Документация aduc7021_eng_tds

Документация aduc7021_eng_tds
Precision Analog Microcontroller, 12-Bit
Analog I/O, ARM7TDMI MCU
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
FEATURES
On-chip peripherals
UART, 2× I2C® and SPI serial I/O
Up to 40-pin GPIO port1
4× general-purpose timers
Wake-up and watchdog timers (WDT)
Power supply monitor
3-phase, 16-bit PWM generator1
Programmable logic array (PLA)
External memory interface, up to 512 kB1
Power
Specified for 3 V operation
Active mode: 11 mA @ 5 MHz, 40 mA @ 41.78 MHz
Packages and temperature range
From 40-lead 6 mm × 6 mm LFCSP to 80-lead LQFP1
Fully specified for –40°C to +125°C operation
Tools
Low cost QuickStart™ development system
Full third-party support
Analog I/O
Multichannel, 12-bit, 1 MSPS ADC
Up to 16 ADC channels1
Fully differential and single-ended modes
0 V to VREF analog input range
12-bit voltage output DACs
Up to 4 DAC outputs available1
On-chip voltage reference
On-chip temperature sensor (±3°C)
Voltage comparator
Microcontroller
ARM7TDMI core, 16-bit/32-bit RISC architecture
JTAG port supports code download and debug
Clocking options
Trimmed on-chip oscillator (±3%)
External watch crystal
External clock source up to 44 MHz
41.78 MHz PLL with programmable divider
Memory
62 kB Flash/EE memory, 8 kB SRAM
In-circuit download, JTAG-based debug
Software-triggered in-circuit reprogrammability
APPLICATIONS
Industrial control and automation systems
Smart sensors, precision instrumentation
Base station systems, optical networking
FUNCTIONAL BLOCK DIAGRAM
MUX
1MSPS
12-BIT ADC
ADC11
TEMP
SENSOR
ADuC7026
CMP0
CMP1
BAND GAP
REF
CMPOUT
12-BIT
DAC
DAC0
12-BIT
DAC
DAC1
12-BIT
DAC
DAC2
12-BIT
DAC
DAC3
VREF
XCLKI
OSC
AND PLL
PSM
RST
POR
3-PHASE
PWM
ARM7TDMI-BASED MCU WITH
ADDITIONAL PERIPHERALS
XCLKO
PLA
2k × 32 SRAM
31k × 16 FLASH/EEPROM
4 GENERALPURPOSE TIMERS
SERIAL I/O
UART, SPI, I2C
GPIO
JTAG
EXT. MEMORY
INTERFACE
PWM0H
PWM0L
PWM1H
PWM1L
PWM2H
PWM2L
04955-001
ADC0
Figure 1.
1
Depending on part model. See Ordering Guide for more information.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2005-2012 Analog Devices, Inc. All rights reserved.
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Calibration................................................................................... 46
Applications ....................................................................................... 1
Temperature Sensor ................................................................... 46
Functional Block Diagram .............................................................. 1
Band Gap Reference ................................................................... 46
Revision History ............................................................................... 3
Nonvolatile Flash/EE Memory ..................................................... 47
General Description ......................................................................... 4
Programming .............................................................................. 47
Detailed Block Diagram .............................................................. 5
Security ........................................................................................ 48
Specifications..................................................................................... 6
Flash/EE Control Interface ....................................................... 48
Timing Specifications .................................................................. 9
Execution Time from SRAM and Flash/EE............................ 50
Absolute Maximum Ratings .......................................................... 16
Reset and Remap ........................................................................ 50
ESD Caution ................................................................................ 16
Other Analog Peripherals .............................................................. 52
Pin Configurations and Function Descriptions ......................... 17
DAC.............................................................................................. 52
ADuC7019/ADuC7020/ADuC7021/ADuC7022 .................. 17
Power Supply Monitor ............................................................... 53
ADuC7024/ADuC7025 ............................................................. 21
Comparator ................................................................................. 53
ADuC7026/ADuC7027 ............................................................. 24
Oscillator and PLL—Power Control ........................................ 54
ADuC7028 ................................................................................... 27
Digital Peripherals .......................................................................... 57
ADuC7029 ................................................................................... 29
3-Phase PWM ............................................................................. 57
Typical Performance Characteristics ........................................... 31
Description of the PWM Block ................................................ 58
Terminology .................................................................................... 34
General-Purpose Input/Output................................................ 63
ADC Specifications .................................................................... 34
Serial Port Mux ........................................................................... 65
DAC Specifications..................................................................... 34
UART Serial Interface ................................................................ 65
Overview of the ARM7TDMI Core ............................................. 35
Serial Peripheral Interface ......................................................... 69
Thumb Mode (T)........................................................................ 35
I2C-Compatible Interfaces......................................................... 71
Long Multiply (M) ...................................................................... 35
Programmable Logic Array (PLA)........................................... 75
EmbeddedICE (I) ....................................................................... 35
Processor Reference Peripherals................................................... 78
Exceptions ................................................................................... 35
Interrupt System ......................................................................... 78
ARM Registers ............................................................................ 35
Timers .......................................................................................... 79
Interrupt Latency ........................................................................ 36
External Memory Interfacing ................................................... 84
Memory Organization ................................................................... 37
Hardware Design Considerations ................................................ 88
Memory Access ........................................................................... 37
Power Supplies ............................................................................ 88
Flash/EE Memory ....................................................................... 37
Grounding and Board Layout Recommendations................. 89
SRAM ........................................................................................... 37
Clock Oscillator .......................................................................... 89
Memory Mapped Registers ....................................................... 37
Power-On Reset Operation ....................................................... 90
ADC Circuit Overview .................................................................. 41
Typical System Configuration .................................................. 90
Transfer Function ....................................................................... 41
Development Tools......................................................................... 91
Typical Operation ....................................................................... 42
PC-Based Tools ........................................................................... 91
MMRs Interface .......................................................................... 42
In-Circuit Serial Downloader ................................................... 91
Converter Operation .................................................................. 44
Outline Dimensions ....................................................................... 92
Driving the Analog Inputs ........................................................ 45
Ordering Guide .......................................................................... 95
Rev. E | Page 2 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
REVISION HISTORY
7/12—Rev. D to Rev. E
Changed SCLOCK to SCLK When Refering to SPI Clock,
SPIMISO to MISO when Refering to SPI MISO, SPIMOSI to
MOSI when Refering to SPI MOSI, and SPICSL to CS when
Refering to SPI Chip Select ............................................... Universal
Changes to Table 4, Table 5, and Figure 5 ....................................11
Changes to Endnote 1 in Table 6 and Figure 6 ............................12
Changes to Table 7 and Figure 7 ...................................................13
Changes to Table 8 and Figure 8 ...................................................14
Changes to Table 9 and Figure 9 ...................................................15
Changed EPAD Note in Figure 12 and Table 11 .........................18
Changed EPAD Note in Figure 13 and Table 12 .........................21
Changes to Bit 6 in Table 18...........................................................43
Changes to Example Source Code (External Crystal Selection)
Section and Example Source Code (External Clock Selection)
Section ...............................................................................................55
Changes to Serial Peripheral Interface Section ...........................69
Changes to SPICON[10] and SPICON[9] Descriptions in
Table 123 ...........................................................................................70
Changes to Timer Interval Down Equation and Added Timer
Interval Up Equation ......................................................................79
Added Hour:Minute:Second:1/128 Format Section ...................80
Changes to Table 189 ......................................................................84
Removed CP-40-10 Package ..........................................................92
Changes to Ordering Guide ...........................................................96
Changes to Figure 55 ...................................................................... 53
Changes to Serial Peripheral Interface Section ........................... 69
Changes to Table 137 ...................................................................... 73
Changes to Figure 71 and Figure 72 ............................................. 85
Changes to Figure 73 and Figure 74 ............................................. 86
Updated Outline Dimensions........................................................ 91
Changes to Ordering Guide ........................................................... 94
3/07—Rev. A to Rev. B
Changes to Table 4 ..........................................................................11
Changes to Table 105 ......................................................................67
Updated Outline Dimensions ........................................................91
Changes to Ordering Guide ...........................................................94
Added ADuC7028 Part ..................................................... Universal
Updated Format ................................................................. Universal
Changes to Figure 2 .......................................................................... 5
Changes to Table 1 ............................................................................ 6
Changes to ADuC7026/ADuC7027 Section ............................... 23
Changes to Figure 21 ...................................................................... 28
Changes to Figure 32 Caption ....................................................... 30
Changes to Table 14 ........................................................................ 35
Changes to ADC Circuit Overview Section ................................ 38
Changes to Programming Section ................................................ 44
Changes to Flash/EE Control Interface Section.......................... 45
Changes to Table 24 ........................................................................ 47
Changes to RSTCLR Register Section .......................................... 48
Changes to Figure 52 ...................................................................... 49
Changes to Figure 53 ...................................................................... 50
Changes to Comparator Section ................................................... 50
Changes to Oscillator and PLL—Power Control Section .......... 51
Changes to Digital Peripherals Section ........................................ 54
Changes to Interrupt System Section ........................................... 75
Changes to Timers Section ............................................................ 76
Changes to External Memory Interfacing Section ..................... 80
Added IOVDD Supply Sensitivity Section ..................................... 84
Changes to Ordering Guide ........................................................... 90
12/09—Rev. B to Rev. C
1/06—Rev. 0 to Rev. A
5/11—Rev. C to Rev. D
Added ADuC7029 Part ..................................................... Universal
Added Table Numbers and Renumbered Tables ............... Universal
Changes to Figure Numbers ............................................. Universal
Changes to Table 1 ............................................................................ 6
Changes to Figure 3 .......................................................................... 9
Changes to Table 3 and Figure 4 ...................................................10
Changes to Table 10 ........................................................................16
Changes to Table 1 ............................................................................ 6
Added the Flash/EE Memory Reliability Section ....................... 43
Changes to Table 30 ........................................................................ 52
Changes to Serial Peripheral Interface ......................................... 66
Changes to Ordering Guide ........................................................... 90
10/05—Revision 0: Initial Version
Rev. E | Page 3 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
GENERAL DESCRIPTION
The ADuC7019/20/21/22/24/25/26/27/28/29 are fully integrated,
1 MSPS, 12-bit data acquisition systems incorporating high
performance multichannel ADCs, 16-bit/32-bit MCUs, and
Flash®/EE memory on a single chip.
The ADC consists of up to 12 single-ended inputs. An additional
four inputs are available but are multiplexed with the four DAC
output pins. The four DAC outputs are available only on certain
models (ADuC7020, ADuC7026, ADuC7028, and ADuC7029).
However, in many cases where the DAC outputs are not present,
these pins can still be used as additional ADC inputs, giving a
maximum of 16 ADC input channels. The ADC can operate in
single-ended or differential input mode. The ADC input voltage
is 0 V to VREF. A low drift band gap reference, temperature sensor,
and voltage comparator complete the ADC peripheral set.
Depending on the part model, up to four buffered voltage
output DACs are available on-chip. The DAC output range is
programmable to one of three voltage ranges.
The devices operate from an on-chip oscillator and a PLL
generating an internal high frequency clock of 41.78 MHz
(UCLK). This clock is routed through a programmable clock
divider from which the MCU core clock operating frequency
is generated. The microcontroller core is an ARM7TDMI®,
16-bit/32-bit RISC machine, which offers up to 41 MIPS peak
performance. Eight kilobytes of SRAM and 62 kilobytes of
nonvolatile Flash/EE memory are provided on-chip. The
ARM7TDMI core views all memory and registers as a single
linear array.
On-chip factory firmware supports in-circuit serial download
via the UART or I2C serial interface port; nonintrusive emulation
is also supported via the JTAG interface. These features are
incorporated into a low cost QuickStart™ development system
supporting this MicroConverter® family.
The parts operate from 2.7 V to 3.6 V and are specified over an
industrial temperature range of −40°C to +125°C. When
operating at 41.78 MHz, the power dissipation is typically
120 mW. The ADuC7019/20/21/22/24/25/26/27/28/29 are
available in a variety of memory models and packages (see
Ordering Guide).
Rev. E | Page 4 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
25
54
28
27
37
ADuC7026*
ADC0 77
ADC1 78
12-BIT SAR
ADC 1MSPS
ADC2/CMP0 79
ADC3/CMP1 80
ADC
CONTROL
ADC4 1
75
70
69
12-BIT
VOLTAGE
OUTPUT DAC
BUF
10
DAC0*/ADC12
12-BIT
VOLTAGE
OUTPUT DAC
BUF
11
DAC1*/ADC13
12-BIT
VOLTAGE
OUTPUT DAC
BUF
12
DAC2*/ADC14
12-BIT
VOLTAGE
OUTPUT DAC
BUF
13
DAC3*/ADC15
DAC
CONTROL
ADC5 2
ADC6 3
MUX
ADC7 4
ADC8 5
ADC9 6
ADC10 7
ADC11 76
ADCNEG
DAC REF
26
DACV DD
RST
53
DACGND
LVDD
74
DGND
73
IOVDD
AVDD
67
IOGND
AVDD
71
IOGND
REFGND
72
IOVDD
AGND
8
AGND
GNDREF
DETAILED BLOCK DIAGRAM
TEMP
SENSOR
9
62kB FLASH/EE
(31k × 16 BITS)
ARM7TDMI
MUX
DAC
CMPOUT/IRQ
8192 BYTES USER RAM
(2k × 32 BITS)
3-PHASE
PWM
WAKE-UP/
RTC TIMER
MCU
CORE
BM/P0.0/CMPOUT/PLAI[7]/MS0 20
POWER SUPPLY
MONITOR
DOWNLOADER
VREF 68
VREF
29
P3.0/AD0/PWM0H/PLAI[8]
30
P3.1/AD1/PWM0L/PLAI[9]
31
P3.2/AD2/PWM1H/PLAI[10]
32
P3.3/AD3/PWM1L/PLAI[11]
38
P3.4/AD4/PWM2H/PLAI[12]
39
P3.5/AD5/PWM2L/PLAI[13]
46
P3.6/AD6/PWMTRIP/PLAI[14]
47
P3.7/AD7/PWMSYNC/PLAI[15]
P1.1/SPM1/PLAI[1]
P1.2/SPM2/PLAI[2]
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
22
34
21
49
50
Figure 2.
Rev. E | Page 5 of 96
17
33
43
P0.7/ECLK/XCLK/SPM8/PLAO[4]
40
IRQ0/P0.4/PWMTRIP/PLAO[1]/MS1
41
IRQ1/P0.5/ADCBUSY/PLAO[2]/MS2
35
36
48
24
16
P0.1/PWM2H/BLE
P1.0/T1/SPM0/PLAI[0]
23
XCLKI
P2.7/PWM1L/MS3
P4.5/AD13/PLAO[13]
15
XCLKO
45
P0.2/PWM2L/BHE
P4.4/AD12/PLAO[12]
14
44
P2.5/PWM0L/MS1
P4.3/AD11/PLAO[11]
42
P2.3/AE
P4.2/AD10/PLAO[10]
51
P2.4/PWM0H/MS00
P4.1/AD9/PLAO[9]
52
P2.2/RS/PWM0L/PLAO[7]
57
P2.1/WS/PWM0H/PLAO[6]
58
P0.6/T1/MRST/PLAO[3]
59
TCK
60
P0.3/TRST/A16/ADC BUSY
61
TDI
62
TDO
66
TMS
65
P2.0/SPM9/PLAO[5]/CONVSTART
64
P1.6/SPM6/PLAI[6]
63
P1.7/SPM7/PLAO[0]
56
INTERRUPT
CONTROLLER
POR
SERIAL PORT MULTIPLEXER
55
PLL
P2.6/PWM1H/MS2
UART
SERIAL PORT
P4.0/AD8/PLAO[8]
P4.7/AD15/PLAO[15] 19
PROG. LOGIC
ARRAY
JTAG
EMULATOR
SPI/I2C SERIAL
INTERFACE
P4.6/AD14/PLAO[14] 18
PROG. CLOCK
DIVIDER
*SEE ORDERING GUIDE FOR
FEATURE AVAILABILITY ON
DIFFERENT MODELS.
04955-002
OSC
BAND GAP
REFERENCE
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
SPECIFICATIONS
AVDD = IOVDD = 2.7 V to 3.6 V, VREF = 2.5 V internal reference, fCORE = 41.78 MHz, TA = −40°C to +125°C, unless otherwise noted.
Table 1.
Parameter
ADC CHANNEL SPECIFICATIONS
ADC Power-Up Time
DC Accuracy 1, 2
Resolution
Integral Nonlinearity
Min
Max
5
Unit
Test Conditions/Comments
Eight acquisition clocks and fADC/2
μs
12
Differential Nonlinearity 3, 4
DC Code Distribution
ENDPOINT ERRORS 5
Offset Error
Offset Error Match
Gain Error
Gain Error Match
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio (SNR)
Total Harmonic Distortion (THD)
Peak Harmonic or Spurious Noise
(PHSN)
Channel-to-Channel Crosstalk
ANALOG INPUT
Input Voltage Ranges
Differential Mode
Single-Ended Mode
Leakage Current
Input Capacitance
ON-CHIP VOLTAGE REFERENCE
Output Voltage
Accuracy
Reference Temperature Coefficient
Power Supply Rejection Ratio
Output Impedance
Internal VREF Power-On Time
EXTERNAL REFERENCE INPUT
Input Voltage Range
DAC CHANNEL SPECIFICATIONS
DC Accuracy 7
Resolution
Relative Accuracy
Differential Nonlinearity
Offset Error
Gain Error 8
Gain Error Mismatch
ANALOG OUTPUTS
Output Voltage Range_0
Output Voltage Range_1
Output Voltage Range_2
Output Impedance
Typ
±0.6
±1.0
±0.5
+0.7/−0.6
1
±1.5
±1
±1
±2
±1
±2
+1/−0.9
±5
Bits
LSB
LSB
LSB
LSB
LSB
LSB
LSB
LSB
LSB
69
−78
−75
dB
dB
dB
−80
dB
VCM 6 ± VREF/2
0 to VREF
±6
±1
20
2.5
±5
±40
75
70
1
0.625
AVDD
2.5 V internal reference
1.0 V external reference
2.5 V internal reference
1.0 V external reference
ADC input is a dc voltage
V
V
µA
pF
V
mV
ppm/°C
dB
Ω
ms
fIN = 10 kHz sine wave, fSAMPLE = 1 MSPS
Includes distortion and noise components
Measured on adjacent channels
During ADC acquisition
0.47 µF from VREF to AGND
TA = 25°C
TA = 25°C
V
RL = 5 kΩ, CL = 100 pF
12
±2
0.1
Bits
LSB
LSB
mV
%
%
0 to DACREF
0 to 2.5
0 to DACVDD
2
V
V
V
Ω
±1
±15
±1
Rev. E | Page 6 of 96
Guaranteed monotonic
2.5 V internal reference
% of full scale on DAC0
DACREF range: DACGND to DACVDD
Data Sheet
Parameter
DAC AC CHARACTERISTICS
Voltage Output Settling Time
Digital-to-Analog Glitch Energy
COMPARATOR
Input Offset Voltage
Input Bias Current
Input Voltage Range
Input Capacitance
Hysteresis4, 6
ADuC7019/20/21/22/24/25/26/27/28/29
Min
Input Capacitance
LOGIC INPUTS3
VINL, Input Low Voltage
VINH, Input High Voltage
LOGIC OUTPUTS
VOH, Output High Voltage
VOL, Output Low Voltage 11
CRYSTAL INPUTS XCLKI and XCLKO
Logic Inputs, XCLKI Only
VINL, Input Low Voltage
VINH, Input High Voltage
XCLKI Input Capacitance
XCLKO Output Capacitance
INTERNAL OSCILLATOR
Max
Unit
10
±20
µs
nV-sec
±15
1
mV
µA
V
pF
mV
AGND
AVDD − 1.2
7
2
Response Time
TEMPERATURE SENSOR
Voltage Output at 25°C
Voltage TC
Accuracy
POWER SUPPLY MONITOR (PSM)
IOVDD Trip Point Selection
Power Supply Trip Point Accuracy
POWER-ON-RESET
GLITCH IMMUNITY ON RESET PIN3
WATCHDOG TIMER (WDT)
Timeout Period
FLASH/EE MEMORY
Endurance 9
Data Retention 10
DIGITAL INPUTS
Logic 1 Input Current
Logic 0 Input Current
Typ
15
3
µs
780
−1.3
±3
mV
mV/°C
°C
2.79
3.07
±2.5
2.36
50
V
V
%
V
µs
0
512
10,000
20
Test Conditions/Comments
1 LSB change at major carry (where maximum
number of bits simultaneously changes in the
DACxDAT register)
Hysteresis turned on or off via the CMPHYST bit in
the CMPCON register
100 mV overdrive and configured with CMPRES = 11
Two selectable trip points
Of the selected nominal trip point voltage
sec
Cycles
Years
±0.2
−40
±1
−60
µA
µA
−80
10
−120
µA
pF
0.8
V
V
TJ = 85°C
All digital inputs excluding XCLKI and XCLKO
VIH = IOVDD or VIH = 5 V
VIL = 0 V; except TDI on
ADuC7019/20/21/22/24/25/29
VIL = 0 V; TDI on ADuC7019/20/21/22/24/25/29
All logic inputs excluding XCLKI
2.0
0.4
V
V
All digital outputs excluding XCLKO
ISOURCE = 1.6 mA
ISINK = 1.6 mA
±3
±24
V
V
pF
pF
kHz
%
%
TA = 0°C to 85°C range
2.4
1.1
1.7
20
20
32.768
Rev. E | Page 7 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Parameter
MCU CLOCK RATE
From 32 kHz Internal Oscillator
From 32 kHz External Crystal
Using an External Clock
Min
DACVDD Current 15
Digital Power Supply Current
IOVDD Current in Normal Mode
IOVDD Current in Pause Mode
IOVDD Current in Sleep Mode
Additional Power Supply Currents
ADC
DAC
ESD TESTS
HBM Passed Up To
FCIDM Passed Up To
Max
Unit
Test Conditions/Comments
44
41.78
kHz
MHz
MHz
MHz
CD 12 = 7
CD12 = 0
TA = 85°C
TA = 125°C
Core clock = 41.78 MHz
326
41.78
0.05
0.05
START-UP TIME
At Power-On
From Pause/Nap Mode
From Sleep Mode
From Stop Mode
PROGRAMMABLE LOGIC ARRAY (PLA)
Pin Propagation Delay
Element Propagation Delay
POWER REQUIREMENTS 13, 14
Power Supply Voltage Range
AVDD to AGND and IOVDD to IOGND
Analog Power Supply Currents
AVDD Current
Typ
Data Sheet
130
24
3.06
1.58
1.7
ms
ns
µs
ms
ms
12
2.5
ns
ns
2.7
3.6
V
200
400
3
25
µA
µA
µA
7
11
40
25
250
600
10
15
45
30
400
1000
mA
mA
mA
mA
µA
µA
2
0.7
700
mA
mA
µA
4
0.5
1
CD12 = 0
CD12 = 7
From input pin to output pin
ADC in idle mode; all parts except ADuC7019
ADC in idle mode; ADuC7019 only
Code executing from Flash/EE
CD12 = 7
CD12 = 3
CD12 = 0 (41.78 MHz clock)
CD12 = 0 (41.78 MHz clock)
TA = 85°C
TA = 125°C
@ 1 MSPS
@ 62.5 kSPS
per DAC
2.5 V reference, TA = 25°C
kV
kV
All ADC channel specifications are guaranteed during normal MicroConverter core operation.
Apply to all ADC input channels.
Measured using the factory-set default values in the ADC offset register (ADCOF) and gain coefficient register (ADCGN).
4
Not production tested but supported by design and/or characterization data on production release.
5
Measured using the factory-set default values in ADCOF and ADCGN with an external AD845 op amp as an input buffer stage as shown in Figure 49. Based on external ADC
system components; the user may need to execute a system calibration to remove external endpoint errors and achieve these specifications (see the Calibration section).
6
The input signal can be centered on any dc common-mode voltage (VCM) as long as this value is within the ADC voltage input range specified.
7
DAC linearity is calculated using a reduced code range of 100 to 3995.
8
DAC gain error is calculated using a reduced code range of 100 to internal 2.5 V VREF.
9
Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at −40°C, +25°C, +85°C, and +125°C.
10
Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22m, Method A117. Retention lifetime derates with junction temperature.
11
Test carried out with a maximum of eight I/Os set to a low output level.
12
See the POWCON register.
13
Power supply current consumption is measured in normal, pause, and sleep modes under the following conditions: normal mode with 3.6 V supply, pause mode with
3.6 V supply, and sleep mode with 3.6 V supply.
14
IOVDD power supply current decreases typically by 2 mA during a Flash/EE erase cycle.
15
On the ADuC7019/20/21/22, this current must be added to the AVDD current.
2
3
Rev. E | Page 8 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
TIMING SPECIFICATIONS
Table 2. External Memory Write Cycle
Parameter
CLK1
tMS_AFTER_CLKH
tADDR_AFTER_CLKH
tAE_H_AFTER_MS
tAE
tHOLD_ADDR_AFTER_AE_L
tHOLD_ADDR_BEFORE_WR_L
tWR_L_AFTER_AE_L
tDATA_AFTER_WR_L
tWR
tWR_H_AFTER_CLKH
tHOLD_DATA_AFTER_WR_H
tBEN_AFTER_AE_L
tRELEASE_MS_AFTER_WR_H
Typ
UCLK
0
4
Max
Unit
4
8
ns
ns
12
ns
4
ns
½ CLK
(XMxPAR[14:12] + 1) × CLK
½ CLK + (!XMxPAR[10]) × CLK
(!XMxPAR[8]) × CLK
½ CLK + (!XMxPAR[10] + !XMxPAR[8]) × CLK
8
(XMxPAR[7:4] + 1) × CLK
0
(!XMxPAR[8]) × CLK
½ CLK
(!XMxPAR[8] + 1) × CLK
See Table 78.
CLK
CLK
tMS_AFTER_CLKH
MSx
tWR_L_AFTER_AE_L
tAE_H_AFTER_MS
AE
tWR
tRELEASE_MS_AFTER_WR_H
tAE
tWR_H_AFTER_CLKH
WS
tHOLD_DATA_AFTER_WR_H
RS
tHOLD_ADDR_AFTER_AE_L
tHOLD_ADDR_BEFORE_WR_L
tADDR_AFTER_CLKH
AD[16:1]
FFFF
9ABC
tDATA_AFTER_WR_L
5678
9ABE
1234
tBEN_AFTER_AE_L
BLE
BHE
04955-052
1
Min
A16
Figure 3. External Memory Write Cycle (See Table 78)
Rev. E | Page 9 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
Table 3. External Memory Read Cycle
Parameter
CLK1
tMS_AFTER_CLKH
tADDR_AFTER_CLKH
tAE_H_AFTER_MS
tAE
tHOLD_ADDR_AFTER_AE_L
tRD_L_AFTER_AE_L
tRD_H_AFTER_CLKH
tRD
tDATA_BEFORE_RD_H
tDATA_AFTER_RD_H
tRELEASE_MS_AFTER_RD_H
Typ
ns typ × (POWCON[2:0] + 1)
Max
Unit
8
16
ns
ns
½ CLK
(XMxPAR[14:12] + 1) × CLK
½ CLK + (! XMxPAR[10] ) × CLK
½ CLK + (! XMxPAR[10]+ ! XMxPAR[9] ) × CLK
0
4
(XMxPAR[3:0] + 1) × CLK
16
8
ns
+ (! XMxPAR[9]) × CLK
1 × CLK
See Table 78.
CLK
ECLK
tMS_AFTER_CLKH
MSx
tAE_H_AFTER_MS
tAE
tRELEASE_MS_AFTER_RD_H
tRD_L_AFTER_AE_L
AE
WS
tRD
tRD_H_AFTER_CLKH
RS
tADDR_AFTER_CLKH
tDATA_BEFORE_RD_H
tDATA_AFTER_RD_H
AD[16:1]
FFFF
2348
XXXX CDEF XX
234A
XX
89AB
tHOLD_ADDR_AFTER_AE_L
BHE
BLE
04955-053
1
Min
1/MD clock
4
4
A16
Figure 4. External Memory Read Cycle (See Table 78)
Rev. E | Page 10 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 4. I2C Timing in Fast Mode (400 kHz)
Parameter
tL
tH
tSHD
tDSU
tDHD
tRSU
tPSU
tBUF
tR
tF
tSUP
1
Description
SCL low pulse width1
SCL high pulse width1
Start condition hold time
Data setup time
Data hold time
Setup time for repeated start
Stop condition setup time
Bus-free time between a stop condition and a start condition
Rise time for both SCL and SDA
Fall time for both SCL and SDA
Pulse width of spike suppressed
Min
200
100
300
100
0
100
100
1.3
Slave
Max
Master
Typ
1360
1140
Unit
ns
ns
ns
ns
ns
ns
ns
s
ns
ns
ns
740
400
400
300
300
50
200
tHCLK depends on the clock divider or CD bits in the POWCON MMR. tHCLK = tUCLK/2CD; see Figure 57.
Table 5. I2C Timing in Standard Mode (100 kHz)
Parameter
tL
tH
tSHD
tDSU
tDHD
tRSU
tPSU
tBUF
tR
tF
Description
SCL low pulse width1
SCL high pulse width1
Start condition hold time
Data setup time
Data hold time
Setup time for repeated start
Stop condition setup time
Bus-free time between a stop condition and a start condition
Rise time for both SCL and SDA
Fall time for both SCL and SDA
Master
Typ
Unit
μs
ns
μs
ns
μs
μs
μs
μs
μs
ns
tHCLK depends on the clock divider or CD bits in the POWCON MMR. tHCLK = tUCLK/2CD; see Figure 57.
tBUF
tSUP
tR
SDA (I/O)
MSB
LSB
tDSU
tSHD
P
S
tF
tDHD
2–7
tR
tRSU
tH
1
SCL (I)
MSB
tDSU
tDHD
tPSU
ACK
8
tL
9
tSUP
STOP
START
CONDITION CONDITION
1
S(R)
REPEATED
START
Figure 5. I2C Compatible Interface Timing
Rev. E | Page 11 of 96
tF
04955-054
1
Slave
Min
Max
4.7
4.0
4.0
250
0
3.45
4.7
4.0
4.7
1
300
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
Table 6. SPI Master Mode Timing (Phase Mode = 1)
Parameter
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
2
Min
Typ
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
Max
25
1 × tUCLK
2 × tUCLK
5
5
5
5
12.5
12.5
12.5
12.5
tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 57.
tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 57.
SCLK
(POLARITY = 0)
tSH
tSL
tSR
SCLK
(POLARITY = 1)
tDAV
tDF
MOSI
MISO
tDR
MSB
MSB IN
tSF
BITS 6 TO 1
BITS 6 TO 1
tDSU
tDHD
Figure 6. SPI Master Mode Timing (Phase Mode = 1)
Rev. E | Page 12 of 96
LSB
LSB IN
04955-055
1
Description
SCLK low pulse width1
SCLK high pulse width1
Data output valid after SCLK edge
Data input setup time before SCLK edge2
Data input hold time after SCLK edge2
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 7. SPI Master Mode Timing (Phase Mode = 0)
Parameter
tSL
tSH
tDAV
tDOSU
tDSU
tDHD
tDF
tDR
tSR
tSF
2
Min
Typ
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
Max
25
75
1 × tUCLK
2 × tUCLK
5
5
5
5
12.5
12.5
12.5
12.5
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 57.
tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 57.
SCLK
(POLARITY = 0)
tSH
tSL
tSR
tSF
SCLK
(POLARITY = 1)
tDAV
tDOSU
MOSI
MISO
tDF
MSB
MSB IN
tDR
BITS 6 TO 1
BITS 6 TO 1
tDSU
LSB
LSB IN
04955-056
1
Description
SCLK low pulse width1
SCLK high pulse width1
Data output valid after SCLK edge
Data output setup before SCLK edge
Data input setup time before SCLK edge2
Data input hold time after SCLK edge2
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
tDHD
Figure 7. SPI Master Mode Timing (Phase Mode = 0)
Rev. E | Page 13 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
Table 8. SPI Slave Mode Timing (Phsae Mode = 1)
Parameter
tCS
Description
CS to SCLK edge1
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tSFS
SCLK low pulse width2
SCLK high pulse width2
Data output valid after SCLK edge
Data input setup time before SCLK edge1
Data input hold time after SCLK edge1
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
CS high after SCLK edge
2
Typ
Max
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
25
1 × tUCLK
2 × tUCLK
5
5
5
5
12.5
12.5
12.5
12.5
0
tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 57.
tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 57.
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
tSR
tSF
SCLK
(POLARITY = 1)
tDAV
MISO
tDF
MSB
MOSI
MSB IN
tDR
BITS 6 TO 1
BITS 6 TO 1
tDSU
LSB
LSB IN
04955-057
1
Min
(2 × tHCLK) + (2 × tUCLK)
tDHD
Figure 8. SPI Slave Mode Timing (Phase Mode = 1)
Rev. E | Page 14 of 96
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 9. SPI Slave Mode Timing (Phase Mode = 0)
Parameter
tCS
Description
CS to SCLK edge1
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tDOCS
tSFS
SCLK low pulse width2
SCLK high pulse width2
Data output valid after SCLK edge
Data input setup time before SCLK edge1
Data input hold time after SCLK edge1
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
Data output valid after CS edge
CS high after SCLK edge
2
Typ
Max
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
25
1 × tUCLK
2 × tUCLK
5
5
5
5
12.5
12.5
12.5
12.5
25
0
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tUCLK = 23.9 ns. It corresponds to the 41.78 MHz internal clock from the PLL before the clock divider; see Figure 57.
tHCLK depends on the clock divider or CD bits in the POWCONMMR. tHCLK = tUCLK/2CD; see Figure 57.
CS
tCS
tSFS
SCLK
(POLARITY = 0)
tSH
tSL
tSF
tSR
SCLK
(POLARITY = 1)
tDAV
tDOCS
tDF
MISO
MOSI
MSB
MSB IN
tDR
BITS 6 TO 1
BITS 6 TO 1
LSB
LSB IN
04955-058
1
Min
(2 × tHCLK) + (2 × tUCLK)
tDSU
tDHD
Figure 9. SPI Slave Mode Timing (Phase Mode = 0)
Rev. E | Page 15 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
ABSOLUTE MAXIMUM RATINGS
AGND = REFGND = DACGND = GNDREF, TA = 25°C, unless
otherwise noted.
Table 10.
Parameter
AVDD to IOVDD
AGND to DGND
IOVDD to IOGND, AVDD to AGND
Digital Input Voltage to IOGND
Digital Output Voltage to IOGND
VREF to AGND
Analog Inputs to AGND
Analog Outputs to AGND
Operating Temperature Range, Industrial
Storage Temperature Range
Junction Temperature
θJA Thermal Impedance
40-Lead LFCSP
49-Ball CSP_BGA
64-Lead LFCSP
64-Ball CSP_BGA
64-Lead LQFP
80-Lead LQFP
Peak Solder Reflow Temperature
SnPb Assemblies (10 sec to 30 sec)
RoHS Compliant Assemblies
(20 sec to 40 sec)
Rating
−0.3 V to +0.3 V
−0.3 V to +0.3 V
−0.3 V to +6 V
−0.3 V to +5.3 V
−0.3 V to IOVDD + 0.3 V
−0.3 V to AVDD + 0.3 V
−0.3 V to AVDD + 0.3 V
−0.3 V to AVDD + 0.3 V
–40°C to +125°C
–65°C to +150°C
150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Only one absolute maximum rating can be applied at any one time.
ESD CAUTION
26°C/W
80°C/W
24°C/W
75°C/W
47°C/W
38°C/W
240°C
260°C
Rev. E | Page 16 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
40
39
38
37
36
35
34
33
32
31
ADC2/CMP0
ADC1
ADC0
AVDD
AGND
VREF
P4.2/PLAO[10]
P1.0/T1/SPM0/PLAI[0]
P1.1/SPM1/PLAI[1]
P1.2/SPM2/PLAI[2]
ADuC7019/ADuC7020/ADuC7021/ADuC7022
PIN 1
INDICATOR
ADuC7019/
ADuC7020
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
P1.6/SPM6/PLAI[6]
P1.7/SPM7/PLAO[0]
XCLKI
XCLKO
P0.7/ECLK/XCLK/SPM8/PLAO[4]
P2.0/SPM9/PLAO[5]/CONVSTART
IRQ1/P0.5/ADCBUSY/PLAO[2]
04955-064
P0.6/T1/MRST/PLAO[3]
TCK
TDO
IOGND
IOVDD
LVDD
DGND
P0.3/TRST/ADC BUSY
RST
IRQ0/P0.4/PWMTRIP/PLAO[1]
11
12
13
14
15
16
17
18
19
20
1
ADC3/CMP1
2
ADC4
GNDREF 3
DAC0/ADC12
4
DAC1/ADC13
5
DAC2/ADC14
6
DAC3/ADC15
7
TMS 8
TDI
9
BM/P0.0/CMPOUT/PLAI[7] 10
NOTES
1. THE EXPOSED PADDLE MUST BE LEFT UNCONNECTED.
40
39
38
37
36
35
34
33
32
31
ADC3/CMP1
ADC2/CMP0
ADC1
ADC0
AVDD
AGND
VREF
P1.0/T1/SPM0/PLAI[0]
P1.1/SPM1/PLAI[1]
P1.2/SPM2/PLAI[2]
Figure 10. 40-Lead LFCSP_VQ Pin Configuration (ADuC7019/ADuC7020)
PIN 1
INDICATOR
ADuC7021
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
P1.6/SPM6/PLAI[6]
P1.7/SPM7/PLAO[0]
XCLKI
XCLKO
P0.7/ECLK/XCLK/SPM8/PLAO[4]
P2.0/SPM9/PLAO[5]/CONVSTART
IRQ1/P0.5/ADCBUSY/PLAO[2]
NOTES
1. THE EXPOSED PADDLE MUST BE LEFT UNCONNECTED.
Figure 11. 40-Lead LFCSP_VQ Pin Configuration (ADuC7021)
Rev. E | Page 17 of 96
04955-065
P0.6/T1/MRST/PLAO[3]
TCK
TDO
IOGND
IOVDD
LVDD
DGND
P0.3/TRST/ADC BUSY
RST
IRQ0/P0.4/PWMTRIP/PLAO[1]
11
12
13
14
15
16
17
18
19
20
1
ADC4
2
ADC5
3
ADC6
4
ADC7
GNDREF 5
DAC0/ADC12
6
DAC1/ADC13
7
TMS 8
TDI
9
BM/P0.0/CMPOUT/PLAI[7] 10
Data Sheet
40
39
38
37
36
35
34
33
32
31
ADC4
ADC3/CMP1
ADC2/CMP0
ADC1
ADC0
AVDD
AGND
VREF
P1.0/T1/SPM0/PLAI[0]
P1.1/SPM1/PLAI[1]
ADuC7019/20/21/22/24/25/26/27/28/29
PIN 1
INDICATOR
ADuC7022
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
P1.2/SPM2/PLAI[2]
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
P1.6/SPM6/PLAI[6]
P1.7/SPM7/PLAO[0]
XCLKI
XCLKO
P0.7/ECLK/XCLK/SPM8/PLAO[4]
P2.0/SPM9/PLAO[5]/CONVSTART
04955-066
TCK
TDO
IOGND
IOVDD
LVDD
DGND
P0.3/TRST/ADC BUSY
RST
IRQ0/P0.4/PWMTRIP/PLAO[1]
IRQ1/P0.5/ADCBUSY/PLAO[2]
11
12
13
14
15
16
17
18
19
20
ADC5
1
ADC6
2
ADC7
3
ADC8
4
5
ADC9
GNDREF 6
TMS 7
TDI
8
BM/P0.0/CMPOUT/PLAI[7] 9
P0.6/T1/MRST/PLAO[3] 10
NOTES
1. THE EXPOSED PADDLE MUST BE SOLDERED AND EITHER CONNECTED TO AGND OR LEFT FLOATING.
Figure 12. 40-Lead LFCSP_VQ Pin Configuration (ADuC7022)
Table 11. Pin Function Descriptions (ADuC7019/ADuC7020/ADuC7021/ADuC7022)
Pin No.
7019/7020 7021
38
37
39
38
40
39
1
40
7022
36
37
38
39
Mnemonic
ADC0
ADC1
ADC2/CMP0
ADC3/CMP1
2
‒
1
2
40
1
ADC4
ADC5
Description
Single-Ended or Differential Analog Input 0.
Single-Ended or Differential Analog Input 1.
Single-Ended or Differential Analog Input 2/Comparator Positive Input.
Single-Ended or Differential Analog Input 3 (Buffered Input on ADuC7019)/
Comparator Negative Input.
Single-Ended or Differential Analog Input 4.
Single-Ended or Differential Analog Input 5.
‒
3
2
ADC6
Single-Ended or Differential Analog Input 6.
‒
4
3
ADC7
Single-Ended or Differential Analog Input 7.
‒
‒
4
ADC8
Single-Ended or Differential Analog Input 8.
‒
3
‒
5
5
ADC9
Single-Ended or Differential Analog Input 9.
6
GNDREF
4
6
‒
DAC0/ADC12
Ground Voltage Reference for the ADC. For optimal performance, the
analog power supply should be separated from IOGND and DGND.
DAC0 Voltage Output/Single-Ended or Differential Analog Input 12.
5
7
‒
DAC1/ADC13
DAC1 Voltage Output/Single-Ended or Differential Analog Input 13.
6
‒
‒
DAC2/ADC14
DAC2 Voltage Output/Single-Ended or Differential Analog Input 14.
7
‒
‒
DAC3/ADC15
8
8
7
TMS
9
9
8
TDI
DAC3 Voltage Output on ADuC7020. On the ADuC7019, a 10 nF capacitor
must be connected between this pin and AGND/Single-Ended or
Differential Analog Input 15 (see Figure 43).
Test Mode Select, JTAG Test Port Input. Debug and download access.
This pin has an internal pull-up resistor to IOVDD. In some cases, an external
pull-up resistor (~100K) is also required to ensure that the part does not
enter an erroneous state.
Test Data In, JTAG Test Port Input. Debug and download access.
Rev. E | Page 18 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Pin No.
7019/7020 7021
10
10
7022
9
Mnemonic
BM/P0.0/CMPOUT/PLAI[7]
11
11
10
P0.6/T1/MRST/PLAO[3]
12
12
11
TCK
13
14
15
13
14
15
12
13
14
TDO
IOGND
IOVDD
16
16
15
LVDD
17
18
17
18
16
17
DGND
P0.3/TRST/ADCBUSY
19
20
19
20
18
19
RST
IRQ0/P0.4/PWMTRIP/PLAO[1]
21
21
20
IRQ1/P0.5/ADCBUSY/PLAO[2]
22
22
21
P2.0/SPM9/PLAO[5]/CONVSTART
23
23
22
P0.7/ECLK/XCLK/SPM8/PLAO[4]
24
25
24
25
23
24
XCLKO
XCLKI
26
26
25
P1.7/SPM7/PLAO[0]
27
27
26
P1.6/SPM6/PLAI[6]
28
28
27
P1.5/SPM5/PLAI[5]/IRQ3
29
29
28
P1.4/SPM4/PLAI[4]/IRQ2
30
30
29
P1.3/SPM3/PLAI[3]
31
31
30
P1.2/SPM2/PLAI[2]
32
32
31
P1.1/SPM1/PLAI[1]
33
33
32
P1.0/T1/SPM0/PLAI[0]
34
‒
‒
P4.2/PLAO[10]
Description
Multifunction I/O Pin. Boot Mode (BM). The ADuC7019/20/21/22 enter
serial download mode if BM is low at reset and execute code if BM is
pulled high at reset through a 1 kΩ resistor/General-Purpose Input and
Output Port 0.0/Voltage Comparator Output/Programmable Logic Array
Input Element 7.
Multifunction Pin. Driven low after reset. General-Purpose Output Port 0.6/
Timer1 Input/Power-On Reset Output/Programmable Logic Array Output
Element 3.
Test Clock, JTAG Test Port Input. Debug and download access. This pin has
an internal pull-up resistor to IOVDD. In some cases an external pull-up
resistor (~100K) is also required to ensure that the part does not enter an
erroneous state.
Test Data Out, JTAG Test Port Output. Debug and download access.
Ground for GPIO (see Table 78). Typically connected to DGND.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage
Regulator.
2.6 V Output of the On-Chip Voltage Regulator. This output must be
connected to a 0.47 µF capacitor to DGND only.
Ground for Core Logic.
General-Purpose Input and Output Port 0.3/Test Reset, JTAG Test Port Input/
ADCBUSY Signal Output.
Reset Input, Active Low.
Multifunction I/O Pin. External Interrupt Request 0, Active High/GeneralPurpose Input and Output Port 0.4/PWM Trip External Input/Programmable
Logic Array Output Element 1.
Multifunction I/O Pin. External Interrupt Request 1, Active High/GeneralPurpose Input and Output Port 0.5/ADCBUSY Signal Output/Programmable
Logic Array Output Element 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/
Programmable Logic Array Output Element 5/Start Conversion Input Signal
for ADC.
Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/
Output for External Clock Signal/Input to the Internal Clock Generator
Circuits/UART/ Programmable Logic Array Output Element 4.
Output from the Crystal Oscillator Inverter.
Input to the Crystal Oscillator Inverter and Input to the Internal Clock
Generator Circuits.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART,
SPI/Programmable Logic Array Output Element 0.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART,
SPI/Programmable Logic Array Input Element 6.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART,
SPI/Programmable Logic Array Input Element 5/External Interrupt
Request 3, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART,
SPI/Programmable Logic Array Input Element 4/External Interrupt
Request 2, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART,
I2C1/Programmable Logic Array Input Element 3.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART,
I2C1/Programmable Logic Array Input Element 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART,
I2C0/Programmable Logic Array Input Element 1.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/
Timer1 Input/UART, I2C0/Programmable Logic Array Input Element 0.
General-Purpose Input and Output Port 4.2/Programmable Logic Array
Output Element 10.
Rev. E | Page 19 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Pin No.
7019/7020 7021
35
34
7022
33
Mnemonic
VREF
36
37
0
34
35
0
AGND
AVDD
EP
35
36
0
Data Sheet
Description
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor
when using the internal reference.
Analog Ground. Ground reference point for the analog circuitry.
3.3 V Analog Power.
Exposed Paddle. The pin configuration for the ADuC7019/ADuC7020/
ADuC7021/ADuC7022 has an exposed paddle that must be soldered and
either connected to AGND or left floating.
Rev. E | Page 20 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
ADC3/CMP1
ADC2/CMP0
ADC1
ADC0
DACV DD
AVDD
AGND
DACGND
DAC REF
VREF
P4.5/PLAO[13]
P4.4/PLAO[12]
P4.3/PLAO[11]
P4.2/PLAO[10]
P1.0/T1/SPM0/PLAI[0]
P1.1/SPM1/PLAI[1]
ADuC7024/ADuC7025
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PIN 1
INDICATOR
ADuC7024/
ADuC7025
TOP VIEW
(Not to Scale)
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P1.2/SPM2/PLAI[2]
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
P4.1/PLAO[9]
P4.0/PLAO[8]
IOVDD
IOGND
P1.6/SPM6/PLAI[6]
P1.7/SPM7/PLAO[0]
P3.7/PWMSYNC/PLAI[15]
P3.6/PWMTRIP/PLAI[14]
XCLKI
XCLKO
P0.7/ECLK/XCLK/SPM8/PLAO[4]
P2.0/SPM9/PLAO[5]/CONVSTART
04955-067
TCK
TDO
IOGND
IOVDD
LVDD
DGND
P3.0/PWM0H/PLAI[8]
P3.1/PWM0L/PLAI[9]
P3.2/PWM1H/PLAI[10]
P3.3/PWM1L/PLAI[11]
P0.3/TRST/ADC BUSY
RST
P3.4/PWM2H/PLAI[12]
P3.5/PWM2L/PLAI[13]
IRQ0/P0.4/PWMTRIP/PLAO[1]
IRQ1/P0.5/ADCBUSY/PLAO[2]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
GNDREF
ADCNEG
DAC0/ADC12
DAC1/ADC13
TMS
TDI
P4.6/PLAO[14]
P4.7/PLAO[15]
BM/P0.0/CMPOUT/PLAI[7]
P0.6/T1/MRST/PLAO[3]
NOTES
1. THE EXPOSED PADDLE MUST BE SOLDERED AND EITHER CONNECTED TO AGND OR LEFT FLOATING.
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
ADC3/CMP1
ADC2/CMP0
ADC1
ADC0
DACV DD
AVDD
AGND
DACGND
DAC REF
VREF
P4.5/PLAO[13]
P4.4/PLAO[12]
P4.3/PLAO[11]
P4.2/PLAO[10]
P1.0/T1/SPM0/PLAI[0]
P1.1/SPM1/PLAI[1]
Figure 13. 64-Lead LFCSP_VQ Pin Configuration (ADuC7024/ADuC7025)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PIN 1
INDICATOR
ADuC7024/
ADuC7025
TOP VIEW
(Not to Scale)
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
P1.2/SPM2/PLAI[2]
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
P4.1/PLAO[9]
P4.0/PLAO[8]
IOVDD
IOGND
P1.6/SPM6/PLAI[6]
P1.7/SPM7/PLAO[0]
P3.7/PWMSYNC/PLAI[15]
P3.6/PWMTRIP/PLAI[14]
XCLKI
XCLKO
P0.7/ECLK/XCLK/SPM8/PLAO[4]
P2.0/SPM9/PLAO[5]/CONVSTART
Figure 14. 64-Lead LQFP Pin Configuration (ADuC7024/ADuC7025)
Rev. E | Page 21 of 96
04955-068
TCK
TDO
IOGND
IOVDD
LVDD
DGND
P3.0/PWM0H/PLAI[8]
P3.1/PWM0L/PLAI[9]
P3.2/PWM1H/PLAI[10]
P3.3/PWM1L/PLAI[11]
P0.3/TRST/ADC BUSY
RST
P3.4/PWM2H/PLAI[12]
P3.5/PWM2L/PLAI[13]
IRQ0/P0.4/PWMTRIP/PLAO[1]
IRQ1/P0.5/ADCBUSY/PLAO[2]
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
GNDREF
ADCNEG
DAC0/ADC12
DAC1/ADC13
TMS
TDI
P4.6/PLAO[14]
P4.7/PLAO[15]
BM/P0.0/CMPOUT/PLAI[7]
P0.6/T1/MRST/PLAO[3]
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
Table 12. Pin Function Descriptions (ADuC7024/ADuC7025 64-Lead LFCSP_VQ and 64-Lead LQFP)
Pin No.
1
2
3
4
5
6
7
Mnemonic
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
GNDREF
8
ADCNEG
9
DAC0/ADC12
10
DAC1/ADC13
11
12
13
14
15
TMS
TDI
P4.6/PLAO[14]
P4.7/PLAO[15]
BM/P0.0/CMPOUT/PLAI[7]
16
P0.6/T1/MRST/PLAO[3]
17
18
19
20
21
TCK
TDO
IOGND
IOVDD
LVDD
22
23
DGND
P3.0/PWM0H/PLAI[8]
24
P3.1/PWM0L/PLAI[9]
25
P3.2/PWM1H/PLAI[10]
26
P3.3/PWM1L/PLAI[11]
27
28
29
P0.3/TRST/ADCBUSY
RST
P3.4/PWM2H/PLAI[12]
30
P3.5/PWM2L/PLAI[13]
31
IRQ0/P0.4/PWMTRIP/PLAO[1]
32
IRQ1/P0.5/ADCBUSY/PLAO[2]
33
P2.0/SPM9/PLAO[5]/CONVSTART
34
P0.7/ECLK/XCLK/SPM8/PLAO[4]
35
36
XCLKO
XCLKI
Description
Single-Ended or Differential Analog Input 4.
Single-Ended or Differential Analog Input 5.
Single-Ended or Differential Analog Input 6.
Single-Ended or Differential Analog Input 7.
Single-Ended or Differential Analog Input 8.
Single-Ended or Differential Analog Input 9.
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply
should be separated from IOGND and DGND.
Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be connected
to the ground of the signal to convert. This bias point must be between 0 V and 1 V.
DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not present
on the ADuC7025.
DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not present
on the ADuC7025.
JTAG Test Port Input, Test Mode Select. Debug and download access.
JTAG Test Port Input, Test Data In. Debug and download access
General-Purpose Input and Output Port 4.6/Programmable Logic Array Output Element 14.
General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15.
Multifunction I/O Pin. Boot mode. The ADuC7024/ADuC7025 enter download mode if BM is low at
reset and execute code if BM is pulled high at reset through a 1 kΩ resistor/General-Purpose Input
and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array Input Element 7.
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/PowerOn Reset Output/Programmable Logic Array Output Element 3.
JTAG Test Port Input, Test Clock. Debug and download access.
JTAG Test Port Output, Test Data Out. Debug and download access.
Ground for GPIO (see Table 78). Typically connected to DGND.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF
capacitor to DGND only.
Ground for Core Logic.
General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable Logic
Array Input Element 8.
General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable Logic
Array Input Element 9.
General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable Logic
Array Input Element 10.
General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable Logic
Array Input Element 11.
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal Output.
Reset Input, Active Low.
General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable Logic
Array Input 12.
General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable Logic
Array Input Element 13.
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic
Array Output Element 5/Start Conversion Input Signal for ADC.
Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock
Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output
Element 4.
Output from the Crystal Oscillator Inverter.
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
Rev. E | Page 22 of 96
Data Sheet
Pin No.
37
Mnemonic
P3.6/PWMTRIP/PLAI[14]
38
P3.7/PWMSYNC/PLAI[15]
39
P1.7/SPM7/PLAO[0]
40
P1.6/SPM6/PLAI[6]
41
42
43
44
45
IOGND
IOVDD
P4.0/PLAO[8]
P4.1/PLAO[9]
P1.5/SPM5/PLAI[5]/IRQ3
46
P1.4/SPM4/PLAI[4]/IRQ2
47
P1.3/SPM3/PLAI[3]
48
P1.2/SPM2/PLAI[2]
49
P1.1/SPM1/PLAI[1]
50
P1.0/T1/SPM0/PLAI[0]
51
52
53
54
55
P4.2/PLAO[10]
P4.3/PLAO[11]
P4.4/PLAO[12]
P4.5/PLAO[13]
VREF
56
57
58
59
60
61
62
63
64
0
DACREF
DACGND
AGND
AVDD
DACVDD
ADC0
ADC1
ADC2/CMP0
ADC3/CMP1
EP
ADuC7019/20/21/22/24/25/26/27/28/29
Description
General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array Input
Element 14.
General-Purpose Input and Output Port 3.7/PWM Synchronization Input and Output/
Programmable Logic Array Input Element 15.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable
Logic Array Output Element 0.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable
Logic Array Input Element 6.
Ground for GPIO (see Table 78). Typically connected to DGND.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.
General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable
Logic Array Input Element 5/External Interrupt Request 3, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable
Logic Array Input Element 4/External Interrupt Request 2, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable
Logic Array Input Element 3.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable
Logic Array Input Element 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable Logic
Array Input Element 1.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/
Programmable Logic Array Input Element 0.
General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.
General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.
General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.
General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the
internal reference.
External Voltage Reference for the DACs. Range: DACGND to DACVDD.
Ground for the DAC. Typically connected to AGND.
Analog Ground. Ground reference point for the analog circuitry.
3.3 V Analog Power.
3.3 V Power Supply for the DACs. Must be connected to AVDD.
Single-Ended or Differential Analog Input 0.
Single-Ended or Differential Analog Input 1.
Single-Ended or Differential Analog Input 2/Comparator Positive Input.
Single-Ended or Differential Analog Input 3/Comparator Negative Input.
Exposed Paddle. The pin configuration for the ADuC7024/ADuC7025 LFCSP_VQ has an exposed
paddle that must be soldered and either connected to AGND or left floating.
Rev. E | Page 23 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
ADC3/CMP1
ADC2/CMP0
ADC1
ADC0
ADC11
DACV DD
AVDD
AVDD
AGND
AGND
DACGND
DACREF
VREF
REFGND
P4.5/AD13/PLAO[13]
P4.4/AD12/PLAO[12]
P4.3/AD11/PLAO[11]
P4.2/AD10/PLAO[10]
P1.0/T1/SPM0/PLAI[0]
P1.1/SPM1/PLAI[1]
ADuC7026/ADuC7027
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
PIN 1
INDICATOR
ADuC7026/
ADuC7027
TOP VIEW
(Not to Scale)
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P1.2/SPM2/PLAI[2]
P1.3/SPM3/PLAI[3]
P1.4/SPM4/PLAI[4]/IRQ2
P1.5/SPM5/PLAI[5]/IRQ3
P4.1/AD9/PLAO[9]
P4.0/AD8/PLAO[8]
IOVDD
IOGND
P1.6/SPM6/PLAI[6]
P1.7/SPM7/PLAO[0]
P2.2/RS/PWM0L/PLAO[7]
P2.1/WS/PWM0H/PLAO[6]
P2.7/PWM1L/MS3
P3.7/AD7/PWMSYNC /PLAI[15]
P3.6/AD6/PWMTRIP/PLAI[14]
XCLKI
XCLKO
P0.7/ECLK/XCLK/SPM8/PLAO[4]
P2.0/SPM9/PLAO[5]/CONVSTART
IRQ1/P0.5/ADCBUSY /PLAO[2]/MS2
04955-069
P0.6/T1/MRST/PLAO[3]
TCK
TDO
P0.2/PWM2L/BHE
IOGND
IOVDD
LVDD
DGND
P3.0/AD0/PWM0H/PLAI[8]
P3.1/AD1/PWM0L/PLAI[9]
P3.2/AD2/PWM1H/PLAI[10]
P3.3/AD3/PWM1L/PLAI[11]
P2.4/PWM0H/MS0
P0.3/TRST/A16/ADCBUSY
P2.5/PWM0L/MS1
P2.6/PWM1H/MS2
RST
P3.4/AD4/PWM2H/PLAI[12]
P3.5/AD5/PWM2L/PLAI[13]
IRQ0/P0.4/PWMTRIP/PLAO[1]/MS1
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
ADC10
GNDREF
ADCNEG
DAC0/ADC12
DAC1/ADC13
DAC2/ADC14
DAC3/ADC15
TMS
TDI
P0.1/PWM2H/BLE
P2.3/AE
P4.6/AD14/PLAO[14]
P4.7/AD15/PLAO[15]
BM/P0.0/CMPOUT/PLAI[7]/MS0
Figure 15. 80-Lead LQFP Pin Configuration (ADuC7026/ADuC7027)
Table 13. Pin Function Descriptions (ADuC7026/ADuC7027)
Pin No.
1
2
3
4
5
6
7
8
Mnemonic
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
ADC10
GNDREF
9
ADCNEG
10
DAC0/ADC12
11
DAC1/ADC13
12
DAC2/ADC14
13
DAC3/ADC15
14
TMS
Description
Single-Ended or Differential Analog Input 4.
Single-Ended or Differential Analog Input 5.
Single-Ended or Differential Analog Input 6.
Single-Ended or Differential Analog Input 7.
Single-Ended or Differential Analog Input 8.
Single-Ended or Differential Analog Input 9.
Single-Ended or Differential Analog Input 10.
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply
should be separated from IOGND and DGND.
Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be connected
to the ground of the signal to convert. This bias point must be between 0 V and 1 V.
DAC0 Voltage Output/Single-Ended or Differential Analog Input 12. DAC outputs are not
present on the ADuC7027.
DAC1 Voltage Output/Single-Ended or Differential Analog Input 13. DAC outputs are not
present on the ADuC7027.
DAC2 Voltage Output/Single-Ended or Differential Analog Input 14. DAC outputs are not
present on the ADuC7027.
DAC3 Voltage Output/Single-Ended or Differential Analog Input 15. DAC outputs are not
present on the ADuC7027.
JTAG Test Port Input, Test Mode Select. Debug and download access.
Rev. E | Page 24 of 96
Data Sheet
Pin No.
15
16
Mnemonic
TDI
P0.1/PWM2H/BLE
17
18
P2.3/AE
P4.6/AD14/PLAO[14]
19
P4.7/AD15/PLAO[15]
20
BM/P0.0/CMPOUT/PLAI[7]/MS0
21
P0.6/T1/MRST/PLAO[3]
22
23
24
TCK
TDO
P0.2/PWM2L/BHE
25
26
27
IOGND
IOVDD
LVDD
28
29
DGND
P3.0/AD0/PWM0H/PLAI[8]
30
P3.1/AD1/PWM0L/PLAI[9]
31
P3.2/AD2/PWM1H/PLAI[10]
32
P3.3/AD3/PWM1L/PLAI[11]
33
P2.4/PWM0H/MS0
34
35
P0.3/TRST/A16/ADCBUSY
P2.5/PWM0L/MS1
36
P2.6/PWM1H/MS2
37
38
RST
P3.4/AD4/PWM2H/PLAI[12]
39
P3.5/AD5/PWM2L/PLAI[13]
40
IRQ0/P0.4/PWMTRIP/PLAO[1]/MS1
41
IRQ1/P0.5/ADCBUSY/PLAO[2]/MS2
42
P2.0/SPM9/PLAO[5]/CONVSTART
43
P0.7/ECLK/XCLK/SPM8/PLAO[4]
44
45
XCLKO
XCLKI
ADuC7019/20/21/22/24/25/26/27/28/29
Description
JTAG Test Port Input, Test Data In. Debug and download access.
General-Purpose Input and Output Port 0.1/PWM Phase 2 High-Side Output/External Memory
Byte Low Enable.
General-Purpose Input and Output Port 2.3/External Memory Access Enable.
General-Purpose Input and Output Port 4.6/External Memory Interface/Programmable Logic
Array Output Element 14.
General-Purpose Input and Output Port 4.7/External Memory Interface/Programmable Logic
Array Output Element 15.
Multifunction I/O Pin. Boot Mode. The ADuC7026/ADuC7027 enter UART download mode if BM
is low at reset and execute code if BM is pulled high at reset through a 1 kΩ resistor/GeneralPurpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array
Input Element 7/External Memory Select 0.
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/
Power-On Reset Output/Programmable Logic Array Output Element 3.
JTAG Test Port Input, Test Clock. Debug and download access.
JTAG Test Port Output, Test Data Out. Debug and download access.
General-Purpose Input and Output Port 0.2/PWM Phase 2 Low-Side Output/External Memory
Byte High Enable.
Ground for GPIO (see Table 78). Typically connected to DGND.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF
capacitor to DGND only.
Ground for Core Logic.
General-Purpose Input and Output Port 3.0/External Memory Interface/PWM Phase 0 High-Side
Output/Programmable Logic Array Input Element 8.
General-Purpose Input and Output Port 3.1/External Memory Interface/PWM Phase 0 Low-Side
Output/Programmable Logic Array Input Element 9.
General-Purpose Input and Output Port 3.2/External Memory Interface/PWM Phase 1 High-Side
Output/Programmable Logic Array Input Element 10.
General-Purpose Input and Output Port 3.3/External Memory Interface/PWM Phase 1 Low-Side
Output/Programmable Logic Array Input Element 11.
General-Purpose Input and Output Port 2.4/PWM Phase 0 High-Side Output/External Memory
Select 0.
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal Output.
General-Purpose Input and Output Port 2.5/PWM Phase 0 Low-Side Output/External Memory
Select 1.
General-Purpose Input and Output Port 2.6/PWM Phase 1 High-Side Output/External Memory
Select 2.
Reset Input, Active Low.
General-Purpose Input and Output Port 3.4/External Memory Interface/PWM Phase 2 High-Side
Output/Programmable Logic Array Input 12.
General-Purpose Input and Output Port 3.5/External Memory Interface/PWM Phase 2 Low-Side
Output/Programmable Logic Array Input Element 13.
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1/
External Memory Select 1.
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2/External
Memory Select 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable Logic
Array Output Element 5/Start Conversion Input Signal for ADC.
Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External Clock
Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array Output
Element 4.
Output from the Crystal Oscillator Inverter.
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
Rev. E | Page 25 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Pin No.
46
Mnemonic
P3.6/AD6/PWMTRIP/PLAI[14]
47
P3.7/AD7/PWMSYNC/PLAI[15]
48
P2.7/PWM1L/MS3
49
P2.1/WS/PWM0H/PLAO[6]
50
P2.2/RS/PWM0L/PLAO[7]
51
P1.7/SPM7/PLAO[0]
52
P1.6/SPM6/PLAI[6]
53
54
55
IOGND
IOVDD
P4.0/AD8/PLAO[8]
56
P4.1/AD9/PLAO[9]
57
P1.5/SPM5/PLAI[5]/IRQ3
58
P1.4/SPM4/PLAI[4]/IRQ2
59
P1.3/SPM3/PLAI[3]
60
P1.2/SPM2/PLAI[2]
61
P1.1/SPM1/PLAI[1]
62
P1.0/T1/SPM0/PLAI[0]
63
P4.2/AD10/PLAO[10]
64
P4.3/AD11/PLAO[11]
65
P4.4/AD12/PLAO[12]
66
P4.5/AD13/PLAO[13]
67
68
REFGND
VREF
69
70
71, 72
73, 74
75
76
77
78
79
80
DACREF
DACGND
AGND
AVDD
DACVDD
ADC11
ADC0
ADC1
ADC2/CMP0
ADC3/CMP1
Data Sheet
Description
General-Purpose Input and Output Port 3.6/External Memory Interface/PWM Safety Cutoff/
Programmable Logic Array Input Element 14.
General-Purpose Input and Output Port 3.7/External Memory Interface/PWM Synchronization/
Programmable Logic Array Input Element 15.
General-Purpose Input and Output Port 2.7/PWM Phase 1 Low-Side Output/External Memory
Select 3.
General-Purpose Input and Output Port 2.1/External Memory Write Strobe/PWM Phase 0 HighSide Output/Programmable Logic Array Output Element 6.
General-Purpose Input and Output Port 2.2/External Memory Read Strobe/PWM Phase 0 LowSide Output/Programmable Logic Array Output Element 7.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable Logic
Array Output Element 0.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable Logic
Array Input Element 6.
Ground for GPIO (see Table 78). Typically connected to DGND.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
General-Purpose Input and Output Port 4.0/External Memory Interface/Programmable Logic
Array Output Element 8.
General-Purpose Input and Output Port 4.1/External Memory Interface/Programmable Logic
Array Output Element 9.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable Logic
Array Input Element 5/External Interrupt Request 3, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable Logic
Array Input Element 4/External Interrupt Request 2, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable
Logic Array Input Element 3.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable
Logic Array Input Element 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable
Logic Array Input Element 1.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/
Programmable Logic Array Input Element 0.
General-Purpose Input and Output Port 4.2/External Memory Interface/Programmable Logic
Array Output Element 10.
General-Purpose Input and Output Port 4.3/External Memory Interface/Programmable Logic
Array Output Element 11.
General-Purpose Input and Output Port 4.4/External Memory Interface/Programmable Logic
Array Output Element 12.
General-Purpose Input and Output Port 4.5/External Memory Interface/Programmable Logic
Array Output Element 13.
Ground for the Reference. Typically connected to AGND.
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the
internal reference.
External Voltage Reference for the DACs. Range: DACGND to DACVDD.
Ground for the DAC. Typically connected to AGND.
Analog Ground. Ground reference point for the analog circuitry.
3.3 V Analog Power.
3.3 V Power Supply for the DACs. Must be connected to AVDD.
Single-Ended or Differential Analog Input 11.
Single-Ended or Differential Analog Input 0.
Single-Ended or Differential Analog Input 1.
Single-Ended or Differential Analog Input 2/Comparator Positive Input.
Single-Ended or Differential Analog Input 3/Comparator Negative Input.
Rev. E | Page 26 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
ADUC7028
8
7
6
5
4
3
2
1
A
B
C
D
E
F
H
BOTTOM VIEW
(Not to Scale)
04955-086
G
Figure 16. 64-Ball BGA Pin Configuration (ADuC7028)
Table 14. Pin Function Descriptions (ADuC7028)
Ball No.
A1
A2
A3
A4
A5
A6
A7
Mnemonic
ADC3/CMP1
DACVDD
AVDD
AGND
DACGND
P4.2/PLAO[10]
P1.1/SPM1/PLAI[1]
A8
P1.2/SPM2/PLAI[2]
B1
B2
B3
B4
B5
ADC4
ADC2/CMP0
ADC1
DACREF
VREF
B6
P1.0/T1/SPM0/PLAI[0]
B7
P1.4/SPM4/PLAI[4]/IRQ2
B8
P1.3/SPM3/PLAI[3]
C1
C2
C3
C4
C5
C6
C7
C8
D1
ADC6
ADC5
ADC0
P4.5/PLAO[13]
P4.3/PLAO[11]
P4.0/PLAO[8]
P4.1/PLAO[9]
IOGND
ADCNEG
D2
GNDREF
D3
D4
D5
ADC7
P4.4/PLAO[12]
P3.6/PWMTRIP/PLAI[14]
D6
P1.7/SPM7/PLAO[0]
Description
Single-Ended or Differential Analog Input 3/Comparator Negative Input.
3.3 V Power Supply for the DACs. Must be connected to AVDD.
3.3 V Analog Power.
Analog Ground. Ground reference point for the analog circuitry.
Ground for the DAC. Typically connected to AGND.
General-Purpose Input and Output Port 4.2/Programmable Logic Array Output Element 10.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable
Logic Array Input Element 1.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable
Logic Array Input Element 2.
Single-Ended or Differential Analog Input 4.
Single-Ended or Differential Analog Input 2/Comparator Positive Input.
Single-Ended or Differential Analog Input 1.
External Voltage Reference for the DACs. Range: DACGND to DACVDD.
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the
internal reference.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/
Programmable Logic Array Input Element 0.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable
Logic Array Input Element 4/External Interrupt Request 2, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable
Logic Array Input Element 3.
Single-Ended or Differential Analog Input 6.
Single-Ended or Differential Analog Input 5.
Single-Ended or Differential Analog Input 0.
General-Purpose Input and Output Port 4.5/Programmable Logic Array Output Element 13.
General-Purpose Input and Output Port 4.3/Programmable Logic Array Output Element 11.
General-Purpose Input and Output Port 4.0/Programmable Logic Array Output Element 8.
General-Purpose Input and Output Port 4.1/Programmable Logic Array Output Element 9.
Ground for GPIO (see Table 78). Typically connected to DGND.
Bias Point or Negative Analog Input of the ADC in Pseudo Differential Mode. Must be
connected to the ground of the signal to convert. This bias point must be between 0 V and 1 V.
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply
should be separated from IOGND and DGND.
Single-Ended or Differential Analog Input 7.
General-Purpose Input and Output Port 4.4/Programmable Logic Array Output Element 12.
General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array
Input Element 14.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable
Logic Array Output Element 0.
Rev. E | Page 27 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Ball No.
D7
Mnemonic
P1.6/SPM6/PLAI[6]
D8
E1
E2
E3
E4
IOVDD
DAC3
DAC2
DAC1
P3.0/PWM0H/PLAI[8]
E5
P3.2/PWM1H/PLAI[10]
E6
P1.5/SPM5/PLAI[5]/IRQ3
E7
P3.7/PWMSYNC/PLAI[15]
E8
F1
F2
F3
F4
XCLKI
P4.6/PLAO[14]
TDI
DAC0s
P3.1/PWM0L/PLAI[9]
F5
P3.3/PWM1L/PLAI[11]
F6
F7
RST
P0.7/ECLK/XCLK/SPM8/PLAO[4]
F8
G1
XCLKO
BM/P0.0/CMPOUT/PLAI[7]
G2
G3
G4
G5
P4.7/PLAO[15]
TMS
TDO
P0.3/TRST/ADCBUSY
G6
P3.4/PWM2H/PLAI[12]
G7
P3.5/PWM2L/PLAI[13]
G8
P2.0/SPM9/PLAO[5]/CONVSTART
H1
P0.6/T1/MRST/PLAO[3]
H2
H3
H4
H5
TCK
IOGND
IOVDD
LVDD
H6
H7
DGND
IRQ0/P0.4/PWMTRIP/PLAO[1]
H8
IRQ1/P0.5/ADCBUSY/PLAO[2]
Data Sheet
Description
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable
Logic Array Input Element 6.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
DAC3 Voltage Output.
DAC2 Voltage Output.
DAC1 Voltage Output.
General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable
Logic Array Input Element 8.
General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable
Logic Array Input Element 10.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable
Logic Array Input Element 5/External Interrupt Request 3, Active High.
General-Purpose Input and Output Port 3.7/PWM Synchronization/Programmable Logic
Array Input Element 15.
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator Circuits.
General-Purpose Input and Output Port 4.6/Programmable Logic Array Output Element 14.
JTAG Test Port Input, Test Data In. Debug and download access.
DAC0 Voltage Output.
General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable
Logic Array Input Element 9.
General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable
Logic Array Input Element 11.
Reset Input, Active Low.
Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External
Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array
Output Element 4.
Output from the Crystal Oscillator Inverter.
Multifunction I/O Pin. Boot mode. The ADuC7028 enters UART download mode if BM is low
at reset and executes code if BM is pulled high at reset through a 1 kΩ resistor/GeneralPurpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array
Input Element 7.
General-Purpose Input and Output Port 4.7/Programmable Logic Array Output Element 15.
JTAG Test Port Input, Test Mode Select. Debug and download access.
JTAG Test Port Output, Test Data Out. Debug and download access.
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal
Output.
General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable
Logic Array Input 12.
General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable
Logic Array Input Element 13.
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable
Logic Array Output Element 5/Start Conversion Input Signal for ADC.
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/
Power-On Reset Output/Programmable Logic Array Output Element 3.
JTAG Test Port Input, Test Clock. Debug and download access.
Ground for GPIO (see Table 78). Typically connected to DGND.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF
capacitor to DGND only.
Ground for Core Logic.
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2.
Rev. E | Page 28 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
ADUC7029
7
6
5
4
3
2
1
A
B
C
D
E
G
BOTTOM VIEW
(Not to Scale)
04955-088
F
Figure 17. 49-Ball BGA Pin Configuration (ADuC7029)
Table 15. Pin Function Descriptions (ADuC7029)
Ball No.
A1
A2
A3
A4
A5
Mnemonic
ADC3/CMP1
ADC1
ADC0
AVDD
VREF
A6
P1.0/T1/SPM0/PLAI[0]
A7
P1.1/SPM1/PLAI[1]
B1
B2
B3
B4
B5
B6
ADC6
ADC5
ADC4
AGND
DACREF
P1.4/SPM4/PLAI[4]/IRQ2
B7
P1.3/SPM3/PLAI[3]
C1
GNDREF
C2
C3
C4
C5
AGND
ADC2/CMP0
IOGND
P1.2/SPM2/PLAI[2]
C6
P1.6/SPM6/PLAI[6]
C7
P1.5/SPM5/PLAI[5]/IRQ3
D1
D2
D3
D4
DAC0
DAC3
DAC1
P3.3/PWM1L/PLAI[11]
D5
P3.4/PWM2H/PLAI[12]
D6
P3.6/PWMTRIP/PLAI[14]
D7
P1.7/SPM7/PLAO[0]
Description
Single-Ended or Differential Analog Input 3/Comparator Negative Input.
Single-Ended or Differential Analog Input 1.
Single-Ended or Differential Analog Input 0.
3.3 V Analog Power.
2.5 V Internal Voltage Reference. Must be connected to a 0.47 µF capacitor when using the
internal reference.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.0/Timer1 Input/UART, I2C0/
Programmable Logic Array Input Element 0.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.1/UART, I2C0/Programmable
Logic Array Input Element 1.
Single-Ended or Differential Analog Input 6.
Single-Ended or Differential Analog Input 5.
Single-Ended or Differential Analog Input 4.
Analog Ground. Ground reference point for the analog circuitry.
External Voltage Reference for the DACs. Range: DACGND to DACVDD.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.4/UART, SPI/Programmable
Logic Array Input Element 4/External Interrupt Request 2, Active High.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.3/UART, I2C1/Programmable
Logic Array Input Element 3.
Ground Voltage Reference for the ADC. For optimal performance, the analog power supply
should be separated from IOGND and DGND.
Analog Ground. Ground reference point for the analog circuitry.
Single-Ended or Differential Analog Input 2/Comparator Positive Input.
Ground for GPIO (see Table 78). Typically connected to DGND.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.2/UART, I2C1/Programmable
Logic Array Input Element 2.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.6/UART, SPI/Programmable
Logic Array Input Element 6.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.5/UART, SPI/Programmable
Logic Array Input Element 5/External Interrupt Request 3, Active High.
DAC0 Voltage Output.
DAC3 Voltage Output.
DAC1 Voltage Output.
General-Purpose Input and Output Port 3.3/PWM Phase 1 Low-Side Output/Programmable
Logic Array Input Element 11.
General-Purpose Input and Output Port 3.4/PWM Phase 2 High-Side Output/Programmable
Logic Array Input 12.
General-Purpose Input and Output Port 3.6/PWM Safety Cutoff/Programmable Logic Array
Input Element 14.
Serial Port Multiplexed. General-Purpose Input and Output Port 1.7/UART, SPI/Programmable
Logic Array Output Element 0.
Rev. E | Page 29 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Ball No.
E1
E2
Mnemonic
TMS
BM/P0.0/CMPOUT/PLAI[7]
E3
E4
E5
DAC2
IOVDD
P3.2/PWM1H/PLAI[10]
E6
P3.5/PWM2L/PLAI[13]
E7
P0.7/ECLK/XCLK/SPM8/PLAO[4]
F1
F2
TDI
P0.6/T1/MRST/PLAO[3]
F3
F4
IOGND
P3.1/PWM0L/PLAI[9]
F5
P3.0/PWM0H/PLAI[8]
F6
F7
RST
P2.0/SPM9/PLAO[5]/CONVSTART
G1
G2
G3
TCK
TDO
LVDD
G4
G5
DGND
P0.3/TRST/ADCBUSY
G6
IRQ0/P0.4/PWMTRIP/PLAO[1]
G7
IRQ1/P0.5/ADCBUSY/PLAO[2]
Data Sheet
Description
JTAG Test Port Input, Test Mode Select. Debug and download access.
Multifunction I/O Pin. Boot mode. The ADuC7029 enters UART download mode if BM is low
at reset and executes code if BM is pulled high at reset through a 1 kΩ resistor/GeneralPurpose Input and Output Port 0.0/Voltage Comparator Output/Programmable Logic Array
Input Element 7.
DAC2 Voltage Output.
3.3 V Supply for GPIO (see Table 78) and Input of the On-Chip Voltage Regulator.
General-Purpose Input and Output Port 3.2/PWM Phase 1 High-Side Output/Programmable
Logic Array Input Element 10.
General-Purpose Input and Output Port 3.5/PWM Phase 2 Low-Side Output/Programmable
Logic Array Input Element 13.
Serial Port Multiplexed. General-Purpose Input and Output Port 0.7/Output for External
Clock Signal/Input to the Internal Clock Generator Circuits/UART/Programmable Logic Array
Output Element 4.
JTAG Test Port Input, Test Data In. Debug and download access.
Multifunction Pin, Driven Low After Reset. General-Purpose Output Port 0.6/Timer1 Input/
Power-On Reset Output/Programmable Logic Array Output Element 3.
Ground for GPIO (see Table 78). Typically connected to DGND.
General-Purpose Input and Output Port 3.1/PWM Phase 0 Low-Side Output/Programmable
Logic Array Input Element 9.
General-Purpose Input and Output Port 3.0/PWM Phase 0 High-Side Output/Programmable
Logic Array Input Element 8.
Reset Input, Active Low.
Serial Port Multiplexed. General-Purpose Input and Output Port 2.0/UART/Programmable
Logic Array Output Element 5/Start Conversion Input Signal for ADC.
JTAG Test Port Input, Test Clock. Debug and download access.
JTAG Test Port Output, Test Data Out. Debug and download access.
2.6 V Output of the On-Chip Voltage Regulator. This output must be connected to a 0.47 µF
capacitor to DGND only.
Ground for Core Logic.
General-Purpose Input and Output Port 0.3/JTAG Test Port Input, Test Reset/ADCBUSY Signal
Output.
Multifunction I/O Pin. External Interrupt Request 0, Active High/General-Purpose Input and
Output Port 0.4/PWM Trip External Input/Programmable Logic Array Output Element 1.
Multifunction I/O Pin. External Interrupt Request 1, Active High/General-Purpose Input and
Output Port 0.5/ADCBUSY Signal Output/Programmable Logic Array Output Element 2.
Rev. E | Page 30 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
TYPICAL PERFORMANCE CHARACTERISTICS
1.0
1.0
fS = 774kSPS
fS = 774kSPS
0.8
0.4
0.2
0.2
(LSB)
0.6
0.4
0
0
–0.2
–0.4
–0.4
–0.6
–0.6
04955-075
–0.2
–0.8
0
1000
2000
ADC CODES
3000
–0.8
–1.0
4000
0
Figure 18. Typical INL Error, fS = 774 kSPS
0.6
0.6
0.4
0.4
0.2
0.2
(LSB)
0.8
0
0
–0.2
–0.4
–0.4
–0.6
–0.6
04955-077
–0.2
0
1000
2000
ADC CODES
3000
04955-076
(LSB)
4000
fS = 1MSPS
0.8
–0.8
–0.8
–1.0
4000
0
Figure 19. Typical INL Error, fS = 1 MSPS
1000
2000
ADC CODES
0
0.9
–0.1
0.8
–0.6
(LSB)
0.5
(LSB)
0.6
–0.5
0
1.0
–0.1
0.9
0.8
WCN
–0.3
WCP
0.4
–0.3
0.7
–0.4
0.6
–0.5
0.5
WCP
–0.6
WCN
0.3
–0.7
–0.9
0.1
2.0
2.5
EXTERNAL REFERENCE (V)
3.0
–1.0
04955-072
–0.8
0.2
1.5
4000
–0.2
–0.2
0.7
1.0
3000
Figure 22. Typical DNL Error, fS = 1 MSPS
1.0
(LSB)
3000
1.0
fS = 1MSPS
0
2000
ADC CODES
Figure 21. Typical DNL Error, fS = 774 kSPS
1.0
–1.0
1000
Figure 20. Typical Worst-Case (Positive (WCP) and Negative (WCN))
INL Error vs. VREF, fS = 774 kSPS
0.4
–0.7
0.3
–0.8
0.2
–0.9
0.1
–1.0
1.0
1.5
2.0
2.5
EXTERNAL REFERENCE (V)
3.0
0
Figure 23. Typical Worst-Case (Positive (WCP )and Negative (WCN))
DNL Error vs. VREF, fS = 774 kSPS
Rev. E | Page 31 of 96
(LSB)
–1.0
04955-071
(LSB)
0.6
04955-074
0.8
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
75
9000
8000
–76
70
–78
SNR
7000
65
5000
4000
60
–82
THD
55
3000
THD (dB)
–80
SNR (dB)
FREQUENCY
6000
–84
50
2000
1161
1162
BIN
40
1163
1.0
Figure 24. Code Histogram Plot, fs = 774 kSPS, VIN = 0.7 V
1.5
2.0
2.5
EXTERNAL REFERENCE (V)
–88
3.0
04955-070
0
–86
45
04955-073
1000
Figure 27. Typical Dynamic Performance vs. VREF
1500
0
fS = 774kSPS,
SNR = 69.3dB,
THD = –80.8dB,
PHSN = –83.4dB
–20
1450
1400
–40
1350
1300
CODE
(dB)
–60
–80
1250
1200
–100
1150
–120
04955-078
–160
0
100
FREQUENCY (kHz)
04955-060
1100
–140
1050
1000
–50
200
0
50
150
100
TEMPERATURE (°C)
Figure 28. On-Chip Temperature Sensor Voltage Output vs. Temperature
Figure 25. Dynamic Performance, fS = 774 kSPS
39.8
20
fS = 1MSPS,
SNR = 70.4dB,
THD = –77.2dB,
PHSN = –78.9dB
39.6
39.5
–60
39.4
(mA)
–40
–80
39.3
–100
39.2
–120
39.1
04955-079
(dB)
–20
39.7
–140
–160
0
50
100
FREQUENCY (kHz)
150
04955-080
0
39.0
38.9
200
–40
0
25
85
TEMPERATURE (°C)
125
Figure 29. Current Consumption vs. Temperature @ CD = 0
Figure 26. Dynamic Performance, fS = 1 MSPS
Rev. E | Page 32 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
12.05
1.4
12.00
1.2
11.95
1.0
11.90
0.8
(mA)
(mA)
11.85
11.80
0.6
11.75
11.70
0.4
11.65
–40
0
25
85
TEMPERATURE (°C)
0
125
Figure 30. Current Consumption vs. Temperature @ CD = 3
04955-083
11.55
0.2
04955-081
11.60
–40
0
25
85
TEMPERATURE (°C)
125
Figure 32. Current Consumption vs. Temperature in Sleep Mode
37.4
7.85
7.80
37.2
7.75
37.0
(mA)
7.65
7.60
36.8
36.6
7.55
7.50
7.45
7.40
–40
0
25
85
TEMPERATURE (°C)
36.2
125
Figure 31. Current Consumption vs. Temperature @ CD = 7
04955-084
36.4
04955-082
(mA)
7.70
62.25
125.00
250.00
500.00
SAMPLING FREQUENCY (kSPS)
1000.00
Figure 33. Current Consumption vs. Sampling Frequency
Rev. E | Page 33 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
TERMINOLOGY
ADC SPECIFICATIONS
Integral Nonlinearity (INL)
The maximum deviation of any code from a straight line
passing through the endpoints of the ADC transfer function.
The endpoints of the transfer function are zero scale, a point
½ LSB below the first code transition, and full scale, a point
½ LSB above the last code transition.
Differential Nonlinearity (DNL)
The difference between the measured and the ideal 1 LSB
change between any two adjacent codes in the ADC.
The ratio is dependent upon the number of quantization levels
in the digitization process; the more levels, the smaller the
quantization noise.
The theoretical signal to (noise + distortion) ratio for an ideal
N-bit converter with a sine wave input is given by
Signal to (Noise + Distortion) = (6.02 N + 1.76) dB
Thus, for a 12-bit converter, this is 74 dB.
Total Harmonic Distortion (THD)
The ratio of the rms sum of the harmonics to the fundamental.
DAC SPECIFICATIONS
Offset Error
The deviation of the first code transition (0000 . . . 000) to
(0000 . . . 001) from the ideal, that is, +½ LSB.
Relative Accuracy
Otherwise known as endpoint linearity, relative accuracy is a
measure of the maximum deviation from a straight line passing
through the endpoints of the DAC transfer function. It is
measured after adjusting for zero error and full-scale error.
Gain Error
The deviation of the last code transition from the ideal AIN
voltage (full scale − 1.5 LSB) after the offset error has been
adjusted out.
Signal to (Noise + Distortion) Ratio (SINAD)
The measured ratio of signal to (noise + distortion) at the
output of the ADC. The signal is the rms amplitude of the
fundamental. Noise is the rms sum of all nonfundamental
signals up to half the sampling frequency (fS/2), excluding dc.
Voltage Output Settling Time
The amount of time it takes the output to settle to within a
1 LSB level for a full-scale input change.
Rev. E | Page 34 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
OVERVIEW OF THE ARM7TDMI CORE
•
•
The ARM7TDMI is an ARM7 core with four additional features.
•
•
•
•
T support for the thumb (16-bit) instruction set.
D support for debug.
M support for long multiplications.
I includes the EmbeddedICE module to support embedded
system debugging.
THUMB MODE (T)
An ARM instruction is 32 bits long. The ARM7TDMI processor
supports a second instruction set that is compressed into 16 bits,
called the thumb instruction set. Faster execution from 16-bit
memory and greater code density can usually be achieved by
using the thumb instruction set instead of the ARM instruction
set, which makes the ARM7TDMI core particularly suitable for
embedded applications.
However, the thumb mode has two limitations.
•
•
Thumb code typically requires more instructions for the
same job. As a result, ARM code is usually best for
maximizing the performance of time-critical code.
The thumb instruction set does not include some of the
instructions needed for exception handling, which
automatically switches the core to ARM code for exception
handling.
See the ARM7TDMI user guide for details on the core
architecture, the programming model, and both the ARM
and ARM thumb instruction sets.
•
•
•
Normal interrupt or IRQ, which is provided to service
general-purpose interrupt handling of internal and
external events.
Fast interrupt or FIQ, which is provided to service data
transfers or communication channels with low latency.
FIQ has priority over IRQ.
Memory abort.
Attempted execution of an undefined instruction.
Software interrupt instruction (SWI), which can be used
to make a call to an operating system.
Typically, the programmer defines interrupt as IRQ, but for
higher priority interrupt, that is, faster response time, the
programmer can define interrupt as FIQ.
ARM REGISTERS
ARM7TDMI has a total of 37 registers: 31 general-purpose
registers and six status registers. Each operating mode has
dedicated banked registers.
When writing user-level programs, 15 general-purpose 32-bit
registers (R0 to R14), the program counter (R15), and the
current program status register (CPSR) are usable. The
remaining registers are used for system-level programming and
exception handling only.
When an exception occurs, some of the standard registers are
replaced with registers specific to the exception mode. All exception modes have replacement banked registers for the stack
pointer (R13) and the link register (R14), as represented in
Figure 34. The fast interrupt mode has more registers (R8 to R12)
for fast interrupt processing. This means that interrupt processing
can begin without the need to save or restore these registers
and, thus, save critical time in the interrupt handling process.
LONG MULTIPLY (M)
USABLE IN USER MODE
R0
R1
The ARM7TDMI instruction set includes four extra instructions that perform 32-bit by 32-bit multiplication with a 64-bit
result, and 32-bit by 32-bit multiplication-accumulation (MAC)
with a 64-bit result. These results are achieved in fewer cycles
than required on a standard ARM7 core.
R3
R4
R5
R6
R7
R8
EmbeddedICE (I)
R9
R10
EmbeddedICE provides integrated on-chip support for the core.
The EmbeddedICE module contains the breakpoint and watchpoint registers that allow code to be halted for debugging purposes.
These registers are controlled through the JTAG test port.
When a breakpoint or watchpoint is encountered, the processor
halts and enters debug state. Once in a debug state, the
processor registers can be inspected as well as the Flash/EE,
SRAM, and memory mapped registers.
SYSTEM MODES ONLY
R2
R11
R12
R13
R14
R8_FIQ
R9_FIQ
R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ
R13_SVC
R14_SVC
R13_ABT
R14_ABT
R13_IRQ
R14_IRQ
R13_UND
R14_UND
R15 (PC)
CPSR
USER MODE
SPSR_FIQ
FIQ
MODE
SPSR_SVC
SVC
MODE
SPSR_ABT
ABORT
MODE
SPSR_IRQ
IRQ
MODE
SPSR_UND
UNDEFINED
MODE
Figure 34. Register Organization
EXCEPTIONS
ARM supports five types of exceptions and a privileged
processing mode for each type. The five types of exceptions are
More information relative to the programmer’s model and the
ARM7TDMI core architecture can be found in the following
materials from ARM:
Rev. E | Page 35 of 96
04955-007
The ARM7® core is a 32-bit reduced instruction set computer
(RISC). It uses a single 32-bit bus for instruction and data. The
length of the data can be eight bits, 16 bits, or 32 bits. The
length of the instruction word is 32 bits.
ADuC7019/20/21/22/24/25/26/27/28/29
•
•
At the end of this time, the ARM7TDMI executes the instruction at 0x1C (FIQ interrupt vector address). The maximum
total time is 50 processor cycles, which is just under 1.2 µs in a
system using a continuous 41.78 MHz processor clock.
DDI0029G, ARM7TDMI Technical Reference Manual
DDI-0100, ARM Architecture Reference Manual
INTERRUPT LATENCY
The worst-case latency for a fast interrupt request (FIQ)
consists of the following:
•
•
•
•
Data Sheet
The longest time the request can take to pass through the
synchronizer
The time for the longest instruction to complete (the
longest instruction is an LDM) that loads all the registers
including the PC
The time for the data abort entry
The time for FIQ entry
The maximum interrupt request (IRQ) latency calculation is
similar but must allow for the fact that FIQ has higher priority
and may delay entry into the IRQ handling routine for an
arbitrary length of time. This time can be reduced to 42 cycles if
the LDM command is not used. Some compilers have an option
to compile without using this command. Another option is to run
the part in thumb mode where the time is reduced to 22 cycles.
The minimum latency for FIQ or IRQ interrupts is a total of
five cycles, which consist of the shortest time the request can
take through the synchronizer plus the time to enter the
exception mode.
Note that the ARM7TDMI always runs in ARM (32-bit) mode
when in privileged modes, for example, when executing
interrupt service routines.
Rev. E | Page 36 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
MEMORY ORGANIZATION
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate two
separate blocks of memory: 8 kB of SRAM and 64 kB of on-chip
Flash/EE memory. The 62 kB of on-chip Flash/EE memory is
available to the user, and the remaining 2 kB are reserved for
the factory-configured boot page. These two blocks are mapped
as shown in Figure 35.
0xFFFFFFFF
MMRs
0xFFFF0000
RESERVED
0x40000FFFF
EXTERNAL MEMORY REGION 3
0x40000000
RESERVED
0x30000FFFF
EXTERNAL MEMORY REGION 2
0x30000000
RESERVED
0x20000FFFF
EXTERNAL MEMORY REGION 1
0x20000000
RESERVED
0x10000FFFF
EXTERNAL MEMORY REGION 0
0x10000000
RESERVED
The total 64 kB of Flash/EE memory is organized as 32 k × 16 bits;
31 k × 16 bits is user space and 1 k × 16 bits is reserved for the
on-chip kernel. The page size of this Flash/EE memory is 512 bytes.
Sixty-two kilobytes of Flash/EE memory are available to the
user as code and nonvolatile data memory. There is no
distinction between data and program because ARM code
shares the same space. The real width of the Flash/EE memory
is 16 bits, which means that in ARM mode (32-bit instruction),
two accesses to the Flash/EE are necessary for each instruction
fetch. It is therefore recommended to use thumb mode when
executing from Flash/EE memory for optimum access speed.
The maximum access speed for the Flash/EE memory is
41.78 MHz in thumb mode and 20.89 MHz in full ARM mode.
More details about Flash/EE access time are outlined in the
Execution Time from SRAM and Flash/EE section.
SRAM
0x0008FFFF
FLASH/EE
0x00080000
04955-008
RESERVED
0x00011FFF
SRAM
0x00010000
0x0000FFFF REMAPPABLE MEMORY SPACE
(FLASH/EE OR SRAM)
0x00000000
Figure 35. Physical Memory Map
Note that by default, after a reset, the Flash/EE memory is
mirrored at Address 0x00000000. It is possible to remap the
SRAM at Address 0x00000000 by clearing Bit 0 of the REMAP
MMR. This remap function is described in more detail in the
Flash/EE Memory section.
MEMORY ACCESS
The ARM7 core sees memory as a linear array of a 232 byte
location where the different blocks of memory are mapped as
outlined in Figure 35.
The ADuC7019/20/21/22/24/25/26/27/28/29 memory organizations are configured in little endian format, which means that
the least significant byte is located in the lowest byte address,
and the most significant byte is in the highest byte address.
BIT 31
FLASH/EE MEMORY
BIT 0
BYTE 3
.
.
.
BYTE 2
.
.
.
BYTE 1
.
.
.
BYTE 0
.
.
.
B
A
9
8
7
6
5
4
0x00000004
3
2
1
0
0x00000000
32 BITS
04955-009
0xFFFFFFFF
Eight kilobytes of SRAM are available to the user, organized as
2 k × 32 bits, that is, two words. ARM code can run directly
from SRAM at 41.78 MHz, given that the SRAM array is
configured as a 32-bit wide memory array. More details about
SRAM access time are outlined in the Execution Time from
SRAM and Flash/EE section.
MEMORY MAPPED REGISTERS
The memory mapped register (MMR) space is mapped into the
upper two pages of the memory array and accessed by indirect
addressing through the ARM7 banked registers.
The MMR space provides an interface between the CPU and all
on-chip peripherals. All registers, except the core registers, reside
in the MMR area. All shaded locations shown in Figure 37 are
unoccupied or reserved locations and should not be accessed by
user software. Table 16 shows the full MMR memory map.
The access time for reading from or writing to an MMR
depends on the advanced microcontroller bus architecture
(AMBA) bus used to access the peripheral. The processor has
two AMBA buses: the advanced high performance bus (AHB)
used for system modules and the advanced peripheral bus
(APB) used for lower performance peripheral. Access to the
AHB is one cycle, and access to the APB is two cycles. All
peripherals on the ADuC7019/20/21/22/24/25/26/27/28/29 are
on the APB except the Flash/EE memory, the GPIOs (see
Table 78), and the PWM.
Figure 36. Little Endian Format
Rev. E | Page 37 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
0xFFFFFFFF
Data Sheet
Table 16. Complete MMR List
0xFFFFFC3C
PWM
Address Name
Byte
IRQ Address Base = 0xFFFF0000
0x0000
IRQSTA
4
0x0004
IRQSIG1
4
0x0008
IRQEN
4
0x000C
IRQCLR
4
0x0010
SWICFG
4
0x0100
FIQSTA
4
0x0104
FIQSIG1
4
0x0108
FIQEN
4
0x010C
FIQCLR
4
0xFFFFFC00
0xFFFFF820
0xFFFFF800
FLASH CONTROL
INTERFACE
0xFFFFF46C
GPIO
0xFFFFF400
0xFFFF0B54
PLA
0xFFFF0B00
0xFFFF0A14
SPI
0xFFFF0A00
0xFFFF0948
I2C1
1
0xFFFF0900
Access
Type
Default
Value
Page
R
R
R/W
W
W
R
R
R/W
W
0x00000000
0x00XXX000
0x00000000
0x00000000
0x00000000
0x00000000
0x00XXX000
0x00000000
0x00000000
78
78
78
78
79
79
79
79
79
Depends on the level on the external interrupt pins (P0.4, P0.5, P1.4, and P1.5).
0xFFFF0848
System Control Address Base = 0xFFFF0200
0x0220
REMAP
1
R/W
0xXX1
0x0230
RSTSTA
1
R/W
0x01
0x0234
RSTCLR
1
W
0x00
I2C0
0xFFFF0800
0xFFFF0730
UART
0xFFFF0700
0xFFFF0620
1
DAC
51
51
51
Depends on the model.
0xFFFF0600
0xFFFF0538
ADC
0xFFFF0500
0xFFFF0490
0xFFFF048C
0xFFFF0448
0xFFFF0440
0xFFFF0420
BAND GAP
REFERENCE
POWER SUPPLY
MONITOR
PLL AND
OSCILLATOR CONTROL
0xFFFF0404
0xFFFF0370
WATCHDOG
TIMER
0xFFFF0360
0xFFFF0350
WAKE-UP
TIMER
0xFFFF0340
0xFFFF0334
GENERAL-PURPOSE
TIMER
0xFFFF0320
0xFFFF0310
TIMER 0
0xFFFF0300
0xFFFF0220
0xFFFF0110
0xFFFF0000
REMAP AND
SYSTEM CONTROL
INTERRUPT
CONTROLLER
04955-010
0xFFFF0238
Figure 37. Memory Mapped Registers
Timer Address Base = 0xFFFF0300
0x0300
T0LD
2
R/W
0x0304
T0VAL
2
R
0x0308
T0CON
2
R/W
0x030C
T0CLRI
1
W
0x0320
T1LD
4
R/W
0x0324
T1VAL
4
R
0x0328
T1CON
2
R/W
0x032C
T1CLRI
1
W
0x0330
T1CAP
4
R/W
0x0340
T2LD
4
R/W
0x0344
T2VAL
4
R
0x0348
T2CON
2
R/W
0x034C
T2CLRI
1
W
0x0360
T3LD
2
R/W
0x0364
T3VAL
2
R
0x0368
T3CON
2
R/W
0x036C
T3CLRI
1
W
0x0000
0xFFFF
0x0000
0xFF
0x00000000
0xFFFFFFFF
0x0000
0xFF
0x00000000
0x00000000
0xFFFFFFFF
0x0000
0xFF
0x0000
0xFFFF
0x0000
0x00
80
80
80
80
81
81
81
82
82
82
82
82
83
83
83
83
84
PLL Base Address = 0xFFFF0400
0x0404
POWKEY1
2
0x0408
POWCON
2
0x040C
POWKEY2
2
0x0410
PLLKEY1
2
0x0414
PLLCON
1
0x0418
PLLKEY2
2
W
R/W
W
W
R/W
W
0x0000
0x0003
0x0000
0x0000
0x21
0x0000
56
56
56
56
56
56
PSM Address Base = 0xFFFF0440
0x0440
PSMCON
2
R/W
0x0444
CMPCON
2
R/W
0x0008
0x0000
53
54
Rev. E | Page 38 of 96
Data Sheet
Access
Address Name
Byte Type
Reference Address Base = 0xFFFF0480
0x048C
REFCON
1
R/W
ADuC7019/20/21/22/24/25/26/27/28/29
Default
Value
Page
0x00
46
ADC Address Base = 0xFFFF0500
0x0500
ADCCON
2
R/W
0x0504
ADCCP
1
R/W
0x0508
ADCCN
1
R/W
0x050C
ADCSTA
1
R
0x0510
ADCDAT
4
R
0x0514
ADCRST
1
R/W
0x0530
ADCGN
2
R/W
0x0534
ADCOF
2
R/W
0x0600
0x00
0x01
0x00
0x00000000
0x00
0x0200
0x0200
42
43
43
44
44
44
44
44
DAC Address Base = 0xFFFF0600
0x0600
DAC0CON 1
R/W
0x0604
DAC0DAT
4
R/W
0x0608
DAC1CON 1
R/W
0x060C
DAC1DAT
4
R/W
0x0610
DAC2CON 1
R/W
0x0614
DAC2DAT
4
R/W
0x0618
DAC3CON 1
R/W
0x061C
DAC3DAT
4
R/W
0x00
0x00000000
0x00
0x00000000
0x00
0x00000000
0x00
0x00000000
52
52
52
52
52
52
52
52
UART Base Address = 0xFFFF0700
0x0700
COMTX
1
R/W
COMRX
1
R
COMDIV0
1
R/W
0x0704
COMIEN0
1
R/W
COMDIV1
1
R/W
0x0708
COMIID0
1
R
0x070C
COMCON0 1
R/W
0x0710
COMCON1 1
R/W
0x0714
COMSTA0
1
R
0x0718
COMSTA1
1
R
0x071C
COMSCR
1
R/W
0x0720
COMIEN1
1
R/W
0x0724
COMIID1
1
R
0x0728
COMADR
1
R/W
0x072C
COMDIV2
2
R/W
0x00
0x00
0x00
0x00
0x00
0x01
0x00
0x00
0x60
0x00
0x00
0x04
0x01
0xAA
0x0000
66
66
66
66
66
67
67
67
67
68
68
68
68
69
68
Access
Address Name
Byte Type
I2C0 Base Address = 0xFFFF0800
0x0800
I2C0MSTA
1
R/W
0x0804
I2C0SSTA
1
R
0x0808
I2C0SRX
1
R
0x080C
I2C0STX
1
W
0x0810
I2C0MRX
1
R
0x0814
I2C0MTX
1
W
0x0818
I2C0CNT
1
R/W
0x081C
I2C0ADR
1
R/W
0x0824
I2C0BYTE
1
R/W
0x0828
I2C0ALT
1
R/W
0x082C
I2C0CFG
1
R/W
0x0830
I2C0DIV
2
R/W
0x0838
I2C0ID0
1
R/W
0x083C
I2C0ID1
1
R/W
0x0840
I2C0ID2
1
R/W
0x0844
I2C0ID3
1
R/W
0x0848
I2C0CCNT
1
R/W
0x084C
I2C0FSTA
2
R/W
Default
Value
Page
0x00
0x01
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x1F1F
0x00
0x00
0x00
0x00
0x01
0x0000
71
71
72
72
72
72
72
72
72
73
73
74
74
74
74
74
74
74
I2C1 Base Address = 0xFFFF0900
0x0900
I2C1MSTA
1
R/W
0x0904
I2C1SSTA
1
R
0x0908
I2C1SRX
1
R
0x090C
I2C1STX
1
W
0x0910
I2C1MRX
1
R
0x0914
I2C1MTX
1
W
0x0918
I2C1CNT
1
R/W
0x091C
I2C1ADR
1
R/W
0x0924
I2C1BYTE
1
R/W
0x0928
I2C1ALT
1
R/W
0x092C
I2C1CFG
1
R/W
0x0930
I2C1DIV
2
R/W
0x0938
I2C1ID0
1
R/W
0x093C
I2C1ID1
1
R/W
0x0940
I2C1ID2
1
R/W
0x0944
I2C1ID3
1
R/W
0x0948
I2C1CCNT
1
R/W
0x094C
I2C1FSTA
2
R/W
0x00
0x01
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x1F1F
0x00
0x00
0x00
0x00
0x01
0x0000
71
71
72
72
72
72
72
72
72
73
73
74
74
74
74
74
74
74
SPI Base Address = 0xFFFF0A00
0x0A00
SPISTA
1
0x0A04
SPIRX
1
0x0A08
SPITX
1
0x0A0C
SPIDIV
1
0x0A10
SPICON
2
0x00
0x00
0x00
0x1B
0x0000
70
70
70
70
70
Rev. E | Page 39 of 96
R
R
W
R/W
R/W
ADuC7019/20/21/22/24/25/26/27/28/29
Address Name
Byte
PLA Base Address = 0xFFFF0B00
0x0B00
PLAELM0
2
0x0B04
PLAELM1
2
0x0B08
PLAELM2
2
0x0B0C
PLAELM3
2
0x0B10
PLAELM4
2
0x0B14
PLAELM5
2
0x0B18
PLAELM6
2
0x0B1C
PLAELM7
2
0x0B20
PLAELM8
2
0x0B24
PLAELM9
2
0x0B28
PLAELM10 2
0x0B2C
PLAELM11 2
0x0B30
PLAELM12 2
0x0B34
PLAELM13 2
0x0B38
PLAELM14 2
0x0B3C
PLAELM15 2
0x0B40
PLACLK
1
0x0B44
PLAIRQ
4
0x0B48
PLAADC
4
0x0B4C
PLADIN
4
0x0B50
PLADOUT
4
0x0B54
PLALCK
1
Access
Type
Default
Value
Page
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
W
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x00
0x00000000
0x00000000
0x00000000
0x00000000
0x00
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
76
76
77
77
77
77
Data Sheet
Access
Address Name
Byte Type
GPIO Base Address = 0xFFFFF400
0xF400
GP0CON
4
R/W
0xF404
GP1CON
4
R/W
0xF408
GP2CON
4
R/W
0xF40C
GP3CON
4
R/W
0xF410
GP4CON
4
R/W
0xF420
GP0DAT
4
R/W
0xF424
GP0SET
4
W
0xF428
GP0CLR
4
W
0xF42C
GP0PAR
4
R/W
0xF430
GP1DAT
4
R/W
0xF434
GP1SET
4
W
0xF438
GP1CLR
4
W
0xF43C
GP1PAR
4
R/W
0xF440
GP2DAT
4
R/W
0xF444
GP2SET
4
W
0xF448
GP2CLR
4
W
0xF450
GP3DAT
4
R/W
0xF454
GP3SET
4
W
0xF458
GP3CLR
4
W
0xF460
GP4DAT
4
R/W
0xF464
GP4SET
4
W
0xF468
GP4CLR
4
W
1
External Memory Base Address = 0xFFFFF000
0xF000
XMCFG
1
R/W
0x00
0xF010
XM0CON
1
R/W
0x00
0xF014
XM1CON
1
R/W
0x00
0xF018
XM2CON
1
R/W
0x00
0xF01C
XM3CON
1
R/W
0x00
0xF020
XM0PAR
2
R/W
0x70FF
0xF024
XM1PAR
2
R/W
0x70FF
0xF028
XM2PAR
2
R/W
0x70FF
0xF02C
XM3PAR
2
R/W
0x70FF
85
85
85
85
85
85
85
85
85
Page
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x000000XX1
0x000000XX1
0x000000XX1
0x20000000
0x000000XX1
0x000000XX1
0x000000XX1
0x00000000
0x000000XX1
0x000000XX1
0x000000XX1
0x000000XX1
0x000000XX1
0x000000XX1
0x000000XX1
0x000000XX1
0x000000XX1
64
64
64
64
64
65
65
65
64
65
65
65
64
65
65
65
65
65
65
65
65
65
0x20
0x0000
0x07
0xXXXX1
0x0000
0xFFFFFF
0x00000000
0xFFFFFFFF
48
48
49
49
49
49
49
49
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
62
62
63
63
63
63
63
63
63
63
X = 0, 1, 2, or 3.
Flash/EE Base Address = 0xFFFFF800
0xF800
FEESTA
1
R
0xF804
FEEMOD
2
R/W
0xF808
FEECON
1
R/W
0xF80C
FEEDAT
2
R/W
0xF810
FEEADR
2
R/W
0xF818
FEESIGN
3
R
0xF81C
FEEPRO
4
R/W
0xF820
FEEHIDE
4
R/W
1
Default
Value
X = 0, 1, 2, or 3.
PWM Base Address = 0xFFFFFC00
0xFC00
PWMCON
2
R/W
0xFC04
PWMSTA
2
R/W
0xFC08
PWMDAT0 2
R/W
0xFC0C
PWMDAT1 2
R/W
0xFC10
PWMCFG
2
R/W
0xFC14
PWMCH0
2
R/W
0xFC18
PWMCH1
2
R/W
0xFC1C
PWMCH2
2
R/W
0xFC20
PWMEN
2
R/W
0xFC24
PWMDAT2 2
R/W
Rev. E | Page 40 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
ADC CIRCUIT OVERVIEW
The analog-to-digital converter (ADC) incorporates a fast,
multichannel, 12-bit ADC. It can operate from 2.7 V to 3.6 V
supplies and is capable of providing a throughput of up to
1 MSPS when the clock source is 41.78 MHz. This block
provides the user with a multichannel multiplexer, a differential
track-and-hold, an on-chip reference, and an ADC.
The ideal code transitions occur midway between successive
integer LSB values (that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, … ,
FS − 3/2 LSB). The ideal input/output transfer characteristic
is shown in Figure 39.
1111 1111 1111
1111 1111 1110
AVDD
VCM
VCM
2VREF
VCM
2VREF
0
04955-011
2VREF
Figure 38. Examples of Balanced Signals in Fully Differential Mode
A high precision, low drift, factory calibrated, 2.5 V reference is
provided on-chip. An external reference can also be connected as
described in the Band Gap Reference section.
Single or continuous conversion modes can be initiated in the
software. An external CONVSTART pin, an output generated from
the on-chip PLA, or a Timer0 or Timer1 overflow can also be
used to generate a repetitive trigger for ADC conversions.
A voltage output from an on-chip band gap reference proportional to absolute temperature can also be routed through the
front-end ADC multiplexer, effectively an additional ADC channel
input. This facilitates an internal temperature sensor channel
that measures die temperature to an accuracy of 3°C.
TRANSFER FUNCTION
Pseudo Differential and Single-Ended Modes
1LSB =
FS
4096
0000 0000 0011
0000 0000 0010
0000 0000 0001
0000 0000 0000
0V 1LSB
+FS – 1LSB
VOLTAGE INPUT
04955-012
The converter accepts an analog input range of 0 V to VREF when
operating in single-ended or pseudo differential mode. In fully
differential mode, the input signal must be balanced around a
common-mode voltage (VCM) in the 0 V to AVDD range with a
maximum amplitude of 2 VREF (see Figure 38).
1111 1111 1100
Figure 39. ADC Transfer Function in Pseudo Differential or Single-Ended Mode
Fully Differential Mode
The amplitude of the differential signal is the difference between
the signals applied to the VIN+ and VIN– input voltage pins (that
is, VIN+ − VIN–). The maximum amplitude of the differential
signal is, therefore, –VREF to +VREF p-p (that is, 2 × VREF). This is
regardless of the common mode (CM). The common mode is
the average of the two signals, for example, (VIN+ + VIN–)/2, and
is, therefore, the voltage that the two inputs are centered on.
This results in the span of each input being CM VREF/2. This
voltage has to be set up externally, and its range varies with VREF
(see the Driving the Analog Inputs section).
The output coding is twos complement in fully differential mode
with 1 LSB = 2 VREF/4096 or 2 × 2.5 V/4096 = 1.22 mV when
VREF = 2.5 V. The output result is ±11 bits, but this is shifted by 1
to the right. This allows the result in ADCDAT to be declared as a
signed integer when writing C code. The designed code
transitions occur midway between successive integer LSB values
(that is, 1/2 LSB, 3/2 LSB, 5/2 LSB, … , FS − 3/2 LSB). The ideal
input/output transfer characteristic is shown in Figure 40.
SIGN
BIT
0 1111 1111 1110
0 1111 1111 1100
1LSB =
2 × VREF
4096
0 1111 1111 1010
In pseudo differential or single-ended mode, the input range is
0 V to VREF. The output coding is straight binary in pseudo
differential and single-ended modes with
1 LSB = FS/4096, or
2.5 V/4096 = 0.61 mV, or
610 μV when VREF = 2.5 V
0 0000 0000 0010
0 0000 0000 0000
1 1111 1111 1110
1 0000 0000 0100
1 0000 0000 0010
1 0000 0000 0000
0LSB
+VREF – 1LSB
–VREF + 1LSB
VOLTAGE INPUT (VIN+ – VIN–)
Figure 40. ADC Transfer Function in Differential Mode
Rev. E | Page 41 of 96
04955-013
Fully differential mode, for small and balanced signals
Single-ended mode, for any single-ended signals
Pseudo differential mode, for any single-ended signals,
taking advantage of the common-mode rejection offered
by the pseudo differential input
OUTPUT CODE



1111 1111 1101
OUTPUT CODE
The ADC consists of a 12-bit successive approximation converter
based around two capacitor DACs. Depending on the input
signal configuration, the ADC can operate in one of three modes.
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
ACQ
TYPICAL OPERATION
Once configured via the ADC control and channel selection
registers, the ADC converts the analog input and provides a
12-bit result in the ADC data register.
SIGN BITS
ADC BUSY
DATA
ADCDAT
0
12-BIT ADC RESULT
ADCSTA = 0
ADCSTA = 1
04955-015
16 15
CONVSTART
04955-014
27
WRITE
ADC CLOCK
The top four bits are the sign bits. The 12-bit result is placed
from Bit 16 to Bit 27, as shown in Figure 41. Again, it should be
noted that, in fully differential mode, the result is represented in
twos complement format. In pseudo differential and singleended modes, the result is represented in straight binary format.
31
BIT TRIAL
ADC INTERRUPT
Figure 41. ADC Result Format
Figure 42. ADC Timing
The same format is used in DACxDAT, simplifying the software.
ADuC7019
Current Consumption
The ADC in standby mode, that is, powered up but not
converting, typically consumes 640 μA. The internal reference
adds 140 μA. During conversion, the extra current is 0.3 μA
multiplied by the sampling frequency (in kilohertz (kHz)).
Figure 33 shows the current consumption vs. the sampling
frequency of the ADC.
The ADuC7019 is identical to the ADuC7020 except for one
buffered ADC channel, ADC3, and it has only three DACs. The
output buffer of the fourth DAC is internally connected to the
ADC3 channel as shown in Figure 43.
ADuC7019
MUX
Timing
1MSPS
12-BIT ADC
12-BIT
DAC
ADC3
DAC3
04955-016
Figure 42 gives details of the ADC timing. Users control the
ADC clock speed and the number of acquisition clocks in the
ADCCON MMR. By default, the acquisition time is eight clocks
and the clock divider is 2. The number of extra clocks (such as
bit trial or write) is set to 19, which gives a sampling rate of 774
kSPS. For conversion on the temperature sensor, the ADC
acquisition time is automatically set to 16 clocks, and the ADC
clock divider is set to 32. When using multiple channels,
including the temperature sensor, the timing settings revert to
the user-defined settings after reading the temperature sensor
channel.
ADC15
Figure 43. ADC3 Buffered Input
Note that the DAC3 output pin must be connected to a 10 nF
capacitor to AGND. This channel should be used to measure dc
voltages only. ADC calibration may be necessary on this channel.
MMRS INTERFACE
The ADC is controlled and configured via the eight MMRs
described in this section.
Table 17. ADCCON Register
Name
ADCCON
Address
0xFFFF0500
Default Value
0x0600
Access
R/W
ADCCON is an ADC control register that allows the programmer
to enable the ADC peripheral, select the mode of operation of
the ADC (in single-ended mode, pseudo differential mode, or
fully differential mode), and select the conversion type. This
MMR is described in Table 18.
Rev. E | Page 42 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 18. ADCCON MMR Bit Designations
Bit
15:13
12:10
Value
000
001
010
011
100
101
9:8
00
01
10
11
7
6
5
4:3
00
01
10
11
2:0
000
001
010
011
100
101
Other
Description
Reserved.
ADC clock speed.
fADC/1. This divider is provided to obtain
1 MSPS ADC with an external clock <41.78 MHz.
fADC/2 (default value).
fADC/4.
fADC/8.
fADC/16.
fADC/32.
ADC acquisition time.
Two clocks.
Four clocks.
Eight clocks (default value).
16 clocks.
Enable start conversion.
Set by the user to start any type of conversion
command. Cleared by the user to disable a
start conversion (clearing this bit does not
stop the ADC when continuously converting).
Reserved.
ADC power control.
Set by the user to place the ADC in normal
mode (the ADC must be powered up for at least
5 μs before it converts correctly). Cleared by the
user to place the ADC in power-down mode.
Conversion mode.
Single-ended mode.
Differential mode.
Pseudo differential mode.
Reserved.
Conversion type.
Enable CONVSTART pin as a conversion input.
Enable Timer1 as a conversion input.
Enable Timer0 as a conversion input.
Single software conversion. Sets to 000 after
conversion (note that Bit 7 of ADCCON MMR
should be cleared after starting a single
software conversion to avoid further
conversions triggered by the CONVSTART pin).
Continuous software conversion.
PLA conversion.
Reserved.
Table 19. ADCCP Register
Name
ADCCP
Address
0xFFFF0504
Default Value
0x00
Access
R/W
ADCCP is an ADC positive channel selection register. This
MMR is described in Table 20.
Table 20. ADCCP1 MMR Bit Designation
Bit
7:5
4:0
Value
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
Others
1
Description
Reserved.
Positive channel selection bits.
ADC0.
ADC1.
ADC2.
ADC3.
ADC4.
ADC5.
ADC6.
ADC7.
ADC8.
ADC9.
ADC10.
ADC11.
DAC0/ADC12.
DAC1/ADC13.
DAC2/ADC14.
DAC3/ADC15.
Temperature sensor.
AGND (self-diagnostic feature).
Internal reference (self-diagnostic feature).
AVDD/2.
Reserved.
ADC and DAC channel availability depends on the part model. See Ordering
Guide for details.
Table 21. ADCCN Register
Name
ADCCN
Address
0xFFFF0508
Default Value
0x01
Access
R/W
ADCCN is an ADC negative channel selection register. This
MMR is described in Table 22.
Rev. E | Page 43 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
Table 22. ADCCN MMR Bit Designation
Table 27. ADCOF Register
Bit
7:5
4:0
Name
ADCOF
Table 23. ADCSTA Register
Name
ADCSTA
Address
0xFFFF050C
Default Value
0x00
Access
R
ADCSTA is an ADC status register that indicates when an ADC
conversion result is ready. The ADCSTA register contains only
one bit, ADCReady (Bit 0), representing the status of the ADC.
This bit is set at the end of an ADC conversion, generating an
ADC interrupt. It is cleared automatically by reading the
ADCDAT MMR. When the ADC is performing a conversion,
the status of the ADC can be read externally via the ADCBUSY
pin. This pin is high during a conversion. When the conversion
is finished, ADCBUSY goes back low. This information can be
available on P0.5 (see the General-Purpose Input/Output
section) if enabled in the ADCCON register.
Table 24. ADCDAT Register
Name
ADCDAT
Address
0xFFFF0510
Default Value
0x00000000
Access
R
ADCDAT is an ADC data result register. It holds the 12-bit
ADC result as shown in Figure 41.
Address
0xFFFF0534
Default Value
0x0200
ADCOF is a 10-bit offset calibration register.
CONVERTER OPERATION
The ADC incorporates a successive approximation (SAR)
architecture involving a charge-sampled input stage. This
architecture can operate in three modes: differential, pseudo
differential, and single-ended.
Differential Mode
The ADuC7019/20/21/22/24/25/26/27/28/29 each contain a
successive approximation ADC based on two capacitive DACs.
Figure 44 and Figure 45 show simplified schematics of the ADC
in acquisition and conversion phase, respectively. The ADC
comprises control logic, a SAR, and two capacitive DACs. In
Figure 44 (the acquisition phase), SW3 is closed and SW1 and
SW2 are in Position A. The comparator is held in a balanced
condition, and the sampling capacitor arrays acquire the
differential signal on the input.
CAPACITIVE
DAC
CHANNEL+
AIN0
B
CS
COMPARATOR
A SW1
MUX
CHANNEL– A SW2
AIN11
CS
SW3
Address
0xFFFF0514
VREF
CAPACITIVE
DAC
Figure 44. ADC Acquisition Phase
When the ADC starts a conversion, as shown in Figure 45, SW3
opens, and then SW1 and SW2 move to Position B. This causes
the comparator to become unbalanced. Both inputs are disconnected once the conversion begins. The control logic and the
charge redistribution DACs are used to add and subtract fixed
amounts of charge from the sampling capacitor arrays to bring
the comparator back into a balanced condition. When the
comparator is rebalanced, the conversion is complete. The
control logic generates the ADC output code. The output
impedances of the sources driving the VIN+ and VIN– input
voltage pins must be matched; otherwise, the two inputs have
different settling times, resulting in errors.
CAPACITIVE
DAC
Default Value
0x00
Access
R/W
ADCRST resets the digital interface of the ADC. Writing any value
to this register resets all the ADC registers to their default values.
Address
0xFFFF0530
CHANNEL+
AIN0
B
CS
COMPARATOR
A SW1
MUX
AIN11
Table 26. ADCGN Register
Name
ADCGN
CONTROL
LOGIC
B
Table 25. ADCRST Register
Name
ADCRST
Access
R/W
04955-017
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
Others
Description
Reserved.
Negative channel selection bits.
ADC0.
ADC1.
ADC2.
ADC3.
ADC4.
ADC5.
ADC6.
ADC7.
ADC8.
ADC9.
ADC10.
ADC11.
DAC0/ADC12.
DAC1/ADC13.
DAC2/ADC14.
DAC3/ADC15.
Internal reference (self-diagnostic feature).
Reserved.
CHANNEL– A SW2
CS
SW3
B
VREF
Default Value
0x0200
Access
R/W
ADCGN is a 10-bit gain calibration register.
Rev. E | Page 44 of 96
CONTROL
LOGIC
Figure 45. ADC Conversion Phase
CAPACITIVE
DAC
04955-018
Value
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
AVDD
Pseudo Differential Mode
In pseudo differential mode, Channel− is linked to the VIN− pin
of the ADuC7019/20/21/22/24/25/26/27/28/29. SW2 switches
between A (Channel−) and B (VREF). The VIN− pin must be
connected to ground or a low voltage. The input signal on VIN+
can then vary from VIN− to VREF + VIN−. Note that VIN− must be
chosen so that VREF + VIN− does not exceed AVDD.
D
C1
D
AVDD
D
CAPACITIVE
DAC
A
AIN11
SW2
CS
SW3
CONTROL
LOGIC
Figure 48. Equivalent Analog Input Circuit Conversion Phase: Switches Open,
Track Phase: Switches Closed
VREF
CAPACITIVE
DAC
CHANNEL–
04955-019
B
VIN–
Figure 46. ADC in Pseudo Differential Mode
Single-Ended Mode
In single-ended mode, SW2 is always connected internally to
ground. The VIN− pin can be floating. The input signal range on
VIN+ is 0 V to VREF.
CAPACITIVE
DAC
CHANNEL+
AIN0
MUX
AIN11
B
CS
A SW1
CS
D
For ac applications, removing high frequency components from
the analog input signal is recommended by using an RC lowpass filter on the relevant analog input pins. In applications
where harmonic distortion and signal-to-noise ratio are critical,
the analog input should be driven from a low impedance
source. Large source impedances significantly affect the ac
performance of the ADC. This can necessitate the use of an
input buffer amplifier. The choice of the op amp is a function of
the particular application. Figure 49 and Figure 50 give an
example of an ADC front end.
COMPARATOR
SW3
ADuC7019/
ADuC702x
CONTROL
LOGIC
10Ω
CHANNEL–
ADC0
04955-061
A SW1
MUX
C1
COMPARATOR
CAPACITIVE
DAC
04955-020
0.01µF
Figure 49. Buffering Single-Ended/Pseudo Differential Input
Figure 47. ADC in Single-Ended Mode
ADuC7019/
ADuC702x
Analog Input Structure
ADC0
Figure 48 shows the equivalent circuit of the analog input structure
of the ADC. The four diodes provide ESD protection for the analog
inputs. Care must be taken to ensure that the analog input
signals never exceed the supply rails by more than 300 mV;
exceeding 300 mV causes these diodes to become forwardbiased and start conducting into the substrate. These diodes can
conduct up to 10 mA without causing irreversible damage to
the part.
The C1 capacitors in Figure 48 are typically 4 pF and can be
primarily attributed to pin capacitance. The resistors are
lumped components made up of the on resistance of the
switches. The value of these resistors is typically about 100 Ω.
The C2 capacitors are the ADC’s sampling capacitors and
typically have a capacitance of 16 pF.
VREF
ADC1
04955-062
CS
B
R1 C2
04955-021
CHANNEL+
AIN0
R1 C2
Figure 50. Buffering Differential Inputs
When no amplifier is used to drive the analog input, the source
impedance should be limited to values lower than 1 kΩ. The
maximum source impedance depends on the amount of total
harmonic distortion (THD) that can be tolerated. The THD
increases as the source impedance increases and the performance
degrades.
DRIVING THE ANALOG INPUTS
Internal or external references can be used for the ADC. In
the differential mode of operation, there are restrictions on the
common-mode input signal (VCM), which is dependent upon
the reference value and supply voltage used to ensure that the
signal remains within the supply rails. Table 28 gives some
calculated VCM minimum and VCM maximum values.
Rev. E | Page 45 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Table 28. VCM Ranges
AVDD
3.3 V
3.0 V
VREF
2.5 V
2.048 V
1.25 V
2.5 V
2.048 V
1.25 V
VCM Min
1.25 V
1.024 V
0.75 V
1.25 V
1.024 V
0.75 V
VCM Max
2.05 V
2.276 V
2.55 V
1.75 V
1.976 V
2.25 V
Signal Peak-to-Peak
2.5 V
2.048 V
1.25 V
2.5 V
2.048 V
1.25 V
Data Sheet
ADCCP = 0x10; // Select Temperature
Sensor as an // input to the ADC
REFCON = 0x01; // connect internal 2.5V
reference // to Vref pin
ADCCON = 0xE4; // continuous conversion
while(1)
{
while (!ADCSTA){};
// wait for end of conversion
CALIBRATION
By default, the factory-set values written to the ADC offset
(ADCOF) and gain coefficient registers (ADCGN) yield
optimum performance in terms of end-point errors and
linearity for standalone operation of the part (see the
Specifications section). If system calibration is required, it is
possible to modify the default offset and gain coefficients to
improve end-point errors, but note that any modification to the
factory-set ADCOF and ADCGN values can degrade ADC
linearity performance.
For system offset error correction, the ADC channel input stage
must be tied to AGND. A continuous software ADC conversion
loop must be implemented by modifying the value in ADCOF until
the ADC result (ADCDAT) reads Code 0 to Code 1. If the
ADCDAT value is greater than 1, ADCOF should be decremented
until ADCDAT reads 0 to 1. Offset error correction is done
digitally and has a resolution of 0.25 LSB and a range of
±3.125% of VREF.
For system gain error correction, the ADC channel input stage
must be tied to VREF. A continuous software ADC conversion
loop must be implemented to modify the value in ADCGN
until the ADC result (ADCDAT) reads Code 4094 to Code 4095.
If the ADCDAT value is less than 4094, ADCGN should be
incremented until ADCDAT reads 4094 to 4095. Similar to the
offset calibration, the gain calibration resolution is 0.25 LSB
with a range of ±3% of VREF.
TEMPERATURE SENSOR
The ADuC7019/20/21/22/24/25/26/27/28/29 provide voltage
output from on-chip band gap references proportional to
absolute temperature. This voltage output can also be routed
through the front-end ADC multiplexer (effectively an additional
ADC channel input) facilitating an internal temperature sensor
channel, measuring die temperature to an accuracy of ±3°C.
The following is an example routine showing how to use the
internal temperature sensor:
int main(void)
{
float a = 0;
b = (ADCDAT >> 16);
// To calculate temperature in °C, use
the formula:
a = 0x525 - b;
// ((Temperature = 0x525 - Sensor
Voltage) / 1.3)
a /= 1.3;
b = floor(a);
printf("Temperature: %d
oC\n",b);
}
return 0;
}
BAND GAP REFERENCE
Each ADuC7019/20/21/22/24/25/26/27/28/29 provides an onchip band gap reference of 2.5 V, which can be used for the ADC
and DAC. This internal reference also appears on the VREF pin.
When using the internal reference, a 0.47 µF capacitor must be
connected from the external VREF pin to AGND to ensure stability
and fast response during ADC conversions. This reference can
also be connected to an external pin (VREF) and used as a reference for other circuits in the system. An external buffer is required
because of the low drive capability of the VREF output. A programmable option also allows an external reference input on the VREF
pin. Note that it is not possible to disable the internal reference.
Therefore, the external reference source must be capable of
overdriving the internal reference source.
Table 29. REFCON Register
Name
REFCON
Default Value
0x00
Access
R/W
The band gap reference interface consists of an 8-bit MMR
REFCON, described in Table 30.
Table 30. REFCON MMR Bit Designations
Bit
7:1
0
short b;
ADCCON = 0x20;
Address
0xFFFF048C
// power-on the ADC
delay(2000);
Rev. E | Page 46 of 96
Description
Reserved.
Internal reference output enable. Set by user to
connect the internal 2.5 V reference to the VREF pin.
The reference can be used for an external component
but must be buffered. Cleared by user to disconnect
the reference from the VREF pin.
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
NONVOLATILE FLASH/EE MEMORY
Like EEPROM, flash memory can be programmed in-system
at a byte level, although it must first be erased. The erase is
performed in page blocks. As a result, flash memory is often
and more correctly referred to as Flash/EE memory.
Overall, Flash/EE memory represents a step closer to the
ideal memory device that includes nonvolatility, in-circuit
programmability, high density, and low cost. Incorporated in
the ADuC7019/20/21/22/24/25/26/27/28/29, Flash/EE memory
technology allows the user to update program code space incircuit, without the need to replace one-time programmable
(OTP) devices at remote operating nodes.
Retention quantifies the ability of the Flash/EE memory to
retain its programmed data over time. Again, the parts are
qualified in accordance with the formal JEDEC Retention
Lifetime Specification (A117) at a specific junction temperature
(TJ = 85°C). As part of this qualification procedure, the
Flash/EE memory is cycled to its specified endurance limit,
described in Table 1, before data retention is characterized. This
means that the Flash/EE memory is guaranteed to retain its data
for its fully specified retention lifetime every time the Flash/EE
memory is reprogrammed. In addition, note that retention
lifetime, based on an activation energy of 0.6 eV, derates with TJ
as shown in Figure 51.
600
RETENTION (Years)
Each part contains a 64 kB array of Flash/EE memory. The
lower 62 kB is available to the user and the upper 2 kB contain
permanently embedded firmware, allowing in-circuit serial
download. These 2 kB of embedded firmware also contain a
power-on configuration routine that downloads factorycalibrated coefficients to the various calibrated peripherals
(such as ADC, temperature sensor, and band gap references).
This 2 kB embedded firmware is hidden from user code.
300
150
Flash/EE Memory Reliability
0
The Flash/EE memory arrays on the parts are fully qualified for
two key Flash/EE memory characteristics: Flash/EE memory
cycling endurance and Flash/EE memory data retention.
Endurance quantifies the ability of the Flash/EE memory to be
cycled through many program, read, and erase cycles. A single
endurance cycle is composed of four independent, sequential
events, defined as
1.
2.
3.
4.
450
Initial page erase sequence
Read/verify sequence (single Flash/EE)
Byte program sequence memory
Second read/verify sequence (endurance cycle)
In reliability qualification, every half word (16-bit wide)
location of the three pages (top, middle, and bottom) in the
Flash/EE memory is cycled 10,000 times from 0x0000 to
0xFFFF. As indicated in Table 1, the Flash/EE memory
endurance qualification is carried out in accordance with
JEDEC Retention Lifetime Specification A117 over the
industrial temperature range of −40° to +125°C. The results
allow the specification of a minimum endurance figure over a
supply temperature of 10,000 cycles.
04955-085
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate
Flash/EE memory technology on-chip to provide the user with
nonvolatile, in-circuit reprogrammable memory space.
30
40
55
70
85
100
125
JUNCTION TEMPERATURE (°C)
135
150
Figure 51. Flash/EE Memory Data Retention
PROGRAMMING
The 62 kB of Flash/EE memory can be programmed in-circuit,
using the serial download mode or the provided JTAG mode.
Serial Downloading (In-Circuit Programming)
The ADuC7019/20/21/22/24/25/26/27/28/29 facilitate code
download via the standard UART serial port or via the I2C port.
The parts enter serial download mode after a reset or power
cycle if the BM pin is pulled low through an external 1 kΩ
resistor. After a part is in serial download mode, the user can
download code to the full 62 kB of Flash/EE memory while the
device is in-circuit in its target application hardware. An
executable PC serial download is provided as part of the
development system for serial downloading via the UART. The
AN-806 Application Note describes the protocol for serial
downloading via the I2C.
JTAG Access
The JTAG protocol uses the on-chip JTAG interface to facilitate
code download and debug.
Rev. E | Page 47 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
SECURITY
FLASH/EE CONTROL INTERFACE
The 62 kB of Flash/EE memory available to the user can be read
and write protected.
Serial and JTAG programming use the Flash/EE control interface,
which includes the eight MMRs outlined in this section.
Bit 31 of the FEEPRO/FEEHIDE MMR (see Table 42) protects
the 62 kB from being read through JTAG programming mode.
The other 31 bits of this register protect writing to the flash
memory. Each bit protects four pages, that is, 2 kB. Write
protection is activated for all types of access.
Table 31. FEESTA Register
Three Levels of Protection
•
•
•
Protection can be set and removed by writing directly into
FEEHIDE MMR. This protection does not remain after reset.
Protection can be set by writing into the FEEPRO MMR. It
takes effect only after a save protection command (0x0C)
and a reset. The FEEPRO MMR is protected by a key to
avoid direct access. The key is saved once and must be
entered again to modify FEEPRO. A mass erase sets the
key back to 0xFFFF but also erases all the user code.
Flash can be permanently protected by using the FEEPRO
MMR and a particular value of key: 0xDEADDEAD.
Entering the key again to modify the FEEPRO register is
not allowed.
Name
FEESTA
2.
3.
4.
5.
Write the bit in FEEPRO corresponding to the page to be
protected.
Enable key protection by setting Bit 6 of FEEMOD (Bit 5
must equal 0).
Write a 32-bit key in FEEADR and FEEDAT.
Run the write key command 0x0C in FEECON; wait for
the read to be successful by monitoring FEESTA.
Reset the part.
To remove or modify the protection, the same sequence is used
with a modified value of FEEPRO. If the key chosen is the value
0xDEAD, the memory protection cannot be removed. Only a mass
erase unprotects the part, but it also erases all user code.
The sequence to write the key is illustrated in the following
example (this protects writing Page 4 to Page 7 of the Flash):
FEEPRO=0xFFFFFFFD;
FEEMOD=0x48;
FEEADR=0x1234;
FEEDAT=0x5678;
FEECON= 0x0C;
//Protect pages 4 to 7
//Write key enable
//16 bit key value
//16 bit key value
// Write key command
The same sequence should be followed to protect the part
permanently with FEEADR = 0xDEAD and FEEDAT = 0xDEAD.
Default Value
0x20
Access
R
FEESTA is a read-only register that reflects the status of the
flash control interface as described in Table 32.
Table 32. FEESTA MMR Bit Designations
Bit
15:6
5
4
3
2
1
Sequence to Write the Key
1.
Address
0xFFFFF800
0
Description
Reserved.
Reserved.
Reserved.
Flash interrupt status bit. Set automatically when an
interrupt occurs, that is, when a command is complete
and the Flash/EE interrupt enable bit in the FEEMOD
register is set. Cleared when reading the FEESTA register.
Flash/EE controller busy. Set automatically when the
controller is busy. Cleared automatically when the
controller is not busy.
Command fail. Set automatically when a command
completes unsuccessfully. Cleared automatically when
reading the FEESTA register.
Command pass. Set by the MicroConverter when a
command completes successfully. Cleared automatically when reading the FEESTA register.
Table 33. FEEMOD Register
Name
FEEMOD
Address
0xFFFFF804
Default Value
0x0000
Access
R/W
FEEMOD sets the operating mode of the flash control interface.
Table 34 shows FEEMOD MMR bit designations.
Table 34. FEEMOD MMR Bit Designations
Bit
15:9
8
7:5
4
3
2:0
Rev. E | Page 48 of 96
Description
Reserved.
Reserved. This bit should always be set to 0.
Reserved. These bits should always be set to 0 except
when writing keys. See the Sequence to Write the Key
section.
Flash/EE interrupt enable. Set by user to enable the
Flash/EE interrupt. The interrupt occurs when a
command is complete. Cleared by user to disable
the Flash/EE interrupt.
Erase/write command protection. Set by user to
enable the erase and write commands. Cleared to
protect the Flash against the erase/write command.
Reserved. These bits should always be set to 0.
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 35. FEECON Register
Name
FEECON
Address
0xFFFFF808
Default Value
0x07
Access
R/W
FEECON is an 8-bit command register. The commands are
described in Table 36.
1
Command
Null
Single read
0x02
Single write
0x031
Erase/write
0x041
0x051
0x061
Single verify
Single erase
Mass erase
0x07
0x08
0x09
0x0A
0x0B
Reserved
Reserved
Reserved
Reserved
Signature
0x0C
Protect
0x0D
0x0E
0x0F
Reserved
Reserved
Ping
1
Name
FEEDAT
1
Address
0xFFFFF80C
Default Value
0xXXXX1
Access
R/W
Default Value
0x0000
Access
R/W
X = 0, 1, 2, or 3.
FEEDAT is a 16-bit data register.
Table 36. Command Codes in FEECON
Code
0x001
0x011
Table 37. FEEDAT Register
Description
Idle state.
Load FEEDAT with the 16-bit data.
Indexed by FEEADR.
Write FEEDAT at the address pointed to
by FEEADR. This operation takes 50 µs.
Erase the page indexed by FEEADR and
write FEEDAT at the location pointed by
FEEADR. This operation takes approximately 24 ms.
Compare the contents of the location
pointed by FEEADR to the data in
FEEDAT. The result of the comparison is
returned in FEESTA, Bit 1.
Erase the page indexed by FEEADR.
Erase 62 kB of user space. The 2 kB of
kernel are protected. This operation
takes 2.48 sec. To prevent accidental
execution, a command sequence is
required to execute this instruction.
See the Command Sequence for
Executing a Mass Erase section.
Reserved.
Reserved.
Reserved.
Reserved.
Give a signature of the 64 kB of Flash/EE
in the 24-bit FEESIGN MMR. This
operation takes 32,778 clock cycles.
This command can run only once. The
value of FEEPRO is saved and removed
only with a mass erase (0x06) of the key.
Reserved.
Reserved.
No operation; interrupt generated.
The FEECON register always reads 0x07 immediately after execution of any
of these commands.
Table 38. FEEADR Register
Name
FEEADR
Address
0xFFFFF810
FEEADR is another 16-bit address register.
Table 39. FEESIGN Register
Name
FEESIGN
Address
0xFFFFF818
Default Value
0xFFFFFF
Access
R
FEESIGN is a 24-bit code signature.
Table 40. FEEPRO Register
Name
FEEPRO
Address
0xFFFFF81C
Default Value
0x00000000
Access
R/W
FEEPRO MMR provides protection following a subsequent
reset of the MMR. It requires a software key (see Table 42).
Table 41. FEEHIDE Register
Name
FEEHIDE
Address
0xFFFFF820
Default Value
0xFFFFFFFF
Access
R/W
FEEHIDE MMR provides immediate protection. It does not
require any software key. Note that the protection settings in
FEEHIDE are cleared by a reset (see Table 42).
Table 42. FEEPRO and FEEHIDE MMR Bit Designations
Bit
31
30:0
Description
Read protection. Cleared by user to protect all code.
Set by user to allow reading the code.
Write protection for Page 123 to Page 120, Page 119
to Page 116, and Page 0 to Page 3. Cleared by user to
protect the pages from writing. Set by user to allow
writing the pages.
Command Sequence for Executing a Mass Erase
FEEDAT=0x3CFF;
FEEADR = 0xFFC3;
FEEMOD= FEEMOD|0x8;
FEECON=0x06;
Rev. E | Page 49 of 96
//Erase key enable
//Mass erase command
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
EXECUTION TIME FROM SRAM AND FLASH/EE
RESET AND REMAP
Execution from SRAM
The ARM exception vectors are all situated at the bottom of the
memory array, from Address 0x00000000 to Address 0x00000020,
as shown in Figure 52.
Fetching instructions from SRAM takes one clock cycle; the
access time of the SRAM is 2 ns, and a clock cycle is 22 ns
minimum. However, if the instruction involves reading or
writing data to memory, one extra cycle must be added if the
data is in SRAM (or three cycles if the data is in Flash/EE): one
cycle to execute the instruction, and two cycles to get the 32-bit
data from Flash/EE. A control flow instruction (a branch
instruction, for example) takes one cycle to fetch but also takes
two cycles to fill the pipeline with the new instructions.
0xFFFFFFFF
KERNEL
0x0008FFFF
FLASH/EE
INTERRUPT
SERVICE ROUTINES
0x00080000
Execution from Flash/EE
In ARM mode, where instructions are 32 bits, two cycles are
needed to fetch any instruction when CD = 0. In thumb mode,
where instructions are 16 bits, one cycle is needed to fetch any
instruction.
Timing is identical in both modes when executing instructions
that involve using the Flash/EE for data memory. If the instruction
to be executed is a control flow instruction, an extra cycle is
needed to decode the new address of the program counter, and
then four cycles are needed to fill the pipeline. A data-processing
instruction involving only the core register does not require any
extra clock cycles. However, if it involves data in Flash/EE, an
extra clock cycle is needed to decode the address of the data,
and two cycles are needed to get the 32-bit data from Flash/EE.
An extra cycle must also be added before fetching another
instruction. Data transfer instructions are more complex and
are summarized in Table 43.
Table 43. Execution Cycles in ARM/Thumb Mode
Instructions
LD1
LDH
LDM/PUSH
STR1
STRH
STRM/POP
1
2
Fetch
Cycles
2/1
2/1
2/1
2/1
2/1
2/1
Dead
Time
1
1
N2
1
1
N1
Data Access
2
1
2 × N2
2 × 20 ns
20 ns
2 × N × 20 ns1
Dead
Time
1
1
N1
1
1
N1
0x00011FFF
SRAM
INTERRUPT
SERVICE ROUTINES
0x00010000
MIRROR SPACE
ARM EXCEPTION
VECTOR ADDRESSES
0x00000020
0x00000000
0x00000000
04955-022
Because the Flash/EE width is 16 bits and access time for 16-bit
words is 22 ns, execution from Flash/EE cannot be done in
one cycle (as can be done from SRAM when the CD Bit = 0).
Also, some dead times are needed before accessing data for any
value of the CD bit.
Figure 52. Remap for Exception Execution
By default, and after any reset, the Flash/EE is mirrored at the
bottom of the memory array. The remap function allows the
programmer to mirror the SRAM at the bottom of the memory
array, which facilitates execution of exception routines from
SRAM instead of from Flash/EE. This means exceptions are
executed twice as fast, being executed in 32-bit ARM mode with
32-bit wide SRAM instead of 16-bit wide Flash/EE memory.
Remap Operation
When a reset occurs on the ADuC7019/20/21/22/24/25/26/27/
28/29, execution automatically starts in the factory-programmed,
internal configuration code. This kernel is hidden and cannot
be accessed by user code. If the part is in normal mode (the BM
pin is high), it executes the power-on configuration routine of
the kernel and then jumps to the reset vector address,
0x00000000, to execute the user’s reset exception routine.
Because the Flash/EE is mirrored at the bottom of the memory
array at reset, the reset interrupt routine must always be written
in Flash/EE.
The remap is done from Flash/EE by setting Bit 0 of the REMAP
register. Caution must be taken to execute this command from
Flash/EE, above Address 0x00080020, and not from the bottom
of the array because this is replaced by the SRAM.
The SWAP instruction combines an LD and STR instruction with only one
fetch, giving a total of eight cycles + 40 ns.
N is the amount of data to load or store in the multiple load/store instruction
(1 < N ≤ 16).
This operation is reversible. The Flash/EE can be remapped at
Address 0x00000000 by clearing Bit 0 of the REMAP MMR.
Caution must again be taken to execute the remap function
from outside the mirrored area. Any type of reset remaps the
Flash/EE memory at the bottom of the array.
Rev. E | Page 50 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Reset Operation
Table 46. RSTSTA Register
There are four kinds of reset: external, power-on, watchdog
expiration, and software force. The RSTSTA register indicates
the source of the last reset, and RSTCLR allows clearing of the
RSTSTA register. These registers can be used during a reset
exception service routine to identify the source of the reset.
If RSTSTA is null, the reset is external.
Table 44. REMAP Register
Name
REMAP
1
Address
0xFFFF0220
Default Value
0xXX1
Access
R/W
Depends on the model.
Name
RSTSTA
Name
Bit
7:3
2
1
0
3
2:1
0
Remap
Description
Read-only bit. Indicates the size of the Flash/EE
memory available. If this bit is set, only 32 kB of
Flash/EE memory is available.
Read-only bit. Indicates the size of the SRAM
memory available. If this bit is set, only 4 kB of
SRAM is available.
Reserved.
Remap bit. Set by user to remap the SRAM to
Address 0x00000000. Cleared automatically
after reset to remap the Flash/EE memory to
Address 0x00000000.
Default Value
0x01
Access
R/W
Table 47. RSTSTA MMR Bit Designations
Table 45. REMAP MMR Bit Designations
Bit
4
Address
0xFFFF0230
Description
Reserved.
Software reset. Set by user to force a software reset.
Cleared by setting the corresponding bit in RSTCLR.
Watchdog timeout. Set automatically when a watchdog
timeout occurs. Cleared by setting the corresponding
bit in RSTCLR.
Power-on reset. Set automatically when a power-on
reset occurs. Cleared by setting the corresponding bit
in RSTCLR.
Table 48. RSTCLR Register
Name
RSTCLR
Address
0xFFFF0234
Default Value
0x00
Access
W
Note that to clear the RSTSTA register, the user must write 0x07
to the RSTCLR register.
Rev. E | Page 51 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
OTHER ANALOG PERIPHERALS
DAC
Table 51. DACxDAT Registers
The ADuC7019/20/21/22/24/25/26/27/28/29 incorporate two,
three, or four 12-bit voltage output DACs on-chip, depending on
the model. Each DAC has a rail-to-rail voltage output buffer
capable of driving 5 kΩ/100 pF.
Name
DAC0DAT
DAC1DAT
DAC2DAT
DAC3DAT
Each DAC has three selectable ranges: 0 V to VREF (internal
band gap 2.5 V reference), 0 V to DACREF, and 0 V to AVDD.
DACREF is equivalent to an external reference for the DAC.
The signal range is 0 V to AVDD.
Each DAC is independently configurable through a control
register and a data register. These two registers are identical for
the four DACs. Only DAC0CON (see Table 50) and DAC0DAT
(see Table 52) are described in detail in this section.
Table 49. DACxCON Registers
Address
0xFFFF0600
0xFFFF0608
0xFFFF0610
0xFFFF0618
Default Value
0x00
0x00
0x00
0x00
Bit
31:28
27:16
15:0
Value
DACCLK
DACCLR
3
2
1:0
00
01
10
11
Description
Reserved.
12-bit data for DAC0.
Reserved.
The on-chip DAC architecture consists of a resistor string DAC
followed by an output buffer amplifier. The functional equivalent
is shown in Figure 53.
Access
R/W
R/W
R/W
R/W
AVDD
VREF
DACREF
R
R
DAC0
R
Description
Reserved.
DAC update rate. Set by user to
update the DAC using Timer1.
Cleared by user to update the DAC
using HCLK (core clock).
DAC clear bit. Set by user to enable
normal DAC operation. Cleared by
user to reset data register of the DAC
to 0.
Reserved. This bit should be left at 0.
Reserved. This bit should be left at 0.
DAC range bits.
Power-down mode. The DAC output is
in three-state.
0 V to DACREF range.
0 V to VREF (2.5 V) range.
0 V to AVDD range.
R
R
04955-023
4
Name
Access
R/W
R/W
R/W
R/W
Using the DACs
Table 50. DAC0CON MMR Bit Designations
Bit
7:6
5
Default Value
0x00000000
0x00000000
0x00000000
0x00000000
Table 52. DAC0DAT MMR Bit Designations
MMRs Interface
Name
DAC0CON
DAC1CON
DAC2CON
DAC3CON
Address
0xFFFF0604
0xFFFF060C
0xFFFF0614
0xFFFF061C
Figure 53. DAC Structure
As illustrated in Figure 53, the reference source for each DAC is
user-selectable in software. It can be AVDD, VREF, or DACREF. In
0-to-AVDD mode, the DAC output transfer function spans from 0
V to the voltage at the AVDD pin. In 0-to-DACREF mode, the DAC
output transfer function spans from 0 V to the voltage at the
DACREF pin. In 0-to-VREF mode, the DAC output transfer function
spans from 0 V to the internal 2.5 V reference, VREF.
The DAC output buffer amplifier features a true, rail-to-rail
output stage implementation. This means that when unloaded,
each output is capable of swinging to within less than 5 mV of
both AVDD and ground. Moreover, the DAC’s linearity specification
(when driving a 5 kΩ resistive load to ground) is guaranteed
through the full transfer function, except Code 0 to Code 100,
and, in 0-to-AVDD mode only, Code 3995 to Code 4095.
Rev. E | Page 52 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Linearity degradation near ground and AVDD is caused by saturation of the output amplifier, and a general representation of its
effects (neglecting offset and gain error) is illustrated in Figure 54.
The dotted line in Figure 54 indicates the ideal transfer function,
and the solid line represents what the transfer function may
look like with endpoint nonlinearities due to saturation of the
output amplifier. Note that Figure 54 represents a transfer function
in 0-to-AVDD mode only. In 0-to-VREF or 0-to-DACREF mode
(with VREF < AVDD or DACREF < AVDD), the lower nonlinearity is
similar. However, the upper portion of the transfer function
follows the ideal line right to the end (VREF in this case, not AVDD),
showing no signs of endpoint linearity errors.
AVDD
AVDD – 100mV
Table 54. PSMCON MMR Bit Descriptions
Bit
3
Name
CMP
2
1
TP
PSMEN
0
PSMI
Description
Comparator bit. This is a read-only bit that
directly reflects the state of the comparator.
Read 1 indicates that the IOVDD supply is above
its selected trip point or that the PSM is in
power-down mode. Read 0 indicates that the
IOVDD supply is below its selected trip point. This
bit should be set before leaving the interrupt
service routine.
Trip point selection bit. 0 = 2.79 V, 1 = 3.07 V.
Power supply monitor enable bit. Set to 1 to
enable the power supply monitor circuit. Cleared
to 0 to disable the power supply monitor circuit.
Power supply monitor interrupt bit. This bit is set
high by the MicroConverter after CMP goes low,
indicating low I/O supply. The PSMI bit can be
used to interrupt the processor. After CMP
returns high, the PSMI bit can be cleared by
writing a 1 to this location. A 0 write has no
effect. There is no timeout delay; PSMI can be
immediately cleared after CMP goes high.
COMPARATOR
0x0FFF0000
Figure 54. Endpoint Nonlinearities Due to Amplifier Saturation
The endpoint nonlinearities conceptually illustrated in
Figure 54 get worse as a function of output loading. Most
of the ADuC7019/20/21/22/24/25/26/27/28/29 data sheet
specifications assume a 5 kΩ resistive load to ground at the
DAC output. As the output is forced to source or sink more
current, the nonlinear regions at the top or bottom (respectively)
of Figure 54 become larger. With larger current demands, this
can significantly limit output voltage swing.
The ADuC7019/20/21/22/24/25/26/27/28/29 integrate voltage
comparators. The positive input is multiplexed with ADC2, and
the negative input has two options: ADC3 and DAC0. The output
of the comparator can be configured to generate a system interrupt, be routed directly to the programmable logic array, start
an ADC conversion, or be on an external pin, CMPOUT, as
shown in Figure 55.
IRQ
ADC2/CMP0
MUX
ADC3/CMP1
MUX
DAC0
POWER SUPPLY MONITOR
The power supply monitor regulates the IOVDD supply on the
ADuC7019/20/21/22/24/25/26/27/28/29. It indicates when the
IOVDD supply pin drops below one of two supply trip points.
The monitor function is controlled via the PSMCON register.
If enabled in the IRQEN or FIQEN register, the monitor
interrupts the core using the PSMI bit in the PSMCON MMR.
This bit is immediately cleared after CMP goes high.
This monitor function allows the user to save working registers
to avoid possible data loss due to low supply or brown-out
conditions. It also ensures that normal code execution does not
resume until a safe supply level is established.
04955-025
0x00000000
04955-024
100mV
P0.0/CMPOUT
Figure 55. Comparator
Note that because the ADuC7022, ADuC7025, and ADu7027
parts do not support a DAC0 output, it is not possible to use
DAC0 as a comparator input on these parts.
Hysteresis
Figure 56 shows how the input offset voltage and hysteresis
terms are defined.
CMPOUT
VH
VH
Name
PSMCON
Address
0xFFFF0440
Default Value
0x0008
Access
R/W
VOS
CMP0
04955-063
Table 53. PSMCON Register
Figure 56. Comparator Hysteresis Transfer Function
Rev. E | Page 53 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Comparator Interface
The comparator interface consists of a 16-bit MMR, CMPCON,
which is described in Table 56.
Table 55. CMPCON Register
Name
CMPCON
Address
0xFFFF0444
Default Value
0x0000
Access
R/W
Table 56. CMPCON MMR Bit Descriptions
Bit
15:11
10
Name
CMPEN
9:8
CMPIN
Value
00
01
10
11
7:6
CMPOC
00
01
10
11
5
4:3
CMPOL
CMPRES
00
11
01/10
2
CMPHYST
1
CMPORI
0
CMPOFI
Description
Reserved.
Comparator enable bit. Set by user
to enable the comparator. Cleared
by user to disable the comparator.
Comparator negative input
select bits.
AVDD/2.
ADC3 input.
DAC0 output.
Reserved.
Comparator output configuration
bits.
Reserved.
Reserved.
Output on CMPOUT.
IRQ.
Comparator output logic state bit.
When low, the comparator output
is high if the positive input (CMP0)
is above the negative input (CMP1).
When high, the comparator output
is high if the positive input is below
the negative input.
Response time.
5 µs response time is typical for
large signals (2.5 V differential).
17 µs response time is typical for
small signals (0.65 mV differential).
3 µs typical.
Reserved.
Comparator hysteresis bit. Set by
user to have a hysteresis of about
7.5 mV. Cleared by user to have no
hysteresis.
Comparator output rising edge
interrupt. Set automatically when a
rising edge occurs on the monitored voltage (CMP0). Cleared by
user by writing a 1 to this bit.
Comparator output falling edge
interrupt. Set automatically when a
falling edge occurs on the monitored
voltage (CMP0). Cleared by user.
OSCILLATOR AND PLL—POWER CONTROL
Clocking System
Each ADuC7019/20/21/22/24/25/26/27/28/29 integrates a
32.768 kHz ±3% oscillator, a clock divider, and a PLL. The PLL
locks onto a multiple (1275) of the internal oscillator or an external
32.768 kHz crystal to provide a stable 41.78 MHz clock (UCLK) for
the system. To allow power saving, the core can operate at this
frequency, or at binary submultiples of it. The actual core operating frequency, UCLK/2CD, is refered to as HCLK. The default
core clock is the PLL clock divided by 8 (CD = 3) or 5.22 MHz.
The core clock frequency can also come from an external clock
on the ECLK pin as described in Figure 57. The core clock can
be outputted on ECLK when using an internal oscillator or
external crystal.
Note that when the ECLK pin is used to output the core clock,
the output signal is not buffered and is not suitable for use as a
clock source to an external device without an external buffer.
WATCHDOG
TIMER
INT. 32kHz*
OSCILLATOR
XCLKO
CRYSTAL
OSCILLATOR
XCLKI
OCLK
WAKE-UP
TIMER
AT POWER-UP
32.768kHz
41.78MHz
PLL
P0.7/XCLK
MDCLK
UCLK
I2C
CD
CORE
ANALOG
PERIPHERALS
/2CD
HCLK
*32.768kHz ±3%
P0.7/ECLK
04955-026
Input offset voltage (VOS) is the difference between the center of
the hysteresis range and the ground level. This can either be
positive or negative. The hysteresis voltage (VH) is one-half the
width of the hysteresis range.
Data Sheet
Figure 57. Clocking System
The selection of the clock source is in the PLLCON register. By
default, the part uses the internal oscillator feeding the PLL.
External Crystal Selection
To switch to an external crystal, the user must do the following:
1.
2.
3.
Rev. E | Page 54 of 96
Enable the Timer2 interrupt and configure it for a timeout
period of >120 µs.
Follow the write sequence to the PLLCON register, setting
the MDCLK bits to 01 and clearing the OSEL bit.
Force the part into NAP mode by following the correct
write sequence to the POWCON register.
When the part is interrupted from NAP mode by the
Timer2 interrupt source, the clock source has switched to
the external clock.
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Example source code
Example source code
t2val_old= T2VAL;
t2val_old= T2VAL;
T2LD = 5;
T2LD = 5;
TCON = 0x480;
TCON = 0x480;
while ((T2VAL == t2val_old) || (T2VAL >
3)) //ensures timer value loaded
while ((T2VAL == t2val_old) || (T2VAL
> 3)) //ensures timer value loaded
IRQEN = 0x10;
//enable T2 interrupt
IRQEN = 0x10;
//enable T2 interrupt
PLLKEY1 = 0xAA;
PLLCON = 0x01;
PLLKEY2 = 0x55;
PLLKEY1 = 0xAA;
PLLCON = 0x03; //Select external clock
PLLKEY2 = 0x55;
POWKEY1 = 0x01;
POWCON = 0x27;
// Set Core into Nap mode
POWKEY2 = 0xF4;
In noisy environments, noise can couple to the external crystal
pins, and PLL may lose lock momentarily. A PLL interrupt is
provided in the interrupt controller. The core clock is immediately
halted, and this interrupt is only serviced when the lock is restored.
In case of crystal loss, the watchdog timer should be used. During
initialization, a test on the RSTSTA register can determine if the
reset came from the watchdog timer.
External Clock Selection
To switch to an external clock on P0.7, configure P0.7 in
Mode 1. The external clock can be up to 44 MHz, providing
the tolerance is 1%.
POWKEY1 = 0x01;
POWCON = 0x27;
// Set Core into Nap mode
POWKEY2 = 0xF4;
Power Control System
A choice of operating modes is available on the ADuC7019/20/
21/22/24/25/26/27/28/29. Table 57 describes what part is powered
on in the different modes and indicates the power-up time.
Table 58 gives some typical values of the total current consumption (analog + digital supply currents) in the different modes,
depending on the clock divider bits. The ADC is turned off. Note
that these values also include current consumption of the
regulator and other parts on the test board where these values
are measured.
Table 57. Operating Modes 1
Mode
Active
Pause
Nap
Sleep
Stop
1
Core
X
Peripherals
X
X
PLL
X
X
X
XTAL/T2/T3
X
X
X
X
IRQ0 to IRQ3
X
X
X
X
X
Start-Up/Power-On Time
130 ms at CD = 0
24 ns at CD = 0; 3 µs at CD = 7
24 ns at CD = 0; 3 µs at CD = 7
1.58 ms
1.7 ms
X indicates that the part is powered on.
Table 58. Typical Current Consumption at 25°C in Milliamperes
PC[2:0]
000
001
010
011
100
Mode
Active
Pause
Nap
Sleep
Stop
CD = 0
33.1
22.7
3.8
0.4
0.4
CD = 1
21.2
13.3
3.8
0.4
0.4
CD = 2
13.8
8.5
3.8
0.4
0.4
CD = 3
10
6.1
3.8
0.4
0.4
Rev. E | Page 55 of 96
CD = 4
8.1
4.9
3.8
0.4
0.4
CD = 5
7.2
4.3
3.8
0.4
0.4
CD = 6
6.7
4
3.8
0.4
0.4
CD = 7
6.45
3.85
3.8
0.4
0.4
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
MMRs and Keys
Table 63. POWCON Register
The operating mode, clocking mode, and programmable clock
divider are controlled via two MMRs: PLLCON (see Table 61)
and POWCON (see Table 64). PLLCON controls the operating
mode of the clock system, whereas POWCON controls the core
clock frequency and the power-down mode.
Name
POWCON
To prevent accidental programming, a certain sequence (see
Table 65) must be followed to write to the PLLCON and
POWCON registers.
Address
0xFFFF0410
0xFFFF0418
Default Value
0x0000
0x0000
Bit
7
6:4
Name
Name
PLLCON
Address
0xFFFF0414
000
001
010
011
100
Others
Default Value
0x21
Access
R/W
3
2:0
4:2
1:0
Name
Value
OSEL
MDCLK
00
01
10
11
Description
Reserved.
32 kHz PLL input selection. Set by
user to select the internal 32 kHz
oscillator. Set by default. Cleared by
user to select the external 32 kHz crystal.
Reserved.
Clocking modes.
Reserved.
PLL. Default configuration.
Reserved.
External clock on the P0.7 pin.
Address
0xFFFF0404
0xFFFF040C
Default Value
0x0000
0x0000
Access
R/W
Description
Reserved.
Operating modes.
Active mode.
Pause mode.
Nap.
Sleep mode. IRQ0 to IRQ3 and Timer2
can wake up the part.
Stop mode. IRQ0 to IRQ3 can wake up
the part.
Reserved.
Reserved.
CPU clock divider bits.
41.78 MHz.
20.89 MHz.
10.44 MHz.
5.22 MHz.
2.61 MHz.
1.31 MHz.
653 kHz.
326 kHz.
Table 65. PLLCON and POWCON Write Sequence
PLLCON
PLLKEY1 = 0xAA
PLLCON = 0x01
PLLKEY2 = 0x55
Table 62. POWKEYx Registers
Name
POWKEY1
POWKEY2
CD
000
001
010
011
100
101
110
111
Table 61. PLLCON MMR Bit Designations
Bit
7:6
5
Value
PC
Access
W
W
Table 60. PLLCON Register
Default Value
0x0003
Table 64. POWCON MMR Bit Designations
Table 59. PLLKEYx Registers
Name
PLLKEY1
PLLKEY2
Address
0xFFFF0408
Access
W
W
Rev. E | Page 56 of 96
POWCON
POWKEY1 = 0x01
POWCON = user value
POWKEY2 = 0xF4
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
DIGITAL PERIPHERALS
3-PHASE PWM
Each ADuC7019/20/21/22/24/25/26/27/28/29 provides a flexible
and programmable, 3-phase pulse-width modulation (PWM)
waveform generator. It can be programmed to generate the
required switching patterns to drive a 3-phase voltage source
inverter for ac induction motor control (ACIM). Note that only
active high patterns can be produced.
The PWM generator produces three pairs of PWM signals on
the six PWM output pins (PWM0H, PWM0L, PWM1H, PWM1L,
PWM2H, and PWM2L). The six PWM output signals consist of
three high-side drive signals and three low-side drive signals.
The switching frequency and dead time of the generated PWM
patterns are programmable using the PWMDAT0 and PWMDAT1
MMRs. In addition, three duty-cycle control registers (PWMCH0,
PWMCH1, and PWMCH2) directly control the duty cycles of
the three pairs of PWM signals.
Each of the six PWM output signals can be enabled or disabled
by separate output enable bits of the PWMEN register. In addition,
three control bits of the PWMEN register permit crossover of
the two signals of a PWM pair. In crossover mode, the PWM
signal destined for the high-side switch is diverted to the complementary low-side output. The signal destined for the low-side
switch is diverted to the corresponding high-side output signal.
In many applications, there is a need to provide an isolation
barrier in the gate-drive circuits that turn on the inverter power
devices. In general, there are two common isolation techniques:
optical isolation using optocouplers and transformer isolation
using pulse transformers. The PWM controller permits mixing
of the output PWM signals with a high frequency chopping signal
to permit easy interface to such pulse transformers. The features
of this gate-drive chopping mode can be controlled by the
PWMCFG register. An 8-bit value within the PWMCFG
register directly controls the chopping frequency. High
frequency chopping can be independently enabled for the highside and low-side outputs using separate control bits in the
PWMCFG register.
The PWM generator can operate in one of two distinct modes:
single update mode or double update mode. In single update
mode, the duty cycle values are programmable only once per
PWM period so that the resulting PWM patterns are symmetrical
about the midpoint of the PWM period. In the double update
mode, a second updating of the PWM duty cycle values is
implemented at the midpoint of the PWM period.
In double update mode, it is also possible to produce asymmetrical
PWM patterns that produce lower harmonic distortion in 3-phase
PWM inverters. This technique permits closed-loop controllers
to change the average voltage applied to the machine windings
at a faster rate. As a result, faster closed-loop bandwidths are
achieved. The operating mode of the PWM block is selected by
a control bit in the PWMCON register. In single update mode,
an internal synchronization pulse, PWMSYNC, is produced at
the start of each PWM period. In double update mode, an
additional PWMSYNC pulse is produced at the midpoint of
each PWM period.
The PWM block can also provide an internal synchronization
pulse on the PWMSYNC pin that is synchronized to the PWM
switching frequency. In single update mode, a pulse is produced
at the start of each PWM period. In double update mode, an
additional pulse is produced at the mid-point of each PWM period.
The width of the pulse is programmable through the PWMDAT2
register. The PWM block can also accept an external synchronization pulse on the PWMSYNC pin. The selection of external
synchronization or internal synchronization is in the PWMCON
register. The SYNC input timing can be synchronized to the
internal peripheral clock, which is selected in the PWMCON
register. If the external synchronization pulse from the chip pin is
asynchronous to the internal peripheral clock (typical case), the
external PWMSYNC is considered asynchronous and should be
synchronized. The synchronization logic adds latency and jitter
from the external pulse to the actual PWM outputs. The size of
the pulse on the PWMSYNC pin must be greater than two core
clock periods.
The PWM signals produced by the ADuC7019/20/21/22/24/25/
26/27/28/29 can be shut off via a dedicated asynchronous PWM
shutdown pin, PWMTRIP. When brought low, PWMTRIP instantaneously places all six PWM outputs in the off state (high). This
hardware shutdown mechanism is asynchronous so that the
associated PWM disable circuitry does not go through any
clocked logic. This ensures correct PWM shutdown even in the
event of a core clock loss.
Status information about the PWM system is available to the user
in the PWMSTA register. In particular, the state of the PWMTRIP
pin is available, as well as a status bit that indicates whether operation is in the first half or the second half of the PWM period.
40-Pin Package Devices
On the 40-pin package devices, the PWM outputs are not
directly accessible, as described in the General-Purpose
Input/Output section. One channel can be brought out on a
GPIO (see Table 78) via the PLA as shown in the following
example:
PWMCON = 0x1;
PWMDAT0 = 0x055F;
// enables PWM o/p
// PWM switching freq
// Configure Port Pins
GP4CON = 0x300;
// P4.2 as PLA output
GP3CON = 0x1;
// P3.0 configured as
// output of PWM0
//(internally)
// PWM0 onto P4.2
PLAELM8 = 0x0035;
PLAELM10 = 0x0059;
Rev. E | Page 57 of 96
// P3.0 (PWM output)
// input of element 8
// PWM from element 8
ADuC7019/20/21/22/24/25/26/27/28/29
DESCRIPTION OF THE PWM BLOCK
A functional block diagram of the PWM controller is shown in
Figure 58. The generation of the six output PWM signals on
Pin PWM0H to Pin PWM2L is controlled by the following four
important blocks:
•
•
•
The 3-phase PWM timing unit. The core of the PWM
controller, this block generates three pairs of complemented
and dead-time-adjusted, center-based PWM signals. This
unit also generates the internal synchronization pulse,
PWMSYNC. It also controls whether the external PWMSYNC
pin is used.
The output control unit. This block can redirect the
outputs of the 3-phase timing unit for each channel to
either the high-side or low-side output. In addition, the
output control unit allows individual enabling/disabling of
each of the six PWM output signals.
The gate drive unit. This block can generate the high
frequency chopping and its subsequent mixing with the
PWM signals.
The PWM shutdown controller. This block controls the
PWM shutdown via the PWMTRIP pin and generates the
correct reset signal for the timing unit.
The PWM controller is driven by the ADuC7019/20/21/22/24/
25/26/27/28/29 core clock frequency and is capable of generating
two interrupts to the ARM core. One interrupt is generated on
the occurrence of a PWMSYNC pulse, and the other is
generated on the occurrence of any PWM shutdown action.
3-Phase Timing Unit
PWM Switching Frequency (PWMDAT0 MMR)
The PWM switching frequency is controlled by the PWM
period register, PWMDAT0. The fundamental timing unit of
the PWM controller is
tCORE = 1/fCORE
where fCORE is the core frequency of the MicroConverter.
CONFIGURATION
REGISTERS DUTY CYCLE
REGISTERS
PWMCON
PWMDAT0
PWMCH0
PWMDAT1
PWMCH1
PWMDAT2
PWMCH2
PWM
SHUTDOWN
CONTROLLER
CORE CLOCK
3-PHASE
PWM TIMING
UNIT
Therefore, for a 41.78 MHz fCORE, the fundamental time increment
is 24 ns. The value written to the PWMDAT0 register is effectively
the number of fCORE clock increments in one-half a PWM
period. The required PWMDAT0 value is a function of the
desired PWM switching frequency (fPWN) and is given by
PWMDAT0 = fCORE/(2 × fPWM)
Therefore, the PWM switching period, tS, can be written as
tS = 2 × PWMDAT0 × tCORE
The largest value that can be written to the 16-bit PWMDAT0
MMR is 0xFFFF = 65,535, which corresponds to a minimum
PWM switching frequency of
fPWM(min) = 41.78 × 106/(2 × 65,535) = 318.75 Hz
Note that PWMDAT0 values of 0 and 1 are not defined and
should not be used.
PWM Switching Dead Time (PWMDAT1 MMR)
The second important parameter that must be set up in the initial
configuration of the PWM block is the switching dead time. This
is a short delay time introduced between turning off one PWM
signal (0H, for example) and turning on the complementary
signal (0L). This short time delay is introduced to permit the
power switch to be turned off (in this case, 0H) to completely
recover its blocking capability before the complementary switch is
turned on. This time delay prevents a potentially destructive
short-circuit condition from developing across the dc link
capacitor of a typical voltage source inverter.
The dead time is controlled by the 10-bit, read/write PWMDAT1
register. There is only one dead-time register that controls the dead
time inserted into all three pairs of PWM output signals. The dead
time, tD, is related to the value in the PWMDAT1 register by
tD = PWMDAT1 × 2 × tCORE
Therefore, a PWMDAT1 value of 0x00A (= 10), introduces
a 426 ns delay between the turn-off on any PWM signal (0H,
for example) and the turn-on of its complementary signal (0L).
The amount of the dead time can, therefore, be programmed in
increments of 2tCORE (or 49 ns for a 41.78 MHz core clock).
PWMEN
PWMCFG
OUTPUT
CONTROL
UNIT
GATE
DRIVE
UNIT
PWM0H
PWM0L
PWM1H
PWM1L
PWM2H
PWM2L
SYNC
PWMSYNC
TO INTERRUPT
CONTROLLER
PWMTRIP
Figure 58. Overview of the PWM Controller
Rev. E | Page 58 of 96
04955-027
•
Data Sheet
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
The PWMDAT1 register is a 10-bit register with a maximum
value of 0x3FF (= 1023), which corresponds to a maximum
programmed dead time of
The advantage of double update mode is that lower harmonic
voltages can be produced by the PWM process, and faster
control bandwidths are possible. However, for a given PWM
switching frequency, the PWMSYNC pulses occur at twice the
rate in the double update mode. Because new duty cycle values
must be computed in each PWMSYNC interrupt service
routine, there is a larger computational burden on the ARM
core in double update mode.
for a core clock of 41.78 MHz.
The dead time can be programmed to be zero by writing 0 to
the PWMDAT1 register.
PWM Operating Mode (PWMCON and PWMSTA MMRs)
As discussed in the 3-Phase PWM section, the PWM controller
of the ADuC7019/20/21/22/24/25/26/27/28/29 can operate in
two distinct modes: single update mode and double update
mode. The operating mode of the PWM controller is
determined by the state of Bit 2 of the PWMCON register.
If this bit is cleared, the PWM operates in the single update
mode. Setting Bit 2 places the PWM in the double update
mode. The default operating mode is single update mode.
In single update mode, a single PWMSYNC pulse is produced
in each PWM period. The rising edge of this signal marks the
start of a new PWM cycle and is used to latch new values from
the PWM configuration registers (PWMDAT0 and PWMDAT1)
and the PWM duty cycle registers (PWMCH0, PWMCH1, and
PWMCH2) into the 3-phase timing unit. In addition, the
PWMEN register is latched into the output control unit on the
rising edge of the PWMSYNC pulse. In effect, this means that
the characteristics and resulting duty cycles of the PWM signals
can be updated only once per PWM period at the start of each
cycle. The result is symmetrical PWM patterns about the
midpoint of the switching period.
In double update mode, there is an additional PWMSYNC
pulse produced at the midpoint of each PWM period. The
rising edge of this new PWMSYNC pulse is again used to latch
new values of the PWM configuration registers, duty cycle
registers, and the PWMEN register. As a result, it is possible to
alter both the characteristics (switching frequency and dead
time) as well as the output duty cycles at the midpoint of each
PWM cycle. Consequently, it is also possible to produce PWM
switching patterns that are no longer symmetrical about the
midpoint of the period (asymmetrical PWM patterns). In
double update mode, it could be necessary to know whether
operation at any point in time is in either the first half or the
second half of the PWM cycle. This information is provided by
Bit 0 of the PWMSTA register, which is cleared during operation
in the first half of each PWM period (between the rising edge of
the original PWMSYNC pulse and the rising edge of the new
PWMSYNC pulse introduced in double update mode). Bit 0 of
the PWMSTA register is set during operation in the second half
of each PWM period. This status bit allows the user to make a
determination of the particular half cycle during implementation
of the PWMSYNC interrupt service routine, if required.
PWM Duty Cycles (PWMCH0, PWMCH1, and
PWMCH2 MMRs)
The duty cycles of the six PWM output signals on Pin PWM0H
to Pin PWM2L are controlled by the three 16-bit read/write duty
cycle registers, PWMCH0, PWMCH1, and PWMCH2. The
duty cycle registers are programmed in integer counts of the
fundamental time unit, tCORE. They define the desired on time of
the high-side PWM signal produced by the 3-phase timing unit
over half the PWM period. The switching signals produced by
the 3-phase timing unit are also adjusted to incorporate the
programmed dead time value in the PWMDAT1 register. The
3-phase timing unit produces active high signals so that a high
level corresponds to a command to turn on the associated
power device.
Figure 59 shows a typical pair of PWM outputs (in this case, 0H
and 0L) from the timing unit in single update mode. All
illustrated time values indicate the integer value in the
associated register and can be converted to time by simply
multiplying by the fundamental time increment, tCORE. Note that
the switching patterns are perfectly symmetrical about the
midpoint of the switching period in this mode because the same
values of PWMCH0, PWMDAT0, and PWMDAT1 are used to
define the signals in both half cycles of the period.
Figure 59 also demonstrates how the programmed duty cycles
are adjusted to incorporate the desired dead time into the
resulting pair of PWM signals. The dead time is incorporated
by moving the switching instants of both PWM signals (0H and
0L) away from the instant set by the PWMCH0 register.
–PWMDAT0 ÷ 2
0
+PWMDAT0 ÷ 2
0
–PWMDAT0 ÷ 2
PWMCH0
PWMCH0
0H
2 × PWMDAT1
2 × PWMDAT1
0L
PWMDAT2 + 1
PWMSYNC
PWMSTA (0)
Rev. E | Page 59 of 96
PWMDAT0
PWMDAT0
Figure 59. Typical PWM Outputs of the 3-Phase Timing Unit
(Single Update Mode)
04955-028
tD(max) = 1023 × 2 × tCORE = 1023 × 2 × 24 ×10–9 = 48.97 μs
ADuC7019/20/21/22/24/25/26/27/28/29
Both switching edges are moved by an equal amount
(PWMDAT1 × tCORE) to preserve the symmetrical output
patterns.
Data Sheet
In general, the on times of the PWM signals in double update
mode can be defined as follows:
On the high side
Also shown are the PWMSYNC pulse and Bit 0 of the
PWMSTA register, which indicates whether operation is in the
first or second half cycle of the PWM period.
The resulting on times of the PWM signals over the full PWM
period (two half periods) produced by the timing unit can be
written as follows:
On the high side
t0HH = PWMDAT0 + 2(PWMCH0 − PWMDAT1) × tCORE
t0HH = (PWMDAT01/2 + PWMDAT02/2 + PWMCH01 +
PWMCH02 − PWMDAT11 − PWMDAT12) × tCORE
t0HL = (PWMDAT01/2 + PWMDAT02/2 − PWMCH01 −
PWMCH02 + PWMDAT11 + PWMDAT12) × tCORE
where Subscript 1 refers to the value of that register during the
first half cycle, and Subscript 2 refers to the value during the
second half cycle.
The corresponding duty cycles (d) are
t0HL = PWMDAT0 − 2(PWMCH0 − PWMDAT1) × tCORE
d0H = t0HH/tS = (PWMDAT01/2 + PWMDAT02/2 +
PWMCH01 + PWMCH02 − PWMDAT11 − PWMDAT12)/
(PWMDAT01 + PWMDAT02)
and the corresponding duty cycles (d)
d0H = t0HH/tS = ½ + (PWMCH0 − PWMDAT1)/PWMDAT0
On the low side
and on the low side
t0LH = (PWMDAT01/2 + PWMDAT02/2 + PWMCH01 +
t0LH = PWMDAT0 − 2(PWMCH0 + PWMDAT1) × tCORE
PWMCH02 + PWMDAT11 + PWMDAT12) × tCORE
t0LL = PWMDAT0 + 2(PWMCH0 + PWMDAT1) × tCORE
t0LL = (PWMDAT01/2 + PWMDAT02/2 − PWMCH01 −
PWMCH02 − PWMDAT11 − PWMDAT12) × tCORE
and the corresponding duty cycles (d)
dOL = t0LH/tS = ½ − (PWMCH0 + PWMDAT1)/PWMDAT0
The minimum permissible t0H and t0L values are zero,
corresponding to a 0% duty cycle. In a similar fashion, the
maximum value is tS, corresponding to a 100% duty cycle.
The corresponding duty cycles (d) are
Figure 60 shows the output signals from the timing unit for
operation in double update mode. It illustrates a general case
where the switching frequency, dead time, and duty cycle are all
changed in the second half of the PWM period. The same value
for any or all of these quantities can be used in both halves of the
PWM cycle. However, there is no guarantee that symmetrical
PWM signals are produced by the timing unit in double update
mode. Figure 60 also shows that the dead time insertions into
the PWM signals are done in the same way as in single update
mode.
0
–PWMDAT01 ÷ 2
–PWMDAT02 ÷ 2
+PWMDAT01 ÷ 2
PWMCH01
+PWMDAT02 ÷ 2
0
PWMCH02
0H
2 × PWMDAT11
2 × PWMDAT12
0L
PWMSYNC
PWMDAT21 + 1
PWMDAT22 + 1
PWMDAT02
Figure 60. Typical PWM Outputs of the 3-Phase Timing Unit
(Double Update Mode)
04955-029
PWMSTA (0)
PWMDAT01
where Subscript 1 refers to the value of that register during the
first half cycle, and Subscript 2 refers to the value during the
second half cycle.
d0L = t0LH/tS = (PWMDAT01/2 + PWMDAT02/2 +
PWMCH01 + PWMCH02 + PWMDAT11 +
PWMDAT12)/(PWMDAT01 + PWMDAT02)
For the completely general case in double update mode
(see Figure 60), the switching period is given by
tS = (PWMDAT01 + PWMDAT02) × tCORE
Again, the values of t0H and t0L are constrained to lie between
zero and tS.
PWM signals similar to those illustrated in Figure 59 and
Figure 60 can be produced on the 1H, 1L, 2H, and 2L outputs by
programming the PWMCH1 and PWMCH2 registers in a manner
identical to that described for PWMCH0. The PWM controller
does not produce any PWM outputs until all of the PWMDAT0,
PWMCH0, PWMCH1, and PWMCH2 registers have been written
to at least once. When these registers are written, internal
counting of the timers in the 3-phase timing unit is enabled.
Writing to the PWMDAT0 register starts the internal timing of
the main PWM timer. Provided that the PWMDAT0 register is
written to prior to the PWMCH0, PWMCH1, and PWMCH2
registers in the initialization, the first PWMSYNC pulse and
interrupt (if enabled) appear 1.5 × tCORE × PWMDAT0 seconds
after the initial write to the PWMDAT0 register in single update
mode. In double update mode, the first PWMSYNC pulse
appears after PWMDAT0 × tCORE seconds.
Rev. E | Page 60 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
PWMCH0 = PWMCH0 =
PWMCH1 PWMCH1
Output Control Unit
Following a reset, all six enable bits of the PWMEN register are
cleared, and all PWM outputs are enabled by default. In a manner
identical to the duty cycle registers, the PWMEN is latched on
the rising edge of the PWMSYNC signal. As a result, changes to
this register become effective only at the start of each PWM cycle
in single update mode. In double update mode, the PWMEN
register can also be updated at the midpoint of the PWM cycle.
In the control of an ECM, only two inverter legs are switched at
any time, and often the high-side device in one leg must be
switched on at the same time as the low-side driver in a second
leg. Therefore, by programming identical duty cycle values for
two PWM channels (for example, PWMCH0 = PWMCH1) and
setting Bit 7 of the PWMEN register to cross over the 1H/1L
pair of PWM signals, it is possible to turn on the high-side
switch of Phase A and the low-side switch of Phase B at the
same time. In the control of ECM, it is usual for the third
inverter leg (Phase C in this example) to be disabled for a
number of PWM cycles. This function is implemented by
disabling both the 2H and 2L PWM outputs by setting Bit 0
and Bit 1 of the PWMEN register.
0H
2 × PWMDAT1
2 × PWMDAT1
0L
1H
1L
2H
2L
PWMDAT0
PWMDAT0
04955-030
The operation of the output control unit is controlled by the
9-bit read/write PWMEN register. This register controls two
distinct features of the output control unit that are directly
useful in the control of electronic counter measures (ECM) or
binary decimal counter measures (BDCM). The PWMEN
register contains three crossover bits, one for each pair of PWM
outputs. Setting Bit 8 of the PWMEN register enables the
crossover mode for the 0H/0L pair of PWM signals, setting
Bit 7 enables crossover on the 1H/1L pair of PWM signals, and
setting Bit 6 enables crossover on the 2H/2L pair of PWM
signals. If crossover mode is enabled for any pair of PWM
signals, the high-side PWM signal from the timing unit (0H, for
example) is diverted to the associated low-side output of the
output control unit so that the signal ultimately appears at the
PWM0L pin. Of course, the corresponding low-side output of
the timing unit is also diverted to the complementary high-side
output of the output control unit so that the signal appears at
the PWM0H pin. Following a reset, the three crossover bits are
cleared, and the crossover mode is disabled on all three pairs of
PWM signals. The PWMEN register also contains six bits (Bit 0
to Bit 5) that can be used to individually enable or disable each
of the six PWM outputs. If the associated bit of the PWMEN
register is set, the corresponding PWM output is disabled
regardless of the corresponding value of the duty cycle register.
This PWM output signal remains in the off state as long as the
corresponding enable/disable bit of the PWMEN register is set.
The implementation of this output enable function is implemented after the crossover function.
Figure 61. Active Low PWM Signals Suitable for ECM Control,
PWMCH0 = PWMCH1, Crossover 1H/1L Pair and Disable
0L, 1H, 2H, and 2L Outputs in Single Update Mode.
In addition, the other four signals (0L, 1H, 2H, and 2L) have
been disabled by setting the appropriate enable/disable bits of
the PWMEN register. In Figure 61, the appropriate value for
the PWMEN register is 0x00A7. In normal ECM operation,
each inverter leg is disabled for certain periods of time to
change the PWMEN register based on the position of the rotor
shaft (motor commutation).
Gate Drive Unit
The gate drive unit of the PWM controller adds features that
simplify the design of isolated gate-drive circuits for PWM
inverters. If a transformer-coupled, power device, gate-drive
amplifier is used, the active PWM signal must be chopped at a
high frequency. The 16-bit read/write PWMCFG register
programs this high frequency chopping mode. The chopped
active PWM signals can be required for the high-side drivers
only, the low-side drivers only, or both the high-side and lowside switches. Therefore, independent control of this mode for
both high-side and low-side switches is included with two
separate control bits in the PWMCFG register.
Typical PWM output signals with high frequency chopping
enabled on both high-side and low-side signals are shown in
Figure 62. Chopping of the high-side PWM outputs (0H, 1H,
and 2H) is enabled by setting Bit 8 of the PWMCFG register.
Chopping of the low-side PWM outputs (0L, 1L, and 2L) is
enabled by setting Bit 9 of the PWMCFG register. The high
chopping frequency is controlled by the 8-bit word (GDCLK)
placed in Bit 0 to Bit 7 of the PWMCFG register. The period of
this high frequency carrier is
tCHOP = (4 × (GDCLK + 1)) × tCORE
The chopping frequency is, therefore, an integral subdivision of
the MicroConverter core frequency
This situation is illustrated in Figure 61, where it can be seen
that both the 0H and 1L signals are identical because
PWMCH0 = PWMCH1 and the crossover bit for Phase B is set.
Rev. E | Page 61 of 96
fCHOP = fCORE/(4 × (GDCLK + 1))
ADuC7019/20/21/22/24/25/26/27/28/29
The GDCLK value can range from 0 to 255, corresponding to a
programmable chopping frequency rate of 40.8 kHz to 10.44 MHz
for a 41.78 MHz core frequency. The gate drive features must be
programmed before operation of the PWM controller and are
typically not changed during normal operation of the PWM
controller. Following a reset, all bits of the PWMCFG register
are cleared so that high frequency chopping is disabled, by default.
PWMCH0
PWMCH0
Data Sheet
PWM MMRs Interface
The PWM block is controlled via the MMRs described in
this section.
Table 66. PWMCON Register
Name
PWMCON
Address
0xFFFFFC00
Default Value
0x0000
Access
R/W
PWMCON is a control register that enables the PWM and
chooses the update rate.
0L
Table 67. PWMCON MMR Bit Descriptions
2 × PWMDAT1
2 × PWMDAT1
0H
PWMDAT0
04955-031
4 × (GDCLK + 1) × tCORE
PWMDAT0
Bit
7:5
4
Name
3
PWM_EXTSYNC
2
PWMDBL
1
PWM_SYNC_EN
0
PWMEN
PWM_SYNCSEL
Figure 62. Typical PWM Signals with High Frequency Gate Chopping
Enabled on Both High-Side and Low-Side Switches
PWM Shutdown
In the event of external fault conditions, it is essential that the
PWM system be instantaneously shut down in a safe fashion. A
low level on the PWMTRIP pin provides an instantaneous,
asynchronous (independent of the MicroConverter core clock)
shutdown of the PWM controller. All six PWM outputs are
placed in the off state, that is, in low state. In addition, the
PWMSYNC pulse is disabled. The PWMTRIP pin has an internal
pull-down resistor to disable the PWM if the pin becomes
disconnected. The state of the PWMTRIP pin can be read from
Bit 3 of the PWMSTA register.
If a PWM shutdown command occurs, a PWMTRIP interrupt is
generated, and internal timing of the 3-phase timing unit of the
PWM controller is stopped. Following a PWM shutdown, the
PWM can be reenabled (in a PWMTRIP interrupt service
routine, for example) only by writing to all of the PWMDAT0,
PWMCH0, PWMCH1, and PWMCH2 registers. Provided that
the external fault is cleared and the PWMTRIP is returned to a
high level, the internal timing of the 3-phase timing unit
resumes, and new duty-cycle values are latched on the next
PWMSYNC boundary.
Note that the PWMTRIP interrupt is available in IRQ only,
and the PWMSYNC interrupt is available in FIQ only. Both
interrupts share the same bit in the interrupt controller.
Therefore, only one of the interrupts can be used at a time.
See the Interrupt System section for further details.
Description
Reserved.
External sync select. Set to use external
sync. Cleared to use internal sync.
External sync select. Set to select
external synchronous sync signal.
Cleared for asynchronous sync signal.
Double update mode. Set to 1 by user
to enable double update mode.
Cleared to 0 by the user to enable
single update mode.
PWM synchronization enable. Set by
user to enable synchronization. Cleared
by user to disable synchronization.
PWM enable bit. Set to 1 by user to
enable the PWM. Cleared to 0 by user
to disable the PWM. Also cleared
automatically with PWMTRIP
(PWMSTA MMR).
Table 68. PWMSTA Register
Name
PWMSTA
Address
0xFFFFFC04
Default Value
0x0000
Access
R/W
PWMSTA reflects the status of the PWM.
Table 69. PWMSTA MMR Bit Descriptions
Bit
15:10
9
Name
8
PWMTRIPINT
3
2:1
0
PWMTRIP
Rev. E | Page 62 of 96
PWMSYNCINT
PWMPHASE
Description
Reserved.
PWM sync interrupt bit. Writing a 1 to
this bit clears this interrupt.
PWM trip interrupt bit. Writing a 1 to
this bit clears this interrupt.
Raw signal from the PWMTRIP pin.
Reserved.
PWM phase bit. Set to 1 by the MicroConverter when the timer is counting
down (first half). Cleared to 0 by the
MicroConverter when the timer is
counting up (second half).
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 70. PWMCFG Register
Table 74. PWMDAT0 Register
Name
PWMCFG
Address
0xFFFFFC10
Default Value
0x0000
Access
R/W
PWMCFG is a gate chopping register.
Name
PWMDAT0
Address
0xFFFFFC08
Table 75. PWMDAT1 Register
Bit
15:10
9
8
7:0
Name
PWMDAT1
CHOPLO
CHOPHI
GDCLK
Description
Reserved.
Low-side gate chopping enable bit.
High-side gate chopping enable bit.
PWM gate chopping period (unsigned).
Table 72. PWMEN Register
Name
PWMEN
Address
0xFFFFFC20
Default Value
0x0000
Access
R/W
PWMEN allows enabling of channel outputs and crossover. See
its bit definitions in Table 73.
Table 73. PWMEN MMR Bit Descriptions
Bit
8
7
Name
0H0L_XOVR
1H1L_XOVR
6
2H2L_XOVR
5
0L_EN
4
0H_EN
3
1L_EN
2
1H_EN
1
2L_EN
0
2H_EN
Access
R/W
PWMDAT0 is an unsigned 16-bit register for switching period.
Table 71. PWMCFG MMR Bit Descriptions
Name
Default Value
0x0000
Description
Channel 0 output crossover enable bit.
Set to 1 by user to enable Channel 0 output
crossover. Cleared to 0 by user to disable
Channel 0 output crossover.
Channel 1 output crossover enable bit.
Set to 1 by user to enable Channel 1 output
crossover. Cleared to 0 by user to disable
Channel 1 output crossover.
Channel 2 output crossover enable bit.
Set to 1 by user to enable Channel 2 output
crossover. Cleared to 0 by user to disable
Channel 2 output crossover.
0L output enable bit. Set to 1 by user to
disable the 0L output of the PWM. Cleared to 0
by user to enable the 0L output of the PWM.
0H output enable bit. Set to 1 by user to
disable the 0H output of the PWM. Cleared to
0 by user to enable the 0H output of the PWM.
1L output enable bit. Set to 1 by user to
disable the 1L output of the PWM. Cleared to 0
by user to enable the 1L output of the PWM.
1H Output Enable Bit. Set to 1 by user to
disable the 1H output of the PWM. Cleared to
0 by user to enable the 1H output of the PWM.
2L output enable bit. Set to 1 by user to
disable the 2L output of the PWM. Cleared to 0
by user to enable the 2L output of the PWM.
2H output enable bit. Set to 1 by user to
disable the 2H output of the PWM. Cleared to
0 by user to enable the 2H output of the PWM.
Address
0xFFFFFC0C
Default Value
0x0000
Access
R/W
PWMDAT1 is an unsigned 10-bit register for dead time.
Table 76. PWMCHx Registers
Name
PWMCH0
PWMCH1
PWMCH2
Address
0xFFFFFC14
0xFFFFFC18
0xFFFFFC1C
Default Value
0x0000
0x0000
0x0000
Access
R/W
R/W
R/W
PWMCH0, PWMCH1, and PWMCH2 are channel duty cycles
for the three phases.
Table 77. PWMDAT2 Register
Name
PWMDAT2
Address
0xFFFFFC24
Default Value
0x0000
Access
R/W
PWMDAT2 is an unsigned 10-bit register for PWM sync
pulse width.
GENERAL-PURPOSE INPUT/OUTPUT
The ADuC7019/20/21/22/24/25/26/27/28/29 provide 40 generalpurpose, bidirectional I/O (GPIO) pins. All I/O pins are 5 V
tolerant, meaning the GPIOs support an input voltage of 5 V.
In general, many of the GPIO pins have multiple functions (see
Table 78 for the pin function definitions). By default, the GPIO
pins are configured in GPIO mode.
All GPIO pins have an internal pull-up resistor (of about
100 kΩ), and their drive capability is 1.6 mA. Note that a
maximum of 20 GPIOs can drive 1.6 mA at the same time.
Using the GPxPAR registers, it is possible to enable/disable
the pull-up resistors for the following ports: P0.0, P0.4, P0.5,
P0.6, P0.7, and the eight GPIOs of P1.
The 40 GPIOs are grouped in five ports, Port 0 to Port 4 (Port x).
Each port is controlled by four or five MMRs.
Note that the kernel changes P0.6 from its default configuration
at reset (MRST) to GPIO mode. If MRST is used for external
circuitry, an external pull-up resistor should be used to ensure
that the level on P0.6 does not drop when the kernel switches
mode. Otherwise, P0.6 goes low for the reset period. For
example, if MRST is required for power-down, it can be
reconfigured in GP0CON MMR.
The input level of any GPIO can be read at any time in the
GPxDAT MMR, even when the pin is configured in a mode
other than GPIO. The PLA input is always active.
When the ADuC7019/20/21/22/24/25/26/27/28/29 part enters a
power-saving mode, the GPIO pins retain their state.
Rev. E | Page 63 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
GPxCON are the Port x control registers, which select the
function of each pin of Port x as described in Table 80.
Table 78. GPIO Pin Function Descriptions
Port
0
1
2
3
4
Pin
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
00
GPIO
GPIO
GPIO
GPIO
GPIO/IRQ0
GPIO/IRQ1
GPIO/T1
GPIO
GPIO/T1
GPIO
GPIO
GPIO
GPIO/IRQ2
GPIO/IRQ3
GPIO
GPIO
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
Configuration
01
10
CMP
MS0
PWM2H
BLE
PWM2L
BHE
TRST
A16
PWMTRIP
MS1
ADCBUSY
MS2
MRST
ECLK/XCLK1
SIN
SIN
SCL0
SOUT
SDA0
RTS
SCL1
CTS
SDA1
RI
SCLK
DCD
MISO
DSR
MOSI
DTR
CS
ADCBUSY
PLAO[1]
PLAO[2]
PLAO[3]
PLAO[4]
PLAI[0]
PLAI[1]
PLAI[2]
PLAI[3]
PLAI[4]
PLAI[5]
PLAI[6]
PLAO[0]
CONVSTART2
PWM0H
PWM0L
PLAO[5]
PLAO[6]
PLAO[7]
PWM0H
PWM0L
PWM1H
PWM1L
PWM0H
PWM0L
PWM1H
PWM1L
PWM2H
PWM2L
PWMTRIP
PWMSYNC
SOUT
WS
RS
AE
MS0
MS1
MS2
MS3
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
11
PLAI[7]
PLAI[8]
PLAI[9]
PLAI[10]
PLAI[11]
PLAI[12]
PLAI[13]
PLAI[14]
PLAI[15]
PLAO[8]
PLAO[9]
PLAO[10]
PLAO[11]
PLAO[12]
PLAO[13]
PLAO[14]
PLAO[15]
1
When configured in Mode 1, P0.7 is ECLK by default, or core clock output. To
configure it as a clock input, the MDCLK bits in PLLCON must be set to 11.
2
The CONVSTART signal is active in all modes of P2.0.
Table 79. GPxCON Registers
Name
GP0CON
GP1CON
GP2CON
GP3CON
GP4CON
Address
0xFFFFF400
0xFFFFF404
0xFFFFF408
0xFFFFF40C
0xFFFFF410
Default Value
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
Data Sheet
Table 80. GPxCON MMR Bit Descriptions
Bit
31:30
29:28
27:26
25:24
23:22
21:20
19:18
17:16
15:14
13:12
11:10
9:8
7:6
5:4
3:2
1:0
Description
Reserved.
Select function of the Px.7 pin.
Reserved.
Select function of the Px.6 pin.
Reserved.
Select function of the Px.5 pin.
Reserved.
Select function of the Px.4 pin.
Reserved.
Select function of the Px.3 pin.
Reserved.
Select function of the Px.2 pin.
Reserved.
Select function of the Px.1 pin.
Reserved.
Select function of the Px.0 pin.
Table 81. GPxPAR Registers
Name
GP0PAR
GP1PAR
Address
0xFFFFF42C
0xFFFFF43C
Default Value
0x20000000
0x00000000
Access
R/W
R/W
GPxPAR program the parameters for Port 0 and Port 1. Note that
the GPxDAT MMR must always be written after changing the
GPxPAR MMR.
Table 82. GPxPAR MMR Bit Descriptions
Bit
31:29
28
27:25
24
23:21
20
19:17
16
15:13
12
11:9
8
7:5
4
3:1
0
Access
R/W
R/W
R/W
R/W
R/W
Rev. E | Page 64 of 96
Description
Reserved.
Pull-Up Disable Px.7.
Reserved.
Pull-Up Disable Px.6.
Reserved.
Pull-Up Disable Px.5.
Reserved.
Pull-Up Disable Px.4.
Reserved.
Pull-Up Disable Px.3.
Reserved.
Pull-Up Disable Px.2.
Reserved.
Pull-Up Disable Px.1.
Reserved.
Pull-Up Disable Px.0.
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 83. GPxDAT Registers
Table 88. GPxCLR MMR Bit Descriptions
Name
GP0DAT
GP1DAT
GP2DAT
GP3DAT
GP4DAT
1
Address
0xFFFFF420
0xFFFFF430
0xFFFFF440
0xFFFFF450
0xFFFFF460
Default Value1
0x000000XX
0x000000XX
0x000000XX
0x000000XX
0x000000XX
Access
R/W
R/W
R/W
R/W
R/W
X = 0, 1, 2, or 3.
Bit
31:24
23:16
15:0
Description
Reserved.
Data Port x clear bit. Set to 1 by user to clear bit on
Port x; also clears the corresponding bit in the GPxDAT
MMR. Cleared to 0 by user; does not affect the data out.
Reserved.
SERIAL PORT MUX
GPxDAT are Port x configuration and data registers. They
configure the direction of the GPIO pins of Port x, set the
output value for the pins configured as output, and store the
input value of the pins configured as input.
The serial port mux multiplexes the serial port peripherals
(an SPI, UART, and two I2Cs) and the programmable logic array
(PLA) to a set of 10 GPIO pins. Each pin must be configured to
one of its specific I/O functions as described in Table 89.
Table 84. GPxDAT MMR Bit Descriptions
Table 89. SPM Configuration
Bit
31:24
23:16
15:8
7:0
Description
Direction of the data. Set to 1 by user to configure
the GPIO pin as an output. Cleared to 0 by user to
configure the GPIO pin as an input.
Port x data output.
Reflect the state of Port x pins at reset (read only).
Port x data input (read only).
Table 85. GPxSET Registers
Name
GP0SET
GP1SET
GP2SET
GP3SET
GP4SET
1
Address
0xFFFFF424
0xFFFFF434
0xFFFFF444
0xFFFFF454
0xFFFFF464
Default Value1
0x000000XX
0x000000XX
0x000000XX
0x000000XX
0x000000XX
Access
W
W
W
W
W
X = 0, 1, 2, or 3.
GPxSET are data set Port x registers.
15:0
Description
Reserved.
Data Port x set bit. Set to 1 by user to set bit on Port x;
also sets the corresponding bit in the GPxDAT MMR.
Cleared to 0 by user; does not affect the data out.
Reserved.
Table 87. GPxCLR Registers
Name
GP0CLR
GP1CLR
GP2CLR
GP3CLR
GP4CLR
1
Address
0xFFFFF428
0xFFFFF438
0xFFFFF448
0xFFFFF458
0xFFFFF468
Default Value1
0x000000XX
0x000000XX
0x000000XX
0x000000XX
0x000000XX
X = 0, 1, 2, or 3.
GPxCLR are data clear Port x registers.
UART/I2C/SPI
(10)
I2C0SCL
I2C0SDA
I2C1SCL
I2C1SDA
SCLK
MISO
MOSI
CS
SIN
SOUT
UART
(01)
SIN
SOUT
RTS
CTS
RI
DCD
DSR
DTR
ECLK/XCLK
CONV
PLA
(11)
PLAI[0]
PLAI[1]
PLAI[2]
PLAI[3]
PLAI[4]
PLAI[5]
PLAI[6]
PLAO[0]
PLAO[4]
PLAO[5]
Table 89 also details the mode for each of the SPMMUX pins.
This configuration must be done via the GP0CON, GP1CON,
and GP2CON MMRs. By default, these 10 pins are configured
as GPIOs.
UART SERIAL INTERFACE
Table 86. GPxSET MMR Bit Descriptions
Bit
31:24
23:16
SPMMUX
SPM0
SPM1
SPM2
SPM3
SPM4
SPM5
SPM6
SPM7
SPM8
SPM9
GPIO
(00)
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P0.7
P2.0
Access
W
W
W
W
W
The UART peripheral is a full-duplex, universal, asynchronous
receiver/transmitter. It is fully compatible with the 16,450 serial
port standard. The UART performs serial-to-parallel conversions
on data characters received from a peripheral device or modem,
and parallel-to-serial conversions on data characters received
from the CPU. The UART includes a fractional divider for baud
rate generation and has a network addressable mode. The UART
function is made available on the 10 pins of the ADuC7019/20/
21/22/24/25/26/27/28/29 (see Table 90).
Table 90. UART Signal Description
Pin
SPM0 (Mode 1)
SPM1 (Mode 1)
SPM2 (Mode 1)
SPM3 (Mode 1)
SPM4 (Mode 1)
SPM5 (Mode 1)
SPM6 (Mode 1)
SPM7 (Mode 1)
SPM8 (Mode 2)
SPM9 (Mode 2)
Rev. E | Page 65 of 96
Signal
SIN
SOUT
RTS
CTS
RI
DCD
DSR
DTR
SIN
SOUT
Description
Serial receive data.
Serial transmit data.
Request to send.
Clear to send.
Ring indicator.
Data carrier detect.
Data set ready.
Data terminal ready.
Serial receive data.
Serial transmit data.
ADuC7019/20/21/22/24/25/26/27/28/29
The serial communication adopts an asynchronous protocol,
which supports various word lengths, stop bits, and parity
generation options selectable in the configuration register.
Baud Rate Generation
There are two ways of generating the UART baud rate, normal
450 UART baud rate generation and the fractional divider.
Normal 450 UART Baud Rate Generation
The baud rate is a divided version of the core clock using the values
in the COMDIV0 and COMDIV1 MMRs (16-bit value, DL).
2CD - 16 × 2 × DL
Table 91. Baud Rate Using the Normal Baud Rate Generator
CD
0
0
0
3
3
3
DL
0x88
0x44
0x0B
0x11
0x08
0x01
Actual Baud Rate
9600
19,200
118,691
9600
20,400
163,200
% Error
0
0
3
0
6.25
41.67
Fractional Divider
The fractional divider, combined with the normal baud rate
generator, produces a wider range of more accurate baud rates.
FBEN
/2
/16DL
UART
/(M+N/2048)
04955-032
CORE
CLOCK
UART Register Definitions
The UART interface consists of 12 registers: COMTX, COMRX,
COMDIV0, COMIEN0, COMDIV1, COMIID0, COMCON0,
COMCON1, COMSTA0, COMSTA1, COMSCR, and
COMDIV2.
Calculation of the baud rate using fractional divider is as follows:
41.78 MHz
N 
2 CD × 16 × DL × 2 ×  M +

2048 

41.78 MHz
N
M+
=
2048 Baud Rate × 2CD × 16 × DL × 2
For example, generation of 19,200 baud with CD bits = 3
(Table 91 gives DL = 0x08) is
Address
0xFFFF0700
Table 93. COMRX Register
Name
COMRX
Address
0xFFFF0700
Name
COMDIV0
Name
COMIEN0
Default Value
0x00
Access
R/W
Address
0xFFFF0704
Default Value
0x00
Access
R/W
COMIEN0 is the interrupt enable register.
Table 96. COMIEN0 MMR Bit Descriptions
Bit
7:4
3
Name
N/A
EDSSI
1
ETBEI
0
ERBFI
128
2 × 16 × 8 × 2 ×
2048
Address
0xFFFF0700
COMDIV0 is a low byte divisor latch. COMTX, COMRX,
and COMDIV0 share the same address location. COMTX
and COMRX can be accessed when Bit 7 in the COMCON0
register is cleared. COMDIV0 can be accessed when Bit 7
of COMCON0 is set.
N
M+
= 1.06
2048
3
Access
R
Table 94. COMDIV0 Register
ELSI
Baud Rate =
Default Value
0x00
COMRX is an 8-bit receive register.
2
41.78 MHz
Access
R/W
COMTX is an 8-bit transmit register.
41.78 MHz
N
M+
=
2048 19200 × 2 3 × 16 × 8 × 2
where:
M=1
N = 0.06 × 2048 = 128
Default Value
0x00
Table 95. COMIEN0 Register
Figure 63. Baud Rate Generation Options
Baud Rate =
Error = 0%, compared to 6.25% with the normal baud rate
generator.
Name
COMTX
Table 91 gives some common baud rate values.
Baud Rate
9600
19,200
115,200
9600
19,200
115,200
where:
Baud Rate = 19,200 bps
Table 92. COMTX Register
41.78 MHz
Baud Rate =
Data Sheet
Description
Reserved.
Modem status interrupt enable bit. Set by
user to enable generation of an interrupt if
any of COMSTA1[3:1] is set. Cleared by user.
Rx status interrupt enable bit. Set by user to
enable generation of an interrupt if any of
COMSTA0[3:0] is set. Cleared by user.
Enable transmit buffer empty interrupt. Set
by user to enable interrupt when buffer is
empty during a transmission. Cleared by user.
Enable receive buffer full interrupt. Set by
user to enable interrupt when buffer is full
during a reception. Cleared by user.
Table 97. COMDIV1 Register
Name
COMDIV1
Address
0xFFFF0704
Default Value
0x00
COMDIV1 is a divisor latch (high byte) register.
Rev. E | Page 66 of 96
Access
R/W
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 98. COMIID0 Register
Table 103. COMCON1 MMR Bit Descriptions
Name
COMIID0
Address
0xFFFF0708
Default Value
0x01
Access
R
COMIID0 is the interrupt identification register.
Bit
7:5
4
Name
3
PEN
2
STOP
1
RTS
0
DTR
LOOPBACK
Table 99. COMIID0 MMR Bit Descriptions
Bit 2:1
Status Bits
00
11
Bit 0
NINT
1
0
Priority
N/A
1
10
0
2
01
0
3
00
0
4
Definition
No interrupt
Receive line
status
interrupt
Receive buffer
full interrupt
Transmit
buffer empty
interrupt
Modem status
interrupt
Clearing
Operation
N/A
Read
COMSTA0
Read COMRX
Write data to
COMTX or
read COMIID
Read
COMSTA1
Table 100. COMCON0 Register
Name
COMCON0
Address
0xFFFF070C
Default Value
0x00
Access
R/W
COMCON0 is the line control register.
Table 104. COMSTA0 Register
Table 101. COMCON0 MMR Bit Descriptions
Bit
7
Name
DLAB
6
BRK
5
SP
4
EPS
3
PEN
2
STOP
1:0
WLS
Description
Divisor latch access. Set by user to enable
access to the COMDIV0 and COMDIV1
registers. Cleared by user to disable access to
COMDIV0 and COMDIV1 and enable access to
COMRX and COMTX.
Set break. Set by user to force SOUT to 0.
Cleared to operate in normal mode.
Stick parity. Set by user to force parity to
defined values: 1 if EPS = 1 and PEN = 1,
0 if EPS = 0 and PEN = 1.
Even parity select bit. Set for even parity.
Cleared for odd parity.
Parity enable bit. Set by user to transmit and
check the parity bit. Cleared by user for no
parity transmission or checking.
Stop bit. Set by user to transmit 1.5 stop bits if the
word length is five bits or 2 stop bits if the
word length is six bits, seven bits, or eight bits.
The receiver checks the first stop bit only,
regardless of the number of stop bits selected.
Cleared by user to generate 1 stop bit in the
transmitted data.
Word length select:
00 = five bits, 01 = six bits, 10 = seven bits,
11 = eight bits.
Table 102. COMCON1 Register
Name
COMCON1
Address
0xFFFF0710
Default Value
0x00
Description
Reserved.
Loopback. Set by user to enable loopback
mode. In loopback mode, SOUT (see Table 78)
is forced high. The modem signals are also
directly connected to the status inputs (RTS
to CTS and DTR to DSR). Cleared by user to
be in normal mode.
Parity enable bit. Set by user to transmit and
check the parity bit. Cleared by user for no
parity transmission or checking.
Stop bit. Set by user to transmit 1.5 stop bits
if the word length is five bits, or 2 stop bits if
the word length is six bits, seven bits, or
eight bits. The receiver checks the first stop
bit only, regardless of the number of stop bits
selected. Cleared by user to generate 1 stop
bit in the transmitted data.
Request to send. Set by user to force the RTS
output to 0. Cleared by user to force the RTS
output to 1.
Data terminal ready. Set by user to force the
DTR output to 0. Cleared by user to force the
DTR output to 1.
Access
R/W
Name
COMSTA0
Address
0xFFFF0714
Default Value
0x60
Access
R
COMSTA0 is the line status register.
Table 105. COMSTA0 MMR Bit Descriptions
Bit
7
6
Name
5
THRE
4
BI
3
FE
2
PE
1
OE
0
DR
TEMT
Description
Reserved.
COMTX and shift register empty status bit. Set
automatically if COMTX and shift register are
empty. Cleared automatically when writing to
COMTX.
COMTX empty. Set automatically if COMTX is
empty. Cleared automatically when writing to
COMTX.
Break error. Set when SIN is held low for more than
the maximum word length. Cleared automatically.
Framing error. Set when an invalid stop bit occurs.
Cleared automatically.
Parity error. Set when a parity error occurs.
Cleared automatically.
Overrun error. Set automatically if data is overwritten before being read. Cleared automatically.
Data ready. Set automatically when COMRX is full.
Cleared by reading COMRX.
Table 106. COMSTA1 Register
Name
COMSTA1
Address
0xFFFF0718
Default Value
0x00
COMSTA1 is a modem status register.
COMCON1 is the modem control register.
Rev. E | Page 67 of 96
Access
R
ADuC7019/20/21/22/24/25/26/27/28/29
Network Addressable UART Register Definitions
Table 107. COMSTA1 MMR Bit Descriptions
Bit
7
6
5
4
3
Name
DCD
RI
DSR
CTS
DDCD
2
TERI
1
DDSR
0
DCTS
Description
Data carrier detect.
Ring indicator.
Data set ready.
Clear to send.
Delta DCD. Set automatically if DCD changed
state since last COMSTA1 read. Cleared automatically by reading COMSTA1.
Trailing edge RI. Set if RI changed from 0 to 1
since COMSTA1 was last read. Cleared
automatically by reading COMSTA1.
Delta DSR. Set automatically if DSR changed state
since COMSTA1 was last read. Cleared
automatically by reading COMSTA1.
Delta CTS. Set automatically if CTS changed state
since COMSTA1 was last read. Cleared
automatically by reading COMSTA1.
Address
0xFFFF071C
Default Value
0x00
Access
R/W
COMIEN1 = 0xE7;
E9BT, E9BR, ETD, NABP
COMTX = 0xA0;
Default Value
0x0000
Access
R/W
COMDIV2 is a 16-bit fractional baud divide register.
Name
FBEN
14:13
12:11
FBM[1:0]
10:0
FBN[10:0]
// Slave address is 0xA0
while(!(0x020==(COMSTA0 & 0x020))){} //
wait for adr tx to finish.
COMIEN1 = 0xE6;
//
to indicate Data is coming
Clear NAB bit
COMTX = 0x55; // Tx data to slave: 0x55
Name
COMIEN1
Bit
7
Name
ENAM
6
E9BT
5
E9BR
4
3
ENI
E9BD
2
ETD
1
0
NABP
NAB
Table 110. COMDIV2 MMR Bit Descriptions
Bit
15
//Setting ENAM,
Address
0xFFFF0720
Default Value
0x04
Access
R/W
Table 112. COMIEN1 MMR Bit Descriptions
Table 109. COMDIV2 Register
Address
0xFFFF072C
In network address mode, the least significant bit of the COMIEN1
register is the transmitted network address control bit. If set to
1, the device is transmitting an address. If cleared to 0, the
device is transmitting data. For example, the following masterbased code transmits the slave’s address followed by the data:
COMIEN1 is an 8-bit network enable register.
COMSCR is an 8-bit scratch register used for temporary
storage. It is also used in network addressable UART mode.
Name
COMDIV2
Four additional registers, COMIEN0, COMIEN1, COMIID1, and
COMADR are used in network addressable UART mode only.
Table 111. COMIEN1 Register
Table 108. COMSCR Register
Name
COMSCR
Data Sheet
Description
Fractional baud rate generator enable bit.
Set by user to enable the fractional baud
rate generator. Cleared by user to generate
baud rate using the standard 450 UART
baud rate generator.
Reserved.
M if FBM = 0, M = 4 (see the Fractional
Divider section).
N (see the Fractional Divider section).
Network Addressable UART Mode
This mode connects the MicroConverter to a 256-node serial
network, either as a hardware single master or via software in a
multimaster network. Bit 7 (ENAM) of the COMIEN1 register
must be set to enable UART in network addressable mode (see
Table 112). Note that there is no parity check in this mode.
Description
Network address mode enable bit. Set by user to
enable network address mode. Cleared by user to
disable network address mode.
9-bit transmit enable bit. Set by user to enable
9-bit transmit. ENAM must be set. Cleared by user
to disable 9-bit transmit.
9-bit receive enable bit. Set by user to enable
9-bit receive. ENAM must be set. Cleared by user
to disable 9-bit receive.
Network interrupt enable bit.
Word length. Set for 9-bit data. E9BT has to be
cleared. Cleared for 8-bit data.
Transmitter pin driver enable bit. Set by user to
enable SOUT pin as an output in slave mode or
multimaster mode. Cleared by user; SOUT is
three-state.
Network address bit. Interrupt polarity bit.
Network address bit (if NABP = 1). Set by user to
transmit the slave address. Cleared by user to
transmit data.
Table 113. COMIID1 Register
Name
COMIID1
Address
0xFFFF0724
Default Value
0x01
Access
R
COMIID1 is an 8-bit network interrupt register. Bit 7 to Bit 4
are reserved (see Table 114).
Rev. E | Page 68 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 114. COMIID1 MMR Bit Descriptions
MISO (Master In, Slave Out) Pin
Bit 3:1
Status
Bits
000
110
Bit 0
NINT
1
0
101
0
3
011
0
1
010
0
2
001
0
3
000
0
Priority
2
4
Definition
No interrupt
Matching network
address
Address
transmitted,
buffer empty
Receive line status
interrupt
Receive buffer full
interrupt
Transmit buffer
empty interrupt
Modem status
interrupt
Clearing
Operation
Read COMRX
Write data to
COMTX or
read COMIID0
Read
COMSTA0
Read COMRX
Write data to
COMTX or
read COMIID0
Read
COMSTA1
Note that to receive a network address interrupt, the slave must
ensure that Bit 0 of COMIEN0 (enable receive buffer full interrupt)
is set to 1.
Table 115. COMADR Register
Name
COMADR
Address
0xFFFF0728
Default Value
0xAA
The MISO pin is configured as an input line in master mode
and an output line in slave mode. The MISO line on the master
(data in) should be connected to the MISO line in the slave
device (data out). The data is transferred as byte wide (8-bit)
serial data, MSB first.
MOSI (Master Out, Slave In) Pin
The MOSI pin is configured as an output line in master mode
and an input line in slave mode. The MOSI line on the master
(data out) should be connected to the MOSI line in the slave
device (data in). The data is transferred as byte wide (8-bit)
serial data, MSB first.
SCLK (Serial Clock I/O) Pin
The master serial clock (SCLK) is used to synchronize the data
being transmitted and received through the MOSI SCLK
period. Therefore, a byte is transmitted/received after eight SCLK
periods. The SCLK pin is configured as an output in master
mode and as an input in slave mode.
In master mode, the polarity and phase of the clock are
controlled by the SPICON register, and the bit rate is defined in
the SPIDIV register as follows:
Access
R/W
f SERIAL CLOCK =
f UCLK
2 × (1 + SPIDIV )
COMADR is an 8-bit, read/write network address register that
holds the address checked for by the network addressable
UART. Upon receiving this address, the device interrupts the
processor and/or sets the appropriate status bit in COMIID1.
The maximum speed of the SPI clock is dependent on the clock
divider bits and is summarized in Table 116.
SERIAL PERIPHERAL INTERFACE
CD Bits
SPIDIV in Hex
SPI dpeed
in MHz
The ADuC7019/20/21/22/24/25/26/27/28/29 integrate a complete
hardware serial peripheral interface (SPI) on-chip. SPI is an
industry standard, synchronous serial interface that allows eight
bits of data to be synchronously transmitted and simultaneously
received, that is, full duplex up to a maximum bit rate of 3.48 Mb,
as shown in Table 116. The SPI interface is not operational with
core clock divider (CD) bits. POWCON[2:0] = 6 or 7 in master
mode.
The SPI port can be configured for master or slave operation.
and typically consists of four pins: MISO (P1.5), MOSI (P1.6),
SCLK (P1.4), and CS (P1.7).
On the transmit side, the SPITX register (and a TX shift register
outside it) loads data onto the transmit pin (in slave mode,
MISO; in master mode, MOSI). The transmit status bit, Bit 0, in
SPISTA indicates whether there is valid data in the SPITX
register.
Similarly, the receive data path consists of the SPIRX register
(and an RX shift register). SPISTA, Bit 3 indicates whether there
is valid data in the SPIRX register. If valid data in the SPIRX
register is overwritten or if valid data in the RX shift register is
discarded, SPISTA, Bit 5 (the overflow bit) is set.
Table 116. SPI Speed vs. Clock Divider Bits in Master Mode
0
0x05
3.482
1
0x0B
1.741
2
0x17
0.870
3
0x2F
0.435
4
0x5F
0.218
5
0xBF
0.109
In slave mode, the SPICON register must be configured with
the phase and polarity of the expected input clock. The slave
accepts data from an external master up to 10.4 Mb at CD = 0.
The formula to determine the maximum speed is as follows:
f SERIAL CLOCK =
f HCLK
4
In both master and slave modes, data is transmitted on one edge
of the SCL signal and sampled on the other. Therefore, it is
important that the polarity and phase be configured the same
for the master and slave devices.
Chip Select (CS Input) Pin
In SPI slave mode, a transfer is initiated by the assertion of CS,
which is an active low input signal. The SPI port then transmits
and receives 8-bit data until the transfer is concluded by
deassertion of CS. In slave mode, CS is always an input.
Rev. E | Page 69 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
SPI Registers
Table 119. SPIRX Register
The following MMR registers are used to control the SPI
interface: SPISTA, SPIRX, SPITX, SPIDIV, and SPICON.
Name
SPIRX
Address
0xFFFF0A00
Default Value
0x00
Access
R
SPISTA is an 8-bit read-only status register. Only Bit 1 or Bit 4
of this register generates an interrupt. Bit 6 of the SPICON
register determines which bit generates the interrupt.
Table 118. SPISTA MMR Bit Descriptions
Bit
7:6
5
4
3
2
1
0
Default Value
0x00
Access
R
SPIRX is an 8-bit, read-only receive register.
Table 117. SPISTA Register
Name
SPISTA
Address
0xFFFF0A04
Description
Reserved.
SPIRX data register overflow status bit. Set if SPIRX is
overflowing. Cleared by reading the SPIRX register.
SPIRX data register IRQ. Set automatically if Bit 3 or Bit 5
is set. Cleared by reading the SPIRX register.
SPIRX data register full status bit. Set automatically if a
valid data is present in the SPIRX register. Cleared by
reading the SPIRX register.
SPITX data register underflow status bit. Set automatically if SPITX is underflowing. Cleared by writing in
the SPITX register.
SPITX data register IRQ. Set automatically if Bit 0 is clear
or Bit 2 is set. Cleared by writing in the SPITX register or if
finished transmission disabling the SPI.
SPITX data register empty status bit. Set by writing to
SPITX to send data. This bit is set during transmission of
data. Cleared when SPITX is empty.
Table 120. SPITX Register
Name
SPITX
Address
0xFFFF0A08
Default Value
0x00
Access
W
SPITX is an 8-bit, write-only transmit register.
Table 121. SPIDIV Register
Name
SPIDIV
Address
0xFFFF0A0C
Default Value
0x1B
Access
R/W
SPIDIV is an 8-bit, serial clock divider register.
Table 122. SPICON Register
Name
SPICON
Address
0xFFFF0A10
Default Value
0x0000
Access
R/W
SPICON is a 16-bit control register.
Table 123. SPICON MMR Bit Descriptions
Bit
15:13
12
Description
Reserved
Continuous transfer enable
11
10
Loop back enable
Slave MISO output enable
9
Clip select output enable
8
SPIRX overflow overwrite enable
7
6
SPITX underflow mode
Transfer and interrupt mode
5
4
3
2
LSB first transfer enable bit
Reserved
Serial clock polarity mode bit
Serial clock phase mode bit
1
0
Master mode enable bit
SPI enable bit
Function
N/A
Set by user to enable continuous transfer. In master mode, the transfer continues until no valid data is
available in the TX register. CS is asserted and remains asserted for the duration of each 8-bit serial transfer
until TX is empty. Cleared by user to disable continuous transfer. Each transfer consists of a single 8-bit
serial transfer. If valid data exists in the SPITX register, then a new transfer is initiated after a stall period.
Set by user to connect MISO to MOSI and test software. Cleared by user to be in normal mode.
Set this bit to disable the output driver on the MISO pin. The MISO pin becomes open drain when this bit is
set. Clear this bit for MISO to operate as normal.
Set by user in master mode to disable the chip select output. cleared by user to enable the chip select
output.
P1.7 should be configured as CS before SPICON is configured as a master when the chip select output
enabled is also selected.
Set by user, the valid data in the RX register is overwritten by the new serial byte received. Cleared by user,
the new serial byte received is discarded.
Set by user to transmit 0. Cleared by user to transmit the previous data.
Set by user to initiate transfer with a write to the SPITX register. Interrupt occurs only when TX is empty.
Cleared by user to initiate transfer with a read of the SPIRX register. Interrupt occurs only when RX is full.
Set by user, the LSB is transmitted first. Cleared by user, the MSB is transmitted first.
Set by user, the serial clock idles high. Cleared by user, the serial clock idles low.
Set by user, the serial clock pulses at the beginning of each serial bit transfer. Cleared by user, the serial
clock pulses at the end of each serial bit transfer.
Set by user to enable master mode. Cleared by user to enable slave mode.
Set by user to enable the SPI. Cleared by user to disable the SPI.
Rev. E | Page 70 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
I2C-COMPATIBLE INTERFACES
Slave Addresses
The ADuC7019/20/21/22/24/25/26/27/28/29 support two licensed
I2C interfaces. The I2C interfaces are both implemented as a hardware master and a full slave interface. Because the two I2C interfaces are identical, this data sheet describes only I2C0 in detail.
Note that the two masters and one of the slaves have individual
interrupts (see the Interrupt System section).
The registers I2C0ID0, I2C0ID1, I2C0ID2, and I2C0ID3 contain
the device IDs. The device compares the four I2C0IDx registers
to the address byte. To be correctly addressed, the seven MSBs of
either ID register must be identical to that of the seven MSBs of
the first received address byte. The LSB of the ID registers (the
transfer direction bit) is ignored in the process of address
recognition.
Note that when configured as an I2C master device, the
ADuC7019/20/21/22/24/25/26/27/28/29 cannot generate a
repeated start condition.
I2C Registers
The two GPIO pins used for data transfer, SDAx and SCLx, are
configured in a wired-AND format that allows arbitration in a
multimaster system. These pins require external pull-up resistors.
Typical pull-up values are 10 kΩ.
The I2C bus peripheral address in the I2C bus system is programmed by the user. This ID can be modified any time a
transfer is not in progress. The user can configure the interface
to respond to four slave addresses.
The transfer sequence of an I2C system consists of a master
device initiating a transfer by generating a start condition while
the bus is idle. The master transmits the slave device address
and the direction of the data transfer during the initial address
transfer. If the master does not lose arbitration and the slave
acknowledges, the data transfer is initiated. This continues until
the master issues a stop condition and the bus becomes idle.
The I2C peripheral can be configured only as a master or slave
at any given time. The same I2C channel cannot simultaneously
support master and slave modes.
Serial Clock Generation
The I2C master in the system generates the serial clock for a
transfer. The master channel can be configured to operate in
fast mode (400 kHz) or standard mode (100 kHz).
The I2C peripheral interface consists of 18 MMRs, which are
discussed in this section.
Table 124. I2CxMSTA Registers
Name
I2C0MSTA
I2C1MSTA
fUCLK
(2 + DIVH ) + (2 + DIVL)
where:
fUCLK = clock before the clock divider.
DIVH = the high period of the clock.
DIVL = the low period of the clock.
Bit
7
Access
Type
R/W
6
R
5
R
4
R
3
R
2
R
1
R
0
R
DIVH = DIVL = 0xCF
DIVH = 0x28, DIVL = 0x3C
The I2CxDIV registers correspond to DIVH:DIVL.
Access
R/W
R/W
Table 125. I2C0MSTA MMR Bit Descriptions
Thus, for 100 kHz operation,
and for 400 kHz,
Default Value
0x00
0x00
I2CxMSTA are status registers for the master channel.
The bit rate is defined in the I2C0DIV MMR as follows:
f SERIAL CLOCK =
Address
0xFFFF0800
0xFFFF0900
Description
Master transmit FIFO flush. Set by user to flush
the master Tx FIFO. Cleared automatically after
the master Tx FIFO is flushed. This bit also
flushes the slave receive FIFO.
Master busy. Set automatically if the master is
busy. Cleared automatically.
Arbitration loss. Set in multimaster mode if
another master has the bus. Cleared when the
bus becomes available.
No ACK. Set automatically if there is no
acknowledge of the address by the slave
device. Cleared automatically by reading the
I2C0MSTA register.
Master receive IRQ. Set after receiving data.
Cleared automatically by reading the I2C0MRX
register.
Master transmit IRQ. Set at the end of a
transmission. Cleared automatically by writing
to the I2C0MTX register.
Master transmit FIFO underflow. Set
automatically if the master transmit FIFO is
underflowing. Cleared automatically by
writing to the I2C0MTX register.
Master TX FIFO not full. Set automatically if the
slave transmit FIFO is not full. Cleared automatically by writing twice to the I2C0STX register.
Table 126. I2CxSSTA Registers
Name
I2C0SSTA
I2C1SSTA
Address
0xFFFF0804
0xFFFF0904
Default Value
0x01
0x01
I2CxSSTA are status registers for the slave channel.
Rev. E | Page 71 of 96
Access
R
R
ADuC7019/20/21/22/24/25/26/27/28/29
Table 128. I2CxSRX Registers
Table 127. I2C0SSTA MMR Bit Descriptions
Bit
31:15
14
Value
13
12:11
00
01
10
11
10
9:8
00
01
10
11
7
6
5
4
3
2
1
0
Data Sheet
Description
Reserved. These bits should be written as 0.
Start decode bit. Set by hardware if the device
receives a valid start plus matching address.
Cleared by an I2C stop condition or an I2C
general call reset.
Repeated start decode bit. Set by hardware
if the device receives a valid repeated start and
matching address. Cleared by an I2C stop condition, a read of the I2CSSTA register, or an I2C
general call reset.
ID decode bits.
Received Address Matched ID Register 0.
Received Address Matched ID Register 1.
Received Address Matched ID Register 2.
Received Address Matched ID Register 3.
Stop after start and matching address interrupt.
Set by hardware if the slave device receives an
I2C stop condition after a previous I2C start
condition and matching address. Cleared by a
read of the I2C0SSTA register.
General call ID.
No general call.
General call reset and program address.
General call program address.
General call matching alternative ID.
General call interrupt. Set if the slave device
receives a general call of any type. Cleared by
setting Bit 8 of the I2CxCFG register. If it is a
general call reset, all registers are at their
default values. If it is a hardware general call,
the Rx FIFO holds the second byte of the
general call. This is similar to the I2C0ALT
register (unless it is a general call to reprogram
the device address). For more details, see the I2C
bus specification, Version 2.1, January 2000.
Slave busy. Set automatically if the slave is busy.
Cleared automatically.
No ACK. Set if master asking for data and no
data is available. Cleared automatically by
reading the I2C0SSTA register.
Slave receive FIFO overflow. Set automatically if
the slave receive FIFO is overflowing. Cleared
automatically by reading the I2C0SSTA register.
Slave receive IRQ. Set after receiving data.
Cleared automatically by reading the I2C0SRX
register or flushing the FIFO.
Slave transmit IRQ. Set at the end of a transmission. Cleared automatically by writing to the
I2C0STX register.
Slave transmit FIFO underflow. Set automatically if
the slave transmit FIFO is underflowing. Cleared
automatically by writing to the I2C0SSTA register.
Slave transmit FIFO not full. Set automatically if
the slave transmit FIFO is not full. Cleared automatically by writing twice to the I2C0STX register.
Name
I2C0SRX
I2C1SRX
Address
0xFFFF0808
0xFFFF0908
Default Value
0x00
0x00
Access
R
R
I2CxSRX are receive registers for the slave channel.
Table 129. I2CxSTX Registers
Name
I2C0STX
I2C1STX
Address
0xFFFF080C
0xFFFF090C
Default Value
0x00
0x00
Access
W
W
I2CxSTX are transmit registers for the slave channel.
Table 130. I2CxMRX Registers
Name
I2C0MRX
I2C1MRX
Address
0xFFFF0810
0xFFFF0910
Default Value
0x00
0x00
Access
R
R
I2CxMRX are receive registers for the master channel.
Table 131. I2CxMTX Registers
Name
I2C0MTX
I2C1MTX
Address
0xFFFF0814
0xFFFF0914
Default Value
0x00
0x00
Access
W
W
I2CxMTX are transmit registers for the master channel.
Table 132. I2CxCNT Registers
Name
I2C0CNT
I2C1CNT
Address
0xFFFF0818
0xFFFF0918
Default Value
0x00
0x00
Access
R/W
R/W
I2CxCNT are 3-bit, master receive, data count registers. If a master
read transfer sequence is initiated, the I2CxCNT registers denote
the number of bytes (−1) to be read from the slave device. By
default, this counter is 0, which corresponds to the one byte
expected.
Table 133. I2CxADR Registers
Name
I2C0ADR
I2C1ADR
Address
0xFFFF081C
0xFFFF091C
Default Value
0x00
0x00
Access
R/W
R/W
I2CxADR are master address byte registers. The I2CxADR
value is the device address that the master wants to communicate with. It automatically transmits at the start of a master
transfer sequence if there is no valid data in the I2CxMTX
register when the master enable bit is set.
Table 134. I2CxBYTE Registers
Name
I2C0BYTE
I2C1BYTE
Address
0xFFFF0824
0xFFFF0924
Default Value
0x00
0x00
Access
R/W
R/W
I2CxBYTE are broadcast byte registers. Data written to these
registers does not go through the TxFIFO. This data is transmitted
at the start of a transfer sequence before the address. After the
byte is transmitted and acknowledged, the I2C expects another
byte written in I2CxBYTE or an address written to the address
register.
Rev. E | Page 72 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 135. I2CxALT Registers
Table 136. I2CxCFG Registers
Name
I2C0ALT
I2C1ALT
Address
0xFFFF0828
0xFFFF0928
Default Value
0x00
0x00
Access
R/W
R/W
I2CxALT are hardware general call ID registers used in slave mode.
Name
I2C0CFG
I2C1CFG
Address
0xFFFF082C
0xFFFF092C
Default Value
0x00
0x00
Access
R/W
R/W
I2CxCFG are configuration registers.
Table 137. I2C0CFG MMR Bit Descriptions
Bit
31:5
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Description
Reserved. These bits should be written by the user as 0.
Enable stop interrupt. Set by the user to generate an interrupt upon receiving a stop condition and after receiving a valid start
condition and matching address. Cleared by the user to disable the generation of an interrupt upon receiving a stop condition.
Reserved.
Reserved.
Enable stretch SCL (holds SCL low). Set by the user to stretch the SCL line. Cleared by the user to disable stretching of the SCL line.
Reserved.
Slave Tx FIFO request interrupt enable. Set by the user to disable the slave Tx FIFO request interrupt. Cleared by the user to generate
an interrupt request just after the negative edge of the clock for the R/W bit. This allows the user to input data into the slave Tx FIFO if
it is empty. At 400 ksps and the core clock running at 41.78 MHz, the user has 45 clock cycles to take appropriate action, taking
interrupt latency into account.
General call status bit clear. Set by the user to clear the general call status bits. Cleared automatically by hardware after the general
call status bits are cleared.
Master serial clock enable bit. Set by user to enable generation of the serial clock in master mode. Cleared by user to disable serial
clock in master mode.
Loopback enable bit. Set by user to internally connect the transition to the reception to test user software. Cleared by user to operate
in normal mode.
Start backoff disable bit. Set by user in multimaster mode. If losing arbitration, the master immediately tries to retransmit. Cleared by
user to enable start backoff. After losing arbitration, the master waits before trying to retransmit.
Hardware general call enable. When this bit and Bit 3 are set and have received a general call (Address 0x00) and a data byte, the
device checks the contents of I2C0ALT against the receive register. If the contents match, the device has received a hardware general
call. This is used if a device needs urgent attention from a master device without knowing which master it needs to turn to. This is a
“to whom it may concern” call. The ADuC7019/20/21/22/24/25/26/27/28/29 watch for these addresses. The device that requires
attention embeds its own address into the message. All masters listen, and the one that can handle the device contacts its slave and
acts appropriately. The LSB of the I2C0ALT register should always be written to 1, as indicated in The I2C-Bus Specification, January
2000, from NXP.
General call enable bit. This bit is set by the user to enable the slave device to acknowledge (ACK) an I2C general call, Address 0x00
(write). The device then recognizes a data bit. If it receives a 0x06 (reset and write programmable part of slave address by hardware)
as the data byte, the I2C interface resets as as indicated in The I2C-Bus Specification, January 2000, from NXP. This command can be
used to reset an entire I2C system. The general call interrupt status bit sets on any general call. The user must take corrective action by
setting up the I2C interface after a reset. If it receives a 0x04 (write programmable part of slave address by hardware) as the data byte,
the general call interrupt status bit sets on any general call. The user must take corrective action by reprogramming the device address.
Reserved.
Master enable bit. Set by user to enable the master I2C channel. Cleared by user to disable the master I2C channel.
Slave enable bit. Set by user to enable the slave I2C channel. A slave transfer sequence is monitored for the device address in I2C0ID0,
I2C0ID1, I2C0ID2, and I2C0ID3. At 400 kSPs, the core clock should run at 41.78 MHz because the interrupt latency could be up to 45
clock cycles alone. After the I2C read bit, the user has 0.5 of an I2C clock cycle to load the Tx FIFO. AT 400 kSPS, this is 1.26 μs, the
interrupt latency.
Rev. E | Page 73 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Table 142. I2C0FSTA MMR Bit Descriptions
Table 138. I2CxDIV Registers
Name
I2C0DIV
I2C1DIV
Address
0xFFFF0830
0xFFFF0930
Data Sheet
Default Value
0x1F1F
0x1F1F
Access
R/W
R/W
I2CxDIV are the clock divider registers.
Bit
15:10
9
Access
Type
Value
R/W
Table 139. I2CxIDx Registers
Name
I2C0ID0
I2C0ID1
I2C0ID2
I2C0ID3
I2C1ID0
I2C1ID1
I2C1ID2
I2C1ID3
Address
0xFFFF0838
0xFFFF083C
0xFFFF0840
0xFFFF0844
0xFFFF0938
0xFFFF093C
0xFFFF0940
0xFFFF0944
Default Value
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
8
R/W
7:6
R
00
01
10
11
5:4
I2CxID0, I2CxID1, I2CxID2, and I2CxID3 are slave address
device ID registers of I2Cx.
R
00
01
10
11
Table 140. I2CxCCNT Registers
Name
I2C0CCNT
I2C1CCNT
Address
0xFFFF0848
0xFFFF0948
Default Value
0x01
0x01
Access
R/W
R/W
3:2
R
00
01
10
11
I2CxCCNT are 8-bit start/stop generation counters. They hold
off SDA low for start and stop conditions.
Table 141. I2CxFSTA Registers
Name
I2C0FSTA
I2C1FSTA
Address
0xFFFF084C
0xFFFF094C
1:0
Default Value
0x0000
0x0000
Access
R/W
R/W
I2CxFSTA are FIFO status registers.
Rev. E | Page 74 of 96
R
00
01
10
11
Description
Reserved.
Master transmit FIFO flush. Set by the
user to flush the master Tx FIFO.
Cleared automatically when the
master Tx FIFO is flushed. This bit
also flushes the slave receive FIFO.
Slave transmit FIFO flush. Set by the
user to flush the slave Tx FIFO. Cleared
automatically after the slave Tx FIFO
is flushed.
Master Rx FIFO status bits.
FIFO empty.
Byte written to FIFO.
One byte in FIFO.
FIFO full.
Master Tx FIFO status bits.
FIFO empty.
Byte written to FIFO.
One byte in FIFO.
FIFO full.
Slave Rx FIFO status bits.
FIFO empty.
Byte written to FIFO.
One byte in FIFO.
FIFO full.
Slave Tx FIFO status bits.
FIFO empty.
Byte written to FIFO.
One byte in FIFO.
FIFO full.
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
PROGRAMMABLE LOGIC ARRAY (PLA)
Table 144. PLAELMx Registers
Every ADuC7019/20/21/22/24/25/26/27/28/29 integrates a
fully programmable logic array (PLA) that consists of two
independent but interconnected PLA blocks. Each block
consists of eight PLA elements, giving each part a total of
16 PLA elements.
Name
PLAELM0
PLAELM1
PLAELM2
PLAELM3
PLAELM4
PLAELM5
PLAELM6
PLAELM7
PLAELM8
PLAELM9
PLAELM10
PLAELM11
PLAELM12
PLAELM13
PLAELM14
PLAELM15
Each PLA element contains a two-input lookup table that can
be configured to generate any logic output function based on
two inputs and a flip-flop. This is represented in Figure 64.
0
4
A
2
LOOKUP
TABLE
B
3
04955-033
1
Figure 64. PLA Element
Address
0xFFFF0B00
0xFFFF0B04
0xFFFF0B08
0xFFFF0B0C
0xFFFF0B10
0xFFFF0B14
0xFFFF0B18
0xFFFF0B1C
0xFFFF0B20
0xFFFF0B24
0xFFFF0B28
0xFFFF0B2C
0xFFFF0B30
0xFFFF0B34
0xFFFF0B38
0xFFFF0B3C
Default Value
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
In total, 30 GPIO pins are available on each ADuC7019/20/21/
22/24/25/26/27/28/29 for the PLA. These include 16 input pins
and 14 output pins, which msut be configured in the GPxCON
register as PLA pins before using the PLA. Note that the
comparator output is also included as one of the 16 input pins.
PLAELMx are Element 0 to Element 15 control registers. They
configure the input and output mux of each element, select the
function in the lookup table, and bypass/use the flip-flop. See
Table 145 and Table 150.
The PLA is configured via a set of user MMRs. The output(s) of
the PLA can be routed to the internal interrupt system, to the
CONVSTART signal of the ADC, to an MMR, or to any of the 16
PLA output pins.
Bit
31:11
10:9
8:7
6
The two blocks can be interconnected as follows:


Output of Element 15 (Block 1) can be fed back to Input 0
of Mux 0 of Element 0 (Block 0).
Output of Element 7 (Block 0) can be fed back to the Input
0 of Mux 0 of Element 8 (Block 1).
Table 145. PLAELMx MMR Bit Descriptions
5
4:1
Table 143. Element Input/Output
Element
0
1
2
3
4
5
6
7
PLA Block 0
Input
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P0.0
Output
P1.7
P0.4
P0.5
P0.6
P0.7
P2.0
P2.1
P2.2
Element
8
9
10
11
12
13
14
15
PLA Block 1
Input
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
Value
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Output
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7
PLA MMRs Interface
The PLA peripheral interface consists of the 22 MMRs
described in this section.
0
Rev. E | Page 75 of 96
Description
Reserved.
Mux 0 control (see Table 150).
Mux 1 control (see Table 150).
Mux 2 control. Set by user to select the output
of Mux 0. Cleared by user to select the bit value
from PLADIN.
Mux 3 control. Set by user to select the input
pin of the particular element. Cleared by user to
select the output of Mux 1.
Lookup table control.
0.
NOR.
B AND NOT A.
NOT A.
A AND NOT B.
NOT B.
EXOR.
NAND.
AND.
EXNOR.
B.
NOT A OR B.
A.
A OR NOT B.
OR.
1.
Mux 4 control. Set by user to bypass the flipflop. Cleared by user to select the flip-flop
(cleared by default).
ADuC7019/20/21/22/24/25/26/27/28/29
Table 146. PLACLK Register
Name
PLACLK
Address
0xFFFF0B40
Default Value
0x00
Access
R/W
PLACLK is the clock selection for the flip-flops of Block 0 and
Block 1. Note that the maximum frequency when using the
GPIO pins as the clock input for the PLA blocks is 44 MHz.
Value
000
001
010
011
100
101
Other
3
2:0
000
001
010
011
100
101
Other
Table 148. PLAIRQ Register
Name
PLAIRQ
Address
0xFFFF0B44
Default Value
0x00000000
PLAIRQ enables IRQ0 and/or IRQ1 and selects the source
of the IRQ.
Bit
15:13
12
Description
Reserved.
Block 1 clock source selection.
GPIO clock on P0.5.
GPIO clock on P0.0.
GPIO clock on P0.7.
HCLK.
OCLK (32.768 kHz) external crystal only.
Timer1 overflow.
Reserved.
Reserved.
Block 0 clock source selection.
GPIO clock on P0.5.
GPIO clock on P0.0.
GPIO clock on P0.7.
HCLK.
OCLK (32.768 kHz) external crystal only.
Timer1 overflow.
Reserved.
Value
11:8
0000
0001
1111
7:5
4
3:0
0000
0001
1111
Description
Reserved.
PLA IRQ1 enable bit. Set by user to enable
IRQ1 output from PLA. Cleared by user to
disable IRQ1 output from PLA.
PLA IRQ1 source.
PLA Element 0.
PLA Element 1.
PLA Element 15.
Reserved.
PLA IRQ0 enable bit. Set by user to enable
IRQ0 output from PLA. Cleared by user to
disable IRQ0 output from PLA.
PLA IRQ0 source.
PLA Element 0.
PLA Element 1.
PLA Element 15.
Table 150. Feedback Configuration
Bit
10:9
8:7
Value
00
01
10
11
00
01
10
11
PLAELM0
Element 15
Element 2
Element 4
Element 6
Element 1
Element 3
Element 5
Element 7
Access
R/W
Table 149. PLAIRQ MMR Bit Descriptions
Table 147. PLACLK MMR Bit Descriptions
Bit
7
6:4
Data Sheet
PLAELM1 to PLAELM7
Element 0
Element 2
Element 4
Element 6
Element 1
Element 3
Element 5
Element 7
Rev. E | Page 76 of 96
PLAELM8
Element 7
Element 10
Element 12
Element 14
Element 9
Element 11
Element 13
Element 15
PLAELM9 to PLAELM15
Element 8
Element 10
Element 12
Element 14
Element 9
Element 11
Element 13
Element 15
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Table 151. PLAADC Register
Table 154. PLADIN MMR Bit Descriptions
Name
PLAADC
Address
0xFFFF0B48
Default Value
0x00000000
Access
R/W
PLAADC is the PLA source for the ADC start conversion signal.
Value
3:0
0000
0001
1111
Description
Reserved.
ADC start conversion enable bit. Set by user
to enable ADC start conversion from PLA.
Cleared by user to disable ADC start
conversion from PLA.
ADC start conversion source.
PLA Element 0.
PLA Element 1.
PLA Element 15.
Address
0xFFFF0B4C
Name
PLADOUT
Address
0xFFFF0B50
Default Value
0x00000000
Access
R
PLADOUT is a data output MMR for PLA. This register is
always updated.
Table 156. PLADOUT MMR Bit Descriptions
Bit
31:16
15:0
Description
Reserved.
Output bit from Element 15 to Element 0.
Table 157. PLALCK Register
Table 153. PLADIN Register
Name
PLADIN
Description
Reserved.
Input bit to Element 15 to Element 0.
Table 155. PLADOUT Register
Table 152. PLAADC MMR Bit Descriptions
Bit
31:5
4
Bit
31:16
15:0
Default Value
0x00000000
PLADIN is a data input MMR for PLA.
Access
R/W
Name
PLALCK
Address
0xFFFF0B54
Default Value
0x00
Access
W
PLALCK is a PLA lock option. Bit 0 is written only once. When
set, it does not allow modifying any of the PLA MMRs, except
PLADIN. A PLA tool is provided in the development system to
easily configure the PLA.
Rev. E | Page 77 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
PROCESSOR REFERENCE PERIPHERALS
IRQ
INTERRUPT SYSTEM
There are 23 interrupt sources on the ADuC7019/20/21/22/
24/25/26/27/28/29 that are controlled by the interrupt
controller. Most interrupts are generated from the on-chip
peripherals, such as ADC and UART. Four additional interrupt
sources are generated from external interrupt request pins,
IRQ0, IRQ1, IRQ2, and IRQ3. The ARM7TDMI CPU core only
recognizes interrupts as one of two types: a normal interrupt
request IRQ or a fast interrupt request FIQ. All the interrupts
can be masked separately.
The interrupt request (IRQ) is the exception signal to enter the
IRQ mode of the processor. It is used to service general-purpose
interrupt handling of internal and external events.
The control and configuration of the interrupt system are
managed through nine interrupt-related registers, four
dedicated to IRQ, and four dedicated to FIQ. An additional
MMR is used to select the programmed interrupt source. The
bits in each IRQ and FIQ register (except for Bit 23) represent
the same interrupt source as described in Table 158.
IRQSTA (read-only register) provides the current-enabled IRQ
source status. When set to 1, that source should generate an
active IRQ request to the ARM7TDMI core. There is no priority
encoder or interrupt vector generation. This function is
implemented in software in a common interrupt handler
routine. All 32 bits are logically OR’ed to create the IRQ signal
to the ARM7TDMI core.
Table 158. IRQ/FIQ MMRs Bit Description
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Description
All interrupts OR’ed (FIQ only)
SWI
Timer0
Timer1
Wake-up timer (Timer2)
Watchdog timer (Timer3)
Flash control
ADC channel
PLL lock
I2C0 slave
I2C0 master
I2C1 master
SPI slave
SPI master
UART
External IRQ0
Comparator
PSM
External IRQ1
PLA IRQ0
PLA IRQ1
External IRQ2
External IRQ3
PWM trip (IRQ only)/PWM sync (FIQ only)
The four 32-bit registers dedicated to IRQ are IRQSTA,
IRQSIG, IRQEN, and IRQCLR.
Table 159. IRQSTA Register
Name
IRQSTA
Address
0xFFFF0000
Default Value
0x00000000
Access
R
Table 160. IRQSIG Register
Name
IRQSIG
1
Address
0xFFFF0004
Default Value
0x00XXX0001
Access
R
X indicates an undefined value.
IRQSIG reflects the status of the different IRQ sources. If a peripheral generates an IRQ signal, the corresponding bit in the IRQSIG
is set; otherwise, it is cleared. The IRQSIG bits are cleared when
the interrupt in the particular peripheral is cleared. All IRQ
sources can be masked in the IRQEN MMR. IRQSIG is read only.
Table 161. IRQEN Register
Name
IRQEN
Address
0xFFFF0008
Default Value
0x00000000
Access
R/W
IRQEN provides the value of the current enable mask. When
each bit is set to 1, the source request is enabled to create an
IRQ exception. When each bit is set to 0, the source request is
disabled or masked, which does not create an IRQ exception.
Note that to clear an already enabled interrupt source, the user
must set the appropriate bit in the IRQCLR register. Clearing an
interrupt’s IRQEN bit does not disable the interrupt.
Table 162. IRQCLR Register
Name
IRQCLR
Address
0xFFFF000C
Default Value
0x00000000
Access
W
IRQCLR (write-only register) clears the IRQEN register in
order to mask an interrupt source. Each bit set to 1 clears the
corresponding bit in the IRQEN register without affecting the
remaining bits. The pair of registers, IRQEN and IRQCLR,
independently manipulates the enable mask without requiring
an atomic read-modify-write.
Rev. E | Page 78 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
FIQ
The fast interrupt request (FIQ) is the exception signal to enter
the FIQ mode of the processor. It is provided to service data
transfer or communication channel tasks with low latency. The
FIQ interface is identical to the IRQ interface providing the
second-level interrupt (highest priority). Four 32-bit registers
are dedicated to FIQ: FIQSIG, FIQEN, FIQCLR, and FIQSTA.
Table 168. SWICFG MMR Bit Descriptions
Bit
31:3
2
Description
Reserved.
Programmed interrupt (FIQ). Setting/clearing this bit
corresponds with setting/clearing Bit 1 of FIQSTA
and FIQSIG.
Programmed interrupt (IRQ). Setting/clearing this bit
corresponds with setting/clearing Bit 1 of IRQSTA
and IRQSIG.
Reserved.
1
Table 163. FIQSTA Register
Name
FIQSTA
Address
0xFFFF0100
Default Value
0x00000000
Access
R
Default Value
0x00XXX0001
Access
R
Table 164. FIQSIG Register
Name
FIQSIG
1
Address
0xFFFF0104
Table 165. FIQEN Register
Address
0xFFFF0108
Default Value
0x00000000
Access
R/W
Default Value
0x00000000
Access
W
Table 166. FIQCLR Register
Name
FIQCLR
Address
0xFFFF010C
Note that any interrupt signal must be active for at least the
equivalent of the interrupt latency time, which is detected by
the interrupt controller and by the user in the IRQSTA/FIQSTA
register.
TIMERS
X indicates an undefined value.
Name
FIQEN
0
Bit 31 to Bit 1 of FIQSTA are logically OR’d to create the FIQ
signal to the core and to Bit 0 of both the FIQ and IRQ registers
(FIQ source).
The logic for FIQEN and IRQEN does not allow an interrupt
source to be enabled in both IRQ and FIQ masks. A bit set to 1
in FIQEN does, as a side effect, clear the same bit in IRQEN.
Also, a bit set to 1 in IRQEN does, as a side effect, clear the
same bit in FIQEN. An interrupt source can be disabled in both
the IRQEN and FIQEN masks.
Note that to clear an already enabled FIQ source, the user must
set the appropriate bit in the FIQCLR register. Clearing an
interrupt’s FIQEN bit does not disable the interrupt.
The ADuC7019/20/21/22/24/25/26/27/28/29 have four generalpurpose timer/counters.
•
•
•
•
These four timers in their normal mode of operation can be
either free running or periodic.
In free-running mode, the counter decreases from the
maximum value until zero scale and starts again at the
minimum value. (It also increases from the minimum value
until full scale and starts again at the maximum value.)
In periodic mode, the counter decrements/increments from the
value in the load register (TxLD MMR) until zero/full scale and
starts again at the value stored in the load register.
The timer interval is calculated as follows:
If the timer is set to count down then
Programmed Interrupts
Interval =
Because the programmed interrupts are nonmaskable, they are
controlled by another register, SWICFG, which simultaneously
writes into the IRQSTA and IRQSIG registers and/or the
FIQSTA and FIQSIG registers. The 32-bit SWICFG register is
dedicated to software interrupts(see Table 168). This MMR
allows the control of a programmed source interrupt.
Table 167. SWICFG Register
Name
SWICFG
Address
0xFFFF0010
Timer0
Timer1
Timer2 or wake-up timer
Timer3 or watchdog timer
Default Value
0x00000000
Access
W
(TxLD ) × Prescaler
Source Clock
If the timer is set to count up, then
Interval =
(Fs − TxLD )× Prescaler
Source Clock
The value of a counter can be read at any time by accessing its
value register (TxVAL). Note that when a timer is being clocked
from a clock other than core clock, an incorrect value may be
read (due to an asynchronous clock system). In this configuration, TxVAL should always be read twice. If the two readings
are different, it should be read a third time to get the correct
value.
Timers are started by writing in the control register of the
corresponding timer (TxCON).
Rev. E | Page 79 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
In normal mode, an IRQ is generated each time the value of the
counter reaches zero when counting down. It is also generated
each time the counter value reaches full scale when counting
up. An IRQ can be cleared by writing any value to clear the
register of that particular timer (TxCLRI).
When using an asynchronous clock-to-clock timer, the
interrupt in the timer block may take more time to clear
than the time it takes for the code in the interrupt routine to
execute. Ensure that the interrupt signal is cleared before
leaving the interrupt service routine. This can be done by
checking the IRQSTA MMR.
Data Sheet
The Timer0 interface consists of four MMRs: T0LD, T0VAL,
T0CON, and T0CLRI.
Table 170. T0LD Register
Name
T0LD
Address
0xFFFF0300
Name
T0VAL
Address
0xFFFF0304
Table 172. T0CON Register
Name
T0CON
Address
0xFFFF0308
Bit
15:8
7
Value
6
5:4
3:2
00
01
10
11
1:0
Timer0 is a general-purpose, 16-bit timer (count down) with a
programmable prescaler (see Figure 65). The prescaler source is
the core clock frequency (HCLK) and can be scaled by factors
of 1, 16, or 256.
Timer0 can be used to start ADC conversions as shown in the
block diagram in Figure 65.
Description
Reserved.
Timer0 enable bit. Set by user to enable Timer0.
Cleared by user to disable Timer0 by default.
Timer0 mode. Set by user to operate in
periodic mode. Cleared by user to operate
in free-running mode. Default mode.
Reserved.
Prescale.
Core Clock/1. Default value.
Core Clock/16.
Core Clock/256.
Undefined. Equivalent to 00.
Reserved.
Table 174. T0CLRI Register
Name
T0CLRI
Address
0xFFFF030C
Default Value
0xFF
Access
W
T0CLRI is an 8-bit register. Writing any value to this register
clears the interrupt.
16-BIT
LOAD
TIMER0 IRQ
04955-034
ADC CONVERSION
TIMER0
VALUE
Access
R/W
Table 173. T0CON MMR Bit Descriptions
Description
Hours
Reserved
Minutes
Reserved
Seconds
Reserved
1/128 second
16-BIT
DOWN
COUNTER
Default Value
0x0000
T0CON is the configuration MMR described in Table 173.
Timer0 (RTOS Timer)
PRESCALER
/1, 16 OR 256
Access
R
T0VAL is a 16-bit read-only register representing the current
state of the counter.
Table 169. Hour:Minnute:Second:Hundredths Format
HCLK
Default Value
0xFFFF
Table 171. T0VAL Register
To use the timer in hour:minute:second:hundredths format,
select the 32,768 kHz clock and prescaler of 256. The hundredths field does not represent milliseconds but 1/128 of
a second (256/32,768). The bits representing the hour,
minute, and second are not consecutive in the register.
This arrangement applies to TxLD and TxVAL when using
the hour:minute:second:hundredths format as set in
TxCON[5:4]. See Table 169 for additional details.
Value
0 to 23 or 0 to 255
0
0 to 59
0
0 to 59
0
0 to 127
Access
R/W
T0LD is a 16-bit load register.
Hour:Minute:Second:1/128 Format
Bit
31:24
23:22
21:16
15:14
13.8
7
6:0
Default Value
0x0000
Figure 65. Timer0 Block Diagram
Rev. E | Page 80 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
Timer1 (General-Purpose Timer)
The Timer1 interface consists of five MMRs: T1LD, T1VAL,
T1CON, T1CLRI, and T1CAP.
Timer1 is a general-purpose, 32-bit timer (count down or count
up) with a programmable prescaler. The source can be the
32 kHz external crystal, the core clock frequency, or an external
GPIO (P1.0 or P0.6). The maximum frequency of the clock
input is 44 Mhz). This source can be scaled by a factor of 1, 16,
256, or 32,768.
Table 175. T1LD Register
Name
T1LD
Address
0xFFFF0320
Default Value
0x00000000
Access
R/W
Default Value
0xFFFFFFFF
Access
R
T1LD is a 32-bit load register.
The counter can be formatted as a standard 32-bit value or as
hours: minutes: seconds: hundredths.
Table 176. T1VAL Register
Timer1 has a capture register (T1CAP) that can be triggered by
a selected IRQ source initial assertion. This feature can be used
to determine the assertion of an event more accurately than the
precision allowed by the RTOS timer when the IRQ is serviced.
T1VAL is a 32-bit read-only register that represents the current
state of the counter.
Name
T1CON
32-BIT
LOAD
PRESCALER
/1, 16, 256
OR 32,768
Address
0xFFFF0328
Default Value
0x0000
Access
R/W
T1CON is the configuration MMR described in Table 178.
32-BIT
UP/DOWN
COUNTER
TIMER1 IRQ
ADC CONVERSION
CAPTURE
04955-035
TIMER1
VALUE
IRQ[31:0]
Address
0xFFFF0324
Table 177. T1CON Register
Timer1 can be used to start ADC conversions as shown in the
block diagram in Figure 66.
32kHz OSCILLATOR
HCLK
P0.6
P1.0
Name
T1VAL
Figure 66. Timer1 Block Diagram
Rev. E | Page 81 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
Table 178. T1CON MMR Bit Descriptions
Table 180. T1CAP Register
Bit
31:18
17
Name
T1CAP
16:12
11:9
000
001
010
011
8
7
6
5:4
00
01
10
11
3:0
0000
0100
1000
1111
Description
Reserved.
Event select bit. Set by user to enable time
capture of an event. Cleared by user to
disable time capture of an event.
Event select range, 0 to 31. These events are
as described in Table 158. All events are
offset by two; that is, Event 2 in Table 158
becomes Event 0 for the purposes of
Timer1.
Clock select.
Core clock (HCLK).
External 32.768 kHz crystal.
P1.0 rising edge triggered.
P0.6 rising edge triggered.
Count up. Set by user for Timer1 to count
up. Cleared by user for Timer1 to count
down by default.
Timer1 enable bit. Set by user to enable
Timer1. Cleared by user to disable Timer1 by
default.
Timer1 mode. Set by user to operate in
periodic mode. Cleared by user to operate in
free-running mode. Default mode.
Format.
Binary.
Reserved.
Hr: min: sec: hundredths (23 hours to 0 hour).
Hr: min: sec: hundredths (255 hours to 0
hour).
Prescale.
Source Clock/1.
Source Clock/16.
Source Clock/256.
Source Clock/32,768.
Table 179. T1CLRI Register
Name
T1CLRI
Address
0xFFFF032C
Address
0xFFFF0330
Default Value
0x00000000
Access
R/W
T1CAP is a 32-bit register. It holds the value contained in
T1VAL when a particular event occurs. This event must be
selected in T1CON.
Timer2 (Wake-Up Timer)
Timer2 is a 32-bit wake-up timer (count down or count up)
with a programmable prescaler. The source can be the 32 kHz
external crystal, the core clock frequency, or the internal 32 kHz
oscillator. The clock source can be scaled by a factor of 1, 16,
256, or 32,768. The wake-up timer continues to run when the
core clock is disabled.
The counter can be formatted as plain 32-bit value or as
hours: minutes: seconds: hundredths.
Timer2 can be used to start ADC conversions as shown in the
block diagram in Figure 67.
32-BIT
LOAD
INTERNAL
OSCILLATOR
EXTERNAL
CRYSTAL
PRESCALER
/1, 16, 256
OR 32,768
32-BIT
UP/DOWN
COUNTER
TIMER2 IRQ
HCLK
04955-036
Value
TIMER2
VALUE
Figure 67. Timer2 Block Diagram
The Timer2 interface consists of four MMRs: T2LD, T2VAL,
T2CON, and T2CLRI.
Table 181. T2LD Register
Name
T2LD
Address
0xFFFF0340
Default Value
0x00000000
Access
R/W
T2LD is a 32-bit register load register.
Table 182. T2VAL Register
Default Value
0xFF
Access
W
T1CLRI is an 8-bit register. Writing any value to this register
clears the Timer1 interrupt.
Name
T2VAL
Address
0xFFFF0344
Default Value
0xFFFFFFFF
Access
R
T2VAL is a 32-bit read-only register that represents the current
state of the counter.
Table 183. T2CON Register
Name
T2CON
Address
0xFFFF0348
Default Value
0x0000
Access
R/W
T2CON is the configuration MMR described in Table 184.
Rev. E | Page 82 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
16-BIT
LOAD
Bit
31:11
10:9
Value
Description
Reserved.
Clock source.
External crystal.
External crystal.
Internal oscillator.
Core clock (41 MHz/2CD).
Count up. Set by user for Timer2 to count up.
Cleared by user for Timer2 to count down by
default.
Timer2 enable bit. Set by user to enable Timer2.
Cleared by user to disable Timer2 by default.
Timer2 mode. Set by user to operate in
periodic mode. Cleared by user to operate in
free-running mode. Default mode.
Format.
Binary.
Reserved.
Hr: min: sec: Hundredths (23 hours to 0 hour).
Hr: min: sec: Hundredths (255 hours to 0 hour).
Prescale.
Source Clock/1 by default.
Source Clock/16.
Source Clock/256 expected for Format 2 and
Format 3.
Source Clock/32,768.
00
01
10
11
8
7
6
5:4
00
01
10
11
3:0
0000
0100
1000
1111
Table 185. T2CLRI Register
Name
T2CLRI
Address
0xFFFF034C
Default Value
0xFF
Access
W
T2CLRI is an 8-bit register. Writing any value to this register
clears the Timer2 interrupt.
Timer3 (Watchdog Timer)
Timer3 has two modes of operation: normal mode and
watchdog mode. The watchdog timer is used to recover from
an illegal software state. Once enabled, it requires periodic
servicing to prevent it from forcing a processor reset.
Normal Mode
Timer3 in normal mode is identical to Timer0, except for the
clock source and the count-up functionality. The clock source is
32 kHz from the PLL and can be scaled by a factor of 1, 16, or
256 (see Figure 68).
32.768kHz
PRESCALER
/1, 16 OR 256
16-BIT
UP/DOWN
COUNTER
WATCHDOG
RESET
TIMER3 IRQ
TIMER3
VALUE
04955-037
Table 184. T2CON MMR Bit Descriptions
Figure 68. Timer3 Block Diagram
Watchdog Mode
Watchdog mode is entered by setting Bit 5 in the T3CON MMR.
Timer3 decreases from the value present in the T3LD register to 0.
T3LD is used as the timeout. The maximum timeout can be
512 sec, using the prescaler/256, and full scale in T3LD. Timer3 is
clocked by the internal 32 kHz crystal when operating in
watchdog mode. Note that to enter watchdog mode successfully, Bit 5 in the T3CON MMR must be set after writing to the
T3LD MMR.
If the timer reaches 0, a reset or an interrupt occurs, depending
on Bit 1 in the T3CON register. To avoid reset or interrupt, any
value must be written to T3CLRI before the expiration period.
This reloads the counter with T3LD and begins a new timeout
period.
When watchdog mode is entered, T3LD and T3CON are writeprotected. These two registers cannot be modified until a reset
clears the watchdog enable bit, which causes Timer3 to exit
watchdog mode.
The Timer3 interface consists of four MMRs: T3LD, T3VAL,
T3CON, and T3CLRI.
Table 186. T3LD Register
Name
T3LD
Address
0xFFFF0360
Default Value
0x0000
Access
R/W
T3LD is a 16-bit register load register.
Table 187. T3VAL Register
Name
T3VAL
Address
0xFFFF0364
Default Value
0xFFFF
Access
R
T3VAL is a 16-bit read-only register that represents the current
state of the counter.
Table 188. T3CON Register
Name
T3CON
Address
0xFFFF0368
Default Value
0x0000
Access
R/W
T3CON is the configuration MMR described in Table 189.
Rev. E | Page 83 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Table 189. T3CON MMR Bit Descriptions
Bit
15:9
8
Value
7
6
5
4
3:2
00
01
10
11
1
0
Description
Reserved.
Count up. Set by user for Timer3 to count up.
Cleared by user for Timer3 to count down by
default.
Timer3 enable bit. Set by user to enable Timer3.
Cleared by user to disable Timer3 by default.
Timer3 mode. Set by user to operate in
periodic mode. Cleared by user to operate
in free-running mode. Default mode.
Watchdog mode enable bit. Set by user to
enable watchdog mode. Cleared by user to
disable watchdog mode by default.
Secure clear bit. Set by user to use the secure
clear option. Cleared by user to disable the
secure clear option by default.
Prescale.
Source Clock/1 by default.
Source Clock/16.
Source Clock/256.
Undefined. Equivalent to 00.
Watchdog IRQ option bit. Set by user to
produce an IRQ instead of a reset when
the watchdog reaches 0. Cleared by user to
disable the IRQ option.
Reserved.
Address
0xFFFF036C
Default Value
0x00
Access
W
T3CLRI is an 8-bit register. Writing any value to this register on
successive occassions clears the Timer3 interrupt in normal
mode or resets a new timeout period in watchdog mode.
Note that the user must perform successive writes to this
register to ensure resetting the timeout period.
Secure Clear Bit (Watchdog Mode Only)
Q D
6
Q D
5
Q D
4
Q D
3
CLOCK
Q D
2
Q D
1
Q D
0
04955-038
The secure clear bit is provided for a higher level of protection.
When set, a specific sequential value must be written to T3CLRI
to avoid a watchdog reset. The value is a sequence generated
by the 8-bit linear feedback shift register (LFSR) polynomial =
X8 + X6 + X5 + X + 1, as shown in Figure 69.
Q D
7
The value 0x00 should not be used as an initial seed due to the
properties of the polynomial. The value 0x00 is always
guaranteed to force an immediate reset. The value of the LFSR
cannot be read; it must be tracked/generated in software.
The following is an example of a sequence:
1.
2.
3.
4.
5.
Enter initial seed, 0xAA, in T3CLRI before starting Timer3
in watchdog mode.
Enter 0xAA in T3CLRI; Timer3 is reloaded.
Enter 0x37 in T3CLRI; Timer3 is reloaded.
Enter 0x6E in T3CLRI; Timer3 is reloaded.
Enter 0x66. 0xDC was expected; the watchdog resets the chip.
EXTERNAL MEMORY INTERFACING
The ADuC7026 and ADuC7027 are the only models in their
series that feature an external memory interface. The external
memory interface requires a larger number of pins. This is why
it is only available on larger pin count packages. The XMCFG
MMR must be set to 1 to use the external port.
Although 32-bit addresses are supported internally, only the
lower 16 bits of the address are on external pins.
The memory interface can address up to four 128 kB blocks of
asynchronous memory (SRAM or/and EEPROM).
The pins required for interfacing to an external memory are
shown in Table 191.
Table 191. External Memory Interfacing Pins
Table 190. T3CLRI Register
Name
T3CLRI
Data Sheet
Figure 69. 8-Bit LFSR
The initial value or seed is written to T3CLRI before entering
watchdog mode. After entering watchdog mode, a write to
T3CLRI must match this expected value. If it matches, the LFSR
is advanced to the next state when the counter reload occurs. If
it fails to match the expected state, a reset is immediately
generated, even if the count has not yet expired.
Pin
AD[16:1]
A16
MS[3:0]
WS
RS
AE
BHE, BLE
Function
Address/data bus
Extended addressing for 8-bit memory only
Memory select
Write strobe
Read strobe
Address latch enable
Byte write capability
There are four external memory regions available, as described
in Table 192. Associated with each region are the MS[3:0] pins.
These signals allow access to the particular region of external
memory. The size of each memory region can be 128 kB maximum, 64 k × 16 or 128 k × 8. To access 128 k with an 8-bit
memory, an extra address line (A16) is provided (see the example
in Figure 70). The four regions are configured independently.
Table 192. Memory Regions
Address Start
0x10000000
0x20000000
0x30000000
0x40000000
Address End
0x1000FFFF
0x2000FFFF
0x3000FFFF
0x4000FFFF
Contents
External Memory 0
External Memory 1
External Memory 2
External Memory 3
Each external memory region can be controlled through three
MMRs: XMCFG, XMxCON, and XMxPAR.
Rev. E | Page 84 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
EEPROM
64k × 16-BIT
ADuC7026/
ADuC7027
Table 196. XMxPAR Registers
Name
XM0PAR
XM1PAR
XM2PAR
XM3PAR
A16
AD15:AD0
D0:D15
LATCH
A0:A15
AE
MS0
MS1
CS
WS
WE
RS
OE
Bit
15
A16
A0:A15
04955-039
CS
Figure 70. Interfacing to External EEPROM/RAM
Table 193. XMCFG Register
Name
XMCFG
Address
0xFFFFF000
Default Value
0x00
Access
R/W
XMCFG is set to 1 to enable external memory access. This must
be set to 1 before any port pins function as external memory
access pins. The port pins must also be individually enabled via
the GPxCON MMR.
Table 194. XMxCON Registers
Name
XM0CON
XM1CON
XM2CON
XM3CON
Address
0xFFFFF010
0xFFFFF014
0xFFFFF018
0xFFFFF01C
Default Value
0x00
0x00
0x00
0x00
Access
R/W
R/W
R/W
R/W
Table 195. XMxCON MMR Bit Descriptions
0
14:12
11
10
9
8
7:4
3:0
Description
Enable byte write strobe. This bit is used only for two,
8-bit memory devices sharing the same memory region.
Set by the user to gate the A0 output with the WS
output. This allows byte write capability without using
BHE and BLE signals. Cleared by user to use BHE and BLE
signals.
Number of wait states on the address latch enable STROBE.
Reserved.
Extra address hold time. Set by user to disable extra hold
time. Cleared by user to enable one clock cycle of hold
on the address in read and write.
Extra bus transition time on read. Set by user to disable
extra bus transition time. Cleared by user to enable one
extra clock before and after the read strobe (RS).
Extra bus transition time on write. Set by user to disable
extra bus transition time. Cleared by user to enable one
extra clock before and after the write strobe (WS).
Number of write wait states. Select the number of wait
states added to the length of the WS pulse. 0x0 is 1 clock;
0xF is 16 clock cycles (default value).
Number of read wait states. Select the number of wait
states added to the length of the RS pulse. 0x0 is 1 clock;
0xF is 16 clock cycles (default value).
Figure 71, Figure 72, Figure 73, and Figure 74 show the timing
for a read cycle, a read cycle with address hold and bus turn
cycles, a write cycle with address and write hold cycles, and a
write cycle with wait sates, respectively.
XMxCON are the control registers for each memory region.
They allow the enabling/disabling of a memory region and
control the data bus width of the memory region.
Bit
1
Access
R/W
R/W
R/W
R/W
Table 197. XMxPAR MMR Bit Descriptions
D0:D7
OE
Default Value
0x70FF
0x70FF
0x70FF
0x70FF
XMxPAR are registers that define the protocol used for
accessing the external memory for each memory region.
RAM
128k × 8-BIT
WE
Address
0xFFFFF020
0xFFFFF024
0xFFFFF028
0xFFFFF02C
Description
Selects data bus width. Set by user to select a 16-bit data
bus. Cleared by user to select an 8-bit data bus.
Enables memory region. Set by user to enable the memory
region. Cleared by user to disable the memory region.
Rev. E | Page 85 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
UCLK
AD[16:0]
ADDRESS
DATA
MSx
04955-040
AE
RS
Figure 71. External Memory Read Cycle
UCLK
AD[16:0]
ADDRESS
DATA
EXTRA ADDRESS
HOLD TIME
XMxPAR (BIT 10)
MSx
AE
BUS TURN OUT CYCLE
(BIT 9)
BUS TURN OUT CYCLE
(BIT 9)
Figure 72. External Memory Read Cycle with Address Hold and Bus Turn Cycles
Rev. E | Page 86 of 96
04955-041
RS
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
UCLK
AD[16:0]
ADDRESS
DATA
EXTRA ADDRESS
HOLD TIME
(BIT 10)
MSx
AE
WRITE HOLD ADDRESS
AND DATA CYCLES
(BIT 8)
WRITE HOLD ADDRESS
AND DATA CYCLES
(BIT 8)
04955-042
WS
Figure 73. External Memory Write Cycle with Address and Write Hold Cycles
UCLK
AD[16:0]
ADDRESS
DATA
MSx
AE
1 ADDRESS WAIT STATE
(BIT 14 TO BIT 12)
1 WRITE STROBE WAIT STATE
(BIT 7 TO BIT 4)
Figure 74. External Memory Write Cycle with Wait States
Rev. E | Page 87 of 96
04955-043
WS
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
HARDWARE DESIGN CONSIDERATIONS
POWER SUPPLIES
The ADuC7019/20/21/22/24/25/26/27/28/29 operational power
supply voltage range is 2.7 V to 3.6 V. Separate analog and
digital power supply pins (AVDD and IOVDD, respectively) allow
AVDD to be kept relatively free of noisy digital signals often
present on the system IOVDD line. In this mode, the part can
also operate with split supplies; that is, it can use different
voltage levels for each supply. For example, the system can be
designed to operate with an IOVDD voltage level of 3.3 V
whereas the AVDD level can be at 3 V or vice versa. A typical
split supply configuration is shown in Figure 75.
+
–
10µF
Typically, frequency noise greater than 50 kHz and 50 mV p-p
on top of the supply causes the core to stop working.
0.1µF
If decoupling values recommended in the Power Supplies
section do not sufficiently dampen all noise sources below
50 mV on IOVDD, a filter such as the one shown in Figure 77 is
recommended.
ADuC7026
AVDD
54
73
74
26
IOVDD
DACV DD 75
0.1µF
GNDREF 8
The IOVDD supply is sensitive to high frequency noise because it
is the supply source for the internal oscillator and PLL circuits.
When the internal PLL loses lock, the clock source is removed
by a gating circuit from the CPU, and the ARM7TDMI core
stops executing code until the PLL regains lock. This feature
ensures that no flash interface timings or ARM7TDMI timings
are violated.
+
–
ANALOG
SUPPLY
10µF
IOVDD Supply Sensitivity
DACGND 70
IOGND
26
04955-044
53
ADuC7026
1µH
AGND 71
25
REFGND 67
DIGITAL +
SUPPLY –
10µF
Figure 75. External Dual Supply Connections
BEAD
1.6Ω
10µF
+ 10µF
–
ADuC7026
AVDD
54
73
74
26
IOVDD
0.1µF
DACV DD 75
GNDREF 8
25
IOGND
53
Figure 77. Recommended IOVDD Supply Filter
Linear Voltage Regulator
Each ADuC7019/20/21/22/24/25/26/27/28/29 requires a single
3.3 V supply, but the core logic requires a 2.6 V supply. An onchip linear regulator generates the 2.6 V from IOVDD for the
core logic. The LVDD pin is the 2.6 V supply for the core logic.
An external compensation capacitor of 0.47 µF must be
connected between LVDD and DGND (as close as possible to
these pins) to act as a tank of charge as shown in Figure 78.
0.1µF
ADuC7026
DACGND 70
AGND 71
53
IOGND
REFGND 67
27 LVDD
04955-045
25
IOVDD
0.1µF
As an alternative to providing two separate power supplies, the
user can reduce noise on AVDD by placing a small series resistor
and/or ferrite bead between AVDD and IOVDD and then decoupling
AVDD separately to ground. An example of this configuration is
shown in Figure 76. With this configuration, other analog circuitry
(such as op amps and voltage reference) can be powered from
the AVDD supply line as well.
DIGITAL SUPPLY
54
04955-087
DIGITAL
SUPPLY
Finally, note that the analog and digital ground pins on the
ADuC7019/20/21/22/24/25/26/27/28/29 must be referenced to
the same system ground reference point at all times.
0.47mF
28
DGND
Note that in both Figure 75 and Figure 76, a large value (10 µF)
reservoir capacitor sits on IOVDD, and a separate 10 µF capacitor
sits on AVDD. In addition, local small-value (0.1 µF) capacitors are
located at each AVDD and IOVDD pin of the chip. As per standard
design practice, be sure to include all of these capacitors and ensure
that the smaller capacitors are close to each AVDD pin with trace
lengths as short as possible. Connect the ground terminal of
each of these capacitors directly to the underlying ground plane.
04955-046
Figure 76. External Single Supply Connections
Figure 78. Voltage Regulator Connections
The LVDD pin should not be used for any other chip. It is also
recommended to use excellent power supply decoupling on
IOVDD to help improve line regulation performance of the onchip voltage regulator.
Rev. E | Page 88 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
GROUNDING AND BOARD LAYOUT
RECOMMENDATIONS
For example, do not power components on the analog side (as
seen in Figure 79b) with IOVDD because that forces return
currents from IOVDD to flow through AGND. Avoid digital
currents flowing under analog circuitry, which can occur if a
noisy digital chip is placed on the left half of the board (shown
in Figure 79c). If possible, avoid large discontinuities in the
ground plane(s) such as those formed by a long trace on the same
layer because they force return signals to travel a longer path. In
addition, make all connections to the ground plane directly,
with little or no trace separating the pin from its via to ground.
As with all high resolution data converters, special attention
must be paid to grounding and PC board layout of the
ADuC7019/20/21/22/24/25/26/27/28/29-based designs to
achieve optimum performance from the ADCs and DAC.
Although the parts have separate pins for analog and digital
ground (AGND and IOGND), the user must not tie these to
two separate ground planes unless the two ground planes are
connected very close to the part. This is illustrated in the
simplified example shown in Figure 79a. In systems where
digital and analog ground planes are connected together
somewhere else (at the system power supply, for example), the
planes cannot be reconnected near the part because a ground
loop results. In these cases, tie all the ADuC7019/20/21/
22/24/25/26/27/28/29 AGND and IOGND pins to the analog
ground plane, as illustrated in Figure 79b. In systems with only
one ground plane, ensure that the digital and analog components
are physically separated onto separate halves of the board so
that digital return currents do not flow near analog circuitry
(and vice versa).
The ADuC7019/20/21/22/24/25/26/27/28/29 can then be
placed between the digital and analog sections, as illustrated in
Figure 79c.
a.
PLACE ANALOG
COMPONENTS HERE
When connecting fast logic signals (rise/fall time < 5 ns) to any of
the ADuC7019/20/21/22/24/25/26/27/28/29 digital inputs, add a
series resistor to each relevant line to keep rise and fall times
longer than 5 ns at the part’s input pins. A value of 100 Ω or
200 Ω is usually sufficient to prevent high speed signals from
coupling capacitively into the part and affecting the accuracy of
ADC conversions.
CLOCK OSCILLATOR
The clock source for the ADuC7019/20/21/22/24/25/26/27/28/29
can be generated by the internal PLL or by an external clock
input. To use the internal PLL, connect a 32.768 kHz parallel
resonant crystal between XCLKI and XCLKO, and connect a
capacitor from each pin to ground as shown in Figure 80. The
crystal allows the PLL to lock correctly to give a frequency of
41.78 MHz. If no external crystal is present, the internal
oscillator is used to give a typical frequency of 41.78 MHz ± 3%.
PLACE DIGITAL
COMPONENTS HERE
ADuC7026
XCLKI
45
12pF
DGND
32.768kHz
44
12pF
XCLKO
TO
INTERNAL
PLL
04955-048
AGND
Figure 80. External Parallel Resonant Crystal Connections
b.
PLACE ANALOG
COMPONENTS
HERE
PLACE DIGITAL
COMPONENTS HERE
AGND
To use an external source clock input instead of the PLL (see
Figure 81), Bit 1 and Bit 0 of PLLCON must be modified.The
external clock uses P0.7 and XCLK.
DGND
ADuC7026
XCLKO
PLACE ANALOG
COMPONENTS HERE
EXTERNAL
CLOCK
SOURCE
PLACE DIGITAL
COMPONENTS HERE
DGND
04955-047
c.
Figure 79. System Grounding Schemes
In all of these scenarios, and in more complicated real-life
applications, the user should pay particular attention to the flow
of current from the supplies and back to ground. Make sure the
return paths for all currents are as close as possible to the paths
the currents took to reach their destinations.
XCLK
TO
FREQUENCY
DIVIDER
04955-049
XCLKI
Figure 81. Connecting an External Clock Source
Using an external clock source, the ADuC7019/20/21/22/24/
25/26/27/28/29-specified operational clock speed range is
50 kHz to 44 MHz ± 1%, which ensures correct operation of
the analog peripherals and Flash/EE.
Rev. E | Page 89 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
3.3V
POWER-ON RESET OPERATION
IOVDD
An internal power-on reset (POR) is implemented on the
ADuC7019/20/21/22/24/25/26/27/28/29. For LVDD below 2.35 V
typical, the internal POR holds the part in reset. As LVDD rises
above 2.35 V, an internal timer times out for, typically, 128 ms
before the part is released from reset. The user must ensure that
the power supply IOVDD reaches a stable 2.7 V minimum level
by this time. Likewise, on power-down, the internal POR holds
the part in reset until LVDD drops below 2.35 V.
2.6V
2.35V TYP
LVDD
128ms TYP
POR
Figure 82 illustrates the operation of the internal POR in detail.
04955-050
0.12ms TYP
TYPICAL SYSTEM CONFIGURATION
RST
A typical ADuC7020 configuration is shown in Figure 83. It
summarizes some of the hardware considerations discussed in
the previous sections. The bottom of the CSP package has an
exposed pad that must be soldered to a metal plate on the board
for mechanical reasons. The metal plate of the board can be
connected to ground.
+
Figure 82. Internal Power-On Reset Operation
10Ω
–
0.01µF
RS232 INTERFACE*
35
34
1
C1+
29
2
V+
VCC 16
GND 15
1
3
C1–
T1OUT 14
2
4
DAC0
27
4
C2+
R1 IN 13
3
26
5
C2–
R1OUT 12
4
6
XCLKI 25
6
V–
T1IN 11
5
7
XCLKO 24
7
T2OUT
T2IN 10
6
8
R2IN
R2OUT 9
7
ADuC7020
RST
P0.0
TRST
10
DGND
22
LVDD
TDI
IOVDD
9
IOGND
23
TDO
TMS
TCK
8
12
13
14
15
16
17
18
19
DVDD
0.47µF
100kΩ
DVDD
100kΩ
STANDARD D-TYPE
SERIAL COMMS
CONNECTOR TO
PC HOST
ADM3202
30
28
11
100kΩ
31
GNDREF
1kΩ
DVDD
32.768kHz
8
21
20
9
DVDD
1kΩ
* EXTERNAL UART TRANSCEIVER INTEGRATED IN SYSTEM OR AS
PART OF AN EXTERNAL DONGLE AS DESCRIBED IN uC006.
AVDD
DVDD
1.5Ω
TDI
OUT
270Ω
TMS
ADP3333-3.3
10µF
IN
GND SD
10µF
0.1µF
TCK
TDO
NOT CONNECTED IN THIS EXAMPLE
04955-051
JTAG CONNECTOR
32
3
5
TRST
33
P1.1
36
P1.0
37
VREF
39
2
38
AV DD
40
1
AGND
DVDD
ADC0
AVDD 0.47µF
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2.35V TYP
Figure 83. Typical System Configuration
Rev. E | Page 90 of 96
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
DEVELOPMENT TOOLS
Software
PC-BASED TOOLS
Four types of development systems are available for the
ADuC7019/20/21/22/24/25/26/27/28/29 family.
•
•
•
•
•
The ADuC7026 QuickStart Plus is intended for new users
who want to have a comprehensive hardware development
environment. Because the ADuC7026 contains the superset
of functions available on the ADuC7019/20/21/22/24/25/
26/27/28/29, it is suitable for users who wish to develop on
any of the parts in this family. All parts are fully code
compatible.
The ADuC7020, ADuC7024, and ADuC7026 QuickStart
systems are intended for users who already have an emulator.
These systems consist of the following PC-based (Windows®
compatible) hardware and software development tools.
Hardware
•
•
•
ADuC7019/20/21/22/24/25/26/27/28/29 evaluation board
Serial port programming cable
RDI-compliant JTAG emulator (included in the
ADuC7026 QuickStart Plus only)
Integrated development environment, incorporating
assembler, compiler, and nonintrusive JTAG-based
debugger
Serial downloader software
Example code
Miscellaneous
CD-ROM documentation
IN-CIRCUIT SERIAL DOWNLOADER
The serial downloader is a Windows application that allows the
user to serially download an assembled program to the on-chip
program Flash/EE memory via the serial port on a standard PC.
The UART-based serial downloader is included in all the
development systems and is usable with the ADuC7019/20/21/
22/24/25/26/27/28/29 parts that do not contain the I suffix in
the Ordering Guide.
An I2C based serial downloader and a USB-to-I2C adaptor
board, USB-EA-CONVZ, are also available at www.analog.com.
The I2C-based serial downloader is only usable with the part
models containing the I suffix (see Ordering Guide).
Rev. E | Page 91 of 96
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
OUTLINE DIMENSIONS
6.00
BSC SQ
0.60 MAX
0.60 MAX
PIN 1
INDICATOR
31
30
TOP
VIEW
0.50
BSC
5.75
BSC SQ
(BOT TOM VIEW)
0.50
0.40
0.30
12° MAX
1.00
0.85
0.80
21
20
10
0.25 MIN
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.05 MAX
0.02 NOM
0.30
0.23
0.18
11
4.50
REF
0.80 MAX
0.65 TYP
SEATING
PLANE
4.25
4.10 SQ
3.95
EXPOSED
PAD
COPLANARITY
0.08
0.20 REF
072108-A
PIN 1
INDICATOR
40
1
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
Figure 84. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters
9.00
BSC SQ
0.60 MAX
8.75
BSC SQ
33
32
16
17
7.50
REF
0.80 MAX
0.65 TYP
0.05 MAX
0.02 NOM
0.50 BSC
PIN 1
INDICATOR
*4.85
4.70 SQ
4.55
EXPOSED PAD
(BOTTOM VIEW)
0.50
0.40
0.30
SEATING
PLANE
1
0.20 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
*COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4
EXCEPT FOR EXPOSED PAD DIMENSION
Figure 85. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
9 mm x 9 mm Body, Very Thin Quad
(CP-64-1)
Dimensions shown in millimeters
Rev. E | Page 92 of 96
082908-B
TOP
VIEW
12° MAX
64
49
48
PIN 1
INDICATOR
1.00
0.85
0.80
0.30
0.25
0.18
0.60 MAX
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
0.75
0.60
0.45
12.20
12.00 SQ
11.80
1.60
MAX
64
49
1
48
PIN 1
10.20
10.00 SQ
9.80
TOP VIEW
(PINS DOWN)
1.45
1.40
1.35
0.15
0.05
SEATING
PLANE
0.20
0.09
7°
3.5°
0°
16
0.08
COPLANARITY
33
32
17
VIEW A
0.27
0.22
0.17
0.50
BSC
LEAD PITCH
VIEW A
051706-A
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026-BCD
Figure 86. 64-Lead Low Profile Quad Flat Package [LQFP]
(ST-64-2)
Dimensions shown in millimeters
0.75
0.60
0.45
14.20
14.00 SQ
13.80
1.60
MAX
80
61
60
1
PIN 1
12.20
12.00 SQ
11.80
TOP VIEW
(PINS DOWN)
0.15
0.05
SEATING
PLANE
VIEW A
0.20
0.09
7°
3.5°
0°
0.08
COPLANARITY
20
41
21
VIEW A
0.50
BSC
LEAD PITCH
ROTATED 90° CCW
40
0.27
0.22
0.17
COMPLIANT TO JEDEC STANDARDS MS-026-BDD
Figure 87. 80-Lead Low Profile Quad Flat Package [LQFP]
(ST-80-1)
Dimensions shown in millimeters
Rev. E | Page 93 of 96
051706-A
1.45
1.40
1.35
ADuC7019/20/21/22/24/25/26/27/28/29
Data Sheet
6.10
6.00 SQ
5.90
A1 CORNER
INDEX AREA
8
7
6
5
4
3
2
1
A
1.50
SQ
B
BALL A1
PAD CORNER
4.55 SQ
C
D
TOP VIEW
E
0.65
F
G
H
BOTTOM VIEW
DETAIL A
*1.40 MAX
DETAIL A
0.65 MIN
0.15 MIN
0.45
0.40
0.35
BALL DIAMETER
COPLANARITY
0.10
030907-B
SEATING
PLANE
*COMPLIANT TO JEDEC STANDARDS MO-225
WITH THE EXCEPTION TO PACKAGE HEIGHT.
Figure 88. 64-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-64-4)
Dimensions shown in millimeters
5.05
5.00 SQ
4.95
A1 CORNER
INDEX AREA
7
6
5
4
3
2
1
A
BALL A1
INDICATOR
B
C
TOP VIEW
3.90
BSC SQ
D
E
F
G
1.20 MAX
0.55
BSC
DETAIL A
0.35
0.20
0.45
0.40
0.35
BALL DIAMETER
1.00 MAX
0.85 MIN
SEATING
PLANE
Figure. 49-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-49-1)
Dimensions shown in millimeters
Rev. E | Page 94 of 96
COPLANARITY
0.05 MAX
012006-0
BOTTOM
VIEW
0.65
BSC
DETAIL A
Data Sheet
ADuC7019/20/21/22/24/25/26/27/28/29
ORDERING GUIDE
Model 1, 2
ADuC7019BCPZ62I
ADuC7019BCPZ62I-RL
ADuC7019BCPZ62IRL7
ADuC7020BCPZ62
ADuC7020BCPZ62-RL7
ADuC7020BCPZ62I
ADuC7020BCPZ62I-RL
ADuC7020BCPZ62IRL7
ADuC7021BCPZ62
ADuC7021BCPZ62-RL
ADuC7021BCPZ62-RL7
ADuC7021BCPZ62I
ADuC7021BCPZ62I-RL
ADuC7021BCPZ32
ADuC7021BCPZ32-RL7
ADuC7022BCPZ62
ADuC7022BCPZ62-RL7
ADuC7022BCPZ32
ADuC7022BCPZ32-RL
ADuC7024BCPZ62
ADuC7024BCPZ62-RL7
ADuC7024BCPZ62I
ADuC7024BCPZ62I-RL
ADuC7024BSTZ62
ADuC7024BSTZ62-RL
ADuC7025BCPZ62
ADuC7025BCPZ62-RL
ADuC7025BCPZ32
ADuC7025BCPZ32-RL
ADuC7025BSTZ62
ADuC7025BSTZ62-RL
ADuC7026BSTZ62
ADuC7026BSTZ62-RL
ADuC7026BSTZ62I
ADuC7026BSTZ62I-RL
ADuC7027BSTZ62
ADuC7027BSTZ62-RL
ADuC7027BSTZ62I
ADuC7027BSTZ62I-RL
ADuC7028BBCZ62
ADuC7028BBCZ62-RL
ADuC7029BBCZ62
ADuC7029BBCZ62-RL
ADuC7029BBCZ62I
ADuC7029BBCZ62I-RL
ADC
Channels 3
5
5
5
5
5
5
5
5
8
8
8
8
8
8
8
10
10
10
10
10
10
10
10
10
10
12
12
12
12
12
12
12
12
12
12
16
16
16
16
8
8
7
7
7
7
DAC
Channels
3
3
3
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
FLASH/
RAM
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
32 kB/4 kB
32 kB/4 kB
62 kB/8 kB
62 kB/8 kB
32 kB/4 kB
32 kB/4 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
32 kB/4 kB
32 kB/4 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
62 kB/8 kB
GPIO
14
14
14
14
14
14
14
14
13
13
13
13
13
13
13
13
13
13
13
30
30
30
30
30
30
30
30
30
30
30
30
40
40
40
40
40
40
40
40
30
30
22
22
22
22
Downloader
I2 C
I2C
I2 C
UART
UART
I2 C
I2 C
I2 C
UART
UART
UART
I2 C
I2 C
UART
UART
UART
UART
UART
UART
UART
UART
I2C
I2C
UART
UART
UART
UART
UART
UART
UART
UART
UART
UART
I2 C
I2 C
UART
UART
I2C
I2C
UART
UART
UART
UART
I2 C
I2 C
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Rev. E | Page 95 of 96
Package
Description
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
40-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LQFP
64-Lead LQFP
64-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LFCSP_VQ
64-Lead LQFP
64-Lead LQFP
80-Lead LQFP
80-Lead LQFP
80-Lead LQFP
80-Lead LQFP
80-Lead LQFP
80-Lead LQFP
80-Lead LQFP
80-Lead LQFP
64-Ball CSP_BGA
64-Ball CSP_BGA
49-Ball CSP_BGA
49-Ball CSP_BGA
49-Ball CSP_BGA
49-Ball CSP_BGA
Package
Option
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-40-1
CP-64-1
CP-64-1
CP-64-1
CP-64-1
ST-64-2
ST-64-2
CP-64-1
CP-64-1
CP-64-1
CP-64-1
ST-64-2
ST-64-2
ST-80-1
ST-80-1
ST-80-1
ST-80-1
ST-80-1
ST-80-1
ST-80-1
ST-80-1
BC-64-4
BC-64-4
BC-49-1
BC-49-1
BC-49-1
BC-49-1
Ordering
Quantity
2,500
750
750
2,500
750
2,500
750
2,500
750
750
2,500
750
2,500
1,500
2,500
2,500
1,000
1,000
1,000
1,000
1,000
2,500
4,000
4,000
ADuC7019/20/21/22/24/25/26/27/28/29
Model 1, 2
EVAL-ADuC7020MKZ
EVAL-ADuC7020QSZ
ADC
Channels 3
DAC
Channels
FLASH/
RAM
GPIO
Data Sheet
Downloader
Temperature
Range
EVAL-ADuC7020QSPZ
EVAL-ADuC7024QSZ
EVAL-ADuC7026QSZ
EVAL-ADuC7026QSPZ
EVAL-ADuC7028QSZ
Package
Description
ADuC7020 MiniKit
ADuC7020 QuickStart
Development System
ADuC7020 QuickStart
Development System
ADuC7024 QuickStart
Development System
ADuC7026 QuickStar
Development System
ADuC7026 QuickStart Plus
Development System
ADuC7028 QuickStart
Development System
1
Z = RoHS Compliant Part.
Models ADuC7026 and ADuC7027 include an external memory interface.
3
One of the ADC channels is internally buffered for ADuC7019 models.
2
I2C refers to a communications protocol originally developed by Phillips Semiconductors (now NXP Semiconductors).
©2005-2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04955-0-7/12(E)
Rev. E | Page 96 of 96
Package
Option
Ordering
Quantity
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement