional information

Standard relay output states.

Optional relay output states.

Program features

Actual signals

Several actual signals are available:

• Drive output frequency, current, voltage and power

• Motor speed and torque

• Mains voltage and intermediate circuit DC voltage

• Active control location (Local, EXT1 or EXT2)

• Reference values

• Drive temperature

• Operating time counter (h), kWh counter

• Digital I/O and Analogue I/O status

• PI controller actual values (if the PFC TRAD macro is selected)

• Calculated flow

• Level measurement

Three signals can be shown simultaneously on the control panel display. It is also possible to read the values through the serial communication link or through the analogue outputs.

Settings

Parameter

Group 15 ANALOGUE

OUTPUTS

Group 92 D SET TR

ADDR

Additional information

Selection of an actual signal to an analogue output.

Selection of an actual signal to a dataset (serial communication).

Diagnostics

Actual value

Group 01 ACTUAL

SIGNALS …

09

ACTUAL SIGNALS

Additional information

Lists of actual signals.

43

Program features

44

Pump/Fan control

The PFC TRAD (Pump and fan control) application macro is specially designed for multimotor pumping (or compressor, etc.) stations. While directly controlling one motor, the drive is able to start additional, direct-on-line motors whenever a higher capacity is needed. There is an Autochange function to alternate between the pumps so all pumps have an equal duty time, and the Interlocks function enables the drive to detect if any of the pumps are unavailable (e.g. switched off for maintenance) so the next available pump is started instead.

See the chapter

Pump control application examples

. See also the chapter

Application macros

, section

PFC TRAD macro

, and the parameter groups listed

below.

Settings

Parameter

Group 14 RELAY

OUTPUTS

Group 41 PFC-

CONTROL 1

Group 42 PFC-

CONTROL 2

Group 44 PFC

PROTECTION

Additional information

Selection of digital outputs for starting and stopping of motors.

Process reference selection, set-up of auxiliary motor start/stop frequencies.

Set-up of auxiliary motors, start delays, Interlocks function and automatic motor alternation (Autochange function).

Set-up of PFC protections (pressure monitoring).

Diagnostics

Actual value

01.17

,

01.40

01.21

,

01.41

01.42

Additional information

Status of digital inputs.

Status of relay outputs.

Time since latest Autochange.

Program features

45

Process PI control

There is a built-in PI controller in the drive. The controller can be used to control process variables such as pressure, flow or fluid level.

When the process PI control is activated, a process reference (setpoint) is connected to the drive instead of a speed reference. An actual value (process feedback) is also brought back to the drive. The process PI control adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (reference).

The block diagram below right illustrates the process PI control.

The figure on the left shows an application example: The controller adjusts the speed of a pressure boost pump according to the measured pressure and the set pressure reference.

Example:

Pressure boost pump PI

A C S 6 0 0

ACS800

R E M

R E S E T

F U N C D R I V E

E N T E R

0 . . . 1 0 b a r

4 . . . 2 0 m A

PI Control Block Diagram

%ref

40.04

..

.

40.15

AI1

AI2

AI3

Process

Actual Values

40.01

40.02

40.03

PImax

PImin

Switch

99.04 = 0

(DTC)

Frequency reference

Speed reference

%ref = external reference EXT REF2 (see parameter

11.06

)

Settings

Parameter

99.02

Group 40 PI-

CONTROLLER

32.09

to

32.14

Purpose

Application macro selection.

The settings of the process PI controller.

The supervision limits for the process reference REF2 and the variables

ACT1 and ACT2.

Diagnostics

Actual Signals

01.12, 01.24, 01.25

and

01.26

Group 14 RELAY

OUTPUTS

Group 15 ANALOGUE

OUTPUTS

Purpose

PI process controller reference, actual values and error value.

Supervision limit exceeded indication through a relay output.

PI process controller values through standard analogue outputs.

Program features

46

Sleep function for process PI control

The block diagram below illustrates the sleep function enable/disable logic.

Motor frequency

43.03

Compare

2

1

1<2

Process actual value

(selected by

40.04

)

43.05

DI1

...

&

Compare

1

2

1<2

DI1

...

Select

OFF

INTERNAL

DI

AND

43.01

OFF

INTERNAL

DI

AND

&

%refActive

PFCActive modulating

03.02 (b1)

03.02 (b2)

Select

43.01

AND

&

Delay t

Or

<1

Delay

StartRq t

43.02

Or

<1

43.06

Set/Reset

S

R

S/R

Motor freq.: Drive output frequency

%refActive: The % reference (EXT REF2) is in use. See Parameter

11.02.

PFCActive: 99.02

is PFC TRAD

modulating: The inverter IGBT control is operating

1 = Activate sleeping

0 = Deactivate sleeping

Example: Sleep function for a PI controlled pressure boost pump

Water consumption falls at night. As a consequence, the PI process controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor does not stop but keeps rotating. The sleep function detects the slow rotation, and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still monitoring the pressure. The pumping restarts when the pressure falls under the allowed minimum level and the wake-up delay has passed.

Settings

Parameter

99.02

Group 43 SLEEP

FUNCTION

Additional information

Application macro activation (MULTIMASTER or PFC TRAD).

Sleep function settings.

Diagnostics

Warning SLEEP MODE on the panel display.

Program features

47

Multipump control

The Multipump macro is designed for pumping stations that consist of multiple pumps, each controlled by a separate drive. The drives can be connected so that in case of a pump failure or maintenance action on one drive, the remaining drives continue operation.

The following diagram illustrates the Multipump logic.

EXT REF2

(see par.

11.06

)

40.01

40.02

40.03

Process

Actual

Values

PI

Switch

Speed ref.

99.04

= DTC

41.12

to

41.27

Start/Stop

Pumps

(increase no. of pumps)

Limiter

(increase no. of pumps)

(decrease no. of pumps)

60.21

(min)

60.07

(max)

(decrease no. of pumps)

60.04

60.05

60.11

60.22

60.25

Pump System

Manager priority x priority y

Drive 1

Drive 2

• • •

Drive 8

Start; Change to master; Master speed

Ready; Running; 60.08

Master enable;

60.12

60.14

Start priority

For more information, see the chapter

Application macros

.

Settings

Parameter

99.02

99.04

Group 60 MASTER-

FOLLOWER

Purpose

Application macro selection.

Motor control mode selection (must be set to

DTC ).

Settings for the Multipump macro.

Program features

48

Level control

The Level control macro is designed for controlling a station of 1 to 8 pumps that is used for either emptying or filling a container. A fluid level sensor is connected to an analogue input. The measurement is used to start one or more pumps whenever necessary.

The following diagram illustrates the Level control logic.

NOT SEL

AI1

AI2

AI3

AI5

AI6

Select

Actual level

47.04

Group

47

LEVEL

CONTROL

Start/Stop

Pumps (increase no.

of pumps)

(decrease no. of pumps)

Limiter

60.21

(min)

60.07

(max)

(increase no. of pumps)

(decrease no. of pumps)

Pump System

Manager priority x

60.04

60.05

60.11

60.22

60.25

priority y

Efficiency or

High level speed

(to drives)

Start; Change to master; Master speed

Ready; Running;

60.08

Master enable;

60.12

60.14

Start priority

Drive 1

Drive 2

• • •

Drive 8

Settings

Parameter

99.02

Group 47 LEVEL

CONTROL

Group 60 MASTER-

FOLLOWER

Purpose

Application macro selection.

Settings for the Level control macro.

Settings for Multipump control.

Program features

49

Flow calculation

The application program contains a function that enables reasonably accurate

(approximately ±5…10%) calculation of flow without the installation of a separate flow meter. The flow is calculated on the basis of parameter data such as pump inlet and outlet diameters, height difference of pressure sensors, and pump characteristics.

Note: The flow calculation function is not to be used for invoicing purposes.

Note: The flow calculation function cannot be used outside the normal operating range of the pump.

Settings

Parameter

Group 45

FLOWCONTROL

Purpose

Settings for the flow calculation function.

Diagnostics

Actual Signals

05.11

and

05.12

05.13

Purpose

Flow counters

Difference between selected inlet and outlet pressures

Anti-jam function

The Anti-jam function can be used for preventing solids from building up on pump impellers. The Anti-jam procedure consists of a programmable sequence of forward and reverse runs of the pump, effectively shaking off any residue on the impeller.

This is especially useful with booster and wastewater pumps.

The function can be timed to occur at a suitable time without interrupting the pumping duty cycle.

Settings

Parameter

Group 46 ANTI JAM

Purpose

Settings for the Anti-jam function.

Program features

50

Motor identification

The performance of Direct Torque Control is based on an accurate motor model determined during the motor start-up.

A motor Identification Magnetisation is automatically done the first time the start command is given. During this first start-up, the motor is magnetised at zero speed for several seconds to allow the motor model to be created. This identification method is suitable for most applications.

In demanding applications, a separate Identification Run can be performed.

Settings

Parameter

99.10

.

Power loss ride-through

If the incoming supply voltage is cut off, the drive will continue to operate by utilising the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue the operation after the break if the main contactor remained closed.

T

M

(Nm)

160

f

out

(Hz)

80

U

DC

(V d.c.)

520

120 60 390

80 40 260

40 20 130

f

U

mains

U

DC out

T

M

t(s)

1.6

4.8

8 11.2

14.4

U

DC

T

M

= Intermediate circuit voltage of the drive, f

= Motor torque out

= output frequency of the drive,

Loss of supply voltage at nominal load (f out

= 40 Hz). The intermediate circuit DC voltage drops to the minimum limit. The controller keeps the voltage steady as long as the mains is switched off. The drive runs the motor in generator mode. The motor speed falls but the drive is operational as long as the motor has enough kinetic energy.

Note: Cabinet assembled units equipped with main contactor option have a “hold circuit” that keeps the contactor control circuit closed during a short supply break.

The allowed duration of the break is adjustable. The factory setting is 5 seconds.

Program features

51

Automatic Start

Since the drive can detect the state of the motor within a few milliseconds, the starting is immediate under all conditions. There is no restart delay. E.g. the starting of turbining pumps or windmilling fans is easy.

Settings

Parameter

21.01

.

DC Magnetising

When DC Magnetising is activated, the drive automatically magnetises the motor before starting. This feature guarantees the highest possible breakaway torque, up to 200% of motor nominal torque. By adjusting the premagnetising time, it is possible to synchronise the motor start and e.g. a mechanical brake release. The Automatic

Start feature and DC Magnetising cannot be activated at the same time.

Settings

Parameters

21.01

and

21.02

.

Program features

52

Flux Braking

The drive can provide greater deceleration by raising the level of magnetisation in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. This feature is useful in motor power ranges below 15 kW.

Motor

Speed

Flux Braking

No Flux Braking

t (s)

T

Br

T

N

(%)

60

T

T

Br

N

= Braking Torque

= 100 Nm

40

Flux Braking

20

No Flux Braking

f (Hz)

50 HZ/60 Hz

Rated Motor Power

3

4

5

1

2

2.2 kW

15 kW

37 kW

75 kW

250 kW

Braking Torque (%)

120

1

80

40

0

120

5

2

4

3

5

80

1

10

40

0

5

3

4

5

2

10

No Flux Braking

20

Flux Braking

20

30

30

40

40

50

f (Hz)

50

f (Hz)

The drive monitors the motor status continuously, also during Flux Braking.

Therefore, Flux Braking can be used both for stopping the motor and for changing the speed. The other benefits of Flux Braking are:

• The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it can start the braking.

• The cooling of the motor is efficient. The stator current of the motor increases during the Flux Braking, not the rotor current. The stator cools much more efficiently than the rotor.

Settings

Parameter

26.02

.

Program features

53

Flux Optimisation

Flux Optimisation reduces the total energy consumption and motor noise level when the drive operates below the nominal load. The total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed.

Settings

Parameter

26.01

.

Acceleration and deceleration ramps

Two user-selectable acceleration and deceleration ramps are available. It is possible to adjust the acceleration/deceleration times and the ramp shape. Switching between the two ramps can be controlled via a digital input.

The available ramp shape alternatives are Linear and S-curve.

Linear: Suitable for drives requiring steady or slow acceleration/deceleration.

Motor speed

S-curve: Ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed.

Linear

S-curve

Settings

Parameter group 22 ACCEL/DECEL .

2 t (s)

Critical frequencies

A critical frequencies function is available for applications where it is necessary to avoid certain motor frequencies or frequency bands because of e.g. mechanical resonance problems.

Settings

Parameter group 25 CRITICAL FREQ .

Constant frequencies

It is possible to predefine three constant frequencies. Constant frequencies are selectable through digital inputs. Constant frequency activation overrides the drive frequency reference.

Settings

Parameter group 12 CONSTANT FREQ

.

Program features

54

Speed controller tuning

During the motor identification, the speed controller is automatically tuned. It is, however, possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller Autotune Run. In

Autotune Run, the speed controller is tuned based on the load and inertia of the motor and the machine. The figure below shows speed responses at a speed reference step (typically, 1 to 20%).

n n

N

%

A

B

C D

A : Undercompensated

B : Normally tuned (autotuning)

C : Normally tuned (manually). Better dynamic performance than with B

D : Overcompensated speed controller

t

The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller.

Derivative acceleration compensation

Speed reference

+

-

Error value

Proportional, integral

+

+

+

Torque reference

Derivative

Calculated actual speed

Settings

Parameter group 23 SPEED CTRL

and 20 LIMITS

.

Diagnostics

Actual signal

01.02

.

Program features

55

Speed control performance figures

The table below shows typical performance figures for speed control when Direct

Torque Control is used.

Speed Control

Static speed error,

% of n

N

Dynamic speed error

No Pulse

Encoder

+ 0.1 to 0.5 %

(10% of nominal slip)

0.4 %sec.*

With Pulse

Encoder

+ 0.01 %

0.1 %sec.*

*Dynamic speed error depends on speed controller tuning.

T

T

N

(%)

100

T

load

n

act

-n

ref

n

N

T

N

n

N

= rated motor torque

= rated motor speed

n

act

n

ref

= actual speed

= speed reference

t (s)

0.1 - 0.4 %sec

Torque control performance figures

The drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control, when Direct Torque Control is used.

T

T

N

(%)

Torque Control No Pulse

Encoder

Linearity error

Repeatability error

+ 4 %*

+ 3 %*

Torque rise time 1 to 5 ms

With Pulse

Encoder

+ 3 %

+ 1 %

1 to 5 ms

100

90

T

ref

T

act

*When operated around zero frequency, the error may be greater.

10

< 5 ms

T

N

= rated motor torque

T

ref

= torque reference

T

act

= actual torque

t(s)

Program features

56

Scalar control

It is possible to select Scalar Control as the motor control method instead of Direct

Torque Control (DTC). In the Scalar Control mode, the drive is controlled with a frequency reference. The outstanding performance of the default motor control method, Direct Torque Control, is not achieved in Scalar Control.

It is recommended to activate the Scalar Control mode in the following special applications:

• In multimotor drives: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after the motor identification

• If the nominal current of the motor is less than 1/6 of the nominal output current of the drive

• If the drive is used without a motor connected (e.g. for test purposes)

• The drive runs a medium voltage motor via a step-up transformer.

In the Scalar Control mode, some standard features are not available.

Settings

Parameter

99.04

.

IR compensation for a scalar controlled drive

IR Compensation is active only when the motor control mode is Scalar (see the section

Scalar control

above). When IR Compensation is

activated, the drive gives an extra voltage boost to the motor at low speeds. IR Compensation is useful in applications that require high breakaway torque. In Direct Torque Control, no IR

Compensation is possible/needed.

Motor Voltage

IR Compensation

No compensation

Settings

Parameter

26.03

.

f (Hz)

Program features

57

Hexagonal motor flux

Typically the drive controls the motor flux in such a way that the rotating flux vector follows a circular pattern. This is ideal in most applications. When operated above the field weakening point (FWP, typically 50 or 60 Hz), it is, however, not possible to reach 100% of the output voltage. The peak load capacity of the drive is lower than with the full voltage.

If hexagonal flux control is selected, the motor flux is controlled along a circular pattern below the field weakening point, and along a hexagonal pattern in the field weakening range. The applied pattern is changed gradually as the frequency increases from 100% to 120% of the FWP. Using the hexagonal flux pattern, the maximum output voltage can be reached; The peak load capacity is higher than with the circular flux pattern but the continuous load capacity is lower in the frequency range of FWP to 1.6

×

FWP, due to increased losses.

Settings

Parameter

26.04

.

Programmable protection functions

AI<Min

AI<Min function defines the drive operation if an analogue input signal falls below the preset minimum limit.

Settings

Parameter

30.01

.

Panel Loss

Panel Loss function defines the operation of the drive if the control panel selected as control location for the drive stops communicating.

Settings

Parameter

30.02

.

External Fault

External Faults can be supervised by defining one digital input as a source for an external fault indication signal.

Settings

Parameter

30.03

.

Program features

58

Motor Thermal Protection

The motor can be protected against overheating by activating the Motor Thermal

Protection function and by selecting one of the motor thermal protection modes available.

The Motor Thermal Protection modes are based either on a motor temperature thermal model or on an overtemperature indication from a motor thermistor.

Motor temperature thermal model

The drive calculates the temperature of the motor on the basis of the following assumptions:

1) The motor is in the ambient temperature of 30

°

C when power is applied to the drive.

2) Motor temperature is calculated using either the user-adjustable or automatically calculated motor thermal time and motor load curve (see the figures below). The load curve should be adjusted in case the ambient temperature exceeds 30 °C.

Motor

Load

100%

Temp.

Rise

100%

63%

t

Motor

Current

(%)

150

100

50

Break point

Motor load curve

Zero speed load

Speed

Motor thermal time

t

Use of the motor thermistor

It is possible to detect motor overtemperature by connecting a motor thermistor

(PTC) between the +24 VDC voltage supply offered by the drive and digital input

DI6. In normal motor operation temperature, the thermistor resistance should be less than 1.5 kohm (current 5 mA). The drive stops the motor and gives a fault indication if the thermistor resistance exceeds 4 kohm

.

The installation must meet the regulations for protecting against contact.

Settings

Parameters

30.04

to

30.09

.

Program features

59

Pressure monitoring

The Pump Control application program contains protective functions for two-level analogue or single-level digital pressure monitoring of both the inlet and the outlet of the pump (or compressor, etc.).

In analogue monitoring, whenever the pressure being monitored meets the first limit, the drive indicates a warning, trips on a fault, or starts to follow a pre-set reference.

When the second limit is met, the drive either stops or produces a fault.

In digital pressure monitoring, one limit is observed. Whenever the limit is met, the drive indicates a warning, trips on a fault, or starts to follow a pre-set reference.

Settings

Parameter group 44 PFC PROTECTION .

Stall Protection

The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (frequency, time) and choose how the drive reacts to the motor stall condition

(warning indication / fault indication & stop the drive / no reaction).

Settings

Parameters

30.10

to 30.12

.

Underload Protection

Loss of motor load may indicate a process malfunction. The drive provides an underload function to protect the machinery and process in such a serious fault condition. Supervision limits - underload curve and underload time - can be chosen as well as the action taken by the drive upon the underload condition (warning indication / fault indication & stop the drive / no reaction).

Settings

Parameters

30.13

to 30.15

.

Motor Phase Loss

The Phase Loss function monitors the status of the motor cable connection. The function is useful especially during the motor start: the drive detects if any of the motor phases is not connected and refuses to start. The Phase Loss function also supervises the motor connection status during normal operation.

Settings

Parameter

30.16

.

Program features

60

Earth Fault Protection

The Earth Fault Protection detects earth faults in the motor or motor cable.

The Earth Fault protection is based on earth leakage current measurement with a summation current transformer at the output of the converter.

• An earth fault in the mains does not activate the protection.

• In an earthed (grounded) supply, the protection activates in 200 microseconds.

• In floating mains, the mains capacitance should be 1 microfarad or more.

• The capacitive currents due to screened copper motor cables up to 300 metres do not activate the protection.

Settings

Parameter

30.17

.

Communication Fault

The Communication Fault function supervises the communication between the drive and an external control device (e.g. a fieldbus adapter module).

Settings

Parameters

30.19

to

30.22

.

Preprogrammed Faults

Overcurrent

The overcurrent trip limit for the drive is 1.65 · I max type.

to 2.17 · I max

depending on drive

DC overvoltage

The DC overvoltage trip limit is 1.3 ·U

1max

V. For 690 V units, U

1max

, where U mains voltage range. For 400 V units, U

1max

1max

is the maximum value of the

is 415 V. For 500 V units, U

1max

is 500

is 690 V. The actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 728 VDC for 400 V units, 877 VDC for 500 V units, and 1210 VDC for 690 V units.

DC undervoltage

The DC undervoltage trip limit is 0.65 · U the mains voltage range. For 400 V and 500 V units, U

1min

U

1min

1min

, where U

1min

is the minimum value of

is 380 V. For 690 V units,

is 525 V. The actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 334 VDC for 400 V and 500 V units, and 461 VDC for 690

V units.

Drive temperature

The drive supervises the inverter module temperature. If the inverter module temperature exceeds 115 °C, a warning is given. The temperature trip level is

125 °C.

Program features

61

Short circuit

There are separate protection circuits for supervising the motor cable and the inverter short circuits. If a short circuit occurs, the drive will not start and a fault indication is given.

Input phase loss

Input phase loss protection circuits supervise the mains cable connection status by detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive is stopped and a fault indication is given if the ripple exceeds 13%.

Ambient temperature

The drive will not start if the ambient temperature is below -5 to

0 °C or above 73 to 82 °C (the exact limits vary within the given ranges depending on drive type).

Overfrequency

If the drive output frequency exceeds the preset level, the drive is stopped and a fault indication is given. The preset level is 50 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar

Control active).

Internal fault

If the drive detects an internal fault the drive is stopped and a fault indication is given.

Operation limits

ACS800 has adjustable limits for speed, current (maximum), torque (maximum) and

DC voltage.

Settings

Parameter group 20 LIMITS

.

Power limit

The maximum allowed motor power is 1.5 · P hd

. If the limit is exceeded, the motor torque is automatically restricted. The function protects the input bridge of the drive against overload.

Program features

62

Automatic resets

The drive can automatically reset itself after overcurrent, overvoltage, undervoltage and “analogue input below a minimum” faults. The Automatic Resets must be activated by the user.

Settings

Parameter group 31 AUTOMATIC RESET

.

Supervisions

The drive monitors whether certain user selectable variables are within the userdefined limits. The user may set limits for speed, current etc.

Settings

Parameter group 32 SUPERVISION .

Diagnostics

Actual Signals

03.04

Group 14 RELAY

OUTPUTS

Additional information

Supervision limit indicating bits in a packed boolean word.

Supervision limit indication through a relay output.

Parameter lock

The user can prevent parameter adjustment by activating the parameter lock.

Settings

Parameters

16.02

and

16.03

.

Program features

63

Adaptive Programming using function blocks

Conventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make the programming easy, but the choices are limited. The user cannot customise the operation any further. The Adaptive Program makes freer customising possible without the need of a special programming tool or language:

• The program is built of standard function blocks included in the drive application program.

• The control panel is the programming tool.

• The user can document the program by drawing it on block diagram template sheets.

The maximum size of the Adaptive Program is 15 function blocks. The program may consist of several separate functions.

For more information, see Application Guide for Adaptive Program (code:

3AFE64527274 [English]).

Program features

64

Program features

65

Application macros

Chapter overview

This chapter describes the intended use, operation and the default control connections of the standard application macros. It also describes how to save a user macro, and how to recall it.

Overview of macros

Application macros are preprogrammed parameter sets. While starting up the drive, the user can select one of the macros by parameter

99.02.

There are four standard macros and two user macros. The table below contains a summary of the macros and describes suitable applications.

Macro

Multipump

PFC TRAD

Level control

Hand/Auto

User

Suitable Applications

Pump station with up to 8 drives. At a time, one of the drives is master, the others are followers. The master status can be rotated throughout the drives.

Pump/fan/compressor station with one to five parallel pumps. One of the pumps is controlled by a drive, the others are direct-on-line and switched on and off by a relay system.

Control of fluid level in a tank.

Speed control applications. Switching between two external control devices is possible.

The user can save the customised standard macro i.e. the parameter settings including group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. Two user macros are essential when switching between two different motors is required.

Application macros

66

Multipump macro

The Multipump macro is designed for pumping stations that consist of multiple pumps, each controlled by a separate drive.

The configuration supports redundancy so that in case of a pump failure or maintenance action on one drive, the remaining drives continue operation. The drives communicate with each other through an NDBU-95 DDCS branching unit. (At the expense of redundancy, it is also possible to connect the drives in a ring without using a branching unit.) The external controller (PLC) is distributed to the digital and analogue inputs on multiple drives as shown below. It is also possible to distribute the analogue input values from two selected drives to the other drives via the fibre optic link (see parameter group

65 SHARE IO

).

NDBU-95 DDCS Branching Unit

CH2

DI

AI

Drive 1

CH2

DI

AI

Drive 2

CH2

DI

AI

Drive 3

CH2

DI

AI

Drive 4

CH2

DI

AI

Drive 5

CH2

DI

AI

Drive 6

CH2

DI

AI

Drive 7

CH2

DI

AI

Drive 8 from PLC

The Multipump functionality is active when the Multipump macro (parameter

99.02

)

and external control location EXT2 (parameter group 10 START/STOP/DIR ) are

selected. The process reference can be either external or internal (parameter group

41 PFC-CONTROL 1 ).

The Multipump macro has three modes selectable by a parameter.

In master-regulated operation, when the load increases, the master’s output frequency increases. After the master has reached full speed, other drives are started one by one so that the drive that was started last acts as the master. Follower drives are run either at a pre-set speed (i.e. at the optimal operating point of the pump) or at the same speed as the master. In both these modes, drives can be prioritised so that the one with the highest priority is the first to be started.

In direct follower operation, all drives run in synchronisation with the master. This mode can be used in time-critical applications or for testing of the pump installation.

An example connection diagram for a Multipump configuration is presented on page

186 .

Application macros

67

PFC TRAD macro

The PFC TRAD (“traditional” pump and fan control) macro can operate a pump (or fan or compressor) station with one to five parallel pumps. The control principle of a two-pump station is as follows:

• The motor of pump 1 is connected to the drive. The capacity of the pump is controlled by varying the motor speed.

• The motor of pump 2 is connected direct-on-line. The pump can be switched on and off by the drive when necessary.

• The process reference and actual value are fed to the PI controller included in the

PFC TRAD macro. The PI controller adjusts the speed (frequency) of pump 1 such that the process actual value follows the reference. When the frequency reference of the process PI controller exceeds the limit set by the user, the PFC

TRAD macro automatically starts pump 2. When the frequency falls below the limit set by the user, the PFC TRAD macro automatically stops pump 2.

• Using the digital inputs of the drive, an interlocking function can be implemented; the PFC TRAD macro detects if a pump is switched off and starts the other pump instead.

• The PFC TRAD macro makes automatic pump alternation possible (not in use in the example below) so both pumps have an equal duty time. For more information on the alternation system and other useful features such as the Sleep function,

Constant reference value, Reference steps and Regulator by-pass, see the chapter

Actual signals and parameters

(Groups 41 and 42).

By default, the drive receives process reference (setpoint) through analogue input

AI1, process actual value through analogue input AI2 and Start/Stop commands through digital input DI6. The interlocks are connected to digital input DI2 (Motor 1) and digital input DI3 (Motor 2).

The default output signals are given through analogue output AO1 (frequency) and

AO2 (actual value of the process PI controller). Relay outputs are used to control auxiliary motors.

If the Control Panel is in Local control mode (“L” visible on the first row of the display), the drive follows the frequency reference given from the Panel. The automatic PFC logic is bypassed: no process PI controller is in use and the directon-line motors are not started.

Application macros

68

Operation diagram

3 ~

Mains Supply

Input Power

Process Act. Value

Process Ref. Value

ACS800

PI

+24 V supply

DI3 (Interlock 2)

DI2 (Interlock 1)

RO2 RO1

Pump 1

On/Off

Pump 2

On/Off M

3~

Pump 1

Regulated speed

Pump 2

Direct-on-line

M

3~

+24 V DC ~230 V AC

1 L -> 45.0 Hz I

ACTUAL V 10.0 bar

FREQUENC 45.00 Hz

DI6-1 ST 1100010

Reference, Start/Stop, and Direction commands are given from the Control Panel.

To change to External, press LOC REM.

1 -> 45.0 Hz I

ACTUAL V 10.0 bar

FREQUENC 45.00 Hz

MOTOR SP 1350.0 rpm

Reference is read from analogue input AI2.

Start/Stop commands are given through digital input DI6.

Note: By default, automatic pump alternation is not in use.

Application macros

69

Default control connections

The figure below shows the external control connections for the PFC TRAD macro.

The markings of the standard I/O terminals on the RMIO board are shown.

See the wiring diagram on page

185

for sensor connection instructions.

PT

Hz

230 V AC

230 V AC

230 V AC

2

3

X26

1

X27

1

2

3

1

2

3

X23

1

2

X25

X20

1

2

X21

VREF

GND

Reference voltage -10 VDC

1 kohm < R

L

< 10 kohm

1

2

3

4

5

6

VREF Reference voltage 10 VDC

GND

AI1+

1 kohm < R

L

< 10 kohm

External reference 2 (process reference to PI

AI1-

AI2+

AI2controller). 0(2) … 10 V, R in

> 200 kohm

Actual value 1 (process actual value to PI controller). 0(4) … 20 mA, R in

= 100 ohm

7

8

12

AI3+

AI3-

AO2-

By default, not in use.

0(4) … 20 mA, R in

= 100 ohm.

9

10

AO1+ Frequency. 0(4) … 20 mA

=

AO1-

0 … motor nom. speed, R

L

< 700 ohm

11 AO2+ Actual 1 (PI controller actual value).

0(4) … 20 mA

=

2

3

X22

1 DI1

DI2

DI3

By default, not in use.

Interlock: motor 1 off/on

Interlock: motor 2 off/on

6

7

4

5

DI4

DI5

By default, not in use.

By default, not in use.

DI6 Stop/Start

+24 V +24 VDC, max. 100 mA

8

9

+24 V

DGND1 Digital ground

10 DGND2 Digital ground

11 DI IL Start interlock (0 = stop)

+24 V

GND

RO11

RO12

RO13

RO21

RO22

RO23

RO31

RO32

RO33

Auxiliary voltage output, non-isolated,

24 VDC, 250 mA

Relay output 1

M1 START

Relay output 2

M2 START

Relay output 3

FAULT

Application macros

70

Level control macro

The Level control macro is designed for controlling a station of 1 to 8 pumps that is used for either emptying or filling a container. A fluid level sensor is connected to an analogue input.

The Level control functionality is active when the Level control macro (parameter

99.02

) and external control location EXT2 (parameter group 10 START/STOP/DIR

) are selected. The process reference can be either external or internal (parameter group

41 PFC-CONTROL 1 ). The start levels for the pumps (as well as the warning

levels) are set by parameters in group 47 LEVEL CONTROL

.

At any time, one of the drives acts as master. The master status can be rotated throughout all the drives (using the Autochange function), or one drive can be a fixed master. The start/stop level settings of the master are the ones in effect.

The following drawing represents a station with three submersible pumps in emptying mode. Each pump has a pre-defined start level, and more pumps are started as the level in the container rises.

AI

DI

CH2

3

AI

DI

CH2

3

AI

DI

CH2

3

Overflow switch

Pumps at high speed + Warning

Pumps at high speed

Start level for pump 3

Start level for pump 2

Start level for pump 1

Level sensor

An example connection diagram is presented on page 188 .

Application macros

71

Hand/Auto macro

Start/Stop and Direction commands and reference settings can be given from one of two external control locations, EXT1 (Hand) or EXT2 (Auto). The Start/Stop/Direction commands of EXT1 (Hand) are connected to digital input DI1, and the reference signal is connected to analogue input AI1. The Start/Stop/Direction commands of

EXT2 (Auto) are connected to digital input DI6, and the reference signal is connected to analogue input AI2. The selection between EXT1 and EXT2 is dependent on the status of digital input DI5. The drive is frequency-controlled.

The frequency reference and Start/Stop and Direction commands can also be given from the control panel.

The frequency reference in Auto Control (EXT2) is given as a percentage of the maximum frequency of the drive.

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are MOTOR SPEED FILT,

FREQUENCY and EXTERNAL REF 2.

Operation diagram

EXT1 (Hz) =

Hand Control

Hand/Auto

PLC or automation

EXT2 (%) =

Auto Control

Input

Power

M

3 ∼

Motor

Hz

A

Frequency

Current

Relay

Outputs

1 L -> 45.0 Hz I

MOTOR SP 1350.00 rpm

FREQUENC 45.00 Hz

EXTERNAL 15.5 %

Local control: Reference, Start/Stop commands are given from the Control Panel.

To change to External, press LOC REM.

1 -> 45.0 Hz I

MOTOR SP 1350.00 rpm

FREQUENC 45.00 Hz

EXTERNAL 15.5 %

External control (Hand): Reference is read from analogue input AI1. Start/Stop commands are given through digital input DI1.

Application macros

72

Default control connections

The figure below shows the external control connections for the Hand/Auto macro.

The markings of the standard I/O terminals on the RMIO board are shown.

Hz

A

Fault

2

3

X26

1

X27

1

2

3

1

2

3

X23

1

2

X25

X20

1

2

X21

VREF

GND

Reference voltage -10 VDC

1 kohm < R

L

< 10 kohm

1

2

3

4

5

6

VREF Reference voltage 10 VDC

GND

AI1+

1 kohm < R

L

< 10 kohm

External reference 1 (Hand control).

AI1-

AI2+

AI2-

0(2) … 10 V, R in

> 200 kohm

External reference 2 (Auto control).

0(4) … 20 mA, R in

= 100 ohm

7

8

12

AI3+

AI3-

AO2-

By default, not in use.

0(4) … 20 mA, R in

= 100 ohm.

9 AO1+ Motor frequency. 0(4) … 20 mA

=

10 AO1-

0 … motor nom. speed, R

L

< 700 ohm

11 AO2+ Motor current.

0(4) … 20 mA

=

2

3

X22

1 DI1

DI2

DI3

Stop/Start (EXT1)

By default, not in use.

By default, not in use.

6

7

4

5

DI4

DI5

By default, not in use.

EXT1 (Hand) / EXT2 (Auto) selection*

DI6 Stop/Start (Auto)

+24 V +24 VDC, max. 100 mA

8

9

+24 V

DGND1 Digital ground

10 DGND2 Digital ground

11 DI IL Start interlock (0 = stop)

4)

+24 V

GND

RO11

RO12

RO13

RO21

RO22

RO23

RO31

RO32

RO33

Auxiliary voltage output, non-isolated,

24 VDC, 250 mA

Relay output 1

READY

Relay output 2

RUNNING

Relay output 3

FAULT(-1)

Application macros

73

User macros

In addition to the standard application macros, it is possible to create two user macros. The user macro allows the user to save the parameter settings including

Group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. The panel reference and the control location setting

(Local or Remote) are also saved.

To create User Macro 1:

• Adjust the parameters. Perform the motor identification if not performed yet.

• Save the parameter settings and the results of the motor identification by

changing parameter 99.02

to USER 1 SAVE (press ENTER). The storing takes approximately 20 to 60 seconds.

To recall the user macro:

• Change parameter

99.02

to USER 1 LOAD.

• Press ENTER to load.

The user macro can also be switched via digital inputs (see parameter

16.05

).

Note: User macro load restores also the motor settings in group 99 START-UP

DATA and the results of the motor identification. Check that the settings correspond

to the motor used.

Example: The user can switch the drive between two motors without having to adjust the motor parameters and to repeat the motor identification every time the motor is changed. The user needs only to adjust the settings and perform the motor identification once for both motors and then to save the data as two user macros.

When the motor is changed, only the corresponding User macro needs to be loaded, and the drive is ready to operate.

Application macros

74

Application macros

75

Actual signals and parameters

Chapter overview

The chapter describes the actual signals and parameters and gives the fieldbus equivalent values for each signal/parameter. More data is given in chapter

Additional data: actual signals and parameters

.

Terms and abbreviations

Term

Absolute Maximum

Frequency

Actual signal

FbEq

Parameter

Definition

Value of 20.02

, or 20.01 if the absolute value of the minimum limit is greater than the maximum limit.

Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.

Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

A user-adjustable operation instruction of the drive.

Actual signals and parameters

76

No.

Name/Value

01 ACTUAL SIGNALS

Description

Basic signals for monitoring of the drive.

FbEq

01.02

01.04

01.05

01.06

MOTOR SPEED FILT Calculated motor speed in rpm.

01.03 FREQUENCY * ** *** **** Calculated drive output frequency.

MOTOR CURRENT

MOTOR TORQ FILT2

POWER

Measured motor current.

Calculated motor torque.

Motor power.

01.07

DC VOLTAGE

01.08

MAINS VOLTAGE

01.09

MOTOR VOLTAGE

Measured intermediate circuit voltage.

Calculated supply voltage.

Calculated motor voltage.

01.10

PP TEMPERATURE

01.11

EXTERNAL REF 1

01.12

EXTERNAL REF 2 ***

Temperature of the heatsink.

External reference REF1 in Hz.

01.13

CTRL LOCATION

External reference REF2. 100% corresponds to maximum process reference (PFC TRAD macro) or maximum frequency (Hand/Auto macro).

Active control location. (1,2) LOCAL; (3) EXT1; (4) EXT2. See the chapter

Program features

.

Elapsed time counter. Runs when the control board is powered.

01.14

TIME OF USAGE

01.15

KILOWATT HOURS kWh counter.

01.16

APPL BLOCK OUTPUT Application block output signal. E.g. PFC application output.

01.17

01.18

01.19

01.20

01.21

01.22

01.23

01.25

DI6-1 STATUS **

AI1 [V]

AI2 [mA]

AI3 [mA]

RO3-1 STATUS

AO1 [mA]

AO2 [mA]

01.24

ACTUAL VALUE 1 * **

***

ACTUAL VALUE 2

1 = 1 h

1 = 100 kWh

0 = 0%

10000 = 100%

Status of digital inputs DI6-DI1 and the optional PFC extension module digital input 1 (DI7). Example: 0000001 = DI1 is on, DI2 to DI7 are off.

Value of analogue input AI1.

Value of analogue input AI2.

Value of analogue input AI3.

Status of relay outputs RO3-RO1. Example: 0000110 = RO1 is de-energised, RO2 and RO3 are energised.

Value of analogue output AO1.

Value of analogue output AO2.

Value of process feedback signal no. 1 received by the process PI controller. See par. 40.12.

Value of process feedback signal no. 2 received by the process PI controller. See par. 40.14.

1 = 0.001 V

1 = 0.001 mA

1 = 0.001 mA

1 = 0.001 mA

1 = 0.001 mA

0 = 0%

10000 = 100%

0 = 0%

10000 = 100%

-20000 =

-100%

20000 = 100% of motor abs. max. speed

-100 = -1 Hz

100 = 1 Hz

10 = 1 A

-10000 =

-100%

10000 = 100% of motor nom. torque

-1000 =

-100%

1000 = 100% of motor nom. power

1 = 1 V

1 = 1 V

1 = 1 V

1 = 1 °C

1 = 1 Hz

0 = 0%

10000 = 100%

*****

See Descr.

Actual signals and parameters

77

No.

01.27

Name/Value

01.28

EXT AO1 [mA]

01.29

EXT AO2 [mA]

01.30

01.31

01.32

01.33

01.37

01.38

01.39

01.40

01.41

01.42

01.45

01.47

ACTUAL FUNC OUT

PP 1 TEMP

PP 2 TEMP

PP 3 TEMP

PP 4 TEMP

MOTOR TEMP EST

AI5 [mA]

AI6 [mA]

DI7-12 STATUS

EXT RO STATUS

PFC OPERATION TIM

01.43

MOTOR RUN-TIME

01.44

FAN ON-TIME

CTRL BOARD TEMP

M/F STATE * ****

01.48

START COUNTER

02 ACTUAL SIGNALS

Description

01.26

CONTROL DEVIATION Deviation of the PI controller, i.e. the difference between the process reference value and the process actual value.

FbEq

-10000 =

-100%

10000 = 100%

100 = 1 Result of the arithmetic operation selected with par. 40.04

.

Value of output 1 of the analogue I/O extension module (optional).

Value of output 2 of the analogue I/O extension module (optional).

IGBT maximum temperature in inverter no. 1.

IGBT maximum temperature in inverter no. 2 (used only in high power units with parallel inverters).

IGBT maximum temperature in inverter no. 3 (used only in high power units with parallel inverters).

IGBT maximum temperature in inverter no. 4 (used only in high power units with parallel inverters).

Estimated motor temperature.

1 = 0.001 mA

1 = 0.001 mA

1 = 1 °C

1 = 1 °C

1 = 1 °C

1 = 1 °C

Value of analogue input AI5 read from AI1 of the analogue I/O extension module (optional). A voltage signal is also displayed in mA

(instead of V).

Value of analogue input AI6 read from AI2 of the analogue I/O extension module (optional).

A voltage signal is also displayed in mA

(instead of V).

Status of digital inputs DI7 to DI12 read from the digital I/O extension modules (optional). E.g. value 000001: DI7 is on, DI8 to DI12 are off.

Status of the relay outputs on the digital I/O extension modules

(optional). E.g. value 0000001: RO1 of module 1 is energised. Other relay outputs are de-energised.

Time since the latest Autochange. See parameter group 42.

1 = 1

1 = 1

1 = 1 h

Motor run time counter. The counter runs when the inverter modulates. 1 = 10 h

Running time of the drive cooling fan.

Note: The counter can be reset by the DriveWindow

®

PC tool.

Resetting is recommended when the fan is replaced.

1 = 10 h

Control board temperature.

State of drive (either Follower or Master). (0,1) FOLLOWER;

(2) MASTER.

Number of drive starts. Can be reset using parameter

32.15

.

Speed and torque reference monitoring signals.

1 = 1 °C

1 = 0.001 mA

1 = 0.001 mA

1 = 1 °C

See Descr.

1 = 1

02.01

SPEED REF 2

02.02

SPEED REF 3

02.09

TORQUE REF 2

Limited speed reference.

Ramped and shaped speed reference.

Speed controller output.

0 = 0%

20000 = 100% of motor abs. max. freq.

20000 = 100% of motor abs. max. freq.

