C192PF8. Коммуникационный протокол Modbus. Справочное руководство (англ.)

C192PF8. Коммуникационный протокол Modbus. Справочное руководство (англ.)

C192PF8

Power

Factor

Manager

Reference Guide

Modbus

Communications

Protoco l

BG0

286 Rev. A1

C192PF8 POWER FACTOR MANAGER

COMMUNICATIONS

Modbus Communications Protocol

REFERENCE GUIDE

Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation.

For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the manufacturer.

Modbus is a trademark of Modicon, Inc.

BG0286 Rev.A1

2

Table of Contents

1 GENERAL .................................................................................................................. 4

2 MODBUS FRAMING................................................................................................. 5

2.1 Transmission Mode.........................................................................................................5

2.2 The RTU Frame Format ...................................................................................................5

2.3 Address Field.................................................................................................................5

2.4 Function Field ................................................................................................................5

2.5 Data Field ......................................................................................................................6

2.6 Error Check Field............................................................................................................6

3 MODBUS MESSAGE FORMATS .......................................................................... 7

3.1 Function 03 - Read Multiple Registers ..............................................................................7

3.2 Function 04 - Read Multiple Registers ..............................................................................7

3.3 Function 06 - Write Single Register ..................................................................................7

3.4 Function 16 - Write Multiple Registers ..............................................................................8

3.5 Function 08 - Loop-back Communications Test .................................................................8

3.6 Exception Responses .....................................................................................................9

4 PROTOCOL IMPLEMENTATION ........................................................................10

4.1 Modbus Register Addresses .......................................................................................... 10

4.2 Data Formats ............................................................................................................... 10

4.2.1 16-bit Integer Format .................................................................................................. 10

4.2.2 32-bit Modulo 10000 Format........................................................................................ 11

4.2.3 32-bit Long Integer Format .......................................................................................... 11

4.3 User Assignable Registers ............................................................................................ 11

5 POWERMETER REGISTERS DESCRIPTION .................................................13

5.1 Basic Data Registers .................................................................................................... 13

5.2 Basic Setup ................................................................................................................. 14

5.3 User Selectable Options Setup ...................................................................................... 15

5.4 Communications Setup ................................................................................................. 16

5.5 Reset/Synchronization Registers ................................................................................... 16

5.6 Instrument Status ......................................................................................................... 17

5.7 Extended Status........................................................................................................... 18

5.8 Extended Data Registers............................................................................................... 20

5.9 Analog Output Setup..................................................................................................... 26

5.10 Digital Input Allocation................................................................................................. 27

5.11 Alarm/Event Setpoints................................................................................................. 28

5.12 Pulsing Setpoints........................................................................................................ 31

5.13 Relay Operation Control............................................................................................... 31

5.14 Min/Max Log .............................................................................................................. 32

5.15 Power Factor Controller Setup...................................................................................... 33

5.16 PFC Manual Control Register....................................................................................... 33

3

1 GENERAL

This document specifies a subset of the Modbus serial communications protocol used to transfer data between a master computer station and the C192PF8. The document provides the complete information necessary to develop third-party communications software capable of communication with the Series C192PF8 Powermeters. Additional information concerning communications operation, configuring the communications parameters, and communications connections is found in "Series C192PF8 Powermeters, Installation and Operation Manual".

IMPORTANT

1. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used.

2. In the 4LN3, 3LN3 and 4LL3 wiring modes, harmonic voltages will be line-to-neutral voltages; in other modes, they will be line-to-line voltages, and voltage THD will not account for multiples of the third harmonic. In the 3OP2 and 3OP3 wiring modes, voltage THD will be given only for phases L12 and L23.

3. Most of the advanced features are configured using multiple setup parameters that can be accessed in some contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers.

4

2 MODBUS FRAMING

2.1 Transmission Mode

The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8-bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the instrument communications. The data format is shown in the following table.

Table 2-1 RTU Data Format

Field

Start bit

Data bits •

Parity (optional)

Stop bit

• Least significant bit first

No. of bits

1

8

1

1

2.2 The RTU Frame Format

Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. The receiving device monitors the elapsed time between receptions of characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is defined below.

The maximum query and response message length is 256 bytes including check characters.

RTU Message Frame Format

T1 T2 T3 Address Function Data

8 bits 8 bits N * 8 bits

CRC Check

16 bits

T1 T2 T3

2.3 Address Field

The address field contains a user assigned address (1-247) of the instrument that is to receive a message. Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions 06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a response. In the C192PF8, the broadcast mode is supported only for register addresses 287-294 and 301-302 (reset energies and maximum demands), 3404-3415 (reset/clear registers), and 4352-4358 (real-time clock registers).

2.4 Function Field

The function field contains a function code that tells the instrument what action to perform.

Function codes used in the protocol are shown below in Table 2-2.

Table 2-2 Modbus Function Codes

Code

(decimal)

03

04

06

16

08

Meaning in Modbus

Read holding registers

Read input registers

Preset single register

Preset multiple registers

Loop-back test

Action

Read multiple registers

Read multiple registers

Write single register

Write multiple registers

Communications test

NOTE Broadcast mode available only for functions code 06 and 16.

5

2.5 Data Field

The data field contains information needed by the instrument to perform a specific function, or data collected by the instrument in response to a query.

IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.

2.6 Error Check Field

The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.

The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by x

16

(shifted left 16 bits), and then divided by x

16

+ x

15

+ x

2

+ 1 expressed as a binary number (11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepted message) is appended to the message (MSB first) as the two CRC check bytes. The resulting message including CRC, when divided by the same polynomial (x

16

+ x

15

+ x

2

+ 1) at the receiver will give a zero remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic is performed modulo two (no carries).

The device used to serialize the data for transmission will send the conventional LSB or right-most bit of each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend. For convenience, and since there are no carries used in the arithmetic, let's assume while computing the CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder. This yields 1010 0000 0000 0001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation or bit order of characters external to the CRC calculations.

The step by step procedure to form the CRC-16 check bytes is as follows:

1. Load a 16-bit register with all 1's.

2. Exclusive OR the first 8-bit byte with the low order byte of the 16-bit register, putting the result in the

16-bit register.

3. Shift the 16-bit register one bit to the right.

4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010 000 000

0001 with the 16-bit register.

4b. If the bit shifted out to the right is zero, return to step 3.

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. Exclusive OR the next 8-bit byte with the 16-bit register.

7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register and shifted 8 times.

8. When the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by the high order byte.

For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.

6

3 MODBUS MESSAGE FORMATS

3.1 Function 03 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.

Request

Instrument

Address

1 byte

Function

(03)

1 byte

Starting

Address

2 bytes

Word Count Error Check

2 bytes

Starting Address Address of the first register to be read

Word Count

The number of contiguous words to be read

Response

2 bytes

Instrument

Address

1 byte

Function

(03)

1 byte

Byte

Count

Data

Word 1

1 byte 2 bytes

... Data

Word N

Error

Check

... 2 bytes 2 bytes

The byte count field contains quantity of bytes to be returned.

3.2 Function 04 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can be used instead of function 03.

Request

Instrument

Address

1 byte

Function

(04)

1 byte

Starting

Address

2 bytes

Word Count Error Check

2 bytes

Starting Address Address of the first register to be read

Word Count

The number of contiguous words to be read

Response

2 bytes

Instrument

Address

1 byte

Function

(04)

1 byte

Byte

Count

Data

Word 1

... Data

Word N

Error

Check

1 byte 2 bytes ... 2 bytes 2 bytes

The byte count field contains quantity of bytes to be returned.

3.3 Function 06 - Write Single Register

This command allows the user to write the contents of a data register in any data table where a register can be written.

Request

Instrument

Address

1 byte

Function

(06)

1 byte

Starting

Address

2 bytes

Data

Word

2 bytes

Error check

2 bytes

Starting Address

Address of the register to be written

Data Value

Data to be written to the register

Response

The normal response is the retransmission of the write request.

7

3.4 Function 16 - Write Multiple Registers

This request allows the user to write the contents of multiple contiguous registers to a single data table where registers can be written.

Request

Instrument

Address

1 byte

Function

(16)

1 byte

Starting

Address

2 bytes

Word

Count

2 bytes

Byte

Count

1 byte

Data Word 1 ...

2 bytes ...

...

...

...

...

Data Word N

2 bytes

Error Check

2 bytes

Starting Address Address of the first register to be written

Word Count

The number of contiguous words to be written

Byte Count

The number of bytes to be written

Response

Function

(16)

1 byte

Starting

Address

2 bytes

Word

Count

1 word

Error

Check

2 bytes

Instrument

Address

1 byte

3.5 Function 08 - Loop-back Communications Test

The purpose of this request is to check the communications link between the specified instrument and PC.

Request

Instrument

Address

1 byte

Function

(08)

1 byte

Diagnostic

Code (0)

2 bytes

Data Error

Check

2 bytes 2 bytes

Diagnostic Code Designates action to be taken in Loop-back test. The protocol supports only

Diagnostic Code 0 - return query data.

Data

Query data. The data passed in this field will be returned to the master through the instrument. The entire message returned will be identical to the message transmitted by the master, field-per-field.

Response

Instrument

Address

1 byte

Function

(08)

1 byte

Diagnostic

Code (0)

2 bytes

Data Error

Check

2 bytes 2 bytes

The normal response is the re-transmission of a test message.

8

3.6 Exception Responses

The instrument sends an exception response when errors are detected in the received message.

To indicate that the response is notification of an error, the high order bit of the function code is set to 1.

Exception Response

Instrument

Address

1 byte

Function (high order bit is set to 1)

1 byte

Exception response codes:

Exception

Code

1 byte

Error Check

2 byte

01 - Illegal function

02 - Illegal data address

03 - Illegal data value

06 - Busy, rejected message. The message was received without errors, but the instrument is being programmed from the keypad (only for requests accessing setup registers).

NOTE When the character framing, parity, or redundancy check detects a communication error, processing of the master's request stops. The instrument will not act on or respond to the message.

9

4 PROTOCOL IMPLEMENTATION

4.1 Modbus Register Addresses

The C192PF8 Modbus registers are referred to by using addresses in the range of 0 to 65535.

From within the Modbus applications, the C192PF8 Modbus registers can be accessed by simulating holding registers of the Modicon 584, 884 or 984 Programmable Controller, using a 5digit “4XXXX” or 6-digit “4XXXXX” addressing scheme. To map the C192PF8 register address to the range of the Modbus holding registers, add a value of 40001 to the C192PF8 register address.

When a register address exceeds 9999, use a 6-digit addressing scheme by adding 400001 to the

C192PF8 register address.

4.2 Data Formats

The C192PF8 uses three data formats to pass data between a master application and the instrument: a 16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.

4.2.1 16-bit Integer Format

A 16-bit data is transmitted in a single 16-bit Modbus register as unsigned or signed integer

(whole) numbers without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16-bit register format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.

Non-scaled data

The data will be presented exactly as retrieved by the communications program from the instrument. The value range for unsigned data is 0 to 65535; for signed data the range is -32768 to

32767.

LIN3 (Linear) Scaling

This conversion maps the raw data received by the communications program in the range of 0 -

9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the formula:

Y = (X / 9999)

×

(HI - LO) + LO

where:

Y - the true value in engineering units

X - the raw input data in the range of 0 - 9999

LO, HI - the data low and high scales in engineering units

When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the corresponding registers.

EXAMPLE

Suppose you have read a value of 5000 from register 256 that contains a voltage reading (see Table 5-

1). If your instrument has the 144V input option, and you use potential transformers with the ratings of

22,000V : 110V = 200, then the voltage high scale is HI = 144

×

200 = 28,800, and in accordance with the above formula, the voltage reading in engineering units will be as follows:

5000

×

(28800 - 0)/9999 + 0 = 14401V

When a value is written to the instrument, the conversion is carried out in reverse to produce the written value in the range of 0 - 9999:

X = 9999

×

(Y - LO) / (HI - LO)

10

Decimal Scaling

Decimal pre-scaling can be used to accommodate fractional numbers to an integer register format.

Fractional numbers pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100. Whenever a data register contains a fractional number, the register measurement unit is given with a multiplier

×

0.1,

×

0.01 or

×

0.001, showing an actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier.

4.2.2 32-bit Modulo 10000 Format

The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo 10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register contains the value/10000. To get the true energy reading, the high order register value should be multiplied by 10,000 and added to the low order register.

4.2.3 32-bit Long Integer Format

In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned or signed long integer (whole) numbers. The first register contains the low-order word

(lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is -2,147,483,648 to 2,147,483,647.

A 32-bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional numbers to an integer format as described above (see Decimal Scaling in

Section 4.2.1).

4.3 User Assignable Registers

The C192PF8 contains the 120 user assignable registers in the address range of 0 to 119 (see

Table 4-1), any of which you can map to either register address accessible in the instrument.

Registers that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.

The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the user assignable register map (see Table 4-2). This map occupies addresses from

120 to 239, where map register 120 should contain the actual address of the register accessed via assignable register 0, register 121 should contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable register addresses and the map register addresses may not be re-mapped.

To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses. For example, if you want to read registers 7136 (real-time voltage of phase

A, word) and 7576/7577 (kWh import, long word) via registers 0-2, then do the following:

- write 7576 to register 120

- write 7577 to register 121

- write 7136 to register 122

Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.

11

Table 4-1 User Assignable Registers

Register contents

User definable data 0

User definable data 1

User definable data 2

...

User definable data 119

Address Size, byte Direction

0

1

2

...

119

...

...

...

Range

• - depends on the mapped register

Table 4-2 User Assignable Register Map

Register contents Address Size, byte Direction

Register address for user data 0 120

Register address for user data 1 121

Register address for user data 2

...

122

...

Register address for user data 119 239

2

2

2

...

2

R/W

R/W

R/W

...

R/W

Range

240 to 9999

240 to 9999

240 to 9999

...

240 to 9999

12

5 POWERMETER REGISTERS DESCRIPTION

5.1 Basic Data Registers

Table 5-1 Basic Data Registers

Parameter

Voltage L1/L12 †

Voltage L2/L23 †

Voltage L3/L31 †

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

Total power factor

Total kW

Total kvar

Total kVA

Neutral current

Frequency

Max. sliding window kW demand …

Accumulated kW demand

Max. sliding window kVA demand …

Accumulated kVA demand

281

282

283

Max. ampere demand L1 284

Max. ampere demand L2 285

Max. ampere demand L3 286 kWh import (low) 287 kWh import (high) kWh export (low) kWh export (high)

+kvarh net (low)

ƒ

+kvarh net (high)

ƒ

288

289

290

291

-kvarh net (low) „

-kvarh net (high) „

Voltage THD L1/L12

Voltage THD L2/L23

292

293

294

295

Voltage THD L3/L31

Current THD L1

Current THD L2

296

297

298

299

Current THD L3 kVAh (low) kVAh (high)

300

301

302

264

265

266

267

268

269

270

271

256

257

258

259

260

261

262

263

272

273

274

275

276

277

278

279

280

R

R

R

R

R/W

R/W

R/W

R

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R

R/W

R/W

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Register Size, Direc- byte tion

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R/W

2

2

2

R/W

R/W

R/W

0.01A

0.01A

0.01A

1kWh

10,000 kWh

1kWh

10,000 kWh

1kvarh

10,000 kvarh

1kvarh

10,000 kvarh

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

1kVAh

10,000 kVAh

Unit Scale

Low High

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0

0

0

0

Vmax

Vmax

Vmax

Imax

0

0

Imax

Imax

-Pmax Pmax

-Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

0.001 -1.000 1.000

0.001

0.001

0.001

0.001kW/1kW

-1.000 1.000

-1.000 1.000

-1.000 1.000

-Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

0.01A

0.01Hz

0.001kW/1kW

0 Imax

45.00 65.00

-Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9999

9999

999

999.9

999.9

999.9

999.9

999.9

Imax

Imax

Imax

9999

9999

9999

9999

9999

999.9

9999

9999

Con- version

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

NONE

NONE

13

Parameter

Present sliding window kW demand …

Present sliding window kVA demand …

PF at maximum kVA siding window demand

Current TDD L1

Current TDD L2

Current TDD L3

Register Size, Direc- byte tion

303 2 R

Unit

0.001kW/1kW

304

305

306

307

308

2

2

2

2

2

R

R

R

R

R

0.001

0.1%

0.1%

0.1%

0

0

0

Scale

Low High

-Pmax Pmax

0.001kVA/1kVA -Pmax Pmax

-1.000 1.000

100.0

100.0

100.0

Con- version

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

• The parameter limits are as follows:

Imax (20% over-range) = 1.2

×

CT primary current [A]

Direct wiring (PT Ratio = 1):

Vmax (690 V input option) = 828.0 V

Vmax (120 V input option) = 144.0 V

Pmax = (Imax

×

Vmax

×

3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3

Pmax = (Imax

×

Vmax

×

2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3, 3LL3 or 2LL1

Wiring via PTs (PT Ratio > 1):

Vmax (690 V input option) = 144

×

PT Ratio [V]

Vmax (120 V input option) = 144

×

PT Ratio [V]

Pmax = (Imax

×

Vmax

×

3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3

Pmax = (Imax

×

Vmax

×

2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3, 3LL3 or 2LL1

‚ When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units. When the value width is over the field resolution, the right most digits are truncated. All values are transmitted with a decimal point.

ƒ

Positive readings of kvarh net

Negative readings of kvarh net

… To get block interval demand readings, specify the number of demand periods equal to 1 (see Table

5-2)

† When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

NOTE Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of registers 287-294 and 301-302 causes reset of all accumulated energies.

5.2 Basic Setup

Table 5-2 Basic Setup Registers

Wiring mode •

PT ratio

Parameter

CT primary current

Power demand period

Register Size, byte

2304 2

2305

2306

2307

Volt/ampere demand period 2308

Averaging buffer size 2309

Reset enable/disable

Reserved

The number of demand periods

2310

2311

2312

2

2

2

2

2

2

2

2

Direc- tion

Range

R/W 0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,

3 = 4LL3, 4 = 3OP3, 5 = 3LN3,

6 = 3LL3, 7 = 2LL1

R/W 10 to 65000

×

0.1

R/W 1 to 6500 A

R/W 1,2,5,10,15,20,30,60 min,

255 = external synchronization ‚

R/W 0 to 1800 sec

R/W 8, 16, 32

R/W 0 = disable, 1 = enable

R Read as 65535

R/W 1 to 15

14

Parameter

Reserved

Reserved

Nominal frequency

Maximum demand load current

Register Size, byte

2313

2314

2315

2316

2

2

2

2

Direc- tion

Range

R

R

Read as 65535

Read as 65535

R/W 50, 60 Hz

R/W 0 to 6500 A (0 = CT primary current)

• The wiring mode options are as follows:

3OP2 - 3-wire open delta using 2 CTs (2 element)

4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings

3DIR2 - 3-wire direct connection using 2 CTs (2 element)

4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings

3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)

3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings

3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings

2LL1 - 2-wire line to line connection using 1 PT (1 element)

‚ Synchronization of power demand interval can be made through a digital input or via communications using the Synchronize power demand interval command (see Table 5-5).

NOTE

WIRING MODE, PT RATIO and CT PRIMARY CURRENT are protected from being changed while the

PFC is running. Writing to these locations will result in a negative response with the exception code 01

(illegal operation).

5.3 User Selectable Options Setup

Table 5-3 User Selectable Options Registers

Parameter Register Size, byte

2376 2

Direc- tion

R/W

Range

Power calculation mode

Energy roll value • 2377 2 R/W

0 = using reactive power,

1 = using non-active power

0 = 1

×

104

1 = 1

×

105

2 = 1

×

106

3 = 1

×

107

4 = 1

×

108

0 = disable, 1 = enable Phase energy calculation mode

2378 2 R/W

• For short energy registers (see Table 5-1), the maximum roll value will be 1

×

10 and 1

×

10

7

for negative readings.

8 for positive readings

15

5.4 Communications Setup

Table 5-4 Communications Setup Registers

Parameter

Reserved

Reserved

Address

Baud rate

Data format

Register Size, byte

2344 2

2345

2346

2347

2

2

2

2348 2

Direc- tion

R

R

R/W

R/W

R/W

Range

Read as 65535

Read as 65535

1 to 247

0 = 110 bps

1 = 300 bps

2 = 600 bps

3 = 1200 bps

4 = 2400 bps

5 = 4800 bps

6 = 9600 bps

7 = 19200 bps

1 = 8 bits/no parity

2 = 8 bits/even parity

When changing the instrument address, baud rate or data format, the new communications parameters will take effect 100 ms after the instrument responds to the master

' s request.

5.5 Reset/Synchronization Registers

Table 5-5 Reset/Synchronization Registers

Register function Register Size, byte

Clear total energy registers

3404

Clear total maximum demand registers 3405

2

2

Direc- tion

W

W

Reserved

Clear event/time counters

3406-

3407

3408

Clear Min/Max log

Reserved

3409

3410-

3419

Synchronize power demand interval • 3420

Clear PFC relay operation counters 3421

2

2

2

2

2

2 W

W

W

W

Reset value

0

0 = all maximum demands

1 = power demands

2 = volt/ampere demands

0 = all counters

1-4 = counter #1 - #4

0

0

0 = all PFC operation counters

1-8 = counter #1 - #8

• 1) If the power demand period is set to External Synchronization (see Table 5-2), writing a zero to this location will simulate an external synchronization pulse denoting the start of the next demand interval. The synchronization requests should not follow in intervals of less than 30 seconds, or the request will be rejected. This function is not permitted if the external synchronization is implemented by hardware, i.e., the digital input is configured as an external synchronization pulse input.

2) If the power demand period is specified in minutes, writing a zero to this location provides synchronization of the instrument

' s internal timer with the time of reception of the master

' s request. If the time expired from the beginning of the current demand interval is more than 30 seconds, the new demand interval starts immediately, otherwise synchronization is delayed until the next demand interval.

16

5.6 Instrument Status

Table 5-6 Instrument Status Registers

Parameter Register Size, Direc-

Instrument reset register • 2560

byte

2

tion

R/W

Reserved

Relay status

2561

2562

Reserved 2563

Status inputs 2564

Firmware version number 2565

Instrument options 1

Instrument options 2

2566

2567

2

2

2

2

2

2

2

R

R

R

R

R

R

R

Range

0 (when read)

65535 (when written) = reset the instrument

Read as 0 see Table 5-7

Read as 0 see Table 5-11

0-65535 see Table 5-8 see Table 5-8

• Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.

Table 5-7 Relay Status

Bit number

0

1

2

3

4

5

6

7

8-15

Description

Relay #8 status

Relay #7 status

Relay #6 status

Relay #5 status

Relay #4 status

Relay #3 status

Relay #2 status

Relay #1 status

Not used (permanently set to 0)

Bit meaning: 0 = relay is energized, 1 = relay is not energized

Table 5-8 Instrument Options

Bit Description

0

1

2-5

6

7-8

9

10

120V option

690V option

Reserved

Analog output 0/4-20 mA

Reserved

Relays option

Digital input option

11-15 Reserved

0-2 Number of relays - 1

3-6 Number of digital inputs - 1

7-15 Reserved

Options register

Options1

Options 2

17

5.7 Extended Status

Table 5-9 Extended Status Registers

Register description

Relay status

Reserved

Status inputs

Setpoints status

Log status

Reserved

Setpoint alarm status

Self-check alarm status

Reserved

PFC operating mode

3452

3453

3454

3455

3456

3457-

3473

3474

3475

3476-

3485

3486

Register Size, byte

2

2

2

2

2

2

2

2

2

2

R/W

R/W

R

R

R

R

R

R

R

R

Direction Value range

see Table 5-10

Read as 0 see Table 5-11 see Table 5-12 see Table 5-13

Read as 0 see Table 5-14 see Table 5-15

Read as 0

3487 2 R

0 = OFF

1 = AUTO 1 (self adapting mode)

2 = AUTO 2 (optimizing mode)

3 = Manual

4 = Shut Down see Table 5-16

PFC status

Table 5-10 Relay Status

Bit

0

1

2

3

4

5

6

7

8-15

Description

Relay #1 status

Relay #2 status

Relay #3 status

Relay #4 status

Relay #5 status

Relay #6 status

Relay #7 status

Relay #8 status

Not used (permanently set to 0)

Bit meaning: 0 = relay is not energized, 1 = relay is energized

Table 5-11 Status Inputs

Bit

0

1-15

Description

Status input

Not used (permanently set to 0)

Bit meaning: 0 = contact open, 1 = contact closed

18

Table 5-12 Setpoints Status

Bit

9

10

11

12

5

6

7

8

0

1

2

3

4

13

14

15

Description

Setpoint # 1 status

Setpoint # 2 status

Setpoint # 3 status

Setpoint # 4 status

Setpoint # 5 status

Setpoint # 6 status

Setpoint # 7 status

Setpoint # 8 status

Setpoint # 9 status

Setpoint # 10 status

Setpoint # 11 status

Setpoint # 12 status

Setpoint # 13 status

Setpoint # 14 status

Setpoint # 15 status

Setpoint # 16 status

Bit meaning: 0 = setpoint is released, 1 = setpoint is operated

Table 5-13 Log Status

Bit

0

1

2-15

Description

Reserved

New Min/Max Log

Not used (permanently set to 0)

Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)

Table 5-14 Setpoint Alarm Status

Bit

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

Description

Alarm #1

Alarm #2

Alarm #3

Alarm #4

Alarm #5

Alarm #6

Alarm #7

Alarm #8

Alarm #9

Alarm #10

Alarm #11

Alarm #12

Alarm #13

Alarm #14

Alarm #15

Alarm #16

Bit meaning: 1 = setpoint has been operated

The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to

1. The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to 0.

19

6

7

8

2

3

4

5

Table 5-15 Self-check Alarm Status

Bit Description

0

1

2

3

4

Reserved

ROM error

RAM error

Watchdog timer reset

Sampling failure

5

6

7

8

Out of control trap

Reserved

Timing failure

Loss of power (power up)

9

10

External reset (warm restart)

Configuration corrupted

11-15 Reserved

The self-check alarm register indicates possible problems with the instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made.

Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status bit is also reset automatically when you change setup either via the front panel or through communications.

Table 5-16 PFC Status

Code

0

1

Status Meaning

Ready

Alarm

A switching program is complete

Operations are stopped by an alarm setpoint

Busy

Low power

Waiting for a switching delay

Insufficient reactive power to trigger PFC

Excessive inductive load (automatic mode) Non-compensated inductive load

Excessive capacitive load (automatic mode) Non-compensated capacitive load

Full (manual mode)

Idle (manual mode)

OFF

All capacitor banks are switched in

All capacitor banks are switched off

The PFC is switched off

5.8 Extended Data Registers

The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section 2.9 for information on the user assignable registers.

Along with the register address, the table shows for each data item its data identifier (ID). This is a one word containing a data group ID in the high byte and the parameter offset in a group in the low byte. Data

IDs are used to specify input or output parameters whenever a data parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.

20

Table 5-17 Extended Data Registers

Parameter

None

None

Status inputs

Status inputs

(see Table 5-11)

Relays

16-bit Register

Reg.

6656

6896

Conv.

32-bit

Register

11776-11777 0

Data

ID

12544-12545 1536

Dir.

R

R

Unit Range/Scale

0

0

Low

0

3

High

Relay status

(see Table 5-10)

Event/time counters

Counter #1

6976 12800-12801 2048 R

Counter #2

Counter #3

Counter #4

7056

7057

7058

7059

7060

7061

7062

7063

13056-13057 2560

13058-13059 2561

13060-13061 2562

13062-13063 2563

R/W

R/W

R/W

R/W

PFC relay operation (switching cycles) counters

Relay operation counter #1

Relay operation counter #2

Relay operation counter #3

Relay operation counter #4

Relay operation counter #5

Relay operation counter #6

Relay operation counter #7

Relay operation counter #8

7064

7065

7066

7067

7068

7069

7070

7071

7072

7073

7074

7075

7076

7077

7078

7079

13064-13065 2564

13066-13067 2565

13068-13069 2566

13070-13071 2567

13072-13073 2568

13074-13075 2569

13076-13077 2570

13078-13079 2571

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Real-time values per phase

Voltage L1/L12 †

Voltage L2/L23 †

Voltage L3/L31 †

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

Voltage THD L1/L12

Voltage THD L2/L23

7136 LIN3 13312-13313 3072 R

7137 LIN3 13314-13315 3073 R

7138 LIN3 13316-13317 3074 R

7139 LIN3 13318-13319 3075 R

7140 LIN3 13320-13321 3076 R

7141 LIN3 13322-13323 3077 R

7142 LIN3 13324-13325 3078 R

7143 LIN3 13326-13327 3079 R

7144 LIN3 13328-13329 3080 R

7145 LIN3 13330-13331 3081 R

7146 LIN3 13332-13333 3082 R

7147 LIN3 13334-13335 3083 R

7148 LIN3 13336-13337 3084 R

7149 LIN3 13338-13339 3085 R

7150 LIN3 13340-13341 3086 R

7151 LIN3 13342-13343 3087 R

7152 LIN3 13344-13345 3088 R

7153 LIN3 13346-13347 3089 R

7154 LIN3 13348-13349 3090 R

7155 LIN3 13350-13351 3091 R

0

0

0

0

0

0

0

0

0

0

0

0

0

3

99999

99999

99999

99999

99999

99999

99999

99999

99999

99999

99999

99999

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0

0

0

0

0

Vmax

Vmax

Vmax

Imax

Imax

0.01A 0 Imax

0.001kW/1kW -Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0 Pmax

0.001kVA/1kVA 0

0.001kVA/1kVA 0

0.001

0.001

Pmax

Pmax

-1.000 1.000

-1.000 1.000

0.001

0.1%

0.1%

-1.000 1.000

0

0

999.9

999.9

21

Parameter

Voltage THD L3/L31

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

16-bit Register

Reg. Conv.

32-bit

Register

Data

ID

Dir.

7156 LIN3 13352-13353 3092 R

7157 LIN3 13354-13355 3093 R

7158 LIN3 13356-13357 3094 R

7159 LIN3 13358-13359 3095 R

7160 LIN3 13360-13361 3096 R

7161 LIN3 13362-13363 3097 R

7162 LIN3 13364-13365 3098 R

7163 LIN3 13366-13367 3099 R

7164 LIN3 13368-13369 3100 R

7165 LIN3 13370-13371 3101 R

7166 LIN3 13372-13373 3102 R

7167 LIN3 13374-13375 3103 R

7168 LIN3 13376-13377 3104 R

Real-time total values

Total kW

Total kvar

Total kVA

Total PF

Total PF lag

Total PF lead

Total kW import

Total kW export

Total kvar import

Total kvar export

7256 LIN3 13696-13697 3840 R

7257 LIN3 13698-13699 3841 R

7258 LIN3 13700-13701 3842 R

7259 LIN3 13702-13703 3843 R

7260 LIN3 13704-13705 3844 R

7261 LIN3 13706-13707 3845 R

7262 LIN3 13708-13709 3846 R

7263 LIN3 13710-13711 3847 R

7264 LIN3 13712-13713 3848 R

7265 LIN3 13714-13715 3849 R

Real-time auxiliary values

Reserved

Neutral current

Frequency ƒ

Voltage unbalance

Current unbalance

Average values per phase

7296 13824-13825 4096 R

7297 LIN3 13826-13827 4097 R

7298 LIN3 13828-13829 4098 R

7299 LIN3 13830-13831 4099 R

7300 LIN3 13832-13833 4100 R

Voltage L1/L12 †

Voltage L2/L23 †

Voltage L3/L31 †

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3/L31

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

7336 LIN3 13952-13953 4352 R

7337 LIN3 13954-13955 4353 R

7338 LIN3 13956-13957 4354 R

7339 LIN3 13958-13959 4355 R

7340 LIN3 13960-13961 4356 R

7341 LIN3 13962-13963 4357 R

7342 LIN3 13964-13965 4358 R

7343 LIN3 13966-13967 4359 R

7344 LIN3 13968-13969 4360 R

7345 LIN3 13970-13971 4361 R

7346 LIN3 13972-13973 4362 R

7347 LIN3 13974-13975 4363 R

7348 LIN3 13976-13977 4364 R

7349 LIN3 13978-13979 4365 R

7350 LIN3 13980-13981 4366 R

7351 LIN3 13982-13983 4367 R

7352 LIN3 13984-13985 4368 R

7353 LIN3 13986-13987 4369 R

7354 LIN3 13988-13989 4370 R

7355 LIN3 13990-13991 4371 R

7356 LIN3 13992-13993 4372 R

7357 LIN3 13994-13995 4373 R

7358 LIN3 13996-13997 4374 R

7359 LIN3 13998-13999 4375 R

7360 LIN3 14000-14001 4376 R

7361 LIN3 14002-14003 4377 R

Unit

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0.1

0.1%

0.1%

0.1%

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01Hz

1%

1%

Range/Scale

0

0

0

0

0

0

0

0

0

0

0

Low

0

0

1.0

1.0

1.0

0

0

High

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0

0.001

Pmax

-1.000 1.000

0.001

0.001

-1.000 1.000

-1.000 1.000

0.001kW/1kW 0

0.001kW/1kW 0

0.001kvar/1kvar 0

0.001kvar/1kvar 0

Pmax

Pmax

Pmax

Pmax

999.9

999.9

999.9

999.9

999.9

999.9

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

0

Imax

100.00

300

300

0.001

0.001

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0

0

0

0

Vmax

Vmax

Vmax

Imax

0.01A

0.01A

0

0

Imax

Imax

0.001kW/1kW -Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0

0.001kVA/1kVA 0

Pmax

Pmax

0.001kVA/1kVA 0

0.001

Pmax

-1.000 1.000

0

0

0

0

-1.000 1.000

-1.000 1.000

0

0

999.9

999.9

1.0

1.0

999.9

999.9

999.9

999.9

999.9

999.9

22

Parameter

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

Average total values

16-bit Register

Reg. Conv.

32-bit

Register

Data

ID

Dir.

7362 LIN3 14004-14005 4378 R

7363 LIN3 14006-14007 4379 R

7364 LIN3 14008-14009 4380 R

7365 LIN3 14010-14011 4381 R

7366 LIN3 14012-14013 4382 R

7367 LIN3 14014-14015 4383 R

7368 LIN3 14016-14017 4384 R

Total kW

Total kvar

Total kVA

Total PF

Total PF lag

Total PF lead

Total kW import

Total kW export

Total kvar import

Total kvar export

Average auxiliary values

Reserved

Neutral current

Frequency ƒ

Voltage unbalance

Current unbalance

Present demands

7456 LIN3 14336-14337 5120 R

7457 LIN3 14338-14339 5121 R

7458 LIN3 14340-14341 5122 R

7459 LIN3 14342-14343 5123 R

7460

7463

7464

7465

7496

7497

7498

7499

7500

LIN3

7461 LIN3 14346-14347 5125 R

7462 LIN3 14348-14349 5126 R

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

14344-14345 5124

14350-14351 5127

14352-14353 5128

14354-14355 5129

14464-14465 5376

14466-14467 5377

14468-14469 5378

14470-14471 5379

14472-14473 5380

R

R

R

R

R

R

R

R

R

Volt demand L1/L12 † 7536 LIN3 14592-14593 5632 R

Volt demand L2/L23 † 7537 LIN3 14594-14595 5633 R

Volt demand L3/L31 † 7538 LIN3 14596-14597 5634 R

Ampere demand L1 7539 LIN3 14598-14599 5635 R

Ampere demand L2

Ampere demand L3

Block kW demand

Reserved

Block kVA demand

Sliding window kW

7540

7541

7542

7543

LIN3

LIN3

LIN3

14600-14601 5636

14602-14603 5637

14604-14605 5638

14606-14607 5639

R

R

R

R

7544 LIN3 14608-14609 5640 R

7545 LIN3 14610-14611 5641 R demand

Reserved

Sliding window kVA demand

7546

7547 LIN3

14612-14613 5642

14614-14615 5643

R

R

Reserved

Reserved

7548

7549

14616-14617 5644

14618-14619 5645

R

R

Reserved

Accumulated kW demand

7550 14620-14621 5646 R

7551 LIN3 14622-14623 5647 R

(import)

Reserved

Accumulated kVA demand

Predicted sliding window kW demand

Reserved

Predicted sliding window kVA demand

PF at maximum kVA sliding window demand

7552

7553

7554

7555

7556

7557

LIN3

LIN3

LIN3

LIN3

14624-14625 5648

14626-14627 5649

14628-14629 5650

14630-14631 5651

14632-14633 5652

14634-14635 5653

R

R

R

R

R

R

Unit

0.1

0.1%

0.1%

0.1%

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01Hz

1%

1%

0.001

Range/Scale

0

0

0

0

0

0

0

0

0

0

0

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0

0

0.001kW/1kW 0

0

0.001kVA/1kVA 0

0.001kW/1kW 0

0

0

0

0

0

0.001kVA/1kVA 0

0

0

0

0.001kW/1kW 0

0

0.001kVA/1kVA 0

0.001kW/1kW 0

0

0.001kVA/1kVA 0

Low

1.0

0

High

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0

0.001

Pmax

-1.000 1.000

0.001 -1.000 1.000

0.001 -1.000 1.000

0.001kW/1kW 0 Pmax

0.001kW/1kW 0

0.001kvar/1kvar 0

0.001kvar/1kvar 0

Pmax

Pmax

Pmax

Imax

100.00

300

300

Vmax

Vmax

Vmax

Imax

Imax

Imax

Pmax

0

Pmax

Pmax

0

Pmax

0

0

0

Pmax

0

Pmax

Pmax

0

Pmax

-1.000 1.000

23

Parameter

Total energies

kWh import

16-bit Register

Reg. Conv.

32-bit

Register

Data

ID

Dir.

kWh export …

Reserved

Reserved kvarh import kvarh export …

Reserved

Reserved kVAh total

7576

7577

7578

7579

7580

7581

7582

7583

7584

7585

7586

7587

7588

7589

7590

7591

7592

7593

14720-14721 5888

14722-14723 5889

14724-14725 5890

14726-14727 5891

14728-14729 5892

14730-14731 5893

14732-14733 5894

14734-14735 5895

14736-14737 5896

R

R

R

R

R

R

R

R

R

Phase energies

kWh import L1 kWh import L2 kWh import L3 kvarh import L1 kvarh import L2 kvarh import L3 kVAh total L1 kVAh total L2 kVAh total L3

7616

7617

7618

7619

7620

7621

7622

7623

7624

7625

7626

7627

7628

7629

7630

7631

7632

7633

14848-14849 6144

14850-14851 6145

14852-14853 6146

14854-14855 6147

14856-14857 6148

14858-14859 6149

14860-14861 6150

14862-14863 6151

14864-14865 6152

Fundamental's (H01) real-time values per phase

R

R

R

R

R

R

R

R

R

Voltage L1/L12 ‡

Voltage L2/L23 ‡

Voltage L3/L31 ‡

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

8296 LIN3 17024-17025 10496 R

8297 LIN3 17026-17027 10497 R

8298 LIN3 17028-17029 10498 R

8299 LIN3 17030-17031 10499 R

8300 LIN3 17032-17033 10500 R

8301 LIN3 17034-17035 10501 R

8302 LIN3 17036-17037 10502 R

8303 LIN3 17038-17039 10503 R

8304 LIN3 17040-17041 10504 R

8305 LIN3 17042-17043 10505 R

8306 LIN3 17044-17045 10506 R

8307 LIN3 17046-17047 10507 R

8308 LIN3 17048-17049 10508 R

8309 LIN3 17050-17051 10509 R

8310 LIN3 17052-17053 10510 R

8311 LIN3 17054-17055 10511 R

8312 LIN3 17056-17055 10512 R kWh kWh kvarh kvarh kVAh kWh kWh kWh kvarh kvarh kvarh kVAh kVAh kVAh

Unit Range/Scale

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Low High

10

10

0

0

10

10

0

0

10

10

10

10

10

10

10

10

10

10

8

8

8

8

8

8

8

8

8

8

8

8

8

8

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0

0

0

0

Vmax

Vmax

Vmax

Imax

0.01A 0 Imax

0.01A 0 Imax

0.001kW/1kW -Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0 Pmax

0.001kVA/1kVA 0

0.001kVA/1kVA 0

Pmax

Pmax

0.001

0.001

-1.000 1.000

-1.000 1.000

24

Parameter 16-bit Register

Reg. Conv.

32-bit

Register

Data Dir.

ID

Power factor L3 8313 LIN3 17058-17059 10513 R

Fundamental's (H01) real-time total values

Total kW

Total kvar

Total kVA

Total PF

8336

8337

8338

8339

LIN3

LIN3

LIN3

LIN3

Minimum real-time values per phase (M)

17152-17153 10752 R

17154-17155 10753 R

17156-17157 10754 R

17158-17159 10755 R

Voltage L1/L12 †

Voltage L2/L23 †

Voltage L3/L31 †

Current L1

Current L2

Current L3

8416 LIN3 17408-17409 11264 R

8417 LIN3 17410-17411 11265 R

8418 LIN3 17412-17413 11266 R

8419 LIN3 17414-17415 11267 R

8420 LIN3 17416-17417 11268 R

8421 LIN3 17418-17419 11269 R

Minimum real-time total values (M)

Total kW

Total kvar

Total kVA

Total PF

8456 LIN3 17536-17537 11520 R

8457 LIN3 17538-17539 11521 R

8458 LIN3 17540-17541 11522 R

8459 LIN3 17542-17543 11523 R

Minimum real-time auxiliary values (M)

Reserved

Neutral current

Frequency ƒ

8496 17664-17665 11776 R

8497 LIN3 17666-17667 11777 R

8498 LIN3 17668-17669 11778 R

Minimum demands (M) - Reserved

Reserved 8536

...

8547

17792-17793

...

18814-18815

12032

...

12043

R

Maximum real-time values per phase (M)

Voltage L1/L12 †

Voltage L2/L23 †

Voltage L3/L31 †

Current L1

Current L2

Current L3

8736

8737

8738

8739

8740

8741

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

Maximum real-time total values (M)

18432-18433 13312 R

18434-18435 13313 R

18436-18437 13314 R

18438-18439 13315 R

18440-18441 13316 R

18442-18443 13317 R

Total kW

Total kvar

Total kVA

Total PF

8776 LIN3 18560-18561 13568 R

8777 LIN3 18562-18563 13569 R

8778 LIN3 18564-18565 13570 R

8779 LIN3 18566-18567 13571 R

Maximum real-time auxiliary values (M)

Reserved

Neutral current

Frequency ƒ

Maximum demands (M)

8816

8817

8818

LIN3

LIN3

18688-18689 13824 R

18680-18681 13825 R

18682-18683 13826 R

Max. volt demand L1/L12

Max. volt demand L2/L23

8856

8857

LIN3

LIN3

18816-18817 14080 R

18818-18819 14081 R

Max. volt demand L3/L31

8858 LIN3 18820-18821 14082 R

Max. ampere demand L1 8859 LIN3 18822-18823 14083 R

Max. ampere demand L2 8860 LIN3 18824-18825 14084 R

Max. ampere demand L3 8861 LIN3 18826-18827 14085 R

Reserved

Reserved

Reserved

8862

8863

8864

18828-18829 14086 R

18830-18831 14087 R

18832-18833 14088 R

Unit

0.001

Range/Scale

Low High

-1.000 1.000

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0

0.001

Pmax

-1.000 1.000

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0

0.001 0

Pmax

1.000

0.01A

0.01Hz

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0

0

0

0

0

0

0

0

0

0

0

Imax

100.00

Vmax

Vmax

Vmax

Imax

Imax

Imax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0

0.001 0

Pmax

1.000

0.01A

0.01Hz

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Vmax

Vmax

Vmax

Imax

Imax

Imax

0

Imax

100.00

Vmax

Vmax

Vmax

0

0

0

Imax

Imax

Imax

25

Parameter

Max. sliding window kW demand

Reserved

Max. sliding window kVA demand

16-bit Register

Reg. Conv.

8866

8867 LIN3

32-bit

Register

Data

ID

Dir.

8865 LIN3 18834-18835 14089 R

18836-18837 14090 R

18838-18839 14091 R

Unit Range/Scale

0.001kW/1kW 0

0

0.001kVA/1kVA 0

Low High

Pmax

0

Pmax

• For the parameter limits, see note • to Table 5-1.

‚ When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.

ƒ The actual frequency range is 45.00 - 65.00 Hz.

„ Absolute min/max value (lag or lead).

… The exported energy registers are read as positive unsigned long (32-bit) integers.

† When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

‡ When the 4LN3, 4LL3 or 3LN3 wiring mode is selected, the harmonic voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages. The line-to-line harmonic voltages in the

3DIR2, 3LL3 and 2LL1 wiring modes, and the L31 harmonic voltage in the 3OP2 and 3OP3 wiring modes will be calculated accurately if the voltages are balanced.

(M) These parameters are logged to the Min/Max log

5.9 Analog Output Setup

Table 5-18 Analog Output Allocation Registers

Channel

Channel #1

Registers (see Table 5-19)

3148-3150

Table 5-19 Analog Channel Allocation Registers

Parameter

Output parameter ID

Zero scale (0-4 mA)

Full scale (1/20 mA)

Offset Size, byte Direction

+0

+1

+2

2

2

2

R/W

R/W

R/W

Range

see Table 5-20 see Table 5-20 see Table 5-20

Except for the signed power factor (see Note 3 to Table 5-20), the output scale is linear within the value range. The scale range will be inverted if the full scale specified is less than the zero scale.

Table 5-20 Analog Output Parameters

Output parameter

None

None

Real-time values per phase

Voltage L1/L12 …

Voltage L2/L23 …

Voltage L3/L31 …

Current L1

Current L2

Current L3

Real-time total values

Total kW

Total kvar

Total kVA

Total PF „

0

Data Size,

ID byte

2

3072 2

3073 2

3074 2

3075 2

3076 2

3077 2

3840 2

3841 2

3842 2

3843 2

Unit

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

N/A

0

0

0

0

0

0

Scale

Low High

Con- version

N/A NONE

Vmax LIN3

Vmax LIN3

Vmax LIN3

Imax LIN3

Imax LIN3

Imax LIN3

0.001kW/1kW -Pmax Pmax LIN3

0.001kvar/1kvar -Pmax Pmax LIN3

0.001kVA/1kVA 0

0.001 -1.000

Pmax LIN3

1.000 LIN3

26

Output parameter

Total PF Lag

Total PF Lead

Real-time auxiliary values

Frequency ƒ

Average values per phase

Voltage L1/L12 …

Voltage L2/L23 …

Voltage L3/L31 …

Current L1

Current L2

Current L3

Average total values

Total kW

Total kvar

Total kVA

Total PF „

Total PF Lag

Total PF Lead

Average auxiliary values

Neutral current

Frequency ƒ

Present demands

Accumulated kW demand

Accumulated kVA demand

Data Size,

ID byte

3844 2

3845 2

0.001

0.001

Unit

4098 2

4352 2

4353 2

4354 2

4355 2

4356 2

4357 2

5120 2

5121 2

5122 2

5123 2

5124 2

5125 2

5377 2

5378 2

5647 2

5649 2

0.01Hz

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0.01A

0

0

Scale

Low High

Con- version

1.000 LIN3

1.000 LIN3

0.001kW/1kW -Pmax Pmax LIN3

0.001kvar/1kvar -Pmax Pmax LIN3

0.001kVA/1kVA 0

0.001 -1.000

Pmax LIN3

1.000 LIN3

0.001

0.001

0

0

1.000 LIN3

1.000 LIN3

0.01A

0.01Hz

0

0

0

0

0

0

0

0

0

0.001kW/1kW 0

0.001kVA/1kVA 0

100.00 LIN3

Vmax LIN3

Vmax LIN3

Vmax LIN3

Imax LIN3

Imax LIN3

Imax LIN3

Imax LIN3

100.00 LIN3

Pmax LIN3

Pmax LIN3

• For parameter limits, see note • to Table 5-1.

When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.

ƒ The actual frequency range is 45.00 to 65.00 Hz

„ The output scale for signed (bi-directional) power factor is symmetrical with regard to

±

1.000 and is linear from -0 to -1.000, and from 1.000 to +0 (note that -1.000

+1.000). Negative power factor is output as [-1.000 minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To define the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because of the fact that negative zero may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both +0.001 and 0.000 are used to specify the scale of +0. To define the range of -0 to 0, you must send -0.001/0.001 or -0.001/0.

… When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

5.10 Digital Input Allocation

Table 5-21 Digital Input Allocation Registers

Parameter

Status inputs allocation •

Pulse inputs allocation •

Not used •

External synchronization pulse input allocation

Register Size, byte

3292

3293

3294

3295

2

2

2

2

Direction

R/W

R/W

R/W

R/W

• Writing to these locations is ignored. No error will occur.

Range

see Table 5-22 see Table 5-22

Read as 0 see Table 5-22

NOTE

When a digital input is allocated for the external synchronization pulse, it is automatically configured as a pulse input, otherwise it is configured as a status input.

27

Table 5-22 Digital Input Allocation Mask

Bit

0

1-15

Description

Digital input allocation status

Not used (read as 0)

Bit meaning: 0 = input is not allocated, 1 = input is allocated to the group

5.11 Alarm/Event Setpoints

Table 5-23 Setpoint Registers

Setpoint

Setpoint #1

Setpoint #2

Setpoint #3

Setpoint #4

Setpoint #5

Setpoint #6

Setpoint #7

Setpoint #8

Setpoint #9

Setpoint #10

Setpoint #11

Setpoint #12

Setpoint #13

Setpoint #14

Setpoint #15

Setpoint #16

Setup registers (see Table 5-24)

2576-2583

2584-2591

2592-2599

2600-2607

2608-2615

2616-2623

2624-2631

2632-2639

2640-2647

2648-2655

2656-2663

2664-2671

2672-2679

2680-2687

2688-2695

2696-2703

Table 5-24 Setpoint Setup Registers

Parameter Direction

Trigger parameter ID

Action

Operate delay

Release delay

Operate limit

Release limit

Offset

+0

2

+1

2

+2

2

+3 2

+4, +5

4

+6, +7

4

Size, byte

R/W

R/W

R/W

R/W

R/W

R/W

Range

see Table 5-25 see Table 5-26

0-9999 (

×

0.1 sec)

0-9999 (

×

0.1 sec) see Table 5-25 see Table 5-25

1. The setpoint is disabled when its trigger parameter is set to NONE. To disable the setpoint, write zero into this register.

2. When writing the setpoint registers (except the event when the setpoint is to be disabled), it is recommended to write all the setpoint registers using a single request, or disable the setpoint before writing into separate registers. Each value being written is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected.

3. Operate and release limits for the trigger parameters and their conversion scales are indicated in

Table 5-25. Each limit value occupies two contiguous registers, the first of which (low word) contains the limit value, and the second (high word) is reserved for long parameters. This register is always read as zero. When written, its value is ignored.

4. Limits indicated in Table 5-25 by a N/A mark are read as zeros. When writing, they can be omitted or should be written as zeros.

5. When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to reallocate it for a setpoint will result in a negative response.

28

Table 5-25 Setpoint Trigger Parameters

Trigger parameter

None

None

Status inputs

Status input ON

Status input OFF

Trigger Size,

ID byte

0 2

1536 2

34304 2

Phase reversal

Positive phase rotation reversal

ƒ

35073 2

Negative phase rotation reversal

ƒ

35074 2

No-volt trigger

No-volt 2311

High/low real-time values on any phase

High voltage …

Low voltage …

High current

Low current

High voltage THD

High current THD

High K-Factor

High current TDD

High L-L voltage

Low L-L voltage

2

3584 2

36096 2

3585 2

36097 2

3591

3592

3593

3594

2

2

2

2

3595 2

36107 2

High/low real-time auxiliary values

High frequency „

Low frequency „

High/low average values per phase

4098 2

36866 2

High current L1

High current L2

High current L3

Low current L1

Low current L2

Low current L3

High/low average values on any phase

4355

4356

2

2

4357 2

37123 2

37124 2

37125 2

High voltage …

Low voltage …

High current

Low current

High L-L voltage

Low L-L voltage

High/low average total values

4864 2

37376 2

4865 2

37377 2

4875 2

37387 2

High total kW import

High total kW export

High total kvar import

High total kvar export

High total kVA

Low total PF Lag

Low total PF Lead

High/low average auxiliary values

High neutral current

High frequency „

Low frequency „

High present demands

High volt demand L1/L12 …

High volt demand L2/L23 …

5126

5127

5128

5129

5122 2

37892 2

37893 2

2

2

2

2

5377

5378

2

2

38146 2

5632

5633

2

2

Unit

0.1V/1V

0.1V/1V

0.01A

0.01A

0.1%

0.1%

0.1

0.1%

0.1V/1V

0.1V/1V

0.01Hz

0.01Hz

0.01A

0.01A

0.01A

0.01A

0.01A

0.01A

0.1V/1V

0.1V/1V

0.01A

0.01A

0.1V/1V

0.1V/1V

Limit/scale

Con-

Low High version

N/A

N/A

N/A

N/A

N/A

N/A

0

0

0

0

0

0

1.0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N/A

N/A

N/A

N/A

N/A

N/A

NONE

NONE

NONE

NONE

NONE

NONE

Vmax LIN3

Vmax LIN3

Imax LIN3

Imax LIN3

999.9 LIN3

999.9 LIN3

999.9 LIN3

100.0 LIN3

Vmax LIN3

Vmax LIN3

100.00 LIN3

100.00 LIN3

Imax LIN3

Imax LIN3

Imax LIN3

Imax LIN3

Imax LIN3

Imax LIN3

Vmax LIN3

Vmax LIN3

Imax LIN3

Imax LIN3

Vmax LIN3

Vmax LIN3

0.001kW/1kW -Pmax Pmax LIN3

0.001kW/1kW -Pmax Pmax LIN3

0.001kvar/1kvar -Pmax Pmax LIN3

0.001kvar/1kvar -Pmax Pmax LIN3

0.001kVA/1kVA 0

0.001 0

0.001 0

Pmax LIN3

1.000 LIN3

1.000 LIN3

0.01A

0.01Hz

0.01Hz

0.1V/1V

0.1V/1V

0

0

0

0

0

Imax LIN3

100.00 LIN3

100.00 LIN3

Vmax LIN3

Vmax LIN3

29

Trigger parameter Trigger Size,

ID

High volt demand L3/L31 …

High ampere demand L1

High ampere demand L2

High ampere demand L3

High block kW demand

5634

5635

5636

5637

5638

High block kVA demand 5640

High sliding window kW demand 5641

High sliding window kVA demand 5643

High accumulated kW demand 5647

High accumulated kVA demand 5649

High predicted kW demand 5650

High predicted kVA demand 5652

byte

2

2

2

2

2

2

2

2

2

2

2

2

Unit

0.1V/1V

0.01A

0

0

0.01A 0

0.01A 0

0.001kW/1kW 0

0.001kVA/1kVA 0

0.001kW/1kW 0

0.001kVA/1kVA 0

0.001kW/1kW 0

0.001kVA/1kVA 0

0.001kW/1kW 0

0.001kVA/1kVA 0

Limit/scale

Con-

Low High version

Vmax

Imax

Imax

LIN3

LIN3

LIN3

Imax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

• For parameter limits, see note • to Table 5-1.

‚ When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.

ƒ

The setpoint is operated when the actual phase sequence does not match the indicated phase rotation.

„ The actual frequency range is 45.00 - 65.00 Hz.

… When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

Table 5-26 Setpoint Actions

No action

Operate relay #1

Operate relay #2

Operate relay #3

Operate relay #4

Operate relay #5

Operate relay #6

Operate relay #7

Operate relay #8

Assert local alarm

Action

Hard switch-off (immediate release) of the PFC capacitor banks

Soft switch-off (in turn release) of the PFC capacitor banks

Increment counter #1

Increment counter #2

Increment counter #3

Increment counter #4

Count operating time using counter #1 •

Count operating time using counter #2 •

Count operating time using counter #3 •

Count operating time using counter #4 •

ID

0

12288

12289

12290

12291

12292

12293

12294

12295

12800

13056

13312

16384

16385

16386

16387

17408

17409

17410

17411

• This action converts a common event counter to the time counter which measures time at 0.1 hour resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter which counts time at 1-second resolution before the corresponding time counter is incremented.

30

5.12 Pulsing Setpoints

Table 5-27 Pulsing Registers

Relay

Relay #1

Relay #2

Relay #3

Relay #4

Relay #5

Relay #6

Relay #7

Relay #8

Setup registers (see Table 5-27)

2892-2893

2894-2895

2896-2897

2898-2899

2900-2901

2902-2903

2904-2905

2906-2907

Table 5-28 Pulsing Setup Registers

Direction Parameter Offset Size, byte

Output parameter ID +0

Number of unit-hours per pulse +1

2

2

Table 5-29 Pulsing Output Parameters

R/W

R/W

Pulsing parameter

None kWh import kWh export kvarh import kvarh export kvarh total (absolute) kVAh total

ID

0

1

2

4

5

6

7

Range

see Table 5-28

1-9999

5.13 Relay Operation Control

These registers allow the user to manually override setpoint relay operations. Either relay may be manually forced operated or released using commands sent via communications.

NOTES

1. A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for pulsing, it automatically reverts to normal operation.

2. A relay is energized when forced operated, and is de-energized when forced released.

Table 5-30 Relay Operation Control Registers

Parameter Register Size, byte

3244

3245

2

2

3246

3247

3248

3249

3250

3251

2

2

2

2

2

2

Direction

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Range

see Table 5-23 see Table 5-23 see Table 5-23 see Table 5-23 see Table 5-23 see Table 5-23 see Table 5-23 see Table 5-23

Relay #1 control status

Relay #2 control status

Relay #3 control status

Relay #4 control status

Relay #5 control status

Relay #6 control status

Relay #7 control status

Relay #8 control status

31

Table 5-31 Relay Operation Status

Operation status

Normal operation

Force operate

Force release

Value

0

1

2

5.14 Min/Max Log

The Min/Max log registers are supported only for compatibility with other models of instruments.

Because the Min/Max log is not time stamped in the C192PF8, reading these registers returns you only values of the Min/Max log parameters which you can read directly via extended data registers (see Table

5-17).

Table 5-32 Min/Max Log Windows Registers

Min/Max log window

Min/Max log window #1

Min/Max log window #2

Min/Max log window #3

Min/Max log window #4

Min/Max log window #5

Min/Max log window #6

Min/Max log window #7

Min/Max log window #8

Min/Max log window #9

Min/Max log window #10

Min/Max log window #11

Min/Max log window #12

Registers (see Table 5-33)

4174-4181

4182-4189

4190-4197

4198-4205

4206-4213

4214-4221

4222-4229

4230-4237

4238-4245

4246-4253

4254-4261

4262-4269

Table 5-33 Min/Max Log Window Registers

Parameter

Second

Minute

Hour

Day

Month

Year

Parameter value •

+0

+1

+2

+3

+4

+5

+6

+7

Offset Size, byte

2

2

2

2

2

2

4

Direction

R

R

R

R

R

R

R

Range

0

0

0

0

0

0 see Table 5-17

• The Min/Max parameter value can be read in one or two registers depending on the value type. For the value length and conversion scales, refer to Table 5-17. The time stamp is not available in the

C192PF8 and is read as zeros.

Table 5-34 Min/Max Log Mapping Register

Parameter Register Size, byte

4172 2

Direction Range

Min/Max log start parameter ID for window #1

R/W see Table 5-17

From 1 to 12 adjacent Min/Max log records can be read at a time via the Min/Max log windows. The starting window #1 can be mapped to any Min/Max log parameter listed in Table 5-17 by writing the parameter ID to the Min/Max log mapping register. This must be written before reading the Min/Max log windows. Note that through Min/Max log windows, you can read only adjacent parameters within the same Min/Max log data group. Reading parameters outside of the selected Min/Max log data group will return zero.

32

5.15 Power Factor Controller Setup

Table 5-35 Power Factor Controller Setup Registers

Parameter

Operating mode

Setpoint trigger

Operational setpoints

Nominal voltage of the capacitor banks

Register Size, byte

2408 2

2409

2410

2411

Low target PF1

High target PF1

2412

2413

Low target PF2

Low target PF2

2414

2415

Setpoint operate delay

Switch-on time (connection interval)

2416

2417

Switch-off time

(disconnection interval)

Reconnection time

(discharge time)

2418

2419

Size of the capacitor bank #1 2420

2

2

2

2

2

2

2

2

2

2

2

2

Direc- tion

Range

R/W 0 = OFF

1 = AUTO 1 (self-adapting mode)

2 = AUTO 2 (optimizing mode)

3 = Manual

R/W 0 = true power factor

1 = power factor displacement

(fundamental harmonic's power factor)

R/W 0 = PF1

1 = PF1 and PF2 (switching via a digital input)

R/W 1V to 999V if PT RATIO = 1

100 to 9999 x 0.01kV if PT RATIO > 1

0 = disable automatic adjusting the capacitor bank powers to the measured line voltage (assumed that those have been adjusted manually)

R/W -500 to 500 x 0.001

R/W -500 to 500 x 0.001

R/W -500 to 500 x 0.001

R/W -500 to 500 x 0.001

R/W 1 to 600 sec

R/W 3 to 600 sec

R/W

R/W

3 to 600 sec

5 to 600 sec

Size of the capacitor bank #2 2421

Size of the capacitor bank #3 2422

Size of the capacitor bank #4 2423

Size of the capacitor bank #5 2424

Size of the capacitor bank #6 2425

Size of the capacitor bank #7 2426

Size of the capacitor bank #8 2427

2

2

2

2

2

2

2

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

R/W 1 to 999 kvar,

0 = not used, -1 = permanently switched in

NOTE

The PFC setup registers except of operating mode are protected from being changed while the PFC is running. Writing to these locations will result in a negative response with the exception code 01 (illegal operation).

5.16 PFC Manual Control Register

This register allows the user to manually connect/disconnect the capacitor banks by issuing commands through communications when the PFC operates in the manual mode.

33

Table 5-36 PFC Manual Control Register

Parameter Register Size, byte Direction

PFC command register 2456

2 W

Range

1 = switch in (connect) a capacitor bank

2 = switch off (disconnect) a capacitor bank

NOTES

1. If the PFC is not in the manual mode or a previous user command was not yet completed, the instrument will respond with the exception code 01 (illegal operation).

2. If a requested command cannot be completed because of an alarm condition or because there are no additional capacitor banks that can be operated, the command is discarded.

No error is reported.

34

NOTES

35

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals