Full text -

Full text -
Markéta Dušková et al.
Textbook for Students
of Third Faculty of Medicine
Charles University in Prague
Univerzita Karlova v Praze
3. lékařská fakulta
Klinika plastické chirurgie 3. LF a FN KV
Introduction to the Surgery
Textbook for students of Third Faculty of Medicine, Charles University in Prague
Editor and Head author:
Markéta Dušková, Ass. Prof., M.D., Ph.D.
Jiří Bayer, M.D.
Michaela Čakrtová, M.D.
Eva Dřevínková, M.D.
Michal Haas, M.D.
Eva Leamerová, M.D.
Jiří Málek, Ass. Prof., M.D., Ph.D.
Andrej Sukop, M.D., Ph.D.
Jan Šturma, M.D., Ph.D.
René Vobořil, M.D., Ph.D.
Jiří Bayer, M.D.
Michal Haas, M.D.
1st edition 2009
Copyright © 3. lékařská fakulta Univerzity Karlovy v Praze, Klinika plastické chirurgie
3. LF UK a FNKV, 2009
Print Medium: CD–ROM
E-version: http://www.lf3.cuni.cz/en/departments/plasticka–chirurgie/
The names of the products, companies, etc. used in the book may be trademarks or registered
trademarks of their respective owners, which need not be specially marked
Procedures and examples in this book, as well as information about medicines, their forms, dosage
and administration are drawn up with the best knowledge of authors. For their practical application,
however, for the authors nor the publishers are no legal implications.
All rights reserved. This book nor any part may be reproduced in any way, stored or distributed without
the written consent of authors.
ISBN: 978–80–254–4657–7
INTRODUCTION ...........................................................................................................................4
HISTORY OF SURGERY, SURGICAL SPECIALITIES ..........................................................................8
CARDIOPULMONARY RESUSCITATION (CPR) .............................................................................15
SHOCK ....................................................................................................................................24
ANAESTHESIA ..........................................................................................................................34
EXAMINATION OF THE PATIENT IN SURGERY ...............................................................................40
BASIC GUIDE OF MEDICAL DOCUMENTATION IN SURGERY ...........................................................44
COMMON SURGICAL PROBLEMS ................................................................................................48
OF TETANUS, NOSOCOMIAL INFECTION ......................................................................................59
WOUND TYPES, THEIR CHARACTERISTICS, AND WOUND HEALING................................................69
PREOPERATIVE PREPARATION OF THE PATIENT .........................................................................74
THEATRE MANAGEMENT ............................................................................................................82
TECHNOLOGIES IN SURGERY ....................................................................................................88
HAEMORRHAGE, PHYSIOLOGICAL AND SURGICAL HEMOSTASIS ...................................................99
INSTRUMENTS ........................................................................................................................103
ADMINISTRATION OF MEDICAMENTS ........................................................................................119
SURGICAL DRAINAGE, CATHETRIZATION ..................................................................................127
NUTRITION AND DIETETICS IN SURGERY...................................................................................137
PHYSIOTHERAPY IN SURGERY .................................................................................................143
REFERENCES .........................................................................................................................147
M. Dušková
The ultimate objects of scientific medicine are to prolong human life and to alleviate suffering.
The two great branches of the healing art – Medicine and Surgery – are so intimately related
that it is impossible to draw a hard–and–fast line between them. Surgery may be defined as
“the art of treating lesions and malformations of the human body by manual
operations, mediate and immediate.” The origin of the word surgery comes from the Greek
word "cheirourgikē" (cheir – hand, ergein – work).
In order to apply his/her art intelligently and successfully, it is essential that the surgeon
should not only be familiar with the normal anatomy and physiology of the body and with the
various pathological conditions to which it is liable, but also with the nature of the process by
which repair of injured or diseased tissues is affected. Without this knowledge he is unable to
recognise such deviations from the normal as result from mal–development, injury, or
disease, or rationally to direct his efforts towards the correction or removal of these.
Even a medical student does not plan to engage in any surgical specialty it is necessary for
every doctor to be acquainted with basic and general principles of surgery.
All forms of surgery are considered invasive procedures. Surgical procedures are
commonly categorized mainly by urgency, but also by type of procedure, by body system
involved, by degree of invasiveness, and by special instrumentation.
The main three categories of therapeutic surgery are described – emergency, urgent, and
Emergency surgery, such as stopping rapid internal bleeding, is performed as soon as
possible; minutes can make a difference. It must be done quickly to save life, limb, or
functional capacity.
Urgent surgery, such as removal of an inflamed appendix of coecum, is best performed
within hours.
Elective surgery, such as replacement of a hip joint, can be delayed for some period of
time, until everything has been done to optimize a person‘s chances of doing well during and
after the surgical procedure. It done to correct a non–life–threatening condition, and is
carried out at the patient‘s request, subject to the surgeon‘s and the surgical facility‘s
availability. These procedures usually treat a previously diagnosed disorder.
Exploratory surgery may belong to any type mentioned above; however it is performed to
aid or confirm a diagnosis. A biopsy, in which a piece of tissue is removed for examination
under a microscope, is the most common type of diagnostic surgery.
A special type of elective surgery is aesthetic surgery. The patient feels he/she suffers from
some type of appearance problem caused by congenital fault, either by the injury or
postoperative deformity, or also by the aging process. The surgery is supposed to serve for
the improvement of patient’s life quality, self–esteem, and social being.
There are other types of subdivision. There is a radical operation that removes the cause of
problem (e.g., removal of appendix of caecum = appendectomia), and palliative one, which
only facilitates following life or the treatment, but leaves the reason (for example it leaves out
of the section of digestive tract, where is a continuity failure due to unremovable tumour, the
surgery connects segment above and below tumour = gastrojejunoanastomosis instead of
Operations can be also divided according to indications. Vital indication means that
patient definitely dies without a surgery. Absolute indication represents an ideal solution,
while a relative indication is one of the treatment options. It is also possible to talk about
contraindications, which relate to the severity of the disease and the condition of the patient
as well as to the cost and burden of operation in correlation with benefit of surgery for the
patient. The term absolute and relative contraindications, however, lose the unique meaning
in process of time.
There are several commonly used surgical terms. Let´s explain some of the most
Incision means opening of the surgical wound, verbatim cut.
Excision means cutting out an organ, tumour, or other tissue. Surgery terms often start
with a name for the organ being excised (cut out) and the suffix –ectomy is added (for
example mastectomy).
Extirpation is complete removal of pathological lesion, which is clearly defined.
Resection is partial removal of an organ or other bodily structure.
Amputation involves cutting off a body part, for example a limb or a digit.
Procedures, which involve cutting into an organ or tissue, end by suffix –otomy. For
example a surgical procedure cutting through the abdominal wall to gain access to the
abdominal cavity is called laparotomy.
Procedures for formation of an opening called a stoma in the body have suffix -ostomy.
The stoma is a permanent or temporary opening of tube organ (like stomach or urinary
bladder), which is situated at the surface of the body.
The surgical connection between blood vessels or other tubular or hollow structures such
as loops of intestine is called anastomosis.
Replantation involves reattaching a severed body part (for example finger).
Transplantation means transfer of the harvested tissue or organ from the donor site to
the recipient area. It can come from the individual and be used to the same one
(autogenous), or harvested from the genetically different individual and used to the other
of the same species (allogenous). The transfer is rare between genetically identical
individuals – uniovular twins (called isogenic). Xenogenous transplantation is the term
used for transfer between the individuals of the different species. The tissue may be
simply inserted (blood transfusion), used as a graft (skin, bone), or it is reconnected to
the recipient in all necessary ways for supply and function like blood vessels, ducts, etc.
(for example kidney).
Prosthetics are artificial substitutes, which is used for
repair or for replacement of particular part of the body
or tissue. They may also serve as an anchor for
specific devices. For example pins or screws may be
used to set and hold bone fragments. Sections of bone
may be replaced with prosthetic rods or plates.
Artificial hip replacement has become more common.
Heart pacemakers or valves may be inserted. Some
prosthetics just increase the quality of the patient´s life
and substitute the missed external shape of the body;
they are called epithesis (for example nasal or
mammary epithesis).
In contrast to the role played by surgery in the past, surgery is more important now than ever.
Surgical technology and techniques are so advanced that one through the use surgery is
able to accomplish what ancient surgeons never dreamed of. However, they receive further
unmistakable assistance, provided the other medical disciplines, especially anestesiologia,
pharmacology and internal medicine.
Surgery is used for a great variety of diseases and involves many different surgical
But there are still four fundamental steps inevitable for every surgeon and his/her
patient, considering any operation:
Analysis (patient s condition, options, risks, complications)
Preparing for surgery
Performing the operation
Healing and recovery
It is necessary to keep the basic rule:
Every surgery must be indicated according to the particular individual, his/her health
condition, need and expectations, and at last but not the least according to facility
possibilities and surgeon’s skill.
M. Haas
Many archeological evidences (signs of healed fractures on bones, signs of skull trepanation,
cave paintings) prove that surgical procedures were performed in prehistoric ages.
Evidence that the surgical assistance was provided can be found from the period around the
year 4600 BC, the period of Assyria, Babylon, Ancient Egypt, and Indian culture. In that time
priests carried out treatment and surgery. From this time the operations as circumcision,
venesection, haemostasis by the hot iron, inċision of absces, suture of the intestinum, hernia
treatment by hot iron, reconstruction of missed parts of the body (Indian rhinoplasty) are
known. Ideas of the anatomy of human body were minimal, although there was a certain
manipulation with the human body in the context of embalming (Oriental nations). Operations
were carried out in woozily status induced by ingestion of potion from various plants
(hashish, poppy, mandrake).
Sumerian civilization created the oldest form of writing characters, cuneiform. Of the 30,000
cuneiform tablets that have been discovered, about 800 of them deal with medical themes
(one of these being the first prescription known to have been written). Sumerians developed
several important medical techniques. They used the bronze instruments with sharpened
obsidian resembling modern day scalpels, knives, trephines, etc. Hammurabi's Code itself
contains specific legislations regulating surgeons and medical compensation as well as
malpractice and victim's compensation.
Ancient Egypt
In the first monarchic age (2700 BC) the first tract on surgery
was written by Imhotep. On one of the doorjambs of the
entrance to the Temple of Memphis there is the oldest
recorded engraving of a medical procedure: circumcision.
Engravings in Kom Ombo depict surgical tools. Still of all the
discoveries made in ancient Egypt, the most important
discovery relating to ancient Egyptian knowledge of medicine
Replica of picture on the wall of
Ancient Egyptian pyramid
showing circumcision
is the Ebers Papyrus, named after its discoverer Georg Ebers. “The Ebers Papyrus” is
considered one of the oldest treaties on medicine and the most important medical papyri.
The text is dated to about 1550 BC and measures 20 meters in length. The text includes
recipes, a pharmacopoeia and descriptions of numerous diseases as well as cosmetic
Ancient India
Indian physician Sushruta (c. 600 BC) wrote a series
of volumes which is known as “The Susrutha Samhita”.
It is the oldest known surgical text and it describes in
exquisite detail the examination, diagnosis, treatment,
and prognosis of numerous ailments, as well as
procedures on performing various forms of plastic
surgery, such as cosmetic surgery and rhinoplasty. His
technique of forehead flap rhinoplasty reconstructing
the nose, amputated as a punishment for crimes, is
Surgical instruments from ancient
practiced almost unchanged in technique to this day.
The Susrutha Samhita contains the first known
description of several operations, including the uniting of bowel, the removal of the prostate
gland, the removal of cataract lenses and the draining of abscesses.
Ancient Greece
Hippocrates, the father of medicine (460 – 377 BC) wrote first monography “Corpus
hippocraticum”. This document summarized all medical knowledge and experiences of
Ancient world and contains The Hippocratic Oath. First medical schools and hospitals were
founded in this period.
The Greek period was relieved by Alexandria period (300 BC – 400 AD), which concentrated
all the medical knowledge to Alexandria. Large fire of Alexandria Library destroyed all written
material in the year 47 BC. However, reports of the human body section and basic
knowledge of anatomy have been preserved. At the turn of the era the Roman period
dominated medicine and surgery. At that time there was Galenus Claudius, who was an
experienced teacher and surgeon. Based on the original Hippocratic works he summed up all
the knowledge and principles of treatment of patients into the several files.
Ancient China
Hua Tuo was a famous Chinese physician. He was the first person who performed the
surgery with the aid of anesthesia, some 1600 years before the practice was adopted by
Arabic period
From 5th till 15th century the Arab period affected the history of surgery. In Spain living, Arabic
surgeon Albukasim (+1106) described the findings of the treatment of the surgical diseases
in manual of several volumes. Ibn Sina (Avicenna, 980 – 1038 AD), wrote "Canon
medicinae". It contains medical knowledge and experiences of Arabic and Greek medicine of
then world.
European period
From 13th to 16th century the development of medicine in Europe is characterized by so–
called Italian–French period. In the 13th century many European cities began to require
studies of several years from the doctors who wanted to carry out their practice in the town.
In 13th century first universities were
medicine was taught were founded in Italy
universities were performed anatomical
sections. In France surgery has lower
status than pure medicine. Until Rogerius
Salernitanus wrote his file "Chirurgia",
which laid the fundamentals of modern
surgery, surgery was considered a craft.
Surgery was performed as ordinary craft
by healers and barbers. One of these
“craftsmen” Ambroise Paré wrote “Five
surgery. He also stated five reasons to
perform surgery: "To eliminate that which
is superfluous, restore that which has
been dislocated, separate that which has
been united, join that which has been
Professor Billroth demonstrating surgery to students
and colleagues
divided and repair the defects of nature."
At this time, the anatomy (Vesalius, Eustachio, Fallopia) developed boisterously. The first
physiological findings appeared (Harvey – large, Servet – low blood circulation). Since 15th
century surgery was taught as a separate branch at the universities of Montpellier, Paduam,
and Bologna.
In London, an operating theatre or operating room from the days before modern anesthesia
or antiseptic surgery still exists, and is open to the public. It is found in the roof space of St
Thomas Church, Southwark, London and is called the Old Operating Theatre.
Modern surgery and medicine developed rapidly with the scientific era. Three main
developments permitted the transition to modern surgical approaches – control of bleeding,
control of infection and control of pain (anesthesia). It means the operations without
excessive risk to the patient (control of bleeding, blood transfer, knowledge of shock
conditions, etc.) operations without the spread of the infection and operations without pain
(anesthesia). In 1847 L. Semmelweis discovered basic principles of antisepsis (washing
hand with chloride of lime solution) and J. Listér set up
discovered reasons of purulence. Surgeons started to
disinfect operation field with disinfectants and Halsted set
up wearing of rubber gloves for surgery. The microbiology
was developing (B. Koch). In 1846 Ch. Jackson
discovered ether for anesthetic use and C. Roentgen
discovered X–rays for medical imaging. The discovery of
blood groups followed (J. Janský, K. Landsteiner). While
the first true antibiotic–penicillin was described by
Alexander Fleming in 1929, yet during the World War II
sufficient resources were spent on the research and
refining of the substance (H. W. Florey) to be able to be
used in clinical practice. The reason was the amount of
First X–ray photo (hand of
Roentgen’s wife)
infected wounds, those treatment with penicillin was
unusually successful compared with situation before.
After the Second World War were discovered and used subsequent antibiotics. Many
diagnostic methods were improved and new technologies were discovered (ultrasound, CT,
MRI, endoscopy etc.).
Jan Jessenius performed first public anatomical section in Prague in 1600. In 1773 was
founded “faculty of surgery” on Charles University and in 1786 was this faculty attached to
faculty of medicine. Surgery rapidly developed at the end of 19th and at the beginning of 20th
century especially at University Hospital facilities. During this period many Czech surgeons
lived and worked in our countries, which are credited with the development of surgery. It was
Albert Edward, pioneer antisepse, he wrote four volume textbook of surgery. Karel Maydl
wrote a monograph on "Hernias", "Colon Cancer", "Subphrenical abscesses". Otakar
Kukula wrote the monograph "The pathology and treatment of intestinal ileus" and
Jedlička initiated the construction of the Prague
Sanatorium in Podolí, foundation of the Institute for
Education of Cripples and building of Radiotherapeutical
Institute. As a first in the CR he promoted gastric
pancreatocystogastrostomy. Jan Bedrna was a pioneer
of cardiosurgery, Jan Zahradníček of orthopaedics, Jiří
Diviš of thoracic surgery and Arnold Jirásek of
neurosurgery. With regard to the Royal Vineyard
hospital it celebrated centennial anniversary of its
founding in the 2002. Surgical field was brought fame
mainly by already appointed Jiří Diviš and last but not
least there is František Burian, the founder of plastic
Professor František Burian
surgery in the Czech Republic and on the European
Surgery as a medical field is very extensive and is not in human power to absorb all this
knowledge. Therefore, over time, as surgery has evolved the basic field–surgery (general)
remained, but the specialized branches dealing with some parts of surgery only were
structured. After the medical university studies graduates are included to the branche of their
choice and continue to the next, now a postgraduate education in the relevant workplace.
This training is both theoretical and practical. Every specialized field has specified conditions
that each physician must meet in order to pass qualifying examination (attestation) and
become a specialist for specific surgical subspeciality.
General surgery
The main scope is the problems which, in general, can not be classified into the special
surgical fields. In practice, most frequent focus is on the abdominal organs (esophagus,
stomach, colon, liver, gall bladder and bile ducts, and often the thyroid gland) and hernias,
other issues, however, shared with other disciplines may be surgical diseases of the thyroid
gland, mammary glands, varicose vein, and of course certain types of injuries.
A wider indication range can be found in the smaller countryside facilities, regional and
university facilities provide more specialized health care. There are super specialities in the
context of general surgery with concern to hepatobiliary system, colorectal area or
Thoracic surgery
Surgical treatment of lungs and surgery of chest cavity
Surgical treatment of diseases of heart and great vessels (cardiac surgery)
Transplantation surgery
Surgical transfer of tissues and organs
Orthopedic surgery
Treatment of acute and chronic disorders, injuries and their sequalae, degenerative
processes, tumours, and other problems of the musculoskeletal system, the branche
uses both surgical and non–surgical means.
Maxillofacial surgery
Surgical treatment of injuries, congenital disorders, and diseases of the face mainly the
jaws, the hard and soft tissues of the oral cavity.
Maxillofacial surgeons are usually initially qualified in dentistry and have undergone
further surgical training.
Provides the operative treatment of disorders of the central, peripheral, autonomic
nervous systems, and the hypophysis, including their supporting structures and vascular
supply; also the evaluation and treatment of pathological processes that modify the
function or activity of the nervous system, and the treatment of the pain.
Plastic Surgery
Corrects surgically appearence and function of external shape of the body especially the
face and hand in congenital abnormalities, deals with the treatment of fresh injuries and
tumours of these sites, also with acquired defects by trauma or caused by tumours
treatment, and faults arising due to degenerative processes.
During a time in the Czech Republic the Burns Medicine almost entirely left the plastic
surgery with the aim to concern to these specific types of injury.
To a certain extent, there are also separate facilities, specializing in hand surgery and
aesthetic surgery. Aesthetic surgery is considered as a health care; however, it is not
payed by the health insurance, because it deals with the correction of cosmetic defects
and symptoms of aging without the functional problems onto the morphological
Makes diagnosis and surgical treatment of ear, resp. hearing system, nose, throat.
Diseases and surgery of the visual pathways, including the eye and additional
structures, such as the lacrimal system and eyelids.
Focuses on the urinary tracts of males and females, and on the reproductive system of
Treats urinary infections, urolithiasis, correction of congenital abnormalities and tumours
of urogenital system.
Pediatric surgery and its specialization
Deal with surgical problems characteristic for children's age, has many super
specializations, like surgery of adulthood.
Anesthesiology and Resuscitation
Anaesthesiology and Resuscitation has been completely separated over the time and
has absolutely different nature. This field not only allows patients to undergo operations
and other diagnostic–therapeutic procedures without painful or unpleasant experiences,
but also takes care of security and restoration of their vital functions in both these cases
as well as in the context of other life–threatening conditions (accidents, serious illness,
J. Málek
CPR is a complex of relatively simple and logical “step by step” procedures, which should
immediately restore the flow of oxygenated blood to the brain. CPR is only likely to be
effective if commenced within short period after the blood flow stops. Already in as little as
4 – 5 min after the oxygenated blood flow stops brain cells become irreversibly damaged.
Even if medical professionals are able to restore an effective circulation later on, cortical
cerebral functions are often permanently damaged and the quality of patient’ s life would be
never the same as before. This is the main reason why is so vitally important to educate
broad community in the first aid and pre–hospital CPR.
The desire to bring people back to life is very old. In the Bible, a story is described discerning
a similarity to artificial ventilation in a passage from the Books of Kings (Bible, 2 Kings, IV,
34.). This first resuscitation effort described was Prophet Elisha's mouth–to–mouth method.
The development had been continuing up to now. Let´s name the main steps only. In 1892,
French authors recommended tongue stretching. In 1858 Henry Robert Silvester described a
method of artificial ventilation: the patient lies on his or her back, with arms raised to the
sides of the head, held there temporarily, then brought down and pressed against the chest.
Movement should be repeated 16 times per minute. A second technique, called the Holger
Nielsen technique, described a form of artificial respiration where the person was laid on their
front, with their head to the side. A process of lifting their arms and pressing on their back
was utilized, essentially the Silvester method with the patient flipped over.
Peter Safar (born 12th April, 1924 in Vienna; died 2nd August 2003 in Pennsylvania) was an
Austrian physician of Czech descent. He is credited with pioneering modern cardiopulmonary
resuscitation. Together with James Elam, he described the first two components of CPR (the
airway, head tilt, chin lift - Step A and the mouth–to–mouth breathing - Step B) and
influenced Norwegian doll maker Asmund Laerdal of Laerdal company to design and
manufacture mannequins for CPR training called Resusci Anne ®. The next major step in
resuscitation was closed chest massage (circulation- Step C), which was introduced in the
1960’s by Dr. Kouwenhoven, Dr. Jude, and a young engineer Knickerbocker. Safar
described the combination of both methods as a cardiopulmonary resuscitation (Steps ABC)
in 1961.
In 1973, the American Red Cross and the American Heart Association (AHA) began a big
campaign to teach the American population this method. 1992 ILCOR (International Liaison
Committee on resuscitation) was founded; the representative organ for Europe is ERC
(European Resuscitation Council). European Council evaluates roughly every five years new
scientific publications and accordingly modifies its guidelines for CPR.
The recommendations were last time updated in 2005 (see
Basic life support consists of the following steps:
Make sure you, the victim and any bystanders are safe.
Check the victim for a response: gently shake his shoulders and ask loudly: ‘‘Are you
all right?’’ Do not use painful stimulation.
If he responds
leave him in the position in which you found him provided there is no further
try to find out what is wrong with him and get help if needed
reassess him regularly
If he does not respond
d. Shout for help
e. Turn the victim onto his back and then open the airway. The most common
cause of airway obstruction is that the tongue falls backwards and obstructs the
airway. Tongue is anatomically connected to the jaw. Its position is dependent
on the tension of masseter muscle. If one is conscious or even asleep, the
airway is patent. If the patient is unconscious, muscle tension decreases, lower
jaw collapses and the tongue may obstruct the airway. The simplest manoeuvre
how to open the airway is an application of head tilt and chin lift. Place your hand
on the victim’s forehead and gently tilt his head back keeping your thumb and
index finger free to close his nose if rescue breathing is required or with your
fingertips under the point of the victim’s chin, lift the chin to open the airway
Keeping the airway open, look, listen and feel for normal breathing.
a. Look for chest movement.
b. Listen at the victim’s mouth for breath sounds.
c. Feel for air on your cheek. In the first few minutes after cardiac arrest, a victim
may be barely breathing, or taking infrequent noisy gasps. Do not confuse this
with normal breathing. Look, listen, and feel for no more than 10 s to determine
whether the victim is breathing normally. If you have any doubt whether
breathing is normal, act as if it is not normal.
If he is breathing normally
a. Turn him into the recovery position
b. Send or go for help/call for an ambulance
c. Check for continued breathing. If he is not breathing normally, suppose cardiac
arrest. Pulsation on large vessels is not checked routinely, finding that patient’s
breathing is not effective should be sufficient.
Send someone for help or, if you are on your own, leave the victim and alert the
ambulance service (in the Czech Republic 155 or less conveniently 112); return and
start chest compression as follows:
a. Kneel by the side of the victim
b. Place the heel of one hand in the centre of the victim’s chest
c. Place the heel of your other hand on top of the first hand
d. Interlock the fingers of your hands and ensure that pressure is not applied over
the victim’s ribs. Do not apply any pressure over the upper abdomen or the
bottom end of the bony sternum (breastbone)
e. Position yourself vertically above the victim’s chest and, with your arms straight;
press down on the sternum 4–5 cm normal. This should limit a risk of rib
After each compression, release all the pressure on the chest without losing contact.
During relaxation phase, both heart and lungs are perfused. After each compression,
all the pressure on sternum should be released. Even low pressure applied on sternum
during relaxation phase decreases an efficacy of chest compressions.
Repeat at a rate of about 100 times per minute (a little less than 2 compressions per
second). These manoeuvres are able to maintain artificially the circulation mainly to
the heart, lungs and brain. It is vitally important that chest compressions must be
performed quickly, and without unnecessary interruptions. Compression and release
should take equal amounts of time.
Combine chest compression with rescue breaths. After 30 compressions open the
airway again using head tilt and chin lift. During cardiac arrest, it is necessary to
combine chest compressions with rescue breaths. Generally, one can perform two
types of artificial breathing – ‘mouth–to–mouth’ or ‘mouth–to–nose’.
a. Mouth to mouth ventilation
Pinch the soft part of the nose closed, using the index finger and thumb of
your hand on the forehead.
Allow the mouth to open, but maintain chin lift.
Take a normal breath and place your lips around his the mouth, making
sure that you have a good seal.
Blow steadily into the mouth while watching for the chest to rise, taking
about 1 s as in normal breathing; this is an effective rescue breath. The
volume is approximately 500–600 ml (this is normal single breath volume
at rest). Slight resistance is felt while the patient’s lungs are inflated.
Maintaining head tilt and chin lift, take your mouth away from the victim
and watch for the chest to fall as air passes out
Take another normal breath and blow into the victim’s mouth once more,
to achieve a total of two effective rescue breaths. Then return your hands
without delay to the correct position on the sternum and give a further 30
chest compressions.
b. Mouth to nose ventilation
The lips of rescuer are placed around victim’s nose and his mouth is
closed with the thumb of rescuer’s hand which is placed on his chin. One
should take his mouth away during expiration phase and open the mouth
of the patient. His chest falls down automatically and expiration is done.
Take another normal breath and blow into the victim’s nose once more, to
achieve a total of two effective rescue breaths. Then return your hands
without delay to the correct position on the sternum and give further 30
chest compressions
Continue with chest compressions and rescue breaths in a ratio of 30:2. Stop to
recheck the victim only if he starts breathing normally; otherwise do not interrupt
resuscitation. If your initial rescue breath does not make the chest rise as in normal
breathing, then before your next attempt:
a. Check the victim’s mouth and remove any obstruction
b. Recheck that there is adequate head tilt and chin lift
Do not attempt more than two breaths each time before returning to chest
compressions. Chest–compression–only CPR may be used as follows
c. If you are not able or are unwilling to give rescue breaths, give chest
compressions only.
d. If chest compressions only are given, these should be continuous, at a rate of
100 per minute.
Continue resuscitation until
a. Qualified help arrives and takes over CPR
b. The victim starts breathing normally
c. You become exhausted
Stop to recheck the victim only if he starts breathing normally; otherwise do not
interrupt resuscitation.
If there is more than one rescuer present, another should take over CPR every 1 – 2 min to
prevent fatigue. Ensure the minimum of delay during the changeover of rescuers. The
recovering rescuer may maintain in the meantime the airway of the victim patent during chest
Resuscitation face shield is a simple device used for artificial breathing to prevent
transmission of infection from the victim and to eliminate reluctance to perform mouth–to
mouth ventilation. Air–proof polyethylene membrane and one–way valve reduce both
aversion and risk of cross infection. Shield is placed easily on the face of victim and artificial
breathing may be performed. Pressure on the shield must be released during expiration
In the children between 1–15 years of age, the cardiac arrest is usually secondary, because
of asphyxia. The sequence of steps is similar to the adult CPR; however a slightly modified
approach is used to recover respiration as soon as possible.
The main differences between adult and paediatric CPR
ILCOR recommends that lay rescuers, who usually learn only single rescuer techniques,
should be taught to use a ratio of 30 compressions to 2 ventilations, which is the same as the
adult guidelines and enables anyone trained in basic life support techniques to resuscitate
children with minimal additional information. Only, when there are two or more rescuers
specially trained in resuscitation (usually healthcare professionals), they should use a ratio
15:2. The modification to age definitions enables a simplification of the advice on chest
compression. Advice for determining the landmarks for infant compression is now the same
as for older children. Infant compression technique remains the same: two–finger
compression for single rescuers and two–thumb, encircling technique for two or more
rescuers, but for older children there is no difference between the one– or two–hand
techniques. The emphasis is on achieving an adequate depth of compression with minimal
interruptions, using one or two hands according to the rescuer preference.