0 = 0%

10000 = 100% of motor nominal torque

Actual signals and parameters

78

No.

Name/Value

02.10

TORQUE REF 3

Description

Torque reference.

FbEq

10000 = 100% of motor nominal torque

10000 = 100% 02.13

TORQ USED REF

02.17

SPEED ESTIMATED

Torque reference after frequency, voltage and torque limiters. 100% corresponds to the motor nominal torque.

Estimated motor speed. 100% corresponds to the Absolute Maximum

Frequency of the motor.

20000 = 100%

02.19

MOTOR ACCELERATIO Calculated motor acceleration from signal

01.02

MOTOR SPEED FILT. 1 = 1 rpm/s

03 INTERNAL DATA

Data words for monitoring of fieldbus communication (each signal is a

16-bit data word).

03.01

MAIN CONTROL WORD A 16-bit data word. See the chapter

Fieldbus control .

03.02

MAIN STATUS WORD

03.03

AUX STATUS WORD

03.04

LIMIT WORD 1

03.05

FAULT WORD 1

03.20

FAULT CODE 1 LAST

A 16-bit data word. See the chapter

Fieldbus control .

A 16-bit data word. See the chapter

Fieldbus control .

A 16-bit data word. See the chapter

Fieldbus control .

A 16-bit data word. See the chapter

Fieldbus control .

03.06

FAULT WORD 2 A 16-bit data word. See the chapter

Fieldbus control .

03.07

SYSTEM FAULT WORD A 16-bit data word. See the chapter

Fieldbus control .

03.08

ALARM WORD 1

03.09

ALARM WORD 2

A 16-bit data word. See the chapter

A 16-bit data word. See the chapter

Fieldbus control

Fieldbus control

.

.

03.10

ALARM WORD 3

03.19

INT INIT FAULT

A 16-bit data word. See the chapter codes.

Fieldbus control .

Fieldbus code of the latest fault. See chapter

Fault tracing

for the

Fieldbus code of the latest fault. See chapter

Fault tracing

for the codes.

Fieldbus code of the 2nd latest fault.

03.21

FAULT CODE 2 LAST

03.22

FAULT CODE 3 LAST

03.23

FAULT CODE 4 LAST

03.24

03.25

03.26

WARN CODE 2 LAST

03.27

WARN CODE 3 LAST

03.28

03.29

FAULT CODE 5 LAST

WARN CODE 1 LAST

WARN CODE 4 LAST

WARN CODE 5 LAST

Fieldbus code of the 3rd latest fault.

Fieldbus code of the 4th latest fault.

Fieldbus code of the 5th latest fault.

Fieldbus code of the latest warning.

Fieldbus code of the 2nd latest warning.

Fieldbus code of the 3rd latest warning.

Fieldbus code of the 4th latest warning.

Fieldbus code of the 5th latest warning.

03.30

LIMIT WORD INV

05 PFC WORDS

A 16-bit data word. See the chapter

Fieldbus control .

Information on the PFC functionality.

05.01

PFC STATUS

05.02

PFC ALARM WORD

05.03

PFC FAULT WORD

05.04

PFC ACT REF

05.05

APPLIC REF AS Hz

05.06

AUX ON

05.07

WAKE UP ACT

A 16-bit data word. See the chapter

Fieldbus control .

A 16-bit data word. See the chapter

Fieldbus control .

A 16-bit data word. See the chapter

Fieldbus control .

Final reference after reference steps, Sleep boost, and forced reference (parameter group 44) functions.

Process PI controller output in Hz.

Number of auxiliary/follower motors running.

Wake-up level (from Sleep mode).

1 = 1

Actual signals and parameters

79

No.

Name/Value

05.08

BOOST ACT

05.11

ACT FLOW

05.12

SUM FLOW

05.13

PRESSURE DEV

05.15

SHARE AI1

05.16

SHARE AI2

05.17

SHARE AI3

05.21

LC STATUS

05.23

ACT LEVEL ****

09 ACTUAL SIGNALS

09.01

AI1 SCALED

09.02

AI2 SCALED

09.03

AI3 SCALED

09.04

AI5 SCALED

09.05

AI6 SCALED

09.06

DS MCW

09.07

MASTER REF1

09.08

MASTER REF2

09.09

AUX DS VAL1

09.10

AUX DS VAL2

09.11

AUX DS VAL3

09.12

LCU ACT SIGNAL 1

09.13

LCU ACT SIGNAL 2

Description

Actual boosted reference.

Actual flow in m

3

/h as calculated by the drive. See parameter group 45

FLOWCONTROL

.

Total calculated flow in m

3

; stored when drive is powered off. Can be reset using parameter

45.02

. See parameter group 45

FLOWCONTROL

.

FbEq

1 = 0.01%

1 = 1

1 = 1

Difference between inlet and outlet pressures. See parameter group

45

FLOWCONTROL

.

Shared analogue input AI1 value received through the fibre optic link.

See parameter group 65 SHARE IO

.

Shared analogue input AI1 value received through the fibre optic link.

See parameter group 65 SHARE IO

.

1 = 0.001 V

1 = 0.001 mA

1 = 0.001 mA Shared analogue input AI1 value received through the fibre optic link.

See parameter group 65 SHARE IO

.

Level control status as a 16-bit data word. See the chapter

Fieldbus

control

.

Measured fluid level for Level control in percent. The range 0…100% corresponds to the range of the analogue input selected for the level sensor (e.g. 4…20 mA). See parameter groups

13 ANALOGUE

INPUTS and

47 LEVEL CONTROL .

Signals for the Adaptive Program.

1 = 1%

Value of analogue input AI1 scaled to an integer value.

Value of analogue input AI2 scaled to an integer value.

Value of analogue input AI3 scaled to an integer value.

Value of analogue input AI5 scaled to an integer value.

Value of analogue input AI6 scaled to an integer value.

Control Word (CW) of the Main Reference Data Set received from the master station through the fieldbus interface.

Reference 1 (REF1) of the Main Reference Data Set received from the master station through the fieldbus interface

Reference 2 (REF2) of the Main Reference Data Set received from the master station through the fieldbus interface

Reference 3 (REF3) of the Auxiliary Reference Data Set received from the master station through the fieldbus interface

Reference 4 (REF4) of the Auxiliary Reference Data Set received from the master station through the fieldbus interface

Reference 5 (REF5) of the Auxiliary Reference Data Set received from the master station through the fieldbus interface

Line-side converter signal selected by parameter 95.08

. A 16-bit data word.

Line-side converter signal selected by parameter 95.09

. A 16-bit data word.

20000 = 10 V

20000 =

20 mA

20000 =

20 mA

20000 =

20 mA

20000 =

20 mA

0 ... 65535

(Decimal)

-32768 …

32767

-32768 …

32767

-32768 …

32767

-32768 …

32767

-32768 …

32767

Actual signals and parameters

80

No.

Name/Value Description

*Default signal for Multipump macro

**Default signal for PFC TRAD macro

***Default signal for Hand/Auto macro

****Default signal for Level Control macro

*****Of max. process reference (PFC TRAD macro) or max. frequency (Hand/Auto macro).

FbEq

Actual signals and parameters

81

Index Name/Selection

10 START/STOP/DIR

Description

The sources for external start, stop and direction control

10.01

EXT 1 STRT/STP/DI Defines the connections and the source of the start, stop and direction commands for external control location 1 (EXT1).

Notes:

• The pulse (P) start/stop commands are not available if either the Multipump or Level Control macro is selected.

• The pulse (P) start/stop commands are not available if motor interlocks

(parameter 42.04

) are ON.

NOT SEL No start, stop and direction command source.

DI1 Start and stop through digital input DI1. 0 = stop; 1 = start. Direction is fixed according to parameter 10.03

.

WARNING! After a fault reset, the drive will start if the start signal is on.

DI1,2

FbEq

Start and stop through digital input DI1. 0 = stop, 1 = start. Direction through digital input DI2. 0 = forward, 1 = reverse. To control direction, parameter 10.03

DIRECTION must be REQUEST.

WARNING! After a fault reset, the drive will start if the start signal is on.

3

1

2

DI1P,2P

DI1P,2P,3

DI1P,2P,3P

DI6

DI6,5

KEYPAD

Pulse start through digital input DI1. 0 -> 1: Start. Pulse stop through digital input DI2. 1 -> 0: Stop. Direction of rotation is fixed according to parameter

10.03 DIRECTION.

Pulse start through digital input DI1. 0 -> 1: Start. Pulse stop through digital input DI2. 1 -> 0: Stop. Direction through digital input DI3. 0 = forward, 1 = reverse. To control direction, parameter 10.03 DIRECTION must be

REQUEST.

Pulse start forward through digital input DI1. 0 -> 1: Start forward. Pulse start reverse through digital input DI2. 0 -> 1: Start reverse. Pulse stop through digital input DI3. 1 -> ”0”: stop. To control the direction, parameter 10.03

DIRECTION must be REQUEST.

See selection DI1.

See selection DI1,2. DI6: Start/stop, DI5: direction.

Control panel. To control the direction, parameter 10.03 DIRECTION must be

REQUEST.

COMM.MODULE

DI7

DI7,8

DI7P,8P

Fieldbus Control Word.

See selection DI1.

See selection DI1,2.

See selection DI1P,2P.

DI7P,8P,9

DI7P,8P,9P

See selection DI1P,2P,3.

See selection DI1P,2P,3P.

EXT1STRT PTR Source selected by parameter 10.04

.

10.02

EXT 2 STRT/STP/DI Defines the connections and the source of the start, stop and direction commands for external control location 2 (EXT2).

Note: The pulse (P) start/stop commands are not available if motor interlocks

(parameter 42.04

) are ON.

Note: A pulse (P) start/stop source when either the Multipump or Level macro is active is not allowed.

4

5

6

7

8

9

14

15

16

10

11

12

13

Actual signals and parameters

82

Index Name/Selection

NOT SEL

DI1

DI1,2

DI1P,2P

DI1P,2P,3

DI1P,2P,3P

DI6

DI6,5

KEYPAD

COMM.MODULE

DI7

DI7,8

DI7P,8P

DI7P,8P,9

DI7P,8P,9P

EXT2STRT PTR

10.03

DIRECTION

FORWARD

REVERSE

REQUEST

10.04

EXT 1 STRT PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Description

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

See parameter 10.01

.

Source selected by parameter 10.05

.

Enables the control of direction of rotation of the motor, or fixes the direction.

Notes:

• With the PFC TRAD macro, if external reference 2 (EXT2) is the active reference, this parameter is fixed to FORWARD.

• The Anti-jam function can override this parameter. See parameter

46.01

.

Fixed to forward.

Fixed to reverse.

Direction of rotation control allowed.

Defines the source or constant for value EXT1STRT PTR of parameter 10.01

.

Parameter index or a constant value:

• Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.

• Constant value: Inversion and constant fields. Inversion field must have value

C to enable the constant setting.

Defines the source or constant for value EXT2STRT PTR of parameter 10.02

.

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

10.05

EXT 2 STRT PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

11 REFERENCE

SELECT

Panel reference type, external control location selection and external reference sources and limits

11.02

EXT1/EXT2 SELECT Defines the source from which the drive reads the signal that selects between the two external control locations, EXT1 or EXT2.

EXT1 EXT1 active. The control signal sources are defined by parameter

11.03

.

10.01 and

EXT2 EXT2 active. The control signal sources are defined by parameter 10.02 and

11.06

.

DI1

DI2

DI3

Digital input DI1. 0 = EXT1, 1 = EXT2.

See selection DI1.

See selection DI1.

-

-

1

2

3

1

2

3

4

5

11

12

13

14

7

8

9

10

15

16

5

6

3

4

FbEq

1

2

Actual signals and parameters

Index Name/Selection

DI4

DI5

DI6

DI7

DI8

DI9

Description

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

DI10

DI11

DI12

COMM.MODULE

See selection DI1.

See selection DI1.

See selection DI1.

Fieldbus Control Word, bit 11.

EXT1/2SELPTR Source selected by parameter 11.09

.

11.03

EXT REF1 SELECT Selects the signal source for external reference REF1

KEYPAD

AI1

Control panel. The first line on the display shows the reference value.

Analogue input AI1.

AI2

AI3

AI1+AI3

AI2+AI3

AI1-AI3

AI2-AI3

AI1*AI3

AI2*AI3

MIN(AI1,3)

MIN(AI2,3)

Analogue input AI2.

Analogue input AI3.

Summation of analogue inputs AI1 and AI3.

Summation of analogue inputs AI2 and AI3.

Subtraction of analogue inputs AI1 and AI3.

Subtraction of analogue inputs AI2 and AI3.

Multiplication of analogue inputs AI1 and AI3.

Multiplication of analogue inputs AI2 and AI3.

MAX(AI1,3)

MAX(AI2,3)

COMM.MODULE

EXT1REF PTR

AI5

AI6

AI5+AI6

AI5-AI6

AI5*AI6

MIN(AI5,AI6)

Minimum of analogue inputs AI1 and AI3.

Minimum of analogue inputs AI2 and AI3.

Maximum of analogue inputs AI1 and AI3.

Maximum of analogue inputs AI2 and AI3.

Fieldbus reference REF1.

Source selected by parameter

Analogue input AI5.

Analogue input AI6.

11.10

.

Summation of analogue inputs AI5 and AI6.

Subtraction of analogue inputs AI5 and AI6.

Multiplication of analogue inputs AI5 and AI6.

Minimum of analogue inputs AI5 and AI6.

MAX(AI5,AI6) Maximum of analogue inputs AI5 and AI6.

11.04

EXT REF1 MINIMUM Defines the minimum value for external reference REF1 (absolute value).

Corresponds to the minimum setting of the source signal used.

13

14

15

16

9

10

11

12

7

8

5

6

3

4

1

2

21

22

23

17

18

19

20

12

13

14

15

16

8

9

10

11

FbEq

6

7

83

Actual signals and parameters

84

Index Name/Selection

0 … 120 Hz

Description

Example: Analogue input AI1 is selected as the reference source (value of parameter 11.03

is AI1). The reference minimum and maximum correspond the AI minimum and maximum settings as follows:

EXT REF1 Range

FbEq

0 … 120

2’

1 parameter 13.01

2 parameter 13.02

1’ parameter 11.04

2’ parameter 11.05

1’

AI1 Range

1 2

Note: If the reference is given through fieldbus, the scaling differs from that of

an analogue signal. See the chapter

Fieldbus control

for more information.

11.05

EXT REF1 MAXIMUM Defines the maximum value for external reference REF1 (absolute value).

Corresponds to the maximum setting of the used source signal.

0 … 120 Hz See parameter 11.04

120

11.06

EXT REF2 SELECT Selects the signal source for external reference REF2.

KEYPAD See parameter 11.03

.

AI1

AI2

See parameter

See parameter

11.03

11.03

.

.

1

2

3

AI3

AI1+AI3

AI2+AI3

AI1-AI3

AI2-AI3

AI1*AI3

AI2*AI3

MIN(AI1,3)

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

11.03

11.03

11.03

11.03

11.03

11.03

11.03

11.03

.

.

.

.

.

.

.

.

8

9

10

11

6

7

4

5

MIN(AI2,3)

MAX(AI1,3)

MAX(AI2,3)

COMM.MODULE

EXT2REF PTR

AI5

AI6

AI5+AI6

AI5-AI6

AI5*AI6

MIN(AI5,AI6)

MAX(AI5,AI6)

See parameter

See parameter

See parameter

See parameter

11.03

11.03

11.03

11.03

Analogue input AI5.

Analogue input AI6.

.

.

.

.

Source selected by parameter 11.11

.

Summation of analogue inputs AI5 and AI6.

Subtraction of analogue inputs AI5 and AI6.

Multiplication of analogue inputs AI5 and AI6.

Minimum of analogue inputs AI5 and AI6.

Maximum of analogue inputs AI5 and AI6.

16

17

18

19

12

13

14

15

20

21

22

23

Actual signals and parameters

85

Index Name/Selection Description

11.07

EXT REF2 MINIMUM Defines the minimum value for external reference REF2 (absolute value).

Corresponds to the minimum setting of the source signal used.

0 … 100% With PFC TRAD macro, sets the minimum process reference in percent of the maximum process quantity. With Hand/Auto macro, sets the minimum frequency reference in percent of the Absolute Maximum Frequency.

- Source is an analogue input: See example at parameter 11.04

.

- Source is a serial link: See the chapter

Fieldbus control

.

11.08

EXT REF2 MAXIMUM Defines the maximum value for external reference REF2 (absolute value).

Corresponds to the maximum setting of the source signal used.

0 … 500% Setting range. Correspondence to the source signal limits:

- Source is an analogue input: See parameter 11.04

.

- Source is a serial link: See the chapter

Fieldbus control

.

FbEq

0 … 10000

0 … 50000

11.09

EXT 1/2 SEL PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

11.10

EXT 1 REF PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

11.11

EXT 2 REF PTR

Defines the source or constant for value EXT 1/2 SEL PTR of parameter 11.02

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Defines the source or constant for value EXT1REF PTR of parameter 11.03

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

12 CONSTANT FREQ

Defines the source or constant for value

EXT2REF PTR of parameter

11.06

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

12.01

CONST FREQ SEL

NOT SEL

DI4 (FREQ1)

Constant frequency selection and values. An active constant frequency overrides the drive frequency reference.

Note: If the PFC TRAD macro is selected, parameter 12.01 is set to a value other than NOT SEL, and one of the selected digital inputs is ON, the PFC logic is bypassed, i.e. no process PI controller is in use and the direct-on-line motors are not started.

Activates the constant frequencies or selects the activation signal.

No constant frequencies in use.

1

2

DI5 (FREQ2)

DI4,5

Frequency defined by parameter 12.02

is activated through digital input DI4.

1 = active, 0 = inactive.

Frequency defined by parameter 12.03

is activated through digital input DI5.

1 = active, 0 = inactive.

Constant frequency selection through digital input DI4 and DI5.

3

4

DI4 DI5 Constant speed in use

0 0 No constant frequency

1

0

1

0

1

1

Frequency defined by parameter

Frequency defined by parameter

Frequency defined by parameter

12.02

12.03

12.04

DI11 (FREQ1)

DI12 (FREQ2)

DI11,12

Frequency defined by parameter 12.02

is activated through digital input DI11.

1 = active, 0 = inactive.

Frequency defined by parameter 12.03

is activated through digital input DI12.

1 = active, 0 = inactive.

See selection DI4,5.

5

6

7

Actual signals and parameters

86

Index Name/Selection

DI1 (FREQ1)

12.02

CONST FREQ 1

0 … 120 Hz

12.03

CONST FREQ 2

0 … 120 Hz

12.04

CONST FREQ 3

Description

Frequency defined by parameter 12.02

is activated through digital input DI1.

1 = active, 0 = inactive.

Defines frequency 1. An absolute value; does not include direction information.

Setting range

Defines frequency 2. An absolute value; does not include direction information.

Setting range

Defines frequency 3. An absolute value; does not include direction information.

FbEq

8

0 … 120

0 … 120

0 … 120 Hz Setting range

13 ANALOGUE INPUTS

Analogue input signal processing.

13.01

MINIMUM AI1

0 V

2 V

TUNED VALUE

TUNE

13.02

MAXIMUM AI1

10 V

TUNED VALUE

TUNE

0 … 120

Defines the minimum value for analogue input AI1. When used as a reference, the value corresponds to the reference minimum setting.

Example: If AI1 is selected as the source for external reference REF1, this value corresponds to the value of parameter 11.04

.

Zero volts. Note: The program cannot detect a loss of analogue input signal.

1

Two volts.

The value measured by the tuning function. See the selection TUNE .

Triggering of the value measurement. Procedure:

- Connect the minimum signal to input.

- Set the parameter to TUNE.

Note: The readable range in tuning is 0 … 10 V.

2

3

4

Defines the maximum value for analogue input AI1. When used as a reference, the value corresponds to the reference maximum setting.

Example: If AI1 is selected as the source for external reference REF1, this value corresponds to the value of parameter 11.05

.

Ten volts (DC).

The value measured by the tuning function. See the selection TUNE .

Triggering of the value measurement. Procedure:

- Connect the maximum signal to input.

- Set the parameter to TUNE.

Note: The readable range in tuning is 0 … 10 V.

1

2

3

Actual signals and parameters

FbEq

87

Index Name/Selection

13.03

SCALE AI1

Description

Scales analogue input AI1.

Example: The effect on frequency reference REF1 when:

- REF1 source selection (Parameter 11.03

) = AI1+AI3

- REF1 maximum value setting (Parameter 11.05

) = 120 Hz

- Actual AI1 value = 4 V (40% of the full scale value)

- Actual AI3 value = 12 mA (60% of the full scale value)

- AI1 scaling = 100%, AI3 scaling = 10%

AI1 AI3 AI1 + AI3

10 V 120 Hz 20 mA 12 Hz 120 Hz

0.0 … 1000.0%

13.04

FILTER AI1

0.00 … 10.00 s

13.05

INVERT AI1

NO

YES

13.06

MINIMUM AI2

0 mA

4 mA

TUNED VALUE

TUNE

13.07

MAXIMUM AI2

20 mA

TUNED VALUE

TUNE

60%

7.2 Hz

55.2 Hz

40% 48 Hz

0 V 0 mA 0 rpm

Scaling range

Defines the filter time constant for analogue input AI1.

%

Unfiltered Signal

O = I × (1 - e

-t/T

)

100

63

Filtered Signal

I = filter input (step)

O = filter output t = time

T = filter time constant

t

T

0 … 10000

Note: The signal is also filtered due to the signal interface hardware (10 ms time constant). This cannot be changed by any parameter.

Filter time constant

Activates/deactivates the inversion of analogue input AI1.

No inversion

Inversion active. The maximum value of the analogue input signal corresponds to the minimum reference and vice versa.

0 … 1000

0

65535

See parameter 13.01

.

See parameter 13.01

. 1

See parameter 13.01

.

See parameter 13.01

.

2

3

See parameter 13.01

.

See parameter 13.02

.

4

See parameter 13.02

.

1

See parameter 13.02

. 2

See parameter 13.02

. 3

Actual signals and parameters

88

Index Name/Selection

13.08

SCALE AI2

0.0 … 1000.0%

13.09

FILTER AI2

0.00 … 10.00 s

13.10

INVERT AI2

NO

YES

13.11

MINIMUM AI3

0 mA

4 mA

TUNED VALUE

TUNE

13.12

MAXIMUM AI3

20 mA

TUNED VALUE

TUNE

13.13

SCALE AI3

0.0 … 1000.0%

13.14

FILTER AI3

0.00 … 10.00 s

13.15

INVERT AI3

NO

YES

13.16

MINIMUM AI5

0 mA

4 mA

TUNED VALUE

TUNE

13.17

MAXIMUM AI5

20 mA

TUNED VALUE

TUNE

13.18

SCALE AI5

0.0 … 1000.0%

13.19

FILTER AI5

0.00 … 10.00 s

13.20

INVERT AI5

NO

YES

13.21

MINIMUM AI6

0 mA

4 mA

Description

See parameter 13.03

.

See parameter 13.03

.

FbEq

0 … 10000

See parameter 13.04

.

See parameter 13.04

.

See parameter 13.05

.

See parameter 13.05

.

0 … 1000

See parameter 13.05

.

See parameter 13.01

.

See parameter 13.01

. 1

See parameter 13.01

. 2

0

65535

See parameter 13.01

.

See parameter 13.01

.

See parameter 13.02

.

See parameter 13.02

. 1

3

4

See parameter 13.02

. 2

See parameter 13.02

. 3

See parameter 13.03

.

See parameter 13.03

.

0 … 10000

See parameter 13.04

.

See parameter 13.04

.

See parameter 13.05

.

See parameter 13.05

.

0 … 1000

See parameter 13.05

.

See parameter 13.01

.

See parameter 13.01

. 1

See parameter 13.01

. 2

0

65535

See parameter 13.01

.

See parameter 13.01

.

See parameter 13.02

.

See parameter 13.02

. 1

3

4

See parameter 13.02

. 2

See parameter 13.02

. 3

See parameter 13.03

.

See parameter 13.03

.

0 … 10000

See parameter 13.04

.

See parameter 13.04

.

See parameter 13.05

.

See parameter 13.05

.

0 … 1000

See parameter 13.05

.

See parameter 13.01

.

See parameter 13.01

. 1

See parameter 13.01

. 2

0

65535

Actual signals and parameters

89

Index Name/Selection

TUNED VALUE

TUNE

13.22

MAXIMUM AI6

20 mA

TUNED VALUE

TUNE

13.23

SCALE AI6

0.0 … 1000.0%

13.24

FILTER AI6

0.00 … 10.00 s

Description

See parameter 13.01

.

See parameter 13.01

.

See parameter 13.02

.

See parameter 13.02

. 1

See parameter 13.02

. 2

See parameter 13.02

. 3

FbEq

3

4

See parameter 13.03

.

See parameter 13.03

.

See parameter 13.04

.

See parameter 13.04

.

0 … 10000

0 … 1000

13.25

INVERT AI6

NO

YES

14 RELAY OUTPUTS

See parameter 13.05

.

See parameter 13.05

.

See parameter 13.05

.

Status information indicated through the relay outputs, and the relay operating delays

14.01

RELAY RO1 OUTPUT Selects a drive status indicated through relay output RO1. The relay energises when the status meets the setting.

M1 START Start/stop control for motor 1 (Interlocks enabled) or auxiliary motor 1

(Interlocks OFF). Should be selected only with the PFC TRAD macro active.

See also parameter 42.04

.

Note: The parameter (or parameter 14.04

) must be set to this value if any of the following conditions is valid:

- (External control) External reference 2 is active and par. 42.06 is greater than zero.

- Par. 42.01

is 1 or greater.

NOT USED

READY

RUNNING

FAULT

FAULT(-1)

FAULT(RST)

STALL WARN

STALL FLT

MOT TMP WRN

MOT TMP FLT

ACS TMP WRN

ACS TMP FLT

FAULT/WARN

WARNING

REVERSED

EXT CTRL

0

65535

1

Not used.

Ready to function: Run Enable signal on, no fault.

Running: Start signal on, Run Enable signal on, no active fault.

Fault

Inverted fault. Relay is de-energised on a fault trip.

Fault. Automatic reset after the autoreset delay. See parameter group 31

AUTOMATIC RESET.

Warning by the stall protection function. See parameter 30.10

.

Fault trip by the stall protection function. See parameter 30.10

.

Warning trip of the motor temperature supervision function. See parameter

30.04

.

Fault trip of the motor temperature supervision function. See parameter 30.04

. 11

Warning by the drive temperature supervision function: 115 °C (239 °F).

12

Fault trip by the drive temperature supervision function: 125 °C (257 °F).

Fault or warning active

13

14

Warning active

Motor rotates in reverse direction.

Drive is under external control.

15

16

17

8

9

10

4

5

2

3

6

7

Actual signals and parameters

90

Index Name/Selection

REF 2 SEL

DC OVERVOLT

DC UNDERVOL

FREQ 1 LIM

FREQ 2 LIM

CURRENT LIM

REF 1 LIM

REF 2 LIM

STARTED

LOSS OF REF

AT SPEED

ACT 1 LIM

ACT 2 LIM

COMM. MODULE

INLET LOW

OUTLET HIGH

Description

External reference REF 2 is in use.

The intermediate circuit DC voltage has exceeded the overvoltage limit.

The intermediate circuit DC voltage has fallen below the undervoltage limit.

20

Motor frequency at supervision limit 1. See parameters 32.01

and 32.02

. 21

Motor speed at supervision limit 2. See parameters 32.03

and 32.04

. 22

Motor current at the supervision limit. See parameters 32.05

and 32.06

.

23

24 External reference REF1 at the supervision limit. See parameters 32.07

and

32.08

.

External reference REF2 at the supervision limit. See parameters 32.09

and

32.10

.

25

FbEq

18

19

26

27

28

The drive has received a start command.

The drive has no reference.

The actual value has reached the reference value. In speed control, the speed error is less or equal to 10% of the nominal motor speed.

Actual value ACT1 at a supervision limit. See parameters 32.11

and 32.12

.

Actual value ACT2 at a supervision limit. See parameters 32.13

and 32.14

.

The relay is controlled by fieldbus reference REF3. See the chapter

Fieldbus control

.

Pressure at the pump/fan inlet has fallen below the set supervision limit (and remained so longer than the set delay time). Refer to parameter group 44.

Pressure at the pump/fan outlet has exceeded the set supervision limit (and remained so longer than the set delay time). Refer to parameter group 44.

29

30

31

32

33

34 PROFILE HIGH

NOT USED

Actual signal

01.16

APPL BLOCK OUTPUT or 01.26

CONTROL DEVIATION

has remained above the set supervision limit longer than the set delay time.

See parameter group 44.

Source selected by parameter 14.08

.

RO PTR1

14.02

RELAY RO2 OUTPUT Selects the drive status to be indicated through relay output RO2. The relay energises when the status meets the setting.

M2 START Start/stop control for motor 2 (Interlocks enabled) or auxiliary motor 2

(Interlocks OFF). Should be selected only with the PFC TRAD macro active.

See also parameter 42.04

.

Note: The parameter (or parameter 14.05

) must be set to this value if any of the following conditions apply:

- (External control) External reference 2 is active, par. 42.06 is greater than zero, and par. 42.01 is 1 or greater.

- Par. 42.01

is 1 or greater.

See parameter 14.01

.

READY

RUNNING

FAULT

FAULT(-1)

See parameter

See parameter

See parameter

See parameter

14.01

14.01

14.01

14.01

.

.

.

.

FAULT(RST)

STALL WARN

STALL FLT

MOT TMP WRN

MOT TMP FLT

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

35

1

7

8

5

6

2

3

4

9

10

11

Actual signals and parameters

91

Index Name/Selection

ACS TMP WRN

ACS TMP FLT

FAULT/WARN

WARNING

REVERSED

EXT CTRL

REF 2 SEL

DC OVERVOLT

DC UNDERVOL

FREQ 1 LIM

FREQ 2 LIM

CURRENT LIM

REF 1 LIM

REF 2 LIM

Description

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

STARTED

LOSS OF REF

AT SPEED

ACT 1 LIM

ACT 2 LIM

COMM. MODULE

INLET LOW

OUTLET HIGH

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

14.01

14.01

14.01

14.01

14.01

14.01

14.01

14.01

.

.

.

.

.

.

.

.

PROFILE HIGH

RO PTR2

See parameter 14.01

.

Source selected by parameter 14.09

.

14.03

RELAY RO3 OUTPUT Selects the drive status to be indicated through relay output RO3. The relay energises when the status meets the setting.

M3 START Start/stop control for motor 3 (Interlocks enabled) or auxiliary motor 3

(Interlocks OFF). Should be selected only with the PFC TRAD macro active.

See also parameter 42.04

.

Note: The parameter (or parameter 14.06

) must be set to this value if any of the following conditions apply:

- (External control) External reference 2 is active, par. 42.06 is greater than zero, and par. 42.01 is 2 or greater.

- Par. 42.01

is 2 or greater.

NOT USED

READY

RUNNING

FAULT

FAULT(-1)

FAULT(RST)

STALL WARN

STALL FLT

MOT TMP WRN

MOT TMP FLT

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

1

7

8

5

6

2

3

4

9

10

11

22

23

24

25

18

19

20

21

14

15

16

17

FbEq

12

13

30

31

32

33

26

27

28

29

34

35

Actual signals and parameters

92

Index Name/Selection

ACS TMP WRN

ACS TMP FLT

FAULT/WARN

WARNING

REVERSED

EXT CTRL

REF 2 SEL

DC OVERVOLT

DC UNDERVOL

FREQ 1 LIM

FREQ 2 LIM

CURRENT LIM

REF 1 LIM

REF 2 LIM

STARTED

LOSS OF REF

AT SPEED

MAGN READY

USER 2 SEL

COMM. MODULE

INLET LOW

OUTLET HIGH

PROFILE HIGH

RO PTR3

14.04

RDIO MOD1 RO1

M4 START

READY

RUNNING

FAULT

FAULT(-1)

FREQ 1 LIM

ACT 1 LIM

INLET LOW

OUTLET HIGH

PROFILE HIGH

Description

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

The motor is magnetised and ready to give nominal torque (nominal magnetising of the motor has been reached).

User Macro 2 is in use.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

Source selected by parameter 14.10

.

Selects the drive status indicated through relay output RO1 of digital I/O extension module 1 (optional, see parameter 98.03).

Start/stop control for motor 4 (Interlocks enabled) or auxiliary motor 4

(Interlocks OFF). Should be selected only with the PFC TRAD macro active.

See also parameter 42.04

.

Note: The parameter (or parameter 14.07

) must be set to this value if any of the following conditions apply:

- (External control) External reference 2 is active, par. 42.06 is greater than zero, and par. 42.01 is 3 or greater.

- Par. 42.01

is 3 or greater.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

30

31

32

33

34

35

1

7

8

5

6

2

3

4

9

10

22

23

24

25

18

19

20

21

26

27

28

29

14

15

16

17

FbEq

12

13

Actual signals and parameters

93

READY

RUNNING

FAULT

FAULT(-1)

FREQ 2 LIM

ACT 2 LIM

INLET LOW

OUTLET HIGH

PROFILE HIGH

M2 START

RO PTR5

14.06

RDIO MOD2 RO1

READY

RUNNING

FAULT

FAULT(-1)

FREQ 1 LIM

ACT 1 LIM

INLET LOW

OUTLET HIGH

PROFILE HIGH

M3 START

RO PTR6

14.07

RDIO MOD2 RO2

READY

RUNNING

FAULT

FAULT(-1)

FREQ 2 LIM

ACT 2 LIM

INLET LOW

Index Name/Selection

M1 START

RO PTR4

14.05

RDIO MOD1 RO2

M5 START

Description

See parameter 14.01

.

Source selected by parameter 14.11

.

Selects the drive status indicated through relay output RO2 of digital I/O extension module 1 (optional, see parameter 98.03).

Start/stop control for motor 5 when the Interlocks function is in use. Should be selected only with the PFC TRAD macro active. See also parameter 42.04

.

Note: The parameter must be set to this value if any of the following conditions apply:

- (External control) External reference 2 is active, par. 42.06 is greater than zero, and par. 42.01 is 4.

- Par. 42.01

is 4.

1

FbEq

11

12

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.02

.

Source selected by parameter 14.12

.

Selects the drive status indicated through relay output RO1 of digital I/O extension module 2 (optional, see parameter 98.03).

8

9

6

7

4

5

2

3

10

11

12

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

See parameter

14.01

14.01

14.01

14.01

14.01

14.01

14.01

14.01

14.01

14.03

.

.

.

.

.

.

.

.

.

.

Source selected by parameter

Selects the drive status indicated through relay output RO2 of digital I/O extension module 2 (optional, see parameter 98.03).

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.01

.

14.13

.

7

8

5

6

3

4

1

2

9

10

11

6

7

4

5

1

2

3

Actual signals and parameters

94

Index Name/Selection

OUTLET HIGH

PROFILE HIGH

M4 START

RO PTR7

14.08

RO PTR1

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

14.09

RO PTR2

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

14.10

RO PTR3

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

14.11

RO PTR4

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

14.12

RO PTR5

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

14.13

RO PTR6

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

14.14

RO PTR7

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

15 ANALOGUE

OUTPUTS

15.01

ANALOGUE

OUTPUT1

NOT USED

SPEED

FREQUENCY

CURRENT

TORQUE

POWER

Description

See parameter 14.01

.

See parameter 14.01

.

See parameter 14.04

.

Source selected by parameter 14.14

.

Defines the source or constant for value

RO PTR1 of parameter

14.01

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

FbEq

8

9

10

11

Defines the source or constant for value

RO PTR2 of parameter

14.02

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Defines the source or constant for value RO PTR3 of parameter 14.03

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Defines the source or constant for value RO PTR4 of parameter 14.04

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Defines the source or constant for value RO PTR5 of parameter 14.05

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Defines the source or constant for value

RO PTR6 of parameter

14.06

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Defines the source or constant for value RO PTR7 of parameter 14.07

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

-

Selection of the actual signals to be indicated through the analogue outputs.

Output signal processing. See also parameter group

96 ANALOGUE

OUTPUTS

.

Connects a drive signal to analogue output AO1.

Not in use 1

Motor speed. 20 mA = motor nominal speed. The updating interval is 24 ms.

2

Output frequency. 20 mA = motor nominal frequency. The updating interval is

24 ms.

3

Output current. 20 mA = motor nominal current. The updating interval is 24 ms. 4

5 Motor torque. 20 mA = 100% of motor nominal rating. The updating interval is

24 ms.

Motor power. 20 mA = 100% of motor nominal rating. The updating interval is

100 ms.

6

Actual signals and parameters

95

Index Name/Selection

DC BUS VOLT

OUTPUT VOLT

REFERENCE

CONTROL DEV

ACTUAL 1

ACTUAL 2

PICON OUTP

PICON REF

ACTUAL FUNC

COMM MODULE

AO1 PTR

15.02

INVERT AO1

NO

YES

15.03

MINIMUM AO1

0 mA

4 mA

15.04

FILTER AO1

0.00 … 10.00 s

15.05

SCALE AO1

Description

DC bus voltage. 20 mA = 100% of the reference value. The reference value is

540 VDC. ( = 1.35 × 400 V) for 380 ... 415 VAC supply voltage rating and

675 VDC ( = 1.35 × 500 V) for 380 ... 500 VAC supply. The updating interval is

24 ms.

FbEq

7

Motor voltage. 20 mA = motor rated voltage. The updating interval is 100 ms. 8

Active reference that the drive is currently following. 20 mA = 100 % of the active reference. The updating interval is 24 ms.

9

The difference between the reference and the actual value of the process PI controller. 0/4 mA = -100%, 10/12 mA = 0%, 20 mA = 100%. The updating interval is 24 ms.

10

11 Value of variable ACT1 used in the process PI control. 20 mA = value of parameter 40.06

. The updating interval is 24 ms.

Value of variable ACT2 used in the process PI control. 20 mA = value of parameter 40.10

. The updating interval is 24 ms.

The reference as taken from the output of the PI controller. The updating interval is 24 ms.

12

13

14 The reference as taken from the input of the PI controller. The updating interval is 24 ms.

Result of the arithmetic operation selected by parameter 40.04

scaled by parameter 40.15

.

The value is read from fieldbus reference REF4. See

Fieldbus control

.

Source selected by parameter 15.11

.

Inverts the analogue output AO1 signal. The analogue signal is at the minimum level when the indicated drive signal is at its maximum level and vice versa.

15

16

17

Inversion off

Inversion on

Defines the minimum value of the analogue output signal AO1.

Zero mA

Four mA

Defines the filtering time constant for analogue output AO1.

Filter time constant

0

65535

1

2

0 … 1000

%

Unfiltered Signal

O = I · (1 - e

-t/T

)

100

63

Filtered Signal

I = filter input (step)

O = filter output t = time

T = filter time constant

t

T

Note: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters.

Scales the analogue output AO1 signal.

Actual signals and parameters

96

Index Name/Selection

10 … 1000%

15.06

ANALOGUE

OUTPUT2

NOT USED

SPEED

FREQUENCY

CURRENT

TORQUE

POWER

DC BUS VOLT

OUTPUT VOLT

REFERENCE

CONTROL DEV

ACTUAL 1

ACTUAL 2

PICON OUTP

PICON REF

ACTUAL FUNC

COMM MODULE

AO2 PTR

15.07

INVERT AO2

NO

YES

15.08

MINIMUM AO2

0 mA

4 mA

15.09

FILTER AO2

0.00 … 10.00 s

15.10

SCALE AO2

10 … 1000%

Description

Scaling factor. If the value is 100%, the reference value of the drive signal corresponds to 20 mA.

Example: The nominal motor current is 7.5 A and the measured maximum current at maximum load 5 A. The motor current 0 to 5 A needs to be read as 0 to 20 mA analogue signal through AO1. The required settings are:

1. AO1 is set to CURRENT by parameter 15.01

.

2. AO1 minimum is set to 0 mA by parameter 15.03

.

3. The measured maximum motor current is scaled to correspond to a 20 mA analogue output signal by setting the scaling factor (k) to 150%. The value is defined as follows: The reference value of the output signal CURRENT is the motor nominal current i.e. 7.5 A (see parameter 15.01

). To make the measured maximum motor current correspond to 20 mA, it should be scaled equally to the reference value before it is converted to an analogue output signal.

Equation:

k × 5 A = 7.5 A => k = 1.5 = 150%

See parameter 15.01

.

FbEq

100 …

10000

See parameter 15.01

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

.

The value is read from fieldbus reference REF5. See

Fieldbus control

.

Source selected by parameter 15.12

.

See parameter 15.02

.

See parameter 15.02

.

See parameter 15.02

.

See parameter 15.03

.

See parameter 15.03

.

See parameter 15.03

.

See parameter 15.04

.

See parameter 15.04

.

See parameter 15.05

.

See parameter 15.05

.

12

13

14

15

8

9

10

11

16

17

6

7

4

5

1

2

3

0

65535

1

2

0 … 1000

100 …

10000

Actual signals and parameters

97

Index Name/Selection

15.11

AO1 PTR

Description

Defines the source or constant for value

AO1 PTR

of parameter 15.01

.

FbEq

-

1000 =

1 mA

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

15.12

AO2 PTR

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

Defines the source or constant for value

AO2 PTR

of parameter 15.06

.

-

1000 =

1 mA

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

16 SYSTEM CTR INPUT

Run Enable, parameter lock etc.

16.01

RUN ENABLE

YES

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

DI12

COMM.MODULE

Sets the Run Enable signal on, or selects a source for the external Run Enable signal. If Run Enable signal is switched off, the drive will not start or stops if it is running. The stopping mode is selected by parameter

21.07

.

Run Enable signal is on.

External signal required through digital input DI1. 1 = Run Enable.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

External signal required through the Fieldbus Control Word (bit 3).

RUN ENA PTR Source selected by parameter 16.08

.

16.02

PARAMETER LOCK Selects the state of the parameter lock. The lock prevents parameter changing.

OPEN

LOCKED

The lock is open. Parameter values can be changed.

Locked. Parameter values cannot be changed from the control panel. The lock can be opened by entering the valid code at parameter 16.03

.

16.03

PASS CODE

0 … 30000

16.04

FAULT RESET SEL

0

65535

0 … 30000

NOT SEL

DI1

DI2

DI3

DI4

Selects the pass code for the parameter lock (see parameter 16.02) .

Setting 358 opens the lock. The value will automatically revert to 0.

Selects the source for the fault reset signal. The signal resets the drive after a fault trip if the cause of the fault no longer exists.

Fault reset only from the control panel keypad (RESET key).

Reset through digital input DI1 or by control panel:

- If the drive is in external control mode: Reset by a rising edge of DI1.

- If the drive is in local control mode: Reset by the RESET key of the control panel.

See selection DI1.

See selection DI1.

See selection DI1.

13

14

15

9

10

11

12

7

8

5

6

3

4

1

2

1

2

3

4

5

Actual signals and parameters

98

Index Name/Selection

DI5

DI6

DI7

DI8

DI9

DI10

DI11

DI12

ON STOP

COMM.MODULE

FLT RST PTR

16.05

USER MACRO IO

CHG

NOT SEL

DI1

DI6

DI7

DI8

DI9

DI2

DI3

DI4

DI5

DI10

DI11

DI12

16.06

LOCAL LOCK

FALSE

TRUE

Description

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

Reset along with the stop signal received through a digital input, or by the

RESET key of the control panel.

Reset through the fieldbus Control Word (bit 7), or by the RESET key of the control panel.

Source defined by parameter 16.10

.

Enables the change of the User Macro through a digital input. See parameter

99.02

. The change is only allowed when the drive is stopped. During the change, the drive will not start.

Note: Always save the User Macro by parameter 99.02 after changing any parameter settings, or reperforming the motor identification. The last settings saved by the user are loaded into use whenever the power is switched off and on again or the macro is changed. Any unsaved changes will be lost.

Note: The value of this parameter is not included in the User Macro. A setting once made remains despite the User Macro change.

Note: Selection of User Macro 2 can be supervised via relay output RO3. See parameter 14.03

for more information.

User macro change is not possible through a digital input.

Falling edge of digital input DI1: User Macro 1 is loaded into use. Rising edge of digital input DI1: User Macro 2 is loaded into use.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

Disables entering local control mode (LOC/REM key of the panel).

WARNING! Before activating, ensure that the control panel is not needed for stopping the drive!

15

16

1

2

12

13

14

8

9

10

11

FbEq

6

7

7

8

9

10

5

6

3

4

11

12

13

Local control allowed.

Local control disabled.

0

65535

Actual signals and parameters

99

Index Name/Selection

16.07

PARAMETER

BACKUP

DONE

SAVE..

16.08

RUN ENA PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

16.09

CTRL BOARD

SUPPLY

Description

Saves the valid parameter values to the permanent memory.

Note: A new parameter value of a standard macro is saved automatically when changed from the panel but not when altered through a fieldbus connection.

Save completed.

Save in progress.

Defines the source or constant for value

RUN ENA PTR of parameter

16.01

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

INTERNAL 24V

EXTERNAL 24V

Defines the source of the control board power supply.

Note: If an external supply is used but this parameter has the value

INTERNAL, the drive trips on a fault at power switch-off.

Internal (default).

External. The control board is powered from an external supply.

16.10

FAULT RESET PTR Defines the source or constant for value

FLT RST PTR of parameter

16.04

.

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

20 LIMITS

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

Drive operation limits.

-

-

FbEq

0

1

1

2

20.01

MINIMUM FREQ Defines the allowed minimum frequency. If the value is positive, the motor will not run in the reverse direction.

Note: The limit is linked to the motor nominal frequency setting i.e. parameter 99.07. If 99.07 is changed, the default frequency limit will also change.

Minimum frequency limit.

-120.00 Hz …

120.00 Hz

20.02

MAXIMUM FREQ Defines the allowed maximum frequency.

Note: The limit is linked to the motor nominal speed setting i.e. parameter 99.08

. If 99.08

is changed, the default speed limit will also change.

Maximum frequency limit.

-120.00 Hz …

120.00 Hz

20.03

MAXIMUM CURRENT

A

Defines the allowed maximum motor current in amperes.

0.0 … (depends on drive type)

Current limit

20.04

MAXIMUM TORQUE Defines the maximum torque limit for the drive.

0.0 … 600.0% Value of limit in percent of motor nominal torque.

-12000 …

12000

-12000 …

12000

10 = 1 A

0 … 60000

20.05

OVERVOLTAGE CTL Activates or deactivates the overvoltage control of the intermediate DC link.

Fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque.

Note: The controller must be OFF to allow chopper operation.

OFF Overvoltage control deactivated.

ON Overvoltage control activated.

0

65535

Actual signals and parameters

100

Index Name/Selection

20.06

UNDERVOLTAGE

CTL

-600.0 … 0.0%

21 START/STOP

Description

Activates or deactivates the undervoltage control of the intermediate DC link.

If the DC voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor speed in order to keep the voltage above the lower limit. By decreasing the motor speed, the inertia of the load will cause regeneration back into the drive, keeping the DC link charged and preventing an undervoltage trip until the motor coasts to stop. This will act as a power-loss ride-through functionality in systems with a high inertia, such as a centrifuge or a fan.

OFF

ON

20.07

PI MIN FREQ

Undervoltage control deactivated.

Undervoltage control activated.

Minimum frequency for the PI controller. Typically, this value corresponds to the frequency at the lower end of the pump performance curve.

Minimum frequency for the PI controller.

-120.00 Hz …

120.00 Hz

20.11

P MOTORING LIM Defines the allowed maximum power fed by the inverter to the motor.

0.0 … 600.0% Power limit in percent of the motor nominal power

20.12

P GENERATING LIM Defines the allowed maximum power fed by the motor to the inverter.

Power limit in percent of the motor nominal power

Start and stop modes of the motor.

21.01

START FUNCTION

AUTO

DC MAGN

CNST DC MAGN

FbEq

0

65535

-12000 …

12000

0 … 60000

-60000 … 0

Selects the motor starting method.

Automatic start guarantees optimal motor start in most cases. It includes the flying start function (starting to a rotating machine) and the automatic restart function (stopped motor can be restarted immediately without waiting the motor flux to die away). The drive motor control program identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions.

Note: If parameter 99.04

= SCALAR, no flying start or automatic restart is possible by default. The flying start feature needs to be activated separately by parameter 21.08

.

DC magnetising should be selected if a high break-away torque is required.

The drive pre-magnetises the motor before the start. The pre-magnetising time is determined automatically, being typically 200 ms to 2 s depending on the motor size. DC MAGN guarantees the highest possible break-away torque.

Note: Starting to a rotating machine is not possible when DC magnetising is selected.

Note: DC magnetising cannot be selected if parameter 99.04

= SCALAR.

Constant DC magnetising should be selected instead of DC magnetising if constant pre-magnetising time is required (e.g. if the motor start must be simultaneous with a mechanical brake release). This selection also guarantees the highest possible break-away torque when the pre-magnetising time is set long enough. The pre-magnetising time is defined by parameter 21.02

.

Note: Starting to a rotating machine is not possible when DC magnetising is selected.

Note: DC magnetising cannot be selected if parameter 99.04

= SCALAR.

WARNING! The drive will start after the set magnetising time has passed although the motor magnetisation is not completed. Ensure always in applications where a full break-away torque is essential, that the constant magnetising time is long enough to allow generation of full magnetisation and torque.

1

2

3

Actual signals and parameters

101

Index Name/Selection Description

21.02

CONST MAGN TIME Defines the magnetising time in the constant magnetising mode. See parameter 21.01. After the start command, the drive automatically premagnetises the motor the set time.

30.0 … 10000.0 ms Magnetising time. To ensure full magnetising, set this value to the same value as or higher than the rotor time constant. If not known, use the rule-of-thumb value given in the table below:

FbEq

30 … 10000

Motor Rated Power

< 10 kW

10 to 200 kW

200 to 1000 kW

Constant Magnetising Time

> 100 to 200 ms

> 200 to 1000 ms

> 1000 to 2000 ms

21.03

STOP FUNCTION

COAST

RAMP

Selects the motor stop function.

Stop by cutting off the motor power supply. The motor coasts to a stop.

Stop along a ramp (see parameter group

22 ACCEL/DECEL ). With the

PFC TRAD macro, all auxiliary pumps are stopped first, then the drive stops along the ramp.

21.07

RUN ENABLE FUNC Stop mode when the Run Enable signal is removed. See parameter 16.01

.

WARNING! The drive will start after the Run Enable signal is restored if the Start signal remains ON.

1

2

RAMP STOP

COAST STOP

The application program stops the drive along the deceleration ramp defined in

group 22 ACCEL/DECEL .

The application program stops the drive by cutting off the motor power supply

(the inverter IGBTs are blocked). The motor rotates freely until at zero speed.

21.08

SCALAR FLYSTART Activates the flying start feature in scalar control mode. See parameters 21.01

and 99.04

.

OFF

ON

Inactive.

Active.

1

2

0

1

21.09

START INTRL FUNC Defines how the Start Interlock input on RMIO board affects the drive operation.

OFF2 STOP Drive running: 1 = Normal operation. 0 = Stop by coasting.

Drive stopped: 1 = Start allowed. 0 = No start allowed.

Restart after OFF2 STOP: Input is back to 1 and the drive receives rising edge of the Start signal.

OFF3 STOP

1

22 ACCEL/DECEL

Drive running: 1 = Normal operation. 0 = Stop by ramp. The ramp time is defined by parameter 22.07 EM STOP RAMP.

Drive stopped: 1 = Normal start. 0 = No start allowed.

Restart after OFF3 STOP: Start Interlock input = 1 and the drive receives rising edge of the Start signal.

Acceleration and deceleration times.

2

22.01

ACC/DEC 1/2 SEL

ACC/DEC 1

ACC/DEC 2

Selects the active pair of acceleration/deceleration times.

Acceleration time 1 and deceleration time 1 are used. See parameters 22.02

and 22.03

.

Acceleration time 2 and deceleration time 2 are used. See parameters 22.04

and 22.05

.

1

2

Actual signals and parameters

102

Index

22.02

Name/Selection

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

DI12

ACC/DEC PTR

ACCEL TIME 1

0.00 … 1800.00 s

22.03

DECEL TIME 1

0.00 … 1800.00 s

22.04

ACCEL TIME 2

0.00 … 1800.00 s

22.05

DECEL TIME 2

0.00 … 1800.00 s

22.06

SHAPE TIME

Description

Acceleration/deceleration time pair selection through digital input DI1. 0 =

Acceleration time 1 and deceleration time 1 are in use. 1 = Acceleration time 2 and deceleration time 2 are in use.

See selection DI1 .

FbEq

3

See selection DI1 .

See selection DI1 .

See selection

See selection

See selection DI1 .

See selection DI1 .

See selection

See selection

DI1

DI1

DI1

DI1

See selection DI1 .

See selection DI1 .

.

.

.

.

4

5

6

7

8

9

10

11

12

13

14

Acceleration and deceleration times defined by parameters 22.08

and 22.09

.

15

Defines acceleration time 1, i.e. the time required for the frequency to change from zero to the maximum frequency.

- If the reference increases faster than the set acceleration rate, the motor frequency will follow the acceleration rate.

- If the reference increases slower than the set acceleration rate, the motor frequency will follow the reference signal.

- If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive operating limits.

Acceleration time 0 … 18000

Defines deceleration time 1, i.e. the time required for the frequency to change from the maximum (see parameter 20.02

) to zero.

- If the reference decreases slower than the set deceleration rate, the motor frequency will follow the reference signal.

- If the reference changes faster than the set deceleration rate, the motor frequency will follow the deceleration rate.

- If the deceleration time is set too short, the drive will automatically prolong the deceleration in order not to exceed drive operating limits. If there is any doubt about the deceleration time being too short, ensure that the DC overvoltage control is on (parameter 20.05

).

Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with an electric braking option e.g. with a brake chopper and a brake resistor.

Deceleration time

See parameter 22.02

.

See parameter 22.02

.

See parameter 22.02

.

See parameter 22.02

.

Selects the shape of the acceleration/deceleration ramp.

0 … 18000

0 … 18000

0 … 18000

Actual signals and parameters

103

Index Name/Selection

0.00 … 1000.00 s

Description

0.00 s: Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps.

0.01 … 1000.00 s: S-curve ramp. S-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. The S curve consists of symmetrical curves at both ends of the ramp and a linear part in between.

FbEq

0 … 100000

A rule of thumb:

A suitable relation between the ramp shape time and the acceleration ramp time is 1/5.

Speed

Max

Linear ramp: Par. 20.06

= 0 s

Par. 22.02

S-curve ramp:

Par. 20.06

> 0 s

Par. 22.06

time

22.07

22.08

STOP RAMP TIME

0.00 … 2000.00 s

ACC PTR

Note: In multimotor applications, the drive switches off the auxiliary motors one by one and ramps down the speed-regulated motor. Depending on the process, this may take more time than specified by this parameter.

Defines the time inside which the drive is stopped after an emergency stop command.

The emergency stop command can be given through a fieldbus or an

Emergency Stop module (optional). Consult the local ABB representative for more information on the optional module and the related parameter settings.

Deceleration time.

Defines the source or constant for value ACC/DEC PTR of parameter 22.01

(acceleration).

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

0 … 200000

100 = 1 s -255.255.31 …

+255.255.31 / C.-

32768 … C.32767

22.09

DEC PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Defines the source or constant for value ACC/DEC PTR of parameter 22.01

(deceleration).

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

100 = 1 s

Actual signals and parameters

104

Index Name/Selection

23 SPEED CTRL

23.01

KPS

0.0 … 250.0

23.02

TIS

0.01 … 999.97 s

23.03

SLIP GAIN

0.0 … 400.0%

Description

Speed controller variables. The parameters are not visible if parameter 99.04 is set to SCALAR.

Defines a relative gain for the speed controller. Great gain may cause speed oscillation.

The figure below shows the speed controller output after an error step when the error remains constant.

FbEq

%

Gain = K p

T

T

= 1

I

= Integration time = 0

D

= Derivation time = 0

Error Value

Controller Output e = Error value

Controller output = K p

× e t

Gain.

Defines an integration time for the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant. The shorter the integration time, the faster the continuous error value is corrected. Too short an integration time makes the control unstable.

The figure below shows the speed controller output after an error step when the error remains constant.

0 … 25000

%

K p

× e

Controller Output

Gain = K p

T

I

T

D

= 1

= Integration time > 0

= Derivation time = 0

K p

× e e = Error value t

T

I

Integration time 10 …

999970

Defines the slip gain for the motor slip compensation control. 100% means full slip compensation; 0% means no slip compensation. The default value is

100%. Other values can be used if a static speed error is detected despite of the full slip compensation.

Example: A 1000 rpm constant speed reference is given to the drive. Despite full slip compensation (SLIP GAIN = 100%), a manual tachometer measurement from the motor shaft gives a speed value of 998 rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip gain should be increased. With a gain value of 106%, no static speed error exists.

Slip gain value.

0 … 400

Actual signals and parameters

105

Index Name/Selection

25 CRITICAL FREQ

Description

Frequency bands within which the drive is not allowed to operate.

25.01

CRIT FREQ SELECT Activates/deactivates the critical frequencies function.

Example: A fan has vibration in the ranges of 30 to 40 Hz and 80 to 90 Hz. To make the drive skip the vibration ranges,

- activate the critical speeds function,

- set the critical speed ranges as in the figure below.

FbEq

Motor freq.

(Hz)

90

80

40

30

1 Par. 25.02

= 30 Hz

2 Par. 25.03

= 40 Hz

3 Par. 25.04

= 80 Hz

4 Par. 25.05

= 90 Hz

1 2 3 4

Frequency reference

(Hz)

OFF

ON

25.02

CRIT FREQ 1 LOW

0 … 120 Hz

Inactive

Active.

0

65535

Defines the minimum limit for critical frequency range 1.

Minimum limit. The value cannot be above the maximum (parameter 25.03

).

0 … 120

25.03

CRIT FREQ 1 HIGH Defines the maximum limit for critical frequency range 1.

0 … 120 Hz Maximum limit. The value cannot be below the minimum (parameter 25.02

).

25.04

CRIT FREQ 2 LOW

0 … 120 Hz

See parameter

See parameter

25.02

25.02

.

.

0 … 120

0 … 120

25.05

CRIT FREQ 2 HIGH See parameter 25.03

.

0 … 120 Hz See parameter 25.03

.

26 MOTOR CONTROL

26.01

FLUX OPTIMIZATION Activates/deactivates the flux optimisation function.

Note: The function cannot be used if parameter 99.04

= SCALAR.

NO Inactive

YES

26.02

FLUX BRAKING

NO

YES

Active

Activates/deactivates the flux braking function.

Note: The function cannot be used if parameter 99.04

= SCALAR.

Inactive

Active

0 … 120

0

65535

0

65535

Actual signals and parameters

106

Index Name/Selection Description

26.03

IR COMPENSATION Defines the relative output voltage boost at zero speed (IR compensation). The function is useful in applications with high break-away torque, but no DTC motor control cannot be applied. The figure below illustrates the IR compensation.

Note: The function can be used only if parameter 99.04

is SCALAR.

FbEq

U /U

N

(%)

Relative output voltage. IR compensation set to 15%.

100%

15%

Relative output voltage. No IR compensation.

f (Hz)

Field weakening point

0 … 30% Voltage boost at zero speed in percent of the motor nominal voltage.

26.04

HEX FIELD WEAKEN Selects whether motor flux is controlled along a circular or a hexagonal pattern in the field weakening area of the frequency range (above 50/60 Hz).

0 … 3000

OFF

ON

The rotating flux vector follows a circular pattern. Optimal selection in most applications: Minimal losses at constant load. Maximal instantaneous torque is not available in the field weakening range of the speed.

Motor flux follows a circular pattern below the field weakening point (typically

50 or 60 Hz) and a hexagonal pattern in the field weakening range. Optimal selection in the applications that require maximal instantaneous torque in the field weakening range of the speed. The losses at constant operation are higher than with the selection OFF.

30 FAULT FUNCTIONS

Programmable protection functions

30.01

AI<MIN FUNCTION

FAULT

NO

PRESET FREQ

0

65535

Selects how the drive reacts when an analogue input signal falls below the set minimum limit.

Note: The analogue input minimum setting must be set to 0.5 V (1 mA) or above (see parameter group

13 ANALOGUE INPUTS

).

The drive trips on a fault and the motor coasts to stop.

Inactive

The drive generates a warning

AI < MIN FUNC (8110)

and sets the frequency to the value defined by parameter 30.18

.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

1

2

3

LAST FREQ The drive generates a warning

AI < MIN FUNC (8110)

and freezes the frequency to the level the drive was operating at. The value is determined by the average frequency over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

4

30.02

PANEL LOSS

FAULT

Determines how the drive reacts to a control panel communication break.

Drive trips on a fault and the motor stops as defined by parameter 21.03

.

1

Actual signals and parameters

Index Name/Selection

PRESET FREQ

LAST FREQ

Description

The drive generates a warning and sets the frequency to the value defined by parameter 30.18

.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

FbEq

2

The drive generates a warning and freezes the frequency to the level the drive was operating at. The value is determined by the average frequency over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

3

30.03

EXTERNAL FAULT

NOT SEL

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

Selects an interface for an external fault signal.

Inactive

External fault indication is given through digital input DI1. 0: Fault trip. Motor coasts to stop. 1: No external fault.

See selection

See selection

See selection

See selection

See selection

See selection

See selection

See selection

See selection

See selection

DI1

DI1

DI1

DI1

DI1

DI1

DI1

DI1

DI1

DI1

.

.

.

.

.

.

.

.

.

.

1

2

30.04

MOT THERM PROT Selects how the drive reacts when the motor overtemperature is detected by the function defined by Parameter 30.05

.

FAULT The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value). The drive trips on a fault when the temperature exceeds the fault level (100% of the allowed maximum value).

WARNING The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value).

NO

30.05

MOTOR THERM

PMODE

Inactive

Selects the thermal protection mode of the motor. When overtemperature is detected, the drive reacts as defined by parameter 30.04

.

1

2

3

7

8

9

10

5

6

3

4

11

12

13

107

Actual signals and parameters

108

Index Name/Selection

DTC

USER MODE

Description

The protection is based on the calculated motor thermal model. The following assumptions are used in the calculation:

- The motor is at ambient temperature (30 °C) when the power is switched on.

- The motor temperature increases if it operates in the region above the load curve and decreases if it operates below the curve.

- The motor thermal time constant is an approximate value for a standard selfventilated squirrel-cage motor.

It is possible to finetune the model by parameter 30.07

.

Note: The model cannot be used with high power motors (parameter 99.06

is higher than 800 A).

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

FbEq

1

The protection is based on the user-defined motor thermal model and the following basic assumptions:

- The motor is at ambient temperature (30 °C) when power is switched on.

- The motor temperature increases if it operates in the region above the motor load curve and decreases if it operates below the curve.

The user-defined thermal model uses the motor thermal time constant

(parameter 30.06) and the motor load curve (parameters 30.07

, 30.08

and

30.09

). User tuning is typically needed only if the ambient temperature differs from the normal operating temperature specified for the motor.

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

2

Actual signals and parameters

Index Name/Selection

THERMISTOR

Description

Motor thermal protection is activated through digital input DI6. A motor thermistor, or a break contact of a thermistor relay, must be connected to digital input DI6. The drive reads the DI6 states as follows:

FbEq

3

DI6 Status (Thermistor resistance)

1 (0 … 1.5 kohm)

0 (4 kohm or higher)

Temperature

Normal

Overtemperature

WARNING! According to IEC 664, the connection of the motor thermistor to the digital input requires double or reinforced insulation between motor live parts and the thermistor. Reinforced insulation entails a clearance and creeping distance of 8 mm (400 / 500 VAC equipment).

If the thermistor assembly does not fulfil the requirement, the other I/O terminals of the drive must be protected against contact, or a thermistor relay must be used to isolate the thermistor from the digital input.

WARNING! Digital input DI6 may be selected for another use. Change these settings before selecting THERMISTOR. In other words, ensure that digital input DI6 is not selected by any other parameter.

The figure below shows the alternative thermistor connections. At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Alternative 1

Thermistor relay

109

RMIO board, X22

6 DI6

7 +24 VDC

T

Motor

Alternative 2

RMIO board, X22

6 DI6

7 +24 VDC

T

Motor

10 nF

Actual signals and parameters

110

Index Name/Selection

30.06

MOTOR THERM

TIME

Description

Defines the thermal time constant for the user-defined thermal model (see the selection USER MODE of parameter 30.05

).

FbEq

Motor

Load

100%

Temperature

100%

63%

t

256.0 … 9999.8 s

30.07

MOTOR LOAD

CURVE

Motor thermal time constant

t

Time constant

Defines the load curve together with parameters 30.08 and 30.09. The load curve is used in the user-defined thermal model (see the selection USER

MODE at parameter 30.05

).

I/I

N

(%)

150

I = Motor current

I

N

= Nominal motor current

30.07

100

256 … 9999

50

30.08

30.09

Drive output frequency

50.0 … 150.0% Allowed continuous motor load in percent of the nominal motor current.

30.08

ZERO SPEED LOAD Defines the load curve together with parameters 30.07 and 30.09.

25.0 … 150.0% Allowed continuous motor load at zero speed in percent of the nominal motor current.

30.09

BREAK POINT Defines the load curve together with parameters 30.07 and 30.08.

1.0 … 300.0 Hz Drive output frequency at 100% load.

30.10

STALL FUNCTION

FAULT

WARNING

50 … 150

25 … 150

Selects how the drive reacts to a motor stall condition. The protection wakes up if:

- the motor torque is at the internal stall torque limit (not user-adjustable)

- the output frequency is below the level set by parameter 30.11

and

- the conditions above have been valid longer than the time set by parameter

30.12

.

The drive trips on a fault.

The drive generates a warning. The indication disappears in half of the time set by parameter 30.12

.

1

2

100 …

30000

Actual signals and parameters

111

Index Name/Selection

NO

30.11

STALL FREQ HI

0.5 … 50.0 Hz

30.12

STALL TIME

Description

Protection is inactive.

Defines the frequency limit for the stall function. See parameter 30.10.

Stall frequency

Defines the time for the stall function. See parameter 30.10.

10.00 … 400.00 s

30.13

UNDERLOAD

FUNCTIO

Stall time

Selects how the drive reacts to underload. The protection wakes up if:

- the motor torque falls below the curve selected by parameter 30.15

,

- output frequency is higher than 10% of the nominal motor frequency and

- the above conditions have been valid longer than the time set by parameter

30.14

.

Protection is inactive.

NO

WARNING

FAULT

30.14

UNDERLOAD TIME Time limit for the underload function. See parameter 30.13.

0 … 600 s Underload time.

30.15

UNDERLOAD

CURVE

The drive generates a warning.

The drive trips on a fault.

Selects the load curve for the underload function. See parameter 30.13.

T

M

/T

N

(%)

100

T

T

ƒ

M

N

N

= Motor torque

= Nominal motor torque

= Nominal motor frequency

1

2

3

FbEq

3

50 … 5000

10 … 400

0 … 600

1 … 5

30.16

MOTOR PHASE

LOSS

NO

FAULT

30.17

EARTH FAULT

WARNING

FAULT

30.18

PRESET FREQ

0.00 … 120.00 Hz

80

3

70%

60

2

50%

40

1

5

30%

20

4

0

ƒ

N

2.4 * ƒ

Number of the load curve.

Activates the motor phase loss supervision function.

N

Inactive.

Active. The drive trips on a fault.

Selects how the drive reacts when an earth fault is detected in the motor or the motor cable.

The drive generates a warning.

The drive trips on a fault.

Used as a reference when a fault occurs and the fault function is set to preset frequency.

Preset frequency.

1 … 5

0

65535

0

65535

0 … 120

Actual signals and parameters

112

Index Name/Selection

30.19

COMM FAULT FUNC Selects how the drive reacts in a fieldbus communication break, i.e. when the drive fails to receive the Main Reference Data Set or the Auxiliary Reference

Data Set. The time delays are given by parameters 30.20 and 30.21

.

FAULT

NO

Protection is active. The drive trips on a fault and stops the motor as defined by parameter 21.03

.

Protection is inactive.

PRESET FREQ

Description

Protection is active. The drive generates a warning and sets the frequency to the value defined by parameter 30.18

.

WARNING! Make sure that it is safe to continue operation in case of a communication break.

FbEq

1

2

3

LAST FREQ Protection is active. The drive generates a warning and freezes the frequency to the level the drive was operating at. The value is determined by the average frequency over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case of a communication break.

4

30.20

MAIN REF DS T-OUT Defines the time delay for the Main Reference Dataset supervision. See parameter 30.19

.

0.10 … 60.00 s Time delay

30.21

COMM FAULT RO/AO Selects the operation of the fieldbus controlled relay output and analogue output in a communication break. See groups

14 RELAY OUTPUTS and

15

ANALOGUE OUTPUTS and the chapter

Fieldbus control

. The delay for the supervision function is given by parameter 30.22

.

ZERO Relay output is de-energised. Analogue output is set to zero.

LAST VALUE The relay output keeps the last state before the communication loss. The analogue output gives the last value before the communication loss.

WARNING! After the communication recovers, the update of the relay and the analogue outputs starts immediately without fault message resetting.

30.22

AUX REF DS T-OUT Defines the delay time for the Auxiliary Reference Dataset supervision. See parameter 30.19

. The drive automatically activates the supervision 60 seconds after power switch-on if the value is other than zero.

Note: The delay also applies for the function defined by parameter 30.21

.

0.00 … 60.00 s Time delay. 0.00 s = The function is inactive.

30.23

LIMIT WARNING

000000 … 11111111

Activates/deactivates limit warnings INV CUR LIM, DC BUS LIM, MOT CUR

LIM, MOT TORQ LIM and MOT POW LIM. For more information, see the chapter

Fault tracing

.

Each of the above warnings is represented by a bit in a binary number as shown below. To activate a limit monitoring, set its bit to 1.

10 … 6000

0

65535

0 … 6000 bit 4 MOT POW LIM bit 3 MOT TORQ LIM bit 2 MOT CUR LIM bit 1 DC BUS LIM bit 0 INV CUR LIM

000xxxxx

Actual signals and parameters

113

Index Name/Selection Description

31 AUTOMATIC RESET

Automatic fault reset.

Automatic resets are possible only for certain fault types and when the automatic reset function is activated for that fault type.

The automatic reset function is not operational if the drive is in local control (L visible on the first row of the panel display).

31.01

NUMBER OF TRIALS Defines the number of automatic fault resets the drive performs within the time defined by parameter 31.02

.

0 … 5

31.02

TRIAL TIME

1.0 … 180.0 s

31.03

DELAY TIME

0.0 … 3.0 s

31.04

OVERCURRENT

NO

YES

31.05

OVERVOLTAGE

NO

YES

31.06

UNDERVOLTAGE

NO

YES

31.07

AI SIGNAL<MIN

NO

YES

32 SUPERVISION

32.01

FREQ1 FUNCTION

NO

LOW LIMIT

HIGH LIMIT

FbEq

Number of automatic resets.

Defines the time for the automatic fault reset function. See parameter 31.01

.

Allowed resetting time.

0 … 5

100 …

18000

Defines the time that the drive will wait after a fault before attempting an automatic reset. See parameter 31.01

.

Resetting delay.

Activates/deactivates the automatic reset for the overcurrent fault.

Inactive.

Active.

Activates/deactivates the automatic reset for the fault AI SIGNAL<MIN

(analogue input signal under the allowed minimum level).

Inactive.

Active.

WARNING! The drive may restart even after a long stop if the analogue input signal is restored. Ensure that the use of this feature will not cause danger.

Supervision limits. A relay output can be used to indicate when the value is above/below the limit.

0 … 300

Active.

Activates/deactivates the automatic reset for the intermediate link overvoltage fault.

Inactive.

Active.

Activates/deactivates the automatic reset for the intermediate link undervoltage fault.

Inactive.

0

65535

0

65535

0

65535

0

65535

Activates/deactivates the frequency supervision function and selects the type of the supervision limit.

Supervision is not used.

Supervision wakes up if the value is below the limit.

Supervision wakes up if the value is above the limit.

1

2

3

Actual signals and parameters

114

Index Name/Selection

ABS LOW LIM

32.02

FREQ1 LIMIT

-120 … 120 Hz

32.03

FREQ2 FUNCTION

NO

LOW LIMIT

HIGH LIMIT

ABS LOW LIM

32.04

FREQ2 LIMIT

-120 … 120 Hz

32.05

CURRENT

FUNCTION

NO

LOW LIMIT

HIGH LIMIT

32.06

CURRENT LIMIT

0 … 1000 A

32.07

REF1 FUNCTION

NO

LOW LIMIT

HIGH LIMIT

32.08

REF1 LIMIT

0 … 120 Hz

32.09

REF2 FUNCTION

NO

LOW LIMIT

HIGH LIMIT

32.10

REF2 LIMIT

0 … 500%

32.11

ACT1 FUNCTION

NO

LOW LIMIT

HIGH LIMIT

32.12

ACT1 LIMIT

Description

Supervision wakes up if the value is below the set limit. The limit is supervised in both rotating directions. The figure below illustrates the principle.

FbEq

4

Frequency (Hz)

ABS LOW LIMIT

0

-ABS LOW LIMIT

Defines the frequency supervision limit. See parameter 32.01.

Value of the limit.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

Activates/deactivates the motor current supervision function and selects the type of the supervision limit.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

Defines the limit for the motor current supervision (see parameter 32.05).

Value of the limit.

Activates/deactivates the reference REF1 supervision function and selects the type of the supervision limit.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

Defines the limit for the reference REF1 supervision (see parameter 32.07).

Value of the limit.

Activates/deactivates the reference REF2 supervision function and selects the type of the supervision limit.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

Defines the limit for the reference REF2 supervision (see parameter 32.09).

Value of the limit in percent of motor nominal torque.

Activates/deactivates the supervision function for variable ACT1 of the process

PI controller and selects the type of the supervision limit.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

Defines the limit for ACT1 supervision (see parameter 32.11).

-120 … 120

1

2

3

4

-120 … 120

1

2

3

0 … 1000

1

2

3

0 … 120

1

2

3

0 … 5000

1

2

3

Actual signals and parameters

115

Index Name/Selection

0 … 200%

32.13

ACT2 FUNCTION

NO

LOW LIMIT

HIGH LIMIT

32.14

ACT2 LIMIT

Description

Value of the limit

Activates/deactivates the supervision function for variable ACT2 of the process

PI controller and selects the type of the supervision limit.

See parameter 32.01.

See parameter 32.01.

See parameter 32.01.

Defines the limit for ACT2 supervision (see parameter 32.13).

FbEq

0 … 2000

1

2

3

0 … 2000 0 … 200% Value of the limit

32.15

RESET START CNT Resets the drive start counter (actual signal

01.48

).

NO

YES

33 INFORMATION

No reset.

Reset. The counter restarts from zero.

Program versions, test date

33.01

SW PACKAGE VER Displays the type and the version of the firmware package in the drive.

Decoding key:

AHxx7xyx

Product Series

A = ACS800

Product

H = ACS800 Pump Control Application Program

Firmware Version

7xyx = Version 7.xyx

33.02

APPLIC NAME

33.03

TEST DATE

40 PI-CONTROLLER

40.01

PI GAIN

Displays the type and the version of the application program.

Decoding key:

AHAx7xyx

Product Series

A = ACS800

Product

H = ACS800 Pump Control Application Program

Firmware Type

A = Application Program

Firmware Version

7xyx = Version 7.xyx

Displays the test date.

Date value in format DDMMYY (day, month, year)

Process PI control (parameter 99.02

= PFC TRAD)

Defines the gain of the process PI controller.

Actual signals and parameters

116

Index Name/Selection

0.1 … 100.0

Description

Gain value. The table below lists a few examples of the gain settings and the resulting PI controller output changes when

- a 10% or 50% error value is connected to the controller

(error = process reference - process actual value).

- motor maximum frequency is 60 Hz (Parameter 20.02)

FbEq

10 … 10000

PI Gain PI Output Change:

10% Error

0.5

3 Hz (0.5 × 0.1 × 60 Hz)

1.0

3.0

6 Hz (1.0 × 0.1 × 60 Hz)

18 Hz (3.0 × 0.1 × 60 Hz)

PI Output Change:

50% Error

15 Hz (0.5 × 0.5 × 60 Hz)

30 Hz (1.0 × 0.5 × 60 Hz)

60 Hz (> 3.0 × 0.5 × 60 Hz)

(limited)

40.02

PI INTEG TIME Defines the integration time for the process PI controller.

Error/Controller output

G × I

G × I

O

I

I = controller input (error)

O = controller output

G = gain t = time

Ti = integration time

time

Ti

0.50 … 1000.00 s Integration time 50 …

100000

40.03

ERROR VALUE INV Inverts the error at the process PI controller input (error = process reference - process actual value).

NO

YES

No inversion

Inversion

40.04

ACTUAL VALUE SEL Selects the process actual value for the process PI controller: The sources for the variable ACT1 and ACT2 are further defined by parameters 40.05 and

40.06. The result of the calculation is available as actual signal

01.27

.

Use the sqrt(A1-A2) or sqA1+sqA2 function if the PI controller controls flow with a pressure transducer measuring the pressure difference over a flow meter.

0

65535

ACT1

ACT1 - ACT2

ACT1 + ACT2

ACT1 * ACT2

ACT1 / ACT2

MIN[A1.A2]

MAX[A1.A2]

SQRT[A1-A2]

ACT1

Subtraction of ACT1 and ACT 2.

Addition of ACT1 and ACT2.

Multiplication of ACT1 and ACT2.

Division of ACT1 and ACT2.

Selects the smaller of ACT1 and ACT2.

Selects the greater of ACT1 and ACT2.

Square root of subtraction of ACT1 and ACT2.

SQA1 + SQA2 Addition of square root of ACT1 and square root of ACT2.

40.05

ACTUAL1 INPUT SEL Selects the source for the variable ACT1. See parameter 40.04

.

NO No source selected.

7

8

5

6

9

3

4

1

2

1

Actual signals and parameters

117

Index Name/Selection

AI1

AI2

AI3

ACT1 POINTER

AI5

AI6

Description

Analogue input AI1.

Analogue input AI2.

Analogue input AI3.

Source selected by parameter 40.16

.

Analogue input AI5.

Analogue input AI6.

40.06

ACTUAL2 INPUT SEL Selects the source for the variable ACT2. See parameter 40.04

.

NO No source selected.

AI1

AI2

Analogue input AI1.

Analogue input AI2.

AI3

AI5

AI6

40.07

ACT1 MINIMUM

-1000 … 1000%

Analogue input AI3.

Analogue input AI5.

Analogue input AI6.

Defines the minimum value for the variable ACT1 if an analogue input is selected as a source for ACT1. See parameter 40.05

. The minimum and maximum ( 40.08) settings of ACT1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process PI controller.

Minimum value in percent of the set analogue input range. The equation below shows how to calculate the value when analogue input AI1 is used as a variable ACT1.

6

7

4

5

FbEq

2

3

4

5

6

1

2

3

-1000 …

1000

AI1min - 13.01

13.02

- 13.01

× 100%

AI1min

13.01

13.02

The voltage value received from the measuring device when the measured process actual value is at the desired minimum level.

AI1 minimum (parameter setting)

AI1 maximum (parameter setting)

40.08

ACT1 MAXIMUM

Example: The pressure of a pipe system is to be controlled between 0 and 10 bar. The pressure transducer has an output range of 4 to 8 V, corresponding to pressure between 0 and 10 bar. The minimum output voltage of the transducer is 2 V and the maximum is 10 V, so the minimum and the maximum of the analogue input is set to 2 V and 10 V. ACT1 MINIMUM is calculated as follows:

ACT1 MINIMUM =

4 V - 2 V

10 V - 2 V

× 100% = 25%

Defines the maximum value for the variable ACT1 if an analogue input is selected as a source for ACT1. See parameter 40.07

. The minimum ( 40.09) and maximum settings of ACT1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process PI controller.

Actual signals and parameters

118

Index Name/Selection

-1000 … 1000%

Description

Maximum value in percent of the set analogue input signal range. The equation below instructs how to calculate the value when analogue input AI1 is used as a variable ACT1.

FbEq

-1000 …

1000

ACT1 MAXIMUM =

AI1max - 13.01

13.02

- 13.01

AI1max

13.01

13.02

× 100%

The voltage value received from the measuring device when the measured process actual value is at the desired maximum level.

AI1 minimum (parameter setting)

AI1 maximum (parameter setting)

40.09

ACT2 MINIMUM

-1000 … 1000%

40.10

ACT2 MAXIMUM

Example: See parameter 40.07

. ACT1 MAXIMUM is calculated as follows:

ACT1 MAXIMUM =

8 V - 2 V

10 V - 2 V

× 100% = 75%

See parameter 40.07

.

See parameter 40.07

.

See parameter 40.08

.

-1000 …

1000

-1000 … 1000%

40.11

ACT1 UNIT SCALE

-100000.00 …

100000.00

40.12

ACTUAL 1 UNIT

NO bar

%

C mg/l kPa

40.13

ACT2 UNIT SCALE

-100000.00 …

100000.00

40.14

ACTUAL 2 UNIT

NO bar

%

C mg/l

See parameter 40.08

.

Matches actual value 1 displayed on the control panel and the unit defined by parameter 40.12

.

Actual value 1 scaling.

-1000000

… 1000000

Selects the unit of actual value 1.

-1000 …

1000

3

4

1

2

5

6

Matches actual value 2 displayed on the control panel and the unit defined by parameter 40.14

.

Actual value 2 scaling.

-1000000

… 1000000

Selects the unit of actual value 2.

1

2

3

4

5

Actual signals and parameters

119

Index Name/Selection

kPa

40.15

ACTUAL FUNC

SCALE

-100000.00 …

100000.00

40.16

ACTUAL1 PTR

Description

Scales the result of the arithmetic operation selected by parameter 40.04

. The scaled value can be read through an analogue output (see parameter 15.01

).

Scaling for the ACTUAL FUNC signal.

-1000000

… 1000000

Defines the source or constant for value

ACT1 POINTER of parameter

40.05

.

FbEq

6

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

41 PFC-CONTROL 1

Process references, start/stop frequencies for auxiliary motors or follower drives.

Only visible and effective when either the PFC TRAD or Multipump macro is selected.

41.01

SET POINT 1/2 SEL Defines the source from which the drive reads the signal that selects between the two process references. See also parameters 41.02

, 41.03

and 41.04

.

SET POINT 1 Process reference 1 selected.

SET POINT 2

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

Process reference 2 selected.

Digital input DI1. 0 = Process reference 1, 1 = Process reference 2.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

DI12 See selection DI1.

41.02

SET POINT 1 SRCE Selects the source of process reference 1.

EXTERNAL Process reference 1 is read from the source defined with parameter 11.06

. The control panel must be in external control mode (an “R” or a blank space displayed; see

Status row

on page

22 ). If the control panel is in local mode (an

“L” displayed), the panel gives a direct frequency reference and the PFC logic is bypassed.

0

1

2

3

6

7

4

5

8

9

10

11

12

13

14

65535 INTERNAL Process reference 1 is a constant value set by parameter 41.03

.

41.03

SPOINT 1 INTERNAL Defines process reference 1 when parameter 41.02

is set to INTERNAL.

0.0 … 100.0% Internal process reference 1.

41.04

SPOINT 2 INTERNAL Defines process reference 2.

0.0 … 100.0% Process reference 2.

0 … 10000

0 … 10000

Actual signals and parameters

120

Index Name/Selection Description

41.05

REFERENCE STEP 1 Sets a percentage that is added to the process reference when one auxiliary

(direct-on-line) motor or follower drive is running.

Example: The drive operates three parallel pumps that pump water into a pipe.

The pressure in the pipe is controlled. The constant pressure reference is set by parameter 41.03

. During low water consumption, only the speed-regulated pump is run. When water consumption increases, constant-speed (direct-online) pumps are started: first one pump, and if the demand grows further, also the other pump. As water flow increases, the pressure loss between the beginning (point of measurement) and the end of the pipe increases. By setting suitable reference steps the process reference is increased along the increasing pumping capacity. The reference steps compensate the growing pressure loss and prevent the pressure fall at the end of the pipe.

FbEq

0 … 10000 0.0 … 100.0% Reference step 1.

41.06

REFERENCE STEP 2 Sets a percentage that is added to the process reference when two auxiliary

(direct-on-line) motors or follower drives are running. See parameter 41.05

.

0.0 … 100.0% Reference step 2.

41.07

REFERENCE STEP 3 Sets a percentage that is added to the process reference when three auxiliary

(direct-on-line) motors or follower drives are running. See parameter 41.05

.

0.0 … 100.0% Reference step 3.

41.08

REFERENCE STEP 4 Sets a percentage that is added to the process reference when four auxiliary

(direct-on-line) motors or follower drives are running. See parameter 41.05

.

0.0 … 100.0% Reference step 4.

41.09

REFERENCE STEP 5 Sets a percentage that is added to the process reference when five follower drives are running. See parameter 41.05

.

0.0 … 100.0% Reference step 5.

41.10

REFERENCE STEP 6 Sets a percentage that is added to the process reference when six follower drives are running. See parameter 41.05

.

0.0 … 100.0% Reference step 6.

41.11

REFERENCE STEP 7 Sets a percentage that is added to the process reference when seven follower drives are running. See parameter 41.05

.

0.0 … 100.0% Reference step 7.

0 … 10000

0 … 10000

0 … 10000

0 … 10000

0 … 10000

0 … 10000

Actual signals and parameters

Index Name/Selection

41.12

START FREQ 1

Description

Defines the start frequency for auxiliary motor or follower drive 1.

When the output frequency of the drive exceeds this value + 1 Hz and no

auxiliary motors are running, the start delay counter (see parameters 41.26

and/or 42.02

) is started. If the frequency is still at the same level or higher when the delay elapses, the first auxiliary pump or follower starts.

If the PFC TRAD macro is selected, the output frequency of the drive is decreased by Start frequency 1 - Low frequency 1 ( 41.12

41.19

) after the auxiliary pump starts. With the Multipump macro, the freshly-started drive becomes the master; the previously-started drive becomes a follower and

starts to run at the speed selected by parameters 60.02

and

60.03

.

The following diagram shows the mutual order of some common frequencies in a pump application.

FbEq

Frequency

Maximum frequency ( 20.02

)

Start frequency 1 ( 41.12

) (Start frequency of auxiliary motor or follower 1)

Low frequency 1 ( 41.19

) (Stop frequency of auxiliary motor or follower 1)

Sleep level ( 43.03

)

PI controller minimum frequency (

20.07

)

0 Hz

(Negative frequencies only used by the Anti-jam function (

46.05

)

121

0.0 … 120.0 Hz

41.13

START FREQ 2

0.0 … 120.0 Hz

41.14

START FREQ 3

0.0 … 120.0 Hz

41.15

START FREQ 4

0.0 … 120.0 Hz

41.16

START FREQ 5

0.0 … 120.0 Hz

41.17

START FREQ 6

0.0 … 120.0 Hz

41.18

START FREQ 7

0.0 … 120.0 Hz

Minimum frequency ( 20.01

)

Start frequency 1.

Defines the start frequency for auxiliary motor or follower drive 2. See parameter 41.12

.

Start frequency 2.

Defines the start frequency for auxiliary motor or follower drive 3. See parameter 41.12

.

Start frequency 3.

Defines the start frequency for auxiliary motor or follower drive 4. See parameter 41.12

.

Start frequency 4.

Defines the start frequency for follower drive 5. See parameter 41.12

.

Start frequency 5.

Defines the start frequency for follower drive 6. See parameter 41.12

.

Start frequency 6.

Defines the start frequency for follower drive 7. See parameter 41.12

.

Start frequency 7.

0 … 120

0 … 120

0 … 120

0 … 120

0 … 120

0 … 120

0 … 120

Actual signals and parameters

122

Index Name/Selection

41.19

LOW FREQ 1

0.0 … 120.0 Hz

41.20

LOW FREQ 2

0.0 … 120.0 Hz

41.21

LOW FREQ 3

0.0 … 120.0 Hz

41.22

LOW FREQ 4

0.0 … 120.0 Hz

41.23

LOW FREQ 5

0.0 … 120.0 Hz

41.24

LOW FREQ 6

0.0 … 120.0 Hz

41.25

LOW FREQ 7

0.0 … 120.0 Hz

41.26

FOLLOWER START

DL

0.0 … 3600.0 s

41.27

FOLLOWER STOP

DLY

0.0 … 3600.0 s

42 PFC-CONTROL 2

42.01

NBR OF AUX

MOTORS

ZERO

ONE

TWO

THREE

Description

Defines the low (stop) frequency for auxiliary motor or follower drive 1.

When the output frequency of the drive falls below this value - 1 Hz and one auxiliary motor is running, the stop delay counter (see parameters

41.27

and/or

42.03

) is started. If the frequency is still at the same level or lower when the delay elapses, the first auxiliary pump or follower stops.

If the PFC TRAD macro is selected, the output frequency of the drive is increased by Start frequency 1 - Low frequency 1 ( 41.12

41.19

) after the auxiliary pump stops. With the Multipump macro, the most recently started drive is stopped; the previously-started drive becomes the master.

Low frequency 1.

Defines the low (stop) frequency for auxiliary motor or follower drive 2. See parameter 41.19

.

Low frequency 2.

Defines the low (stop) frequency for auxiliary motor or follower drive 3. See parameter 41.19

.

Low frequency 3.

Defines the low (stop) frequency for auxiliary motor or follower drive 4. See parameter 41.19

.

Low frequency 4.

Defines the low (stop) frequency for follower drive 5. See parameter 41.19

.

Low frequency 5.

Defines the low (stop) frequency for follower drive 6. See parameter 41.19

.

Low frequency 6.

Defines the low (stop) frequency for follower drive 6. See parameter 41.19

.

Low frequency 7.

In a multipump application, defines a start delay for follower drives. See parameter 41.12

.

Follower start delay.

In a multipump application, defines a stop delay for follower drives. See parameter 41.19

.

Follower stop delay.

Auxiliary motor set-up (start/stop delays, autochange).

Only visible when the PFC TRAD macro is selected.

Defines the number of auxiliary motors, i.e. motors in excess of 1.

Note: After changing the value of this parameter, check the settings of the relay outputs in parameter group 14.

Note: Without additional hardware, the drive supports the use of up to two auxiliary motors*. An optional digital input/output extension module (RDIO) is required for the use of three to four auxiliary motors. See parameter group 98.

*Three auxiliary motors can be used without additional hardware if the Interlocks and

Autochange functions are not used (see below).

WARNING! Use of the Autochange function also requires the use of the Interlocks function.

FbEq

0 … 120

0 … 120

0 … 120

0 … 120

0 … 120

0 … 120

0 … 120

0 … 3600

0 … 3600

No auxiliary motors used (a one-pump/fan station).

One auxiliary motor used (two-pump/fan station).

Two auxiliary motors used (three-pump/fan station).

Three auxiliary motors used (four-pump/fan station).

1

2

3

4

Actual signals and parameters

123

Index Name/Selection

FOUR

42.02

AUX MOT START

DLY

Description

Four auxiliary motors used (five-pump/fan station).

Start delay for auxiliary motors.

FbEq

5

Frequency

42.02

42.08

f

max

41.12

+ 1 Hz

41.19

- 1 Hz

f

min

42.03

42.09

Time

ON

OFF

Aux. motor 1

Stop/Start

ON

OFF

Start

Increasing flow

Decreasing flow

Stop

0.0 … 3600.0 s Auxiliary motor start delay.

42.03

AUX MOT STOP DLY Stop delay for auxiliary motors. See parameter 42.02

.

0.0 … 3600.0 s Auxiliary motor stop delay.

42.04

INTERLOCKS Defines the use of the Interlocks function.

WARNING! Use of the Autochange function (parameter 42.06

) also requires the use of the Interlocks function.

0 … 3600

0 … 3600

The Interlocks function is used with multimotor applications where one motor at a time is connected to the output of the drive. The remaining motors are powered from the supply line and started and stopped by the relay outputs of the drive.

A contact of the manual on/off switch (or protective device, such as a thermal relay, etc.) of each motor is wired to the interlock circuit. The logic will detect if a motor is unavailable and start the next available motor instead.

If the interlock circuit of the speed-regulated motor is switched off, the motor is stopped and all relay outputs are de-energised. Then the drive will restart. The next available motor in the Autochange sequence will be started as regulated.

If the interlock circuit of a direct-on-line motor is switched off, the drive will not try to start the motor until the interlock circuit is switched on again. The other motors will operate normally.

The selection SET1 uses predominantly the standard inputs and outputs of the drive, while SET2 uses those of optional digital I/O extension modules (type

RDIO).

Actual signals and parameters

124

Index Name/Selection

OFF

Description

The Interlocks function is not in use; digital inputs DI2, DI3 and DI4 are available for other purposes. The speed-regulated motor is directly connected to the drive; auxiliary (direct-on-line) motors are started and stopped whenever necessary. The auxiliary motors can be controlled primarily through the standard relay outputs or optional digital I/O extension modules (type RDIO).

The selection between the desired relay outputs is made by the parameters in

Group 14.

Depending on the number of auxiliary motors (parameter 42.01

), the standard relay outputs are used as follows:

42.01

0

1

2

3

4

Usage of standard relay outputs

Output Assignment/Note

– N/A

RO1

RO1

RO2

RO1

Controls the start/stop contactor of auxiliary motor no. 1.

Controls the start/stop contactor of auxiliary motor no. 1.

Controls the start/stop contactor of auxiliary motor no. 2.

Controls the start/stop contactor of auxiliary motor no. 1.

RO2

RO3

RO1

RO2

RO3

RDIO1

RO1

Controls the start/stop contactor of auxiliary motor no. 2.

Controls the start/stop contactor of auxiliary motor no. 3.

Controls the start/stop contactor of auxiliary motor no. 1.

Controls the start/stop contactor of auxiliary motor no. 2.

Controls the start/stop contactor of auxiliary motor no. 3.

Relay output RO1 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 4.

Note: The module must be enabled by parameter 98.03

.

FbEq

1

Alternatively, optional digital I/O extension modules can be used:

42.01

0

1

2

3

4

RDIO1

RO2

RDIO2

RO1

RDIO1

RO1

RDIO1

RO2

RDIO2

RO1

RDIO2

RO2

Usage of relay outputs of digital I/O extension modules

Output Assignment/Note

– N/A

RDIO1

RO1

RDIO1

RO1

RDIO1

RO2

RDIO1

RO1

Relay output RO1 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 1.

Relay output RO1 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 1.

Relay output RO2 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 2.

Relay output RO1 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 1.

Relay output RO2 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 2.

Relay output RO1 of the second RDIO module controls the start/stop contactor of auxiliary motor no. 3.

Relay output RO1 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 1.

Relay output RO2 of the first RDIO module controls the start/stop contactor of auxiliary motor no. 2.

Relay output RO1 of the second RDIO module controls the start/stop contactor of auxiliary motor no. 3.

Relay output RO2 of the second RDIO module controls the start/stop contactor of auxiliary motor no. 4.

Note: The RDIO modules must be enabled by parameters 98.03

and 98.04

.

Actual signals and parameters

Index Name/Selection

SET 1

Description

The Interlocks function is in use. Depending on the number of auxiliary motors, the relay outputs and digital inputs are used as follows:

42.01

0

1

2

3

4

I/O

DI2

RO1

DI2/3

Usage of relay outputs and digital inputs

Assignment/Note

Monitors the status of motor no. 1.

Controls the start/stop contactor of motor no. 1.

RO1/2

Monitor the status of motors no. 1 and 2 respectively.

Control the start/stop contactors of motors no. 1 and 2 respectively.

DI2/3/4 Monitor the status of motors no. 1, 2 and 3 respectively.

RO1/2/3

Control the start/stop contactors of motors 1, 2 and 3 respectively.

DI2/3/4 Monitor the status of motors no. 1, 2 and 3 respectively.

RDIO1

DI1 (DI7)

Digital input DI1 of the first RDIO module (DI7) monitors the status of motor 4.

RO1/2/3

RDIO1

RO1

Control the start/stop contactors of motors 1, 2 and 3 respectively.

Relay output RO1 of the first RDIO module controls the start/stop contactor of motor no. 4.

DI2/3/4 Monitor the status of motors no. 1, 2 and 3 respectively.

RDIO1

DI1/2

(DI7/DI8)

Digital inputs DI1 and DI2 of the first RDIO module (DI7 and DI8) monitor the status of motors 4 and 5 respectively.

RO1/2/3

RDIO1

RO1/2

Control the start/stop contactors of motors 1, 2 and 3 respectively.

Relay outputs RO1 and RO2 of the first RDIO module control the start/stop contactors of motors no. 4 and 5 respectively.

FbEq

2

Below is an example of two motors connected to the drive with SET1 selected.

125

~230 V AC

K1

ACS800

RMIO Board

~230 V AC

On/Off

3

K2.1

On/Off

3

M

3~

M1

M

3~

M2

Note: Any RDIO modules present must be enabled by parameters 98.03

and

98.04

.

Actual signals and parameters

126

Index Name/Selection

SET 2

Description

The Interlocks function is in use. Depending on the number of auxiliary motors, the relay outputs and digital inputs are used as follows:

FbEq

3

42.01

0

1

2

3

4

I/O

RDIO1 DI2

(DI8)

RDIO1 RO1

RDIO1

DI2/3

RDIO1

RO1/2

RDIO1

DI2/3

RDIO2 DI1

Usage of relay outputs and digital inputs

Assignment/Note

Digital input DI2 of the first RDIO module (DI8) monitors the status of motor no. 1.

Relay output RO1 of the first RDIO module controls the start/stop contactor of motor no. 1.

Digital inputs DI2 and DI3 of the first RDIO module (DI8 and DI9) monitor the status of motors no. 1 and 2 respectively.

Relay outputs RO1 and RO2 of the first RDIO module control the start/stop contactors of motors no. 1 and 2 respectively.

Digital inputs DI2 and DI3 of the first RDIO module (DI8 and DI9) monitor the status of motors no. 1 and 2 respectively.

Digital input DI1 of the second RDIO module (DI10) monitors the status of motor 3.

RDIO1

RO1/2

RDIO2 RO1

RDIO1

DI2/3

RDIO2

DI1/2

RDIO1

RO1/2

RDIO2

RO1/2

Not applicable.

Relay outputs RO1 and RO2 of the first RDIO module control the start/stop contactors of motors 1 and 2 respectively.

Relay output RO1 of the second RDIO module controls the start/stop contactor of motor 3.

Digital inputs DI2 and DI3 of the first RDIO module (DI8 and DI9) monitor the status of motors no. 1 and 2 respectively.

Digital inputs DI1 and DI2 of the second RDIO module (DI10 and

DI11) monitor the status of motors 3 and 4 respectively.

Relay outputs RO1 and RO2 of the first RDIO module control the start/stop contactors of motors 1 and 2 respectively.

Relay outputs RO1 and RO2 of the second RDIO module control the start/stop contactors of motors 3 and 4 respectively.

Below is an example of two motors connected to the drive with SET2 selected.

~230 V AC

K1

RDIO Module

~230 V AC

On/Off

3

K2.1

On/Off

3

42.06

AUTOCHANGE

INTERV

+24 V DC

M

3~

M1

M

3~

M2

Note: The RDIO modules must be enabled by parameters 98.03

and 98.04

.

Switches on the Autochange function, and specifies the Autochange interval.

See parameter 42.07

.

Actual signals and parameters

127

Index Name/Selection

0 h 00 min …

336 h 00 min

(14 days)

Description

Autochange interval. 0 h 00 min = Autochange function disabled.

Note: The counter runs only when the start signal of the drive is on.

WARNING! If the Autochange function is used, also the Interlocks function must be used, and parameter 21.03

set to COAST. In an

Autochange system, there is a contactor between the drive output and the speed-controlled motor. The contactor will be damaged if opened without first interrupting the power stage switching of the drive. The switching is interrupted when the interlock is switched off and the selected stop mode is

COAST.

42.07

AUTOCHANGE

LEVEL

Output frequency limit for the Autochange function.

The motor starting sequence is changed when the Autochange interval has elapsed and the output frequency is below this limit. Autochanging is indicated by a warning on the control panel display.

Note: The value of this parameter must be within allowed range (eg. between minimum and maximum limits). Otherwise no Autochanging is possible.

Note: When the drive power is switched off, the values of the starting sequence counter and the Autochange interval counter are stored. The counters will continue using these values after the power is switched on again.

Example: There are three motors in a system (parameter 42.01

is set to 2).

Autochange level is set to 40 Hz.

An Autochange occurs when the output frequency is below 40 Hz, and

Autochange interval since the previous Autochange has elapsed. Upon an

Autochange,

1) All motors are stopped

2) The starting sequence is incremented (from 1-2-3 to 2-3-1, etc.)

3) The contactor that controls the speed-regulated motor is closed

4) The delay set by parameter 42.10

is waited

5) The speed-regulated motor is energised and normal PFC operation starts.

If the Autochange level is 0 Hz and the interval has elapsed, Autochange will occur during a stop, eg. when the Sleep function is active.

Autochange level.

0.0 … 100.0 Hz

42.08

FREQ TIME ON DLY See diagram at parameter 42.02

.

0.0 … 3600.0 s

FbEq

0 … 20160

(min)

0 … 10000

0 … 3600

42.09

FREQ TIME OFF DLY See diagram at parameter 42.02

.

0.0 … 3600.0 s

42.10

PFC START DELAY Start delay for the speed-regulated motor. Does not affect the starting of the direct-on-line motors. See parameter 42.07

.

WARNING! There must always be a delay set if the motors are equipped with star-delta starters. The delay must be set longer than the time setting of the starter. After the motor is switched on by the relay output of the drive, there must be enough time for the star-delta starter to first switch to star and then back to delta before the motor is connected to the drive.

0 … 10000 ms PFC start delay.

0 … 3600

0 … 10000

Actual signals and parameters

128

Index Name/Selection

42.11

REGUL BYPASS

CTRL

Description

Selects whether the process PI controller is bypassed.

This parameter can be used in applications with a low number of sensors and low accuracy requirements.

Example: The capacity of the pumping station (outlet flow) follows the measured inlet flow.

Measured Inlet Flow = Reference for the Pumping Station

FbEq

Outlet

Pipe 1

3

M

3~

P1

Outlet

Pipe 2

3

3

Outlet

Pipe 3

M

3~

P2

M

3~

P3

Sewage

Tank

Inlet

Pipe

Drive

P1

P2

P3

Contactors

Main

Supply

3~

3 3

3

In the diagram below, the slopes of the lines describe the relation between the control signal (selected by parameter 40.04

) and the frequency of the controlled motor (i.e. drive output frequency) in a three-motor system. At full control signal level, all pumps are operating at maximum frequency.

Frequency

[Hz]

Max. freq.

Start freq. 2

Start freq. 1

No aux. motors ON

1 aux. motor

ON

2 aux. motors ON

Low freq. 2

Low freq. 1

Min. freq.

100%

Control

Signal

[%]

33% 66%

NO

YES

Process PI controller is in use.

Process PI controller is bypassed. The signal selected by parameter 40.04

is used as the frequency reference. The automatic start/stop of direct-on-line motors is related to this actual value signal instead of the output of the PI controller.

Sleep function set-up.

43 SLEEP FUNCTION

43.01

SLEEP SELECTION Controls the Sleep function.

OFF The Sleep function is disabled.

INTERNAL The Sleep function is activated and deactivated as defined by parameters

43.02

to 43.08

.

1

2

0

65535

Actual signals and parameters

Index Name/Selection

SLEEP1 PTR

SLEEP2 PTR

43.02

SLEEP DELAY

0.0 … 3600.0 s

129

Description

The Sleep function is controlled by the signal defined by parameter 43.09

. If the signal is OFF, the Sleep function is activated and deactivated as defined by parameters 43.02

to 43.08

.

When the signal switches ON, the reference is set to 0%. The drive will enter

Sleep mode as soon as the output frequency falls below the value of parameter 43.03

, and will not wake up as long as the signal stays ON.

After the signal switches OFF, the drive continues to operate according to the

Sleep function set-up parameters.

Note: With this selection, parameter 43.07

has no effect.

The Sleep function is activated by the signal defined by parameter 43.10

.

When the signal switches ON, the drive immediately enters Sleep mode if no auxiliary motors are running and the wake-up level (parameter 43.05

) has not been exceeded. (The sleep level is not observed.)

After the wake-up level is reached, the drive will wake up regardless of the state of the signal.

Sets the Sleep delay for the Sleep function.

If the output frequency of the drive stays below the value set by parameter

43.03

longer than the Sleep delay, the drive stops, and the control panel displays the warning “SLEEP MODE”. See the diagram at parameter 43.03

.

Sleep delay.

FbEq

3

4

0 … 3600

Actual signals and parameters

130

Index Name/Selection

43.03

SLEEP LEVEL

Description

Sets the frequency limit for the Sleep function. When the output frequency of the drive drops below this limit, the sleep delay counter is started. When the output frequency exceeds this limit, the sleep delay counter is reset.

Reference

Sleep boost time ( 43.08

)

Control panel:

SLEEP BOOST

Sleep boost step (

43.07

)

FbEq

Time

Wake-up delay

( 43.06

)

Selected process actual value

Wake-up level

( 43.05

)

Output frequency

t

sd

= Sleep delay ( 43.02

)

t < t sd

t

sd

Control panel:

SLEEP

MODE

Time

Sleep level

( 43.03

)

Time

STOP START

0.0 … 120.0 Hz

Note: The Sleep level setting should be greater than the minimum frequency setting (parameter 20.01

). Otherwise the output frequency of the drive will never fall below the Sleep level.

Sleep level in Hz.

Setting the parameter to 0 disables the Sleep function.

43.04

WAKE UP SEL MODE Defines the wake-up level.

WAKE UP 1 The wake-up level is given as percent of the used process reference. The drive enters the wake-up sequence when the currently selected process actual value falls below the wake-up level.

Example: The PFC application program follows a process reference set by parameter 41.03

. The table below shows the wake-up level with two process reference settings, and two wake-up level settings.

0 … 120

1

Value of 41.03

100%

80%

Value of 43.05

50%

40%

Wake-up level

50% of 100% = 50%

40% of 80% = 32%

Actual signals and parameters

Index Name/Selection

WAKE UP 2

Description

The wake-up level is related to the used process reference so that the range of parameter 43.05

inversely corresponds to the range between the process reference in use and 100% level.

FbEq

2

Reference

100%

Value of parameter 43.05

0%

131

Process reference used

100%

WAKE UP 3

WAKE UP 4

[ ]

43.05

WAKE UP LEVEL

0%

The relation is defined by the following equation:

Wake-up level [%] = 100 –

100% – REF[%]

100 where

REF = Process reference used

× (Value of par. 43.05

[%])

The drive enters the wake-up sequence when the selected process actual value exceeds the wake-up level.

Example: At 50% process reference, a wake-up level of 90% is obtained when parameter 43.05

is set to 20.0%:

90 = 100 –

=> 90 = 100 –

100 – 50

100

[par. 43.05

]

2

× [par. 43.05

]

=> [par. 43.05

] = 20

With the same setting, the wake-up level rises to 95% when process reference rises to 75%.

The drive enters the wake-up sequence when the currently selected process actual value falls below the wake-up level (par. 43.05

).

The drive enters the wake-up sequence when the currently selected process actual value exceeds the wake-up level (par. 43.05

).

Reserved.

Sets the process actual value limit for the Sleep function. When the selected process actual value falls below or exceeds (depending on the setting of parameter 43.04

) the limit, the wake-up delay counter is started.

The value is given as a percentage of an actual signal defined by parameter

43.04

.

Note: If the PI controller is bypassed (parameter 42.11

) or inverted ( 40.03

), the

Sleep function is interrupted whenever the process actual value exceeds the wake-up level. In this case, the wake-up level is taken as an absolute percentage value (of 100%).

3

4

Actual signals and parameters

132

Index Name/Selection

0.0 … 100.0%

43.06

WAKE UP DELAY

Description

Wake-up level.

Sets the wake-up delay for the Sleep function.

If the process actual value stays below or above (depending on the setting of parameter 43.04

) the wake-up level (parameters 43.04

and 43.05

) longer than the wake-up delay, the drive starts. See the diagram at parameter 43.03

.

0.0 … 3600.0 s Wake-up delay.

43.07

SLEEP BOOST STEP When the drive is entering Sleep mode, the reference is increased by this percentage for the time defined by parameter 43.08

. (The actual boosted reference is available as actual signal

05.08

.)

No auxiliary motors are started.

If active, Sleep boost is aborted when the drive wakes up.

See the diagram at parameter 43.03

.

Note: This parameter has no effect if parameter 43.01

is set to SLEEP1 PTR .

0.0 … 100.0% Sleep boost step.

43.08

SLEEP BOOST TIME Sets the boost time for the Sleep boost step (parameter 43.07

).

0.0 … 3600.0 s Sleep boost time.

43.09

SLEEP1 SEL PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

43.10

SLEEP2 SEL PTR

Defines the source or constant for value

SLEEP1 PTR

of parameter 43.01

.

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

Defines the source or constant for value

SLEEP2 PTR

of parameter 43.01

.

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04 for information on the difference.

44 PFC PROTECTION

Set-up of PFC protections.

44.01

INPUT PROT CTRL Enables, and selects the mode of, the primary supervision of pump/fan inlet pressure.

NOT SEL Primary inlet pressure supervision not used.

WARNING Detection of low inlet pressure produces a warning on the control panel display.

1

2

FbEq

0 … 10000

0 … 3600

0 … 10000

0 … 3600

Actual signals and parameters

133

Index Name/Selection

PROTECT

Description

Detection of low inlet pressure produces a warning on the control panel display. The output of the PI controller is ramped down (according to par.

44.17

) to the forced reference (set by parameter 44.08

). The drive will revert to the original reference if the pressure subsequently exceeds the supervision level.

The following diagram describes the inlet pressure supervision function.

FbEq

3

Measured inlet pressure

44.07 INPUT CTRL DLY

44.03

AI IN LOW LEVEL

44.05

AI IN VERY LOW

Time

PFC_reference

(EXT 2)

44.17 PI

REF DEC

TIME

44.08 INLET FORCED REF

Time

1

0

Actual signal 05.01

, bit 3

Time

1

0

Actual signal 05.02

, bit 0

Time

1

0

Actual signal 05.02

, bit 2

Time

FAULT Detection of low inlet pressure trips the drive on a fault.

44.02

AI MEASURE INLET Selects the analogue input for pump/fan inlet pressure supervision.

NOT USED

AI1

No analogue input selected.

Pump/fan inlet pressure monitored through selected input.

AI2

AI3

AI5

AI6

44.03

AI IN LOW LEVEL

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

44.04

0.0 … 100.0%

VERY LOW CTRL

NOT SEL

STOP

Sets the supervision limit for the primary inlet pressure measurement. If the value of the selected input falls below this limit, the action defined by parameter 44.01

is taken after the delay set by parameter 44.07

expires.

The range corresponds to 0 … 10 V or 0 …20 mA on the analogue input. With a bipolar input, the absolute input value is considered.

Enables, and selects the mode of, the secondary inlet pressure supervision function. The function uses the analogue input selected by parameter 44.02

.

Secondary inlet pressure supervision not used.

Detection of very low inlet pressure stops the drive. The drive will start again if the pressure exceeds the supervision level.

4

0 … 100

1

2

3

4

1

2

5

6

Actual signals and parameters

134

Index Name/Selection

FAULT

44.05

AI IN VERY LOW

Description

Detection of very low inlet pressure trips the drive on a fault.

Supervision level for the secondary inlet pressure monitoring function. See parameter 44.04

.

44.06

0.0 … 100.0%

DI STATUS INLET

Supervision level.

Selects the digital input for connection of a pressure switch at the pump/fan inlet. The “normal” state is 1 (on). If the selected input switches to 0 (off), the action defined by parameter 44.01

is executed after the delay set by parameter

44.07

expires.

No digital input selected.

NOT USED

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

DI12

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

Pump/fan inlet pressure monitored through selected input.

44.07

INPUT CTRL DLY Sets the delay after which the action defined by parameter 44.01

is taken upon detection of low inlet pressure.

Delay.

0 … 60 s

44.08

INLET FORCED REF This reference is used after detection of low inlet pressure. See par. 44.01

.

WARNING! Make sure that it is safe to continue operation using this reference.

FbEq

3

0 … 60

8

9

10

11

12

13

6

7

4

5

1

2

3

0 … 100%

44.09

OUTPUT PROT

CTRL

NOT SEL

WARNING

Forced reference.

Enables, and selects the mode of, the primary supervision of pump/fan outlet pressure.

Primary outlet pressure supervision not used.

Detection of high outlet pressure produces a warning on the control panel display.

0 … 100

1

2

Actual signals and parameters

135

Index Name/Selection

PROTECT

Description

Detection of high outlet pressure produces a warning on the control panel display. The output of the PI controller is ramped down (according to par.

44.17

) to the forced reference (set by parameter 44.16

). The drive will revert to the original reference if the pressure subsequently falls below the supervision level.

The following diagram describes the outlet pressure supervision function.

FbEq

3

Measured outlet pressure

44.15 OUTPUT CTRL DLY

44.13

AI OUT VERY HIGH

44.11

AI OUT HIGH LEVEL

Time

PFC_reference

(EXT 2)

44.17 PI

REF DEC

TIME

44.16 OUTLET FORCED REF

Time

1

0

Actual signal 05.01

, bit 4

Time

1

0

Actual signal 05.02

, bit 1

Time

1

0

Actual signal 05.02

, bit 3

Time

FAULT

44.10

AI MEASURE

OUTLET

NOT USED

AI1

AI2

AI3

Detection of high outlet pressure trips the drive on a fault.

Selects the analogue input for pump/fan outlet pressure supervision.

No analogue input selected.

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

AI5

AI6

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

44.11

AI OUT HIGH LEVEL Sets the supervision limit for the primary outlet pressure measurement. If the value of the selected analogue input exceeds this limit, the action defined by parameter 44.09

is taken after a delay set with parameter 44.15

expires.

0.0 … 100.0%

44.12

VERY HIGH CTRL

NOT SEL

The range corresponds to 0 … 10 V or 0 …20 mA on the analogue input. With a bipolar input, the absolute input value counts.

Enables, and selects the mode of, the secondary outlet pressure supervision function. The function uses the analogue input selected by parameter 44.10

.

Secondary outlet pressure monitoring not used.

4

3

4

1

2

5

6

0 … 100

1

Actual signals and parameters

136

Index Name/Selection

STOP

Description

Detection of very high outlet pressure stops the drive. The drive will start again if the pressure falls below the supervision level.

Detection of very high outlet pressure trips the drive on a fault.

FAULT

44.13

AI OUT VERY HIGH Supervision level for secondary outlet pressure monitoring function. See parameter 44.09

.

0 … 500% Supervision level.

44.14

DI STATUS OUTLET Selects the digital input for connection of a pressure switch at the pump/fan outlet. The “normal” state is 1 (on). If the selected input switches to 0 (off), the action defined by parameter 44.09

is taken after a delay set by parameter

44.15

expires.

NOT USED

DI1

No digital input selected.

Pump/fan outlet pressure monitored through selected input.

DI2

DI3

DI4

DI5

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

DI6

DI7

DI8

DI9

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

DI10

DI11

Pump/fan outlet pressure monitored through selected input.

Pump/fan outlet pressure monitored through selected input.

DI12 Pump/fan outlet pressure monitored through selected input.

44.15

OUTPUT CTRL DLY Sets the delay after which the action defined by parameter 44.09

is taken upon detection of high outlet pressure.

0 … 60 s Delay.

44.16

OUTLET FORCED

REF

This reference is used after detection of high outlet pressure. See par. 44.09

.

WARNING! Make sure that it is safe to continue operation using this reference.

FbEq

2

3

0 … 500

7

8

5

6

3

4

1

2

9

10

11

12

13

0 … 60

44.17

0 … 100%

PI REF DEC TIME

APPL OUTPUT

Forced reference.

PI controller ramp-down time. See selection PROTECT at parameters 44.01

and 44.09

.

PI controller ramp-down time.

0.01 … 3600.00 s

44.18

APPL PROFILE CTRL Parameters 44.18 to 44.20 provide the Application Profile protection feature, based on long-term monitoring of an internal status signal. If the selected signal exceeds (and remains above) the supervision limit for a longer time than the set delay (par.

44.20

), the internal status signal “PROFILE HIGH” is set to

1. The signal can be directed to a relay output (see parameter group

14 RELAY

OUTPUTS

).

CONTROL DEV Signal

01.26 CONTROL DEVIATION

is monitored and compared to parameter

44.19

. Monitoring the deviation between the reference and the actual value gives an indication of the general condition of the pump, piping and valves.

Signal 01.16

APPL BLOCK OUTPUT is monitored and compared to parameter

44.19

. The signal constantly remaining at 100% may indicate a leak in the output piping.

44.19

PROFILE OUTP LIM Supervision limit for the Application Profile protection.

0 … 100

0 … 3600

0

65535

Actual signals and parameters

137

Index Name/Selection Description

0 … 500% Supervision limit.

44.20

PROF LIMIT ON DLY Delay time for the Application Profile protection.

0.0 … 100.0 h

44.21

PI REF FREEZE

Delay.

Freezes the input of the process PI controller. This feature is useful when the reference is based on an process actual value connected to an analogue input, and the sensor must be serviced without stopping the process.

The input of the PI controller is frozen as long as the selected digital input is

ON.

See also parameter 44.22

.

FbEq

0 … 500

0 … 100

PI

%ref

(EXT REF2)

01.12

44.22

NO

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

DI12

PI OUT FREEZE

40.01

40.02

40.03

PImax

PImin

01.16

The input of the process PI controller is not frozen.

Digital input DI1 ON: Input of the process PI controller frozen.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

Freezes the output of the process PI controller. This feature is useful when the reference is based on process actual value connected to an analogue input, and the sensor must be serviced without stopping the process.

The output of the PI controller is frozen as long as the selected digital input is

ON.

See also parameter 44.21

.

8

9

10

11

12

13

6

7

4

5

1

2

3

PI

%ref

(EXT REF2)

01.12

01.16

40.01

40.02

40.03

PImax

PImin

Actual signals and parameters

138

Index Name/Selection

NO

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

Description

The output of the process PI controller is not frozen.

Digital input DI1 ON: Output of the process PI controller frozen.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

DI12

45 FLOWCONTROL

See selection DI1.

Set-up of the Flow calculation function.

Note: The flow calculation is suitable for single-pump stations that are used to pump water.

Note: The flow calculation function is not to be used for invoicing purposes.

Enables/Disables the flow calculation function.

45.01

FLOW MODE

OFF

ON

Disabled

Enabled

45.02

SUM FLOW RESET Resets the total calculated flow counter (actual signal

05.12

).

OFF No reset.

1

2

ON

FLOW POINTER

Reset. The counter restarts from zero.

Source selected by parameter 45.34

.

45.03

MAX INLET

PRESSUR

Used to specify the maximum value of the inlet pressure sensor. This value is used in flow calculation when the Q-H performance curve of the pump is used.

See also parameters

45.17

and 45.28

.

0.00 … 10000.00 bar Maximum inlet pressure.

45.04

MAX OUTLET

PRESSU

Used to specify the maximum value of the outlet pressure sensor. This value is used in flow calculation when the Q-H performance curve of the pump is used.

See also parameters

45.17

and 45.29

.

0.00 … 10000.00 bar Maximum outlet pressure.

1

2

3

11

12

13

7

8

9

10

5

6

3

4

FbEq

1

2

1 = 0.1 bar

1 = 0.1 bar

Actual signals and parameters

139

Index

45.07

Name/Selection

Q1

Description

Flow rate (in cubic metres per hour) at point 1 on the Q-H performance curve.

Parameters 45.07

45.16

define the Q-H performance curve of the pump for

the flow calculation function. The Q (flow rate) and H (head, or level) coordinates of five points on the curve are entered. The values are provided by the pump manufacturer.

Below is an example of a Q-H performance curve. The defining parameters of the first and last points are shown.

H [m]

4

5

3

FbEq

2

45.16

1

45.08

Q [m

3

/h]

45.07

45.15

0.0 … 10000.0 m

3

/h Flow rate at point 1.

45.08

H1

0.0 … 10000.0 m

Head (in metres) at point 1 on the Q-H performance curve.

Head at point 1.

45.09

Q2 Flow rate (in cubic metres per hour) at point 2 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 2.

45.10

H2

0.0 … 10000.0 m

Head (in metres) at point 2 on the Q-H performance curve.

Head at point 2.

45.11

Q3 Flow rate (in cubic metres per hour) at point 3 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 3.

1 = 0.1 m

1 = 0.1 m

1 = 0.1 m

1 = 0.1 m

3

3

/h

/h

1 = 0.1 m

3

/h

45.12

H3

0.0 … 10000.0 m

Head (in metres) at point 3 on the Q-H performance curve.

Head at point 4.

45.13

Q4 Flow rate (in cubic metres per hour) at point 4 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 2.

45.14

H4

0.0 … 10000.0 m

Head (in metres) at point 4 on the Q-H performance curve.

Head at point 4.

45.15

Q5 Flow rate (in cubic metres per hour) at point 5 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 5.

1 = 0.1 m

1 = 0.1 m

1 = 0.1 m

3

/h

1 = 0.1 m

3

/h

45.16

H5

0.0 … 10000.0 m

Head (in metres) at point 5 on the Q-H performance curve.

Head at point 5.

45.17

FLOW CALC MODE Defines whether the Q-H or Q-P performance curve is used for flow calculation.

Q-H CURVE The Q-H performance curve is used for flow calculation.

Note: This method entails the use of pressure sensors at both the inlet and the outlet of the pump.

1 = 0.1 m

1

Actual signals and parameters

140

Index Name/Selection

KW-Q CURVE

BOTH

45.18

Q H Q KW

BRKPOINT

0.00 … 1000.00 m

45.19

DENSITY

1.0 … 1000000.0

kg/m

3

45.20

PUMP KW1

Description

The Q-P performance curve is used for flow calculation.

Note: If the Q-P performance curve of the pump is flat, this method cannot be used.

Both the Q-H and Q-P performance curves are used for flow calculation. The transition point between the curves is set by parameter

45.18

.

Sets the transition point between the Q-H and Q-P performance curves. The

Q-P curve is used at heads higher than the value of this parameter.

Head breakpoint.

Defines the density of the fluid to be pumped for the flow calculation function.

Fluid density.

FbEq

2

3

1 = 1 m

1 =

0.1 kg/m

3

Power input (in kilowatts) of pump at point 1 on the Q-P performance curve.

Parameters 45.20

45.25

define the Q-P performance curve of the pump for

the flow calculation function. The Q (flow rate) and P (power input) coordinates of three points on the curve are entered. The values are provided by the pump manufacturer.

Below is an example of a Q-P performance curve. The defining parameters of the first and last points are shown.

P [kW]

3

45.24

2

1

45.20

Q [m

3

/h]

45.25

45.21

0.0 … 10000.0 kW Power input of pump at point 1.

45.21

PUMP Q1 Flow rate (in cubic metres per hour) at point 1 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 1.

45.22

PUMP KW2 Power input (in kilowatts) of pump at point 2 on the Q-P performance curve.

0.0 … 10000.0 kW Power input of pump at point 2.

45.23

PUMP Q2 Flow rate (in cubic metres per hour) at point 2 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 2.

45.24

PUMP KW3 Power input (in kilowatts) of pump at point 3 on the Q-P performance curve.

0.0 … 10000.0 kW Power input of pump at point 3.

45.25

PUMP Q3 Flow rate (in cubic metres per hour) at point 3 on the Q-H performance curve.

0.0 … 10000.0 m

3

/h Flow rate at point 3.

45.26

EFFICIENCY Total efficiency of the motor/pump combination.

0.0 … 100.0% Efficiency.

45.27

PUMP NOM SPEED Defines the nominal speed of the pump in rpm.

0 … 10000 rpm Nominal speed of pump.

1 = 1 kW

1 = 1 m

3

/h

1 = 1 kW

1 = 1 m

3

/h

1 = 1 kW

1 = 1 m

3

/h

1 = 1%

1 = 1 rpm

Actual signals and parameters

141

Index Name/Selection

45.28

PUMP INLET SEL

Description

Selects the analogue input for pump inlet pressure measurement. See also parameter

45.03

.

No analogue input selected.

NOT SEL

AI1

AI2

AI3

AI5

Pump inlet pressure measured through selected input.

Pump inlet pressure measured through selected input.

Pump inlet pressure measured through selected input.

Pump inlet pressure measured through selected input.

AI6 Pump inlet pressure measured through selected input.

45.29

PUMP OUTLET SEL Selects the analogue input for pump outlet pressure measurement. See also parameter

45.04

.

NOT SEL

AI1

AI2

AI3

AI5

AI6

45.30

FLOW CALC GAIN

0.00 … 10.00

No analogue input selected.

Pump outlet pressure measured through selected input.

Pump outlet pressure measured through selected input.

Pump outlet pressure measured through selected input.

Pump outlet pressure measured through selected input.

Pump outlet pressure measured through selected input.

Flow calculation gain for possible calculation correction.

Calculation correction gain.

45.31

PUMP INLET DIAM

0.00 … 1000.00 m

The diameter of the pump inlet in metres.

Pump inlet diameter.

45.32

PUMP OUTLET DIAM The diameter of the pump outlet in metres.

0.00 … 1000.00 m Pump outlet diameter.

45.33

SENSOR HGT DIFF Height difference between the inlet and outlet pressure sensors.

0.00 … 1000.00 m Height difference.

45.34

FLOW RESET PTR

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Defines the source for value FLOW POINTER

of parameter

45.02

.

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

FbEq

4

5

6

1

2

3

3

4

1

2

5

6

1 = 1

1 = 1 m

1 = 1 m

1 = 1 m

Actual signals and parameters

142

Index Name/Selection

46 ANTI JAM

46.01

A JAM ENABLE1

Description

The parameters control the Anti-jam function.

Defines when the Anti-jam sequence can be carried out. See also parameter

46.02

.

The Anti-jam sequence consists of forward and reverse “steps”.

FbEq

Forward

[ 46.04

]

Time

[

46.05

]

Reverse

[

46.10

]

[

46.06

]

[ 46.08

] [

46.07

]

[

46.08

] [ 46.06

] [

46.08

]

[ 46.11

]

WARNING! Before enabling the Anti-jam function, ensure it is safe to perform the Anti-jam sequence with the connected equipment.

Notes:

• The Anti-jam function overrides the parameter 10.03

DIRECTION .

• The Anti-jam function observes the maximum forward and reverse frequencies (parameters 20.01

and 20.02

).

• The Anti-jam function always uses acceleration time 2 (par. 22.04

) and deceleration time 2 (par. 22.05

).

• The drive must be started and its Run Enable signal present before the Antijam sequence can start.

NOT SEL

ENABLED

The Anti-jam function is disabled.

The Anti-jam sequence can be carried out when the drive is started and running.

The Anti-jam function is enabled by the source selected by parameter

46.12

.

3

1

2

AJAM POINTER

46.02

A JAM ENABLE MF Defines whether the Anti-jam sequence is to be carried out when the drive is the master or a follower in a Multipump configuration.

MASTER

FOLLOWER

The Anti-jam sequence can only be carried out when the drive is the master.

1

The Anti-jam sequence can only be carried out when the drive is a follower.

2

3 ENABLED The Anti-jam sequence can be carried out when the drive is either the master or a follower.

46.03

A JAM TRIGG MODE Defines how the Anti-jam sequence is triggered. Note that the conditions set by parameters

46.01

and

46.02

must be fulfilled before the sequence can start.

NOT SEL

MOT CURR LEV

DI1 TRIGG

No triggering source defined.

The Anti-jam sequence is triggered when the output current of the drive exceeds the limit defined by parameter

46.09

.

Switching on digital input DI1 triggers the Anti-jam sequence.

1

2

3

Actual signals and parameters

143

Index Name/Selection

DI3 TRIGG

IMOT OR DI1

Description

Switching on digital input DI3 triggers the Anti-jam sequence.

The Anti-jam sequence is triggered when the output current of the drive exceeds the limit defined by parameter

46.09

or digital DI1 is switched on.

IMOT OR DI3

AT START

TIMETRIGG R

The Anti-jam sequence is triggered when the output current of the drive exceeds the limit defined by parameter

46.09

or digital DI3 is switched on.

The Anti-jam sequence is performed every time the drive receives a Start command.

The Anti-jam sequence is started periodically at intervals defined by parameter

46.10

.

46.04

A JAM FWDSTEPLEV Forward step frequency for the Anti-jam sequence in percent of nominal motor frequency (parameter 99.07

).

0.0 … 200.0 % Forward step frequency.

46.05

A JAM REVSTEPLEV Reverse step frequency for the Anti-jam sequence in percent of nominal motor frequency (parameter 99.07

).

0.0 … 200.0 %

46.06

A JAM FWDSTEP

TIM

Reverse step frequency.

Defines the duration of each forward step in an Anti-jam sequence in seconds.

0.00 … 1000.00 s Forward step duration.

46.07

A JAM REVSTEP TIM Defines the duration of each reverse step in the Anti-jam sequence in seconds.

0.00 … 1000.00 s Reverse step duration.

46.08

A JAM STEP OFFTIM Defines the length of the interval between forward and reverse steps in the

Anti-jam sequence in seconds.

0.00 … 1000.00 s

46.09

A JAM I TRIGG LE

Step interval.

The output current limit for parameter 46.03

in amperes.

0.00 … 1000.00 A Current limit.

46.10

A JAM TIMETRIG LE

Time setting for parameter 46.03

in hours.

0.00 … 200.00 h

46.11

A JAM COUNT

Time.

Number of steps to be performed in the Anti-jam sequence.

0 … 100 Number of steps.

46.12

A JAM ENB1 POINT

Defines the source for value AJAM POINTER

of parameter

46.01

.

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

-

FbEq

4

5

6

7

8

0 … 200

0 … 200

0 … 1000

0 … 1000

0 … 1000

0 … 1000

0 … 200

0 … 200

Actual signals and parameters

144

Index Name/Selection

47 LEVEL CONTROL

47.02

PUMP DIRECTION

EMPTYING

Description

The parameters control the Level control function.

Only visible and effective when the Level control macro is selected.

FbEq

Defines whether the pump station is used for emptying or filling a tank.

The pump station is used for emptying a tank.

The diagram below shows the start, stop and supervision levels for emptying.

For simplicity, only three pumps are shown. Parameter

47.03

is assumed to be

set to COMMON STOP; parameter

47.18

is assumed to be set to 0.00

seconds.

1

Level (

05.23

)

High level 2 (

47.17

)

High level 1 (

47.16

)

Start 3 level ( 47.10

)

Start 2 level ( 47.09

)

Start 1 level ( 47.08

)

Time

Stop level ( 47.07

)

Low level 1 ( 47.05

)

Low level 2 ( 47.06

)

Frequency

Pump 3

High speed (

47.21

)

Efficiency speed (

47.20

)

Time

Frequency

Pump 2

High speed (

47.21

)

Efficiency speed (

47.20

)

Frequency

Pump 1

Time

High speed (

47.21

)

Efficiency speed (

47.20

)

Time

Actual signals and parameters

Index Name/Selection

FILLING

Description

The pump station is used for filling a tank.

The diagram below shows the start, stop and supervision levels for filling. For

simplicity, only three pumps are shown. Parameter 47.03

is assumed to be set to COMMON STOP; parameter

47.18

is assumed to be set to 0.00 seconds.

FbEq

2

Level (

05.23

)

High level 2 (

47.17

)

High level 1 (

47.16

)

Stop level ( 47.07

)

Start 1 level (

47.08

)

145

Frequency

Pump 3

Frequency

Pump 2

Frequency

Pump 1

Start 2 level (

47.09

)

Time

Start 3 level (

47.10

)

Low level 1 ( 47.05

)

Low level 2 ( 47.06

)

High speed (

47.21

)

Efficiency speed (

47.20

)

Time

High speed (

47.21

)

Efficiency speed (

47.20

)

Time

High speed (

47.21

)

Efficiency speed (

47.20

)

47.03

CONTROL MODE

STABLE LEV

Time

Selects whether the pumps are stopped simultaneously or individually.

When the start level of a pump (parameters

47.08

47.10

) is reached, the

master drive waits for the level delay (parameter

47.18

) to elapse, then stops

the pump.

1

Actual signals and parameters

146

Index Name/Selection Description

COMMON STOP All the pumps running will continue to run until the stop level (parameter

47.07

)

is reached. All pumps will then stop simultaneously.

47.04

LEVEL SOURCE SEL Selects the analogue input to which the level-indicating pressure sensor is connected. The level indicated by this sensor is visible as actual signal

05.23

.

NOT SEL

AI1

AI2

AI3

AI5

AI6

47.05

LOW LEVEL1

No level-indicating pressure sensor connected.

The level-indicating pressure sensor is connected to analogue input AI1.

The level-indicating pressure sensor is connected to analogue input AI2.

The level-indicating pressure sensor is connected to analogue input AI3.

3

4

1

2

5

6

FbEq

2

47.06

0.00 … 100.00 %

LOW LEVEL 2

NOT SEL

DI2_NO

The level-indicating pressure sensor is connected to analogue input AI5.

The level-indicating pressure sensor is connected to analogue input AI6.

Defines LOW LEVEL 1.

In emptying, if the measured level falls below LOW LEVEL 1, all pumps stop (if not stopped already).

In filling, if the measured level falls below LOW LEVEL 1, all pumps start running at the speed defined by parameter

47.21

.

See the diagrams at parameter 47.02

, and actual signal 05.21

.

LOW LEVEL 1.

Selects a digital input for detecting LOW LEVEL 2.

In emptying, receipt of the LOW LEVEL 2 signal causes all pumps to stop (if not stopped already), and the drive to generate a warning.

In filling, receipt of the LOW LEVEL 2 signal causes all pumps to run at the

speed defined by parameter 47.21

, and the drive to generate a warning.

See the diagrams at parameter 47.02

, and actual signal 05.21

.

No sensor connected.

1 = 1%

1

2

DI3_NO

DI5_NO

The LOW LEVEL 2 sensor is connected to digital input DI2. The sensor closes when the level is reached.

The LOW LEVEL 2 sensor is connected to digital input DI3. The sensor closes when the level is reached.

The LOW LEVEL 2 sensor is connected to digital input DI5. The sensor closes when the level is reached.

3

4

DI9_NO 5

47.07

47.08

DI2_NC

DI5_NC

DI9_NC

STOP LEVEL

0.00 … 100.00 %

START1 LEVEL

0.00 … 100.00 %

The LOW LEVEL 2 sensor is connected to digital input DI9. The sensor closes when the level is reached.

The LOW LEVEL 2 sensor is connected to digital input DI2. The sensor opens when the level is reached.

The LOW LEVEL 2 sensor is connected to digital input DI5. The sensor opens when the level is reached.

The LOW LEVEL 2 sensor is connected to digital input DI9. The sensor opens when the level is reached.

Defines the STOP LEVEL for the pump station. If parameter

47.03

is set to

STABLE LEV, pumps 3 and 2 are stopped when START3 LEVEL and START2

LEVEL are reached respectively; pump 1 will be stopped at STOP LEVEL. If parameter

47.03

is set to COMMON STOP, all pumps will continue to run until

the STOP LEVEL is reached. See the diagrams at parameter 47.02

.

STOP LEVEL.

Defines the start level for pump 1 (START1 LEVEL). See the diagrams at parameter

47.02

.

START1 LEVEL.

6

7

8

1 = 1%

1 = 1%

Actual signals and parameters

Index

47.09

47.10

47.11

47.12

Name/Selection

START2 LEVEL

0.00 … 100.00 %

START3 LEVEL

0.00 … 100.00 %

47.13

START6 LEVEL

47.14

47.15

0.00 … 100.00 %

START4 LEVEL

0.00 … 100.00 %

START5 LEVEL

0.00 … 100.00 %

START7 LEVEL

0.00 … 100.00 %

START8 LEVEL

0.00 … 100.00 %

47.16

HIGH LEVEL1

0.00 … 100.00 %

47.17

HIGH LEVEL 2

NOT SEL

DI2_NO

DI3_NO

DI5_NO

Description

Defines the start level for pump 2 (START2 LEVEL). This is also the stop level

for pump 2 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

START2 LEVEL.

Defines the start level for pump 3 (START3 LEVEL). This is also the stop level

for pump 3 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

FbEq

1 = 1%

START3 LEVEL.

Defines the start level for pump 4 (START4 LEVEL). This is also the stop level

for pump 4 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

START4 LEVEL.

1 = 1%

1 = 1%

Defines the start level for pump 5 (START5 LEVEL). This is also the stop level

for pump 5 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

START5 LEVEL.

Defines the start level for pump 6 (START6 LEVEL). This is also the stop level

for pump 6 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

1 = 1%

START6 LEVEL.

Defines the start level for pump 7 (START7 LEVEL). This is also the stop level

for pump 7 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

START7 LEVEL.

1 = 1%

1 = 1%

Defines the start level for pump 8 (START8 LEVEL). This is also the stop level

for pump 8 unless COMMON STOP is selected at parameter 47.03

. See

parameter

47.07

, and the diagrams at parameter

47.02

.

START8 LEVEL.

1 = 1%

Defines HIGH LEVEL 1.

In emptying, if the measured level exceeds HIGH LEVEL 1, all pumps start

running at the speed defined by parameter 47.21

.

In filling, if the measured level exceeds HIGH LEVEL 1, all pumps stop (if not stopped already).

See the diagrams at parameter 47.02

, and actual signal 05.21

.

HIGH LEVEL 1.

1 = 1%

Selects a digital input for detecting HIGH LEVEL 2.

In emptying, receipt of the HIGH LEVEL 2 signal causes all pumps to run at the

speed defined by parameter 47.21

, and the drive to generate a warning.

In filling, receipt of the HIGH LEVEL 2 signal causes all pumps to stop (if not stopped already), and the drive to generate a warning.

See the diagrams at parameter 47.02

, and actual signal 05.21

.

No sensor connected.

The HIGH LEVEL 2 sensor is connected to digital input DI2. The sensor closes when the level is reached.

The HIGH LEVEL 2 sensor is connected to digital input DI3. The sensor closes when the level is reached.

The HIGH LEVEL 2 sensor is connected to digital input DI5. The sensor closes when the level is reached.

1

2

3

4

147

Actual signals and parameters

148

Index

47.18

Name/Selection

DI9_NO

DI2_NC

LEVEL DELAY

Description

The HIGH LEVEL 2 sensor is connected to digital input DI9. The sensor closes when the level is reached.

The HIGH LEVEL 2 sensor is connected to digital input DI2. The sensor opens when the level is reached.

Sets a delay for the STOP, START1, START2 and START3 levels. Whenever one of these levels is reached, this delay must elapse before any action is taken.

6

FbEq

5

47.19

0.00 … 100.00 s

RANDOM COEF

Level delay.

Randomises the START1, START2 and START3 levels (parameters

47.08

to

47.10

) to avoid caking on the walls of the tank. For example, if this parameter

is set to 10.00%, the actual start level is randomised between (STARTx LEVEL parameter value) - 10% and (STARTx LEVEL parameter value) + 10%.

Random coefficient.

0.00 … 10.00 %

47.20

EFFICIENCY SPEED Sets the “efficiency speed”, i.e. the optimal operating point of the pumps. A pump is run at this speed when the measured level is between the STARTx

LEVEL and HIGH LEVEL 1 of the pump. See the diagrams at parameter

47.02

.

1 = 1 s

1 = 1%

1 = 1% 0.00 … 100.00 % Efficiency speed.

47.21

HIGH LEVEL SPEED Sets a fixed reference speed for the pumps. This speed is used when the measured level exceeds (emptying) or falls below (filling) the level set by parameter

47.16

. See the diagrams at parameter

47.02

.

0.0 … 100.0 %

51 COMM MOD DATA

52 STANDARD

MODBUS

Fixed reference.

The parameters are visible and need to be adjusted, only when a fieldbus adapter module (optional) is installed and activated by parameter 98.02

. For details on the parameters, refer to the manual of the fieldbus module and the chapter

Fieldbus control

.

These parameter settings will remain the same even though the macro is changed.

The settings for the Standard Modbus Link. See the chapter

Fieldbus control

.

1 = 1%

52.01

STATION NUMBER

1 … 247

52.02

BAUDRATE

600

1200

2400

4800

9600

19200

52.03

PARITY

NONE1STOPBIT

NONE2STOPBIT

ODD

EVEN

Defines the address of the device. Two units with the same address are not allowed on-line.

Address.

Defines the transfer rate of the link.

600 bit/s

1200 bit/s

2400 bit/s

4800 bit/s

9600 bit/s

19200 bit/s

Defines the use of parity and stop bit(s). The same setting must be used in all on-line stations.

No parity bit, one stop bit.

No parity bit, two stop bits.

Odd parity indication bit, one stopbit.

Even parity indication bit, one stopbit.

1 … 247

4

5

6

1

2

3

3

4

1

2

Actual signals and parameters

Index Name/Selection

60 MASTER-

FOLLOWER

Description

Settings for Multipump Control.

FbEq

60.01

PUMP NODE

1 … 125 Node address.

60.02

FOLLOWER MODE Selects the source of reference when the drive is a follower.

AUTO

Node number for the drive on the Multipump link.

Note: Each drive on the Multipump link must be given a unique node number.

Note: If the drive is not given a priority class, this address is used in determining the starting order of pumps.

1 … 8

Drives are started and stopped by the Multipump control logic in the master drive. The master receives its reference from the PI controller.

When flow demand increases, new pumps are started. The latest drive to start becomes the master; at the same time, the previously-started drive becomes a

follower and starts to follow the reference defined by parameter 60.03

.

1

Frequency

149

60.03

FOLLOWER

REF

Dr iv e

1

D riv e

2

D riv e

3

Flow demand

Drive 1

Master

Stopped

Drive 2

Stopped

Drive 3

Drive status

Follower

Master

See also the diagrams at parameter

60.03.

Follower

Master

Actual signals and parameters

150

Index Name/Selection

SYNC

Description

The drive follows the same start/stop commands and reference (from the PI controller) as the master.

With the SYNC setting, the drive does not become master when started.

In this example, drive 1 is master; drives 2 and 3 have parameter

60.02

set to

SYNC

.

FbEq

2

Frequency

REF SYNC

Driv e 1/2

/3

Flow demand

Drive 1

Master

Follower

Drive 2

Follower

Drive 3

Drive status

The drive follows the same reference (from the PI controller) as the master, but is started and stopped by the multipump logic. This is usually the most economical follower mode.

3

Frequency

Dr iv e

1

D ri ve

2

D ri ve

3

Flow demand

Drive 1

Master

Stopped

Drive 2

Stopped

Drive 3

Drive status

Follower

Master

Follower

Master

In case the master status switches from one drive to another and the reference changes drastically, the drive compares the most recent reference value with the previous reference. If the difference between the references is more than

10%, the follower will accelerate/decelerate towards the new reference along a ramp. The acceleration and deceleration ramps are defined by parameters

60.23

and 60.24

respectively. The ramp-up or ramp-down will end when the new reference is reached.

Actual signals and parameters

Index Name/Selection

60.03

FOLLOWER REF

Description

Only visible when the Multipump macro is selected (parameter 99.02

is set to

MULTIMASTER

).

This parameter defines the reference used when parameter 60.02

is set to

AUTO, and the drive is running as a follower.

The following diagram illustrates the starting of the drives in a typical multipump configuration as the reference (flow demand) first increases, then decreases. Follower start and stop delays (see parameters

41.26

and 41.27

) are ignored in this presentation.

FbEq

Reference

151

0 … 120 Hz

60.04

AUTOCHANGE

STYLE

Time

Drive 1

Freq.

Status (M = Master; F = Follower; S = Stopped)

M F

M

Start frequency 1 ( 41.12

)

Follower ref. ( 60.03

)

Time

Drive 2

Freq.

Status (M = Master; F = Follower; S = Stopped)

F (S) M F M F (S)

Start frequency 2 ( 41.13

)

Follower ref. ( 60.03

)

Low frequency 1 ( 41.19

)

Time

Drive 3

Freq.

Low frequency 2 (

41.20

)

Time

Status (M = Master; F = Follower; S = Stopped)

F (S) M F (S)

Reference setting. This should generally be set at the optimal operating point of the pump.

Selects whether the Autochange function is used.

0 … 120

Actual signals and parameters

152

Index

60.07

60.08

Name/Selection

NO

FIXED

HOURCOUNT

ALL STOP

60.05

AUTOCHANGE

INTERV

3 … 12285 min

NUM PUMPS

ALLOWED

0 … 8

MASTER ENABLE

Description

Autochange disabled. When several pumps are running, the master is the drive with the highest node number (

60.01

).

Autochange will occur at intervals set by parameter 60.05

.

Note: The timing is based on the time the drives are powered (but not necessarily running).

1

The pumping duty is distributed among the pumps according to parameters

60.09

to 60.11

.

Note: The timing is based on the time the pumps are actually running.

Autochange will occur when all drives are stopped.

Specifies the Autochange interval for Multipump Control when parameter 60.04

is set to FIXED. The time elapsed since the last Autochange is indicated by actual signal

01.42

.

2

3

FbEq

0

1 = 1 min Autochange interval.

Note: Use intervals divisible by 3, i.e. 3,6,9,12, etc.

Defines the maximum number of pumps that can be run simultaneously in a

Multipump application. This number does not include drives running in SYNC

follower mode (see parameter 60.02

).

Maximum number of pumps.

Selects whether the drive is allowed to be the master drive in the Multipump configuration.

0 … 8

60.10

YES

NO

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

NO

SET

RESET

PUMP RUNTIME

0 … 8988479 h

60.11

PUMP RUNTIME

DIFF

The drive is allowed to be the master in the Multipump configuration.

The drive is not allowed to be the master in the Multipump configuration.

When the digital input is ON, the drive is allowed to be the master in the

Multipump configuration.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

DI10

DI11

See selection DI1.

See selection DI1.

DI12 See selection DI1.

60.09

PUMP RUNTIME SEL Controls the pump runtime setting.

1

2

3

12

13

14

Parameter

60.10

is read-only.

Parameter

60.10

can be adjusted. The setting will automatically revert to NO afterwards.

0

1

Resets parameter

60.10

. The setting will automatically revert to NO afterwards. 2

Pump runtime counter. Can be manually adjusted provided that SET is selected at parameter

60.09

.

Runtime counter.

1 = 1 h

Maximum pump runtime difference between drives. The application program

will compare the values of parameter 60.10

in each drive on the Multipump link and attempt to keep the runtime difference below this value.

8

9

10

11

6

7

4

5

Actual signals and parameters

153

Index Name/Selection

0 … 8988479 h

60.12

PUMP CLASS SEL

60.14

60.17

60.19

PAR CLASS1

PAR CLASS2

DI1

DI2

DI3

DI4

DI5

DI6

DI7

DI8

DI9

DI10

DI11

DI12

60.13

PUMP CLASS1

1 … 4

PUMP CLASS2

1 … 4

MASTER LOSS

CONST SPEED

Description

Runtime difference between drives.

Selects the start priority for the drive. The drive can be given a fixed priority, or a digital input can be used to switch between two priorities. Please note that the Autochange feature will attempt to equalise the duty between pumps with the same priority – not between pumps with different priorities.

Start priority defined by parameter 60.13

.

Start priority defined by parameter 60.14

.

The digital input selects between two pre-set priorities defined by parameters

60.13

and 60.14

. OFF = Pump class 1 (parameter 60.13

), ON = Pump class 2

(parameter 60.14

).

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

See selection DI1.

Defines the priority for pump class 1.

Priority. 1 = highest priority = first to start.

Defines the priority for pump class 2.

Priority. 1 = highest priority = first to start.

In case the drive is a follower, cannot find a master on the Multipump link and is not itself allowed to be master, the drive will wait for the delay specified by parameter

60.19

, then proceed as defined by this parameter. A warning

The drive continues running and adopts the speed defined by parameter

12.04

.

FbEq

1 = 1 h

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

LAST SPEED

CNST SPEED

The drive continues to run at the last valid reference received from the master. 2

60.18

F T M COMM LOSS In case the drive is a follower on the Multipump link, and the master cannot receive messages from it, the drive will wait for the delay specified by parameter

60.19

, then proceed as defined by this parameter.

The drive starts (if not running already) and adopts the speed defined by parameter 12.04

.

1

LAST SPEED The drive continues to run according to the last valid reference received from the master.

2

SYNC SPEED

FOLL CTRL

COMM DELAY

0.0 … 3600.0 s

The drive starts (if not running already) and uses the speed reference received from the master.

The drive starts (if not running already) and follows the output of its own PI controller. Communication-wise, the drive remains a follower.

After the drive detects a master/follower communication break, it will wait until the delay specified by this parameter, then proceed as defined by parameter

60.17

or 60.18

(depending on the nature of the communication break).

Delay.

3

4

0 … 3600

Actual signals and parameters

154

Index

60.20

60.21

Name/Selection

ALL FOLL LOST

CONTINUE

RARE POLLING

MIN PUMP

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

60.22

INV ORDER CORR

Description

In case the drive is the master on a Multipump link, and does not receive messages from any of the followers, the drive will proceed as defined by this parameter.

No action taken.

FbEq

The drive switches to “rare polling”, i.e. starts to read and send messages at two-second intervals. The drive will revert to normal messaging after followers are detected. Note: Do not use this setting if the drives are connected in a ring; use “CONTINUE” instead.

Defines the minimum number of drives that can be run simultaneously in a

Multipump application. This number does not include drives running in SYNC

follower mode (see parameter 60.02

).

Note: If the value received from the pointer is less than 2, no minimum limitation exists.

Note: The drives that are kept running ignore the low (stop) frequencies

defined in parameter group 41 PFC-CONTROL 1 .

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

-

0

1

OPT CONTROL

FORCED STOP

Whenever the application requires more pumping volume, additional drives are started. The starting order is dependent on the priority the drive is assigned to

(parameters

60.12

to 60.14

). Whenever several drives have the same priority,

the one with the lowest node number ( 60.01

) is started first by default.

The Autochange function can be used to automatically rotate the starting order within each priority group. Drives running before the Autochange may continue to run so that the new starting order cannot be applied immediately; this parameter defines the method with which the drive order of priority is corrected.

Example:

One pump is running. If necessary, additional pumps are started in the following order:

ID: 1

Priority: 1

Running

+

ID: 2

Priority: 1

+

ID: 3

Priority: 2

+

ID: 4

Priority: 2

+

ID: 1

Priority: 1

Running

+ +

Flow demand

While there is constant flow demand (and a pump must be running), the

Autochange function is activated, rotating the starting order within each priority.

After Autochange, the order is as follows:

ID: 2

Priority: 1

ID: 4

Priority: 2

ID: 2

Priority: 2

Flow demand

The desired order is, however, this:

ID: 2

Priority: 1

Running

+

ID: 1

Priority: 1

+

ID: 4

Priority: 2

+

ID: 2

Priority: 2

Flow demand

The setting of this parameter defines how the desired order is achieved. See the available selections below.

Drive order of priority is corrected only when the number of drives needs to be increased or decreased by the master as required by the process.

Drive order of priority is corrected as soon as possible by stopping low-priority drives. Higher-priority drives are then started as required by the process.

0

1

Actual signals and parameters

Index Name/Selection Description

60.23

RAMP ACCEL TIME Defines the acceleration time in case the latest reference received by the drive is higher than the previous reference. This is likely to happen when the master status is passed on from one drive to another. The parameter sets the ramp-up time as seconds from zero to maximum frequency (not from previous reference to new reference). See parameter

60.02

.

The parameter is effective only in the SYNC and REF SYNC follower modes.

0.1 … 3600.00 s Acceleration time.

60.24

RAMP DECEL TIME Defines the deceleration time in case the latest reference received by the drive is lower than the previous reference. This is likely to happen when the master status is passed on from one drive to another. The parameter sets the rampdown time as seconds from maximum frequency to zero (not from previous reference to new reference). See parameter

60.02

.

The parameter is effective only in the SYNC and REF SYNC follower modes.

0.1 … 3600.00 s Deceleration time.

FbEq

1 = 1 s

1 = 1 s

60.25

MASTER LOCATION Defines whether the master status is passed on with each started drive.

STABLE The first drive started will remain the master as long as possible, i.e. until, for example, the drive is no longer allowed to be master (see parameter

60.08

), or the drive trips on a fault.

IN STARTED

65 SHARE IO

The last-started drive that is allowed to be master by parameter

60.08

is the

master.

Settings for shared analogue input signals.

0

1

65.01

SHARE IO ACTIVE

NO

YES

65.02

REPLACE IO

The analogue input (AI1 to AI3) signals connected to one drive can be read by the master and broadcast via the fibre optic link to all other drives. By default, the source is the drive with node address 1. If desired, the drive with node address 2 can be defined as a secondary source (parameter

65.03

), used

whenever communication with node 1 fails.

Setting this parameter to YES enables input signal sharing. The shared data will then be visible as actual signals

05.15

,

05.16

and 05.17

. Note that the shared signals will only override the physical inputs of the drive if allowed by parameter

65.02

.

Input signal sharing disabled.

Input signal sharing enabled.

Defines which physical inputs of the drive are overridden by shared input values broadcast by the master. The shared input data takes preference over the physical inputs whose bit is set to 1.

1

2 bit 2 Analogue input AI3 bit 1 Analogue input AI2 bit 0 Analogue input AI1

00000xxx

0000000 … 11111111 Selector for drive inputs to be overridden by shared input data.

65.03

SECONDARY

SOURCE

Enables/disables the use of another drive (node 2) as a source of digital and analogue input signals in case communication with node 1 is lost. Reading the

inputs from node 2 is started after the delay defined by parameter 65.05

has elapsed.

This parameter is only effective when the drive is master.

NO

NODE 2

No secondary source is used.

If the drive with node address 1 is not available, the drive with node address 2 is used as the source of the analogue and digital input signals.

0

1

155

Actual signals and parameters

156

Index Name/Selection

65.04

SHARE IO COM

LOST

CONTINUE

CONST SPEED

Description

Defines the action to be taken in case the shared input values are not received.

The parameter applies regardless of whether the drive is the master (and does not receive messages from node 1, or node 2 if it is selected as a secondary source) or a follower (and does not receive messages from the master). In

either case, the drive will wait for the delay specified by parameter 65.05

, then

proceed as defined by this parameter.

The drive will continue running based on the last valid data received.

The drive will continue running at the frequency defined by parameter 12.04

(constant frequency 3).

FAULT

The drive will trip and produce a fault ( SHARE IO COMM LOSS

).

65.05

IO COM LOST DELAY Delay for the communication loss function.

1.0 s … 3600.0 s

70 DDCS CONTROL

Delay.

Settings for the fibre optic channels 0, 1 and 3.

70.01

CH0 NODE ADDR

1 … 254

70.02

CH3 NODE ADDR

Defines the node address for channel 0. No two nodes on-line may have the same address. The setting needs to be changed when a master station is connected to channel 0 and it does not automatically change the address of the slave. Examples of such masters are an ABB Advant Controller or another drive.

Address.

Node address for channel 3. No two nodes on-line may have the same address. Typically the setting needs to be changed when the drive is connected in a ring which consists of several drives and a PC with the

DriveWindow

®

program running.

Address.

1 … 254

70.03

CH2 HW

CONNECTION

STAR

Defines the topology of the Multipump configuration.

The drives are connected in a star topology, i.e. through an NDBU-95 branching unit. Note: The NDBU-95 must have the REGEN communication mode enabled.

The drives are connected in a ring topology.

RING

83 ADAPT PROG CTRL

Control of the Adaptive Program execution. For more information, see the

Adaptive Program Application Guide (code: 3AFE 64527274 [English]).

83.01

ADAPT PROG CMD Selects the operation mode for the Adaptive Program.

STOP

START

EDIT

83.02

EDIT CMD

NO

Stop. The program cannot be edited.

Run. The program cannot be edited.

Stop to edit mode. The program can be edited.

Selects the command for the block placed in the location defined by parameter

83.03

. The program must be in editing mode (see parameter 83.01

).

Home value. The value automatically restores to NO after an editing command has been executed.

FbEq

1

2

3

1 = 1 s

1 … 125

1 … 254

1

65535

1

2

3

1

Actual signals and parameters

Index Name/Selection

PUSH

83.03

DELETE

PROTECT

UNPROTECT

EDIT BLOCK

0 … 15

83.04

TIMELEV SEL

12 ms

100 ms

1000 ms

83.05

PASSCODE

0 …

Description

Shifts the block in location defined by parameter 83.03 and the following blocks one location up. A new block can be placed in the emptied location by programming the Block Parameter Set as usual.

Example: A new block needs to be placed in between the current block number four (parameters 84.20 … 84.25) and five (parameters 84.25 … 84.29).

In order to do this:

- Switch the program to editing mode by parameter 83.01

.

- Select location number five as the desired location for the new block by parameter 83.03

.

- Shift the block in location number 5 and the following blocks one location forward by parameter 83.02

(selection PUSH).

- Program the emptied location number 5 by parameters 84.25 to 84.29 as usual.

Deletes the block in location defined by parameter 83.03

and shifts the following blocks one step down.

3

FbEq

2

Activation of the Adaptive Program protection. Activate as follows:

- Ensure the Adaptive Program operation mode is START or STOP (parameter

83.01

).

- Set the passcode (parameter 83.05

).

- Change parameter 83.02

to PROTECT.

When activated:

- All parameters in group 84 excluding the block output parameters are hidden

(read protected).

- It is not possible to switch the program to the editing mode (parameter 83.01

).

- Parameter 83.05 is set to 0.

Deactivation of the Adaptive Program protection. Deactivate as follows:

- Ensure the Adaptive Program operation mode is START or STOP (parameter

83.01

).

- Set the passcode (parameter 83.05

).

- Change parameter 83.02

to UNPROTECT.

Note: If the passcode is lost, it is possible to reset the protection also by changing the application macro setting (parameter 99.02

).

Defines the block location number for the command selected by parameter

83.02

.

Block location number.

4

5

1 = 1

Selects the execution cycle time for the Adaptive Program. The setting is valid for all blocks.

12 milliseconds

100 milliseconds

1000 milliseconds

Sets the passcode for the Adaptive Program protection. The passcode is needed at activation and deactivation of the protection. See parameter 83.02.

Passcode. The setting reverts to 0 after the protection is activated / deactivated. Note: When activating, write down the passcode and store it in a safe place .

1

2

3

157

Actual signals and parameters

84.02

FAULTED PAR

84.05

BLOCK1

OR

PI

PI-BAL

PI-NEG

RAMP

SR

SWITCH-B

SWITCH-I

TOFF

TON

TRIGG

ABS

ADD

AND

BWISE

COMPARE

COUNT

DPOT

EVENT

FILTER

MASK-SET

MAX

MIN

MULDIV

NO

158

Index Name/Selection

84 ADAPTIVE

PROGRAM

84.01

STATUS

Description

- selections of the function blocks and their input connections.

- diagnostics

For more information, see the Adaptive Program Application Guide (code:

3AFE 64527274 [English]).

Shows the value of the Adaptive Program status word. The table below shows the alternative bit states and the corresponding values on the panel display.

FbEq

Bit Display Meaning

0 1 Stopped

1 2

2 4

Running

Faulted

3 8

4 10

5 20

6 40

8 100

Editing

Checking

Pushing

Popping

Initialising

Points out the faulted parameter in the Adaptive Program.

Selects the function block for Block Parameter Set 1. See the Adaptive

Program Application Guide (code: 3AFE 64527274 [English]).

22

5

7

19

3

14

15

25

9

8

6

17

18

12

1

23

20

13

24

11

10

2

26

16

21

Actual signals and parameters

Index Name/Selection

XOR

84.06

INPUT1

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Description

Selects the source for input I1 of Block Parameter Set 1.

Parameter index or a constant value:

- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.

- Constant value: Inversion and constant fields. Inversion field must have value

C to enable the constant setting.

Example: The state of digital input DI2 is connected to Input 1 as follows:

- Set this parameter to +.01.17.01. (The application program stores the state of digital input DI2 to bit 1 of actual signal 01.17.)

- For an inverted value, reverse the sign of the pointer value (-01.17.01.).

-

FbEq

4

Selects the source for input I2 of Block Parameter Set 1.

See parameter 84.06

.

-

84.07

INPUT2

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

84.08

INPUT3

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

84.09

OUTPUT

84.10

BLOCK2

84.11

INPUT1

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

84.12

INPUT2

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

84.13

INPUT3

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

84.14

OUTPUT

Selects the source for input I3 of Block Parameter Set 1.

See parameter 84.06

.

Stores and displays the output of Block Parameter Set 1.

See parameter 84.05

.

Selects the source for input I1 of Block Parameter Set 2.

See parameter 84.06

.

Selects the source for input I2 of Block Parameter Set 2.

See parameter 84.06

.

Selects the source for input I3 of Block Parameter Set 2.

See parameter 84.06

.

Stores and displays the output of Block Parameter Set 2.

… …

84.79

OUTPUT Stores and displays the output of Block Parameter Set 15.

85 USER CONSTANTS

Storage of the Adaptive Program constants and messages. For more information, see the Adaptive Program Application Guide (code: 3AFE

64527274 [English]).

-

-

-

-

85.01

CONSTANT1 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.02

CONSTANT2 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.03

CONSTANT3 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.04

CONSTANT4 Sets a constant for the Adaptive Program.

159

Actual signals and parameters

160

Index Name/Selection Description

-8388608 to 8388607 Integer value.

85.05

CONSTANT5 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.06

CONSTANT6 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.07

CONSTANT7 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.08

CONSTANT8 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.09

CONSTANT9 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.10

CONSTANT10 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value.

85.11

STRING1

MESSAGE1

Stores a message to be used in the Adaptive Program (EVENT block).

Message. The value can be edited using the DriveWindow

®

tool.

85.12

STRING2

85.13

MESSAGE2

STRING3

MESSAGE3

85.14

STRING4

Stores a message to be used in the Adaptive Program (EVENT block).

Message. The value can be edited using the DriveWindow

®

tool.

Stores a message to be used in the Adaptive Program (EVENT block).

Message. The value can be edited using the DriveWindow

®

tool.

85.15

MESSAGE4

STRING5

MESSAGE5

Stores a message to be used in the Adaptive Program (EVENT block).

Message. The value can be edited using the DriveWindow

®

tool.

Stores a message to be used in the Adaptive Program (EVENT block).

Message. The value can be edited using the DriveWindow

®

tool.

90 D SET REC ADDR

90.01

AUX DS REF3

- Addresses into which the received fieldbus data sets are written.

- Numbers of the main and auxiliary data sets.

The parameters are visible only when a fieldbus communication is activated by parameter 98.02

. For more information, see the chapter

Fieldbus control .

Selects the address into which the value of fieldbus reference REF3 is written.

0 … 8999

90.02

AUX DS REF4

0 … 8999

90.03

AUX DS REF5

0 … 8999

90.04

MAIN DS SOURCE

1 … 255

90.05

AUX DS SOURCE

1 … 255

Parameter index.

Selects the address into which the value of fieldbus reference REF4 is written.

Parameter index.

Selects the address into which the value of fieldbus reference REF5 is written.

Parameter index.

Defines the data set from which the drive reads the Control Word, Reference

REF1 and Reference REF2.

Data set number.

Defines the data set from which the drive reads References REF3, REF4 and

REF5.

Data set number.

FbEq

0 … 8999

0 … 8999

0 … 8999

1 … 255

1 … 255

Actual signals and parameters

161

Index Name/Selection

92 D SET TR ADDR

92.01

MAIN DS STATUS

WORD

302 (fixed)

92.02

MAIN DS ACT1

0 … 9999

92.03

MAIN DS ACT2

0 … 9999

92.04

AUX DS ACT3

0 … 9999

92.05

AUX DS ACT4

0 … 9999

92.06

AUX DS ACT5

0 … 9999

Description

Main and Auxiliary Data Sets which the drive sends to the fieldbus master station.

The parameters are visible only when a fieldbus communication is activated by parameter 98.02

. For more information, see the chapter

Fieldbus control

.

Stores the address from which the Main Status Word is read from. Fixed value, not visible.

FbEq

302 Parameter index.

Selects the address from which the Actual Signal 1 is read to the Main Data

Set.

Parameter index.

Selects the address from which the Actual Signal 2 is read to the Main Data

Set.

Parameter index.

Selects the address from which the Actual Signal 3 is read to the Auxiliary Data

Set.

Parameter index.

Selects the address from which the Actual Signal 4 is read to the Auxiliary Data

Set.

Parameter index.

Selects the address from which the Actual Signal 5 is read to the Auxiliary Data

Set.

Parameter index.

0 … 9999

0 … 9999

0 … 9999

0 … 9999

0 … 9999

Actual signals and parameters

162

Index Name/Selection Description

95 HARDWARE SPECIFI

Miscellaneous hardware-related settings.

95.06

LCU Q POW REF Defines the reference value for the line-side converter reactive power generation. Line-side converter can generate reactive power to the supply network. This reference is written into line-side converter unit parameter 24.02

Q POWER REF2. For more information, see IGBT Supply Control Program 7.x

Firmware Manual [3AFE68315735 (English)].

Example 1: When parameter 24.03 Q POWER REF2 SEL is set to PERCENT, value 10000 of parameter 24.02 Q POWER REF2 equals to value 100% of parameter 24.01 Q POWER REF (i.e. 100% of the converter nominal power given in signal 04.06 CONV NOM POWER).

Example 2: When parameter 24.03 Q POWER REF2 SEL is set to kVAr, value

1000 of parameter 24.02 Q POWER REF2 equals to parameter 24.01 Q

POWER REF value calculated with the following equation: 100 · (1000 kVAr divided by converter nominal power in kVAr)%.

Example 3: When parameter 24.03 Q POWER REF2 SEL is set to PHI, value

3000 of parameter 24.02 POWER REF2 equals approximately to parameter

24.01 Q POWER REF value calculated with the following equation:

FbEq

-10000...10000

95.07

LCU DC REF

0...1100 V

95.08

LCU PAR1 SEL

0…9999

95.09

LCU PAR2 SEL

0…9999

96 ANALOGUE

OUTPUTS

96.01

EXT AO1 SEL

NOT USED

SPEED

S

cos =

S

= -------------------------

P

2

+

Q

2

30°

P

Positive reference 30° denotes capacitive load.

Negative reference 30° denotes inductive load.

P = signal 01.09 POWER value

Q

Parameter 24.03 values are converter to degrees by the line-side converter

-30°/30°, since the range is limited to -3000/3000.

Reference value.

Defines the intermediate circuit DC voltage reference for the line-side converter. This reference is written into line-side converter parameter 23.01 DC

VOLT REF. For more information, see IGBT Supply Control Program 7.x

Firmware Manual [3AFE68315735 (English)].

Voltage.

Selects the line-side converter address from which the actual signal 09.12

LCU

ACT SIGNAL 1 is read from.

Line-side converter parameter index. For more information, see IGBT Supply

Control Program 7.x Firmware Manual [3AFE68315735 (English)].

Selects the line-side converter address from which the actual signal 09.13

LCU

ACT SIGNAL 2 is read from.

Line-side converter parameter index. For more information, see IGBT Supply

Control Program 7.x Firmware Manual [3AFE68315735 (English)].

Output signal selection and processing for the analogue extension module

(optional).

Only visible when the module is installed and activated by parameter.

See also parameter group 15 ANALOGUE OUTPUTS

.

Selects the signal connected to analogue output AO1 of the analogue I/O extension module.

See parameter 15.01

.

See parameter 15.01

.

1 = 1

1 = 1 V

0…9999

0…9999

1

2

Actual signals and parameters

Index

96.02

Name/Selection

FREQUENCY

CURRENT

TORQUE

POWER

DC BUS VOLT

OUTPUT VOLT

REFERENCE

CONTROL DEV

ACTUAL 1

ACTUAL 2

PICON OUTP

PICON REF

ACTUAL FUNC

COMM MODULE

EXT AO1 PTR

INVERT EXT AO1

Description

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

Source selected by parameter 96.11

.

Activates the inversion of analogue output AO1 of the analogue I/O extension module.

NO

YES

Inactive

Active. The analogue signal is at a minimum level when the drive signal indicated is at its maximum and vice versa.

96.03

MINIMUM EXT AO1 Defines the minimum value for the analogue output AO1 of the analogue I/O extension module.

Note: Actually, the setting 10 mA or 12 mA does not set the AO1 minimum but fixes 10/12 mA to actual signal value zero.

Example: Motor speed is read through the analogue input.

– The motor nominal speed is 1000 rpm (parameter 99.08

).

– 96.02

is NO.

– 96.05

is 100%.

The analogue output value as a function of speed is shown below.

0

65535

13

14

15

16

17

9

10

11

12

7

8

5

6

FbEq

3

4

Analogue output

mA

20

4

3

2

12

10

1

4

2

1

Analogue output signal minimum

1

0 mA

2

3

4 mA

10 mA

4

12 mA

-1000 -500 0 500 1000

Speed/rpm

0 mA

4 mA

10 mA

12 mA

0 mA

4 mA

10 mA

12 mA

1

2

3

4

163

Actual signals and parameters

164

Index

96.04

96.05

Name/Selection

FILTER EXT AO1

0.00 … 10.00 s

SCALE EXT AO1

10 … 1000%

Description

Defines the filtering time constant for analogue output AO1 of the analogue I/O extension module. See parameter 15.04

.

Filtering time constant

Defines the scaling factor for analogue output AO1 of the analogue I/O extension module. See parameter 15.05

.

Scaling factor

FbEq

0 … 1000

100 …

10000

96.06

EXT AO2 SEL

NOT USED

SPEED

FREQUENCY

CURRENT

TORQUE

POWER

DC BUS VOLT

OUTPUT VOLT

REFERENCE

CONTROL DEV

ACTUAL 1

ACTUAL 2

PICON OUTP

PICON REF

ACTUAL FUNC

COMM MODULE

Selects the signal connected to analogue output AO2 of the analogue I/O extension module.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.01

.

See parameter 15.06

.

96.07

EXT AO2 PTR

INVERT EXT AO2

Source selected by parameter 96.12

.

Activates the inversion of analogue output AO2 of the analogue I/O extension module. The analogue signal is at its minimum level when the drive signal indicated is at its maximum and vice versa.

Inactive NO

YES Active

96.08

MINIMUM EXT AO2 Defines the minimum value for analogue output AO2 of the analogue I/O extension module. See parameter

96.03

.

0 mA

4 mA

10 mA

12 mA

96.09

FILTER EXT AO2

96.10

0.00 … 10.00 s

SCALE EXT AO2

10 … 1000%

0 mA

4 mA

10 mA

12 mA

Defines the filtering time constant for analogue output AO2 of the analogue I/O extension module. See parameter 15.04

.

Filtering time constant

Defines the scaling factor for analogue output AO2 of the analogue I/O extension module. See parameter 15.05

.

Scaling factor

0

65535

1

2

3

4

0 … 1000

100 …

10000

13

14

15

16

17

9

10

11

12

7

8

5

6

3

4

1

2

Actual signals and parameters

165

Index Name/Selection

96.11

EXT AO1 PTR

Description

Defines the source or constant for value

EXT AO1 PTR

of parameter

96.01

.

FbEq

-

1000 =

1 mA

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

96.12

EXT AO2 PTR

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

Defines the source or constant for value

EXT AO2 PTR

of parameter

96.06

.

-

1000 =

1 mA

-255.255.31 …

+255.255.31 /

C.-32768 … C.32767

Parameter index or a constant value. See Parameter 10.04

for information on the difference.

98 OPTION MODULES

Activation of the option modules.

The parameter settings will remain the same even though the application macro is changed (parameter 99.02

).

98.02

COMM. MODULE

LINK

Activates the external serial communication and selects the interface. See the chapter

Fieldbus control .

NO

FIELDBUS

ADVANT

1

2

3

STD MODBUS

CUSTOMISED

The drive communicates with a Modbus controller via the Modbus Adapter

Module (RMBA) in option slot 1 of the drive. See also parameter group

52

STANDARD MODBUS .

The drive communicates via a customer specified link. The control sources are defined by parameters 90.04

and 90.05

.

98.03

DI/O EXT MODULE 1 Activates the communication to the digital I/O extension module 1 (optional) and defines the type and connection interface of the module.

See parameters 14.04 and 14.05 for selecting the drive states that are indicated through the relay outputs.

NO

RDIO-SLOT1

Inactive

Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive.

4

5

1 or 2

3

RDIO-SLOT2

No communication

The drive communicates via CH0 on the RDCO board (optional). See also

parameter group 51 COMM MOD DATA .

The drive communicates with an ABB Advant OCS system via CH0 on the

RDCO board (optional). See also parameter group

70 DDCS CONTROL

.

RDIO-DDCS

Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic

DDCS link.

Note: Module node number must be set to 2. For directions, see User’s

Manual for RDIO Module (Code: 3AFE 64485733 [English]).

5

98.04 DI/O EXT MODULE 2 Activates the communication to the digital I/O extension module 2 (optional) and defines the type and connection interface of the module.

See parameters 14.06 and 14.07 for selecting the drive states that are indicated through the relay outputs.

NO Inactive

RDIO-SLOT1

RDIO-SLOT2

Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive.

Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

1 or 2

3

Actual signals and parameters

166

Index

98.06

Name/Selection

RDIO-DDCS

AI/O EXT MODULE

NO

RAIO-SLOT1

Description

Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic

DDCS link.

Note: Module node number must be set to 3. For directions, see User’s

Manual for RDIO Module (Code: 3AFE 64485733 [English]).

Activates the communication to the analogue I/O extension module (optional), and defines the type and connection interface of the module.

Module inputs:

Values AI5 and AI6 in the drive application program are connected to module inputs 1 and 2.

See parameters 98.08

and 98.09

for the signal type definitions.

Module outputs:

See parameters 96.01

and

96.06

for selecting the drive signals that are

indicated through module outputs 1 and 2.

Communication inactive.

Communication active. Module type: RAIO. Connection interface: Option slot 1 of the drive.

98.07

RAIO-SLOT2

RAIO-DDCS

COMM PROFILE

Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive.

Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic

DDCS link.

Note: Module node number must be set to 5. For directions, see User’s

Manual for RAIO Module (Code: 3AFE 64484567 [English]).

Defines the profile on which the communication with the fieldbus or another drive is based. Visible only when fieldbus communication is activated by parameter 98.02

.

ABB Drives communication profile. ABB DRIVES

CSA2.8/3.0

Communication profile used by application program versions 2.8 and 3.0.

98.08

AI/O EXT AI1 FUNC Defines the signal type for input 1 of the analogue I/O extension module (AI5 in the drive application program). The setting must match the signal connected to the module.

Note: The communication must be activated by parameter 98.06

.

UNIP AI5

BIPO AI5

Unipolar.

Bipolar.

98.09

AI/O EXT AI2 FUNC Defines the signal type for input 2 of the analogue I/O extension module (AI6 in the drive application program). The setting must match the signal connected to the module.

Note: The communication must be activated by parameter 98.06

.

UNIP AI6

BIPO AI6

99 START-UP DATA

Unipolar.

Bipolar.

Language selection. Definition of motor set-up data.

99.01

LANGUAGE

ENGLISH

ENGLISH AM

DEUTSCH

ITALIANO

Selects the display language.

Note: Not all listed languages are necessarily supported.

International English.

American English. If selected, the unit of power used is HP instead of kW.

German.

Italian.

0

1

2

3

FbEq

5

1 or 2

3

4

5

1

2

1

2

0

65535

Actual signals and parameters

Index Name/Selection

ESPANOL

PORTUGUES

NEDERLANDS

FRANCAIS

DANSK

SUOMI

Description

Spanish.

Portuguese.

Dutch.

French.

Danish.

Finnish.

99.02

99.03

SVENSKA

CESKY

POLSKI

PO-RUS

APPLICATION

MACRO

MULTIMASTER

PFC TRAD

HAND/AUTO

LEVEL CTRL

USER 1 LOAD

USER 1 SAVE

USER 2 LOAD

USER 2 SAVE

APPLIC RESTORE

Swedish.

Czech.

Polish.

Russian.

Selects the application macro. See the chapter

Application macros

for more information.

Note: When you change the default parameter values of a macro, the new settings become valid immediately and stay valid even if the power of the drive is switched off and on. However, backup of the default parameter settings

(factory settings) of each standard macro is still available. See parameter

99.03

.

10

11

12

13

Multipump control macro in use.

PFC TRAD macro in use.

Hand/Auto macro in use.

Level control macro in use.

User 1 macro loaded into use. Before loading, check that the saved parameter settings and the motor model are suitable for the application.

Save User 1 macro. Stores the current parameter settings and the motor model.

Note: There are parameters that are not included in the macros. See parameter 99.03

.

User 2 macro loaded into use. Before loading, check that the saved parameter settings and the motor model are suitable for the application.

Save User 2 macro. Stores the current parameter settings and the motor model.

Note: There are parameters that are not included in the macros. See parameter 99.03

.

Restores the original settings of the active application macro ( 99.02

).

- If a standard (i.e. other than a User) macro is active, the parameter values are restored to the default settings (factory settings). Exceptions: parameter settings in parameter group 99 remain unchanged. The motor model remains unchanged.

- If User Macro 1 or 2 is active, the parameter values are restored to the last saved values. In addition, the last saved motor model are restored. Exceptions:

Settings of parameters 16.05

and 99.02

remain unchanged.

Note: The parameter settings and the motor model are restored according to the same principles when a macro is changed to another.

6

7

8

3

4

1

2

5

NO

YES

No action.

Restore original settings.

99.04

MOTOR CTRL MODE Selects the motor control mode.

DTC Direct Torque Control. This mode is suitable for most applications.

0

65535

0

8

9

6

7

FbEq

4

5

167

Actual signals and parameters

168

Index

99.05

Name/Selection

SCALAR

MOTOR NOM

VOLTAGE

1/2 … 2 · U

N

Description

Scalar control. Use scalar control only in those special cases where DTC cannot be used. Scalar control mode is recommended

- for multimotor drives with variable number of motors

- when the nominal current of the motor is less than 1/6 of the nominal output current of the drive (inverter)

- the drive is used for test purposes with no motor connected.

Note: The outstanding motor control accuracy of the DTC cannot be achieved in scalar control. The differences between the scalar and DTC control modes are pointed out in this manual in relevant parameter lists. Some standard features are disabled in scalar control mode: Motor Identification Run (group

99 START-UP DATA

), Speed Limits (group

20 LIMITS ), Torque Limit (group 20

LIMITS

), DC Hold (group

21 START/STOP ), DC Magnetizing (group 21

START/STOP ), Speed Controller Tuning (group

23 SPEED CTRL ), Flux

Optimization (group 26 MOTOR CONTROL ), Flux Braking (group 26 MOTOR

CONTROL ), Underload Function (group

30 FAULT FUNCTIONS ), Motor

Phase Loss Protection (group 30 FAULT FUNCTIONS

), Motor Stall Protection

(group

30 FAULT FUNCTIONS ).

Defines the nominal motor voltage. Must be equal to the value on the motor rating plate.

Voltage. Allowed range is 1/2 … 2 · U

N

of the drive.

Note: The stress on the motor insulations is always dependent on the drive supply voltage. This also applies to the case where the motor voltage rating is lower than the rating of the drive and the supply of the drive.

99.06

MOTOR NOM

CURRENT

Defines the nominal motor current. Must be equal to the value on the motor rating plate.

Note: Correct motor run requires that the magnetizing current of the motor does not exceed 90 percent of the nominal current of the inverter.

0 … 2 · I

2hd

Allowed range: approx. 1/6

2 · I

2hd

of ACS800 (parameter 99.04

= DTC).

Allowed range: approx. 0 … 2 · I

2hd

of ACS800 (parameter 99.04

= SCALAR).

99.07

MOTOR NOM FREQ Defines the nominal motor frequency.

8 … 300 Hz Nominal frequency (50 or 60 Hz typically)

FbEq

65535

1 = 1 V

1 = 0.1 A

800 …

30000

99.08

MOTOR NOM SPEED Defines the nominal motor speed. Must be equal to the value on the motor rating plate. The motor synchronous speed or another approximate value must not be given instead!

Note: If the value of parameter 99.08

is changed, the speed limits in parameter group

20 LIMITS

change automatically as well.

1 … 18000 rpm

99.09

MOTOR NOM

POWER

Nominal motor speed

Defines the nominal motor power. Set exactly as on the motor rating plate.

0 … 9000 kW

99.10

MOTOR ID RUN

Nominal motor power

Selects the type of the motor identification. During the identification, the drive will identify the characteristics of the motor for optimum motor control. The ID

Run Procedure is described in the chapter

Start-up; and control through the

I/O

.

Note: The ID Run (STANDARD or REDUCED) should be selected if:

- The operation point is near zero speed, and/or

- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.

Note: The ID Run (STANDARD or REDUCED) cannot be performed if parameter 99.04

= SCALAR.

1 … 18000

0 … 90000

Actual signals and parameters

Index Name/Selection

NO

STANDARD

99.11

REDUCED

DEVICE NAME

Description

No ID Run. The motor model is calculated at first start by magnetising the motor for 20 to 60 s at zero speed. This can be selected in most applications.

Standard ID Run. Guarantees the best possible control accuracy. The ID Run takes about one minute.

Note: The motor must be de-coupled from the driven equipment.

Note: Check the direction of rotation of the motor before starting the ID Run.

During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50 … 80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO

RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

2

FbEq

1

Reduced ID Run. Should be selected instead of the Standard ID Run:

- if mechanical losses are higher than 20% (i.e. the motor cannot be decoupled from the driven equipment)

- if flux reduction is not allowed while the motor is running (i.e. in case of a motor with an integrated brake supplied from the motor teminals).

Note: Check the direction of rotation of the motor before starting the ID Run.

During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50 … 80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO

RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

Defines the name for the drive or application. The name is visible on the control panel display in the Drive Selection Mode. Note: The name can be edited only by using a drive PC tool (e.g. DriveWindow

®

).

3

169

Actual signals and parameters

170

Actual signals and parameters

171

Fault tracing

Chapter overview

The chapter lists all warning and fault messages including the possible cause and corrective actions.

Safety

WARNING! Only qualified electricians are allowed to maintain the drive. The Safety

Instructions on the first pages of the appropriate hardware manual must be read before you start working with the drive.

Warning and fault indications

A warning or fault message on the panel display indicates abnormal drive status.

Most warning and fault causes can be identified and corrected using this information.

If not, an ABB representative should be contacted.

If the drive is operated with the control panel detached, the red LED in the panel mounting platform indicates the fault condition. (Note: Some drive types are not fitted with the LEDs as standard.)

The four digit code number in brackets after the message is for the fieldbus communication (see the chapter

Fieldbus control

).

How to reset

The drive can be reset either by pressing the keypad RESET key, by digital input or fieldbus, or switching the supply voltage off for a while. When the fault has been removed, the motor can be restarted.

Fault history

When a fault is detected, it is stored in the Fault History. The latest faults and warnings are stored together with the time stamp at which the event was detected.

See the chapter

Control panel

for more information.

Fault tracing

172

Warning messages generated by the drive

WARNING

ACS 800 TEMP

(4210)

AI < MIN FUNC

(8110)

(programmable

Fault Function

30.01)

AUTOCHANGE

CAUSE

The drive temperature is excessive.

A warning is given if the inverter module temperature exceeds 115 °C.

An analogue control signal is below minimum allowed value. This can be caused by incorrect signal level or a failure in the control wiring.

WHAT TO DO

Check ambient conditions.

Check air flow and fan operation.

Check heatsink fins for dust pick-up.

Check motor power against unit power.

Check for proper analogue control signal levels.

Check the control wiring.

Check Fault Function parameters.

The autochange function is being performed.

Refer to the description of parameters 42.06 and 42.07.

Wait until download is completed.

BACKUP USED

CALIBRA REQ

CALIBRA DONE

CHOKE OTEMP

(ff82)

COMM MODULE

(7510)

(programmable

Fault Function)

EARTH FAULT

(2330)

(programmable

Fault Function

30.17)

F TO MS CM LOSS

(programmable

Fault Function

60.18)

ID DONE

A PC-stored backup of drive parameters is downloaded into use.

Calibration of output current transformers required. Displayed at start if drive is in scalar control (parameter

99.04

) and scalar flystart

feature is on (parameter

21.08

).

Calibration of output current transformers completed.

Excessive temperature of drive output filter.

Supervision is in use in step-up drives.

Cyclical communication between the drive and the master is lost.

The load on the incoming mains system is out of balance. This can be caused by a fault in the motor, motor cable, or an internal malfunction.

In a Multipump configuration, the master does not receive messages from a follower.

The drive has performed the motor identification magnetisation and is ready for operation. This warning belongs to the normal start-up procedure.

Calibration starts automatically. Wait for a while.

Continue normal operation.

Stop drive. Let it cool down. Check ambient temperature. Check filter fan rotates in correct direction and air flows freely.

Check the status of fieldbus communication.

See the chapter

Fieldbus control

, or

appropriate fieldbus adapter manual.

Check parameter settings:

- group 51 (for fieldbus adapter)

- group 52 (for Standard Modbus Link)

Check cable connections.

Check if the bus master is not configured, or does not send/receive messages.

Check motor.

Check motor cable.

Check there are no power factor correction capacitors or surge absorbers in the motor cable.

Check fibre optic cabling between the drives on the Multipump link. If the drives are connected in a ring, check that all drives are powered.

Continue drive operation.

Fault tracing

173

WARNING

ID MAGN

ID MAGN REQ

ID N CHANGED

CAUSE

Motor identification magnetisation is on. This warning belongs to the normal start-up procedure.

Motor identification is required. This warning belongs to the normal start-up procedure. The drive expects the user to select how the motor identification should be performed: By

Identification Magnetisation or by ID Run.

The ID number of the drive has been changed from 1.

ID RUN SEL

MOTOR TEMP

(4310)

(programmable

Fault Function

30.04 … 30.09)

Motor Identification Run is selected, and the drive is ready to start the ID Run. This warning belongs to the ID Run procedure.

Pressure at pump/fan inlet too low.

INLET LOW

INLET VERY LOW

(programmable

Fault Function

44.01 … 44.06)

MACRO CHANGE Macro is restoring or User macro is being saved.

MOTOR STALL

(7121)

(programmable

Fault Function

30.10)

The motor is operating in the stall region. This can be caused by excessive load or insufficient motor power.

MOTOR STARTS Motor Identification Run starts. This warning belongs to the ID Run procedure.

The motor temperature is excessive. This can be caused by excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

MS INV LOSS

(programmable

Fault Function

60.17)

OUTLET HIGH

OUTLET VERY

HIGH

(programmable

Fault Function

44.08 … 44.14)

The drive cannot detect a master on a

Multipump link, and is not itself allowed to become master.

Pressure at pump/fan outlet too high.

WHAT TO DO

Wait until the drive indicates that motor identification is completed.

Start the Identification Magnetisation by pressing the Start key, or select the ID Run and start (see parameter

99.10

).

Change the ID number back to 1. See the

chapter

Control panel.

Press Start key to start the Identification Run.

Check for a closed valve on the inlet side of the pump/fan.

Check piping for leaks.

Wait until the drive has finished the task.

Check motor load and the ratings of the drive.

Check Fault Function parameters.

Wait until the drive indicates that motor identification is completed.

Check motor ratings, load and cooling.

Check start-up data.

Check Fault Function parameters.

Check fibre optic cabling between the drives on the Multipump link.

Check that a sufficient number of drives are allowed to become master on the link.

Check piping for blocks.

Fault tracing

174

WARNING

PANEL LOSS

(5300)

(programmable

Fault Function

30.02)

REPLACE FAN

RUN DISABLE

SLEEP MODE

START

INTERLOCK

SYNCRO SPEED

THERMISTOR

(4311)

(programmable

Fault Function

30.04 … 30.05)

T MEAS ALM

UNDERLOAD

(ff6a)

(programmable

Fault Function

30.13)

CAUSE

A control panel selected as the active control location for the drive has ceased communicating.

Running time of the inverter cooling fan has exceeded its estimated lifespan.

No Run enable signal received.

WHAT TO DO

Check the panel connection (see the hardware manual).

Check control panel connector.

Replace control panel in the mounting platform.

Check Fault Function parameters.

Change the fan. Reset fan run time counter

01.44

.

Check the setting of parameter

16.01

. Switch on the signal or check the wiring of the selected source.

Refer to the description of parameter group 43.

The sleep function has entered the sleeping mode.

No Start Interlock signal received.

The value of the motor nominal speed set to parameter 99.08 is not correct: The value is too near the synchronous speed of the motor.

Tolerance is 0.1%.

The motor temperature is excessive. Motor thermal protection mode selection is

THERMISTOR.

Check the circuit connected to the Start

Interlock input on the RMIO board.

Check nominal speed from motor rating plate and set parameter 99.08 exactly accordingly.

Check motor ratings and load.

Check start-up data.

Check thermistor connections to digital input

DI6.

Motor temperature measurement is out of the acceptable range.

Motor load is too low. This can be caused by a release mechanism in the driven equipment.

Check connections of the motor temperature measurement circuit.

Check for a problem in the driven equipment.

Check Fault Function parameters.

Fault tracing

175

Warning messages generated by the control panel

WARNING

DOWNLOADING

FAILED

CAUSE

Download function of the panel has failed. No data has been copied from panel to drive.

WHAT TO DO

Make sure the panel is in local mode.

Retry (there might be interference on the link).

Contact ABB representative.

Check program versions (see parameter group

33 INFORMATION ).

DRIVE

INCOMPATIBLE

DOWNLOADING

NOT POSSIBLE

DRIVE IS

RUNNING

DOWNLOADING

NOT POSSIBLE

NO

COMMUNICATION

(X)

Program versions in the panel and drive do not match. It is not possible to copy data from panel to the drive.

Downloading is not possible while the motor is running.

Cabling problem or a hardware malfunction on the Panel Link.

Stop motor. Perform downloading.

(4) = Panel type not compatible with version of the drive application program.

The Panel Link already includes 31 stations.

Check Panel Link connections.

Press RESET key. The panel reset may take up to half a minute, please wait.

Check panel type and version of the drive application program. The panel type is printed on the cover of the panel. The application program version is stored in parameter

33.02

.

Disconnect another station from the link to free an ID number.

NO FREE ID

NUMBERS ID

NUMBER

SETTING NOT

POSSIBLE

NOT UPLOADED

DOWNLOADING

NOT POSSIBLE

UPLOADING

FAILED

No upload function has been performed.

Perform the upload function before

downloading. See the chapter

Control panel

.

Retry (there might be interference on the link).

Contact ABB representative.

WRITE ACCESS

DENIED

PARAMETER

SETTING NOT

POSSIBLE

Upload function of the panel has failed. No data has been copied from the drive to the panel.

Certain parameters do not allow changes while motor is running. If tried, no change is accepted, and a warning is displayed.

Parameter lock is on.

Stop motor, then change parameter value.

Open the parameter lock (see parameter

16.02

).

Fault tracing

176

Fault messages generated by the drive

FAULT

ACS 800 TEMP

(4210)

CAUSE

Excessive internal temperature. Trip level of inverter module temperature is 125 °C.

AI < MIN FUNC

(8110)

(programmable

Fault Function

30.01)

BACKUP ERROR

Analogue control signal is below minimum allowed value due to incorrect signal level or failure in the control wiring.

CTRL B TEMP

(4110)

BR BROKEN

(7111)

Failure when restoring PC-stored backup of drive parameters.

Control board temperature is lower than

-5 … 0 °C or exceeds +73 … 82 °C.

Brake resistor is not connected or it is damaged.

The resistance rating of the brake resistor is too high.

BC SHORT CIR

(7113)

Short circuit in brake chopper IGBT(s).

BR WIRING (7111) Wrong connection of brake resistor.

COMM MODULE

(7510)

(programmable

Fault Function)

CURR MEAS

(2211)

DC HIGH RUSH

(FF80)

WHAT TO DO

Check ambient conditions.

Check air flow and fan operation.

Check heatsink fins for dust pick-up.

Check motor power against unit power.

Check for proper analogue control signal levels.

Check control wiring.

Check Fault Function parameters.

Retry. Check connections. Check that parameters are compatible with drive.

Check air flow and fan operation.

Check the resistor and the resistor connection.

Check that the resistance rating meets the specification.

Cyclical communication with drive and master station is lost.

Current transformer failure in output current measurement circuit.

Drive supply voltage is excessive. When supply voltage is over 124% of the voltage rating of the unit (415, 500 or 690 V), motor speed rushes to trip level (40% of the nominal speed).

Replace brake chopper. Ensure brake resistor is connected and not damaged.

Check resistor connection. Ensure brake resistor is not damaged.

Check status of fieldbus communication. See the chapter

Fieldbus control

, or appropriate fieldbus adapter manual.

Check parameter settings:

- group 51 (for fieldbus adapter), or

- group 52 (for Standard Modbus Link)

Check cable connections.

Check if master can communicate.

Check current transformer connections to Main

Circuit Interface Board, INT.

Check supply voltage level, rated voltage of the drive and allowed voltage range of the drive.

Fault tracing

177

FAULT

DC OVERVOLT

(3210)

DC UNDERVOLT

(3220)

EARTH FAULT

(2330)

(programmable

Fault Function

30.17

EXTERNAL FLT

(9000)

(programmable

Fault Function

30.03)

FAN OVERTEMP

(ff83)

CAUSE

Excessive intermediate circuit DC voltage. DC overvoltage trip limit is 1.3 · U

U

1max

For is the maximum

500 V units, U

1max

1max, where value of the mains voltage range. For 400 V units, U

1max is 415 V. is 500 V. Actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 728 VDC for 400 V units and 877 VDC for 500 V units.

Intermediate circuit DC voltage is not sufficient due to missing mains phase, a blown fuse or a rectifier bridge internal fault.

WHAT TO DO

Check that the overvoltage controller is on

(Parameter 20.05).

Check mains for static or transient overvoltage.

Check brake chopper and resistor (if used).

Check deceleration time.

Use coast-to-stop function (if applicable).

Retrofit the frequency converter with a brake chopper and a brake resistor.

Check mains supply and fuses.

DC undervoltage trip limit is 0.65 · U

1min, is the minimum value of the mains where

U

1min voltage range. For 400 V and 500 V units,

U

1min is 380 V. Actual voltage in the intermediate circuit corresponding to the mains voltage trip level is 334 VDC

Load on the incoming mains system is out of balance due to fault in the motor, motor cable or an internal malfunction.

Fault in one of the external devices.

(This information is configured through one of the programmable digital inputs.)

Check motor.

Check motor cable.

Check there are no power factor correction capacitors or surge absorbers in the motor cable.

Check external devices for faults.

Check parameter 30.03 EXTERNAL FAULT.

ID RUN FAIL

IN CHOKE TEMP

(ff81)

INLET LOW

INLET VERY LOW

(programmable

Fault Function

44.01 … 44.06)

Excessive temperature of drive output filter fan.

Supervision is in use in step-up drives.

Motor ID Run is not completed successfully.

Excessive input choke temperature.

Pressure at pump/fan inlet too low.

Stop drive. Let it cool down. Check ambient temperature. Check fan rotates in correct direction and air flows freely.

Check maximum speed (Parameter 20.02). It should be at least 80% of the nominal speed of the motor (Parameter 99.08).

Stop drive. Let it cool down. Check ambient temperature. Check that fan rotates in correct direction and air flows freely.

Check for a closed valve on the inlet side of the pump/fan.

Check piping for leaks.

Fault tracing

178

FAULT

I/O COMM ERR

(7000)

LINE CONV (ff51)

MOTOR PHASE

(ff56)

(programmable

Fault Function

30.16)

MOTOR TEMP

(4310)

(programmable

Fault Function

30.04 … 30.09)

MOTOR STALL

(7121)

(programmable

Fault Function

30.10 … 30.12)

MS INV LOSS

(programmable

Fault Function

60.17)

CAUSE

Communication error on the control board, channel CH1.

Electromagnetic interference.

Fault on the line side converter.

One of the motor phases is lost due to fault in the motor, motor cable, thermal relay (if used) or internal fault.

WHAT TO DO

Check connections of fibre optic cables on channel CH1.

Check all I/O modules (if present) connected to channel CH1.

Check for proper earthing of the equipment.

Check for highly emissive components nearby.

Shift panel from motor-side converter control board to line-side converter control board.

See line side converter manual for fault description.

Check motor and motor cable.

Check thermal relay (if used).

Check Fault Function parameters. Disable this protection.

Motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Motor is operating in the stall region due to e.g. excessive load or insufficient motor power.

Check motor ratings and load.

Check start-up data.

Check Fault Function parameters.

Check motor load and the drive ratings.

Check Fault Function parameters.

NO MOT DATA

(ff52)

OUTLET HIGH

OUTLET VERY

HIGH

(programmable

Fault Function

44.08 … 44.14)

OVERCURRENT

(2310)

The drive cannot detect a master on a

Multipump link, and is not itself allowed to become master.

Motor data is not given or motor data does not match with inverter data.

Pressure at pump/fan outlet too high.

Output current is excessive. Overcurrent trip limit is 1.65 … 3.5 · I type.

max

depending on drive

Check fibre optic cabling between the drives on the Multipump link. If the drives are connected in a ring, check that all drives are powered.

Check that a sufficient number of drives are allowed to become master on the link.

Check motor data given by parameters

99.04 … 99.09.

Check piping for blocks.

Check motor load.

Check acceleration time.

Check motor and motor cable (including phasing).

Check there are no power factor correction capacitors or surge absorbers in the motor cable.

Check encoder cable (including phasing).

Fault tracing

179

FAULT CAUSE

OVERFREQ (7123) Motor is turning faster than the highest allowed speed due to incorrectly set minimum/ maximum speed, insufficient braking torque or changes in the load when using torque reference.

PANEL LOSS

(5300)

(programmable

Fault Function

30.02)

Trip level is 40 Hz over the operating range absolute maximum speed limit (Direct Torque

Control mode active) or frequency limit (Scalar

Control active). The operating range limits are set by parameters 20.01 and 20.02 (DTC mode active) or 20.07 and 20.08 (Scalar

Control active).

A control panel or DriveWindow

®

selected as active control location for the drive has ceased communicating.

PPCC LINK (5210)

RUN DISABLE

SC (INU 1)

SC (INU 2)

SC (INU 3)

SC (INU 4)

SHARE IO COMM

LOSS

SHORT CIRC

(2340)

SLOT OVERLAP

START INHIBIT

(ff7a)

Fibre optic link to the INT board is faulty.

No Run enable signal received.

Short circuit in inverter unit of several parallel inverter modules. The number refers to the faulty inverter module number.

INT board fibre optic connection fault in inverter unit consisting of several parallel inverter modules. The number refers to the inverter module number.

Analogue input data sharing is enabled but no data can be received.

Short-circuit in the motor cable(s) or motor.

Output bridge of the converter unit is faulty.

Two option modules have the same connection interface selection.

Optional start inhibit hardware logic is activated.

WHAT TO DO

Check minimum/maximum speed settings.

Check adequacy of motor braking torque.

Check applicability of torque control.

Check need for a brake chopper and resistor(s).

Check panel connection (see appropriate hardware manual).

Check control panel connector.

Replace control panel in the mounting platform.

Check Fault Function parameters.

Check DrivesWindow connection.

Check fibre optic cables.

Check the setting of parameter

16.01

. Switch on the signal or check the wiring of the selected source.

Check motor and motor cable.

Check power semiconductors (IGBT power plates) of inverter module. (INU 1 stands for inverter module 1 etc.).

Check connection from inverter module Main

Circuit Interface Board, INT to PPCC

Branching Unit, PBU. (Inverter module 1 is connected to PBU CH1 etc.)

Check the fibre optic cabling between the drives.

Check the analogue input signal wiring.

Check motor and motor cable.

Check there are no power factor correction capacitors or surge absorbers in the motor cable.

Consult ABB representative.

Check connection interface selections in group

98 OPTION MODULES

.

Check start inhibit circuit (GPS board).

Fault tracing

180

FAULT

START SEL

WRONG

SUPPLY PHASE

(3130)

THERMISTOR

(4311)

(programmable

Fault Function

30.04 … 30.05)

UNDERLOAD

(ff6a)

(programmable

Fault Function

30.13 … 30.15)

USER MACRO

THERMAL MODE

CAUSE

A pulse-type start/stop command is selected for external control location 2 (EXT2) when either the Multipump or Level control macro is active.

Intermediate circuit DC voltage is oscillating due to a missing supply phase, a blown fuse or a rectifier bridge internal fault.

A trip occurs when the DC voltage ripple is 13 percent of the DC voltage.

Excessive motor temperature (detected by the motor thermal protection function, which has selection THERMISTOR active) .

WHAT TO DO

Select a non-pulse start/stop source at parameter

10.02

EXT 2 STRT/STP/DI .

Check mains fuses.

Check for mains supply imbalance.

Check motor ratings and load.

Check start-up data.

Check thermistor connections.

Check thermistor cabling.

Motor load is too low due to e.g. release mechanism in the driven equipment.

No User Macro saved or the file is defective.

Motor thermal protection mode is set to DTC for a high-power motor.

Check for a problem in the driven equipment.

Check Fault Function parameters.

Create User Macro.

See parameter 30.05

.

Fault tracing

Pump control application examples

Overview

This chapter contains the following pump control application examples:

• 2-pump station with 1 drive

• Multipump configuration with 2 (or more) drives

• Level control configuration with 2 (or more) drives

• Pump station remote-controlled through the Internet.

181

Pump control application examples

182

2-pump station with 1 drive

The pumps are used for pressure boosting. Pump alternation and sleep function are used. The application also includes the following additional features:

• Manual control switches for selection between conventional PFC control and direct-on-line connection of the motors (S1, S2). The switches are of the threeposition type:

A = PFC control in use.

0 = Motor is off.

H = PFC control is by-passed and motor is connected direct-on-line.

• Drive start inhibit switch (S3).

Mains Supply

400 V/50 Hz

Alternation

Switchgear

Cabinet

M1

M1, M2:

7.5 kW

1450 rpm

14.8 A

M2

Outlet Pressure

Transducer

Inlet Pressure

Transducer

Pump control application examples

Sheet 1 of 3

183

Pump control application examples

184

Sheet 2 of 3

Pump control application examples

Sheet 3 of 3 (Pressure sensor connection examples)

P

I

+

0/4…20 mA

X21 / RMIO Board

5

6

AI2+

AI2-

Actual value measurement. 4…20 mA.

R

in

= 100 ohm

Note: The sensor must be powered externally.

P

I

OUT

+

0/4…20 mA

X21 / RMIO Board

5

6

AI2+

AI2-

Actual value measurement. 4…20 mA.

R

in

= 100 ohm

X23 / RMIO Board

1

2

+24V

GND

Auxiliary voltage output, non-isolated.

24 VDC, 250 mA

P

I

+

4…20 mA

X21 / RMIO Board

5

6

AI2+

AI2-

Actual value measurement. 4…20 mA.

R

in

= 100 ohm

X23 / RMIO Board

1

2

+24V

GND

Auxiliary voltage output, non-isolated.

24 VDC, 250 mA

P

I

+

4…20 mA

Power supply

+24V

Drive 1 / X21 / RMIO Board

5

6

AI2+

AI2-

Actual value measurement. 4…20 mA.

R

in

= 100 ohm

Drive 2 / X21 / RMIO Board

5

6

AI2+

AI2-

Actual value measurement. 4…20 mA.

R

in

= 100 ohm

Drive 3 / X21 / RMIO Board

5

6

AI2+

AI2-

Actual value measurement. 4…20 mA.

R

in

= 100 ohm

185

Pump control application examples

186

Multipump configuration with 2 (or more) drives

Wiring diagram

Pump control application examples

Optical fibre connections

Ring

P a r . 6 0 . 0 1 P U M P N O D E : 1

P a r . 6 0 . 0 1 P U M P N O D E : 2

P a r . 7 0 . 0 3 C H 2 H W C O N N . : R I N G

P a r . 7 0 . 0 3 C H 2 H W C O N N . : R I N G

A C S 8 0 0 A C S 8 0 0

C o n t r o l C a r d R M I O - X X C o n t r o l C a r d R M I O - X X

C H 2

R D C O - 0 3

C H 2

R D C O - 0 3

P a r . 6 0 . 0 1 P U M P N O D E : 3

P a r . 7 0 . 0 3 C H 2 H W C O N N . : R I N G

A C S 8 0 0

C o n t r o l C a r d R M I O - X X

C H 2

R D C O - 0 3

187

Star

P a r . 6 0 . 0 1 P U M P N O D E : 1

P a r . 6 0 . 0 1 P U M P N O D E : 2 P a r . 6 0 . 0 1 P U M P N O D E : 3

P a r . 7 0 . 0 3 C H 2 H W C O N N . : S T A R

P a r . 7 0 . 0 3 C H 2 H W C O N N . : S T A R P a r . 7 0 . 0 3 C H 2 H W C O N N . : S T A R

A C S 8 0 0 A C S 8 0 0 A C S 8 0 0

C o n t r o l C a r d R M I O - X X C o n t r o l C a r d R M I O - X X C o n t r o l C a r d R M I O - X X

C H 2

R D C O - 0 3

C H 2

R D C O - 0 3

C H 2

R D C O - 0 3

M A S T E R C H 0 C H 1 C H 2

X 1 3

3 4

R E G E N

C H 3 C H 4 C H 5

N D B U - 9 5

C H 6 C H 7 C H 8

X 1

E x t e r n a l

Pump control application examples

188

Level control configuration with 2 drives

Wiring diagram

Pump control application examples

189

Pump station remote-controlled through the Internet

Pump stations are often located in remote sites and far from supervisory sites. The

PSA-01 Server is a device that can be used to control remote stations through the

Internet in order to cut maintenance costs. The PSA-01 maintains a database of data and alarms it receives from the monitored stations, and informs service personnel through SMS (Short Message Service) in case something goes wrong with any of the stations.

The PSA-01 has built-in web pages that enable easy system configuration and access to the database. These features can also be used by the local or global ABB support if necessary.

The picture below presents the system architecture. The system components are as follows:

PSA-01 Server

• Web interface for configuring the system and browsing the database

• GSM module for sending SMS messages to service personnel (SIM card required)

• Email system for sending and receiving email messages

• Provision to export database information

• Access to the NETA-01 Ethernet Adapter Module

• Username and password protection for each pump station

NETA-01 Intelligent Ethernet Adapter

• Built-in web pages for parameter adjustment, monitoring, and diagnosing of the drive over the Internet

• Email client for sending predefined emails to the PSA-01 Server

• Modbus TCP interface for control

• Can be used with LAN, WLAN, analogue modem, xDSL and GPRS

Supervisory site

• Standard PC with an Internet browser needed to access the PSA-01 Server and the Java Virtual Machine (free plugin) to use the NETA-01

• Mobile phones for service personnel

• PSA-01 Server that can receive emails from multiple stations

Optional ABB remote support

• Standard PC that can be used to access the PSA-01 Server database, and drive settings via the NETA-01 Ethernet Adapter

Pump control application examples

190

Alternatively, Modbus TCP master software or hardware can be used to monitor remote stations. The Modbus TCP master can use the OPC interface for client application to ease integration. This option is also shown in the picture below.

Pump control application examples

191

Fieldbus control

Chapter overview

The chapter describes how the drive can be controlled by external devices over a communication network.

System overview

The drive can be connected to an external control system – usually a fieldbus controller – via an adapter module connected to fibre optic cable CH0 on the RDCO communication module (optional). For connection to an Advant Fieldbus 100 system, an external AF 100 interface is used.

Fieldbus

Controller

Fieldbus

ACS800

Other devices

RMBA-0x Adapter

Std. Modbus Link

Slot 1 or 2

RDCO Comm.

Module

CH0

(DDCS)

Fieldbus Adapter

Nxxx or

AF 100 Interface

(eg. AC 80)

Data Flow

Control Word (CW)

References (REF1…REF5)

Status Word (SW)

Actual Values (ACT1…ACT5)

Parameter R/W Requests/Responses

Figure 1 Fieldbus control.

Process I/O (Cyclic)

Service Messages (Acyclic)

Fieldbus control

192

The drive can be set to receive all of its control information through the fieldbus interface, or the control can be distributed between the fieldbus interface and other available sources, e.g. digital and analogue inputs.

Setting up communication through a fieldbus adapter module

Before configuring the drive for fieldbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the

Hardware Manual of the drive, and the module manual.

The communication between the drive and the fieldbus adapter module is then activated by setting parameter

98.02

. After the communication is initialised, the configuration parameters of the module become available in the drive at parameter group 51.

Table 1 Communication set-up parameters for fieldbus adapter connection.

Parameter Alternative settings

Setting for fieldbus control

Function/Information

COMMUNICATION INITIALISATION

98.02 COMM.

MODULE LINK

98.07 COMM

PROFILE

NO; FIELDBUS;

ADVANT; STD

MODBUS;

CUSTOMISED

ABB DRIVES;

CSA 2.8/3.0

FIELDBUS

ABB DRIVES

Initialises communication between drive and fieldbus adapter module. Activates module set-up parameters (Group 51).

Selects the communication profile used by the drive. See section Communication

Profiles below.

ADAPTER MODULE CONFIGURATION

51.01 MODULE TYPE

51.02 (FIELDBUS

PARAMETER 2)

• • •

– – Displays the type of the fieldbus adapter module.

These parameters are adapter module-specific. For more information, see the module manual.

Note that not all of these parameters are necessarily visible.

51.26 (FIELDBUS

PARAMETER 26)

51.27 FBA PAR

REFRESH*

(0) DONE;

(1) REFRESH

51.28 FILE CPI FW

REV* xyz (binary coded decimal

Validates any changed adapter module configuration parameter settings. After refreshing, the value reverts automatically to DONE.

Displays the required CPI firmware revision of the fieldbus adapter as defined in the configuration file stored in the memory of the drive. The CPI firmware version of the fieldbus adapter (refer to par. 51.32) must contain the same or a later CPI version to be compatible. x = major revision number;

y = minor revision number; z = correction number. Example: 107 = revision 1.07.

Fieldbus control

193

Parameter

51.29 FILE CONFIG

ID*

51.30 FILE CONFIG

REV*

51.31 FBA STATUS

51.32 FBA CPI FW

REV

Alternative settings

xyz (binary coded decimal) xyz (binary coded decimal)

(0) IDLE;

(1) EXEC. INIT;

(2) TIME OUT;

(3) CONFIG

ERROR;

(4) OFF-LINE;

(5) ON-LINE;

(6) RESET

Setting for fieldbus control

Function/Information

Displays the fieldbus adapter module configuration file identification stored in the memory of the drive. This information is drive application program-dependent.

Displays the fieldbus adapter module configuration file revision stored in the memory of the drive. x = major revision number; y = minor revision number;

z = correction number. Example: 1 = revision 0.01.

Displays the status of the adapter module.

IDLE = Adapter not configured.

EXEC. INIT = Adapter initialising.

TIME OUT = A timeout has occurred in the communication between the adapter and the drive.

CONFIG ERROR = Adapter configuration error. The major or minor revision code of the CPI firmware revision stored in the adapter differs from that stated in the configuration file in the memory of the drive.

OFF-LINE = Adapter is off-line.

ON-LINE = Adapter is on-line.

RESET = Adapter performing a hardware reset.

Displays the CPI program revision of the module inserted in slot 1. x = major revision number; y = minor revision number;

z = correction number. Example: 107 = revision 1.07.

51.33 FBA APPL FW

REV

– – Displays the application program revision of the module inserted in slot 1. x = major revision number; y = minor revision number; z = correction number. Example:

107 = revision 1.07.

*Parameters 51.27 to 51.33 are only visible with a type Rxxx fieldbus adapter installed.

After the parameters in group 51 have been set, the drive control parameters (shown

in Table 4 ) must be checked and adjusted where necessary.

The new settings will take effect when the drive is next powered up.

Fieldbus control

194

Parameter

Control through the Standard Modbus Link

An RMBA-01 Modbus Adapter installed in slot 1 or 2 of the drive forms an interface called the Standard Modbus Link. The Standard Modbus Link can be used for external control of the drive by a Modbus controller (RTU protocol only).

It is possible to switch the control between the Standard Modbus Link and another fieldbus adapter, in which case the RMBA-01 is installed in slot 2, the fieldbus adapter in slot 1.

Communication set-up

The communication through the Standard Modbus Link is initialised by setting parameter

98.02

to STD MODBUS. Then, the communication parameters in group

52 must be adjusted. See the table below.

Table 2 Communication set-up parameters for the Standard Modbus Link.

Alternative

Settings

Setting for Control through the Standard

Modbus Link

Function/Information

COMMUNICATION INITIALISATION

98.02 COMM.

MODULE LINK

NO; FIELDBUS;

ADVANT; STD

MODBUS;

CUSTOMISED

98.07 COMM

PROFILE

ABB DRIVES;

CSA 2.8/3.0

STD MODBUS

ABB DRIVES

Initialises communication between drive

(Standard Modbus Link) and Modbusprotocol controller. Activates communication parameters in group 52.

Selects the communication profile used by the drive. See section Communication

Profiles below.

COMMUNICATION PARAMETERS

52.01 STATION

NUMBER

1 to 247

52.02 BAUDRATE

52.03 PARITY

600; 1200; 2400;

4800; 9600; 19200

ODD; EVEN;

NONE1STOPBIT;

NONE2STOPBIT

Specifies the station number of the drive on the Standard Modbus Link.

Communication speed for the Standard

Modbus Link.

Parity setting for the Standard Modbus

Link.

After the parameters in group 52 have been set, the drive control parameters (shown in

Table 4 ) should be checked and adjusted where necessary.

Fieldbus control

195

Modbus addressing

In the Modbus controller memory, the Control Word, the Status Word, the references, and the actual values are mapped as follows:

Data from fieldbus controller to drive

Address Contents

Data from drive to fieldbus controller

Address Contents

40001

40002

40003

Control Word

Reference 1

Reference 2

40004

40005

40006

Status Word

Actual 1

Actual 2

40007

40008

40009

Reference 3

Reference 4

Reference 5

40010

40011

40012

Actual 3

Actual 4

Actual 5

More information on Modbus communication is available from the Modicon website

http:\\www.modicon.com.

Fieldbus control

196

Setting up an Advant Fieldbus 100 (AF 100) connection

The connection of a drive to an AF (Advant Fieldbus) 100 bus is similar to other fieldbusses, with the exception that one of the AF 100 interfaces listed below is substituted for the fieldbus adapter. The AF 100 interface is connected to channel

CH0 on the RDCO board inside the drive using fibre optic cables.

The following is a list of suitable AF 100 interfaces:

CI810A Fieldbus Communication Interface (FCI)

TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required

Advant Controller 70 (AC 70)

TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required

Advant Controller 80 (AC 80)

Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical

ModuleBus Port Interface required

DriveBus connection: Connectible to RMIO-01/02 Board with RDCO-01

Communication Option.

One of the above interfaces may already be present on the AF 100 bus. If not, an

Advant Fieldbus 100 Adapter kit (NAFA-01) is separately available, containing the

CI810A Fieldbus Communication Interface, TB810 and TB811 Optical ModuleBus

Port Interfaces, and a TC505 Trunk Tap. (More information on these components is available from the S800 I/O User’s Guide, 3BSE 008 878 [ABB Industrial Systems,

Västerås, Sweden]).

Optical component types

The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd optical components, while the TB810 has 10 MBd components. All optical components on a fibre optic link must be of the same type since 5 MBd components do not communicate with 10 MBd components. The choice between TB810 and TB811 depends on the equipment it is connected to.

The TB811 (5 MBd) should be used when connecting to a drive with the following equipment:

• RMIO-01/02 Board with RDCO-02 Communication Option

• RMIO-01/02 Board with RDCO-03 Communication Option.

The TB810 (10 MBd) should be used when connecting to the following equipment:

• RMIO-01/02 Board with RDCO-01 Communication Option

• NDBU-85/95 DDCS Branching Units.

Fieldbus control

197

Parameter

Communication Set-up

The communication between the drive and the AF 100 interface is activated by setting parameter

98.02

to ADVANT.

Table 3 Communication set-up parameters for AF 100 connection.

Alternative Settings Setting for Control through CH0

Function/Information

COMMUNICATION INITIALISATION

98.02 COMM.

MODULE LINK

NO; FIELDBUS;

ADVANT; STD

MODBUS,

CUSTOMISED

98.07 COMM

PROFILE

ABB DRIVES;

CSA 2.8/3.0

ADVANT

ABB DRIVES

Initialises communication between drive

(fibre optic channel CH0) and AF 100 interface. The transmission speed is

4 Mbit/s.

Selects the communication profile used by the drive. See section Communication

Profiles below.

After the communication activation parameters have been set, the AF 100 interface must be programmed according to its documentation, and the drive control

parameters (shown in Table 4

) checked and adjusted where necessary.

In an Optical ModuleBus connection, the channel 0 address (parameter

70.01

) is calculated from the value of the POSITION terminal in the appropriate database element (for the AC 80, DRISTD) as follows:

1. Multiply the hundreds of the value of POSITION by 16.

2. Add the tens and ones of the value of POSITION to the result.

For example, if the POSITION terminal of the DRISTD database element has the value of 110 (the tenth drive on the Optical ModuleBus ring), parameter 70.01 must be set to 16 × 1 + 10 = 26.

In an AC 80 DriveBus connection, the drives are addressed 1 to 12. The drive address (set with parameter

70.01

) is related to the value of the DRNR terminal of

ACSRX PC element.

Fieldbus control

198

Drive control parameters

After the fieldbus communication has been set up, the drive control parameters listed in

Table 4 below should be checked and adjusted where necessary.

The Setting for fieldbus control column gives the value to use when the fieldbus interface is the desired source or destination for that particular signal. The

Function/Information column gives a description of the parameter.

The fieldbus signal routes and message composition are explained later under The

fieldbus control interface.

Table 4 Drive control parameters to be checked and adjusted for fieldbus control.

Parameter Setting for fieldbus control

Function/Information

CONTROL COMMAND SOURCE SELECTION

10.01 EXT 1

STRT/STP/DI

COMM. MODULE Enables the fieldbus Control Word (except bit 11) when EXT1 is selected as the active control location.

10.02 EXT 2

STRT/STP/DI

10.03 DIRECTION

COMM. MODULE Enables the fieldbus Control Word (except bit 11)

FORWARD,

REVERSE or

REQUEST when EXT2 is selected as the active control location.

Enables rotation direction control as defined by parameters 10.01 and 10.02.

11.02 EXT1/EXT2

SELECT

11.03 EXT REF1

SELECT

11.06 EXT REF2

SELECT

COMM. MODULE Enables EXT1/EXT2 selection by fieldbus Control

Word bit 11 EXT CTRL LOC.

COMM. MODULE Fieldbus reference REF1 is used when EXT1 is selected as the active control location. See section

References below for information on the alternative settings.

COMM. MODULE Fieldbus reference REF2 is used when EXT2 is selected as the active control location. See section

References below for information on the alternative settings.

OUTPUT SIGNAL SOURCE SELECTION

14.01 RELAY RO1

OUTPUT

COMM. MODULE Enables Relay output RO1 control by fieldbus reference REF3 bit 13.

14.02 RELAY RO2

OUTPUT

14.03 RELAY RO3

OUTPUT

COMM. MODULE

COMM. MODULE

Enables Relay output RO2 control by fieldbus reference REF3 bit 14.

Enables Relay output RO3 control by fieldbus reference REF3 bit 15.

15.01 ANALOGUE

OUTPUT1

15.06 ANALOGUE

OUTPUT2

COMM. MODULE Directs the contents of fieldbus reference REF4 to

Analogue output AO1. Scaling: 20000 = 20 mA

COMM. MODULE Directs the contents of fieldbus reference REF5 to

Analogue output AO2. Scaling: 20000 = 20 mA.

Fieldbus control

199

Parameter Setting for fieldbus control

Function/Information

SYSTEM CONTROL INPUTS

16.01 RUN

ENABLE

COMM. MODULE Enables the control of the Run Enable signal through fieldbus Control Word bit 3.

16.04 FAULT

RESET SEL

16.07

PARAMETER

BACKUP

COMM. MODULE Enables fault reset through fieldbus Control Word bit 7.

DONE; SAVE Saves parameter value changes (including those made through fieldbus control) to permanent memory.

COMMUNICATION FAULT FUNCTIONS

30.19 COMM

FAULT FUNC

FAULT; NO;

PRESET FREQ;

LAST FREQ

30.20 MAIN REF

DS T-OUT

30.21 COMM

FAULT RO/AO

30.22 AUX REF DS

T-OUT

0.10 … 60.00 s

ZERO;

LAST VALUE

0.00 … 60.00 s

Determines drive action in case fieldbus communication is lost.

Note: The communication loss detection is based on monitoring of received Main and Auxiliary data sets

(whose sources are selected with parameters 90.04

and

90.05

respectively).

Defines the time between Main Reference data set loss detection and the action selected with parameter

30.19

.

Determines the state in which Relay outputs RO1 to

RO3 and Analogue outputs AO1 and AO2 are left upon loss of the Auxiliary Reference data set.

Defines the time between Auxiliary Reference data set loss detection and the action selected with parameter

30.19

.

Note: This supervision function is disabled if this parameter, or parameters

90.01

, 90.02

and 90.03

are

set to 0.

FIELDBUS REFERENCE TARGET SELECTION (Not visible when 98.02 is set to NO.)

90.01 AUX DS

REF3

0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF3 is written.

Format: xxyy, where xx = parameter group (10 to 89),

yy = parameter Index. E.g. 3001 = parameter 30.01.

90.02 AUX DS

REF4

0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF4 is written.

Format: see parameter 90.01.

90.03 AUX DS

REF5

0 … 8999

90.04 MAIN DS

SOURCE

1 (Fieldbus

Control) or

81 (Standard

Modbus Control)

Defines the drive parameter into which the value of fieldbus reference REF5 is written.

Format: see parameter 90.01.

If

98.02

is set to CUSTOMISED, this parameter selects the source from which the drive reads the Main

Reference data set (comprising the fieldbus Control

Word, fieldbus reference REF1, and fieldbus reference REF2).

Fieldbus control

200

Parameter

90.05 AUX DS

SOURCE

Setting for fieldbus control

3 (Fieldbus

Control) or

83 (Standard

Modbus Control)

Function/Information

If

98.02

is set to CUSTOMISED, this parameter

selects the source from which the drive reads the

Auxiliary Reference data set (comprising fieldbus references REF3, REF4 and REF5).

ACTUAL SIGNAL SELECTION FOR FIELDBUS (Not visible when 98.02 is set to NO.)

92.01 MAIN DS

STATUS WORD

302 (Fixed) The Status Word is transmitted to as the first word of the Main Actual Signal data set.

92.02 MAIN DS

ACT1

92.03 MAIN DS

ACT2

0 … 9999

0 … 9999

Selects the Actual signal or parameter value to be transmitted as the second word (ACT1) of the Main

Actual Signal data set.

Format: (x)xyy, where (x)x = actual signal group or parameter group, yy = actual signal or parameter index. E.g. 103 = actual signal 01.03 FREQUENCY;

2202 = parameter 22.02 ACCEL TIME 1.

Selects the Actual signal or parameter value to be transmitted as the third word (ACT2) of the Main

Actual Signal data set.

Format: see parameter 92.02.

92.04 AUX DS

ACT3

92.05 AUX DS

ACT4

92.06 AUX DS

ACT5

0 … 9999

0 … 9999

0 … 9999

Selects the Actual signal or parameter value to be transmitted as the first word (ACT3) of the Auxiliary

Actual Signal data set.

Format: see parameter 92.02.

Selects the Actual signal or parameter value to be transmitted as the second word (ACT4) of the

Auxiliary Actual Signal data set.

Format: see parameter 92.02.

Selects the Actual signal or parameter value to be transmitted as the third word (ACT5) of the Auxiliary

Actual Signal data set.

Format: see parameter 92.02.

Fieldbus control

201

The fieldbus control interface

The communication between a fieldbus system and the drive employs data sets.

One data set (abbreviated DS) consists of three 16-bit words called data words

(DW). The Pump Control Application Program supports the use of four data sets, two in each direction.

The two data sets for controlling the drive are referred to as the Main Reference data set and the Auxiliary Reference data set. The sources from which the drive reads the

Main and Auxiliary Reference data sets are defined by parameters 90.04 and 90.05 respectively. The contents of the Main Reference data set are fixed. The contents of the Auxiliary Reference data set can be selected using parameters 90.01, 90.02 and

90.03.

The two data sets containing actual information on the drive are referred to as the

Main Actual Signal data set and the Auxiliary Actual Signal data set. The contents of both data sets are partly selectable with the parameters at group 92.

Data from fieldbus controller to drive

Word Contents Selector

Data from drive to fieldbus controller

Word Contents Selector

Main Reference data set

1st word

2nd word

3rd word

Control Word

Reference 1

Reference 2

(Fixed)

(Fixed)

(Fixed)

Main Actual Signal data set

1st word

2nd word

3rd word

Status Word

Actual 1

Actual 2

(Fixed)

Par. 92.02

Par. 92.03

Auxiliary Reference data set

1st word Reference 3

2nd word Reference 4

Par. 90.01

Par. 90.02

3rd word Reference 5 Par. 90.03

Aux. Actual Signal data set

1st word Actual 3

2nd word

3rd word

Actual 4

Actual 5

Par. 92.04

Par. 92.05

Par. 92.06

The update time for the Main Reference and Main Actual Signal data sets is 6 milliseconds; for the Auxiliary Reference and Auxiliary Actual Signal data sets, it is

100 milliseconds.

Fieldbus control

202

The Control Word and the Status Word

The Control Word (CW) is the principal means of controlling the drive from a fieldbus system. It is effective when the active control location (EXT1 or EXT2, see parameters 10.01 and 10.02) is set to COMM. MODULE.

The Control Word is sent by the fieldbus controller to the drive. The drive switches between its states according to the bit-coded instructions of the Control Word.

The Status Word (SW) is a word containing status information, sent by the drive to the fieldbus controller.

See text under

Communication profiles

below for information on the composition of the Control Word and the Status Word.

Reference

REF1

REF2

References

References (REF) are 16-bit signed integers. A negative reference (indicating reversed direction of rotation) is formed by calculating the two’s complement from the corresponding positive reference value.

Fieldbus reference selection

Fieldbus reference (sometimes called COM.REF in signal selection contexts) is selected by setting a Reference selection parameter – 11.03 or 11.06 – to COMM.

MODULE.

The fieldbus reference is read every 6 milliseconds by the drive.

Fieldbus reference scaling

Application

Macro Used

Reference

Type

Range Scaling Notes

(any) Frequency -32765 … 32765

-20000 = -[Par. 11.05]

0 = 0

20000 = [Par. 11.05]

Not limited by Pars.

11.04/11.05.

(Final reference limited by

20.01/20.02.)

PFC TRAD

Multipump

Level Control

Controller

Reference

N/A

-32765 … 32765

N/A

-10000 = -[Par. 11.08]

0 = 0

10000 = [Pa. 11.08]

N/A

Hand/Auto Frequency -32765 … 32765

-20000 = -[Par. 11.05]

0 = 0

20000 = [Par. 11.05]

N/A

Not limited by Pars.

11.07/11.08.

(Final reference limited by

20.01/20.02.)

Actual values

Actual Values (ACT) are 16-bit words containing information on selected operations of the drive. The functions to be monitored are selected with the parameters in group

92. The scaling of the integers sent to the master as Actual Values depends on the selected function; please refer to the chapter

Actual signals and parameters

.

Fieldbus control

• • • • • • • • • • • •

• • •

• • •

203

Fieldbus control

204

Fieldbus control

205

Communication profiles

The PFC Application Program supports two communication profiles:

• ABB Drives communication profile (default)

• CSA 2.8/3.0 communication profile.

The ABB Drives communication profile derives from the PROFIBUS control interface and provides a variety of control and diagnostic functions.

The CSA 2.8/3.0 communication profile can be selected for backward compatibility with PFC Application Program versions 2.8 and 3.0. This eliminates the need for reprogramming the PLC when drives with the above-mentioned program versions are replaced.

The Control Word and Status Word for the CSA 2.8/3.0 communication profile are detailed below.

Note: The communication profile selector parameter (

98.07

) affects both optical

CH0 and the Standard Modbus channels.

ABB Drives communication profile

The ABB Drives communication profile is active when parameter 98.07 is set to

ABB DRIVES. The Control Word, Status Word, and reference scaling for the profile are described below.

The ABB Drives communication profile can be used through both EXT1 and EXT2.

The Control Word commands are in effect when par. 10.01 or 10.02 (whichever control location is active) is set to COMM. MODULE.

Fieldbus control

206

Bit

0

1

2

3

4

5

6

7

8

9

10

11

12 …

15

Table 5 The Control Word (Actual signal 03.01) for the ABB Drives communication profile. The upper case boldface text refers to the states shown in

Figure 2

.

Name Value Enter STATE/Description

OFF1 CONTROL 1

0

Enter READY TO OPERATE.

Stop along currently active deceleration ramp (22.03/22.05). Enter OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.

OFF2 CONTROL 1

0

OFF3 CONTROL 1

INHIBIT_

OPERATION

RAMP_OUT_

ZERO

0

1

0

1

Continue operation (OFF2 inactive).

Emergency OFF, coast to stop.

Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.

Continue operation (OFF3 inactive).

Emergency stop, stop within time defined by par.

22.07

. Enter OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED.

Warning: Ensure motor and driven machine can be stopped using this stop mode.

Enter OPERATION ENABLED. (Note: The Run Enable signal must be active; see

parameter 16.01

. If par.

16.01

is set to COMM. MODULE, this bit also activates the

Run Enable signal.)

Inhibit operation. Enter OPERATION INHIBITED.

Normal operation.

Enter RAMP FUNCTION GENERATOR: OUTPUT ENABLED.

RAMP_HOLD

0

1

Force Ramp Function Generator output to zero.

Drive ramps to stop (current and DC voltage limits in force).

Enable ramp function.

Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED.

RAMP_IN_

ZERO

0

1

Halt ramping (Ramp Function Generator output held).

Normal operation. Enter OPERATING.

RESET

0 Force Ramp Function Generator input to zero.

0

⇒ 1 Fault reset if an active fault exists. Enter SWITCH-ON INHIBITED.

0 Continue normal operation.

INCHING_1

INCHING_2

1 Not in use.

1

⇒ 0 Not in use.

1 Not in use.

1

⇒ 0 Not in use.

REMOTE_CMD 1 Fieldbus control enabled.

0

EXT CTRL LOC 1

0

Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference.

Control Word = 0 and Reference = 0: Fieldbus control enabled.

Reference and deceleration/acceleration ramp are locked.

Select External Control Location EXT2. Effective if par. 11.02

is set to COMM.

MODULE.

Select External Control Location EXT1. Effective if par. 11.02

is set to COMM.

MODULE.

Reserved

Fieldbus control

207

Bit

0

1

2

3

4

5

6

7

8

9

10

11

12

Name

RDY_ON

Table 6 The Status Word (Actual signal 03.02) for the ABB Drives communication profile. The upper case boldface text refers to the states shown in

Figure 2

.

RDY_RUN

RDY_REF

TRIPPED

OFF_2_STA

OFF_3_STA

SWC_ON_INHIB

ALARM

AT_SETPOINT

REMOTE

ABOVE_LIMIT

EXT CTRL LOC

RUN ENABLE

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

Value STATE/Description

1

0

READY TO SWITCH ON.

NOT READY TO SWITCH ON.

READY TO OPERATE.

OFF1 ACTIVE.

OPERATION ENABLED.

OPERATION INHIBITED.

FAULT.

No fault.

OFF2 inactive.

OFF2 ACTIVE.

OFF3 inactive.

OFF3 ACTIVE.

SWITCH-ON INHIBITED.

Warning/Alarm.

No Warning/Alarm.

OPERATING. Actual value equals reference value (= is within tolerance limits).

Actual value differs from reference value (= is outside tolerance limits).

Drive control location: REMOTE (EXT1 or EXT2).

Drive control location: LOCAL.

Actual frequency or speed value equals or is greater than supervision limit

(par. 32.02

). Valid in both rotation directions regardless of value of par.

32.02

.

Actual frequency or speed value is within supervision limit.

External Control Location EXT2 selected.

External Control Location EXT1 selected.

Run Enable signal received.

No Run Enable received.

13, 14 Reserved

15 1

0

Communication error detected by fieldbus adapter module (on fibre optic channel CH0).

Fieldbus adapter (CH0) communication OK.

Fieldbus control

208

MAINS OFF

Power ON

A B C D

(CW Bit3=0)

SWITCH-ON

INHIBITED

(CW Bit0=0)

(SW Bit6=1)

NOT READY

TO SWITCH ON

(SW Bit0=0)

(CW=xxxx x1xx xxxx x110)

ABB Drives

Communication

Profile

CW = Control Word

SW = Status Word n = Speed

I = Input Current

RFG = Ramp Function Generator f = Frequency

OPERATION

INHIBITED operation inhibited

(SW Bit2=0)

READY TO

SWITCH ON

(SW Bit0=1)

(CW=xxxx x1xx xxxx x111) from any state

Fault

READY TO

OPERATE from any state

OFF1 (CW Bit0=0)

OFF1

ACTIVE n(f)=0 / I=0

(SW Bit1=0)

(CW Bit3=1 and

SW Bit12=1)

B C D

(SW Bit1=1)

FAULT

(SW Bit3=1)

(CW Bit7=1)

(CW=xxxx x1xx xxxx 1111 and SW Bit12=1) from any state

Emergency Stop

OFF3 (CW Bit2=0)

OFF3

ACTIVE

(SW Bit5=0) from any state

Emergency OFF

OFF2 (CW Bit1=0)

OFF2

ACTIVE

(SW Bit4=0) n(f)=0 / I=0

(CW Bit4=0)

(CW Bit5=0)

(CW Bit6=0)

C D

D

A

OPERATION

ENABLED

(SW Bit2=1)

(CW=xxxx x1xx xxx1 1111)

RFG: OUTPUT

ENABLED

B

C

(CW=xxxx x1xx xx11 1111)

RFG: ACCELERATOR

ENABLED

(CW=xxxx x1xx x111 1111)

OPERATING

(SW Bit8=1)

D

Figure 2 State Machine for the ABB Drives communication profile.

Fieldbus control

209

CSA 2.8/3.0 communication profile

The CSA 2.8/3.0 communication profile is active when parameter 98.07 is set to

CSA 2.8/3.0. The Control Word and Status Word for the profile are described below.

Table 7 Control Word for the CSA 2.8/3.0 communication profile.

Bit

0

1

Name

Reserved

ENABLE

Value Description

1

0

Enabled

Coast to stop

2

3

Reserved

START/STOP 0

⇒ 1 Start

0 Stop according to parameter 21.03 STOP FUNCTION

4

5

Reserved

CNTRL_MODE 1

0

Select control mode 2

Select control mode 1

6

7

Reserved

Reserved

8 RESET_FAULT

9 … 15 Reserved

0

⇒ 1 Reset drive fault

Table 8 Status Word for the CSA 2.8/3.0 communication profile.

Bit

0

1

Name

READY

ENABLE

Value Description

1 Ready to start

0

1

0

Initialising, or initialising error

Enabled

Coast to stop

2

3

Reserved

RUNNING 1

0

Running with selected reference

Stopped

4

5

Reserved

REMOTE 1

0

Drive in Remote mode

Drive in Local mode

6

7

Reserved

AT_SETPOINT

8

9

10

FAULTED

WARNING

LIMIT 1

0

1

0

1

0

1 Drive at reference

0 Drive not at reference

A fault is active

No active faults

A warning is active

No active warnings

Drive at a limit

Drive at no limit

11 … 15 Reserved

Fieldbus control

210

Diverse status, fault, alarm and limit words

Table 9 The Auxiliary Status Word (Actual signal 03.03).

Bit

0

1

Name

Reserved

OUT OF WINDOW

Description

Speed difference is out of the window (in speed control)*.

2

3

4

Reserved

MAGNETIZED

Reserved

Flux has been formed in the motor.

5

6

7

8

9

SYNC RDY

1 START NOT

DONE

IDENTIF RUN

DONE

START INHIBITION

Position counter synchronised.

Drive has not been started after changing the motor parameters in group 99.

Motor ID Run successfully completed.

LIMITING

Prevention of unexpected start-up active.

Control at a limit. See actual signal 03.04 LIMIT

WORD 1 below.

Torque reference is followed*.

10

11

TORQ CONTROL

ZERO SPEED Absolute value of motor actual speed is below zero speed limit (4% of synchronous speed).

Internal speed feedback followed.

12 INTERNAL SPEED

FB

M/F COMM ERR 13 Master/Follower link (on CH2) communication error*.

14 … 15 Reserved

*See Master/Follower Application Guide (3AFY 58962180 [English]).

Fieldbus control

Table 10 Limit Word 1 (Actual signal 03.04).

3

4

5

6

7

8

Bit

0

1

2

12

13

14

15

9

10

11

Name

TORQ MOTOR LIM

SPD_TOR_MIN_LIM

SPD_TOR_MAX_LIM

TORQ_USER_CUR_LIM

TORQ_INV_CUR_LIM

TORQ_MIN_LIM

TORQ_MAX_LIM

TREF_TORQ_MIN_LIM

TREF_TORQ_MAX_LIM

FLUX_MIN_LIM

FREQ_MIN_LIMIT

FREQ_MAX_LIMIT

DC_UNDERVOLT

DC_OVERVOLT

TORQUE LIMIT

FREQ_LIMIT

Active Limit

Pull-out limit.

Speed control torque min. limit.

Speed control torque max. limit.

User-defined current limit.

Internal current limit.

Any torque min. limit.

Any torque max. limit.

Torque reference min. limit.

Torque reference max. limit.

Flux reference min. limit.

Speed/Frequency min. limit.

Speed/Frequency max. limit.

DC undervoltage limit.

DC overvoltage limit.

Any torque limit.

Any speed/frequency limit.

Table 11 Fault Word 1 (Actual signal 03.05).

1

2

3

4

5

6

7

Bit

0

Name

SHORT CIRC

OVERCURRENT

DC OVERVOLT

ACS 800 TEMP

EARTH FAULT

THERMISTOR

MOTOR TEMP

SYSTEM_FAULT

Description

For the possible causes and remedies, see the chapter

Fault tracing .

8

9

UNDERLOAD

OVERFREQ

10 … 15 Reserved

A fault is indicated by the System Fault Word

(Actual signal 03.07).

For the possible causes and remedies, see the chapter

Fault tracing .

211

Fieldbus control

212

10

11

12

13

14

15

5

6

7

8

9

Table 12 Fault Word 2 (Actual signal 03.06).

Bit

0

1

2

3

4

Name

SUPPLY PHASE

NO MOT DATA

DC UNDERVOLT

Reserved

RUN DISABLE

Description

For the possible causes and remedies, see the chapter

Fault tracing .

For the possible causes and remedies, see the chapter

Fault tracing .

Reserved

I/O COMM ERR

CTRL B TEMP

EXTERNAL FLT

OVER SWFREQ

AI < MIN FUNC

PPCC LINK

COMM MODULE

PANEL LOSS

MOTOR STALL

MOTOR PHASE

For the possible causes and remedies, see the chapter

Fault tracing .

Switching overfrequency fault.

For the possible causes and remedies, see the chapter

Fault tracing .

Fieldbus control

Table 13 The System Fault Word (Actual signal 03.07).

3

4

5

6

7

8

Bit

0

1

2

12

13

14

15

9

10

11

Name

FLT (F1_7)

USER MACRO

FLT (F1_4)

FLT (F1_5)

FLT (F2_12)

FLT (F2_13)

FLT (F2_14)

FLT (F2_15)

FLT (F2_16)

FLT (F2_17)

FLT (F2_18)

FLT (F2_19)

FLT (F2_3)

FLT (F2_1)

FLT (F2_0)

Reserved

Description

Factory default parameter file error.

User Macro file error.

FPROM operating error.

FPROM data error.

Internal time level 2 overflow.

Internal time level 3 overflow.

Internal time level 4 overflow.

Internal time level 5 overflow.

State machine overflow.

Application program execution error.

Application program execution error.

Illegal instruction.

Register stack overflow.

System stack overflow.

System stack underflow.

213

Fieldbus control

214

Table 14 Alarm Word 1 (Actual signal 03.08).

Bit

0

Name

START INHIBIT

1

2

3

START INTERLOCK

THERMISTOR

MOTOR TEMP

4 ACS 800 TEMP

5 … 11 Reserved

12 COMM MODULE

Description

For the possible causes and remedies, see the

chapter

Fault tracing

.

Start interlock signal is on (starting possible).

For the possible causes and remedies, see the

chapter

Fault tracing

.

For the possible causes and remedies, see the

chapter

Fault tracing

.

13

14

Reserved

EARTH FAULT For the possible causes and remedies, see the

chapter

Fault tracing

.

15 Reserved

Table 15 Alarm Word 2 (Actual signal 03.09).

Description Bit

0

1

Name

Reserved

UNDERLOAD (ff6A) For the possible causes and remedies, see the

chapter

Fault tracing

.

2 … 6

7

8

9

10

11, 12

13

Reserved

POWFAIL FILE

ALM (OS_17)

MOTOR STALL (7121)

AI < MIN FUNC (8110)

Reserved

PANEL LOSS (5300)

Error in restoring POWERFAIL.DDF.

Error in restoring POWERDOWN.DDF.

For the possible causes and remedies, see the

chapter

Fault tracing

.

For the possible causes and remedies, see the

chapter

Fault tracing

.

14, 15 Reserved

Fieldbus control

215

Table 16 Alarm Word 3 (Actual signal 03.10).

Bit Name

0

1

REPLACE FAN

SYNCRO SPEED

2 … 15 Reserved

Description

For the possible causes and remedies, see the chapter

Fault tracing .

Table 17 Limit Word INV (Actual signal 03.30)

The LIMIT WORD INV word includes faults and warnings which occur when the output current limit of the drive is exceeded. The current limit protects the drive in various cases, e.g. integrator overload and high IGBT temperature.

Bit

0

1

2

Name

INTEGRAT 200

INTEGRAT 150

INT LOW FREQ

Description

Current limit at 200% integrator overload. Temperature model is not active.*

Current limit at 150% integrator overload. Temperature model is not active.*

Current limit at high IGBT temperature with low output frequency

(<10 Hz). Temperature model is not active.*

3

4

5

INTG PP TEMP

PP OVER TEMP

PP OVERLOAD

Current limit at high IGBT temperature. Temperature model is not active.*

Current limit at high IGBT temperature. Temperature model is active.*

Current limit at high IGBT junction to case temperature.

Temperature model is active.*

If the IGBT junction to case temperature continues to rise in spite of the current limitation, PP OVERLOAD warning or fault occurs.

See the chapter

Fault tracing

.

6

7

8

9

INV POW LIM

INV TRIP CUR

OVERLOAD CUR

CONT DC CUR

Current limit at inverter output power limit.

Current limit at inverter overcurrent trip limit.

Maximum inverter overload current limit. See parameter

20.03

.

Continuous DC current limit.

Continuous output current limit (I contmax

).

10 CONT OUT CUR

11 … 15 Reserved

*Only active with ACS 600 hardware.

Fieldbus control

216

Table 18 PFC Status Word (Actual signal 05.01)

Bit

0

1

2

3

4

5

6

7

8

9

10

11

Name

PFC REF

PFC REF STEP

PFC REF BOOST

PFC REF INLET

PFC REF OUTLET

CONT DEV

PROFILE HIGH

AUX MOTORS OK

AUTOCHANGE

SLEEP MODE

PI FREEZE

ANTI-JAM STATUS 1

0

1

0

1

0

1

0

1

0

1

0

Value Description

1

0

An external process reference is in use.

An internal process reference is in use.

1

0

1

0

1

A reference step is active.

No reference steps are active.

Sleep boost active.

Sleep boost inactive.

0

1

Low inlet pressure protection active (see parameter group 44).

(Normal operation)

High outlet pressure protection active (see parameter group 44).

0

1

0

(Normal operation)

Negative deviation between reference and actual signal.

Positive deviation between reference and actual signal.

See parameter group 44.

Interlocks/auxiliary motors mismatch.

Interlocks and the number of auxiliary motors match.

Autochange mode active.

Autochange mode inactive.

Sleep mode active.

Sleep mode inactive.

PI input or output frozen.

PI input and output free.

Anti-jam sequence in progress.

Anti-jam sequence not in progress.

12 … 15 Reserved

Fieldbus control

217

Table 19 PFC Alarm Word (Actual signal 05.02)

Bit

0

1

Name

INLET LOW

OUTLET HIGH

4

5

2

3

INLET VERY LOW

OUTLET VERY HIGH

MS INV LOSS

F TO MS CM LOSS

6 … 15 Reserved

Description

For the possible causes and remedies, see the chapter

Fault tracing .

Table 20 PFC Fault Word (Actual signal 05.03)

Bit

0

1

Name

INLET LOW

OUTLET HIGH

4

5

2

3

INLET VERY LOW

OUTLET VERY HIGH

MS INV LOSS

START SEL WRONG

6 … 15 Reserved

Description

For the possible causes and remedies, see the chapter

Fault tracing .

Table 21 LC (Level control) Status Word (Actual signal 05.21)

10

11

12

8

9

6

7

4

5

2

3

Bit

0

1

Name

LOW LEVEL 1

LOW LEVEL 2

STOP LEVEL

START1 LEVEL

START2 LEVEL

START3 LEVEL

START4 LEVEL

START5 LEVEL

START6 LEVEL

START7 LEVEL

START8 LEVEL

HIGH LEVEL 1

HIGH LEVEL 2

Description

In Level control, each bit indicates if a certain pre-defined level has been reached.

13 REF SPEED

Indicates whether the drive is running at efficiency speed (par.

47.20

) or high speed

(par.

47.21

).

0 = Efficiency speed

1 = High speed

14 … 15 Reserved

Fieldbus control

218

Fieldbus control

219

Analogue extension module

Chapter overview

The chapter describes the use of analogue extension module RAIO as an speed reference interface of ACS800 equipped with the Pump Control Application

Program.

Speed control through the analogue extension module

Only the use of a bipolar input (± signal range) is covered here. The use of unipolar input corresponds to that of a standard unipolar input when:

• the settings described below are done, and

• the communication between the module and the drive is activated by parameter

98.06

.

Basic checks

Ensure the drive is:

• installed and commissioned, and

• the external start and stop signals are connected.

Ensure the extension module:

• settings are adjusted. (See below.)

• is installed and reference signal is connected to AI1.

• is connected to the drive.

Settings of the analogue extension module and the drive

• Set the module node address to 5 (not required if installed to the option slot of the drive).

• Select the signal type for the module input AI1 (switch).

• Select the operation mode (unipolar/bipolar) of the module input (switch).

• Ensure the drive parameter settings correspond to the mode of the module inputs

(parameter 98.08

and

98.09

).

• Set the drive parameters (see the appropriate subsection on the following pages).

Analogue extension module

220

Parameter settings: bipolar input in basic speed control

The table below lists the parameters that affect the handling of the speed reference received through the extension module bipolar input AI1 (AI5 of the drive).

Parameter

98.06 AI/O EXT MODULE

98.08 AI/O EXT AI1 FUNC

10.03 DIRECTION

11.02 EXT1/EXT2 SELECT

11.03 EXT REF1 SELECT

11.04 EXT REF1 MINIMUM

11.05 EXT REF1 MAXIMUM

13.16 MINIMUM AI5

13.17 MAXIMUM AI5

13.18 SCALE AI5

13.20 INVERT AI5

30.01 AI<MIN FUNCTION

Setting

RAIO-SLOT1

BIPO AI5

FORWARD; REVERSE; REQUEST

(1

EXT1

AI5 minREF1 maxREF1 minAI5 maxAI5

100%

NO

(2

The figure below presents the speed reference corresponding to bipolar input AI1 of the extension module .

Operation Range scaled maxREF1

10.03

DIRECTION =

FORWARD or

REQUEST

1) minREF1

-minREF1

10.03

DIRECTION =

REVERSE or

REQUEST

1)

-scaled maxREF1

-maxAI5 -minAI5 minAI5

Analogue Input Signal

maxAI5 minAI5 = 13.16 MINIMUM AI5 maxAI5 = 13.17 MAXIMUM AI5 scaled maxREF1 = 13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

1)

For the negative speed range, the drive must receive a separate reverse command.

2)

Set if supervision of living zero is used.

Analogue extension module

221

Additional data: actual signals and parameters

Chapter overview

This chapter lists the actual signal and parameter lists with some additional data. For the descriptions, see chapter Actual signals and parameters.

Terms and abbreviations

Term

PB

FbEq

Absolute maximum frequency

W

Definition

Parameter address for the fieldbus communication through an

NPBA-12 PROFIBUS Adapter.

Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Value of 20.02

, or 20.01

if the absolute value of the minimum limit

is greater than the maximum limit.

Write access is not allowed when the motor is running.

Fieldbus addresses

Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.)

See the appropriate fieldbus adapter module User’s Manual.

Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.)

NPBA-12 PROFIBUS Adapter:

• See column PB in the tables below.

NIBA-01 InterBus-S Adapter:

• xxyy × 100 + 12288 converted into hexadecimal, where xxyy = drive parameter number

• Example: The index for drive parameter 13.09 is 1309 + 12288 = 13597 (decimal)

= 351Dh.

NMBA-01 Modbus Adapter and NMBP-01 Modbus Plus Adapter:

• 4xxyy, where xxyy = drive parameter number

Additional data: actual signals and parameters

222

Actual signals

Index Name Short name

01 ACTUAL SIGNALS

01.02 MOTOR SPEED FILT MOTOR SP

01.03 FREQUENCY FREQUENC

01.04 MOTOR CURRENT MOTOR CU

01.05 MOTOR TORQ FILT2 MOTOR TO

01.06 POWER POWER

01.07 DC VOLTAGE

01.08 MAINS VOLTAGE

01.09 MOTOR VOLTAGE

01.10 PP TEMPERATURE

01.11 EXTERNAL REF 1

01.12 EXTERNAL REF 2

DC VOLTA

MAINS VO

MOTOR VO

PP TEMPE

EXTERNAL

EXTERNAL

01.13 CTRL LOCATION CTRL LOC

01.14 TIME OF USAGE TIME OF

01.15 KILOWATT HOURS KILOWATT

01.16 APPL BLOCK OUTPUT APPL BLO

01.17 DI6-1 STATUS

01.18 AI1 [V]

01.19 AI2 [mA]

01.20 AI3 [mA]

01.21 RO3-1 STATUS

01.22 AO1 [mA]

01.23 AO2 [mA]

01.24 ACTUAL VALUE 1

DI6-1 ST

AI1 [V]

AI2 [mA]

AI3 [mA]

RO3-1 ST

AO1 [mA]

AO2 [mA]

ACTUAL V

01.25 ACTUAL VALUE 2 ACTUAL V

01.26 CONTROL DEVIATION CONTROL

01.27 ACTUAL FUNC OUT ACTUAL F

01.28 EXT AO1 [mA] EXT AO1

01.29 EXT AO2 [mA]

01.30 PP 1 TEMP

01.31 PP 2 TEMP

EXT AO2

PP 1 TEM

PP 2 TEM

01.32 PP 3 TEMP

01.33 PP 4 TEMP

01.37 MOTOR TEMP EST

PP 3 TEM

PP 4 TEM

MOTOR TE

01.38 AI5 [mA]

01.39 AI6 [mA]

01.40 DI7-12 STATUS

AI5 [mA]

AI6 [mA]

DI7..12 S

01.41 EXT RO STATUS EXT RO S

01.42 PFC OPERATION TIM PFC OPER

Additional data: actual signals and parameters

1 = 0.001 V

1 = 0.001 mA

1 = 0.001 mA

1 = 0.001 mA

1 = 0.001 mA

0 = 0%

10000 = 100%

0 = 0%

10000 = 100%

-10000 = -100%

10000 = 100%

1 = 0.001 mA

1 = 0.001 mA

1 = 1 °C

1 = 1 °C

1 = 1 °C

1 = 1 °C

1 = 1 °C

1 = 0.001 mA

1 = 0.001 mA

1 = 1

1 = 1

1 = 1

FbEq Unit

-2000 = -100%

2000 = 100% of speed corresponding to absolute maximum frequency

-100 = -1 Hz

100 = 1 Hz

10 = 1 A

-10000 = -100%

10000 = 100% of motor nominal torque

0 = 0%

1000 = 100% of motor nominal power

1 = 1 V

1 = 1 V

1 = 1 V

1 = 1 °C

1 = 1 rpm

0 = 0%

10000 = 100%

(Note 1)

(1,2) LOCAL; (3)

EXT1; (4) EXT2

1 = 1 h

1 = 100 kWh

0 = 0%

10000 = 100% rpm

Hz

A

%

%

V

V

V

C rpm

% h kWh

%

V mA mA mA mA

%

%

% mA mA

°C

°C

°C

°C

°C mA mA h

Range PB

2

LOCAL; EXT1;

EXT2

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

37

38

39

40

41

42

7

8

9

10

11

12

3

4

5

6

223

Index Name

01.43 MOTOR RUN-TIME

Short name

MOTOR RU

01.44 FAN ON-TIME FAN ON-T

01.45 CTRL BOARD TEMP CTRL BOA

01.47 M/F STATE M/F STAT

01.48 START COUNTER

02 ACTUAL SIGNALS

02.01 SPEED REF 2

02.02 SPEED REF 3

START CO

SPEED RE

SPEED RE

02.09 TORQUE REF 2

02.10 TORQUE REF 3

TORQUE R

TORQUE R

02.13 TORQ USED REF TORQ USE

02.17 SPEED ESTIMATED SPEED ES

02.19 MOTOR MOTOR AC

ACCELERATIO

03 INTERNAL DATA

03.01 MAIN CONTROL MAIN CON

WORD

03.02 MAIN STATUS WORD MAIN STA

03.03 AUX STATUS WORD AUX STAT

03.04 LIMIT WORD 1 LIMIT WO

03.05 FAULT WORD 1 FAULT WO

03.06 FAULT WORD 2 FAULT WO

03.07 SYSTEM FAULT WORD SYSTEM F

03.08 ALARM WORD 1 ALARM WO

03.09 ALARM WORD 2

03.10 ALARM WORD 3

03.19 INT INIT FAULT

ALARM WO

ALARM WO

INT INIT

03.20 FAULT CODE 1 LAST FAULT CO

03.21 FAULT CODE 2 LAST FAULT CO

03.22 FAULT CODE 3 LAST FAULT CO

03.23 FAULT CODE 4 LAST FAULT CO

03.24 FAULT CODE 5 LAST FAULT CO

03.25 WARN CODE 1 LAST WARN COD

03.26 WARN CODE 2 LAST WARN COD

(Note 2)

(Note 2)

(Note 2)

(Note 2)

(Note 2)

(Note 2)

(Note 2)

(Note 2)

(Note 2)

(Note 2)

FbEq

1 = 10 h

1 = 10 h

1 = 1 °C

(0,1) FOLLOWER;

(2) MASTER

1 = 1

Unit

h h

°C

0 = 0%

20000 = 100% of motor absolute max. frequency

0 = 0%

10000 = 100% of motor nominal torque

0 = 0%

20000 = 100% of motor absolute max. frequency

1 = 1 rpm/s rpm rpm

%

%

% rpm rpm/s

Range

FOLLOWER;

MASTER

PB

43

44

45

47

48

51

52

59

60

63

67

69

84

85

93

81

82

83

94

95

76

77

78

79

80

96

97

98

-

99

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

Additional data: actual signals and parameters

224

Index Name

03.28 WARN CODE 4 LAST

03.29 WARN CODE 5 LAST

03.30 LIMIT WORD INV

Short name

03.27 WARN CODE 3 LAST WARN COD

WARN COD

WARN COD

LIMIT WO

FbEq Unit Range

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

-

-

-

-

PB

05 PFC WORDS

05.01 PFC STATUS

05.02 PFC ALARM WORD

05.03 PFC FAULT WORD

PFC STAT

PFC ALAR

PFC FAUL

PFC ACT

APPLIC R

AUX ON

WAKE UP

BOOST AC

ACT FLOW

SUM FLOW

PRESSURE

SHARE AI

SHARE AI

SHARE AI

LC STATU

ACT LEVE

(Note 2)

(Note 2)

(Note 2)

%

% m m

3

3

/h bar

V mA mA

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

0 ... 65535

(Decimal)

-500 ... 500

-500 … 500

-

-

-

05.04 PFC ACT REF

05.05 APPLIC REF AS Hz

05.06 AUX ON

05.07 WAKE UP ACT

05.08 BOOST ACT

05.11 ACT FLOW

05.12 SUM FLOW

05.13 PRESSURE DEV

05.15 SHARE AI1

05.16 SHARE AI2

05.17 SHARE AI3

05.21 LC STATUS

05.23 ACT LEVEL

09 ACTUAL SIGNALS

09.01 AI1 SCALED

09.02 AI2 SCALED

09.03 AI3 SCALED

09.04 AI5 SCALED

09.05 AI6 SCALED

09.06 DS MCW

09.07 MASTER REF1

09.08 MASTER REF2

09.09 AUX DS VAL1

09.10 AUX DS VAL2

09.11 AUX DS VAL3

09.12 LCU ACT SIGNAL 1

09.13 LCU ACT SIGNAL 2

AI1 SCAL

AI2 SCAL

AI3 SCAL

AI5 SCAL

AI6 SCAL

DS MCW

MASTER R

MASTER R

AUX DS V

AUX DS V

AUX DS V

LCU ACT1

LCU ACT2 -

-

1 = 1

1 = 0.001 V

1 = 0.001 mA

1 = 0.001 mA

(Note 2)

20000 = 10 V

20000 = 20 mA

20000 = 20 mA

20000 = 20 mA

20000 = 20 mA

0 ... 65535 (Decimal)

-32768 … 32767

-32768 … 32767

-32768 … 32767

-32768 … 32767

-32768 … 32767

-

-

%

Hz

%

-

-500 ... 500

-500 ... 500

0 … 20000

0 … 20000

0 … 20000

0 … 20000

0 … 20000

0 ... 65535

(Decimal)

-

-32768 … 32767 -

-32768 … 32767 -

-32768 … 32767 -

-32768 … 32767 -

-

-32768 … 32767 -

-

-

-

-

-

-

-

(Note 1) Percent of maximum process reference (PFC TRAD macro) or maximum frequency (Hand/

Auto macro).

-

-

-

-

-

-

-

-

-

-

-

-

-

(Note 2) The contents of these data words are detailed in the chapter

Fieldbus control

.

Additional data: actual signals and parameters

225

Parameters

Index Name/Selection Default setting

MULTIMAS-

TER

PFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

10 START/STOP/DIR

10.01 EXT 1 STRT/STP/DI DI1

10.02 EXT 2 STRT/STP/DI DI6

10.03 DIRECTION FORWARD

10.04 EXT 1 STRT PTR

10.05 EXT 2 STRT PTR

11 REFERENCE

0

0

DI1

DI6

FORWARD FORWARD

0

0

DI1

DI6

0

0

DI1

DI6

FORWARD

0

0

SELECT

11.02 EXT1/EXT2 SELECT EXT2

11.03 EXT REF1 SELECT AI1

11.04 EXT REF1 MINIMUM 0 Hz

11.05 EXT REF1 MAXIMUM 52 Hz

11.06 EXT REF2 SELECT AI1

11.07 EXT REF2 MINIMUM 0%

11.08 EXT REF2 MAXIMUM 100%

11.09 EXT 1/2 SEL PTR

11.10 EXT 1 REF PTR

11.11 EXT 2 REF PTR

12 CONSTANT FREQ

0

0

0

12.01 CONST FREQ SEL NOT SEL

12.02 CONST FREQ 1 25 Hz

12.03 CONST FREQ 2 30 Hz

12.04 CONST FREQ 3

13 ANALOGUE INPUTS

13.01 MINIMUM AI1

35 Hz

0 V

EXT2

AI1

0 Hz

52 Hz

AI1

0

0

0%

100%

0

NOT SEL

25 Hz

30 Hz

35 Hz

DI5

AI1

0 Hz

52 Hz

AI2

0%

100%

0

0

0

NOT SEL

25 Hz

30 Hz

35 Hz

EXT2

AI1

0 Hz

52 Hz

AI1

0%

100%

0

0

0

NOT SEL

25 Hz

30 Hz

35 Hz

13.02 MAXIMUM AI1

13.03 SCALE AI1

13.04 FILTER AI1

13.05 INVERT AI1

13.06 MINIMUM AI2

13.07 MAXIMUM AI2

13.08 SCALE AI2

13.09 FILTER AI2

13.10 INVERT AI2

13.11 MINIMUM AI3

13.12 MAXIMUM AI3

13.13 SCALE AI3

13.14 FILTER AI3

13.15 INVERT AI3

13.16 MINIMUM AI5

13.17 MAXIMUM AI5

13.18 SCALE AI5

13.19 FILTER AI5

13.20 INVERT AI5

13.21 MINIMUM AI6

13.22 MAXIMUM AI6

13.23 SCALE AI6

13.24 FILTER AI6

13.25 INVERT AI6

10 V

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

14 RELAY OUTPUTS

14.01 RELAY RO1 OUTPUT READY

14.02 RELAY RO2 OUTPUT RUNNING

14.03 RELAY RO3 OUTPUT FAULT(-1)

14.04 RDIO MOD1 RO1 READY

0 V

10 V

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

M1 START

M2 START

FAULT

READY

0 V

10 V

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

READY

RUNNING

FAULT(-1)

READY

0 V

10 V

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

4 mA

20 mA

100.0%

0.10 s

NO

READY

RUNNING

FAULT(-1)

READY

PB W

192

193

194

195

196

197

186

187

188

189

190

191

198

199

200

176

177

178

179

180

181

182

183

184

185

101 W

102 W

103 W

104 W

105 W

132

133

134

135

136

127 W

128 W

129

130

131 W

151

152

153

154

201 W

202 W

203 W

204 W

Additional data: actual signals and parameters

226

Index Name/Selection

14.05 RDIO MOD1 RO2

14.06 RDIO MOD2 RO1

14.07 RDIO MOD2 RO2

14.08 RO PTR1

14.09 RO PTR2

14.10 RO PTR3

14.11 RO PTR4

14.12 RO PTR5

14.13 RO PTR6

14.14 RO PTR7

15 ANALOGUE

OUTPUTS

15.01 ANALOGUE

OUTPUT1

TER

FAULT(-1)

0

0

Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

RUNNING

FAULT

0

0

0

0

0

RUNNING

FAULT

0

0

0

0

0

FAULT(-1)

0

0

RUNNING

FAULT

FAULT(-1)

0

0

0

0

0

0

0

RUNNING

FAULT

FAULT(-1)

0

0

0

0

0

0

0

FREQUENCY FREQUENCY FREQUENCY FREQUENCY

15.02 INVERT AO1

15.03 MINIMUM AO1

15.04 FILTER AO1

15.05 SCALE AO1

15.06 ANALOGUE

OUTPUT2

NO

0 mA

2.00 s

100%

ACTUAL 1

15.07 INVERT AO2

15.08 MINIMUM AO2

15.09 FILTER AO2

NO

0 mA

2.00 s

15.10 SCALE AO2

15.11 AO1 PTR

15.12 AO2 PTR

100%

0

0

16 SYSTEM CTR INPUT

16.01 RUN ENABLE YES

16.02 PARAMETER LOCK OPEN

16.03 PASS CODE 0

16.04 FAULT RESET SEL NOT SEL

16.05 USER MACRO IO NOT SEL

CHG

16.06 LOCAL LOCK

16.07 PARAMETER

FALSE

DONE

BACKUP

16.08 RUN ENA PTR

16.09 CTRL BOARD

SUPPLY 24V

16.10 FAULT RESET PTR 0

20 LIMITS

0

INTERNAL

20.01 MINIMUM FREQ

20.02 MAXIMUM FREQ

20.03 MAXIMUM

0.00 Hz

(calculated)

(drive type-

CURRENT A specific)

20.04 MAXIMUM TORQUE 300.0%

20.05 OVERVOLTAGE CTL ON

20.06 UNDERVOLTAGE

CTL

20.07 PI MIN FREQ

ON

0.00 Hz

20.11 P MOTORING LIM 300.0%

20.12 P GENERATING LIM -300.0%

21 START/STOP

21.01 START FUNCTION AUTO

21.02 CONST MAGN TIME 500.0 ms

21.03 STOP FUNCTION RAMP

NO

0 mA

2.00 s

100%

ACTUAL 1

NO

0 mA

2.00 s

100%

0

0

YES

OPEN

0

NOT SEL

NOT SEL

FALSE

DONE

0

INTERNAL

24V

0

(drive typespecific)

300.0%

ON

ON

0.00 Hz

300.0%

-300.0%

AUTO

500.0 ms

COAST

NO

0 mA

2.00 s

100%

CURRENT

NO

0 mA

2.00 s

100%

0

0

YES

OPEN

0

NOT SEL

NOT SEL

FALSE

DONE

0

INTERNAL

24V

0

0.00 Hz 0.00 Hz

(calculated) (calculated)

(drive typespecific)

300.0%

ON

ON

0.00 Hz

300.0%

-300.0%

AUTO

500.0 ms

COAST

NO

0 mA

2.00 s

100%

ACTUAL 1

NO

0 mA

2.00 s

100%

0

0

YES

OPEN

0

NOT SEL

NOT SEL

FALSE

DONE

0

INTERNAL

24V

0

0.00 Hz

(calculated)

(drive typespecific)

300.0%

ON

ON

0.00 Hz

300.0%

-300.0%

AUTO

500.0 ms

RAMP

PB W

205 W

206 W

207 W

208 W

209 W

210 W

211 W

212 W

213 W

214 W

226 W

232

233

234

235

236

237

227

228

229

230

231 W

251 W

252

253

254 W

255 W

256

257

258

259

260

351

352

353

354

355

356

357

361

362

376 W

377 W

378

Additional data: actual signals and parameters

227

Index Name/Selection Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

TER

21.07 RUN ENABLE FUNC RAMP STOP COAST STOP COAST STOP RAMP STOP

21.08 SCALAR FLYSTART OFF OFF OFF OFF

21.09 START INTRL FUNC OFF2 STOP OFF2 STOP OFF2 STOP OFF2 STOP

22 ACCEL/DECEL

22.01 ACC/DEC 1/2 SEL ACC/DEC 1 ACC/DEC 1 ACC/DEC 1 ACC/DEC 1

22.02 ACCEL TIME 1

22.03 DECEL TIME 1

22.04 ACCEL TIME 2

3.00 s

3.00 s

1.00 s

3.00 s

3.00 s

1.00 s

3.00 s

3.00 s

1.00 s

3.00 s

3.00 s

1.00 s

22.05 DECEL TIME 2

22.06 SHAPE TIME

22.08 ACC PTR

22.09 DEC PTR

23 SPEED CTRL

1.00 s

0.00 s

22.07 STOP RAMP TIME 3.00 s

0

0

23.01 KPS

23.02 TIS

23.03 SLIP GAIN

10.0

2.50 s

0.0%

25 CRITICAL FREQ

25.01 CRIT FREQ SELECT OFF

25.02 CRIT FREQ 1 LOW 0 Hz

0

0

1.00 s

0.00 s

3.00 s

10.0

2.50 s

0.0%

OFF

0 Hz

0 Hz

0 Hz

0 Hz

0

0

1.00 s

0.00 s

3.00 s

10.0

2.50 s

0.0%

OFF

0 Hz

0 Hz

0 Hz

0 Hz

0

0

1.00 s

0.00 s

3.00 s

10.0

2.50 s

0.0%

OFF

0 Hz

0 Hz

0 Hz

0 Hz

25.03 CRIT FREQ 1 HIGH 0 Hz

25.04 CRIT FREQ 2 LOW 0 Hz

25.05 CRIT FREQ 2 HIGH 0 Hz

26 MOTOR CONTROL

26.01 FLUX OPTIMIZATION NO

26.02 FLUX BRAKING YES

26.03 IR COMPENSATION 0.0%

26.04 HEX FIELD WEAKEN OFF

30 FAULT FUNCTIONS

30.01 AI<MIN FUNCTION FAULT

30.02 PANEL LOSS FAULT

30.03 EXTERNAL FAULT NOT SEL

NO

YES

0.0%

OFF

FAULT

FAULT

NOT SEL

NO

DTC

NO

YES

0.0%

OFF

FAULT

FAULT

NOT SEL

NO

DTC

NO

YES

0.0%

OFF

FAULT

FAULT

NOT SEL

NO

DTC

30.04 MOT THERM PROT NO

30.05 MOTOR THERM DTC

PMODE

30.06 MOTOR THERM

TIME

30.07 MOTOR LOAD

(calculated)

100.0%

CURVE

30.08 ZERO SPEED LOAD 74.0%

30.09 BREAK POINT 45.0 Hz

30.10 STALL FUNCTION FAULT

30.11 STALL FREQ HI 20.0 Hz

30.12 STALL TIME 20.00 s

30.13 UNDERLOAD

FUNCTIO

30.14 UNDERLOAD TIME 600 s

30.15 UNDERLOAD

CURVE

30.16 MOTOR PHASE

NO

1

NO

LOSS

30.17 EARTH FAULT

30.18 PRESET FREQ

FAULT

10.00 Hz

30.19 COMM FAULT FUNC FAULT

30.20 MAIN REF DS T-OUT 1.00 s

30.21 COMM FAULT RO/AO ZERO

(calculated)

100.0%

74.0%

45.0 Hz

FAULT

20.0 Hz

20.00 s

NO

600 s

1

NO

FAULT

10.00 Hz

FAULT

1.00 s

ZERO

(calculated)

100.0%

74.0%

45.0 Hz

FAULT

20.0 Hz

20.00 s

NO

600 s

1

NO

FAULT

10.00 Hz

FAULT

1.00 s

ZERO

(calculated)

100.0%

74.0%

45.0 Hz

FAULT

20.0 Hz

20.00 s

NO

600 s

1

NO

FAULT

10.00 Hz

FAULT

1.00 s

ZERO

PB W

382

383 W

384

426

427

428

476

477

478

479

480

501 W

502 W

503 W

504 W

601

602

603

604

605

606

607

614

615

616

617

618

619

620

621

608

609

610

611

612

613

401 W

402

403

404

405

406

407

408

409

Additional data: actual signals and parameters

228

Index Name/Selection Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

TER

30.22 AUX REF DS T-OUT 3.00 s

30.23 LIMIT WARNING 0000000

3.00 s

0000000

3.00 s

0000000

3.00 s

0000000

31 AUTOMATIC RESET

31.01 NUMBER OF TRIALS 0

31.02 TRIAL TIME 30.0 s

31.03 DELAY TIME

31.04 OVERCURRENT

31.05 OVERVOLTAGE

31.06 UNDERVOLTAGE

31.07 AI SIGNAL<MIN

32 SUPERVISION

0.0 s

NO

NO

NO

NO

32.01 FREQ1 FUNCTION NO

32.02 FREQ1 LIMIT 0 Hz

32.03 FREQ2 FUNCTION NO

32.04 FREQ2 LIMIT

32.05 CURRENT

FUNCTION

0 Hz

NO

0

30.0 s

0.0 s

NO

NO

NO

NO

NO

0 Hz

NO

0 Hz

NO

0

30.0 s

0.0 s

NO

NO

NO

NO

NO

0 Hz

NO

0 Hz

NO

0

30.0 s

0.0 s

NO

NO

NO

NO

NO

0 Hz

NO

0 Hz

NO

32.06 CURRENT LIMIT

32.07 REF1 FUNCTION

32.08 REF1 LIMIT

32.09 REF2 FUNCTION

32.10 REF2 LIMIT

32.11 ACT1 FUNCTION

32.12 ACT1 LIMIT

32.13 ACT2 FUNCTION

32.14 ACT2 LIMIT

0 A

NO

0 Hz

NO

0%

NO

0%

NO

0%

32.15 RESET START CNT NO

33 INFORMATION

33.01 SW PACKAGE VER (Version)

33.02 APPLIC NAME

33.03 TEST DATE

40 PI-CONTROLLER

(Version)

(Date)

0 A

NO

0 Hz

NO

0%

NO

0%

NO

0%

NO

(Version)

(Version)

(Date)

0 A

NO

0 Hz

NO

0%

NO

0%

NO

0%

NO

(Version)

(Version)

(Date)

0 A

NO

0 Hz

NO

0%

NO

0%

NO

0%

NO

(Version)

(Version)

(Date)

40.01 PI GAIN

40.02 PI INTEG TIME

40.07 ACT1 MINIMUM

40.08 ACT1 MAXIMUM

40.09 ACT2 MINIMUM

2.5

3.00 s

40.03 ERROR VALUE INV NO

40.04 ACTUAL VALUE SEL ACT1

40.05 ACTUAL1 INPUT SEL AI2

40.06 ACTUAL2 INPUT SEL AI3

0%

100%

0%

40.10 ACT2 MAXIMUM 100%

40.11 ACT1 UNIT SCALE 0.10

40.12 ACTUAL 1 UNIT bar

2.5

3.00 s

NO

ACT1

AI2

AI3

0%

100%

0%

100%

0.10

bar

0.10

bar

0.10

40.13 ACT2 UNIT SCALE 0.10

40.14 ACTUAL 2 UNIT

40.15 ACTUAL FUNC bar

0.10

SCALE

40.16 ACTUAL1 PTR

41 PFC-CONTROL 1

0 0 N/A

41.01 SET POINT 1/2 SEL SET POINT 1 SET POINT 1 N/A

41.02 SET POINT 1 SRCE INTERNAL

41.03 SPOINT 1 INTERNAL 40.0%

INTERNAL

40.0%

N/A

N/A

41.04 SPOINT 2 INTERNAL 40.0%

41.05 REFERENCE STEP 1 0.0%

41.06 REFERENCE STEP 2 0.0%

40.0%

0.0%

0.0%

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

PB W

622

623

651

652

653

654

655

676

677

678

866

876

877

878

879

880

881

626

627

628

629

630

631

632

656

657

658

659

660

661

662

663

664

665

857

858

859

860

861

862

851

852

853

854

855

856

863

864

865

Additional data: actual signals and parameters

229

Index Name/Selection Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

TER

41.07 REFERENCE STEP 3 0.0%

41.08 REFERENCE STEP 4 0.0%

41.09 REFERENCE STEP 5 0.0%

41.10 REFERENCE STEP 6 0.0%

41.11 REFERENCE STEP 7 0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

41.12 START FREQ 1

41.13 START FREQ 2

41.14 START FREQ 3

41.15 START FREQ 4

41.16 START FREQ 5

41.17 START FREQ 6

41.18 START FREQ 7

41.19 LOW FREQ 1

41.20 LOW FREQ 2

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

25.0 Hz

25.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

50.0 Hz

25.0 Hz

25.0 Hz

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

41.21 LOW FREQ 3

41.22 LOW FREQ 4

41.23 LOW FREQ 5

41.24 LOW FREQ 6

41.25 LOW FREQ 7

41.26 FOLLOWER START

DL

41.27 FOLLOWER STOP

DLY

42 PFC CONTROL 2

42.01 NBR OF AUX

MOTORS

25.0 Hz

25.0 Hz

25.0 Hz

25.0 Hz

25.0 Hz

5.0 s

3.0 s

N/A

25.0 Hz

25.0 Hz

25.0 Hz

25.0 Hz

25.0 Hz

5.0 s

3.0 s

ONE

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

42.02 AUX MOT START

DLY

N/A

42.03 AUX MOT STOP DLY N/A

42.04 INTERLOCKS

42.06 AUTOCHANGE

INTERV

N/A

N/A

42.07 AUTOCHANGE

LEVEL

42.11 REGUL BYPASS

N/A

42.08 FREQ TIME ON DLY N/A

42.09 FREQ TIME OFF DLY N/A

42.10 PFC START DELAY N/A

N/A

0.0 Hz

0.0 s

0.0 s

500 ms

NO

N/A

N/A

N/A

N/A

N/A

43

CTRL

SLEEP FUNCTION

43.01 SLEEP SELECTION INTERNAL INTERNAL N/A

43.02 SLEEP DELAY

43.03 SLEEP LEVEL

60.0 s

0.0 Hz

60.0 s

0.0 Hz

N/A

N/A

43.04 WAKE UP SEL MODE WAKE UP 1 WAKE UP 1 N/A

43.05 WAKE UP LEVEL

43.06 WAKE UP DELAY

43.07 SLEEP BOOST STEP 0.0%

43.08 SLEEP BOOST TIME 0.0 s

43.09 SLEEP1 SEL PTR

43.10 SLEEP2 SEL PTR

0.0%

0.0 s

0

0

44 PFC PROTECTION

44.01 INPUT PROT CTRL NOT SEL

44.02 AI MEASURE INLET NOT USED

44.03 AI IN LOW LEVEL

44.04 VERY LOW CTRL

44.05 AI IN VERY LOW

0.0%

NOT SEL

0.0%

5.0 s

3.0 s

SET 1

0 h 00 min

0.0%

0.0 s

0.0%

0.0 s

0

0

NOT SEL

0.0%

NOT SEL

0.0%

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

NOT SEL

NOT USED NOT USED

0.0%

NOT SEL

0.0%

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

NOT SEL

NOT USED

0.0%

NOT SEL

0.0%

-

PB W

901

902

903

904

906

907

908

909

910

911

951

952

953

954

955

926

927

928

929

930

931

932

933

934

935

890

891

892

893

894

895

882

883

884

885

886

887

888

889

896

897

898

-

899

900

Additional data: actual signals and parameters

230

Index Name/Selection Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

44.06 DI STATUS INLET

44.07 INPUT CTRL DLY

TER

NOT USED

0 s

44.08 INLET FORCED REF 0%

44.09 OUTPUT PROT NOT SEL

CTRL

44.10 AI MEASURE

OUTLET

NOT USED

44.11 AI OUT HIGH LEVEL 0.0%

NOT USED NOT USED NOT USED

0 s

0%

NOT SEL

NOT USED

0 s

0%

NOT SEL

NOT USED

0 s

0%

NOT SEL

NOT USED

44.12 VERY HIGH CTRL NOT SEL

44.13 AI OUT VERY HIGH 0%

44.14 DI STATUS OUTLET NOT USED

0.0%

NOT SEL

0%

0.0%

NOT SEL

0%

0.0%

NOT SEL

0%

NOT USED NOT USED NOT USED

44.15 OUTPUT CTRL DLY 0 s

44.16 OUTLET FORCED

REF

44.17 PI REF DEC TIME

44.18 APPL PROFILE

CTRL

0%

1.00 s

APPL

OUTPUT

44.19 PROFILE OUTP LIM 100%

44.20 PROF LIMIT ON DLY 0.0 h

44.21 PI REF FREEZE

44.22 PI OUT FREEZE

45 FLOWCONTROL

45.01 FLOW MODE

NO

NO

OFF

45.02 SUM FLOW RESET OFF

45.03 MAX INLET 0.00 bar

PRESSUR

45.04 MAX OUTLET

PRESSU

45.07 Q1

0.00 bar

0.0 m

3

/h

0 s

0%

1.00 s

APPL

OUTPUT

100%

0.0 h

NO

NO

OFF

OFF

0.00 bar

0.00 bar

0 s

0%

1.00 s

APPL

OUTPUT

100%

0.0 h

NO

NO

OFF

OFF

0.00 bar

0.00 bar

0 s

0%

1.00 s

APPL

OUTPUT

100%

0.0 h

NO

NO

OFF

OFF

0.00 bar

0.00 bar

45.08 H1

45.09 Q2

45.10 H2

45.11 Q3

45.12 H3

45.13 Q4

45.14 H4

45.15 Q5

45.16 H5

0.0 m

0.0 m

3

0.0 m

0.0 m

3

0.0 m

0.0 m

0.0 m

0.0 m

0.0 m

3

3

/h

/h

/h

/h

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

0.0 m

3

/h

0.0 m

45.17 FLOW CALC MODE Q-H CURVE Q-H CURVE Q-H CURVE Q-H CURVE

45.18 Q H Q KW 0.00 m 0.00 m 0.00 m 0.00 m

BRKPOINT

45.19 DENSITY

45.20 PUMP KW1

45.21 PUMP Q1

1000.0 kg/m

3

0.0 kW

0.0 m

3

/h

1000.0 kg/m

3

0.0 kW

0.0 m

3

/h

1000.0 kg/m

3

0.0 kW

0.0 m

3

/h

1000.0 kg/m

3

0.0 kW

0.0 m

3

/h

45.22 PUMP KW2

45.23 PUMP Q2

45.24 PUMP KW3

45.25 PUMP Q3

45.26 EFFICIENCY

0.0 kW

0.0 m

1.00

3

0.0 kW

0.0 m

3

/h

/h

100.0%

45.27 PUMP NOM SPEED 1500 rpm

45.28 PUMP INLET SEL NOT SEL

45.29 PUMP OUTLET SEL NOT SEL

45.30 FLOW CALC GAIN

45.31 PUMP INLET DIAM 1.00 m

45.32 PUMP OUTLET DIAM 1.00 m

45.33 SENSOR HGT DIFF 0.00 m

0.0 kW

0.0 m

3

/h

0.0 kW

0.0 m

3

/h

100.0%

1500 rpm

NOT SEL

NOT SEL

1.00

1.00 m

1.00 m

0.00 m

0.0 kW

0.0 m

3

/h

0.0 kW

0.0 m

3

/h

100.0%

1500 rpm

NOT SEL

NOT SEL

1.00

1.00 m

1.00 m

0.00 m

0.0 kW

0.0 m

3

/h

0.0 kW

0.0 m

3

/h

100.0%

1500 rpm

NOT SEL

NOT SEL

1.00

1.00 m

1.00 m

0.00 m

PB W

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

976

977

978

979

-

-

-

-

-

-

994

995

996

997

998

999

-

-

1000

982

983

984

985

986

987

988

989

990

991

992

993

Additional data: actual signals and parameters

231

Index Name/Selection Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

TER

45.34 FLOW RESET PTR 0

46 ANTI JAM

0 0 0

46.01 A JAM ENABLE1

46.04 A JAM

FWDSTEPLEV

NOT SEL

46.02 A JAM ENABLE MF MASTER

46.03 A JAM TRIGG MODE NOT SEL

0.0%

46.05 A JAM REVSTEPLEV 0.0%

NOT SEL

N/A

NOT SEL

0.0%

0.0%

0.00 s

NOT SEL

N/A

NOT SEL

0.0%

0.0%

0.00 s

NOT SEL

MASTER

NOT SEL

0.0%

0.0%

0.00 s 46.06 A JAM FWDSTEP

TIM

0.00 s

46.07 A JAM REVSTEP TIM 0.00 s

46.08 A JAM STEP OFFTIM 0.00 s

46.09 A JAM I TRIGG LE 0.00 A

46.10 A JAM TIMETRIG LE 0.00 h

46.11 A JAM COUNT

47 LEVEL CONTROL

0

46.12 A JAM ENB1 POINT 0

47.02 PUMP DIRECTION N/A

47.03 CONTROL MODE N/A

0.00 s

0

0

0.00 s

0.00 A

0.00 h

N/A

N/A

0.00 s

0.00 s

0.00 A

0.00 h

0

0

N/A

N/A

0.00 s

0.00 s

0.00 A

0.00 h

0

0

47.04 LEVEL SOURCE SEL N/A

47.05 LOW LEVEL1

47.06 LOW LEVEL 2

47.07 STOP LEVEL

47.08 START1 LEVEL

47.09 START2 LEVEL

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

EMPTYING

COMMON

STOP

AI2

0.00%

NOT SEL

20.00%

40.00%

50.00%

47.10 START3 LEVEL

47.11 START4 LEVEL

47.12 START5 LEVEL

47.13 START6 LEVEL

47.14 START7 LEVEL

47.15 START8 LEVEL

47.16 HIGH LEVEL1

47.17 HIGH LEVEL 2

47.18 LEVEL DELAY

51 COMM MOD DATA

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

47.19 RANDOM COEF N/A

47.20 EFFICIENCY SPEED N/A

47.21 HIGH LEVEL SPEED N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

NOT SEL

1.00 s

0.00%

90.00%

100.0%

-

PB W

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1026

...

52 STANDARD

MODBUS

52.01 STATION NUMBER 1

52.02 BAUDRATE 9600

52.03 PARITY

60 MASTER-

FOLLOWER

ODD

60.01 PUMP NODE 1

60.02 FOLLOWER MODE AUTO

60.03 FOLLOWER REF 50.0 Hz

60.04 AUTOCHANGE

STYLE

60.05 AUTOCHANGE

NO

3 min

INTERV

60.07 NUM PUMPS

ALLOWED

8

1

9600

ODD

N/A

N/A

N/A

N/A

N/A

N/A

1

9600

ODD

N/A

N/A

N/A

N/A

N/A

N/A

1

9600

ODD

1

AUTO

N/A

NO

3 min

3

1051

1052

1053

1195

1196

1197

1198

1199

1201

Additional data: actual signals and parameters

232

Index Name/Selection Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

TER

60.08 MASTER ENABLE YES

60.09 PUMP RUNTIME SEL NO

60.10 PUMP RUNTIME

60.11 PUMP RUNTIME

DIFF

0 h

1 h

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

YES

NO

0 h

1 h

60.12 PUMP CLASS SEL PAR CLASS1 N/A

60.13 PUMP CLASS 1 1 N/A

60.14 PUMP CLASS 2 1 N/A

60.17 MASTER LOSS LAST SPEED N/A

60.18 F T M COMM LOSS FOLL CTRL N/A

60.19 COMM DELAY 1.0 s N/A

60.20 ALL FOLL LOST

60.21 MIN PUMP

CONTINUE

0

60.22 INV ORDER CORR OPT

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

PAR CLASS1

1

1

LAST SPEED

FOLL CTRL

1.0 s

CONTINUE

0

OPT

CONTROL

1.0 s

1.0 s

IN STARTED

CONTROL

60.23 RAMP ACCEL TIME 1.0 s

60.24 RAMP DECEL TIME 1.0 s

N/A

N/A

60.25 MASTER LOCATION IN STARTED N/A

65 SHARE IO

65.01 SHARE IO ACTIVE NO NO

65.02 REPLACE IO

65.03 SECONDARY

SOURCE

0000000

NO

0000000

NO

N/A

N/A

N/A

NO

0000000

NO

CONTINUE CONTINUE CONTINUE 65.04 SHARE IO COM

LOST

65.05 IO COM LOST

70

DELAY

DDCS CONTROL

70.01 CH0 NODE ADDR

70.02 CH3 NODE ADDR

70.03 CH2 HW

CONNECTION

5.0 s

1

1

RING

5.0 s

1

1

RING

5.0 s

1

1

RING

NO

0000000

NO

CONTINUE

5.0 s

1

1

RING

83 ADAPT PROG

CNTRL

83.01 ADAPT PROG CMD EDIT

83.02 EDIT CMD

83.03 EDIT BLOCK

83.04 TIMELEV SEL

83.05 PASSCODE

84 ADAPTIVE

PROGRAM

NO

0

100 ms

0

84.01 STATUS

84.02 FAULTED PAR

84.05 BLOCK1

84.06 INPUT1

84.07 INPUT2

84.08 INPUT3

84.09 OUTPUT

… …

0

NO

0

0

0

0

EDIT

NO

0

100 ms

0

0

NO

0

0

0

0

EDIT

NO

0

100 ms

0

0

NO

0

0

0

0

EDIT

NO

0

100 ms

0

0

NO

0

0

0

0

0 0 0

-

-

-

PB W

1202

1203

1204

1205

-

-

-

1206

1207

1208

-

1211

1212

1285

1286

1287

1288

1289

1375

1376

1377

1609 W

1610

1611

1612

1613

1628

1629

1630

1631

1632

1633

-

1634

1644

84.79 OUTPUT

85 USER CONSTANTS

85.01 CONSTANT1

85.02 CONSTANT2

85.03 CONSTANT3

85.04 CONSTANT4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1645

1646

1647

1648

Additional data: actual signals and parameters

233

Index Name/Selection

85.05 CONSTANT5

85.06 CONSTANT6

85.07 CONSTANT7

85.08 CONSTANT8

85.09 CONSTANT9

85.10 CONSTANT10

85.11 STRING1

85.12 STRING2

TER

0

0

0

0

Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

0

85.13 STRING3

85.14 STRING4

85.15 STRING5

90 D SET REC ADDR

90.01 AUX DS REF3

90.02 AUX DS REF4

90.03 AUX DS REF5 0

90.04 MAIN DS SOURCE 1

90.05 AUX DS SOURCE

0

0

3

92 D SET TR ADDR

92.01 MAIN DS STATUS

WORD

302

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

MESSAGE1 MESSAGE1 MESSAGE1 MESSAGE1

MESSAGE2 MESSAGE2 MESSAGE2 MESSAGE2

MESSAGE3 MESSAGE3 MESSAGE3 MESSAGE3

MESSAGE4 MESSAGE4 MESSAGE4 MESSAGE4

MESSAGE5 MESSAGE5 MESSAGE5 MESSAGE5

0

0

0

1

3

302

0

0

0

1

3

302

0

0

0

1

3

302

92.02 MAIN DS ACT1

92.03 MAIN DS ACT2

92.04 AUX DS ACT3

92.05 AUX DS ACT4

92.06 AUX DS ACT5

95 HARDWARE SPECIFI

102

105

305

308

306

102

105

305

308

306

102

105

305

308

306

102

105

305

308

306

95.06 LCU Q POW REF

95.07 LCU DC REF

95.08 LCU PAR1 SEL

95.09 LCU PAR2 SEL

96 ANALOGUE

OUTPUTS

0

0

106

110

0

0

106

110

0

0

106

110

0

0

106

110

96.01 EXT AO1 SEL

96.02 INVERT EXT AO1

FREQUENCY FREQUENCY FREQUENCY FREQUENCY

NO

96.03 MINIMUM EXT AO1 0 mA

NO

0 mA

NO

0 mA

NO

0 mA

96.04 FILTER EXT AO1

96.05 SCALE EXT AO1

96.06 EXT AO2 SEL

0.10 s

100%

CURRENT

0.10 s

100%

CURRENT

0.10 s

100%

CURRENT

0.10 s

100%

CURRENT

96.07 INVERT EXT AO2 NO

96.08 MINIMUM EXT AO2 0 mA

96.09 FILTER EXT AO2 2.00 s

96.10 SCALE EXT AO2

96.11 EXT AO1 PTR

96.12 EXT AO2 PTR

100%

0

0

NO

0 mA

2.00 s

100%

0

0

NO

0 mA

2.00 s

100%

0

0

NO

0 mA

2.00 s

100%

0

0

98 OPTION MODULES

98.02 COMM. MODULE

LINK

98.06 AI/O EXT MODULE

99 START-UP DATA

99.01 LANGUAGE

NO

98.03 DI/O EXT MODULE 1 NO

98.04 DI/O EXT MODULE 2 NO

NO

ENGLISH

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

98.07 COMM PROFILE ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES

98.08 AI/O EXT AI1 FUNC UNIP AI5

98.09 AI/O EXT AI2 FUNC UNIP AI6

UNIP AI5

UNIP AI6

UNIP AI5

UNIP AI6

UNIP AI5

UNIP AI6

ENGLISH ENGLISH ENGLISH

PB W

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1735

1736

1737

1738

1739

1771

1772

1773

1774

1775

1776

1830

1831

1832

1833

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1902 W

1903 W

1904 W

1906 W

1907 W

1908 W

1909 W

1926 W

Additional data: actual signals and parameters

234

Index Name/Selection

VOLTAGE

99.06 MOTOR NOM

CURRENT

Default setting

MULTIMASPFC TRAD HAND/AUTO LEVEL CTRL USER 1 USER 2

99.02 APPLICATION

MACRO

TER

MULTIMAS-

TER

99.03 APPLIC RESTORE NO

99.04 MOTOR CTRL MODE DTC

99.05 MOTOR NOM 0 V

0.0 A

PFC TRAD

NO

DTC

0 V

0.0 A

HAND/AUTO LEVEL CTRL

NO

DTC

0 V

0.0 A

NO

DTC

0 V

0.0 A

99.07 MOTOR NOM FREQ 50.0 Hz

99.08 MOTOR NOM SPEED 1 rpm

99.09 MOTOR NOM

POWER

99.10 MOTOR ID RUN

99.11 DEVICE NAME

0.0 kW

NO

50.0 Hz

1 rpm

0.0 kW

NO

50.0 Hz

1 rpm

0.0 kW

NO

50.0 Hz

1 rpm

0.0 kW

NO

PB W

1927 W

1928 W

1929 W

1930 W

1931 W

1932 W

1933 W

1934 W

1935 W

1936

Additional data: actual signals and parameters

ABB Oy

AC Drives

P.O. Box 184

FIN-00381 HELSINKI

FINLAND

Telephone: +358 10 22 11

Fax: +358 10 22 22681

Internet: http://www.abb.com

ABB Inc.

Automation Technologies

Drives & Motors

16250 West Glendale Drive

New Berlin, WI 53151

USA

Telephone: 262 785-3200

Fax:

800-HELP-365

262 780-5135

advertisement

Key Features

  • Start-up and control through the I/O interface
  • Control panel operation
  • Program features
  • Application macros
  • Actual signals and parameters
  • Fault tracing
  • Fieldbus control
  • Analogue extension module
  • Pump control application examples
  • Additional data: actual signals and parameters

Related manuals

Frequently Answers and Questions

How do I start up the drive?
The start-up procedure is described in the "Start-up; and control through the I/O" chapter. The procedure requires the motor nameplate data and it involves power-up, manual start-up data entering and the ID Run.
How do I control the drive through the I/O interface?
The drive can be controlled through the I/O interface. The control signals include start, stop, direction, and speed reference. The procedure is described in the "Start-up; and control through the I/O" chapter.
How do I perform the ID Run?
The ID Run is a procedure for identifying the motor. The ID Run procedure is described in the "Start-up; and control through the I/O" chapter. It requires decoupling of the driven machine and it is essential only in applications which require the ultimate in motor control accuracy.
How do I use the control panel?
The control panel gives instructions for using the panel. It describes the panel’s operation mode keys and displays, the status row, and the drive control with the panel. The chapter also describes how to set speed reference, select actual signals to the display, view and reset the fault history, and select a drive and change its panel link ID number.
What are the key features of the pump control ACS800 Pump Control Application Program?
Key features include start-up and control through the I/O interface, control panel operation, program features, application macros, actual signals and parameters, fault tracing, fieldbus control, analogue extension module, pump control application examples and additional data: actual signals and parameters.
What are some of the different control modes available?
The drive can be controlled locally or externally. Local control is done through the control panel and external control is done through the I/O interface. The drive also supports various control modes including DTC (Direct Torque Control), SCALAR (scalar control mode) and PFC (Power Factor Correction). The choice of control mode depends on the specific application.
How do I troubleshoot faults?
The "Fault tracing" chapter lists the warning and fault messages with the possible causes and remedies. It also describes the fault history and warning messages generated by the drive and the control panel.
Download PDF

advertisement

Table of contents