The paediatric CPR algorithm
1. Check the victim for response
2. Shout for help
3. Turn the victim onto his back
4. Open the airway
5. Check normal breathing
6. If absent, give 5 rescue breaths. Identify effectiveness by seeing that the child’s chest
has risen and fallen in a similar fashion to the
movement produced by a normal breath.
7. If still unresponsive, start chest compressions. To
perform chest compression in children over 1 year
of age, place the heel of one hand over the lower
third of the sternum. Lift the fingers to ensure that
pressure is not applied over the child’s ribs.
Position yourself vertically above the victim’s
chest and, with your arm straight, compress the
sternum to depress it by approximately one third
of the depth of the chest. In larger children or for
small rescuers, this is achieved most easily by
using both hands with the fingers interlocked.
8. The depth of compression is approximately one–
third of antero–posterior diameter of the chest.
Chest compression
9. Combine chest compressions with rescue breathing. The ratio is 30:2 (the same ratio
as in adults), except if there are 2 rescuers well trained in paediatric CPR (see
10. After 1 minute of basic life support (rescue breaths and chest compressions)
emergency medical services (ambulance) should be phoned.
11. CPR is again fully continued until qualified help arrives and take over or the child
starts breathing normally, or rescuer is absolutely exhausted.
Accident scenes are dangerous places and one should protect himself in many ways.
Technical first aid is an important part of initial action. High visibility jackets and warning
triangles should be used. An ignition of the crashed car should be switched off, protect the
crashed vehicle from further movement. Check the condition and number of victims, activate
integrate rescue service and start first aid. Use surgical gloves for manipulating with victims if
possible. See http://www.roadandtravel.com
The risk of spine injury
There is always a suspicion of head and spine trauma. Spine with its bone structures
protects spinal cord against injury. Spinal trauma, mainly unstable vertebral fractures, can
cause spinal cord injury during manipulation and dislocation by the rescuer. That is why we
manipulate with the car crash victim only if there is another life–threatening situation like
thread of fire, coma or serious trauma.
Pulling casualties from a car
Level of consciousness should be noted. If the victim is e.g. only drunken and is able to
response, careful whole–body examination is made and, in case of need, we allow him to
leave the car on his own.
If the victim is unconscious, we have to open his airway. His head is maintained in strictly
neutral position to minimize cervical spinal cord injury. If the victim starts to breathe
spontaneously and there is no need for emergency hauling out of the car, we should wait for
a professional help.
In the case that breathing of the victim is not effective, one should initiate emergency hauling
out of the car and start CPR immediately. The best way of pulling out is to use more people.
One person is responsible for the victim’s head while the others try to extract his body.
Rautek’s manoeuvre is usually applied: The first step is to free up the victim’s feet if they are
stuck, and approach the person from behind, slipping arms of the rescuer under victim’s
armpits. With both hands grab the victim uninjured forearm, so that the body of the victim is
supported by rescuer chest. Move the victim slowly and pull him from the car maintaining as
much as possible a straight line between his head and body, forming a sort of block. A thread
of fire is a situation that justify pulling out an injured person as soon as possible without
waiting for a help. See http://www.roadandtravel.com
Foreign body airway obstruction is an acute, life–threatening situation occurring in both
children and adults. The adults often aspirate food particles, mainly if they are drunk, while
children most commonly aspirate a part of their toys or nuts. The vocal cords are the
narrowest part of airway in adults, while in children it is just below. Distally to that narrowest
part, the airways are getting broader (the internal diameter of trachea is about 20 mm in an
adult). A foreign body obstruction is usually even worsened by concurrent laryngeal spasm.
Foreign body obstruction (FBP) treatment varies according to the severity of obstruction. The
symptoms of FBO with a partial obstruction are cough and stridor within inspiration. If the
victim is able to breathe and cough, no further action is performed because it can make
situation worse. If the obstruction is complete, the victim cannot breathe or cough and after
short time is getting unconscious. Emergency medical services should be contacted
immediately. All manoeuvres are based on the principle of intra–thoracic pressure rise so
that foreign body is expulsed by the stream of expired gas.
1. Series of back blows are the safest approach. Both abdominal thrust and chest
compressions could lead to a serious injury of intra–abdominal organs. Therefore back
blows are indicated as a method of choice in pregnant women, extremely obese people
and infants. Apply up to five back blows as follows:
a. Stand to the side and slightly behind the victim.
b. Support the chest with one hand and lean the victim well forwards so that when
the obstructing object is dislodged it comes out of the mouth rather than goes
further down the airway.
c. Give up to five sharp blows between the shoulder blades with the heel of your
other hand
2. Heimlich manoeuvre consists of forceful pressure on upper abdomen which pushes
diaphragm upwards rapidly. If the victim is still conscious, we stand behind him and put
both arms round the upper part of his abdomen and pull our hands sharply upwards and
downwards. This is repeated up to 5 times. Even
if the foreign body is expulsed, the patient should
be always examined by a physician because of
risk for intra–abdominal organ damage.
a. Stand behind the victim and put both arms
round the upper part of his abdomen.
b. Lean the victim forwards.
c. Clench your fist and place it between the
umbilicus and xiphisternum.
d. Grasp this hand with your other hand and
pull sharply inwards and upwards.
e. Repeat up to five time
3. The
compression. We stand behind the victim and put
both arms round his chest and press him against
our chest. This is repeated up to 5 times.
Heimlich manoeuvre
4. If the victim is already unconscious, full basic life support with CPR is initiated. In
terminal stadium, laryngospasm sometimes relieves and foreign body is expulsed.
Foreign body obstruction in infants
The infants are placed face down over rescuer’s forearm with head and neck supported.
Forceful back blows are delivered. In unconscious infant, emergency CPR is started.
For more details of CPR see also
J. Málek, J. Šturma
Shock is a serious, life–threatening medical condition reasoning from acute disturbance
between supply of oxygenated blood to the tissues (perfusion) and need of oxygen in the
tissues. Medical shock should not be confused with the emotional state of shock, as the two
are not related. Medical shock is a life–threatening medical emergency and one of the most
common causes of death for critically ill people. Shock can have a variety of forms, all with
similar outcomes, but all relate to a problem with the body's circulatory system.
Circulatory system consists of three parts: the heart, blood vessels and blood. Disturbance
can occur in any of these parts and according to the origin the shock can be divided into
hypovolaemic shock (lack of circulating volume because of bleeding or loss of intravenous
fluid like in cases of extensive burn injury), obstructive shock (obstruction in blood flow
caused usually by massive pulmonary embolism, tension pneumothorax or cardiac
tamponade), cardiogenic shock (the failure of the heart to pump effectively), distributive
shock caused by excessive vasodilatation usually caused by spinal cord trauma and mixed
forms (septic shock, anaphylactic shock).
This is the most common type of shock. Common causes of hypovolemia can be bleeding,
severe burns or excessive dehydratation like in ileus, diarrhoea, vomiting, or overheating. A
low blood volume can result in multiple organ failure, kidney damage and failure, brain
damage, coma and death. The compensatory mechanism is centralisation of circulation, the
arteriolar and precapillary sphincters constrict to divert blood to the heart, lungs and brain.
Epinephrine and norepinephrine are released. Norepinephrine causes predominately
vasoconstriction of the kidneys, gastrointestinal tract, and other organs to divert blood to the
heart, lungs and brain. Epinephrine predominately causes an increase in heart rate. The lack
of blood to the renal system causes the characteristic low urine production. Should the cause
of the crisis not be successfully treated, the shock will proceed to the progressive stage and
the compensatory mechanisms begin to fail. Due to the decreased perfusion of the cells,
sodium ions build up within while potassium ions leak out. As anaerobic metabolism
continues, increasing the body's metabolic acidosis, precapillary sphincters fail, but
postcapillary sphincters are still intact causing blood accumulating and cloting (sludging) in
the capillaries. Due to this, the hydrostatic pressure will increase and, combined with
histamine release, this will lead to leakage of fluid and protein into the surrounding tissues.
As this fluid is lost, the blood concentration and viscosity increase, causing sludging and
micro-thrombi formation in the micro–circulation. The prolonged vasoconstriction will also
cause the vital organs to be compromised due to reduced perfusion. At refractory
(irreversible) stage, the vital organs have failed and the shock can no longer be reversed.
Brain damage and cell death occur resulting finally in death of the victim.
Signs and symptoms of hypovolemic shock
Hypotension due to decrease in circulatory volume.
A rapid, weak, thready pulse due to decreased blood flow combined with tachycardia.
Cool, clammy skin due to vasoconstriction and release of catecholamines.
Rapid and shallow respirations due to sympathetic nervous system stimulation and
Hypothermia due to decreased perfusion and evaporation of sweat.
Thirst and dry mouth, due to fluid depletion.
Fatigue due to inadequate oxygenation.
Cold and pale or mottled skin (cutis marmorata), especially extremities, due to
insufficient perfusion of the skin.
Anxiety, restlessness, altered mental state due to decreased cerebral perfusion and
subsequent hypoxia is late signs.
The management of shock requires immediate intervention, even before a diagnosis is
made. Re–establishing perfusion to the organs is the primary goal. Aggressive therapy is
necessary to restore and maintain the blood circulating volume and adequate blood pressure
ensuring oxygenation and maintaining effective cardiac function. Secondary complications
(hypothermia, position trauma, aspiration) must be prevented as soon as possible (to stress
the time factor in therapy of shock, the terms golden hour or platinum 30 min are used).
In haemorrhagic shock (caused by bleeding), it is necessary to immediately control the
bleeding if possible and restore the circulating volume by giving infusions of electrolyte
solutions (e.g. Hartmann or Ringer solution). Blood transfusions are necessary for loss of
large volume of blood (e.g. >1500 ml in adults), but can be avoided in smaller and slower
haemorrhage. Low haemoglobin concentration is better tolerated than low circulating volume.
Hypovolaemia due to burns, diarrhoea, vomiting, etc. is treated with infusions of solutions
that balance the nature of the fluid lost. Regardless of the cause, the restoration of the
circulating volume is priority. As soon as the airway is maintained and oxygen administered,
the next step is to commence replacement of fluids via the intravenous route.
In spite of medical progress, the mortality of cardiogenic shock remains high. The main goals
of the treatment of cardiogenic shock are the re–establishment of circulation to the
myocardium, minimising heart muscle damage and improving the heart's effectiveness as a
pump. Inotropic agents, which enhance the heart's pumping capabilities, are used to improve
the contractility and correct the hypotension before definitive treatment. This is most often
performed by percutaneous coronary intervention and insertion of a stent in the culprit
coronary lesion or sometimes by cardiac bypass.
This is caused because bacteria and/or their toxins cause vasodilatation and endothelial
lesions that will lead to leakage of fluid and protein into the surrounding tissues and toxic or
bacterial damage to various organs including lungs and myocardium. Signs of sepsis are
heart rate > 90 beats per minute (tachycardia), body temperature < 36°C or > 38°C
(hypothermia or fever), respiratory rate > 20 breaths per minute and changes in blood gases,
white blood cell count and other laboratory results. Patients are defined as having septic
shock if they have sepsis plus hypotension after aggressive fluid resuscitation (typically
upwards of 6 litres or 40 ml/kg of crystalloid). Therapy consists of surgical treatment of the
site of infection (if possible), antibiotic therapy and drugs to support circulation, ventilation
and other organ functions. Mortality rate is high.
Signs depend on the exact reason of obstruction. Therapy consists of removing the
Neurogenic shock is the most rare form of shock. It is caused by trauma to the spinal cord
resulting in the sudden loss of autonomic and motor reflexes below the injury level. Without
stimulation by sympathetic nervous system the vessel walls relax uncontrolled, resulting in a
sudden decrease in peripheral vascular resistance, leading to vasodilatation and
hypotension. Appropriate positioning and vasoconstricting drugs are used.
Anaphylaxis is a severe, whole–body allergic reaction. According to the severity, allergic
reactions involve skin reaction (urtica, Quincke´s oedema), gastrointestinal reaction (nausea,
diarrhoea), bronchospasm and the most severe circulatory reaction – anaphylactic shock.
This reaction is sudden, severe, and involves the whole body. Tissues in different parts of the
body release histamine and other substances. Anaphylaxis can occur in response to any
allergen. Common causes include drugs, food and insect bites/stings.
Symptoms develop rapidly, often within seconds or minutes. Signs include: abnormal heart
rhythm (arrhythmia), low blood pressure, mental confusion, rapid pulse, skin colour that is
blue from lack of oxygen or pale from shock, swelling (angioedema) in the throat that may be
severe enough to block the airway, swelling of the eyes or face, weakness, wheezing.
Anaphylactic shock is an emergency condition requiring immediate professional medical
attention. Call 155 or 112 immediately, check vital signs (airway, breathing, and circulation
from Basic Life Support) in all suspected anaphylactic reactions, cardiopulmonary
resuscitation should be started, if needed. People with known severe allergic reactions may
carry an Epi–Pen containing epinephrine or other allergy kit, and should be helped if
necessary. Epinephrine should be given by injection in the thigh muscle right away. This
opens the airways and raises the blood pressure by tightening blood vessels. Treatment for
shock includes intravenous fluids and medications that support the actions of the heart and
circulatory system.
Anaphylaxis is a severe disorder that can be life threatening without prompt treatment.
However, symptoms usually get better with the right therapy, so it is important to act
For details refer to standard intensive care and emergency care texbooks.
M. Čakrtová, A. Sukop
Asepsis is the practice to reduce or eliminate contaminants (such as bacteria, viruses, fungi
and parasites) from entering the operative field in surgery or medicine with the aim to prevent
infection. Asepsis is the absence of infectious organisms. Asepsis is achieved by using
aseptic techniques.
Antisepsis is the decontamination of living tissues such as human skin and, especially, at
site of surgical wounds. Antisepsis is the removal of transient microorganisms from the skin
and the suppression of the resident flora. It may be achieved by removal of section or
tissues, serving as a substrate. It means by derivation (wound drainage), mechanically
(necrectomia, excision) or chemically (use of antiseptics).
Disinfection means a reduction in the number of pathogenic organisms on objects or
materials, so the risk of infectious disease is minimased. Disinfection is the destruction of all
microorganisms with the exception of endospores and viruses. Disinfection is divided into
preventive (materials, water) and repressive (neutralization of bacteria in the outbreak of
infectious disease).
Sterilization is the precise removal of all microbes from a surface or content. It is the
process of annihilation of all living microorganisms e.g. viruses, bacteria, prions, fungi, or
their spores or parasites.
Hippocrates first espoused the concept of asepsis. The heat sterilization of medical
instruments has been used in Ancient Rome, but declined throughout Middle Ages. It
resulted in increased morbidity and mortality after surgery.
The history of asepsis goes back to 1847 when Semmelweis identified surgeons´ hands as
route of spread of puerperal infection. In 1865 Lister introduced the first wound asepsis with
the use of carbolic acid spray.
Listerian operation showing the carbolic acid spray in practise
Aseptic working method is based on a maximum effort to prevent nosocomial infections
(infections caused by microorganisms present in hospital). Its aim is to prevent microbial
contamination of wounds or other sites of the body. Using sterile instruments and fluids can
ensure this during the invasive medical and nursing procedures only. Staff undergo through
epidemiological filter changing the clothing and footwear completely. Sterile clothing,
including gloves, masks, and caps, which are all disposable, must be used during operations.
Do not forget that for all sterilization methods cleaning of materials are crucial. Proper
cleaning is achieved by decontamination and then by physical scrubbing. This should be
done with detergents (Cresol, Persteril) and hot water.
1. Physical sterilisation
Heat and steam sterilization
A method for heat sterilization is the autoclaving. Bergmann
invented the first autoclave in 1880. Now autoclaves commonly
use steam heated to 121° or 134°C under the pressure 2 or 3
atmospheres. To achieve sterility, a holding time of at least 20
minutes at 121°C (2 atm) or 10 minutes at 134°C (3 atm) is
required. Steam sterilization is used for materials, which
endure temperatures up to 140°C (iron, glass, rubber articles,
porcelain, textile). All materials are sterilized in containers or
paper covers. For effective sterilization, steam needs to
penetrate the autoclave load uniformly, so an autoclave must
not be overcrowded, and the lid of containers must be left ajar.
To ensure the autoclaving process was able to cause sterilisation, most autoclaves have
meters and chart that record or display relevant information such as temperature and
pressure as a function of time.
For indication of sterilization the staff places an
autoclaving. The tape will change the colour when
the appropriate conditions have been met. Some
types of paper cover have built–in indicators on
Indicator tape
them (Lukasterik ®).
Dry heat sterilization
The standard setting for a hot air oven is at least two hours at 160°C or one hour at 160°C
with forced air circulation (or 20 minutes at 180°C). Dry heat has the advantage that it can be
used on heat–stable items that are adversely affected by steam (it does not cause rusting of
steel objects).
Radiation sterilization
Methods exist to sterilize using radiation such as electron beams, X–rays, gamma rays, or
subatomic particles.
Gamma rays are emitting by radioisotope Cobalt–60. Gamma rays are very penetrating
and are commonly used for sterilization of disposable medical equipment, such as
syringes, needles, cannulas, and intravenous sets. The sterilization dose is 25 kGy.
Gamma radiation requires bulky shielding.
X–rays are less penetrating than gamma rays and require longer exposure times, but
need less shielding.
Electron beam is also commonly used for medical device sterilization. Electron beams
use an on–off technology and provide a much higher dosing rate than gamma or X–rays.
A limitation is that electron beams are less penetrating than either gamma or X–rays.
Ultraviolet light irradiation (UV), from a germicidal lamp is useful only for sterilization of
surfaces and some transparent objects. The most effective is radiation with a length of
260 nm. UV irradiation is routinely used to sterilize the operating rooms between uses.
2. Chemical sterilization
Ethylene oxide (EO)
EO gas is commonly used for the sterilization of objects that are sensitive to temperatures
exceeding 60°C such as plastics, optics and electrics. EO penetrates well, moving through
paper, cloth and some plastic films and is highly effective. Ethylene oxide treatment is
generally carried out between 30° and 60°C with relative humidity above 30% and a gas
concentration between 200 and 800 mg/l for at least 3 hours. Ethylene oxide is the most
common sterilization method, used for over 70% of total sterilization, and for 50% of all
disposable medical devices. It is highly flammable. There are two methods of EO
sterilization: the gas chamber method and the micro–dose method. The micro–dose method
minimizes the use of gas. The method of sterilization is alkylation of enzyme or protein
groups. As a biological indicator for EO sterilization is used Bacillus subtilis, a very resistant
organism. If sterilization fails, incubation at 37°C causes a fluorescent change within two
hours. Fluorescence is caused by EO resistant enzyme.
Formaldehyde is used as a gaseous sterilizing agent together with steam at 60°–80 °C under
pressure of 90 kPA. It is prepared onsite by depolymerisation of solid Para formaldehyde.
The gas does not penetrate, it effects only surface. Many vaccines, such as the original Salk
polio vaccine, are sterilized with formaldehyde.
Low Temperature Plasma
Low temperature plasma sterilization chambers use hydrogen
peroxide vapour (56%) in high frequency electromagnetic field to
sterilize heat–sensitive equipment such as rigid endoscopes.
The sterilization process is 54 minutes at 45° to 50°C. The
Sterrad ® has limitation with processing certain materials such
as paper, linens, gauze and cotton.
Low temperature plasma
chamber (Sterrad®)
The material is stored at the temperature 15°–20°C and humidity 40–60%. The material has
special cover (Lukasterik ®, container). The expiry date depends
on the cover – for a container is 6 days (if the container is
opened, then only 24 hours), for a double cover is 6 months and
Containers for sterilization
for a double cover in a special store cabinet is 1 year.
Disinfectants are solutions that destroy pathogenic organisms on objects and materials.
They have a bactericidal effect, but the bacterial endospore is very resistant, and some
bacteria and viruses are able to develop resistance.
Antiseptics are agents that reduce or kill germs chemically and are applied to skin and
Phenolics – phenol – the oldest known disinfectant first used by Lister.
Phenol is a standard for comparison to the other disinfectants. The corresponding rating
system is called „Phenol coefficient“. The disinfectant to be tested is compared with phenol
on a standard microbe (Salmonella typhi or Staphyloccocus aureus). Disinfectants that are
more effective than phenol have a coefficient more than 1. Disinfectants that are less
effective have a coefficient less than 1.
Oxidizing agents destroy the cell membrane of a microorganism and thus cause the lysis
and death of a cell. The strong oxidizers are chlorines and oxides. In clinical use there is
hydroxide peroxide, per–acetic acid, chlorine dioxide.
Quaternary ammonium compounds (Quats) acts as low–level disinfectants. They are
effective against bacteria but do not kill Pseudomonas aeruginosa and bacterial spores.
Quats include benzalkonium chloride (BAC), cetylpyridium chloride (Cetrim ®, CPC). They
are used for skin disinfection.
Alcohols and aldehydes (ethanol, isopropanol, glutaraldehyd) are usually used as
Alcohols – etanol (60–90%), 1–propanol (60–70%) and 2–propanol/isopropanol (70–80%)
are used to disinfect the skin before injections.
Boric acid is used against yeast infections of vagina and as an eye washer. It is commonly
used as 3% solution.
Iodine is used for skin and wound disinfection. It is usually water–based solution that
contains povidone–iodine (Betadine ®). It is far better tolerated than previous alcohol–based
solutions. The great advantage of iodine antiseptics is the widest scope of antimicrobial
activity, killing even endospores.
The definition of terms asepsis, antisepsis, disinfection and sterilization is of crucial
importance. The start of asepsis goes back to 19th century together with names like
Semmelweis, Lister and Bergmann.
There are two types of sterilization: physical (heat and radiation sterilization) and chemical
(ethylene oxide, formaldehyde, low temperature plasma, ozone, per–acetic acid sterilization).
The most common form of sterilization is autoclave and ethylene oxide. The sterile material
is stored under special conditions in special covers (containers, craps, paper, textile).
Disinfectants and antiseptics are agents that kill pathogenic organisms either on surfaces of
nonsterilised subjects or on a skin. To improve the preventive care the disposable aids
and devices are being used more and more.
J. Málek, J. Šturma
Anaesthesia means insensitivity. General anaesthesia produces loss of sensations by
introducing loss of consciousness during which patients are inactivated of the arousal, even
by painful stimulation. Regional or local anaesthesia produces loss of sensation from a
limited area of a body with preserved consciousness.
Anaesthesia can be induced by physical means (cold, electric current), but far the most used
is anaesthesia induced by drugs. Early modern medical anaesthesia dates to experiments
with nitrous oxide (laughing gas) by Sir Humphry Davy in England and the dentist Horace
Wells in the United States. Ether came into general use as an anaesthetic after a
demonstration at the Massachusetts General Hospital in Boston by William T.G. Morton in
16th October 1846, followed by chloroform next year. General anaesthetics, administered by
inhalation or intravenous injection, cause unconsciousness as well as insensibility to pain
and are used for surgical or diagnostic procedures.
History of local anaesthesia dates back to ancient times. The leaves of the coca plant were
traditionally used as a stimulant in Peru. It is believed that the local anesthetic effect of coca
was also known and used for medical purposes. Cocaine was isolated in 1860 and first used
as a local anesthetic in 1884. The search for a less toxic and less addictive substitute led to
the development of the amino–ester local anesthetic procaine in 1904. Since then, several
synthetic local anesthetic drugs have been developed and put into clinical use, notably
lidocaine in 1943, bupivacaine in 1957 and prilocaine in 1959. Intravenous regional
anesthesia was first described by August Bier in 1908. This technique is still in use and is
remarkably safe when drugs of low systemic toxicity such as prilocaine are used. Spinal
anesthesia was first used in 1885 but not introduced into clinical practice until 1899, when
August Bier subjected himself to a clinical experiment in which he observed the anesthetic
effect, but also the typical side effect of postpunctural headache.
Epidural anesthesia by a caudal approach had been known in the early 20th century, but a
well–defined technique using lumbar injection was not developed until the 1930s. With the
advent of thin flexible catheters, continuous infusion and repeated injections have become
possible, making epidural anesthesia a highly successful technique to this day. Beside its
many uses for surgery, epidural anesthesia is particularly popular in obstetrics for the
treatment of labor pain.
Various agents (gases, vapours of liquid anaesthetic agents, intravenous, intramuscular etc.
drugs) can be used to produce general anaesthesia (GA). According to the way of
application, GA can be divided into inhalational GA (anaesthesia produced by the respiration
of a volatile liquid or gaseous anaesthetic agent), intravenous GA (the anaesthetic agent,
e.g. a barbiturate, is administered intravenously to effect. If an intravenous catheter is used,
‘topping–up’ amounts can also be administered as required) or combination of these ways –
balanced anaesthesia, e.g. anaesthesia that balances the depressing effects on the motor,
sensory, reflex and mental aspects of nervous system function by the anaesthetic agents.
The philosophy encourages the use of several agents, each designed to affect one of the
Analgesia: blocking the sensation of pain;
Hypnosis and amnesia: produces unconsciousness
Relaxation: decreasing muscle tone;
Vegetative stability: obtundation of reflexes, preventing exaggerated autonomic
Various drugs are used to potentiate desirable effect and to affect independently each part of
GA according to the general health of the patients and demands of the surgeon. The
examples of inhalational general anaesthetics are nitrous oxide, isoflurane, sevoflurane,
desflurane, the examples of intravenous general anaesthetics are thiopentone, propofol,
ketamine (that can be administered in intramuscular way, too). The examples of analgesics
are morphine, fentanyl, sufentanilm, alfentanil, remifentanil. The examples of muscle
relaxants are suxamethonium, atracurium, cisatracurium, mivacurium, vecuronium and
Regional anaesthesia (RA) is usually produced by administration of local anaesthetic drugs
(LA) that block conduction through nerve axons. The local anaesthetic then diffuses into
nerves where it inhibits the propagation of nerve impulses through axons. High LA
concentrations block all types of nerves, e.g. inhibit all qualities of sensation (pain, touch,
temperature etc.) as well as muscle control, low concentrations block only ummyelinated or
thin myelinated fibres (sympathetic nerves and pain and cold sensations).
Anaesthesia persists as long as there is a sufficient concentration of local anaesthetic at the
affected nerves. Sometimes a vasoconstrictor drug is added to decrease local blood flow,
thereby slowing the transport of the local anaesthetic away from the site of injection.
Depending on the drug and technique, the anaesthetic effect may persist from less than an
hour to several hours. Placement of a catheter for continuous infusion or repeated injection
allows conduction anaesthesia to last for days or weeks. This is typically done for pain
Local anaesthetics can block almost every nerve between the peripheral nerve endings and
the central nervous system. The most peripheral technique is topical anaesthesia to the skin
or other body surface. Small and large peripheral nerves can be anesthetized individually
(peripheral nerve block) or in anatomic nerve bundles (plexus anaesthesia). Neuroaxial
blocks (subarachnoidal block - spinal anaesthesia and epidural anaesthesia) are applied
near the spinal cord where the peripheral nervous system merges into the central nervous
Clinical techniques include:
Surface anaesthesia – application of local anaesthetic spray, solution or cream to a
mucous membrane (e.g. eye, bronchi, urethra) or the skin (e.g. EMLA Cream) The
effect is short lasting and is limited to the area of contact.
Infiltration anaesthesia – injection of local anaesthetic into the tissue to be
Field block – subcutaneous injection of a local anaesthetic in an area bordering on
the field to be anaesthetised.
Peripheral nerve block – injection of local anaesthetic in the vicinity of a peripheral
nerve to anaesthetise that nerve's area of innervation.
Plexus anaesthesia – injection of local anaesthetic in the vicinity of a nerve plexus,
often inside a tissue compartment that limits the diffusion of the drug away from the
intended site of action. The anaesthetic effect extends to the innervation areas of
several or all nerves stemming from the plexus.
Epidural anaesthesia – a local anaesthetic is injected into the epidural space where
it acts primarily on the spinal nerve roots. Depending on the site of injection and the
volume injected, the anesthetized area varies from limited areas of the abdomen or
chest to large regions of the body.
Spinal anaesthesia (subarachnoidal block) – a local anaesthetic is injected into the
cerebrospinal fluid, usually at the lumbar spine (in the lower back), where it acts on
spinal nerve roots. The spinal cord terminates in adults at the first lumbar vertebra
level. The resulting anaesthesia usually extends from the legs to the abdomen or
Intravenous regional anaesthesia (Bier's block) – blood circulation of a limb is
interrupted using a tourniquet (a device similar to a blood pressure cuff), then a large
volume of local anaesthetic is injected into a peripheral vein. The drug fills the limb's
venous system and diffuses into tissues where peripheral nerves and nerve endings
are anesthetized. The anaesthetic effect is limited to the area that is excluded from
blood circulation and resolves quickly once circulation is restored.
For all types of smaller surgeries, injuries treatment, and similar procedures attainable from
the body surface and limited for the particular area the simplest local anaesthesia called
infiltration may be used.
Adverse effects depend on the local anaesthetic agent, method, and site of administration.
The most common are hematoma, infection, nerve injury, systemic toxic reaction and very
rare allergic reaction. Details are discussed in depth in the pharmacology and anaesthesia
text book.
Patients’ safety
Modern anaesthesia seems to be a safe procedure; estimated risk of death related to
anaesthesia only is about 1:185 000, but anaesthesia can contribute to other surgery –
related death. Probability of death within 30 days after surgery is 1:177 – 1:200 (0.56 %) after
scheduled surgery and 1:34 – 1:40 (2.94 %) after acute surgery.
Patients scheduled for surgery usually undergo preoperative evaluation. An anaesthetist
visits the patient a day before surgery to evaluate a patient’s general condition and to obtain
an informed consent for anaesthesia. Anaesthetic visit includes gathering history of previous
anaesthetics and any other medical problems, physical examination, control of laboratory
tests (minimal are blood count and urine analysis) and consultations prior to surgery. The
extent of medical and laboratory tests depends on complicating diseases and type of
ASA score
ASA stands for American Society of Anesthesiologists. In 1963 the ASA adopted a five–
category physical status classification system for assessing a patient before surgery. These
ASA 1: a normal healthy patient.
ASA 2: a patient with mild systemic disease.
ASA 3: a patient with severe systemic disease.
ASA 4: a patient with severe systemic disease that is a constant threat to life.
ASA 5: a moribund patient who is not expected to survive either with or without the
If the surgery is an emergency, the letter “E” (emergency) follows the physical status, for
example “3E”. The risk of mortality increases with increasing ASA score starting with 0.06%
in ASA1 to 51% in ASA5. The benefit of surgery must always overweight the risk of serious
Premedication means a drug treatment given to a patient before anaesthesia. These drugs
are typically sedatives or analgesics. Hypnotic and sedative drugs (benzodiazepines,
zolpidem, zopiclon etc) are usually administered orally a night before surgery,
benzodiazepines, opioids and anticholinergic drugs (to suppress salivation and bradycardia)
are administered either intramuscularly or subcutaneously 30 min before surgery. Another
possibility is intravenous route or oral premedication used mainly in children.
Immediate preparation before elective procedure
Patients´ consent and pre–anaesthetic medication (premedication, chronic medication etc.)
are controlled. Patients should have their dentures, jewels, prosthesis etc. removed to avoid
their damage and/or problems with airways. The use of cosmetic should be avoided. To
decrease the risk of aspiration of gastric content, patients should starve from solid food 6
hours and from clear fluid 2–4 hours before surgery.
anaesthesia and surgery to ensure the patient's safety.
This generally includes monitoring of heart rate (via
ECG or pulse oximetry), oxygen saturation (via pulse
oximetry), non–invasive blood pressure and inspired
and expired gases (for oxygen, carbon dioxide, nitrous
oxide, and volatile agents) in case of GA. For major
surgery, monitoring may also include temperature, urine
output, invasive blood measurements (arterial blood
pressure, central venous pressure, pulmonary artery
pressure and pulmonary artery occlusion pressure),
Anaesthetic machine
cerebral activity (via EEG analysis), neuromuscular function (via peripheral nerve stimulation
monitoring), and cardiac output. All measured parameters are recorded in an anaesthesia
record. The anaesthesia record is the medical and legal documentation of events during
anaesthesia. It reflects a detailed and continuous account of drugs, fluids, and blood
products administered and procedures undertaken, and also includes the observation of
cardiovascular responses, estimated blood loss, urinary body fluids and data from
physiologic monitors. The anaesthesia record may be written manually on paper; however,
an electronic record increasingly replaces the paper record.
For details refer to standard anaesthesia textbooks.
R. Vobořil
Similarly as in other medical specialities, every patient should be examined by following
steps and procedures.
The medical history or anamnesis of a patient is information gathered by a surgeon. This is
based on asking specific questions, given to the patient or to the other persons (usually
family members) who know the patient and are able to give competent information, with the
aim to obtain data contributing for diagnostics and for medical care. Symptoms are
complaints reported by the patient, whereas clinical signs are assessed by direct clinical
A surgeon typically asks questions to obtain the following information about the patient:
Identification: The name and age.
The main or presenting complaint: the current health problem and its time course. It is
necessary to know what brings the patient to the surgeon. Furthermore, the surgeon
focuses on getting information regarding duration of patient’s problems (acute or
chronic), whether it starts suddenly or not, whether there was a trigger moment (for
example trauma and its mechanism; eating of specific food), if it starts after particular
action – for example sportive activity – or spontaneously.
Past medical history: including major illnesses, any previous surgery, any previous
infection disease, any current illness, acute or chronic like diabetes mellitus, heart
disease, hypertension. Abusus: tabacco, alcohol, others drugs.
Family history: Health status of the family members (parents, grandparents, children). In
some diseases the family history is very important (e. g. cancer, congenital defects).
Childhood diseases.
Social history: including marital status, occupation, housing, exposure to environmental
pathogens etc.
Regular medications: including those prescribed by doctors, and others obtained over
the counter.
Sex life: gynaecological history in females etc.
Physical examination is the process by which a surgeon uses his senses to investigate the
body of a patient for signs of disease. It is necessary to start the examination systematically
from the head ending at the lower extremities.
It is necessary to examine the stripped patient. The surgeon is focusing on body features and
symmetry, skin colour, frequency of respiration, movement of the abdomen and each side of
the chest during respiration, hair distribution, abnormal contour, scars and striae, swelling,
presence of the wound or Indry.
The hands of the surgeon do this examination. The palpation is used to determine various
deformities, their size, their shape, resistance, fluctuation, firmness, swelling, muscle tone,
movement of the joints, and pathological movement (e. g. in fractures). Palpation has its
essential importance in evaluation of acute abdomen and signs of peritoneal irritation.
Percussion, a method of tapping on a surface, is used to determine the condition of
underlying structures. It is usually used to evaluate the thorax or abdomen. Two types of
percussion examination are distinguished: direct and indirect. Direct percussion uses only
one or two fingers; indirect percussion uses the middle flexor finger. A dull sound shows the
presence of a solid mass under the surface, a more sonorous sound indicates a cavity
containing air. With help of percussion the diagnosis of emphysema or pneumothorax can be
Auscultation, a method of listening of the body internal sounds, usually uses a stethoscope. It
requires clinical experience. This type of physical examination is possible to use for
examination of the heart, the lungs, and the gastrointestinal system. When examining the
heart by auscultation, there are important signs such as frequency, abnormal sounds like
heart murmurs, gallops, and other extra sounds. When examining the lungs, there is
important to focus on presence of wheezes and crackles. In gastrointestinal tract auscultation
helps to identify type of peristalsis.
Per rectum – digital rectal examination
Digital rectal examination is an internal examination of the rectum. The patient is lying on the
hip, thus anus is accessible. The surgeon inserts finger into the rectum and palpates the
insides. This type of examination is useful especially for assessment of rectal tumour or other
tumours in the small pelvis, it is also a directed examination of prostate gland.
Measurement of patient’s body temperature, weight, height, pulse, and blood pressure
belong to physical examination.
In surgery other clinical examinations may be used to assess proper clinical diagnosis.
Examples of such employed methods are: biochemical analysis of blood and urine,
examination, endoscopical examination, sonography, X–ray examination, CT (computed
tomography), MR (magnetic resonance), examination using radioisotopes etc.
Some tips for practice
When conducting a patient interview, you should take the following steps:
a. Place yourself close to the patient. Position yourself, when practical, so the patient
can see your face. If at all possible, position yourself so that the sun or bright lights
are not at your back. The glare makes it difficult for the patient to look at you.
b. Identify yourself and reassure the patient. Maintain a calm, professional manner.
Speak to the patient in your normal voice.
c. Learn your patient’s name. Once you learn the patient’s name, you should use it
during the rest of your interview. Children will expect you to use their first name. For
military adults, use the appropriate rank. If civilian, use “Mr.” or “Ms.” unless they
introduce themselves by their first name.
d. Learn your patient’s age. Age information will be needed for reports and
communications with the medical facility. You should ask adolescents their age to be
certain that you are dealing with a minor. With minors, always ask how you can
contact their parent or guardian. Sometimes this question upsets children because it
intensifies their fear of being sick or injured. Be prepared to offer comfort and assure
children that someone will contact their parents or guardians.
e. Seek out what is wrong. During this part of the interview, you are seeking information
about the patient’s symptoms and what the patient feels or senses (such as pain or
nausea). Also, find out what the patient’s chief complaint is. Patients may give you
several complaints, so ask what is bothering them most. Unless there is a spinal
injury that has interrupted nerve pathways, most injured individuals will be able to tell
you of painful areas.
Ask the PQRST questions if the patient is experiencing pain or breathing difficulties.
P = Provocation – What brought this on?
Q = Quality – What does it feel like?
R = Region – Where is it located?
R = Referral – Does it go anywhere (e.g., “into my shoulder”)?
R = Recurrence – Has this happened before?
R = Relief – Does anything make it feel better?
S = Severity – How bad is it on a scale of 1 to 10?
T = Time – When did it begin?
g. Obtain the patient’s history by asking the AMPLE questions.
A = Allergies – Are you allergic to any medication or anything else?
M = Medications – Are you currently taking any medication?
P = Previous medical history – Have you been having any medical problems? Have
you been feeling ill? Have you been seen by a physician recently?
L = Last meal – When did you eat or drink last? (Keep in mind, food could cause the
symptoms or aggravate a medical problem. Also, if the patient requires surgery,
the hospital staff will need to know when the patient has eaten last.)
E = Events – What events led to today’s problem (e.g., the patient passed out and
then got into a car crash)?
The objective examination is a comprehensive, hands–on survey of the patient’s body.
During this examination, check the patient’s vital signs and observe the signs and symptoms
of injuries or the effects of illness. When you begin your examination of the patient, you
should heed the following rules:
1. Obtain the patient’s consent (if the patient is alert).
2. Tell the patient what you are going to do and explain him/ her why it is necessary
to do that.
M. Dušková
Documentation systems in the health care field have seen increased demand due to the
increasing liability in that industry. This is especially true when considering the fact that larger
and larger numbers of individuals are being processed by the health care systems.
The importance of the medical documentation cannot be underestimated. It is the
most important source of information of the patient.
Every country has particular law and instructions on how to keep, to protect and to
save medical documentation. It is a duty of medical doctors and staff to learn and to
follow these rules.
Chart is a survey displaying a review of patient problem(s), objective diagnosis,
considerations, patient–selection criteria, treatment in abstract, and outcome. It is commonly
used in the outpatient practice.
Record is detailed report of patient current problem, medical history, contemporary
medication taken, allergies, current objective health condition including laboratory findings,
diagnosis, considerations, patient–selection criteria and reasons for planned option of
surgical approach, pre–op prepare, pre–op pharmaceuticals, surgery documentation, post–
op treatment, post–op course and healing with daily logging, results and outcome,
suggestions and recommendation for the following period. The patient has to be clearly
identified in the medical record. All separable parts of documentation must be clearly labelled
in a way, which avoids any confusing. It is usually used for inpatient care purposes.
Documentation contains complete medical data, also invoice’s details and cost data for
financing of the whole care. The term “documentation” may be used for any type of medical
data register mentioned above.
Informed consent:
Due to forensic purposes a signed informed consent of the patient must be included in any
type of documentation (chart, record etc.). In this document a patient personally undersigns
her/his agreement and understanding of described suggested treatment, expected outcome,
possible risks and complications. With regard to under age persons and/or individuals non–
sui juris the form must signed by patient’s legal guardian.
Practical process: Before the surgery, the surgeon definitely reviews suggested treatment
and surgical approach to the patient. The surgeon discusses risks and benefits of the
operation and answers questions. Based on this explanation he obtains the person's
permission to perform the operation, called informed consent. The patient reads and signs a
form documenting consent. In non–sui iuris patients (under age children, irresponsible
persons) or in cases of emergency surgery in which the person is unable to provide informed
consent, doctors must contact the liable relatives or patient’s legal guardian. Rarely,
emergency life–threatening surgery must proceed before the parents or legal guardian may
be contacted.
The doctor and a witness, usually a nurse, sign the informed consent at the same time.
In the Czech law the consent is described, in particular, in Section 23, paragraph 2, Coll No.
20/1966 Act (Act on Care for Public Health). Together but it is also defined in the Convention
on Biomedicine. Due to that it is an international Convention on Human Rights under Article
10 of the Constitution that is directly applicable and takes precedence over the law.
Article 5 of the Convention, which is a basic rule for consent, sounds as follows: Any
intervention in the field of the health care may be performed only on condition that the
particular person gave the free and informed consent for that. This person must be properly
informed about the purpose and nature of intervention, as well as its consequences and
risks. The person concerned may, at any time freely withdraw his/her consent.
If the operation or other intervention is not covered by agreement, its correct implementation
does not relieve a physician from liability. It governs even if the procedure is successful.
Object of protection is not the patient's health in this case, but his right to free decision–
The terms of consent are the real interpretative problem.
Consent must be free and informed. Consent must be given in advance. The patient must be
advised of the nature and consequences of surgery and the risks associated with it. With
regard to treatment options, there is no need to mention all, including those which have
significant adverse consequences, are obsolete or impracticable in the circumstances, are
only available abroad, etc.
Interesting problems arise in connection with the question of what the risk is worth
mentioning, and what is so unlikely that it need not be mentioned. International case law has
established various criteria (for example, the risk of less than 1% is not already mentioned),
however none of these criteria can be applied universally. The most stringent demands are
put on the lessons about the risks of cosmetic interventions, there may exist a duty to inform
about the risk of per thousand fractions. So called „ reasonable person standard“ is used for
the legal solution to the problem of adequate guidance in most countries with developed
medical law. It follows that the legal assessment of the existence of consent is not relevant
whether the doctor information "sent", but whether the patient "received and processed“. This
places considerable demands on physician communication skills. It is logical that other
means will be teaching the patient, who is also a physician with medical education, and other
lessons learned patient with very low intelligence (again applies subjective reasonable
person standard). The goal of informed consent is not to educate from the patients some
experts in the diseases which are affected. Its aim that must be fulfilled, however, is to give
to the patient an adequate basis for responsible decision on treatment.
Special kind of documentation:
Surgical documentation (surgical protocol or operation report) is a separated
description of operation itself. It must content:
1. Patient’s name, medical record number, date and time of operation
2. Name of chief surgeon, co–surgeons, and/or assistants, nurses, anaesthetist at
surgery involved in the case
3. Detailed description of used approach.
4. Kind of special device if any was used
5. Clinical findings during the procedure
6. Clinical findings increased the level of difficulty of the surgery
7. Any intra–operative complication
8. Patient’s condition at the end of surgery
9. Estimated blood loss
10. Health insurance codes for the billing statement
Photographs serve as comparison of pre– and postoperative status. Along with they
illustrate pre–operative findings.
The doctor and the nurse must document everything that she/he has been done during the
care process from the moment of first meeting till the final parting. The doctor and staff
must conduct the documentation in all respects so everyone next can carry on the
care of the patient.
Do not forget:
Documentation serves not only for the run of perfect care for the patient but as well as
your possibility of protection in a connection with liability litigation.
Every state (country) may have own specific regulations, instructions, and rules for
medical documentation. Coming to a new facility it is necessary to gain, to learn and
to use the correct information in this aspect.
M. Dušková
Tumour is the name used for a swelling or lesion formed by an abnormal growth of cells
(termed neoplastic). Tumours may be benign, pre–malignant or malignant (cancer). A
pathologist determines the nature of the tumour after examination of the tumour tissues from
a biopsy or a surgical excision specimen.
In practice a benign tumour does not grow in an unlimited, aggressive manner, does not
invade surrounding tissues, and does not metastasize.
Other symptoms depend on the type and location of the tumour. Some tumours produce no
symptoms, but symptoms that often accompany tumours, mainly malign, include: fever,
chills, night sweats, weight loss, loss of appetite, fatigue, malaise, bleeding or occult blood
loss causing anemia, pressure causing pain or dysfunction, cosmetic changes, itching, ie
pruritus, 'hormonal syndromes' resulting from hormones secreted by the tumour, obstruction,
e.g., of the intestines, compression of blood vessels or vital organs.
In order to make a clear diagnosis a biopsy is often performed to determine if the tumour is
benign or malignant. Most patients with tumours undergo CT scans or MRI to determine the
exact location of the tumour and its extent. More recently, positron emission tomography
(PET) scans have been used to visualize certain tumours types.
Treatment also varies based on the type of tumour, whether it is benign or malignant, and its
location. If the tumour is benign and does not disturb the proper functioning of the organ, no
treatment is needed. Sometimes benign tumours may be removed for cosmetic reasons,
however. Benign tumours of the brain may be removed because of their location or harmful
effect on the surrounding normal brain tissue.
If the tumour is malignant, it means that it is a systemic disease; management of the
treatment belongs to the hands of oncologists. It usually includes surgery, radiation,
chemotherapy, or a combination of these methods.
The surgeon then at the request may make surgical removal of tumour, possibly also
removal of lymphatic nodes or another intervention. After healing the patient returned for
further treatment (radiation, chemotherapy, etc.) back to the oncology department.
Therapeutic procedure is determined on the basis of specifying the stage of the tumour by
the identification of tumour size and surrounding tissues involvement. In addition to stage
tumour is classified according its characteristics. The most often used classification is called
according to described basic features = TNM (tumour, nodus, metastasis).
T: primary tumour
T0: no signs of primary tumour
Tx: primary tumour can not be assessed
Tis: carcinoma in situ
T1–4: according to the size and a local extension of tumour
N: nodes – metastases to regional lymph nodes
N0: no metastasis to local lymph nodes
Nx: metastases in lymph nodes can not be assessed
N1–3 according to extent of metastatic involvement of local nodes
M: distant metastases
M0: no distant metastasis
Mx: distant metastases can not be assessed
M1 presence of distant metastases, also metastases to distant lymph nodes
In addition to these characteristics this classification can be used for further
V: invasion into the veins
V0: no invasion into vein
V1: microscopic invasion into the vein
V2: macroscopic invasion of a vein
C: method of diagnostic detection
C1: Standard procedure (common imaging methods, endoscopy)
C2: special procedures (magnetic resonance imaging, nuclear medicine, biopsy)
C3: surgical exploration with biopsy
C4: definitive surgery and histopathological examination of preparation
C5: autopsy
R: residual tumour
R0: no residues
Rx: it is not possible to assess
R1: microscopic residual tumour
R2: macroscopic tumour (in resected tissue with the edge without finding of the
G: histopathological evaluation
G1: well differentiated
G2: moderately differentiated
G3: rare differentiated
G4: non – differentiated
Cyst is a closed sac–like structure. Cysts are common and can occur anywhere in the body
in people of any age. Cysts usually contain a gaseous, liquid, or semisolid substance. Cysts
vary in size. The outer wall of a cyst is called the capsule.
Cysts can arise through a variety of processes in the body, including: "wear and tear" or
simple obstructions to the flow of fluid, infections, tumours, chronic inflammatory conditions,
inherited conditions, and defects in developing organs in the embryo.
Here are some of the more well–known types of cysts: cysts in the breast (fibrocystic breast
disease), ovarian cysts, dermoid cysts, cysts within the thyroid gland, Baker cyst (popliteal)
behind the knee, ganglion cysts of the joints and tendons, cysts of the glands within the
eyelid, termed chalazions, sebaceous cysts of the small glands in the skin, polycystic kidney
The majority of cysts are benign, but some may produce symptoms due to their size and/or
location. Rarely, cysts can be associated with malignant tumours (cancers) or serious
infections. Diagnostics is usually based on palpation, X–ray, ultrasound, computer
tomography CT, and MRI.
The treatment for a cyst depends upon the cause of the cyst along with its location. Cysts
may be surgically removed. If there is any suspicion that a cyst is cancerous, a biopsy is
taken of the cyst wall (capsule) to rule out malignancy.
Ulcers are defects that develop as a solution of tissue in the skin, mucous membranes, or
eye. Although they have many causes (bacterial, viral or fungal infection, cancer – both
'primary' and 'secondary, venous stasis, arterial Insufficiency, diabetes, loss of mobility), they
are marked by: loss of integrity of the area, secondary infection of the site by bacteria, fungus
or virus, generalized weakness of the patient, delayed or none healing.
The most frequent clinical examples are peptic ulcer (of the stomach, esophageal cardium or
duodenum), pressure sore (decubitus), crural ulcer (due to venous insufficiency or other
causes), arterial insufficiency ulcer, ulcerative colitis (of the colon) etc.
Treatment usually starts as a conservative one; in more serious and chronic cases the
surgical intervention is necessary. It consists of debridement (removal of foreign bodies and
nonvital tissues from the wound) and necrectomy (removal of dead tissue), following by the
coverage of the defect by skin graft or flap.
Sinus is a sac or cavity in any organ or tissue or an abnormal cavity or passage caused by
the destruction of tissue. By the other meanining in surgery the term is used for a chronically
infected tract such as a passage between an infected space and the skin.
Fistula is an abnormal connection between an organ, vessel, or intestine and another
structure. Fistulas are usually the result of injury or unwanted outcome of the, even as a
wanted outcome (for example arteriovenous shunt) surgery. It can also result from infection
or inflammation. It is a tract connecting two epithelialised surfaces.
Fistulas may occur in many parts of the body. Some of these are: arteriovenous (between an
artery and vein), biliary (created during gallbladder surgery, connecting bile ducts to the
surface of the skin), cervical (either an abnormal opening into the cervix or in the neck),
craniosinus (between the space inside the skull and a nasal sinus), enterovaginal (between
the bowel and vagina), faecal or anal (the feces is discharged through an opening other than
the anus), gastric (from the stomach to the surface of the skin), pre or retroperitoneal
(between the uterus and peritoneal cavity), pulmonary arteriovenous (in a lung, the
pulmonary artery and vein are connected, allowing the blood to bypass the oxygenation
process in the lung (pulmonary arteriovenous fistula), umbilical (connection between
the navel and gut).
Types of fistulas include:
Blind (open on one end only, but connects to two structures)
Complete (has both external and internal openings)
Horseshoe (connecting the anus to the surface of the skin after going around the
Incomplete (a tube with an external skin opening and does not connect to any internal
Clinical examples are Crohn's disease and ulcerative colitis, hidradenitis suppurativa,
surgical complications, postirradiation complication, trauma.
Treatment of fistulae varies depending on the cause and extent of the fistula, but often
involves surgical intervention combined with antibiotic therapy.
Necrosis (in Greek Νεκρός = "dead") is the name given to unnatural death of cells and living
tissue. It begins with cell swelling, chromatin digestion, and disruption of the plasma
membrane and organelle membranes. Late necrosis is characterized by extensive DNA
hydrolysis, vacuolation of the endoplasmic reticulum, organelle breakdown, and cell lysis.
The release of intracellular content after plasma membrane rupture is the cause of
inflammation in necrosis.
In contrast to apoptosis, clean up of cell debris by phagocytes of the immune system is
generally more difficult, as the disorderly death generally does not send cell signals, which
tell nearby phagocytes to engulf the dying cell. This lack of signalling makes it harder for the
immune system to locate and recycle dead cells, which have died through necrosis than if
the cell, had undergone apoptosis.
There are many causes of necrosis including prolonged exposure to injury, infection, cancer,
infarction, poisons, and inflammation.
Gangrene derives from the Latin word "gangraena" and from the Greek gangraina
(γάγγραινα), which means "putrefaction of tissues". It is a complication of necrosis
characterized by the decay of body tissues, which become black and malodorous. It is
caused by infection or ischemia, such as from thrombosis (blocked blood vessel). It is usually
the result of critically insufficient blood supply (e.g., peripheral vascular disease) and is often
associated with diabetes and long–term smoking. This condition is most common in the
lower extremities. The best treatment for gangrene is revascularization (i.e. restoration of
blood flow) of the affected organ, which can reverse some of the effects of necrosis and
allow healing. Other treatments include debridement and local care, or surgical amputation of
nonhealed or irreversibly damaged acral part. The method of treatment is generally
determined depending on location of affected tissue and extent of tissue loss.
There three types:
1) Dry gangrene
Dry gangrene begins at the distal part of the limb due to ischemia and often occurs in the
toes and feet of elderly patients due to arteriosclerosis. Dry gangrene spreads slowly until
it reaches the point where the blood supply is inadequate to keep tissue viable.
Macroscopically, the affected part is dry, shrunken and dark black, resembling
mummified flesh. The dark colouration is due to liberation of haemoglobin from
hemolyzed red blood cells, which are acted upon by hydrogen sulfide (H2S) produced by
the bacteria, resulting in formation of black iron sulfide that remains in the tissues. The
line of separation usually brings about complete separation with eventual falling off of the
gangrenous tissue if it is not removed surgically.
If the blood flow is interrupted for a reason other than severe bacterial infection, the result
is a case of dry gangrene. People with impaired peripheral blood flow, such as diabetics,
are at greater risk of contracting dry gangrene. The early signs of dry gangrene are a dull
ache and sensation of coldness in the affected area along with pallor of the flesh. If
caught early, the process can sometimes be reversed by vascular surgery. However, if
necrosis sets in, the affected tissue must be removed just as with wet gangrene.
2) Wet gangrene
Wet gangrene occurs in naturally moist tissue and organs such as the mouth, bowel,
lungs, cervix, and vulva. Bedsores occurring on body parts such as the sacrum, buttocks
and heels–although not necessarily moist areas–are also categorized as wet gangrene
infections. In wet gangrene, the tissue is infected by saprogenic microorganisms (Bac.
perfringes, fusiformis, putrificans, etc.), which cause tissue to swell and emit a faetid
smell. Wet gangrene usually develops rapidly due to blockage of venous and/or arterial
blood flow. The affected part is saturated with stagnant blood, which promotes the rapid
growth of bacteria. The toxic products formed by bacteria are absorbed causing systemic
manifestation of septicaemia and finally death. Macroscopically, the affected part is
edematous, soft, putrid, rotten and dark. The darkness in wet gangrene occurs due to the
same mechanism as in dry gangrene.
3) Gas gangrene
Gas gangrene is a bacterial infection that produces gas within tissues. It is a deadly form
of gangrene usually caused by Clostridium perfringens bacteria. Infection spreads rapidly
as the gases produced by bacteria expand and infiltrate healthy tissue in the vicinity.
Because of its ability to quickly spread to surrounding tissues, gas gangrene should be
treated as a medical emergency. Gas gangrene is caused by a bacteria exotoxin–
producing clostridial species, which are mostly found in soil and other anaerobes (e.g.
Bacteroides and anaerobic streptococci). These environmental bacteria may enter the
muscle through a wound and subsequently proliferate in necrotic tissue and secrete
powerful toxins. These toxins destroy nearby tissue, generating gas at the same time.
Gas gangrene can cause necrosis, gas production, and sepsis. Progression to toxaemia
and shock is often very rapid.
Treatment is usually surgical debridement, and excision even amputation of involved
extremity is necessary in many cases. Antibiotics alone are not effective because they do not
penetrate ischemic muscles sufficiently.
Hyperbaroxia can be successfully used in the treatment
with re– stay in hyperbaric chamber. Hyperbaric oxygen
therapy is a treatment method, using the ability of blood
to carry the greater amount of oxygen at a higher
atmospheric pressure than under normal conditions. This
can be used with very good results in all conditions
associated with impaired blood supply of organs.
Hyperbaroxia also has an irreplaceable role in the
Hyperbaric chamber
treatment of decompression disease, air embolism, gas
gangrena or some intoxication.
Therapeutic indications of hyperbaric oxygen therapy
Absolute indications
Decompression syndrome (for divers and pilots)
Air embolism
Acute traumatic ischemia
Smoke gases – CO
combat chemicals
cyanide, tetrachlorem, hydrogen sulphide
Brain hypoxia (Apalic syndrome, conditions after extralong KPCR, intoxication, injuries)
Crush syndrome and compartment syndrome
Head injury with brain oedema
Infection with Clostridia:
Myonecrosis (gas gangrene)
cellulitis (anaerobic toxaemia)
Haemorrhagic shock (in which case you can not use the classical method of
Relative indications
Non clostridial infection:
Advanced soft tissue bacterial gangrene
Necrosis of fascia
Nonclostridial myonecrosis
Chronic osteomyelitis, resistant to conventional therapy
Radiation necrosis of bones and soft tissue
Ulceral and necrotic defects in the leg vascular insufficiency: blood vessels
arteriosclerosis, diabetic gangrene, Bürger disease, pressure sores, crural ulcers,
toxic and allergic angiopathy (vasculitis)
Burns, scalds
Reimplantation of traumatically amputated limbs
Healing of skin grafts with impaired nutrition and blood supply
Pyodermia gangrenosum
Polytraumatic injuries
Suddenly arising perceptual disorders of hearing
Acoustic trauma (shooting, intense noise)
Failure of the internal ear, Meniér disease
Neurological vascular disorders
Cardiogennic shock complicating AIM
Chronic ICHS including angina pectoris
Adjuvant in operations on the heart
Necrotizing enterocolitis
Pneumatosis cystoides intestinalis
CVE ischemic etiology
Spinal cord injury and other spinal cord lesions
Sclerosis Multiplex
Closure of a. centralis retinae
Thrombosis of v. centralis retinae
Diabetic retinopathy
Cataract, neuritis n. opticus
Retinitis pigmentosa
Degeneration of macula
Furnier idiopathic gangrene of external genitalia
Contraindications of hyperbaric oxygen therapy
Absolute contraindications
Open or aired pneumothorax
Relative contraindications
Untreated malignant disease
Claustrophobia diagnostically certified
If in history
Spontaneous pneumothorax
state after chest operation
state after operation of secondary and internal ear
Lung injury
Emphysema with high CO2 pressure
Hyperfunction of thyroid gland
Acute viral infection UBW with a high fever
In co–administration of drugs: Adrimycin (doxorubicin), cis–platinum, Antabus (disulfiram)
The above contraindications are relative. In an absolute indication for HO (e.g., severe CO
poisoning, gas gangrene, air embolism) it does not take account of these contraindications.
Always have bad impact into the surgery, post–op course and outcome. Metabolic disorders
are caused by problems with chemical processes in the body. Very frequent diabetes
mellitus is often connected with poor healing, inclination to infection, and post–op
decompensation of basic illness.
Cardiovascular diseases include coronary heart disease (heart attacks), cerebrovascular
disease, raised blood pressure (hypertension), peripheral artery disease, rheumatic heart
disease, congenital heart disease and heart failure. They have higher risk of
tromboembolism, heart problems related to stress, and vascular supply of surgical wound.
Ventilation problems represent hypoxia and respiratory infection.
Cerebrovascular disease does not only represent an increase of somatic risks but also the
deterioration of cooperation with patient.
Psychological problems are often underestimated. But they bring psychological risks and
adverse outcomes from the side of patient dependent factors: multiple or serious
psychological problems, unrealistic expectations, external reasons for surgery, or surgeon–
dependent factors: lack of empathy for postoperative problems, too much hurry with
evaluations or too little preoperative preparation, or surgeon–patient interaction: poor
communication or personality conflict. In the short term, postsurgical discomfort and
functional problems may cause dissatisfaction. Neuroticism may also have a negative effect
on the early postsurgical phase but not on the long–term outcome. Depression is a relatively
common finding following any surgical procedure. During this time, additional support is
needed from the family and the medical personnel. In cosmetic surgery and bariatric surgery
these problems are much more frequent.
Adequate preparation can help a child feel less anxious about the anesthesia induction and
surgery and get through the recovery period faster. The key is in providing information at a
child's level of understanding, correcting misconceptions, and dispelling fears and feelings of
guilt. It is necessary a child understands the physical problem that requires the surgery and
becomes familiar with the hospital and some of the procedures he or she will undergo.
Children of all ages cope much better if they have some concrete idea of what's going to
happen and why it's necessary. The close cooperation with family is always recommendable.
Hospitals have changed enormously. The stay is shorter and parents may accompany a child
practically the whole time except while the surgeon is operating. Sometimes there are some
mythus around the idea of surgery. Let a child know that the medical problem is not the result
of anything he or she may have done or may have failed to do, and that the operation is not a
punishment, but simply the way to "fix" the problem. A child's level of anxiety prior to surgery
is predictive of whether they will experience post–surgical delirium and maladaptive
behavioural changes, including anxiety, nighttime crying, and bedwetting, they are more
emotional, more impulsive, and less social.
Elderly patients do not tolerate well postoperative starvation, prolonged pain, sepsis or
immobility. They should be given a high surgical priority and more postoperative intensive
care. In particular, fluid intake and output immediately before and after surgery needs to be
managed better to avoid possible adverse effects. Return back to the home environment as
soon as possible is more than beneficial.
E. Dřevínková
Definition: Inflammation: is the complex biological response of vascular tissues to harmful
stimuli, such as pathogens, damaged cells, or irritants. It is protective attempt by the
organism to remove the injurious stimuli as well as initiate the healing process for the tissue.
Inflammation can be classified as acute or chronic. It can be caused by mechanical trauma
(e.g. surgical incision), infection (due to bacteria, viruses, fungi or protozoa), chemical and
physical agents (such as heat, cold, radiation), ischaemia or hypersensitivity. Mechanical
trauma is the most common cause.
1. Acute inflammation
It is the initial response of the body to harmful stimuli and is achieved by the increased
movement of plasma and leukocytes from the blood into the injured tissues. A cascade of
biochemical events propagates and matures the inflammatory response, involving the local
vascular system, the immune system, and various cells within the injured tissue.
It is the inflammatory process of up to one week in duration.
Cardinal signs are calor (heat), rubor (redness), tumour (swelling), dolor (pain), and functio
laesa (loss of function).
The development of inflammation can be described as follows: it is initiated by tissue
damage or the introduction of microorganisms through the epithelial membrane, which
causes an immediate vascular response – a capillary vasoconstriction followed by
vasodilatation and a production of exudate (composed of a fluid and cells from the
capillaries, protein rich).
The outcome of inflammation can vary. It can lead to a) resolution, b) suppuration, c) spread
of inflammation through the tissues, bloodstream or lymphatic system, d) chronic
inflammation, e) fibrosis with scarring, or f) in extreme cases due to multiple organ failure to
2. Chronic inflammation
Leads to a progressive shift in the type of cells which are present at the site of inflammation
and is characterised by simultaneous destruction and healing of the tissue from the
inflammatory process.
It is prolonged inflammatory process taking more than 6 weeks in duration.
Chronic inflammation can develop as a failure of resolution of acute inflammation (e.g.
chronic abscess) or it can start as a chronic process from the beginning (e.g. TB, syphilis,
leprosy or liver cirrhosis). Chronically inflamed tissue is characterised by the infiltration of
mononuclear immune cells (monocytes, macrophages, lymphocytes, and plasma cells),
tissue destruction, and attempts at healing, which include angiogenesis and fibrosis. The
process results mostly in the formation of granulation tissue, fibrosis or partial regeneration,
which can occur in combination with varying extent.
The definitive outcome of any inflammation depends on multiple factors such as an age of a
patient, a degree of blood supply, condition of the host immune system, infection dose, a
route of introduction, virulence or presence of endotoxins and exotoxins.
Definition: Infection is multiplication, spread, and detrimental colonization of a host organism
by a foreign species, utilizing the host's resources. The infecting organism, or pathogen,
interferes with the normal functioning of the host and can lead to chronic wounds, gangrene,
loss of an infected limb, and even death. The host's response to infection is inflammation.
Colloquially, a pathogen is usually considered a microscopic organism though the definition
is broader, including faeces, parasites, fungi, viruses, prions, and viroids.
Infections are caused mostly by pathogenic bacteria (Gram positive or negative bacteria –
both aerobic and anaerobic: most important ones: Staphylococcus pyogenes aureus,
Pseudomonas, Streptococcus, Escherichia coli, Proteus, Clostridium; mycotic infections,
Candida. The granulomas are products of tuberculosis and syphilis. Also the viruses belong
to causative agents.
Severity of infection is determined by virulence of the pathogen, its number and the host
response. Risk factors for development of infection include poor perfusion, malnutrition,
immunosuppression, inadequate surgical technique, and presence of dead tissue or foreign
The most common type of surgical infection is infection originated from direct contact or per
continuitatem, also by spreading through lymph vessels or blood vessels. Usually the
infection is caused by multiple pathogens; occasionally it is a monoinfection. The
symptomatology is often typical for the respective pathogen – for instance, Staphylococci
cause abscesses and Streptococci cause celullitis. Both can give rise to a wound infection,
which can be also caused by Pseudomonas aeruginosa, E. coli, etc. as mentioned above.
The microorganisms can spread from an infected wound through the lymphatic system
(which is called lymphangitis or lymphadenitis) or can enter directly the bloodstream and
develop bacteraemia, septicaemia or pyemia.
1. Superficial – erysipelas (Streptococci), erysipeloid (Erysipelothrix rhusiopathiae),
celullitis, lymphangitis
2. Localized infection: abscess of sweat glands – hidradenitis, folicullitis, furuncle,
carbuncle (Staphylococci are the most common)
3. Deep infection of soft tissues – abscess with a membrane and cavity, pyoderma
fistulans, gas gangrene
4. Infection in pre–existing body cavities – empyema (e.g. pleura, joints), subphrenical
An infection usually comes from primarilly open or contaminated wounds, foreign bodies or it
is of iatrogenic origin (catheterization of bladder, surgical wounds).
The treatment of any infection is in general following: evacuation of collected pus, removal of
foreign body, wound debridement and surgical revision with a wide wound opening and
drainage. It is also advisable to immobilise an infected wound (lymphangitis in particular), to
use antiseptics and an appropriate antibiotic treatment.
The complications of wound infection include chronic inflammation and scarring, and as a
worst–case scenario it can lead to septic shock (see the chapter Shock).
The prevention of infection comprises strict asepsis during any surgical wound care and
antibiotic prophylaxis before surgery when indicated. For instance bowel surgery requires a
short–term antibiotic prophylaxis during operation and/or before an insertion of any implant to
the body. It is usually sufficient a one–dose antibiotic prophylaxis.
It is a localized collection of pus, which is liquid. It contains exudates, melted dead cells as
well as bacteria and damaged tissue. An abscess is easily diagnosed and does require
incision and drainage, while does not usually need antibiotics unless there is present
cellulitis. Inadequate drainage or dependence on antibiotics may lead to chronic abscesses
(associated with mycobacteria and actinomycetes), sinuses (a blind tract leading from an
epithelial surface lined by granulation tissue) or fistula formation (abnormal communication
between two epithelial surfaces).
It is a spreading inflammation of connective tissue and it is typical infection caused by β–
haemolytic streptococci group A. The condition is always presented with redness, oedema
and localized tenderness. The treatment requires an antibiotic administration (usually
penicillin) and immobilization of a limb. It does not require surgical treatment unless it is
accompanied with collection of liquid i.e. abscess, which needs drainage.
Lymphangitis and lymphadenitis
Lymphangitis is a non–suppurative infection of lymphatic vessels that drain an area of
cellulitis. Lymphadenitis is an infection of regional lymph nodes. Lymphangitis is always
presented with red streaks under the skin, which are associated with primary
lymphadenopathy. An acute inflammation usually subsides after several days on treatment,
but occasionally can lead to systemic inflammation. We should treat primarily the original site
of infection, administer antibiotics, recommend a rest and do a surgical intervention if
Phlegmona diffusa is a more or less extensive inflammation of the cutaneous and
subcutaneous tissues presenting symptoms partaking of the nature of both deep erysipelas
and flat carbuncles, and usually accompanied by varying constitutional disturbance.
Suppuration at several points takes place, and sloughing may ensue. Recovery usually
finally results, but a fatal issue is possible.
It is a presence of bacteria in bloodstream. It is transient and usually without clinical
symptoms. Bacteraemia happens quite often but bacteria are damaged by the host immune
system, which eliminates them and prevents from harmful effect.
It is a spread of bacteria and/or their toxins to the bloodstream, and contrary to bacteraemia,
causes a severe clinical condition, which might be even life threatening. In the past, it was
caused typically by streptococci and pneumococci; today a more common cause of sepsis is
a Gram negative bug which is associated with infections of digestive or urinary systems or
coming from infected foreign bodies (catheters, endoprostesis, etc.). Septicaemia is clinically
presented with shivering, an increase of temperature and general restlessness, exanthema
and small capillary bleeding. The treatment requires surgical intervention in the infection site
(wound, biliary system, abdominal cavity with peritonitis, etc) and a proper medical treatment.
When the condition is not successfully treated, it leads to toxic shock.
Specific types of infection
Gas gangrene – an anaerobic infection caused by Clostridium perfringens.
Necrotising fasciitis and synergistic spreading gangrene (Fournier´s gangrene) – caused by
mixture of streptococci, staphylococci, coliforms and anaerobes
Pseudomembranous colitis – Clostridium difficile infection
Gramnegative infection
Mycotic infection
Tetanus is a rare infection caused by Clostridium tetani, an anaerobic Gram–positive rod that
produces a neurotoxin. It affects peripheral nerves and travel to the spinal cord where it
blocks inhibitory spinal reflexes. Clostridium is found widely in the environment, e.g. in soil
and faeces, and its port of entry is usually a wound (most dangerous can be deep wounds
made with a foreign body, necrosis).
An incubation period is 4–14 days and tetanus is then presented with spasms in a cranio–
caudal direction. Clinically we can see typical symptoms such as trismus, risus sardonicus
and opistotonus (a severe hyperextension of the neck and the back due to spasm). A patient
dies for asphyxia due to convulsion of breathing muscles and laryngospasm. Consciousness
is not altered during the whole period. The mortality rate can reach up to 60%.
In the prevention of tetanus, proper surgical wound care and active and passive
immunization play the most important role.
Active immunization = vaccination
It is provided by tetanus toxoid ALTEANA ® 0.5 mg administered intramuscularly (to the
deltoid muscle).
Regular – all children should be immunized and this is repeated after 6 weeks and 6
months after the initial dose. Booster doses should be given at 10–year intervals.
Irregular – after any injury or wound puncture, new trauma
Passive immunization
It is provided by anti–tetanus immunoglobulin – TEGA 2 mls (250 Units) administered
All patients with a new trauma should get a booster dose unless it has been given to them
within the last 5 years.
The contaminated and penetrating wounds should be debrided and prophylactic penicillin
administered. The tetanus toxoid booster dose should be given only to the previously
immunized patient. If a patient has not been yet immunized he/she should be given a human
anti–tetanus immunoglobulin.
Remember: Any vaccination should be properly recorded !!! Patient must obtain a
warrant of vaccination, or at least proper document.
Definition: Infection acquired in the hospital setting.
Before 1988 the infection was only considered nosocomial if it started 48–72 hours after
admission to the hospital. Nowadays, nosocomial infections also include wound infections
within 30 days after surgery, in case of indwelling catheter 7 days, joint prosthesis within 1
Principles of the origin and existence of nosocomial infection:
High susceptibility of the organism
Reduced immunity (also artificially)
The abolition of barriers
Agents may have low resistance to survival, but high resistance to antibiotics and disinfecting
The most frequent ones are urinary tract infection (42%) wound infection after surgery (22%),
pneumonia (11%), septicaemia and others.
The origin of nosocomial infection can be endogenous or exogenous.
Endogenous – caused mostly by bacteria, which are present in a body before
patient‘s hospitalization. Due to medical intervention they can break the natural
barriers. Microorganisms can also colonize the patient without any harmful effect
during hospitalization and cause an infection later on.
ƒ Patients on ICU – gram–negative bacteria (Enterobacter, Pseudomonas),
pneumonia, micro–aspiration of the unconscious patient
Exogenous – caused by bacteria or viruses, which may survive for a long time in
hospital and transmitted from the staff (contaminated hands), from inhalators, liquid
soap, contaminated endoscopes, showers, etc.
Typical examples of nosocomial infection causing a lot of problems are:
Clostridium difficile – nosocomial diarrhoea (pseudomembranous colitis) can be
endogenous or exogenous
Wound infection caused by MRSA (Methicillin–resistant Staphylococcus aureus)
Calicivirus and rotavirus epidemics
The number of nosocomial infections is increasing due to a lot of factors such as prolonged
hospitalization, invasive diagnostic and treatment methods, ageing of patients and having
more patients on immunosupression. Nosocomial infections cause substantial morbidity and
mortality, make the hospital stay longer and increase a direct patient–care cost.
The fight against the infection is primarily medical, microbiological, but also it is hygiene and
social problem. All precausions should be done during the whole hospitalization of any
The most serious are infections caused by resistant micro – organisms.
MRSA: high incidence in the U.S., resistant to beta–lactams, MAK, TET, sensitive. to VAN,
TEI, improper MRSA – sensitive. to AM / INH, wound colonization, oral cavity, nose, etc.
VISA, GISA, VRSA, GRSA, VRE (vancomycin–resistant Enterococci)
ESBLY (extended spectrum beta–lactamase, especially in Klebsiella, E. coli) resistant to
beta – lactams except penems, IMC, colonization and infection of wounds, etc.
multi–G–bacteria (Pseudomonas, Acinetobacter, Serratia)
IMC, the UPV airways, catheters
candida resistant (C. krusei, C. glabra)
Remember: It is necessary to report all nosocomial infections!!! Every facility must
have a register of nosocomial infection and must follow the incidence of this
unwanted complication.
In contrast to the uniforms long required of nurses, surgeons did not wear any kind of
specialized garments until well into the 20th century. Surgical procedures were conducted in
an "operating theatre" – an amphitheatre – or auditorium–type room with a raised table at
centre stage and several rows of seats to allow students and other spectators to observe the
case in progress. The surgeon wore his street clothes, with perhaps a butcher's apron to
protect his clothing from blood stains, and he operated barehanded with non–sterile
instruments and supplies. (Gut and silk sutures were sold as open strands with reusable,
hand–threaded needles; packing gauze was made of sweepings from the floors of cotton
mills.) In contrast to today's concept of surgery as a profession that emphasizes cleanliness
and conscientiousness, at the beginning of the 20th century the mark of a busy and
successful surgeon was the profusion of blood and fluids on his clothes.
With the "Spanish flu" pandemic of 1918 and the growing medical interest in Lister's
antiseptic theory, some surgeons began wearing cotton gauze masks in surgery – however,
this was not to protect the patient from intra–operative infection, but to protect the surgeon
from the patient's diseases. Around the same time, operating theatre staff began wearing
heavy rubber gloves to protect their hands from the solutions used to clean the room and
equipment, a practice surgeons grudgingly adopted.
By the 1940s, advances in surgical antisepsis (now called aseptic technique) and the science
of wound infection led to the adoption of antiseptic drapes and gowns for operating room
("OR") use. Instruments, supplies and dressings were routinely sterilized by exposure to
either high–pressure steam or ethylene oxide (EtO) gas.
Originally, OR attire was white to emphasize cleanliness. However, the combination of bright
operating lights and an all–white environment led to eyestrain for the surgeon and staff, and
additionally, many people found the sight of bright red blood splashes on a white gown or
drape rather off–putting. By the 1950s and 1960s, most hospitals had abandoned white OR
apparel in favour of various shades of green, which provided a high–contrast environment
and reduced eye fatigue.
By the 1970s, surgical attire had largely reached its modern state: a short–sleeve V–necked
shirt and drawstring pants or a short–sleeve calf–length dress, made of green cotton or
cotton/polyester blend. Over this was worn a tie–back or bouffant–style cloth cap, a gauze or
synthetic textile mask, a cloth or synthetic surgical gown, latex gloves and supportive closed–
toe shoes. This uniform was originally known as "surgical greens" because of its colour, but
came to be called "scrubs" because it was worn in a "scrubbed" environment.
Modern scrubs
Today, any medical uniform consisting of a short–sleeve shirt and pants are known as
"scrubs". Scrubs may also include a waist–length long–sleeved jacket with no lapels and
stockinet cuffs, known as a "warm–up jacket". Nearly all–patient care personnel in the United
States wear some form of scrubs while on duty, as do some staffers in doctors' offices.
These types of scrubs can come in any colour or pattern. Scrubs featuring cartoon
characters and cheerful prints are common in pediatricians' offices and children's hospitals,
while prints for various holidays can be seen throughout the year. Some hospitals use scrub
colour as a way of quickly identifying a staff member's department, e.g. light blue for Surgery,
pink or lavender for Labour and Delivery, dark green or dark blue for Emergency, and so
forth. A few hospitals extend this convention to
non–staff and visitors in order to make these
people clearly identifiable. (For example, visitors
may wear yellow scrubs, while staffers wear blue.)
Scrubs may have the hospital's name or logo
imprinted on them (commonly on pockets or at
knees), or they can come in custom colours, e.g. a
university hospital may have scrubs in the school's
Scrubs worn in surgery, in contrast, are almost
always coloured solid light green, light blue or a
light green–blue shade. Surgical scrubs are rarely
owned by the wearer; due to concerns about
home laundering and sterility issues, these scrubs
are hospital–owned or hospital–leased through a
commercial linen service.
Scrubs are also commonly used as the basis for
"doctor" or "nurse" costumes.
Surgical gown
Scrubs are not as universal in hospitals outside of the United States, for example in most of
Europe Nurses and Midwives mostly wear a uniform of tunic and trousers or a dress. Doctors
tend to wear smart clothes with a white coat except for surgery.
Scrub caps
Scrub hats (scrub caps) have graduated from being functional to being a personalizable
accessory both in the OR and outside. Before the antiseptic focus of the 40's, hats were not
considered essential to surgery. In the forties and fifties, as a hygienic focus swept the
industry, hats became standard wear to help protect patients from contaminants of hair. Full–
face hats were even designed for men with beards. These hats have been, and continue to
be distributed by GPOs (Group Purchasing Organizations) who supply hospitals with most
In the medical fashion 'revolution' of the
scrubs by either sewing their own hats or
buying premade hats made of eclectic
Scrub caps
including the 'bouffant', a utilitarian hairnet–
like hat, and the 'milkmaid', a bonnet–like wrap around hat. Another revolution occurred
recently fortifying the fashion focus of the medical scrub industry. The blue sky scrubs 'Pony'
hat was invented in Texas for fashion conscious medical personnel. The hat holds up long
hair and is made in several styles.
Even the use of clothing is individual to certain extent according the provisions of particular
state. In the Czech Republic special clothing is prescribed for operating room and the other
for need of inpatient or outpatient department. The cap and mask (at present almost
everywhere single-use) and also special shoes belong to mandatory different color clothes of
operating theatre. The same equipment is necessary for the workplace, where are used the
invasive diagnostic-therapeutic procedures (eg. ARD) or it is a highly infectious area
(department of microbiology, treatment of infectious diseases). For other medical facilities is
also prescribed protective complete clothing and shoes.
M. Dušková
A. Open wounds can be classified according to the object that caused the wound. The types
of open wound are:
Incisions or incised wounds, caused by a clean, sharp–edged object such as a knife,
a razor or a glass splinter.
Lacerations, irregular wounds caused by a blunt impact to soft tissue that lies over hard
tissue (e.g. laceration of the skin covering the skull) or tearing of skin and other tissues.
Lacerations may show bridging, as connective tissue or blood vessels are flattened
against the underlying hard surface.
Abrasions (grazes) or excoriation are quite superficial wounds in which the top layers of
the skin (the epidermis, upper corium) are scraped off. Abrasions are often caused by a
sliding fall onto a rough surface.
Puncture wounds, caused by an object puncturing the skin, such as a nail or needle.
Cutting wounds (vulnus sectum) originates by the hit of cutting object to the body, it has
smooth edges, sharp angles, is of the same depth throughout its course or wedgelike
constricts. The edges of the wound are according to the shape of instruments, which hit
the surface of the body.
Bite (vulnus morsum) is due to bite of humans or animals. Depending on the type of
teeth and the pressing force there is a bruising wound, puncture wound, or laceration.
Very often it is the combined type of injury or loss injury. Bite wounds are often
contaminated and heal with difficulties.
Firearm wounds (vulnus sclopetarium) have the score, shooting channel and shot. The
wound, which has a score and shot (projectile passed through the body), is called a
bullet hole. These wounds are primarily infected, because the projectile enters deeply
into the tissues of organisms.
According to affected tissue can be distinguished penetrating, blunt and perforating
Penetration wounds go from the surface and enter the cavities or organs of the body.
In blunt or non–penetrating trauma, there may be an impact, but the skin is not
necessarily broken. The penetrating object may remain in the tissues, come back out the
way it entered, or pass through the tissues and exit from another area. Perforating
trauma is associated with an entrance wound and with larger exit wound. It can be
caused by a foreign object or by fragments of a broken bone. Penetrating trauma can be
serious because it can damage internal organs and presents a risk of shock and
B. Closed wounds may be dangerous as open wounds. The types of closed wounds are:
Contusions are caused by blunt force trauma that damages tissues under the skin.
Crushing injuries are caused by a great or extreme amount of blunt force applied over
a long period of time. Often they are lethal not only due to primary damage itself but also
due to secondary process, called crush syndrome. It is a serious medical condition
characterized by major shock and renal failure following a crushing injury to skeletal
muscle. It appears after the release of the crushing pressure. The mechanism is release
of muscle breakdown products – notably myoglobin, potassium and phosphorus into the
All types of acute tissue disorders and damage (for example injuries, surgical wound,
myocardial infarction) all undergo a similar reparative process. How the body repairs
damaged tissue and what factors influence the wound healing process it is necessary to
know for the check of post–op course.
Phases of Wound Healing
The entire wound healing process is a complex series of events that begins at the moment of
injury and can continue for months to years. The wound healing process has 3 phases. They
are the inflammatory phase, the proliferative phase, and the maturational phase.
Inflammatory Phase (2–5 days)
In the inflammatory phase, bacteria and debris are phagocytized and removed, and factors
are released that cause the migration and division of cells involved in the proliferative phase.
A) Hemostasis
Platelet aggregation
Thromboplastin makes clot
B) Inflammation
II. Proliferative Phase (2 days to 3 weeks)
The proliferative phase is characterized by angiogenesis, collagen deposition, granulation
tissue formation, epithelialization, and wound contraction. In angiogenesis, new blood
vessels grow from endothelial cells. In fibroplasia and granulation tissue formation,
fibroblasts grow and form a new, provisional extracellular matrix (ECM) by excreting collagen
and fibronectin. In epithelialization, epithelial cells crawl across the wound bed to cover it. In
contraction, the wound is made smaller by the action of myofibroblasts, which establish a
grip on the wound edges and contract themselves using a mechanism similar to that in
smooth muscle cells. When the cells' roles are close to complete, unneeded cells undergo
A) Granulation
Fibroblasts lay bed of collagen
Fills defect and produces new capillaries
B) Contraction
Wound edges pull together to reduce defect
C) Epithelialization
Crosses moist surface
Cell travel about 3 cm from point of origin in all directions
III. Remodeling Phase (3 weeks –2 years)
In the maturation and remodelling phase, collagen is remodelled and realigned along tension
lines and cells that are no longer needed are removed by apoptosis.
New collagen forms which increases tensile strength to wounds
Scar tissue is only 80 percent as strong as original tissue
However, this process is not only complex but fragile, and susceptible to interruption or
failure leading to the formation of chronic non–healing wounds. Delayed wound healing often
occurs in seriously ill patients, mainly with metabolic disorders (diabetes mellitus) or
arteriovenous diseases, exhausted patients (malignant tumours, severe injuries and
polytrauma, infection), and in the elderly.
Wound healing scheme
Healing by
Primary Intention:
When wound edges are directly next to one another
Little tissue loss
Minimal scarring occurs
No infection
Wound closure may be performed with sutures immediately or very early
Delayed primary closure (Tertiary Intention): the wound is initially left open, cleaned,
debrided and observed for necessary period, then it is possible to make a closure or a
skin grafting (burns).
Secondary Intention:
The wound is kept widely open and allowed to create a granulating tissue at the bed
Large tissue loss (at least skin shell)
Broader, often instable, scar
Frequently infected
Wound care must be performed daily to supress infection, to support wound debris
removal and granulation tissue formation
Delayed suture (per tertiam intention) means a wound is primarily left open. After cleaning,
the removal of devitalized tissue and follow up during the necessary period, it is possible to
make the closure by suture or if necessary by skin grafting.
E. Leamerová
Preoperative care is the preparation and management of a patient prior to surgery. It
includes both physical and psychological preparation.
Patients who are physically and psychologically prepared for surgery tend to have better
surgical outcomes. Preoperative care is extremely important prior to any invasive procedure,
regardless of whether the procedure is minimally invasive or a form of major surgery.
Various preparations are made in the days and weeks before surgery. It is often
recommended that physical conditioning and nutrition be improved as much as possible,
because good general health helps a person recover from the stress of surgery.
Eliminating or minimizing tobacco and alcohol use before undergoing surgery that involves
general anaesthesia can increase safety. Recent tobacco use makes abnormal heart
rhythms more likely to develop during general anaesthesia and impairs lung function.
Excessive alcohol consumption can damage the liver, causing heavy bleeding during surgery
and unpredictably increasing or decreasing the effect of the drugs used for general
anaesthesia. Alcohol consumption should be decreased gradually, however, because a
sudden decrease before undergoing general anaesthesia can cause harmful effects, such as
fever and abnormalities of blood pressure or heart rhythm.
Assuming a larger blood loss a patient may wish taking and preservation of own blood. Using
of own blood (autologous transfusion) eliminates the risk of infection and the majority of
reaction after transfusion. Certain amount of blood can be taken repeatedly (if necessary)
and it is possible to keep it up to the operation. The body will replace the missing blood within
1 week after sampling.
The doctor performs a physical examination and takes a medical history, which includes the
person's previous problems, recent symptoms, past medical conditions including allergies,
use of tobacco and alcohol. The person is also asked to list all pharmaceuticals currently
being taken. Non–prescription as well as prescription drugs must be disclosed, or serious
health problems could result. For example, the use of aspirin (some trade names ECOTRIN,
ASPERGUM), which a person may consider too trivial to mention, can increase bleeding
during surgery.
Tests performed before surgery (preoperative testing) may include blood and urine tests, and
an electrocardiogram. Further examination depends on parallel diseases, for example in
patients with cardiopulmonary disorders X–rays, and pulmonary function tests are also
necessary. These tests determine how well the vital organs are functioning. If organs are
functioning poorly, the stress of surgery or anaesthesia can cause problems. Preoperative
tests may also reveal an unapparent temporary illness, such as an infection, which would
require the postponement of surgery.
When admitting a patient to the hospital the surgeon reviews suggested treatment and
surgical approach to the patient. They consider the risks and benefits of operation together
and surgeon answers the patient questions. Based on this explanation a patient gives the
permission to the surgeon to perform the operation. This permission is called informed
consent. The patient reads and signs a form documenting consent. In non sui iuris person
(children under 18 years of age, irresponsible person deprived of legal capacity) or in
emergency situation in which the person is unable to provide informed consent, doctors must
contact the liable relatives or legal guardian. Rarely in the life–saving interventions, is the
operation performed before contacting the family or legal guardians. Preoperative
explanation meets the patient's need for information regarding the surgical experience, which
in turn may alleviate most of his or her fears. Patients who are well informed about what they
can expect after surgery, and who have the opportunity to express their goals and opinions,
often cope better with postoperative pain and decreased mobility.
The anaesthesiologist may meet the person before the day of surgery to review test results
and identify any medical conditions that might affect the choice of aesthetic. The safest and
most effective types of anaesthesia may be discussed as well.
Because some of the drugs given during surgery may cause vomiting, the person should
generally not eat or drink anything for at least 6 hours beforehand. Specific guidelines should
be given and vary depending on the kind of surgery. The person should ask the doctor which
of his regularly prescribed drugs should be taken before surgery. People undergoing surgery
involving the intestines are given laxatives and desifection for a day or two before the
operation; eventually the clysma may be admistered repeatedly.
Because the device that monitors the level of oxygen in the blood is attached to a finger and
reacts to the colour of nail bed, nail polish and artificial nails should be removed before going
to the hospital. Proper bath or shower of the whole body is necessary. To reduce the
preoperative anxiety hypnotics are regularly used in the evening before the day of surgery
(Diazepam ®, Hypnogen ® etc.)
Before most operations, a person removes all clothing, jewellery, hearing aids, dentures, and
contact lenses or eyeglasses and puts on a hospital gown. The person is taken to a specially
designated room (the holding area) for final preparations before surgery. The skin that will be
cut (operative site) is scrubbed with an antiseptic, which removes bacteria, helping to prevent
infection. A nurse or health care assistant may shave the operative site. A plastic tube
(catheter) is inserted in one of the veins of the hand or arm, through which fluids and drugs
are given. A drug may be given intravenously for sedation. Approximately 30–60 minutes
before the surgery a premedication is given to the patient. It usually consists of
parasympatolytics (Atropin ®), analgesics (Dolsin ®), and drugs with anxiolytic, sedative, and
antihistaminic effect. In special cases with risk of tromboembolism the low molecular
heparins as well as intravenous administration of liquids may be applied during several hours
before the surgery. When a patient with infection or in risk acquires the infection is operated
he/she must get the therapeutic or prophylactic antibiotic treatment. The intravenous
administration starts one hour prior the surgery and continues by the need.
Antibiotic prophylaxis use means an administration of antibiotics as a protection against
possible infection in non–infectious patients.
Antibiotic is always administered before the operation, using of non–toxic antibiotics,
bactericidal (or bacteriostatic able to achieve bactericidal effects in a given quantity), it is not
long – 24, maximum 48 hours.
Prophylactic use is used for reasons of parallel illnesses and with aspect to the surgery. The
overall problems include heart diseases with high and medium risk (bacterial endocarditis,
prostheses of heart valves, congenital malformations with cyanosis, condition after the heart
transplantation, hypertrophic cardiomyopathy, acquired valve defects, mitral valve prolapse
with regurgitation), impaired immune system (i.e., patients after cancer treatment, HIV
positive, after organ transplantation, decompensated diabetes mellitus), rheumatoid arthritis
treated by steroids, patients on dialysis programme. Basis of prophylaxis consists of a group
of penicillin antibiotics: Amoxicillin 2 g 1 hour before surgery (ampicillin 2 g i.m., intravenously
30 min before surgery).
In patients allergic to penicillin antibiotics: Klindamycin 600 mg 1 hour before the surgery
(Klindamycin 600 mg i.m. 30 min before operation). The second group is indications of
antibiotic prophylaxis are the surgical reasons, which mean the use in such surgeries; their
severity or scope may be in the postoperative period complicated by bacterial infections. This
is for example the extirpation of bone cysts, implantation of foreign bodies, more complex
operations in a contaminated site (oral cavity, intestine, and lung).
For the prophylaxis penicillin antibiotics, cephalosporins of first generation and lincosamids
are used the most frequently.
Finally a patient is taken on the special trolley to the operating tract.
At this point, the person may still be awake, although groggy, or may already be asleep. The
person is moved to the operating table, over, which are specially, designed surgical lights.
Doctors, nurses, and other personnel who will be near or touching the operative site
thoroughly scrub their hands with antiseptic soap, which minimizes the number of bacteria
and viruses in the operating room. For surgery, they also wear scrub suits, caps, masks,
shoe covers, sterile gowns, and sterile gloves.
Anaesthesia – regional, or general – is given.
The operating room provides a sterile environment in which the operating team can perform
The operating team consists of the chief surgeon, who directs the surgery; one or more
assistant surgeons, who help the chief surgeon; the anaesthesiologist, who controls the
supply of aesthetic and monitors the person closely; the scrub nurse, who passes
instruments to the surgeon; and the circulating nurse, who provides extra equipment to the
operating team.
The operating room gives a space for surgical performances. It typically contains the surgical
table, the operating lamp, an instrument table, coagulation, suction, anesthesiological
machine, and a monitor that displays vital signs. Aesthetic gases are piped into the aesthetic
machine. A catheter attached to a suction machine removes excess blood and other fluids,
which can prevent surgeons from seeing the tissues clearly. Intravenous fluids, started
before the person enters the operating room, are continued.
Prepare of operating field continues when patient has been under the regional or general
anaesthesia. The special disinfection agents are used (Betadine ® etc.) to make widely the
final cleaning. Then the sterile sheets limit the requisite area for the surgical approach. In
cases when the local infiltrative anaesthesia is used, this the moment of its application. And
the surgery may start… If the patient is under the local anaesthesia do not forget to inform
him/her intermittently about the intended next steps of the surgery course.
When it is finished, the polluted area is again washed, usually using the sterile inert
solutions. The dressing covers the wound and patient is waked up. Then he/she is
transferred on the trolley back to the post–op ward.
Review of Special Steps and Staff Tips for Pre–operative Management of the Patient
The purpose of the pre–operative evaluation is to identify the problems, which may increase
the operative risk and predispose to postoperative problems.
Whenever possible, pre–operative assessment should be performed prior to admission.
1. Full history: present, past illnesses, operations, and allergies, bleeding tendencies
2. Examination:
Local – concerning the present operation
General – thorough examination of all systems, especially the cardiovascular
and respiratory.
3. Laboratory tests: full blood count (FBC), blood haemoglobin, blood sugar, liver
function tests (bilirubin, hepatic transaminases), erythrocyte sedimentation rate, C–
reactive protein, and clotting screen.
E.g.: haemoglobin level–decreased in anaemia, increased in polycythaemia and
dehydratation. White cell count is increased if there is infection. Neutrophilia results
from bacterial infection, lymfocytosis from viral infection and eosinophilia from allergy.
White cell count is decreased in overwhelming infection. C-reactive protein is
elevated in inflammatory conditions, infection and tissue injury.
4. Radiographs: CXR (chest X-ray) – in all patients with cancer, cardiac, respiratory and
renal disease. CXR can show signs of chronic lung disease, cardiomegaly and
cardiac failure.
5. ECG: in all patients over the age of 40 and those with cardiac, respiratory and renal
Young fit patients may require no investigations before a minor elective operation;
specialized tests need surgical patients with other medical problems.
Anaesthesiologists – ASA grading. It attempts to quantify the risks of anaesthetizing
patients with various clinical conditions.
Class 1: healthy patient
Class 2: mild or medium systemic disease, no functional limitations
Class 3: severe systemic disease with limitations of activity
Class 4: severe systemic disease that is a constant threat to life
Class 5: moribund patient with unfarourable prognosis, the surgery is the last
option of the treatment
1. General care – same for any type of operation.
2. Special care – focused on age, current disease, other medical problems of surgical
Both general and special care is influenced by type of the operation.
3. Local care
General care
1. Obtain informed consent. It is important to talk to every patient before the operation,
explain all forms of possible treatment available for the condition, the nature of the
operation, risks and the results. Obtain the signature of the patient, parent or legal
guardian. Confirm the site of operation. Mark the appropriate side.
2. Anaesthetic premedication
3. Physiotherapy – breathing exercises, exercises influencing blood circulation. DVT
prophylaxis (deep venous trombosis prophylaxis) – compression stockings,
subcutaneous low molecular weight heparin
4. Cross–match of blood if major operation with expected blood loss
5. Nil by mouth 6 hours pre–op
6. Intravenous administration of fluids
7. Medication planning (e.g. insulin, steroids, antibiotics...)
Local care
Skin preparation: patient should take a bath, operation site should be shaved, and
preparation of the skin itself consists in application of skin antiseptics. Operation field is
rubbed on with swabs 2–3 times; operation field is lined with sterile sheets.
Special care
Special care is focused on medical problems in surgical patients and correction of
abnormalities resulting form current disease.
Special care is needed in
1. Patients at extremes of life in elderly, newborns and infants. Smaller dose of
narcotics, sedatives and analgesics are needed.
2. Obese patients. Obesity often results in poor healing, higher incidence of respiratory
3. Patients with allergy. Unsuspected reactions may occur (sensitivity to surgical
4. Patients with malnutrition, vitamin deficiency, immunosupression...
5. Patients using drugs e.g. anticoagulant therapy, insulin…. Adjust anticoagulant
therapy, conversion from warfarin to heparin over the peri–operative period.
Medical problems in surgical patients
Cardiac, respiratory, renal, hepatic, haematological, endocrine
1. Cardiovascular problems
Cardiology opinion is necessary in patients with angina, cardiac failure, arrhythmias, valve
heart disease, hypertension, cerebrovascular disease. Elective surgery should be delayed 6
months after myocardial infarction, better to say till full cardiopulmonary compensation.
Cardiac failure should be stabilised at least 1 month before surgery. Mild hypertension
without renal or cardiac complications does not significantly affect surgical risk. Control blood
pressure (BP) at 160/95. Check potassium level (K+) in serum of patients on diuretics.
Patients with valve heart disease and prosthetic valves need prophylactic antibiotics. Chronic
anticoagulant therapy should be converted to heparin. Discontinue warfarin 3–4 days
preoperatively and start heparin or low–molecular weight heparin.
2. Respiratory disease
This is a major cause of postoperative problems in elderly. Preoperative tests should include
CXR. In major operations lung function tests, spirometry, and sputum culture. Peri–operative
management: stop smoking. Preoperative physiotherapy, breathing exercises, antibiotics,
nebulisation, avoid narcotic analgesics, postoperative physiotherapy, and early mobilisation.
3. Renal disease
Impairment of renal function shows raised urea or creatinin. It is necessary to refer to
nephrologist. Important is adequate pre–operative hydratation. Caution with nephrotoxic
drugs like for example gentamicin.
4. Hepatic disease
There is high incidence of morbidity and mortality by cirrhosis due to anaemia, electrolyte
hypertension. Defective synthesis of clotting factors and thrombocytopenia (hypersplenism)
may result in excessive bleeding.
Hepatitis: little risk in hepatitis A in the past, hepatitis B, C may be carried permanently.
Check HbsAg, liver function tests LFT´s (bilirubin, hepatic transaminases, albumin, and
alkaline phosphatase), clotting screen–platelet count, protrombin time (PT), tromboplastin
Coagulation defect and protein deficiency should be corrected. Avoid hepatotoxic drugs and
drugs metabolised by liver.
5. Endocrine disease
Diabetes mellitus affects many systems. Principles of management of diabetes in peri–
operative period depend on whether they are insulin dependent, on oral hypoglycaemics or
controlled by diet.
In insulin dependent patients depot insulin is replaced with short–timed insulin in intravenous
infusion (glucose level should be between 4–10 mmol/l). Check glucose level regularly.
Patients using oral hypoglycaemics should be converted to insulin in major surgery. In minor
surgery omit oral hypoglycaemic agent. Regular check of glycaemia is necessary.
Instruction to nurses
1. The site of the operating field should be shaved.
2. Removals of all items, which are not firmly, fasten to the body, for example dentures,
jewellery, etc.
3. Pre–op diet means nil orally for patient from 12 midnight on day before surgery.
Bowel preparation for surgery of colon.
4. Exceptionally catheters, cannulation of central vein in major surgery, introduction of
nasogastric tube.
5. Premedication.
6. Prophylactic antibiotics.
M. Dušková
The surgery is a procedure, realised by the team of doctors, nurses, and additional staff.
The surgical team is a unit providing the continuum of care beginning with preoperative care,
and extending through peri–operative (during the surgery) procedures, and postoperative
recovery, however during surgery it is led by one surgeon performing the most critical work
himself while directing his team to assist with.
Each specialist of the team, whether surgeon, anaesthesiologist or nurse; has special
training. It may be different according to the regulations and rules of particular country.
After completing the medical school a surgeon receives further specialized training. In the
Czech Republic it lasts at least 5 years. He starts with the assisting to the senior surgeons,
later he provides surgery under their supervision, and finally he performs operations
independently. There exists a list of obligatory surgeries one has had to do during the
training as well as special courses, stays at different subspecialties etc. When the candidate
matches all specified conditions this time finishes with oral and practical examination. Based
on this training and examination, both with the responsibility of Institute of Postgraduate
Education in the Health Care and Ministry of Health, surgeon applies and obtains the license
for practice from Medical Chamber.
An anaesthesiologist has to complete five years of post–medical school training in
anaesthesia. Similarly like in surgery anaesthesiologist starts with observing, then she/he
continues with simpler procedures with supervision, and finally she/he is independent
specialist. Anaesthesiologists usually further specialize in certain surgery specialties, such as
paediatric anaesthesia, cardio surgical anaesthesia etc. The anaesthesiologist is involved in
all three phases of surgery: preoperative, intra–operative, and postoperative management.
Nurses pass an education and training in the
specialized schools. College must complete the
medical focus (Higher School Health), or a bachelor s
degree with a medical focus. In that time they are
ready to take care for patients under the supervision
education, they can specialize (paediatric nurse,
anaesthetist nurse, operating room nurse etc.) The
operating room nurse takes care of material and
instruments during surgery and also she/ he may
The operating theatre nurse
assist the surgeon. Operating room nurses may be
specialised in various surgical branches.
The nurse anaesthetist takes care of the patient before, during, and after surgical
procedures. The nurse constantly monitors every important function of the patient's body and
assists the anaesthesiologist to ensure maximum safety and comfort for the patient.
surgery suite, also called
surgery centre, is the unit of
procedures are performed.
designed and equipped to
provide care to patients with
a range of conditions, or it
equipped to provide care to
Operating theatre
wide spectrum of patients or, on the contrary, it is supposed for highly specialized operations.
Operating rooms are sterile environments. Based on level of infection at the surgical site they
can be divided to the aseptic (so called clean), semi aseptic (semi clean) and septic (dirty).
Also they can differ according to necessary equipment for particular speciality (i.e. plastic
surgery, ophtalmology, otorhinolaryngology, neurosurgery, cardiosurgery etc.) or to type of
surgery (emergency, acute, elective etc.).
The surgery suite unit is closed, consisting of entry lobby,
hygiene filter (cloakrooms with bathrooms and WC), inner
lobbies, recovery and scrub rooms, operating theatres,
additional auxiliary rooms like doctor’s office and nurse’s
office, personnel restrooms, handy warehouse etc.
All personnel wear protective or special clothing called
scrubs. They also wear special shoes or shoe covers,
masks, caps, eye shields, and other aids to prevent the
spread of germs in both directions (from staff to patient, and
from patient to staff). The operating room is brightly lit and
the temperature is semi cool; operating rooms are air–
conditioned with microbial filters to help prevent infection.
Putting on surgical gown
An operating room has to have special equipment. This obligatory equipment may be
different according to the regulations and rules of particular country. In the Czech Republic
the emergency resuscitative devices, including the suction, operating table, surgical lights
and device for coagulation are the essential needs. In case of general anaesthesia
resuscitative anaesthesia equipment and patient monitoring equipment are necessary.
The patient is brought to the operating room on a trolley or wheelchair or bed with wheels
(called a gurney). Then he is transferred to the operating table, which is stright and narrow
and which has safety straps to keep him or her positioned correctly. The table can be
positioned according to the convinience of the surgeon, certain operation and the patient.
The monitoring equipment and anaesthesiological machine are usually situated by the head
of the patient. The anaesthesiologist commonly sits or stands by the apparatus, checks the
patient's condition and carries on the anestesiological treatment.
Anaesthesia and Resuscitative Equipment
1. Ventilator (also called a respirator) – assists with or controls pulmonary ventilation.
Ventilators consist of a flexible breathing circuit, gas supply, heating/humidification
mechanism, monitors, and alarms. They are microprocessor – controlled and
programmable with regard to regulation of the volume,
pressure, and flow of respiration.
2. Infusion pump – device that delivers fluids intravenously
through a catheter. Infusion pumps employ automatic,
continuous pharmaceuticals and liquids like infusions or
blood transfusion or plasma transfusion to the patient.
Infusion pump
Life Support and Emergency Resuscitative Equipment
Crash cart – also called resuscitation cart or code cart. A crash cart is a portable cart
containing emergency resuscitation equipment for patients with signs of the failure of vital
functions. The emergency equipment includes a defibrillator, airway intubation aids,
resuscitation bag/mask, and pharmaceuticals. Crash carts are strategically located in the
operating room for immediate accessibility.
Patient Monitoring Equipment
Acute care physiologic monitoring system comprehensive patient monitoring systems
that can be configured to continuously measure and display various parameters via
electrodes and sensors connected to the patient. Parameters monitored may include the
electrical activity of the heart via an ECG, respiratory (breathing) rate, blood pressure
(non–invasive and invasive), body temperature, cardiac output, arterial haemoglobin
oxygen saturation (blood oxygen level), and end–tidal carbon dioxide.
Pulse oximeter–monitors the arterial haemoglobin oxygen saturation (oxygen level) of
the patient's blood with a sensor clipped over the finger or toe.
Other Operating Theatre Equipment
Disposable equipment includes urinary catheters to drain urine during surgery, catheters
used for arterial and central venous lines to monitor blood pressure during surgery or
withdraw blood samples), endotracheal tubes, and monitoring electrodes.
Diagnostic equipment
The use of diagnostic equipment may be required in the operating theatre. Mobile X ray units
are used for bedside radiography. Handheld portable clinical laboratory devices, called
point–of–care analyzers, are used for blood analysis.
In highly special branches there are necessary some very special devices like for
example in cardiosurgery:
Heart–lung bypass machine, also called a cardiopulmonary bypass pump – takes over for
the heart and lungs during some surgeries, like valve diseases, aneurysm, bypass,
transplantation, tumours. Its task a) is substitution of heart and lung function during the
surgery, b) control of circulation and oxygenation of blood, c) allowance to regulate the
temperature – the heart activity is replaced by a rotary pump and pulmonary function by
oxygenating unit.
The principle of extracorporeal circulation: venous blood of the patient is drained using the
pump by the venous cannula from the right atrium or by two cannulas introduced into the
upper and lower vena cava to the oxygenating unit with reservoir. Here blood is arterialised
and it is forced by the pump into the arterial bloodstream using the cannula introduced into
the ascendent aorta. A principle of hemodilution is applied with the whole system of
extracorporeal circulation filled by crystaloids in such volume that after mixing with blood
hematocrit fell down. Dilute blood penetrates into the capillary network of the body with less
resistance and thus improves tissue perfusion.
Intra–aortic balloon pump – a device that helps reduce the heart's workload and helps
blood flow to the coronary arteries for patients with unstable angina, myocardial infarction, or
those awaiting organ transplants. Intra–aortic balloon pumps use a balloon placed in the
patient's aorta. The balloon is on the end of a catheter that is connected to the pump's
console, which displays heart rate, pressure, and electrocardiogram (ECG) readings. The
patient's ECG is used to time the inflation and deflation of the balloon.
In some special branches several special devices may be need for example in neurosurgery
or traumatology further monitoring can be done:
Intracranial pressure monitor – measures the pressure of fluid in the brain in patients with
head trauma or other conditions affecting the brain (such as tumours, oedema, or
haemorrhage). Intracranial pressure monitors are connected to sensors inserted into the
brain through a cannula or bur hole. These devices signal elevated pressure and record or
display pressure trends. Intracranial pressure monitoring may be a capability included in a
physiologic monitor.
According to the description above it is clear the run and operation of surgical suite is
very expensive.
Therefore the Operating Theatre Management is very important. Operational Operating
Theatre Management focuses on maximizing operational efficiency at the facility, i.e. to
maximize the number of surgical cases that can be done on a given day while minimizing the
required resources and related costs.
Governing Principles of Operating Room Management
1) Ensure patient safety and the highest quality of care
2) Provide surgeons with appropriate access to the OR
3) Maximize the efficiency of operating room utilization, staff, and materials to reduce costs
4) Decrease patient delays
5) Enhance satisfaction among patients, staff, and physicians.
M. Haas
20th century and 21st century are characteristic with rapid progress in all branches of human
activities including the medicine. Many new devices have during this time been developed to
help doctors with establishing their diagnoses or healing patients.
Zacharias Jansen set together the first microscope in 1590 in the Netherlands. In 1610, on
the basis of Jansen design Galileo Galilei was interested in microscopy. Anton van
Leeuwenhoek invented first microscope with a magnification of 200 times in 1676. It was
simple microscope with a singular lens.
The work of a British geologist Robert Hook Micrographia was an important turn in the
development of microscopy. In the book published in London in 1665 he described the
construction of the microscope with a separate lens, eyepiece and a lighting device. In
addition, there was included a lot of views obtained using the microscope, which were first
documented device options in scientific research.
The company Carl Zeiss was the first who started factory production of microscopes (1847).
Modern microscope has more than a single lens. It is
called compound light microscope. The light transmits the
image to the observer’s eye.
The modern microscopes are made up of modules.
Modules provide the required functions which can be used
for wide range of purposes. The operation field is
illuminated by fiber optic cables. To the microscope can be
equipped with video camera and the operation field san be
seen on a television display.
Optical microscopy normally achieves magnification 50× to
1000×. The maximum theoretical magnification is about
2000× and already hampered by physical barriers due to
limit of the length of light waves. The device has two
binoculars, one for the surgeon and one for the assistance,
each binocular is independent.
Operating microscope
Compound microscope
Has one beam path, but it may split into two parts (one for each observers eye –
binocular vision)
High resolution but no depth perception
Stereo microscope
Uses two separate light beams to get true 3–D image of observed object
Ideal for surgery but has limited resolution
Magnifying glasses
are personalized for each surgeon. Two types of glasses exist, according to lenses
Kepler type and Galileo type. The glasses can be equipped with CCD camera and the
operation field can be displayed on monitor.
For use in surgery it was nessesary to develop:
The tips of the instruments are fine enough to handle small vessels, nerves and the
suture. Instruments handles are not made very small so they can be easily manipulated.
It was the only limiting factor for microsurgery before 1960s because there was no such
a thin suture material to perform microsurgery. Commonly used sutures are 9–0, 10–0,
and 11–0.
Microsurgery is surgical technique, which is currently used in many surgical speciaties
ophalmology etc.). Microsurgery requires an operating microscope or magnifying glasses,
special instruments and suture.
The history of microsurgery began in 1960s. The first micro vascular surgery was described
by neurosurgeon J. Jacobson. Using microscope he performed anastomosis of vessels of 1.
4 mm in diameter (today’s routine anastomosed vessels are about 1.0 mm in diameter). The
first revascularization (the process of restoring the function of an affected organ) was
performed by hand surgeons Kleinert and Kasdan in 1963. It was the revascularization of a
partial digital amputation. The first human microsurgical transplantation was performed in
1968 by J. Cobbett.
Free tissue transfer
A surgical reconstructive procedure. Donor tissue is disconnected from its feeding artery
and vein and is transferred to recipient place, where anastomosis of artery and vein with
the recipient bloodstream is made using microsurgical technique.
Common donor autologous regions include rectus abdominis muscle, latissimus dorsi
muscle, fibula etc. It is an autologous material unlike the organ transplantation, that
replace the functional loss but it has an allogenic origin and thus it is determined by the
life immunosupression.
Autologous free flaps are used for reconstruction of breast after cancer resection,
traumatic tissue loss, congenital tissue absence etc.
Reattachment of a completely detached body part (fingers and thumbs are most
Involves restoring blood flow, restoring the bony skeleton and connecting tendons and
nerves as required
functional demands of the amputated specimen is paramount in guiding which
amputated pieces should and should not be replanted, also important is the patient
ability to cooperate with the long rehabilitation process
only a piece or a portion may be necessary to obtain a certain functional result, or in the
case of multiply amputated fingers, a finger or fingers may be transposed to a more
useful location to obtain a more functional result
rigid or flexible tube
A light delivery system to illuminate the inspected object
A light source (normally outside the body)
Lens system
Additional channels for instruments or manipulators
Endoscopy is a minimally invasive diagnostic medical procedure
Endoscopic device
that is used to assess the interior surfaces of an organ by inserting a tube into the body.
Endoscopy also enables taking biopsies and retrieval of foreign objects. Most of the
examinations are performed under neurosedation or with topical anesthesia. There are two
types of endoscopes: rigid and flexible.
Rigid endoscopy
Sigmoideoscopy : probably the most commonly used rigid endoscopy, 25 or 30 cm
long, examination usually carried out in left lateral position
Oesophagoscopy: useful for removing of foreign bodies from oesophagus, in other
indications has been superseded by the flexible instruments
Cystoscopy: was useful for retrograde catheterization of vesica urinaria, widely
superseded by the flexible scope
Laparoscopy: widely used in general surgery, particularly for minimally invasive surgery
(e.g. cholecystectomy, appendicectomy)
useful for diagnosis of the pathological process and taking of biopsy
Flexible endoscopy
Gastroscopy: used with intravenous sedation and a pharyngeal local anesthetic spray,
a clear view can be obtained of the oesophagus, stomach, duodenum and the ampulla
of Vater, has many uses (GI bleeding tracing, injection of oesophageal varices etc.)
Colonoscopy: allow to inspect the whole of the colon after adequate bowel preparation,
polyps can be removed by a wire snare or diathermy, biopsies can be carried out using
the grasp
Bronchoscopy: narrow fiber optic bronchoscopes can be passed under local
anesthetic, mainly used for diagnostic purposes
Other flexible endoscopes: cystoscopes, sigmoideoscopes, choledochoscopes,
arterioscopes etc.
Flexible endoscope
Perforation, haemorrhage at the site of biopsy taking or surgical procedure, pulmonary
aspiration, infection
They are "scalpels of light" that may offer a new alternative for
some surgical procedures. Lasers can be used to cut, burn, or
destroy abnormal or diseased tissue; shrink or destroy lesions
or tumours; sculpt tissue; and seal blood vessels. Lasers may
help surgeons perform some procedures more effectively than
other traditional methods. Because lasers cause minimal
bleeding, the operative area may be more clearly viewed by
the surgeon. Lasers may also provide access to parts of the
body that may not have been as easily reached manually.
The first working laser was introduced in 1960. The device was
initially used to treat diseases and disorders of the eye, whose
Laser surgery
transparent tissues gave ophthalmic surgeons a clear view of
how the narrow, concentrated beam was being directed. Dermatologic surgeons also helped
pioneer laser surgery, and developed and improved upon many early techniques and more
refined surgical procedures.
The three types of lasers most often used in medical treatment are the:
Carbon dioxide (CO2) laser. Primarily a surgical tool, this device converts light energy to
heat strong enough to minimize bleeding while it cuts through or vaporizes tissue.
Neodymium: yttrium–aluminum–garnet (Nd: YAG) laser. Capable of penetrating tissue
more deeply than other lasers, the Nd: YAG makes blood clot quickly and can enable
surgeons to see and work on parts of the body that could otherwise be reached only
through open (invasive) surgery.
Argon laser. This laser provides the limited penetration needed for eye surgery and
superficial skin disorders. In a special procedure known as photodynamic therapy (PDT),
this laser uses light–sensitive dyes to shrink or dissolve tumours.
discoloration, and skin changes due to aging, and removing
benign, precancerous, or cancerous tissues or tumours. The rule
is tissue taking for the histological examination.
Most laser surgeries can be performed on an outpatient basis, and
patients are usually permitted to leave the hospital or medical
office when their vital signs have stabilized.
Like traditional surgery, laser surgery can be complicated by
hemorrhagie, infection, perforation of an organ or tissue etc. Laser
surgery can also involve risks that are not associated with
traditional surgical procedures. Being careless or not practicing
Nd: YAG laser
safe surgical techniques can severely burn the patient, destroy
healthy tissue or damage eyes etc. These injuries can be permanent, thus it is necessary to
keep the rules for safety manipulation with lasers and to use the protective aids like for
example eye shields while undergoing or performing laser surgery.
In the world of science and technology the robot is defined as independently working
machine performing intended tasks. Among machines robot like belong: manipulator – a
machine not having its own intelligence, which is typically remote controlled.
Droid is any intelligent and automatic robot.
Android is a robot similar to humans;
Kyborg (cybernetic organism) is a robot or
android having implanted brain of live being (this
being had to exist before, a machine with a
biological brain is not a kyborg)
From this it is clear that the surgery has not a robot
in the sense of the word, but the remote controlled
machine without intelligence – manipulator with
surgical instruments.
Robotic surgery use robots for surgical operation.
Major potential advantages of robotic surgery are
precision and miniaturization. First robot was used in
Surgeon console
1985 to place needle for a brain biopsy. In 1988 was robot used to perform prostatic surgery.
In 1999 the world’s first robotics surgery was performed as a coronary artery bypass graft at
beating heart.
The surgeon’s hand movements are scaled and filtered to eliminate hand tremor then
translated into micro movements of the proprietary instruments. The camera used in the
system provides a true stereoscopic picture transmitted to a surgeon's console. Robots enter
the body through small (usually about 1cm) entry incisions, through which surgeons use
long–handled instruments to operate on tissue within the body. As will be seen, robots do not
actually replace humans but rather improve their ability to operate through the small
Surgical robots comprise four main components: a surgeon’s console, a patient–side robotic
cart with 4 arms manipulated by the surgeon, a high–definition 3–D vision system and
detachable instruments. Surgical instruments are mounted on the robotic arms.
Surgeon console
Not in touch with patient, surgeon can view 3–D image of the surgical field,
surgeon controls robot’s arms with system’s master
Patient–side cart
Contains the robotic arms that directly contact the
patient, consist of two or three instrument arms and
one endoscope arm
Detached instruments
Today’s instruments allow the robotic arms to
Patient –side cart
The device memorizes the position of the robotic arm
before the instrument is replaced so that the second one can be reset to the exact
same position as the first
Robots can perform about seven independent movements and surgeon can
control the amount of force applied, robots has ability to filter out hand tremors
and scale movements
3–D vision system
High resolution real–time magnification with elimination of background noise
The endoscope is programmed to regulate the temperature of the endoscope to
prevent fogging during the operation
It is an interdisciplinary field that applies the principles of
engineering and life sciences toward the development of
biological substitutes that restore, maintain, or improve
tissue function or a whole organ. Tissue engineering
utilizes living cells as engineering materials (living
fibroblasts in skin replacement or repair, cartilage repaired
with living chondrocytes etc.).
The first 3–D realistic construct
‘grown’ from individual cells
centrifugation or apheresis. Solid tissue has to be digested
by enzymes and then cells are extracted in the same way as from liquid tissue.
Types of cells:
Autologous: cells obtained from the same individual to which they will be reimplanted
Allogenic: cells obtained from individual of the same species
Isogenic: cells obtained from genetically identical organism (twins, clones etc.)
Xenogenic: cells obtained from individual of another species
Primary cells: obtained from an organism
Secondary cells: obtained from a tissue bank
Stem cells: undifferentiated cells with ability to transform in any type of specialized cells
Cells have to be implanted into an artificial structure–carrier capable of supporting 3–D tissue
formation. These structures have to meet some goals such as high porosity and an adequate
pore size. It has to be constructed from natural materials and it also has to be biodegradable
so there is no need to surgical removal of the structure.
Creation of functional tissues in vitro requires extensive culturing to promote survival, growth
and inducement of functionality. The basic requirements for cell culture are oxygen, pH,
temperature, nutrients, humidity and osmotic pressure maintenance. Sometimes growth
hormones and specific metabolites and nutrients or chemical or physical stimuli are required.
Remove cells
Expand number in culture
Seed onto an appropriate
scaffold with suitable growth
factors and cytokines
Place into culture
Re–implant engineered tissue
to repair the damaged site
The typical tissue engineering approach.
Examples of engineered tissues:
Bioartificial liver device
several research efforts have produced hepatic assist devices utilizing living hepatocytes
Artificial pancreas
research involves using islet cells to produce and regulate insulin, particularly in cases of
knee cartilage
Stem cells
undifferentiated cells. Their basic
and characteristic attribute is self–
renewal and also an ability to
differentiate into diverse cellular
types. We distinguish embryonic
and adult stem cells.
Embryonic stem cells
Embryonic stem cells can differentiate into almost all types of human cells. They are
obtained from donors of redundant embryos originated by IVF and donated to research
purposes. This type of cells is currently connected with many ethical and political problems.
They substantially limit the research and use of this material in many countries.
Adult or somatic stem cells are found among already differentiated cells within the tissues
and organs. These stem cells can transform in main specialized cell type of finding place.
The basic function of adult stem cells in the organism is to maintain and to repair the tissue
of the location. Just this fact became a subject of multiyear research and finally also a
material for practical use in diverse medical areas. Typical example of such an area is
haematology. Stem cells however progressively find their use also in other domains of
Many diverse tissues such as bone marrow, fat, skin, vessels or muscle can serve as a
source of multipotent stem cells. However the potential of these tissues can be considerably
limited, partly by low amount of cells as well as by problems resulting from harvest, like pain
or morbidity of donors.
New researches found adipose tissue
as a very suitable source of stem cells.
Cells harvested from this material
tissue generally fulfils the conditions of
ideal source. It is easily accessible in
demanded amount and the harvest
presents a tolerable load for patient.
Adipose tissue derived stem cells
(ATSCs) brought new possibilities in
chondrogenic differentiation of these
Somatic stem cells
orthopaedics to restore a damaged
cartilage. The newest studies found, that ATSCs can also differentiate into cells producing
insulin, somatostatin or glucagon. This offers new possibilities in treating diabetes. Its
specific use finds this material also in neurology, cardiology or dental surgery.
In plastic surgery this autologous material may serve for the reconstruction of different types
of soft tissue defects resulting from congenital faults, injuries, and tumour resections.
These cells also produce many growth factors, which have an essential importance in wound
healing. ATSCs facilitate a formation of granulation tissue and angiogenesis. Therefore they
are used to improve the perfusion and healing in post radiation cases, chronic, diabetic and
other long healing wounds.
M. Čakrtová
Bleeding, in medicine haemorrhage is the loss of blood from the circulatory system.
Bleeding can occur internally, where blood leaks from blood vessels inside the body or
externally, either through a natural opening such as the vagina, mouth or anus, or through a
break in the tissue with contact to the body surface. The complete loss of blood is referred to
an exsanguination, and desanguination is a massive blood loss. Loss of 10–15% of total
blood volume can be endured without clinical sequelae in a healthy person, and blood
donation typically takes 8–10% of the donor's blood volume.
The term hemorrhage comes from the Greek haima – blood, rhegumai – to break forth – a
free and forceful escape of blood.
Bleeding can be caused by injury or can occur spontaneously. Spontaneous bleeding is most
commonly cause by problems with gastrointestinal or urogenital tract.
Blood coming from an open wound, haematoma, bruising, shock, paleness, clammy skin,
dizziness, rapid pulse, low blood pressure, shortness of breath, weakness, confusion or
decreasing alertness.
Initial first aid – direct pressure will stop most external bleeding from open wounds.
It is the act of vomiting blood. The blood may have been swallowed after nosebleed or
tonsillectomy (brown colour like coffee – grounds) or arises from bleeding in oesophagus,
stomach, or duodenum (looks bright red). The most common causes are gastric or duodenal
ulcers or varicose oesophageal veins.
Hemoptysis is coughing up of blood, which is in the sputum (bright red or dark red). It could
be due to infection or lung cancer.
It is the presence of blood in urine (appears red, pink or tea coloured). It is a result of injury
or disease.
Melaena or rectorrhagia
It is blood in the stool. Melaena appears like black tar, coming from the bleeding of upper
part of GIT (gastric or duodenal ulcus). If it is pure bright red blood, thus it is a signal of
bleeding from lower part of GIT (rectum, sigmoideum, colon), which may be mainly caused
by haemorrhoids, tumours, fissura ani or injury.
Vaginal bleeding
Abnormally stronger may indicate gynaecological problem for example the spontaneous
Bleeding after surgery may be arterial or venous. Arterial blood is bright red and spurts in
time with the pulse. Venous blood is darker and flows steadily. Damage to minor vessels can
produce only an oozing. From the large veins there can be a massive blood loss (1 litre in 5
1. Primary haemorrhage – occurs during surgery and continues.
2. Reactionary haemorrhage – occurs in the first 24 hours. It usually results from a
slipped ligature or the removal of primary clot due to cough or increased blood
3. Secondary haemorrhage – occurs about 7–14 days after surgery due to infection,
which erodes the vessel.
Clinical features are pain in the wound, swelling in the wound, haematoma and surrounding
bruising, increased amount of blood in the drainage bottle, blood on the dressing.
The patient is cold and clammy with an increasing pulse rate. The blood pressure can fall
down, but in young patient can maintain near normal level for some time. The key to blood
loss is trend of pulse and blood pressure. The pulse and blood pressure should be recorded
every 15–30 minutes.
1. Apply pressure to obvious external bleeding point
2. Stop the suction drainage
3. Establish intravenous infusion
4. Replace lost blood volume with Haemaccel ® or Gelofusin ® until the whole blood
transfusion is available.
5. Carry out the coagulation screen, if necessary clotting factors may be replaced with
fresh frozen plasma.
6. Arrange for the patient return to the operating theatre for revision of the wound and
stop of the bleeding source.
7. Catheterise the patient and measure urine volume.
Haemostasis is the complex interaction among vessels, platelets, coagulation factors,
coagulation inhibitors and fibrinolytic proteins to maintain the blood within the vascular
compartment. The haemostatic system preserves intravascular integrity by achieving
balance between haemorrhage and thrombosis.
Physiological haemostasis
Physiological haemostasis controls blood fluidity and rapidly induces haemostatic plug
formation in order to stop or limit bleeding. Physiological haemostasis protects the integrity of
the vascular system after tissue injury. It was first described by Abu al Quasim al Zahrawi.
He also described a method how to stop the bleeding by local pressure and cauterisation.
The components of normal haemostasis include: blood vessels, platelets, plasma
coagulation factors and their inhibitors and the fibrinolytic system.
Haemostasis includes three phases of the haemostatic process: primary haemostasis,
coagulation and fibrinolysis.
1. Primary haemostasis is the result of complex interactions among the vascular wall,
platelets and adhesive proteins. It takes several seconds.
2. Secondary haemostasis (coagulation) involves a complex cascade of coagulation
factors, resulting in the transformation of fibrinogen into polymerized fibrin, which
makes a base of the clot. It takes several minutes.
3. Fibrinolysis controls fibrin dissolution as the clot attracts and stimulates the growth of
fibroblasts and smooth muscle cells within the vessel wall. It lasts from hours till days.
The test of bleeding time and clotting should be provided before every surgery.
Disorders of haemostasis
Disorders of haemostasis can be divided into:
1. Platelet disorders – idiopathic thrombocytopenic purpura
2. Disorders of coagulation – haemophilia and trombophilia
The patients with haemostatic disorders should be carefully prepared for surgery with platelet
or plasmatic coagulation factor transfer before surgery.
Surgical haemostasis
The important task for each surgery is to stop the
bleeding. The aim is to minimize blood loss and
prevent wound haematoma. For small diffuse
bleeding compression or contusion with tweezers or
clamps are used. The other possibility to stop
diffuse bleeding is electric coagulation. Small
Electrocoagulation device
vessels are ligated with resorbable material. For
greater veins and arteries the double ligation or Z–ligation (cross–stitch) of nonresorbable
material may be used. In some cases (endoscopy, neurosurgery, microsurgery) titanium clips
are used instead of ligature. These clips are left in the tissue forever.
To facilitate the performance of surgery and improvement of overview of the operational field
it is possible to reduce capillary bleeding by different ways. In certain operations of heavily
vascularised areas, especially the face and neck, it is an infiltration of tissues by solution with
addition of the adrenaline sodium in rate 1 ml of adrenaline (effective substance Epinephrine
hydrochloride 1.2 mg) to 250 ml of saline solution, or local anesthetics.
Another possibility is to reduce the flow through the operated area by the compression of
blood vessels and to create so called bloodless environment. It is possible of course in
areas, which may be set aside a circulation without the risk, i.e. the extremities. Surgery of
the extremities is usually carried out in a bloodless field. Hand bulb cuff is placed in the upper
part of the extremity, with the pressure of 20–30 kPa. There should be released every 90
minutes for at least 10 minutes.
J. Bayer
The function of bandage is either to support a device such as a dressing or splint or on its
own to provide support to the body. Bandages are available in a wide range of types, from
generic cloth strips, to specialised shaped bandages designed for a specific limb or part of
the body, although bandages can often be improvised as the situation demands, using
clothing, blankets or other material.
In common speech, the word "bandage" is often used to mean a dressing, which is used
directly on a wound, whereas a bandage is technically only used to support a dressing, and
not directly on a wound. Some specialists however use these two terms almost
interchangeably. Sometimes is also used the term covering bandages for dressings.
Bandages can be divided according to a material or function.
A dressing is a device used for application to a wound in order to promote healing and/or
prevent further harm.
Main purposes of dressings:
Stem bleeding – helps to seal the wound to expedite the clotting process
Absorb exudate – soak up blood, plasma and other fluids exuded from the wound,
containing it in one place
Ease pain – some dressings may have a pain relieving effect, and others may have a
placebo effect
Debride the wound – the removal of slough and foreign objects from the wound
Protection from infection and mechanical damage
Promote healing – through granulation and epithelialisation
Types of dressings
Modern dressings include gauzes (which may be impregnated with an agent designed to
help sterility or to speed healing), films, gels, foams, hydrocolloids, alginates, hydrogels and
polysaccharide pastes, granules and beads. Dressings can be also impregnated with
antiseptic chemicals.
In the 1960s, George Winter published his controversial research on moist healing.
Previously, the accepted wisdom was that in order to prevent infection of a wound, the
wound should be kept as dry as possible. Winter demonstrated that wounds which were kept
moist healed faster than those which were left exposed to the air or covered with traditional
Dressings should:
control the moisture content, so that the wound stays moist;
protect the wound from infection;
remove slough;
maintain the optimum pH and temperature to encourage healing.
An ideal wound dressing is one that is sterile, breathable, and encourages a moist healing
environment. This will then reduce the risk of infection; help the wound heal more quickly and
reduce scarring.
Types of Bandage – according to their objective
Protective dressing
Protects wound against secondary infection
Various sizes
Can be applied dry or can be soaked in some solution (covered with another dry
gauze layer)
Suction dressing
Suck the discharge from the wound
Dry or damp (damp has stronger sucking effect)
Compression bandages
Usually for the control of bleeding and edema
Prevent drifting of body fluids in burns
Treatment of disturbances of venous circulation
Elastic bandages, elastic plastersand
Short stretch compression bandage are applied to a limb (usually for treatment of
lymphedema or venous ulcers). The bandage is not capable of shortening around the
limb after application and is therefore not exerting ever – increasing pressure during
inactivity. This dynamic is called resting pressure and is considered safe and
comfortable for long–term treatment. Conversely, the stability of the bandage creates
a very high resistance to stretch when pressure is applied through internal muscle
contraction and joint movement. This force is called working pressure.
Long Stretch compression bandage due to their long stretch properties, the high
compressive power of these bandages can be easily adjusted, however, they also
have a very high resting pressure and must be removed at night or if the patient is in
a resting position.
Provide rest for an individual part of the body after injury or operation or inflammation
Various splints (Kramer’s splint, plastic splints etc.) and hardening material (plaster of
Paris, starch)
Supporting bandages
Support a certain part of body and help it to maintain a required position
Various splints or plaster of Paris
Extension bandages
Make up for shortened extremities
Kirschner extension (wire drilled into a bone), leather cuffs
Types of Bandage – according to the type
To be applied on the wound
Form a thin, elastic translucent layer of plastic substance
Airtight (= disadvantage)
Safeguard of the injured part of the body in relaxed position
In first aid – fixing gauye to the wound on various parts of the body or for a sling of
the upper extremity
Made of stripes of gauze for dressing of the nose or chin
Serve the fixation of sterile gauze pads on the wound
Elastic and gauze
Desault sling – fixation of an injured shoulder girdle
To immobilize parts of the body
Mostly in first aid
The braces must be lined with soft padding to prevent pressure sores no the skin
to reinforce other types of bandages
fixes other bandages (Desault bandage)
Plaster of Paris
Used for fixation of injured joints and bones
Applied directly to the skin without padding or underlayed by cotton wool and gauze
Must be controlled to check whether there are no manifestation of blood current
impairment in the peripheral part of extremity – if cyanosis, swelling or tingling
appear, bandage must be loosened
Frequently used types in general application
Roller bandages come in a variety of lengths and widths to accommodate various parts of
the body. Some roller bandages are made of self–adhering material, which is slightly elastic
and gauzelike to conform to the body. They are easier to apply and can be used for a variety
of injuries. Gauze rollers are more rigid as they are made of cotton and contain no elasticity.
Also available are elastic roller bandages. This type of roller bandage is not usually applied
to a wound dressing. Rather, they are to be used for injuries requiring compression such as a
sprain or contusion.
Triangular bandages are normally made of cotton and cut in the shape of a triangle. The
longest side of the triangular bandage is called the base; the corner directly opposite the
middle of the base is called the point; and the other two corners are called ends. This type of
bandage can be applied in two ways. Fully opened this type of bandage can be used as an
arm sling. The triangular can also be used as a cravat. A binder placed around a patient′s
body to stabilize an injured arm in a sling, or to hold splints in place. It may be applied evenly
over a dressing to supply pressure to a wound as well. Padding may be added to areas that
may become uncomfortable.
Tube bandages are applied using an applicator, and are woven in a continuous circle. They
are used to hold dressings or splints on to limbs, or to provide support to sprains and strains,
and it stops the bleed.
Adhesive tape is available in various lengths and widths. Adhesive tape is primarily used to
secure roller bandages or small dressings in place. Some people are allergic to adhesive. In
these instances using paper tape or special hypoallergenic tape would be required.
Adhesive strips come in handy for small cuts and abrasions. This item can be used as a
combination dressing and bandage.
a roller bandage, hold the roll in the
right hand so that the loose end is on
the bottom; the outside surface of the
loose or initial end is next applied to and
held on the body part by the left hand.
The roll is then passed around the body
Initial turns to secure the bandage
part by the right hand, which controls
the tension and application of the bandage. Two or three of the initial turns of a roller
bandage should overlie each other to properly secure the bandage. In applying the turns of
the bandage, it is often necessary to transfer the roll from one hand to the other. Bandages
should be applied evenly, firmly, but not too tightly. Excessive pressure may cause
interference with the circulation and may lead to disastrous consequences. In bandaging an
extremity, it is advisable to leave the fingers or toes exposed so the circulation of these parts
may be readily observed. It is likewise safer to apply a large number of turns of a bandage,
rather than to depend upon a few turns applied too firmly to secure a compress. In applying a
wet bandage, or one that may become wet, you must allow for shrinkage. The turns of a
bandage should completely cover the skin, as any uncovered areas of skin may become
pinched between the turns, with resulting discomfort. In bandaging any extremity, it is
advisable to include the whole member (arm or leg, excepting the fingers or toes) so that
uniform pressure may be maintained throughout. It is also desirable in bandaging a limb that
the part is placed in the position it will occupy when the dressing is finally completed, as
variations in the flexion and extension of the part will cause changes in the pressure of
certain parts of the bandage. The initial turns of a bandage on an extremity (including spica
bandages of the hip and shoulder) should be applied securely, and, when possible, around
the part of the limb that has the smallest circumference. Thus, in bandaging the arm or hand,
the initial turns are usually applied around the wrist, and in bandaging the leg or foot, the
initial turns are applied immediately above the ankle. The final turns of a completed bandage
are usually secured in the same manner as the initial turns, by employing two or more
overlying circular turns. As both edges of the final circular turns are exposed, they should be
folded under to present a neat, cufflike appearance. The terminal end of the completed
bandage is turned under and secured to the final turns by either a safety pin or adhesive
tape. When these are not available, the end of the bandage may be split lengthwise for
several inches, and the two resulting tails may be secured around the part by tying.
Examples of bandages:
Roller bandages:
This type of bandage is used around the
elbow joint to retain a compress in the
elbow region and to allow a certain amount
of movement. Flex the elbow slightly (if you
can do so without causing further pain or
Roller bandage for elbow
injury), or anchor a 2– or 3–inch bandage
above the elbow and encircle the forearm below the elbow with a circular turn. Continue the
bandage upward across the hollow of the elbow to the starting point. Make another circular
turn around the upper arm, carry it downward and gradually ascend the arm. Overlap each
previous turn about two–thirds of the width of the bandage. Secure the bandage with two
circular turns above the elbow, and tie. To secure a dressing on the tip of the elbow, reverse
the procedure and cross the bandage in the back
The spiral reverse bandage must be used to cover wounds of the forearms and lower
extremities; only such bandages can keep the dressing flat and even. Make two or three
circular turns around the lower and smaller part of the limb to anchor the bandage and start
upward, going around making the reverse laps on each turning, overlapping about one–third
to one–half the width of the previous turn.
Continue as long as each turn lies flat.
Continue the spiral and secure the end
when completed.
For the hand and wrist, the same
bandage as for the arm and leg (spiral
reverse bandage) is ideal. Anchor the
Roller bandage for hand
dressing, whether it is on the hand or
wrist, with several turns of a 2– or 3–inch bandage. If on the hand, anchor the dressing with
several turns and continue the bandage diagonally upward and around the wrist and back
over the palm. Make as many turns as necessary to secure the compress properly.
The spiral reverse bandage is also used for dressings of the ankle, as well as for supporting
a sprain. While keeping the foot at a right angle, start a 3–inch bandage around the instep for
several turns to anchor it. Carry the bandage upward over the instep and around behind the
ankle, forward, and again across the instep and down under the arch. Continue the turns,
overlapping one–third to one–half the width of the bandage and with an occasional turn
around the ankle, until the compress is secured or until adequate support is obtained
The heel is one of the most difficult parts of the body to bandage. Place the free end of the
bandage on the outer part of the ankle and bring the bandage under the foot and up. Then
carry the bandage over the instep, around the heel, and back over the instep to the starting
point. Overlap the lower border of the first loop around the heel and repeat the turn,
overlapping the upper border of the loop around the heel. Continue this procedure until the
desired number of turns is obtained, and secure with several turns around the lower leg.
A piece of roller bandage may be used to make a four–tailed bandage. The four–tailed
bandage is good for bandaging any protruding part of the body because the center portion of
the bandage forms a smoothly fitting pocket when the tails are crossed over. This type of
bandage is created by splitting the cloth from each end, leaving as large a centre area as
necessary. The four–tailed bandage is often used to hold a compress on the chin or on the
The Barton bandage is frequently used for fractures of the lower jaw and to retain
compresses to the chin. The initial end of the roller bandage is applied to the head, just
behind the right mastoid process. The bandage is then carried under the bony prominence at
the back of the head, upward and forward back of the left ear, obliquely across the top of the
head. Next bring the bandage downward in front of the right ear. Pass the bandage obliquely
across the top of the head, crossing the first turn in the midline of the head, and then
backward and downward to the point of origin behind the right mastoid. Now carry the
bandage around the back of the head under the left ear, around the front of the chin, and
under the right ear to the point of origin. This procedure is repeated several times, each turn
exactly overlaying the preceding turn. Secure the bandage with a pin or strip of adhesive
tape at the crossing on top of the head.
Triangular bandages:
This bandage is used to retain compresses on the forehead or scalp. Fold back the base
about 2 inches to make a hem. Place the middle of the base on the forehead, just above the
eyebrows, with the hem on the outside. Let the point fall over the head and down over the
back of the head. Bring the ends of the triangle around the back of the head above the ears,
cross them over the point, carry them around the forehead, and tie in a square knot. Hold the
compress firmly with one hand, and, with the other, gently pull down the point until the
compress is snug; then bring the point up and tuck it over and in the bandage where it
crosses the back part of the head.
Cut or tear the point, perpendicular to the base, about 10 inches. Tie the two points loosely
around the patient’s neck, allowing the base to drape down over the compress on the injured
side. Fold the base to the desired width, grasp the end, and fold or roll the sides toward the
shoulder to store the excess bandage. Wrap the ends snugly around the upper arm, and tie
on the outside surface of the arm.
Cut or tear the point, perpendicular to the base, about 10 inches. Tie the two points loosely
around the patient’s neck, allowing the bandage to drape down over the chest. Fold the
bandage to the desired width, carry the ends around to the back, and secure by tying.
Cut or tear the point, perpendicular to the base, about 10 inches. Tie the two points around
the thigh on the injured side. Lift the base up to the waistline, fold to the desired width, grasp
the ends, fold or roll the sides to store the excess bandage, carry the ends around the waist,
and tie on the opposite side of the body.
Cut or tear the point, perpendicular to the base, about 10 inches. Place the bandage, points
up, under the arm on the injured side. Tie the two points on top of the shoulder. Fold the
base to the desired width, carry the ends around the chest, and tie on the opposite side.
This bandage is used to retain large compresses and dressings on the foot or the hand.
For the foot: After the compresses are applied, place the foot in the centre of a triangular
bandage and carry the point over the ends of the toes and over the upper side of the foot to
the ankle. Fold in excess bandage at the side of the foot, cross the ends, and tie in a square
knot in front.
For the hand: After the dressings are applied, place the base of the triangle well up in the
palmar surface of the wrist. Carry the point over the ends of the fingers and back of the hand
well up on the wrist. Fold the excess bandage at the side of the hand, cross the ends around
the wrist, and tie a square knot in front.
A triangular bandage can be folded into a strip for easy application during an emergency. To
make a cravat bandage, bring the point of the triangular bandage to the middle of the base
and continue to fold until a 2–inch width is obtained. The cravat may be tied, or it may be
secured with safety pins.
Cravat Bandage for Head. This bandage is useful to control bleeding from wounds of the
scalp or forehead. After placing a compress over the wound, place the centre of the cravat
over the compress and carry the ends around to the opposite side; cross them, continue to
carry them around to the starting point, and tie in a square knot.
Cravat Bandage for Eye. After applying a compress to the affected eye, place the centre of
the cravat over the compress and on a slant so that the lower end is inclined downward.
Bring the lower end around under the ear on the opposite side. Cross the ends in back of the
head, bring them forward, and tie them over the compress.
Cravat Bandage for Temple, Cheek, or Ear. After a compress is applied to the wound, place
the centre of the cravat over it and hold one end over the top of the head. Carry the other
end under the jaw and up the opposite side, over the top of the head, and cross the two ends
at right angles over the temple on the injured side. Continue one end around over the
forehead and the other around the back of the head to meet over the temple on the uninjured
side. Tie the ends in a square knot. (This bandage is also called a Modified Barton.)
Cravat Bandage for Elbow or Knee. After applying the compress, and if the injury or pain is
not too severe, bend the elbow or knee to a right–angle position before applying the
bandage. Place the middle of a rather wide cravat over the point of the elbow or knee, and
carry the upper end around the upper part of the elbow or knee, bringing it back to the
hollow, and the lower end entirely around the lower part, bringing it back to the hollow. See
that the bandage is smooth and fits snugly; then tie in a square knot outside of the hollow.
Cravat Bandage for Arm or Leg. The width of the cravat you use will depend upon the extent
and area of the injury. For a small area, place a compress over the wound, and centre the
cravat bandage over the compress. Bring the ends around in back, cross them, and tie over
the compress. For a small extremity, it may be necessary to make several turns around to
use all the bandage for tying. If the wound covers a larger area, hold one end of the bandage
above the compress and wind the other end spirally downward across the compress until it is
secure, then upward and around again, and tie a knot where both ends meet.
Cravat Bandage for Axilla (Armpit). This cravat is used to hold a compress in the axilla. It is
similar to the bandage used to control bleeding from the axilla. Place the centre of the
bandage in the axilla over the compress and carry the ends up over the top of the shoulder
and cross them. Continue across the back and chest to the opposite axilla, and tie them. Do
not tie too tightly or the axillary artery will be compressed, adversely affecting the circulation
of the arm.
A dressing is a device used for application to a wound in order to promote healing and/or
prevent further harm.
Main purposes of dressings:
Stem bleeding – helps to seal the wound to expedite the clotting process
Absorb exudate – soak up blood, plasma and other fluids exuded from the wound,
containing it in one place
Ease pain – some dressings may have a pain relieving effect, and others may have a
placebo effect
Debride the wound – the removal of slough and foreign objects from the wound
Protection from infection and mechanical damage
Promote healing – through granulation and epithelialisation
Types of dressings
Modern dressings include gauzes (which may be impregnated with an agent designed to
help sterility or to speed healing), films, gels, foams, hydrocolloids, alginates, hydrogels and
polysaccharide pastes, granules and beads. Dressings can be also impregnated with
antiseptic chemicals.
In the 1960s, George Winter published his controversial research on moist healing.
Previously, the accepted wisdom was that in order to prevent infection of a wound, the
wound should be kept as dry as possible. Winter demonstrated that wounds which were kept
moist healed faster than those which were left exposed to the air or covered with traditional
Dressings should:
Control the moisture content, so that the wound stays moist;
Protect the wound from infection;
Remove slough;
Maintain the optimum pH and temperature to encourage healing;
An ideal wound dressing is one that is sterile, breathable, and encourages a moist healing
environment. This will then reduce the risk of infection; help the wound heal more quickly and
reduce scarring.
An ideal suture material must have tensile strength to resist breakage, good knot security,
and workability in handling, low tissue reactivity, and
the ability to resist bacterial infection. Sutures can be
divided into two broad groups: absorbable and non
absorbable. According to a structure these materials
can be also devided to monofilamentand and braided
(polyfilament). Formally existed next classification
according the origin currently does not exist any more,
as the natural (plant, animal) origin is forbidden.
Monofilament sutures cause less reaction than do
braided sutures but require more ties to assure an
Atraumatic suture material (fibre is
inserted straight into the needle)
adequate maintenance of the knot compared to braided suture. Monofilament sutures are
usually non–absorbable.
Braided suture usually incites a greater inflammatory
response but requires fewer ties to maintain the knot
integrity. These include cotton, silk, braided nylon and
multifilament Dacron. Until the advent of synthetic
fibers, silk was the mainstay of wound closure. It is the
Fibre is inserted into needle loop
most workable and has excellent knot security.
Disadvantages: high reactivity and infection due to the
absorption of body fluids by the braided fibers.
Examples of suture materials:
A. ABSORBABLE: Those that dissolve, then they are absorbed or digested by the body
cells and tissue fluids in which they are embedded during and after the healing processes.
1. Polyglycolic acid (DEXON ®): Widespread absorbable suture material of a
synthetic, braided polymer. Dexon has low rate of reactivity and infection rate, and
has excellent knot security and tensile strength. A drawback of Dexon is its high
friction that binds and snags when wet.
2. Polyglactin 910 (VICRYL ®) is an absorbable, synthetic, braided suture. It is
indicated for soft tissue approximation and ligation, and holds its tensile strength
for approximately three to four weeks in tissue. Vicryl may also be treated for
more rapid breakdown in rapidly healing tissues (Vicryl Rapide).
3. Poliglecaprone
approximation and ligation. It is used frequently for subcuticular dermis closures
of the face. It has less of a tendency to exit through the skin after it breaks down,
such as Vicryl. Monocryl is the least reactive substance of this group.
4. Polyglyconate (MAXON ®) monofilament synthetic absorbable sutures are
prepared from a copolymer of glycolic acid and trimethylene carbonate. It is used
e.g. for gynaecology or pediatric cardiovascular surgery.
5. Polyglytone (CAPROSYN ®) monofilament suture delivers a much faster
absorption rate than other USP synthetic absorbable sutures – only 56 days.
6. Polydioxanone (PDS ®) is monofilament. It absorbs slowly and there is minimal
absorption until about 90 days. However, its in vivo tensile strength reduces more
quickly to 70% at 2 weeks, 50% at four weeks and 25% at six weeks. It is widely
used for abdominal wall muscle closure where is has replaced nylon/prolene as it
does not cause chronic suture sinuses which occur with non–absorbable
B. NON–ABSORBABLE: Those suture materials that cannot be absorbed by the body cells
or fluids, and must be removed after wound healing is complete or if they are
accessible at the body surface they stay at site forever. These materials can be
synthetic organic (polyamide, polypropylene, polyester, silk) or anorganic (metal).
They are generally used to close skin.
1. Polyamide Nylon (ETHILON ®): Of all the non–absorbable suture materials,
monofilament nylon is the most commonly used in surface closures. It has minimal
tissue reactivity and resists inflections greater when compared to braided suture
materials. It has a high tensile strength that ensures wound security. The
disadvantage of nylon is the difficulty in achieving good knot security. Because of this
at least 4–5 "throws" (knots) are required to achieve a secure knot.
2. Polymer polypropylene (PROLENE ®) appears to be stronger then nylon and has
better overall wound security. However, it has a greater memory (returns to its
packaging shape) and is more difficult to work with. Polypropylene is absolutely
unresorbable material.
3. Polyester (DACRON ®) is often used in cardiovascular surgery. Its big advantages
are minimal tissue reaction, maximal visibility and greater tensile strength. It is easier
to work with and holds knots better than nylon or polypropylene. Dacron has greater
infection potential than nylon or polypropylene but less than silk or cotton.
4. Silk (MERSILK ®) Strong and handles well but induces strong tissue reaction and has
a high infection potential.
SUTURE SIZES: The size of suture material is measured by its width or diameter and is vital
to proper wound closure. As a guide the following are specific areas of their usage:
1. 1–0 and 2–0: Used for high stress areas requiring strong retention, i.e. – deep fascia
2. 3–0: Used in areas requiring good retention, i.e. – scalp, torso, and hands
3. 4–0: Used in areas requiring minimal retention, i.e. – extremities. It is the most
common size utilized for superficial wound closure.
4. 5–0: Used for areas involving the face, nose, ears, eyebrows, and eyelids.
5. 6–0: Used on areas requiring little or no retention. Primarily used for cosmetic effects.
SURGICAL NEEDLES: There are a variety of needles for wound closure. Curved needles
have two basic configurations; tapered and cutting. For wound and laceration care, the
reverse cutting needle is used almost exclusively. It is made in such a way that the outer
edge is sharp so as to allow for smooth and atraumatic penetration of tough skin and fascia.
Tapered needles are used on soft tissue, such as bowel and subcutaneous tissue, or when
the smallest diameter hole is desired.
Creeling may be either a classical when the thread is pulled through the eye of the needle (or
is it impressed into it through perforation), or needleful, which transpiercing the tissue hurts
less and leaves narrower channel, because the needle has no eye and the thread is sealed
in its end.
instrument used to hold the needle while
suturing tissue. Needle holders come in
various sizes and shapes, but for most
lacerations a standard size 4" will complete
the task. For larger, deeper wound closures a
larger needle and needle holder may be
Needle holders:
1 – Hegar, 2 – Bozemann, 3 – Mathieu, 4 – Burian
FORCEPS: consist of two tines held together at one end with a spring device that holds the
tines open. Forceps can be either tissue or dressing forceps.
Dressing forceps have smooth or smoothly serrated tips.
Tissue forceps have teeth to grip tissue. Many forceps bear the
name of the originator of the design, such as Adson tissue
Péan's forceps: a curved or straight clamp for haemostasis
Kocher forceps: a strong forceps with sharp points at the tips
and transverse serrations along the full length for holding
tissues during operation or for compressing bleeding tissue
Grasping and controlling tissue with forceps is essential to
1 – Péan, 2 – Kocher
proper suture placement. However, whenever force is applied to skin or other tissues,
inadvertent damage to cells can occur if an improper instrument or technique is used.
Surgeon must be gentle when grasping tissue, and never fully close the jaws on the skin.
Forceps: Splitting (Luer, Liston, Cleveland), costotome, grasping (Duval, Babcock, Allis,
Tweezers: anatomical, surgical, adaptation, ophalmological
SCISSORS: There are three types of scissors that are useful in minor wound care.
Iris scissors: Iris scissors are predominantly used to assist in wound debridement and
revision. These scissors are very sharp and are appropriate in situations that require very
fine control. They are very delicate and are not recommended for cutting sutures. However,
when very small sutures require removal they can be use.
Dissection scissors: Used for heavier tissue revision as necessary for wound undermining.
Suture removal scissors: Standard 6–inch, single blunt–tip, suture scissors are most useful
for cutting sutures, adhesive tape, and other dressing materials. Because of their size and
durable and practical.
The knife handle holds the blade
and is used in the debridment and
excisions during wound revision.
Knife, knife handles and blades
Common blades are the #10 blade
(used for large excisions), #15 blade (small, versatile and well suited for precise debridement
and wound revision), and the #11 blade (ideal for incision and drainage
of superficial abscesses and the removal of very small sutures). There
are special types of knives, calibrating, used for the skin graft harvest –
Watson, Humby, or dermatome.
PROBE: a slender, flexible instrument designed for introduction into a
wound cavity, or sinus tract for purposes of exploration
Towel clamp
TOWEL CLAMPS (Backhaus) secure drapes to a
patient's skin. They may also be used to hold tissue.
Hooks and retractors: tools to hold and pull the tissue
(sharp – Volkmann, bidentate, tridentate, bone, lid,
window – Middeldorf, full – Langenbeck, Kocher called
strumal, etc.)
Instruments are usually stored in the sets on special
trays or in cartridges; they are also sterilized in most
often. Composition of sets may be general (basic), or
intended for use in a particular type of operation.
Hooks and retractors:
1 – Volkmann, 2 – bidentate hook,
3 – bone hook, 4 – Lengebeck
Exceptionally or in contrast very frequently used instruments can be prepared and stored
individually in sterile packaging.
J. Bayer
The way of administration has a very important influence on the pharmacokinetic qualities of
the drug such as uptake rate, distribution or elimination.
Routes of administration can be divided into:
Topical: local effect, substance is applied directly where its action is desired
(epicutaneous, inhalational, eye, ear or nasal drops, vaginal, etc.)
Enteral: desired effect is systemic, substance is given via the digestive tract (oral, via
gastric or duodenal feeding tube, into gastrostomy, rectal)
Parenteral: desired effect is systemic, substance is given by other routes than the
digestive tract (intravenous, intraarterial, intracardial, intramuscular, subcutaneous,
intradermal, intraosseal, intraperitoneal, intrathecal, epidural, intravitreal)
Special: transdermal or transmucosal (systemic effect)
Examples of application:
Per oral administration is the most frequent, safe and the cheapest method. However some
medicaments are unsuitable for this route because they are not resistant to digestive
enzymes or aggressive changes of pH. Some drugs can also irritate the digestive tract and
induce a vomit. Using a drug in enterosolvent form, which is not dissolved until it reaches the
intestine, could reduce this fact.
Absorption from the oral mucosa is very important in the treatment of angina pectoris by
nitroglycerine. The biggest advantages of this method are the quick onset of effect and the
possibility to break further absorption by spitting out the rest of the drug. Since venous
drainage from the mouth is to the superior vena cava, there is a 100% bypass of hepatic
first–pass effect
This method is often used in children, who refused the oral form or when the drug irritates the
stomach. Another case is an unconscious patient. The biggest advantage is that the drug is
from 50% absorbed to vena cava inferior so the substantial amount of the medicament evade
the liver (first pass effect). However the rectal absorption is often incomplete, irregular and
some drugs can irritate the rectal mucosa.
suppository: a medicated mass adapted for introduction into the rectal, vaginal, or
urethral orifice of the body; suppository bases are solid at room temperature but melt or
dissolve at body temperature. Commonly used bases are cocoa butter, glycerinated
gelatin, hydrogenated vegetable oils, polyethylene glycols of various molecular weights,
and fatty acid esters of polyethylene glycol.
glycerin suppository: a suppository made up of a mixture of glycerin and sodium
stearate; used as a rectal evacuant.
Inhalation can be used as topical or systemic (parenteral) route of drug administration. The
medicament can reach the circulation very quickly because of the large absorption area in
lungs. For inhalation can be used gases, fumes, aerosols as well as solids. The main use is
general anaesthesia or treatment and prevention of asthma bronchial.
The penetration of the drug into the airways is especially impressed with the particle size:
size about 40–50 μm – catch in nose, nasopharynx
size about 30 μm – catch in trachea
size about 10 μm – catch in bronchi
less than 5 μm – reach the alveoli
Types of inhalation:
cold – T 25–36 °C J lowers the blood flow in the mucosa
indifferent – T 36–37 °C J calmative effect
warm – T 38–40 °C J increases the blood flow in the mucosa
A. Intradermal injection
It is an application of a substance into the skin on the level of dermis mostly for diagnostic
purposes (Mantoux test, alergologic tests etc.)
The way of application:
usually small amount of drug (0.1 ml)
after disinfection of the place of puncture stretch the skin and make a puncture under an
angle of 15°
after right application a whitish bud will ocurr in the place of puncture
Usual places of intradermal injections:
Shoulders in the area of deltoideus muscle
Outer and inner part of the forearm
Upper part of the chest – pectoralis major muscle
Back in the area of shoulder blades – trapezoid muscle
Outer part of thighs – quadriceps femoris muscle
B. Subcutaneous injection (onset of effect 10–20 minutes)
In a subcutaneous injection the medication is delivered as a bolus into the subcutaneous
tissue. This method is highly effective in administering vaccines and such medications as
insulin, morphine etc. The speed of absorption can be reduced by addition of
vasoconstrictive agents, if possible with regard to the characteristic of substance. For
application form a skin fold and make a puncture under a 45° angle.
Usual places of subcutaneous injections:
Outer area of the upper arm
Just above and below the waist, except the area right around the navel
Upper area of the buttock, just behind the hip bone
Front of the thigh, midway to the outer side, 10 cm below the top of the thigh to 10cm
above the knee.
Changing the injection site keeps lumps or small dents called lipodystrophies from forming in
the skin.
C. Intramuscular injection (onset of effect 5–10 minutes)
The intramuscular injection means a delivery of the medicaments directly into a muscle. The
medicaments are used in the form of solution, emulsion or suspension in the amount about
1–20 mls. For an application make a quick puncture through the stretched skin in a 90°
Usual places of intramuscular injections:
Gluteus maximus muscle
Gluteus medius muscle
Quadriceps femoris – musculus vastus lateralis muscle
Deltoideus muscle
Complications of intramuscular injections:
haematoma, puncture of a bone or nerve, abscess in subcutaneous tissue, puncture of the
vein, microembolisation after cumulating of punctures in one site, when a medicament gets
into the circulation (Hoigné syndrome in the depot form of Penicillin = May occur when the
suspension gets into the blood. It has rapid onset, but benign course. There is mental
experiences – the fear of death, auditory and visual hallucinations in color, confusion,
disorientation and dizziness, taste disturbance, tachycardia, heart palpitation), crank of a
needle, inflammation etc.
D. Intravenous injection (onset of effect in 1 minute)
This is the most direct route for the systemic administration of a drug, because it is placed
directly into the circulatory system without having to cross any membranes. The rapidity of
effects can actually be a disadvantage with this route of administration, since acute over
dosage is possible. The most common usage of the intravenous route is the administration of
anaesthetics, since the level of anaesthesia can be carefully titrated by monitoring vital signs.
Additionally, drugs that would otherwise be severe irritants to local tissue can sometimes be
administered via this route, owing to the resistant nature of the walls of the bloodstream and
the rapid dilution of the drug in the moving fluid environment.
Arm and hand veins are typically used although leg and foot veins or the scalp veins on
infants are occasionally used for intravenous therapy.
Intravenous therapy can be intermittent (bolus) or continuous (intravenous drip, infusion).
The biggest advantage of infusion is the possibility to interrupt the administration of the
medicament when undesired or toxic effects occur.
This method is not suitable for oily solutions or insoluble substances or substances that
precipitate blood constituents or haemolyse RBCs.
The way of application:
Put on the tourniquet to make the vein bulge
Draw back slightly on the syringe to aspirate blood for verifying that the needle is really
in the vein
Remove the tourniquet and inject the drug
E. Intraarterial injection
Intraarterial injection is used for e.g. vasodilatator drugs in the treatment of vasospasm or
trombolytic drugs for treatment of embolism.
It is necessary to find a suitable place where adequate collateral arterial vessels are
Femoral artery has not adequate collateral supplies
Brachial artery has not adequate collateral supplies
Radial artery has good collateral supply from the ulna artery in case of vasospasm or
Patency should be assessed before with Allen's test: the radial and ulna arteries are
occluded by firm digital pressure while the elevated fist is clenched for 20 seconds. Before
the hand is opened ulnaris artery is released only. Positive Allen test: up to 5 to 7 seconds
hand turns to red, negative Allen test: the hand remains white.
F. Intraosseous injection
The intraosseous infusion is an indirect intravenous access because the bone marrow drains
directly into the venous system. It is the second–line administration of drug (epinephrine,
bicarbonate, calcium, lidocaine, and volume expanders), fluid or blood (and marrow aspirate
drawn for laboratory analysis) through a butterfly needle directly into the bone marrow (a
"noncollapsible vein") to a hemodynamically shocked child (mainly due to diarrhea or burns)
in whom attempts to access the systemic vascular system have been unsuccessful. This
route is indicated in a child in shock or cardiac arrest when two attempts to access peripheral
vasculature have failed or when more than 2 minutes have elapsed in the attempt to gain
Disadvantages of intraosseous injection:
Injury to the epiphyseal growth plate during the performance of this technique remains a
serious problem. An insertion site of at least 10 mm distal to the tibial tuberosity is
recommended to avoid epiphyseal growth plate injury and ensure ease of insertion
Risk of bone fracture, lodge syndrome (acute limb ischemia requiring amputation),
Usually in the form of patch placed on the skin a specific dose of medication can be delivered
through the skin in the circulation.
An advantage of a transdermal drug delivery route over other types such as oral, topical, etc
is that it provides a controlled release of the medicament into the patient.
A wide variety of medicaments can be delivered this way. Well known are nicotine patches
created to help with cessation of tobacco smoking. Fentanyl patch is a user friendly way to
relieve from a severe pain. Often used are also estrogen skin patches to prevent osteoprosis
after menopause or lidocain patches to relieve the peripheral pain in Herpes Zoster etc.
A. Gel
Gel is an apparently solid, jelly–like material formed from a colloidal solution. By weight, gels
are mostly liquid, yet they behave like solids due to the addition of a gelling agent.
Dressings with gel are often used for healing of burn or other hard–to–heal wounds. Wound
gels are excellent for helping to create or maintain a moist environment. They provide
absorption, desloughing and debriding capacities of necrotics and fibrotic tissue.
Gels can also serve as reservoirs in topical drug delivery, particularly ionic drugs, delivered
by iontophoresis.
Gel form of medication is often used also with a systemic effect. For example Diazepam
rectal gel is a safe and effective treatment for acute repetitive or prolonged epileptic seizures
in children.
B. Cream
A cream is a topical preparation usually for application to the skin. Creams for application to
mucus membranes such as those of the rectum or vagina are also used.
Creams are semi–solid emulsions that are mixtures of two agents – oil and water. They are
divided into two types: oil–in–water (O/W) creams which are composed of small droplets of
oil dispersed in a continuous aqueous phase, and water–in–oil (W/O) creams which are
composed of small droplets of water dispersed in a continuous oily phase. Oil–in–water
creams are more comfortable and cosmetically acceptable as they are less greasy and more
easily washed off using water. Water–in–oil creams are more difficult to handle but many
drugs which are incorporated into creams are hydrophobic and will be released more readily
from a water–in–oil cream than an oil–in–water cream. Water–in–oil creams are also more
moisturising as they provide an oily barrier which reduces water loss from the stratum
corneum, the outmost layer of the skin.
Cream can be used as a vehicle for drug substances such as local anaesthetics, anti–
inflammatories (NSAIDs or corticosteroids), hormones, antibiotics, antifungals or counter–
C. Ointment
An ointment is a viscous semisolid preparation used topically on a variety of body surfaces.
These include the skin and the mucus membranes of the eye, vagina, anus or nose. The
vehicle of an ointment is known as ointment base. Ointments combine oil (80%) and water
(20%). This combination generally forms a more effective barrier against moisture loss than
creams and lotions so ointments tend to be better moisturizers.
Properties of an ointment base are:
1. Stability
2. Penetrability
3. Solvent property
4. Irritant effects
5. Ease of application and removal
Forms protective layer on the skin
Strong moisturizer – better at locking in moisture than creams and lotions because
contains more oil
D. Instillations – eye, ear and nose drops
Eye drops
A variety of medications can be administered in the form of eye drops for the treatment of
allergies or non–allergic eye disorders such as conjunctivitis or glaucoma.
corticosteroids, antibiotics, glaucoma medications
Eye drops may also be used during eye examinations to dilate the pupils of the eye or
administer an anaesthetic.
Ear drops
A sterile solution or suspension of medicament with local effect is directly put in the outer ear
canal. It can be based on oil, water or alcohol. Ear drops are mostly used to soften ear wax
or to treat a local inflammation.
Some formulations of ear drops are meant to be used strictly for the outer ear, and should
not be used if there is a possibility that the tympanic membrane is not intact and the fluid will
drip into the middle ear cavity. Many kinds of eye drops can be also used in the ear – but the
opposite is not true.
Nose drops
Solutions or suspensions are supposed for intranasal administration. The most frequently
used drops are decongestants. This medication promotes nasal drainage and relieves nasal
stuffiness. It is used to relieve symptoms associated with a cold, hay fever, allergies, sinus
infections and other related conditions. NSAIDs and antibiotics are causal treatment of an
Saline nasal sprays and nose drops are used to keep nasal tissues moist, relieve nasal
irritation, and help thick or dried mucus to drain. Steroid drops can be used in the treatment
of nasal polyps or hay fever.
An intranasal route can be also used for systemic administration of medication (e.g.
E. Infiltration
Infiltration is the infusion of fluid and/or medication outside the intravascular space, into the
soft tissue. Clinically, there will appear a swelling of the soft tissue surrounding the puncture,
and the skin will feel cool, firm, and pale.
Infiltration is used for application of a local anaesthesia to numb and provide pain relief to
some part of the body during minor surgery, such as debridement, incision and drainage,
repair of laceration, excisions, etc., or other medical procedures.
Relatively high drug doses or concentrations inhibit all qualities of sensation (pain, touch,
temperature etc.) as well as muscle control. Lower doses or concentrations may selectively
inhibit pain sensation with minimal effect on muscle power.
Anaesthesia persists as long as there is a sufficient concentration of local anaesthetic at the
affected nerves. Sometimes a vasoconstrictor drug is added to decrease local blood flow,
thereby slowing the transport of the local anaesthetic away from the site of injection.
Depending on the drug and technique, the anaesthetic effect may persist from less than an
hour to several hours.
R. Vobořil
Surgical drainage is a procedure with the aim to remove blood, various secretions, pus, or
gas (in the case of chest drainage) from the surgical wound, or various cavities or spaces.
Surgical drainage may be performed with help of a drain or without it.
There are two types of surgical drainage 1) natural drainage without drain, 2) artificial
drainage with drain
1) The natural drainage without drain
is a result of spontaneous perforation of the abscess. Futhermore, the natural drainage may
be established with help of incision of the abscess or by releasing of a stitch of the surgical
wound. This type of drainage is suitable, when the location of the abscess (or other focus) is
superficial. Drainage due to spontaneous perforation is usually not sufficient and it is
necessary to enlarge the opening into the abscess. Sometimes, incision or releasing of the
stitch of the surgical wound is not sufficient. Thus the arteficial drainage is necessary to
2) The arteficial drainage with a drain
is inserting an arteficial material – the drain into the surgical wound, or various cavities or
abscess, which enables to remove out the liquid or gas (chest drainage). This type of
surgical drainage usually enables the drainage according to gravity; therefore it is necessary
to drain the cavity in its lower point.
It is used to remove pus, blood or other fluids from a wound and thus it is facilitates the
healing. Even sterile body fluid may accumulate and in itself become a focus of infection.
It is possible to distinguish following ways of arteficial surgical drainage:
a) „Glove“drain is a piece of sterile surgical glove inserted into the place which
should be drained.
b) Capillary drain is a gumm tube with a piece of textile inside. Removal of liquid is
done due to capillary attraction. This type of drainage is not used frequently.
c) Tubular drain (usually tygon tube or gumm tube with perforation of the wall)
enables higher efficiency of drainage.
d) The
intended for drainage of the
chest. The Bülau drain is
placed into the pleural cavity
and the free end of the tube
water level, below the level
of the chest. In practice, the
solution is placed on the
The Bülau drainage
floor under patient‘s bed.
This allows the air or fluid to
escape from the pleural space, and prevents anything returning to the chest. It
actually enables one–way only floating of the gas or fluid from the pleural cavity
towards outside. This type of drainage is used in pneumothorax or pleural
effusion, etc.
e) Sucking drainage – this type of surgical drainage is
commonly used type of the sucking drainage is the
Redon drainage. In this modification the end of the
drain is connected to the flask with the vacuum which
enables active sucking of the liquids.
Other types of surgical drainage: Pigtail drain is
specially shaped drain (looking as a pig tail). It is
intended for drainage of deeply located abscess
(subdiaphragmatical or others). This and other types
The Redon drainage
of drains are placed under sonographical or CT control. Other drains are intended
for drainage of biliary ways. These are placed using endoscope.
Drains may be hooked to wall suction, a portable suction device (Redon drain), or they may
be left to drain by gravity. Accurate recording of the volume of drainage as well as the
contents is vital to ensure proper healing and monitor for excessive bleeding. Depending on
the amount of drainage, a patient may have the drain in place 1 day to weeks. Drains will
have protective dressings that will need to be changed daily/as needed.
is a placing a tube, catheter, into the preformed cavities, duct or vessel. Usually it leads out
the content of the cavity (for example catheterization of urinary bladder). The term of
catheterization is also used for intraluminal access into the vessels which enables to perform
arteriography (diagnostic procedure) or angioplasty and stentage of the vessel (treatment).
In most uses a catheter is a thin, flexible tube: a "soft" catheter; in some uses, it is a larger,
solid tube: a "hard" catheter.
The ancient Egyptians created catheters from reeds. "Katheter" originally referred to an
instrument that was inserted such as a plug. The word "katheter" in turn came from
"kathiemai" meaning "to sound" with a probe. The ancient Greeks inserted a hollow metal
tube through the urethra into the bladder to empty it and the tube came to be known as a
Draining urine from the urinary bladder is called as urinary catheterization. It is the most
frequent type of catheterization. Urethral catheterization may be performed as either a
therapeutic or a diagnostic procedure. Therapeutically, the aim is to decompress the bladder
in patients with acute or chronic urinary retention. Diagnostically, urinary catheters may be
placed to obtain an uncontaminated urine sample for microbiologic testing, to measure
urinary output in critically ill patients or during surgical procedures, or to measure post–void
residuals. The only absolute contraindication to urethral catheterization is known or
suspected urethral injury, usually in the setting of a pelvic fracture.
In practice the urinary catheterization is employed in hospital and nursing home settings to
maintain urine output in patients who are undergoing surgery, or who are confined to the bed
and physically unable to use a bedpan.
Patients who are unable to completely empty the bladder during urination (urinary retention),
or patients who have a bladder obstruction, may require intermittent urinary catheterization.
Disabled individuals with neurological disorders that cause paralysis or a loss of sensation in
the perineal area may also use regular intermittent catheter insertion to void their bladders.
Procedure: The genital area near the urethral opening is wiped with an antiseptic agent. A
lubricant may be used to facilitate the entry of the catheter into the urethra, and a topical
local anaesthetic may be applied to numb the urethral opening during the procedure. The
end of the sterile catheter is placed in a container. When urine flow stops, the catheter may
be moved, or the patient may change positions to ensure that all urine has emptied from the
bladder. Currently we use disposable devices only.
The main risks and complications connected with this procedure are the injury of the urethra
and/or bladder, scarring and/or stricture of the urethra, and urinary tract infection.
Next examples of cathetrisation are administration of intravenous fluids, medication or
parenteral nutrition with a peripheral venous catheter or with central venous catheter, cardiac
catheterization, epidural anesthesia etc.
E. Dřevínková
Postoperative care is very important to prevent both immediate and long–term
complications. Therefore, we should monitor the patient after operation at least once a day
and if needed even more frequently. Postoperatively there are monitored vital functions on
the recovery unit before the patient‘s transfer to the ward or on ICU in seriously ill patients.
There should be recorded an operation and completed instructions and drugs prescription
before the transfer of the patient to the ward.
We should monitor the following vital functions – airway, blood pressure, heart rate,
conscious level, temperature, respiratory rate and depth, oxygen saturation and urine
output, and of course, to assess the wound. Central venous pressure (CVP) and continual
ECG monitoring is advisable in elderly patients after a major surgery and in patients with
cardiac disease.
Key areas of postoperative care are:
a) Early mobilization especially in patients with prolonged bed rest and in risk patients
such as with diabetes.
b) Postoperative diet which should be assessed in patients where an NG tube is used;
sips of water may be administered when peristalsis returns. If fluids are well
tolerated, the NG tube can be removed and a full diet can be introduced gradually.
c) Intravenous fluids which should be administered according to the requirements, the
input and output should be monitored and recorded.
d) Urine output monitoring. If the patient has not passed any urine within 8 hours
postoperatively, a doctor should decide whether any action has to be made in terms
of catheterisation.
e) Wound assessment for possibility of bleeding or developing of late complication.
f) Analgesia, antibiotics and other routine medication necessary for postoperative
treatment and administered either intravenously or per orally.
g) Some laboratory tests such as Hb, FBC, U&E which should be done within 24 hours
after operation in patients after major procedures. Sometimes it is necessary to
perform X–rays or ECG.
Postoperative fluid management
Fluids requirements depend on the type of operation performed, whether it is maintenance
or a replacement of fluids. It also depends on the extent of operation and its severity, and on
postoperative period fluid balance (drain loss, oral intake, urine output, vomiting, loss
through an NG tube, etc.). It can be monitored by checking the heart rate, blood pressure,
total intake and output, and a urine output (minimum 0.5 ml/hour/kg of body weight). In
situations when a patient is unwell, the CVP (central venous pressure) should be monitored
as well.
Clinical symptoms of dehydration are represented by dryness of skin and mucosa,
decreased skin pressure and muscle tonus, general malaise, increased pulse and
decreased blood pressure. Keep in mind that despite ongoing dehydration the blood
pressure can be normal for a long time due to the body compensating mechanisms.
Maintenance requirements for 24 hours are 1 litre of normal saline and 2 litres of 5%
dextrose – crystalloid solutions. Potassium supplement is not usually necessary, but if the
patient is on minimal oral intake for more than 24 hours, the potassium likely needs to be
supplemented – minimum is 60 mmoll of potassium chloride. During an excess loss due to
vomiting, fistula, diarrhoea etc., the intake should be adequately increased.
If there is any blood loss, the patient needs substitution of a lost volume and blood. The
colloid fluids can be used until the blood is available. The colloid fluids are more effective
than crystalloids in maintaining of blood pressure. The indication for blood transfusion
needs to be clear because transfusion itself is not without a risk. Possible alternatives
should be used such as plasma substitution or iron therapy if necessary.
Postoperative analgesia
We should make sure that all patients after surgical procedures are pain free because an
excess pain may be a symptom of a developing complication. Good postoperative analgesia
improves respiratory functions and reduces a cardiac demand.
Patients should be informed preoperatively about the operation to relieve their pre– and
post–operative anxiety which can in return reduce the severity of postoperative pain. There
are different scales how to assess the severity of pain.
Different types of analgesia can be administered in different ways. The decision depends on
the type of operation.
Major surgery – abdominal, thoracic surgery – the opiates are required, they can
be given intravenously continuously or by patient–controlled analgesia (PCA)
system, alternatives (epidural or intramuscular injections) can be used as well
Minor surgery – hernia repair, varicose vein surgery – simple oral analgetics such
as paracetamol or non–steroidal anti–inflammatory drugs (NSAIDs), nerve blocks or
infiltration of the wound with local anaesthetic.
Postoperative nutrition
It is necessary to ensure that the patient is in a good nutritional status pre– and post–
operatively because it can prevent some possible complications. Many patients undergoing
gastrointestinal operations are malnourished which is closely linked to decrease of
resistance to infection and impaired wound healing. These patients are therefore at
increased risk of postoperative morbidity and mortality. In indicated cases patients should
have enteral nutrition preoperatively to improve their general status.
The patient should start to eat soon after most operations; in case of malnutrition or
development of such complication where they are not able to eat, the feeding regime should
be assessed. It is preferred to give an enteral nutrition because of the integrity of gut
mucosal barrier and maintenance of secretion of gut hormones and enzymes. The feed can
be given via nasogastric tube, gastrostomy or jejunostomy tube. When gastrointestinal
function is improved, the patient can have a complete polymeric feed, only if the digestive
enzymes do not work adequately, then the elemental feed is indicated.
Total parenteral nutrition (TPN) is given to some patients with a short gut, pancreatitis or a
high–output fistula. TPN is administered via CVP line, which can cause potential
complications such as vascular damage, thrombosis, line sepsis, haemopericardium and
haemopneumothorax. Therefore, we should consider with a special care if TPN is needed.
Postoperative complications
All operations carry a risk of complications. Our goal is to prevent them or minimize their
They are usually classified as:
immediate – within the first 24 hours
early – in the first 2–3 weeks postoperatively
late – any complications at any subsequent period after the discharge
Complications can be divided into:
1. general – of any operation
2. specific – of individual operations
Next classification may be to the local and general complications.
There are a lot of complications, which can happen postoperatively, some of them are more
frequent than others. To summarize possible complications, there is provided a Table
showing characteristics of various complications.
Summary of postoperative complications according to the affected body system:
1. Haemorrhage – early postoperative and secondary haemorrhage, see chapter 14
2. Wound problems – infection, wound dehiscence, necrosis, burst abdomen, incisional
hernia, haematoma, seroma, bleeding, stitch sinus, anastomotic breakdown.
3. Postoperative temperature
Postoperative temperature has various causes in relation to the time of
development after operation.
a) Peri–operatively – due to septic operation, blood transfusion, lung atelectasis
b) Within first 2 days – wound necrosis, lung atelectasis
c) Between 2 – 4 days – infection on site of intravenous access, urinary tract infection,
pulmonary embolus, pneumonia
d) 5 – 10 days postoperatively – wound infection, wound dehiscence, seroma,
dehiscence of anastomosis, intraabdominal abscess, peritonitis
Temperature needs to be treated in relation to the cause, which has to be removed.
The most important is the prevention including preoperative care, asepsis and
antisepsis during surgery, antibiotic prophylaxis when indicated and postoperative
4. Shock – see chapter Shock
5. Cardiovascular
arrhythmias, deep vein thrombosis
6. Lung – respiratory depression, atelectasis, aspiration, pneumonia, pulmonary embolus,
pulmonary oedema, pneumothorax, ARDS (adult respiratory distress syndrome)
7. Cerebral – confusion due to sepsis, hypoxia, electrolyte dysbalance, alcohol
withdrawal, stroke
8. Urinary – acute retention, urinary tract infection (UTI), acute renal failure
9. Gastrointestinal – nausea and vomiting due to paralytic ileus, mechanical obstruction,
acute gastric dilatation, constipation, pseudomembranous colitis
10. Other – pressure sores
Clinical features and management of postoperative complications
< 24
airway obstruction,
general anaestetic or
excess analgesia
< 24
inadequate fluid
replacement, sepsis
Signs and
decreased resp.
rate, altered
conscious level,
decreased blood
increased heart
rate, decreased
urine output
increase temp.,
increased resp.
rate, decreased
O2, decreased
airway at the
bases of lungs
increase temp.,
increased resp.
rate, decreased
O2, decreased
airway and
24 – 48
poor analgesia,
smoking, previous
chest problems
> 48
poor analgesia,
smoking, previous
chest problems
5 – 10
operations causing
immobility (e.g. pelvic,
orthopaedic), oral
contraceptive use,
swollen leg,
tender calf
DVT,immobility, no
signs of DVT in 50%
present as
pleuritic chest
pains, multiple
small PEs, or
massive PE with
collapse or death
contamination at
operat., corticosteroid
use, diabetes mellitus,
malignancy, jaundice,
temperature with
redness, tender
and swollen
5 – 10
clear airway, reverse
general anaestetic or
effect of analgesia
intravenous fluids–
crystalloids and
colloids, antibiotics
for sepsis
as a preventive care:
early mobilisation, as
a treatment:
as a preventive care:
early mobilisation,
possibly antibiotics,
as a treatment:
nebulizers and
as a preventive care:
lowmol. heparines,
sufficient amount of
fluid, early
as a treatment:
Doppler USS or
as a preventive care:
lowmol. heparines,
sufficient amount of
fluid, early
as a treatment ECG,
V/Q scan,
5 – 10
Aacute cystric
Signs and
Poor operative
technique, infection,
corticosteroid use
normal response, but
if occurs after more
than 4–5 days there
may be intra–
abdominal pathology
or low K+
vomiting, decreased
blood pressure,
increased heart rate
associated with
paralytic ileus
5 – 10
Poor operative
technique, infection,
diabetes mellitus,
vascular insufficiency
7 – 10
infection of suture line
following prolonged
antibiotic use, due to
Clostridium difficile
confusion in
elderly, dysuria
red serous
discharge from
NG aspirate,
drainage of infection
resuscitation, return
to theatre to repair
resuscitation, NG
aspiration, correct
NG aspiration
decreased blood
increased heart
rate, peritonitis
decrease blood
increased heart
rate, bleeding
abdominal pain
antibiotics, lavage,
defunction bowel
resuscitation to stop
resuscitation, oral
M. Dušková
The complex response to the physiological stress of surgery or injury, mediated via hormonal
changes and the sympathetic nervous system, is one of hypermetabolism and catabolism.
There is marked salt and water retention and increases in basal metabolic rate and hepatic
glucose production. Wound healing accounts for 80% of the increased glucose production
and also requires protein synthesis. Fat (adipose tissue) and protein stores (lean muscle
mass) are mobilised to meet the needs of glucose and protein synthesis, which results in
negative nitrogen balance and weight loss. Overall, the catabolic response increases energy
and protein requirements, the magnitude and duration depending on the extent of the
surgery. A critical point is that semi–starvation (that is, intake consistently below potentially
increased requirements) is also catabolic and further exacerbates negative nitrogen balance
and weight loss. Indeed, recent evidence suggests the catabolic response to surgery may
not be obligatory and can be prevented by adequate intake.
Adequate energy and protein intakes are essential to limit net protein and fat losses. The
basic components of nourishment are proteins, saccharides, fats, minerals including
microelements, and vitamins.
The metabolic response to surgery can be worsening, if poorly managed in aspect of
nutrition, in increased postoperative morbidity and mortality. Positive outcomes for surgery
depend heavily on adequate immune defence and wound healing. Both rely on enhanced
synthesis of new proteins, which is significantly limited by negative nitrogen and energy
balance. A key point is that positive nitrogen balance (net protein synthesis) cannot be
achieved with negative energy balance. Semi–starvation will result within days rather than
weeks, when intake fails to meet requirements, particularly for protein and energy.
Serious problems with poor energy malnutrition, i.e. severe multiple injury or burns, or
inflammatory diseases, such as acute pancreatitis, and sepsis, mainly coupled with immune
deficiency in older patients or patients with malign tumours or with other immune impaired
diseases, greatly increase the risk of fatal post–op course.
Nutritional interventions can only be effective if energy requirements are both accurately
estimated and then achieved. The standard approach is to estimate energy requirements
from basal energy expenditure, using regression equations and activity and stress factors.
Evaluation of nutritional status
1. History: duration of illness, weight loss, change in appetite, dietary habits.
2. Physical examination: general appearance, loose skin folds, loss of skin contours
over bony prominence s, muscle wasting, and peripheral oedema.
3. Weight: in relation to height. This is the so-called BMI (body mass index) = index of
physical weight is the number used as a measure of obesity, allowing statistical
comparing of people with different height. Index is calculated by dividing the weight of
the man by the square of his height: The formula is fulfilled with weight in
kilograms and height in meters. The resulting unit kg/m² is to be omitted. The
formula was created in the 2nd half of the 19th century by A. Quetelet working on his
system of "social physics". Therefore BMI is sometimes referred as Quetelet index.
Range BMI – kg/m2
BMI Basic
less than než 0.6
Weight persons
180 cm high
less than 53.5 kg
severe malnutrition
BMI ≤ 16.5
16.5 to 18.5
0.6 to 0.74
from 53.5 to 60 kg
ideal weight
18.5 to 25
0.74 to 1
from 60 to 81 kg
25 to 30
1 to 1.2
from 81 to 97 kg
mild obesity
30 to 35
1.2 to 1.4
from 97 to 113 kg
central obesity
35 to 40
1.4 to 1.6
from 113 to 130 kg
morbid obesity
BMI > 40
of 1.6
over 130 kg
4. Anthropometric measurements: e.g. triceps skin fold thickness.
5. Laboratory tests: e.g. Hb, serum albumin, and serum iron.
Some patients can be clearly malnourished prior to surgery or trauma:
1. Increased catabolism, e.g. sepsis, repeated major surgery.
2. Excessive losses, e.g. chronic liver disease with loss of protein, losing enteropathy.
3. Poor intake, e.g. dysphagia, vomiting, general debility, bad absorption, e.g. fistulae,
short bowel.
4. Other causes, e.g. major trauma, chemotherapy.
Administration of nutritional support
With regard to ensure the nutritional need we can divide the patients into:
1. Those, who do not want to eat
2. Those, which cannot eat
3. Those, which must not eat
According this classification we use the following routes:
The golden rule is “if the gut works, use it”. This is the most efficient, least expensive, most
pleasant, more natural and safest route for the patient. If the GI tract is available and patient
is able to take oral nutrition then this method is the appropriate. There is little evidence that
parenteral is more effective than enteral nutrition, but it is certainly costlier and associated
with higher risks of serious complications, particularly infection. There is evidence that early
(within 24 hours) enteral feeding has significant benefits over late enteral and parenteral
feeding. Prolonged absence of nutrients from the gut alters gut flora and may compromise
amino acid metabolism. It also changes and reduces mucosal structure and function. The
start may be several hours after the surgery as sip feed.
A correct diet is an important component of the treatment of surgical patients. The basic aim
is to ensure negative nitrogen balance after the surgery and to exert regenerative processes
of the body, including the protection of operated organ and its habituation to normal food. It
may also prepare the patient for special examinations.
The diet must provide a sufficient nutrition with easily digested groceries. Nutritional value
and proper consistency are important. Both must change and be variable depending on the
post–op stage (acute, delayed, and chronic) and individual need (age, race, habits).
Every facility has own rules and score for the diet classification, there is common frequent
0– Liquid diet
It is mostly used for a shorter period after surgery, may be longer after surgical procedures
within GIT.
1 – Purée diet
Again it is indicated in operations of the digestive tract.
2 – Protective diet
It is applied in disorders of the digestive tract with a prolonged course (functional gastric
disorders, gastroduodenal ulcers, certain conditions following gastric resection).
3 – Rational diet
It is for all diseases requiring no special modification of normal food.
4 – Low–fat diet
It is used for diseases of the biliary tract and of the pancreas.
6 – Low–protein diet
In renal diseases when a limitation of protein intake is necessary.
7 – Low–cholesterol diet
It is reserved for patients with complications of arteriosc1erosis (after myocardial infarction,
vascular cerebral accidents etc.).
8 – Reducing diet
It is used for obese people, in surgery commonly as a prepare for elective surgeries.
9 – Diabetic diet
It is the basic part of the treatment of diabetes mellitus.
10 – Salt–free protective diet
It is ordered for patients with serious vascular diseases.
11 – Highly nutritive diet
It is intended for patients with malnutrition, for example malignant tumours.
12 – Diet for toddlers
13 – Diet for older children
Special diets
0 – S Tea diet is administered for a short time during acute illness (biliary colic) or for the first
few days after operation within the abdominal cavity, prior to restoration of passage.
1 – S Nutritional liquid diet
In patients where an intake of food is possible only in fluid form, a highly energetic intake is
conceivably mandatory.
4 – S A diet with a strict limitation of fat is used after cholecystectomy and similar
9 – S Diabetic protective diet is for diabetics with chronic diseases of the digestive tract.
For long–term treated patients, where is no special medical need the offer may be
replenished on demand.
When the peroral intake does not cover 2/3 of daily need, it is possible to add liquidized food,
linefeed or supplements by enteral nutrition. This is used for patients with a functioning small
bowel but with problems to take nutrients by mouth, e.g. those who are seriously unable to
swallow or to put the food into the mouth cavity, which is involved by pathological process
(e.g. surgical wound or some lesions like herpetic stomatitis).
There are following ways:
1. Fine–bore naso–gastric or naso–jejunal tubes: liquidized food, linefeed or
supplements are given via a tube passed via the nose into the stomach.
2. Surgically created gastrostomy or jejunostomy are appropriate for long–term enteric
In both the above methods the feed is dripped slowly into GI tract. Bolus feeding should be
avoided as it gives diarrhoea and if given via a nasogastric tube in large volume may result in
regurgitation and aspiration pneumonia.
However, many patients are unable to eat enough to meet increased needs and/or prevent
losses after surgery. Common and often underrated issues such as pain, nausea,
medication, dry mouth, gastric discomfort and distension, fasting, unpleasant procedures,
anxiety, unfamiliar food and hospital routines all potentially reduce appetite and intake. If the
need is too high and oral supply is not sufficient or where GI function is inadequate or failed,
the parenteral nutrition is necessary. There are the most frequent clinical examples:
1. Overload by surgery with excessive loss of fluids, extreme surgical stress, acid–base
balance disorders (metabolic acidosis and alkalosis, respiratory acidosis and
alkalosis), hypokalaemia, hyperkalaemia, oliguria coming from fluid lack)
2. Failure of GIT passage: prolonged obstruction, ileus, prolonged vomiting, short bowel
syndrome (Crohn's or after surgery)
This route may be risky and careful monitoring is required:
1. Fluid balance
2. Level of glucose
3. Level of electrolytes
4. Hepatic and renal disorder
5. Blood picture
It must cover not only the increased need done by the load of surgery or injury itself, but also
the addition covering the losses (drain, vomiting…). Controlled rates administration are
essential and this is achieved either by a counting device attached to the drip line or via a
pump. If the patient develops pyrexia and no cause is found, it may be necessary to remove
the catheter and send its cut tip for culture.
Nutrition is administered via the venous system.
Peripheral line: Short–term feeding (up to 5 days, or by others 7–10 days) may be given via a
drip in a peripheral vein. Solutions used with this method must be isotonic; otherwise they
cause irritation of vein wall resulting in thrombophlebitis.
For longer installation we use central line: This is the most appropriate route and is used
parenteral nutrition. For short–term use percutaneous subclavian line may be used. For
longer the catheter is usually placed into the superior vena cava.
Central venous catheters are introduced through the v.subclavia or v. jugularis interna, v.
femoralis or, rarely then v. jugularis externa, or v. mediana cubiti or v. basilica.
The basic need of fluid is 30–100 ml /kg/daily.
The basic need of energy is 25 kcal/kg/daily, consists of 15–25% proteins, 30–50%
saccharides, 30–50% fats, minerals (Na, K, Ca, Mg, P, and microlements I, F, Mn, Cu,
Cr, Zn, Fe, Se, Mo), and vitamins (A, B, C, D, E, K, B12, Panthenol, Ac. folicum).
M. Dušková
Physiotherapy is a scientific health care system that primarily heals through movement. The
goal of physiotherapy is to identify, correct and alleviate prolonged or acute movement
dysfunction and restore the natural movements of the body.
Physiotherapy can trace its origins to a glorious past well before 3,000 BC. As early as 460
BC, Hippocrates speaks about massage in his works. The modern practice of physiotherapy
started in the 1920s. It is used to address conditions like recurring pain and movement
disorders of different diseases and dysfunctions of the human motor apparatus at different
ages. Physiotherapy is both curative and preventive. Fundamental objectives of modern
rehabilitation are promotion of health and well–being.
The treatment process includes assessment, diagnosis, planning, treatment and evaluation
of the progress of the patient. Physiotherapy is carried out as a part of care in hospitals
and/or in special health facilities for this kind of treatment.
Physiotherapy uses a wide range of techniques. They exert both local and global effects, the
improvement of the blood supply of tissues, exert antiphlogistic effects, and relieve muscular
and vascular spasm.
Let us name some of the common practices:
1. Electrotherapy: Electric current, modulated at different frequencies, has stimulating
effects to the muscles.
2. Massage and manipulation are mainly used to improve circulation. The massage
normalises muscle tension and improves relationships between vascular and nervous
motor systems, normalising the tissues trophies.
3. Exercise and movement strengthen and improve mobility. It starts immediately after
surgery at the bed and continues up to full activity. It may be general or specific
intensive exercises to strengthen particular parts of the body are also possible.
4. Hydrotherapy helps to improve circulation, to stimulate the nerves, to relieve pain
and to release tension in warm, shallow water or a special hydrotherapy bath,
alternating with hot and cold showers, jet sprays, jet massage and whirlpool baths.
All those techniques are used with the aim to prevent pathological changes manifesting like
pathological muscle length–tension relation, bone resistance and elasticity, physical
characteristics of cartilages, muscles, fascias and tendons. The clinical signs are muscular
contractures, contractures of non–contracting soft tissues, muscle malfunctions, fatigue, bad
body posture, static disturbance in sagittal and frontal plane, walking disorders etc.
An inherent part of physiotherapy is psychological care helping to the patient to overcome
the post–op or posttraumatic period. The physiotherapist must lead a patient to positive
attitude toward undergone treatment. It is recommendable to work in tandem with the family
to ensure a strong support system.
In surgery the physiotherapy improves most of post–op and posttraumatic healing processes,
supporting the recovery and accelerating return to desired activities and good quality of life.
Simultaneously it prevents or limits the development of various unwanted secondary
In elective procedures its concern may be even pre–operative treatment in particular
patients. For example major surgery on a joint may take two or three hours in the operating
room. Getting full range of motion, strength and flexibility back in that joint after surgery
usually takes months. That’s where pre–operative exercise and education and post–
operative physiotherapy programs come in to prepare a patient physically and emotionally for
surgery, and to maximize his/her recovery after operation.
But the main process is of course postoperative physiotherapy. It can differ according
thromboembolic postoperative complications is important everywhere. Therapeutic exercises
endeavour the efficiency of the whole body and the strength of those organs, which should
not remain at rest during the healing process.
Respiratory kinesitherapy and respiratory exercises start immediately at the finishing moment
of the surgery when patient wakes up. Active exercises promote the ventilation of the lungs.
They depend not only on the type of surgery but also on physiology and pathophysiology of
respiratory system of particular patient. Chest physiotherapy is used to prevent and treat
postoperative pulmonary complications, especially in high–risk patients with a history of
obesity, smoking, or old age, where lung function may be relatively impaired. This is good
evidence that prophylactic physiotherapy reduces postoperative lung complications in people
undergoing abdominal surgery. Breathing exercises must renew the ventilation, the breath
depth and oxygenation and prevent bronchopulmonar infection. Usually in practice patient
provides the exercises every couple of hours several times. It means to take a slow deep
breath in through the nose, filling the very bottom of the lungs. Then the patient slowly
exhales and relaxes. It is necessary to cough up any phlegm. When coughing he/she must
support his/her wound by firmly pressing with his/her hand. Then he/she takes a slow deep
breath in, tightens the support and coughs strongly out.
The early movement belongs to main preventive steps of tromboembolism and leads to
faster recovery. Again it starts with the end of surgery. In practice, usually the first day after
surgery, a patient moves with legs and sits out of bed. The second day he/she starts walking
short distances, with assistance if required. Following days the independency of patient may
escalate till complete self–action. All staff must help and encourage the patient in this
Therapeutic exercise techniques are passive or active. Passive movements serve for the
prevention of contractures and of dystrophic changes. Active movements promote the
function of muscles and an increase of their tissue. They are further subdivided into isometric
leading to a contraction of the musc1e without any movements of the given segment, and
isotonic leading to movements of the given segment. The active methods may be reduced–
load exercises and active reduced–load exercises with dosed resistance, active exercises
with resistance, assisted and self–assisted exercises, redressments and self–redressments,
muscle piezometric relaxation, stretching, isometric exercises, synergistic exercises
(ipsilateral and contralateral), coordination exercises, breathing exercises, relaxation
exercises, fitness exercises, morning gymnastics, balance exercises, verticalization (passive,
active), walking.
Operating exercises represent training of every day life activities.
A large number of people suffer from a wide variety of afflictions even without any trigger like
surgery or acute injury. Special attention must be paid to these patients, who have been
bedridden and less mobile before the surgery, suffering for example from chronic oedemas,
joint rigidity, and pareses. The causes are quite varied ranging from posttraumatic sequels,
some diseases, mainly with degenerative origin, or simply an unhealthy lifestyle, resulting in
week muscles and ligaments or other mobility impairments. These people usually pass the
post course more difficulty and have more complications. In addition they use a lot of
analgesics. But especially these patients hardly need the physiotherapy to reach acceptable
healing course and results. Massage, electrical nerve stimulation, movement exercise,
acupuncture, meditation and the application of hot or cold compress are some examples of
the techniques, which are being employed in treating a usual wide range of complaints in
these patients.
The special aids may be used depending on patients need (underwater massage, whirl
massage, massage gear like aquavibron, vibrator, and therapeutic ointments).
Physiotherapy as psychological care is very important in cases where the injury or surgery
cause great change of the life quality. Physiological responses to exercise always represent
the improvement of physical activity and health. In addition to solution of post–surgical
problems physical activity is a prevention of the most common diseases like coronary heart
disease, diabetes, obesity, hypertension, and osteoporosis.
1. Fölsch, UR; Kochsiek, K; Schmidt, RF. Patologická fyziologie. Praha : Grada 2003. ISBN
2. Ganong, WF. Přehled lékařské fyziologie. Jinočany : H&H 2002. ISBN: 80–85787–36–9
3. Hromádková, J. Fyzioterapie. 1.vyd. Jinočany : H&H 1999. ISBN 80–86022–45–5
4. Katzung, BG. Základní a klinická farmakologie. Praha : H&H 2006. ISBN 80–7319–056–7
5. Longmore, M. et al. Oxford Handbook of Clinical Medicine. New York : Oxford University
Press 2007. ISBN 978–0–19–856837–7
6. Mulholland, M.W., Doherty, GM. Complications in surgery. Philadelphia : Lippincott
Williams & Wilkins 2006. ISBN: 0–7817–5316–3
7. Nejedlý, A. a kol. Základy replantační chirurgie. Praha : Grada Publishing 2003. ISBN:
8. Ševčík P., Černý V., Vítovec V. et al. Intenzivní medicína. 2. vyd. Praha : Galén 2003.
ISBN 80–726–2203–X
9. Skalická, H. a kol. Předoperační vyšetření: návody pro praxi. Praha : Grada 2007. ISBN:
10. Sweetland, H.; Conway, K. Surgery. 2nd edition. Edinburgh : Mosby, 2004. ISBN: 0-72343339-9
11. Urdang, L. The Bantam Medical Dictionary. Market House Books Ltd. 2004. ISBN 0–
12. Zeman, M. et al. Chirurgická propedeutika. Praha : Grada 1993. ISBN 80–85623–45–5.
Web resources:
Akutně.cz [online]. Praha, ČSARIM 2009. [cit. 2008–12–05]. Dostupný z WWW:
Buntic, R.: Microsurgeon.org [online]. San Francisco, 2001–2008. [cit. 2008–12–05].
Dostupný z WWW: <http://www.microsurgeon.org>
Česká společnost anesteziologie, resuscitace a intenzivní medicíny [online]. Praha, ČSARIM
1998–2006. [cit. 2008–12–05]. Dostupný z WWW: <http://www.csarim.cz>
Dostál, O. Informovaný souhlas [online]. Praha, Asociace pro medicínské právo a bioetiku
2008. [cit. 2008–12–05]. Dostupný z WWW: <http://www.roithova.cz/soubory/InfosouhlasDostal.ppt>
Ducháč, V.: Chirurgie slovem i obrazem [online]. Praha, Chirurgická klinika 3. LF 2005. [cit.
2008–12–05]. Dostupný z WWW: <http://www.chirweb.cz>
Neodkladná resuscitace [online]. Praha, 3. LF UK, 2007. [cit. 2008–12–05].
Dostupný z WWW: <http://www.lf3.cuni.cz/cs/pracoviste/anesteziologie/vyuka/studijnimaterialy/neodkladna-resuscitace/>
Road & travel magazine [online]. Royal Oak, Caldwell Communications, Inc.2009. [cit. 2008–
12–05]. Dostupný z WWW: <http://www.roadandtravel.com>
Surgical Instrument Cleaning [online]. 2008. [cit. 2008–12–05]. Dostupný z WWW:
Surgical–tutor.org.uk [online]. London, 1997–2008. [cit. 2008–12–05]. Dostupný z WWW:
The European Resuscitation Council Guidelines for Resuscitation 2005 [online]. Edegem :
ERC, 2001–2009 [cit. 2008–12–05].
Dostupný z WWW: <http://www.erc.edu/index.php/guidelines_download_2005/en/>.
Wikipedia.org [online]. Wikimedia, 2002–2009. [cit. 2008–12–05]. Dostupný z WWW:
Úmluva o lidských právech a biomedicíně č. 96/2001 Sbírky mezinárodních smluv [online].
Praha, Ministerstvo vnitra 2005–. [cit. 2008–12–05]. Dostupný z WWW:
Zákon o péči o zdraví lidu 20/1966 Sb. [online]. In Portál veřejné správy ČR. Praha,
Ministerstvo vnitra ČR 2003-2009. [cit. 2008–12–05]. Dostupný z WWW:
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF