CIGWELD Transarc 250Si, 300Si Welding Equipment Operating Manual

CIGWELD Transarc 250Si, 300Si Welding Equipment Operating Manual

The Transarc 250Si, 300Si are lightweight, constant current power sources incorporating the latest digital inverter technology to provide exceptional DC arc characteristics. These models have outstanding arc characteristics across a wide range of Manual Metal Arc Welding (MMAW) electrodes. Arc welding features include built in VRD, hot start control and arc force control. TIG welding features include excellent starting characteristics for lift TIG.

advertisement

Assistant Bot

Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.

CIGWELD Transarc 250Si, 300Si Operating Manual | Manualzz

Operating Manual

Transarc 250 Si

(Power Source)

Transarc 300 Si

(Power Source)

Part No.

625780

625781

719439 Issue 4 0602

Transarc 250Si, 300Si

Manufacturer and Merchandiser of Quality Consumables and Equipment: CIGWELD

Address: 71 Gower St, Preston

Victoria 3072

Australia

Description of equipment: Welding Equipment (MMAW & GTAW). CIGWELD Transarc 250Si, 300Si and associated accessories.

* Serial numbers are unique with each individual piece of equipment and details description, parts used to manufacture a unit and date of manufacture.

* The equipment conforms to all applicable aspects and regulations of the ‘Low Voltage Directive’ (Directive 73/23/EU, as recently changed in Directive93/63/EU and to the National legislation for the enforcement of the Directive.

National Standard and Technical Specifications

The product is designed to a number of standards and technical requirements among them are:

* IEC 60974-1 (BS 638-PT10)(EN 60 974-1) applicable to welding equipment and associated accessories.

* AS/NZS 3652-(EMC Directive EN50199) applicable to arc welding equipment - generic emissions and regulations.

* UL (Underwriters Laboratory) rating 94VO flammability testing for all printed - circuit boards used.

* 92/31/EEC-EMC Directive EN50199 applicable to arc welding equipment - generic emissions and regulations.

* Extensive product design verification is conducted at the manufacturing facility as part of the routine design and manufacturing process, to ensure the product is safe and performs as specified. Rigorous testing is incorporated into the manufacturing process to ensure the manufactured product meets or exceeds all design specifications.

CIGWELD has been manufacturing and merchandising an extensive equipment range with superior performance, ultra safe operation and world class quality for more than 30 years and will continue to achieve excellence.

2

Transarc 250Si, 300Si

CONTENTS

Page

1. Introduction ......................................................................................................................4

2. Electromagnetic Compatibility ........................................................................................6

3. General Information.........................................................................................................8

4. Safe Practices For The Use Of Welding Equipment ..................................................... 10

5. Resuscitation For Electric Shock Victims...................................................................... 11

6. Specifications .................................................................................................................. 13

7. Voltage Reduction Device (VRD)................................................................................... 17

8. Installation Recommendations ....................................................................................... 18

9. Transarc 250Si, 300Si Controls ..................................................................................... 19

10. Set-up For MMAW (Stick) and GTAW (TIG) ............................................................. 22

11. Sequence Of Operation.................................................................................................. 22

12. Basic TIG Welding Guide ............................................................................................. 23

13. Basic Arc Welding Guide .............................................................................................. 25

14. Routine Inspection, Testing & Maintenance................................................................. 26

15. Basic Troubleshooting ................................................................................................... 27

TABLES

Table 1 - Filter lens size verses welding current .................................................................................. 11

Table 2 - Weld Parameters for Transarc 250 Si................................................................................... 15

Table 3 - Weld Parameters for Transarc 300 Si................................................................................... 15

Table 4 - Current ranges for varies tungsten electrode sizes ................................................................ 23

Table 5 - CIGWELD tungsten electrode types.................................................................................... 23

Table 6 - TIG welding parameters ...................................................................................................... 24

Table 7 - Filler wire selection guide .................................................................................................... 24

Table 8 - Shielding gas selection......................................................................................................... 24

Table 9 - TIG welding parameters for low carbon & low alloy steel pipe ............................................ 25

Table 10 - Types of Electrodes........................................................................................................... 26

FIGURES

Figure 1 – Transarc 250Si Power Source ........................................................................................... 19

Figure 2 – Transarc 300Si Power Source ........................................................................................... 20

Figure 3 – STICK mode ..................................................................................................................... 22

Figure 4 – LIFT TIG Mode ................................................................................................................ 23

Figure 5 – Example of insufficient gap or incorrect sequence.............................................................. 29

Figure 6 – Example of lack of fusion .................................................................................................. 29

Figure 7 – Examples of slag inclusion................................................................................................. 29

3

Transarc 250Si, 300Si

1. Introduction

1.1 Notes, Cautions and Warnings

Throughout this manual, notes, cautions, and warnings are used to highlight important information.

These highlights are categorised as follows:

NOTE

An operation, procedure, or background information which requires additional emphasis or is helpful in efficient operation of the system.

CAUTION

A procedure which, if not properly followed, may cause damage to the equipment.

WARNING

A procedure which, if not properly followed, may cause injury to the operator or others in the operating area.

1.2 Important Safety Precautions

WARNING 1

OPERATION AND MAINTENANCE OF WELDING ARC EQUIPMENT CAN BE DANGEROUS

AND HAZARDOUS TO YOUR HEALTH.

To prevent possible injury, read, understand and follow all warnings, safety precautions and instructions before using the equipment. Call your local distributor if you have any questions.

GASES AND FUMES

Gases and fumes produced during the welding process can be dangerous and hazardous to your health.

Keep all fumes and gases from the breathing area. Keep your head out of the welding fume plume.

Use an air-supplied respirator if ventilation is not adequate to remove all fumes and gases.

The kinds of fumes and gases from the welding arc depend on the kind of metal being used, coatings on the metal, and the different processes. You must be very careful when cutting or welding any metals which may contain one or more of the following:

Antimony

Arsenic

Beryllium

Cadmium

Cobalt

Copper

Manganese

Mercury

Selenium

Silver

Barium Chromium Lead Nickel Vanadium

Always read the Material Safety Data Sheets (MSDS’s) that should be supplied with the material you are using. These MSDS’s will give you the information regarding the kind and amount of fumes and gases that may be dangerous to your health.

Use special equipment, such as water or down draft cutting tables, to capture fumes and gases.

Do not use the welding torch in an area where combustible or explosive gases or materials are located.

Phosgene, a toxic gas, is generated from the vapours of chlorinated solvents and cleansers. Remove all sources of these vapours.

Refer to the Victorian Occupational Health and safety (Confined Spaces) Regulations 1996 and Code of

Practice or its equivalent for other states and / or countries.

4

Transarc 250Si, 300Si

ELECTRIC SHOCK

Electric Shock can injure or kill. The welding arc process uses and produces high voltage electrical energy. This electric energy can cause severe or fatal shock to the operator or others in the workplace.

Never touch any parts that are electrically “live” or “hot.”

Wear dry gloves and clothing. Insulate yourself from the work piece or other parts of the welding circuit.

Repair or replace all worn or damaged parts.

Extra care must be taken when the workplace is moist or damp.

Install and maintain equipment according with local regulations.

Disconnect power supply before performing any service or repairs.

Read and follow all the instructions in the Operating Manual.

FIRE AND EXPLOSION

Fire and explosion can be caused by hot slag, sparks, or the welding arc.

Be sure there is no combustible or flammable material in the workplace. Any material that cannot be removed must be protected.

Ventilate all flammable or explosive vapours from the workplace.

Do not cut or weld on containers that may have held combustibles.

Provide a fire watch when working in an area where fire hazards may exist.

Hydrogen gas may be formed and trapped under aluminium workpieces when they are cut underwater or while using a water table. DO NOT cut aluminium alloys underwater or on a water table unless the hydrogen gas can be eliminated or dissipated. Trapped hydrogen gas that is ignited will cause an explosion.

NOISE

Noise can cause permanent hearing loss. Plasma arc processes can cause noise levels to exceed safe limits. You must protect your ears from loud noise to prevent permanent loss of hearing.

To protect your hearing from loud noise, wear protective earplugs and/or earmuffs. Protect others in the workplace.

Noise levels should be measured to be sure the decibels (sound) do not exceed safe levels.

ARC RAYS

Arc Rays can injure your eyes and burn your skin. The welding arc process produces very bright ultra violet and infra red light. These arc rays will damage your eyes and burn your skin if you are not properly protected.

To protect your eyes, always wear a welding face shield. Also always wear safety glasses with side shields, goggles or other protective eye wear.

Wear welding gloves and suitable clothing to protect your skin from the arc rays and sparks.

Keep welding face shield and safety glasses in good condition. Replace lenses when cracked, chipped or dirty.

Protect others in the work area from the arc rays. Use protective booths, screens or shields.

Use the shade of lens as recommended in this Operating Manual.

5

Transarc 250Si, 300Si

2. Electromagnetic Compatibility

WARNING 2

Extra precautions for Electromagnetic Compatibility may be required when this Welding Power Source is used in a domestic situation.

2.1 Installation and use - Users Responsibility

The user is responsible for installing and using the welding equipment according to the manufacturer’s instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user of the welding equipment to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing the welding circuit, see NOTE 1. In other cases it could involve constructing an electromagnetic screen enclosing the Welding Power Source and the work, complete with associated input filters. In all cases, electromagnetic disturbances shall be reduced to the point where they are no longer troublesome.

NOTE 1

The welding circuit may or may not be earthed for safety reasons. Changing the earthing arrangements should only be authorised by a person who is competent to assess whether the changes will increase the risk of injury, e.g. by allowing parallel welding current return paths which may damage the earth circuits of other equipment. Further guidance is given in IEC 974-13 Arc Welding Equipment - Installation and use

(under preparation).

2.2 Assessment of Area

Before installing welding equipment, the user shall make an assessment of potential electromagnetic problems in the surrounding area. The following shall be taken into account i) Other supply cables, control cables, signalling and telephone cables; above, below and adjacent to the welding equipment.

ii) Radio and television transmitters and receivers.

iii) Computer and other control equipment.

iv) Safety critical equipment, e.g. guarding of industrial equipment.

v) The health of people around, e.g. the use of pacemakers and hearing aids.

vi) Equipment used for calibration and measurement.

vii) The time of day that welding or other activities are to be carried out.

viii) The immunity of other equipment in the environment: the user shall ensure that other equipment being used in the environment is compatible: this may require additional protection measures.

The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.

6

Transarc 250Si, 300Si

2.3 Methods of Reducing Electromagnetic Emissions a) Mains Supply

Welding equipment should be connected to the mains supply according to the manufacturer’s recommendations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed welding equipment in metallic conduit or equivalent.

Shielding should be electrically continuous throughout its length. The shielding should be connected to the Welding Power Source so that good electrical contact is maintained between the conduit and the Welding Power Source enclosure.

b) Maintenance of Welding Equipment

The welding equipment should be routinely maintained according to the manufacturer’s recommendations. All access and service doors and covers should be closed and properly fastened when the welding equipment is in operation. The welding equipment should not be modified in any way except for those changes and adjustments covered in the manufacturer’s instructions. In particular, the spark gaps of arc striking and stabilising devices should be adjusted and maintained according to the manufacturer’s recommendations.

c) Welding Cables

The welding cables should be kept as short as possible and should be positioned close together, running at or close to the floor level.

d) Equipotential Bonding

Bonding of all metallic components in the welding installation and adjacent to it should be considered. However, metallic components bonded to the work piece will increase the risk that the operator could receive a shock by touching the metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.

e) Earthing of the Workpiece

Where the workpiece is not bonded to earth for electrical safety, nor connected to earth because of it’s size and position, e.g. ship’s hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connection of the workpiece to earth should be made by direct connection to the workpiece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capacitance, selected according to national regulations.

f) Screening and Shielding

Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening the entire welding installation may be considered for special applications.

7

Transarc 250Si, 300Si

3. General Information

The Transarc 250 Si, 300 Si are light weight, constant current power sources incorporating the latest digital inverter technology to provide exceptional DC arc characteristics. These models have outstanding arc characteristics across a wide range of Manual Metal Arc Welding (MMAW) electrodes. Arc welding features include built in VRD, hot start control and arc force control. TIG welding features include excellent starting characteristics for lift TIG.

Welding trials, with Voltage Reduction Device turned ON, have shown:

A superior arc initiation characteristics with all types of electrodes due in part to the very fast response time of the machine once a resistance of less than 175 ohms is sensed, but also due to the hot-start feature;

Excellent arc stability afforded by the digital inverter technology;

Good restrike characteristics with rutile coated and iron-powder electrodes (even though the machine is in the low OCV mode), made possible by the fast response time and the presence of the hot-start feature.

Typical applications are maintenance, site work, breakdowns, repairs, light structures and is supplied with a

2.5-3.0 metre primary lead.

3.1 User Responsibility

This equipment will perform as per the information contained herein when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Defective equipment (including welding leads) should not be used. Parts that are broken, missing, plainly worn, distorted or contaminated, should be replaced immediately. Should such repairs or replacements become necessary, it is recommended that appropriately qualified persons approved by CIGWELD carry out such repairs. Advice in this regard can be obtained by contacting accredited CIGWELD Distributor.

This equipment or any of its parts should not be altered from standard specification without prior written approval of CIGWELD. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use or unauthorised modification from standard specification, faulty maintenance, damage or improper repair by anyone other than appropriately qualified persons approved by CIGWELD.

3.2 Duty Cycle

Duty Cycle is the amount of arc-on time (actual welding or cutting time) during any 10 minute period that a machine can operate at it’s rated output without damaging internal components. For example, the Transarc 250Si is designed for 40% duty cycle at 250 amps. This means that it has been designed and built to provide the rated amperage, 250 amps, for 4 minutes out of every 10 minute period

(40% of 10 minutes is 4 minutes). During the other 6 minutes of the 10 minute period the Transarc

250Si must idle and be allowed to cool. The thermal cut-out will operate if the duty cycle is exceeded. As a general rule, a machine rated at more than 35% duty cycle would be more than ample duty cycle for the majority of general-purpose non-automatic welding. Note that all duty cycles are calculated for a maximum ambient temperature of 40°C as per IEC 60974-1. Duty cycles must be reduced, ie reduce the arc-on time, when the ambient temperature exceeds 40°C.

3.3 Terms Of Warranty - April 2002

1. The Trade Practices Act 1974 (Commonwealth) and similar State Territory legislation relating to the supply of goods and services, protects consumers' interests by ensuring that consumers are entitled in certain situations to the benefit of various conditions, warranties, guarantees, rights and remedies (including

8

Transarc 250Si, 300Si warranties as to merchantability and fitness for purpose) associated with the supply of goods and services. A consumer should seek legal advice as to the nature and extent of these protected interests. In some circumstances, the supplier of goods and services may legally stipulate that the said conditions, warranties, guarantees, rights and remedies are limited or entirely excluded. The warranties set out in Clause 2 shall be additional to any non-excludable warranties to which the Customer may be entitled pursuant to any statute.

2. Subject to Clause 3. CIGWELD gives the following warranties to the Customer:

Insofar as they are manufactured or imported by CIGWELD, goods will upon delivery be of merchantable quality and reasonably fit for the purpose for which they are supplied by CIGWELD.

CIGWELD will repair or, at its option, replace those of the goods which, upon examination, are found by

CIGWELD to be defective in workmanship and/or materials.

CIGWELD reserves the right to request documented evidence of date of purchase.

3. The Warranty in Clause 2;

Is conditional upon:

The Customer notifying CIGWELD or our Accredited Distributor in writing of its claim within seven (7) days of becoming aware of the basis thereof, and at its own expense returning the goods which are the subject of the claim to CIGWELD or nominated Accredited Distributor/Accredited Service Agent.

The goods being used in accordance with the Manufacturer's Operating Manuals, and under competent supervision.

Does not apply to:

Obsolete goods sold at auction, second-hand goods and prototype goods.

Breakdown or malfunction caused by accident, misuse or normal wear and tear.

Repairs or replacement made other than by CIGWELD or Accredited Service Agents, unless by prior arrangement with CIGWELD.

Replacement parts or accessories which may affect product safety or performance and which are not manufactured, distributed or approved by CIGWELD.

4. CIGWELD declares that, to the extent permitted by law, it hereby limits its liability in respect of the supply of goods which are not of a kind ordinarily acquired for personal, domestic or household use or consumption to any one or more of the following (the choice of which shall be at the option of CIGWELD).

The replacement of the goods or the supply of equivalent goods.

The repair of goods.

The payment of cost of replacing the goods or acquiring equivalent goods.

The payment of the cost of having goods repaired.

5. Except as provided in Clauses 2 to 4 above, to the extent permitted by statute, CIGWELD hereby excludes all liability for any loss, damage, death or injury of any kind whatsoever occasioned to the Customer in respect of the supply of goods including direct, indirect, consequential or incidental loss, damage or injury of any kind.

3.4 Warranty Schedule - April 2002

These warranty periods relate to the warranty conditions in clause 2. All warranty periods are from date of sale from the Accredited Distributor of the equipment. Notwithstanding the foregoing, in no event shall the warranty period extend more than the time stated plus one year from the date CIGWELD delivered the product to the Accredited

Distributor. Unless otherwise stated the warranty period includes parts and labour.

CIGWELD reserves the right to request documented evidence of date of purchase.

Transarc 250Si, 300Si W

ARRANTY

P

ERIOD

Main Power Magnetics ...................................................................................2 years (Labour 1 year)

9

Transarc 250Si, 300Si

Original Main Power Rectifiers, Control P.C. Boards ..................................... 2 years (Labour 1 year)

All other circuits and components including, but not limited to, relays, switches, contactors, solenoids, fans, power switch semi-conductors ............................ 1 year

Please note that the information detailed in this statement supersedes any prior published data produced by

CIGWELD.

WARNING 3

For the purpose of safety and performance and to protect your CIGWELD Equipment Warranty always use genuine CIGWELD replacement parts and accessories.

4. Safe Practices For The Use Of Welding Equipment

In many situations the “striking” voltage can be hazardous. Any person touching simultaneously the electrode lead/terminal and the work lead/terminal may receive a serious electrical shock. Additional precautions must be exercised where two Welding Power Sources are being used close to each other because, under certain conditions, the voltages between the welding terminals of the two Welding Power

Sources could be two times the specified open circuit voltage.

It is essential that the Welding Power Source be correctly installed, if necessary, by a qualified electrician and maintained in sound mechanical and electrical condition. It is also important that the Welding Power

Source be switched off when not in use.

4.1 Precautions to be Taken by Operators

Whenever practicable, all parts of the welding circuit should be isolated from earth and other conducting material and under no circumstances should any earthing conductor of the electrical installation be used in place of the work lead.

The Mains supply voltage should be switched off before connecting or disconnecting welding leads. Welding lead connections must have clean contact surfaces and must be securely tightened.

Poor connections will result in overheating and loss of welding current. All parts of the welding circuit, including the return paths, are to be considered electrically alive, so the operator must ensure that no part of the body is placed in such a position that it will provide a path for an electric current.

Welding operators should avoid direct contact with the work to be welded or against any metal in contact with the work. When this cannot be avoided the operator must not touch any exposed portion of the electrode holder with any part of the body. Should this occur, the operator will risk completing the electrical circuit through the body.

When welding in confined spaces, where reasonable movement is restricted, particular care must be taken to ensure that the area is well ventilated and the operator is under constant observation by a person who can immediately switch off the power and give assistance in an emergency.

The flux covering of an electrode cannot be assumed to provide effective insulation, consequently an insulating glove must be worn when placing an electrode into its holder, or should it be necessary to handle an electrode once it is in contact with its holder.

During pauses between welding runs, electrode holders should be so placed that they cannot make electrical contact with persons or conductive objects.

The welding leads, both the electrode lead and the work lead, must be protected from damage.

Damaged leads must not be used.

Keep combustible materials away from the welding area. Have a suitable fire extinguisher handy.

Do not stand on damp ground when welding.

10

Transarc 250Si, 300Si

4.2 Personal Protection

The radiation from an electric arc during the welding process can seriously harm eyes and skin. It is essential that the following precautions be taken:

Gloves should be flameproof gauntlet type to protect hands and wrists from heat burns and harmful radiations. They should be kept dry and in good repair.

Protective clothing must protect the operator from burns, spatter and harmful radiation. Woollen clothing is preferable to cotton because of its greater flame resistance. Clothing should be free from oil or grease. Wear leggings and spats to protect the lower portion of the legs and to prevent slag and molten metal from falling into boots or shoes.

Face Shield

It is recommended to use a welding face shield, conforming to the relevant standards, when electric arc welding. Use a welding face shield in serviceable condition and fitted with an eye filter lens to safely reduce harmful radiation from the arc as per Table 1.

Description of Process

MMAW Stick Welding Electrodes

MMAW Stick Welding Electrodes

MMAW Stick Welding Electrodes

MMAW Stick Welding Electrodes

GTAW Tungsten Inert Gas (TIG)

GTAW Tungsten Inert Gas (TIG)

GTAW Tungsten Inert Gas (TIG)

GTAW Tungsten Inert Gas (TIG)

Approximate Range of

Welding Current Amperes

40-100

100-200

200-300

300-400

5-100

100-200

200-250

250-350

Table 1 - Filter lens size verses welding current

Filters Recommended

Shade Number

8

10

11

12

10

11

12

13

Protective filter lenses are provided to reduce the intensity of radiation entering the eye thus filtering out harmful infra-red, ultra-violet radiation and a percentage of the visible light. Such filter lenses are incorporated within face shields. To prevent damage to the filter lenses from molten or hard particles an additional hard clear glass or special clear external cover lens is provided. This cover lens should always be kept in place and replaced before the damage impairs your vision while welding.

5. Resuscitation For Electric Shock Victims

Electric shock may kill immediately. Early resuscitation is required if a life is to be saved. Every Second

Counts! Electrical currents may:

Stop the heart;

Cause contraction of the muscles of the body;

Paralyse breathing due to paralysis of the centre of respiration in the brain;

Cause burns.

The victims often cannot free themselves from the current and may not be able to breathe due to fixation of the chest.

11

Transarc 250Si, 300Si

5.1 Resuscitation

Efficient resuscitation requires training which is available from the St John’s Ambulance Association,

Red Cross and other sources.

1 Don’t become a victim. Switch off power if possible. If not, remove victim from contact, using some insulating material.

2 If unconscious, place victim on their side and clear vomit and other foreign matter from mouth. Check for breathing by look, listen and feel. If not breathing, commence expired air resuscitation (E.A.R.). This should take no longer than 3 or 4 seconds.

3 Place victim flat on their back on a hard surface, open airway – using head tilt and jaw support as shown.

4 Begin artificial breathing - 5 full breaths in 10 seconds, sealing nostrils with cheek or holding nose closed.

5 Check carotid pulse in neck. If pulse is present, continue E.A.R.

15 breaths per minute for adults.

20 breaths per minute for children.

6 If pulse is absent and you have been trained, begin cardio pulmonary resuscitation (C.P.R).

Cardiac Compression – depress lower end of breast bone (sternum) 4cm to 5cm, less for small children.

One rescuer - 2 breaths, 15 compressions in 15 seconds, i.e. 4 cycles per minute.

Two rescuers - 1 breath, 5 compressions in 5 seconds, i.e. 12 cycles per minute.

7 Check for return of pulse and breathing after 1 minute and at least every 2 minutes. Continue uninterrupted until trained assistance is available. When breathing and pulse return, turn on side and continue observation.

12

Transarc 250Si, 300Si

6. Specifications

Description (NOTE 2)

Power Source Part Number

Plant Part Number

Cooling

Welder Type & Welding process

Welding Power Source mass

Dimensions

Designed to European Standard

Number of Phases

Nominal Supply Voltage

Nominal Supply Frequency

Mains Fuse & Circuit to suit factory fitted Lead that will achieve the following rated weld current/weld process:

GTAW Current & Duty Cycle

MMAW Current & Duty Cycle

Transarc 250Si

625780

N/A

Fan Cooled

Heavy Duty Inverter;

DC MMAW (Stick) & GTAW

(TIG)

17kg

H360mm x W180mm x

D420mm

IEC 60974-1

Three Phase

415V ±10%

50/60Hz

Transarc 300Si

625781

N/A

Fan Cooled

Heavy Duty Inverter;

DC MMAW (Stick) & GTAW

(TIG)

21kg

H420mm x W210mm x

D450mm

IEC 60974-1

Three Phase

415V ±10%

50/60Hz

ª

17A/Phase

250A @ 40%

250A @ 40%

ª

22A/Phase

300A @ 30%

300A @ 30%

Maximum TIG Current & Duty Cycle

Maximum MMAW Current & Duty Cycle

GTAW Welding Current @ 100% Duty Cycle

MMAW Welding Current @ 100% Duty Cycle

250A @ 40%

250A @ 40%

160A

160A

10.8A/Phase

300A @ 30%

300A @ 30%

160A

160A

12A/Phase Effective Input Current for Max Welding

Current @ 100% Duty Cycle

Maximum Input Current for Max Welding

Current

17A/Phase 22A/Phase

Maximum Input Current for Short Circuit

Single Phase Generator Requirement

Flexible Supply Cable Size Factory Fitted

Thermal Protection

Welding Current Range

17A/Phase

12.5kVA

25A Heavy Duty

Self Resetting Thermostat

5 – 250A

22A/Phase

16kVA

25A Heavy Duty

Self Resetting Thermostat

5 – 300A

Nominal Open Circuit Voltage (OCV) 62V 62V

ª Motor start fuses or thermal circuit breakers are recommended for this application.

The Generators stated kVA ratings MUST be adhered to minimise the welding Power Source’s possible failure as a result of inadequate Mains Power at the welder’s MAXIMUM welding current and MAXIMUM duty cycle. Warranty will be void if the welding Power Source fails as a result of being operated on inadequate Mains Power.

NOTE 2

Due to variations that can occur in manufactured products, claimed performance, voltages, ratings, all capacities, measurements, dimensions and weights quoted are approximate only. Achievable capacities and ratings in use and operation will depend upon correct installation, use, applications, maintenance and service.

13

Transarc 250Si, 300Si

6.1 Weld Parameter Ranges and Controls a) HOT START

This parameter operates in STICK mode and improves the start characteristics for stick electrodes. e.g. low hydrogen electrodes. It sets the peak start current on top of the WELD current.

e.g. HOT START current = 150 amps when Weld Current = 100 amps & HOT START = 50A b) WELD

This parameter sets the STICK & Lift TIG weld current.

c) ARC CONTROL

This parameter operates in STICK mode only and is used to adjust percentage increase in welding current and is proportional to arc length (arc voltage). This control provides an adjustable amount of arc control (or dig). This feature can be particularly beneficial in providing the operator with the ability to compensate for variability in joint fit up in certain situations with particular electrodes, eg cellulose and hydrogen controlled electrodes. In all welding processes, the amount of penetration obtained is dependent on the welding current; ie the greater the penetration, the greater the current.

Arc Force Position Current Increase when Arc

Voltage is less than 18V

Effect on Welding

Performance

Minimum (0) 0A Soft arc, Low spatter, Low penetration

Medium (20%) 32A Normal arc, Improved fusion characteristics,

Normal penetration

Maximum (100%) 160A Hard arc, Deep penetration

In general, having the ARC CONTROL set at 100% (maximum) allows greater penetration control to be achieved. With the ARC CONTROL set at 0% (minimum) the Power Source has a constant current characteristic. In other words, varying the arc length does not significantly effect the welding current. When the ARC CONTROL set to 100%, it is possible to control the welding current by varying the arc length. This is very useful for controlling penetration on root runs and side wall wash on vertical up fillet welds.

i) Root runs

During root runs the weld pool forms a “keyhole” shape. If too much weld current is used, the hole blows out and the weld collapses. If too little weld current is used, the hole closes up and penetration is lost. The size of the hole also determines the arc length; ie as the hole gets bigger, the arc gets longer.

If arc force is used, the increase in the arc length causes the weld current to decrease until the hole starts to close up but if the hole closes up to much then the arc length decreases which causes the weld current to increase. Too little or too much arc force makes this process unstable. The operator must adjust the arc force until a happy medium is reached.

14

Transarc 250Si, 300Si ii) Vertical up welding

When welding vertical up with arc force on, the operator can control the amount of current by changing arc length, ie voltage. Weld metal is deposited by “digging” the electrode into the side of the base metal joint and then increasing the arc length with a flicking motion, to allow the weld pool to freeze, before digging the electrode into the other side of the base metal joint.

Without arc force, increasing the arc length does not decrease the weld current sufficiently and the operator has to manually decrease the current via a remote current control to freeze the weld pool. This welding current reduction also reduces the penetration.

The arc force allows the weld pool to freeze during the “flick” phase without decreasing the amount of weld current available during the “dig” phase thus maximising penetration.

d) Weld Parameters for Transarc 250 Si

Weld

Parameter

HOT START

WELD

ARC CONTROL

Parameter

Range

0 to 70A

5 to 250A

0 to 100%

Factory

Setting

20A

80A

10%

Incremental

Unit

1A

1A

1%

Table 2 - Weld Parameters for Transarc 250 Si

STICK

ü

ü

ü

Weld Mode

LIFT

TIG

û

ü

û e) Weld Parameters for Transarc 300 Si

Weld

Parameter

HOT START

WELD

ARC CONTROL

Parameter

Range

0 to 70A

5 to 300A

0 to 100%

Factory

Setting

20A

80A

10%

Incremental

Unit

1A

1A

1%

Table 3 - Weld Parameters for Transarc 300 Si

STICK

ü

ü

ü

Weld Mode

LIFT

TIG

û

ü

û

6.2 Power Source Features

Feature

New Digital Control

Touch Panel Switches

Front Control Cover

Digital Meter

Description has been completed time even whilst welding

15

Transarc 250Si, 300Si

Feature

Intelligent Fan Control

Description dust and foreign material build-up, whilst providing optimum cooling.

machine is turned on operating temperature

ON/OFF switch

Voltage Reduction Device (VRD) green VRD light is ON when not welding red VRD light is ON when welding the red VRD light is ON when not welding and welding

Control Knob

Self Diagnosis Using Error Codes

Buzzer clockwise increase the parameter parameter time even whilst welding displays the next parameter problem occurs with Mains supply voltage or internal component problems. Refer to section 15.3 on page 30 displayed

6.3 Product Contents

Description

Welding Power Source

Multi-pin plug

Two Dinse Connectors

Operating Manual

6.4 Accessories

Transarc 250Si

625780

ü

ü

ü

ü

Part Number

OTD10/4007

OTD10/4013

OTD10/4014

OTD10/4016

Description

Remote ON/OFF Switch

Remote ON/OFF Switch & Current Control

Remote Pendant Current Control

Remote Foot Current Control

16

Transarc 300Si

625781

ü

ü

ü

ü

Transarc

250Si

ü

ü

ü

ü

Transarc

300Si

Part Number

OTD10/2001

OTD10/2004

OTD10/2005

OTD10/2007

646325

453833

704828

646363

BGSAK2

305720401

700433

BGSAK2

301526

Description

Remote ON/OFF Switch

Remote ON/OFF Switch & Current Control

Remote Pendant Current Control

Remote Foot Current Control

8M 400A Welding Lead Set

Hiderok Helmet

8M 330A Work Lead

Wire Brush, 4 rows

TIG Torch Accessory Kit

250A TIG Torch, 4M, Rigid Neck, Gas Valve

Gas Hose with fittings

TIG Torch Accessory Start up Kit

Flowmeter/Regulator

7. Voltage Reduction Device (VRD)

Transarc 250Si, 300Si

Transarc

250Si

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

Transarc

300Si

ü

ü

ü

ü

ü

ü

WARNING

WELDING IN HAZARDOUS ENVIRONMENTS

Before welding in hazardous environments the VOLTAGE REDUCTION DEVICE (VRD) MUST BE TURNED

ON. For example confined spaces, wet areas and hot humid conditions are classed as hazardous environments.

WARNING

VRD TURN ON PROCEDURE

CIGWELD recommends that an Accredited CIGWELD Service Agent TURNS ON the VOLTAGE REDUCTION

DEVICE (VRD) as they have the knowledge and equipment to preform this operation.

WARNING TO EMPLOYERS

Workplace safety legislation imposes substantial duties on employers to provide a safe workplace and equipment for its employees.

If an employer fails to do so criminal prosecution of the company and its senior officers and employees may result with substantial penalties including fines and in certain cases jail sentences.

It is therefore essential employers acquire safe equipment and ensure its employees are properly trained in its use.

7.1 VRD Specification

With the VRD TURN ON, this equipment meets the following specifications

Description

VRD Open Circuit Voltage

Transarc 250Si,

300Si Notes

15.3 to 19.8V

Open circuit voltage between welding

17

Transarc 250Si, 300Si

VRD Resistance

VRD Turn OFF Time terminals

148 to 193 ohms The required resistance between welding terminals to turn ON the welding power

0.2 to 0.3 seconds The time taken to turn OFF the welding power once the welding current has stopped

7.2 VRD Maintenance

Routine inspection and testing (power source)

An inspection of the power source, an insulation resistance test and an earthing resistance test shall be carried out in accordance with clause 4.1 of AS 1647.2 a) For transportable equipment, at least once every 3 months; and b) For fixed equipment, at least once every 12 months.

The owners of the equipment shall keep a suitable record of the periodic tests.

Note 3

A transportable power source is any equipment that is not permanently connected and fixed in the position in which it is operated.

In addition to the above tests and specifically in relation to the VRD fitted to this machine, the following periodic tests should also be conducted by an accredited CIGWELD service agent.

Description

VRD Open Circuit Voltage

VRD Turn ON Resistance

VRD Turn OFF Time

AS3195 & IEC 60974-1 Requirements

Less than 20V; at Vin = 415V

Less than 200 ohms

Less than 0.3 seconds

If this equipment is used in a hazardous location or environments with a high risk of electrocution then the above tests should be carried out prior to entering this location.

8. Installation Recommendations

8.1 Environment

The Transarc 250Si, 300Si are designed for use in hazardous environments when the VRD is

TURNED ON.

a) Examples of environments with increased hazardous environments are i) In locations in which freedom of movement is restricted, so that the operator is forced to perform the work in a cramped (kneeling, sitting or lying) position with physical contact with conductive parts; ii) In locations which are fully or partially limited by conductive elements, and in which there is a high risk of unavoidable or accidental contact by the operator, or iii) In wet or damp hot locations where humidity or perspiration considerable reduces the skin resistance of the human body and the insulation properties of accessories.

b) Environments with hazardous environments do not include places where electrically conductive parts in the near vicinity of the operator, which can cause increased hazard, have been insulated.

18

1

3

Transarc 250Si, 300Si

8.2 Location

Be sure to locate the welder according to the following guidelines: a) In areas, free from moisture and dust.

b) Ambient temperature between 0

°

C to 40

°

C.

c) In areas, free from oil, steam and corrosive gases.

d) In areas, not subjected to abnormal vibration or shock.

e) In areas, not exposed to direct sunlight or rain.

f) Place at a distance of 300mm or more from walls or similar that could restrict natural air flow for cooling.

8.3 Ventilation

Since the inhalation of welding fumes can be harmful, ensure that the welding area is effectively ventilated.

8.4 Mains Supply Voltage Requirements

The Mains supply voltage should be within

±

10% of the rated Mains supply voltage. Too low a voltage may cause the fuse or circuit breaker to rupture due to the increased primary current. Too high a supply voltage will cause the Power Source components to fail.

WARNING 4

CIGWELD advises that this equipment be electrically connected by a qualified electrical trades-person.

9. Transarc 250Si, 300Si Controls

2

4

Figure 1 – Transarc 250Si Power Source

6

7

19

Transarc 250Si, 300Si

1

6

7

3

2

4

Figure 2 – Transarc 300Si Power Source

9.1 Control Knob

This control sets the selected weld parameter, rotating it clockwise increase the parameter whilst anti-clockwise rotation decreases the parameter. Pushing the knob in sets the adjusted parameter and the intelligent control proceeds to the next weld parameter for the selected weld mode.

9.2 Remote Control Socket

E

2 1 a) Transarc 250Si

5 4 3

The 8 pin Remote Control Socket is used to connect remote current control devices to the welding Power Source. To make connections, align keyway, insert plug, and rotate threaded collar fully clockwise.

8 7 6

Front view of 8-Socket Receptacle

1 2 3 4 5 6 7 8

5k Ohms

Socket Pin

1

2

3

4

7

8

5

6

Function

Mains Earth

Torch Switch Input (24V) to energise weld current.

(connect pins 2 & 3 to turn on welding current)

Torch Switch Input (0V) to energise weld current

(connect pins 2 & 3 to turn on welding current)

Connect pin 4 to pin 8 to instruct machine that a remote control device is connected

(12V DC supply)

5k ohm (maximum) connection to 5k ohm remote control potentiometer

Zero ohm (minimum) connection to 5k ohm remote control potentiometer

Wiper arm connection to 5k ohm remote control potentiometer

Connect pin 4 to pin 8 to instruct machine that a remote control device is connected

(0V)

20

Transarc 250Si, 300Si b) Transarc 300Si

The 14 pin Remote Control Socket is used to connect remote current control devices to the welding Power

Source. To make connections, align keyway, insert plug, and rotate threaded collar fully clockwise.

Socket Pin

A

B

E

F

C

D

G

H,I,J,K

L

M

N

E

A B C D E F G H I J K L M N

5k ohms

B

A J

K I

C L N

D M G

H

E F

Front view of 14

Socket Receptacle

Function

Torch Switch Input (24V) to energise weld current.

(connect pins A & B to turn on welding current)

Torch Switch Input (0V) to energise weld current

(connect pins A & B to turn on welding current)

5k ohm (maximum) connection to 5k ohm remote control potentiometer

Zero ohm (minimum) connection to 5k ohm remote control potentiometer

Wiper arm connection to 5k ohm remote control potentiometer

Connect pin 4 to pin 8 to instruct machine that a remote control device is connected

(0V)

Mains Earth

Not Used

Connect pin 4 to pin 8 to instruct machine that a remote control device is connected

(12V DC supply)

OK to move current detect signal for robotics applications

OK to move current detect signal for robotics applications

9.3 Positive Terminal

ƒ

Welding current flows from the Power Source via heavy duty bayonet type terminal. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.

9.4 Negative Terminal

Welding current flows from the Power Source via heavy duty bayonet type terminal. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.

CAUTION 1

Loose welding terminal connections can cause overheating and result in the male plug being fused in the bayonet terminal.

9.5 ON/OFF Switch

This switch connects the Mains supply voltage to the inverter when in the ON position. This enables the user to commence welding

WARNING 5

When the welder is connected to the Mains supply voltage, the internal electrical components maybe at

240V potential with respect to earth.

21

Transarc 250Si, 300Si

9.6 Input Cable

The input cable connects the Mains supply voltage to the equipment.

10. Set-up For MMAW (Stick) and GTAW (TIG)

Conventional operating procedures apply when using the Welding Power Source, i.e. connect work lead directly to workpiece and electrode lead is used to hold electrode. Wide safety margins provided by the coil design ensure that the Welding Power Source will withstand short term overload without adverse effects. The welding current range values should be used as a guide only. Current delivered to the arc is dependent on the welding arc voltage, and as welding arc voltage varies between different classes of electrodes, welding current at any one setting would vary according to the type of electrode in use. The operator should use the welding current range values as a guide, then finally adjust the current setting to suit the application.

WARNING 6

Before connecting the work clamp to the work and inserting the electrode in the electrode holder make sure the

Mains power supply is switched off.

CAUTION 2

Remove any packaging material prior to use. Do not block the air vents at the front or rear or sides of the Welding

Power Source.

11. Sequence Of Operation

NOTE 4

The control panels shown operation are the same for all models. The Transarc 250Si control panels are shown throughout this section. To view each individual weld parameter value press the control knob.

11.1 Stick Welding

ON

VRD

OFF

Refer to Manual for correct use

HOT

START

ARC

CONTROL recommendations on VRD.

WELD

% A

STICK knob

Figure 3 – STICK mode

22

11.2 LIFT TIG Welding

ON

VRD

OFF

Refer to Manual for correct use

HOT

START

WELD

ARC

CONTROL

STICK

Transarc 250Si, 300Si

Connect TIG torch to negative terminal

Switch machine on

Set WELD current

Connect remote control device if required

Commence welding

% A

Figure 4 – LIFT TIG Mode

12. Basic TIG Welding Guide

12.1 Electrode Polarity

Connect the TIG torch to the ‘

’ terminal and the work lead to the ‘+’ terminal for direct current straight polarity. Direct current straight polarity is the most widely used polarity for DC TIG welding. It allows limited wear of the electrode since 70% of the heat is concentrated at the work piece.

12.2 Tungsten Electrode Current Ranges

Electrode Diameter (mm) Constant Current (A)

1.0

1.6

2.4

3.2

2 – 30

8 – 70

12 – 150

20 – 250

Table 4 - Current ranges for varies tungsten electrode sizes

12.3 CIGWELD Tungsten Electrode Types

Electrode Type

(Ground Finish)

Welding Application Features

Thoriated 2%

Ceriated 2%

DC welding of mild steel, stainless steel and copper.

DC & AC welding of mild steel, stainless steel, copper, aluminium, magnesium and their alloys

Excellent arc starting, Long life,

High current carrying capacity.

Longer life, More stable arc,

Easier starting, Wider current range, Narrower more concentrated arc.

Table 5 - CIGWELD tungsten electrode types

NOTE 5

DC welders can not be used for major AC welding application.

Colour

Code

Red

Grey

23

Transarc 250Si, 300Si

12.4 Welding Parameters for Stainless Steel

Base Metal

Thickness

1.0mm

1.2mm

1.6mm

3.2mm

4.8mm

6.4mm

DC Current

Range for

Mild Steel

35-45

40-50

45-55

50-60

60-70

70-90

80-100

90-115

115-135

140-165

160-175

170-200

DC Current

Range for

Stainless Steel

20-30

25-35

30-45

35-50

40-60

50-70

65-85

90-110

100-125

125-150

135-160

160-180

Filler Rod Dia.

(if required)

1.6mm

1.6mm

1.6mm

2.4mm

3.2mm

4.0mm

Argon Gas

Flow Rate

Litres/min.

Table 6 - TIG welding parameters

5-7

7

7

7

7

10

10

Joint Type

Butt/Corner

Lap/ Fillet

Butt/Corner

Lap/ Fillet

Butt/Corner

Lap/ Fillet

Butt/Corner

Lap/ Fillet

Butt/Corner

Lap/ Fillet

Butt/Corner

Lap/ Fillet

12.5 Guide for Selecting Filler Wire Diameter

Welding Current (A)

10-20

20-50

50 – 100

100 – 200

Filler Wire Diameter (mm). Refer to NOTE 6.

1.2

1.2 - 1.6

1.6 - 2.4

1.6 - 3.2

Table 7 - Filler wire selection guide

NOTE 6

The filler wire diameter specified in Table 7 is a guide only, other diameter wires may be used according to the welding application.

12.6 Shielding Gas Selection

Alloy

Carbon Steel

Stainless Steel

Nickel Alloy

Copper

Titanium

Shielding Gas

Argoshield is a registered trade mark of BOC Gases Limited.

Welding Argon; 100% Ar

Welding Argon, Argoshield 71T, 80T, 81T

Welding Argon, Argoshield 71T

Welding Argon, Argoshield 81T

Welding Argon, Argoshield 80T, 81T

Table 8 - Shielding gas selection

24

Transarc 250Si, 300Si

12.7 Welding Parameters for Low Carbon & Low Alloy Steel Pipe

Electrode Type &

Diameter

Current Range DC

Amperes

Filler Rod for

Root Pass

Joint Preparation

Thoriated 2%

2.4 mm

Thoriated 2%

2.4 mm

120 - 170

100 - 160

Yes

Yes

Thoriated 2%

2.4 mm

90 - 130 No

Table 9 - TIG welding parameters for low carbon & low alloy steel pipe

13. Basic Arc Welding Guide

13.1 Electrode Polarity

Stick electrodes are generally connected to the ‘+’ terminal and the work lead to the ‘

’ terminal but if in doubt consult the electrode manufacturers literature.

13.2 Effects of Stick Welding Various Materials a) High tensile and alloy steels

The two most prominent effects of welding these steels are the formation of a hardened zone in the weld area, and, if suitable precautions are not taken, the occurrence in this zone of underbead cracks. Hardened zone and under-bead cracks in the weld area may be reduced by using the correct electrodes, preheating, using higher current settings, using larger electrodes sizes, short runs for larger electrode deposits or tempering in a furnace.

b) Manganese steels

The effect on manganese steel of slow cooling from high temperatures is to embrittle it. For this reason it is absolutely essential to keep manganese steel cool during welding by quenching after each weld or skip welding to distribute the heat.

c) Cast Iron

Most types of cast iron, except white iron, are weldable. White iron, because of its extreme brittleness, generally cracks when attempts are made to weld it. Trouble may also be experienced when welding white-heart malleable, due to the porosity caused by gas held in this type of iron.

d) Copper and alloys

The most important factor is the high rate of heat conductivity of copper, making preheating of heavy sections necessary to give proper fusion of weld and base metal.

13.3 Types of Electrodes

Arc Welding electrodes are classified into a number of groups depending on their applications. There are a great number of electrodes used for specialised industrial purposes which are not of particular interest for everyday general work. These include some low hydrogen types for high tensile steel, cellulose types for welding large diameter pipes, etc.

The range of electrodes dealt with in this publication will cover the vast majority of applications likely to be encountered; are all easy to use and all will work on even the most basic of welding machines.

25

Transarc 250Si, 300Si

Metals being joined

Mild steel

Mild steel

Cast iron

Stainless steel

Electrode Size

& Part No.

2.5mm 611182

3.2mm 611183

4.0mm 611184

2.5mm 611242

3.2mm 611243

4.0mm 611244

3.2mm 611733

4.0mm 611734

2.5mm 611652

3.2mm 611653

CIGWELD

Electrode

Satincraft 13

(AS/NZS E4113-0)

Ferrocraft 21

(AS/NZS E4818-2)

Castcraft100

Satincrome 318L-17

(AS/NZS E316L-17)

Comments

Ideal electrodes for all general purpose work. Features include out standing operator appeal, easy arc starting and low spatter.

All positional electrode for use on mild and galvanised steel furniture, plates, fences, gates, pipes and tanks etc. Especially suitable for verticaldown welding.

Suitable for joining all cast irons except white cast iron.

High corrosion resistance. Ideal for dairy work, etc. On stainless steels.

Copper, Bronze,

Brass, etc.

High Alloy Steels,

Dissimilar Metals,

Crack Resistance.

All Hard-To-Weld

Jobs.

3.2mm 611783

2.5mm 611702

3.2mm 611703

4.0mm 611704

Bronzecraft

(AS/NZS E6200-A2)

Weldall

(AS/NZS E312-17)

Easy to use electrode for marine fittings, water taps and valves, water trough float arms, etc. Also for joining copper to steel and for bronze overlays on steel shafts.

Weldall does truly what its name states. It will weld even the most problematical jobs such as springs, shafts, broken joins mild steel to stainless and alloy steels.

Not suitable for Aluminium.

Table 10 - Types of Electrodes

For HARDFACING of Steels, CIGWELD TOOLCRAFT is an electrode that produces an extremely hard weld deposit. It is ideal for building up axes, wedges, slasher blades, worn cams, rock drills, earth moving and digging equipment, etc.

14. Routine Inspection, Testing & Maintenance

WARNING 7

There are extremely dangerous voltage and power levels present inside this product. Do not attempt to open or repair unless you are an Accredited CIGWELD Service Agent. Disconnect the Welding Power Source from the

Mains Supply Voltage before disassembling.

An inspection of the power source, an insulation resistance test and an earthing resistance test shall be carried out in accordance with clause 4.1 of AS 1647.2 a) For transportable equipment, at least once every 3 months; and b) For fixed equipment, at least once every 12 months.

The owners of the equipment shall keep a suitable record of the periodic tests.

Note 7

A transportable power source is any equipment that is not permanently connected and fixed in the position in which it is operated.

26

Transarc 250Si, 300Si

In addition to the above tests and specifically in relation to the VRD fitted to this machine, the following periodic tests should also be conducted by an accredited CIGWELD service agent.

Description

VRD Open Circuit Voltage

VRD Turn ON Resistance

VRD Turn OFF Time

AS3195 & IEC 60974-1 Requirements

Less than 20V; at Vin=240V

Less than 200 ohms

Less than 0.3 seconds

If this equipment is used in a hazardous location or environments with a high risk of electrocution then the above tests should be carried out prior to entering this location.

Welding equipment should be regularly checked by a qualified electrical tradesperson to ensure that: connected and in good condition.

any parts are damaged for any reason, replacement is recommended.

14.1 Face Shield Maintenance (where supplied)

The face shield and lens should be cleaned after use with a soft cloth.

15. Basic Troubleshooting

WARNING 8

There are extremely dangerous voltage and power levels present inside this product. Do not attempt to open or repair unless you are an Accredited CIGWELD Service Agent and you have had training in power measurements and troubleshooting techniques.

If major complex subassemblies are faulty, then the Welding Power Source must be returned to an

Accredited CIGWELD Service Agent for repair.

The basic level of troubleshooting is that which can be performed without special equipment or knowledge.

15.1 TIG Welding Problems

Description

1 Electrode melts when arc is struck.

2 Dirty weld pool.

Possible Cause

Electrode is connected to the ‘+’ terminal.

A Electrode contaminated through contact with work piece or filler rod material.

B Gas contaminated with air.

Remedy

Connect the electrode to the ‘

’ terminal.

A Clean the electrode by grinding off the contaminates.

B Check gas lines for cuts and loose fitting or change gas cylinder.

27

Transarc 250Si, 300Si

Description

3 Electrode melts or oxidises when an arc is struck.

Possible Cause Remedy

A No gas flowing to welding region.

A Check the gas lines for kinks or breaks and gas cylinder contents.

4 Poor weld finish.

5 Arc flutters during

TIG welding.

6 Welding arc can not be established.

7 Arc start is not smooth.

B Torch is clogged with dust.

B Clean torch

C Gas hose is cut.

C Replace gas hose.

D Gas passage contains impurities.

D Disconnect gas hose from torch then raise gas pressure and blow out impurities.

E Gas regulator turned off.

F Torch valve is turned off.

G The electrode is too small for the welding current.

E Turn on.

F Turn on.

G Increase electrode diameter or reduce the welding current.

Inadequate shielding gas.

Tungsten electrode is too large for the welding current.

Increase gas flow or check gas line for gas flow problems.

Select the right size electrode.

Refer to Table 4.

A Work clamp is not connected to the work piece or the work/torch leads are not connected to the right welding terminals.

B Torch lead is disconnected.

C Gas flow incorrectly set, cylinder empty or the torch valve is off.

A Connect the work clamp to the work piece or connect the work/torch leads to the right welding terminals.

B Connect it to the ‘

‘ terminal.

C Select the right flow rate, change cylinders or turn torch valve on.

A Tungsten electrode is too large for the welding current.

B The wrong electrode is being used for the welding job

C Gas flow rate is too high.

D Incorrect shielding gas is being used.

E Poor work clamp connection to work piece.

A Select the right size electrode.

Refer to Table 4.

B Select the right electrode type.

Refer to Table 5.

C Select the correct rate for the welding job.

Refer to Table 6.

D Select the right shielding gas.

Refer to Table 8.

E Improve connection to work piece.

15.2 Stick Welding Problems

Description Possible Cause

1 Gas pockets or voids in weld metal (Porosity).

A

B

C

A

Electrodes are damp.

Welding current is too high.

Surface impurities such as oil, grease, paint, etc.

Rigidity of joint.

2 Crack occurring in weld metal soon after solidification commences B Insufficient throat thickness.

C Cooling rate is too high.

Remedy

A

B

C

Dry electrodes before use.

Reduce welding current.

Clean joint before welding.

A

B

C

Redesign to relieve weld joint of severe stresses or use crack resistance electrodes.

Travel slightly slower to allow greater build up in throat.

Preheat plate and cool slowly.

28

Description Possible Cause

3 A gap is left by failure of the weld metal to fill the root of the weld.

A

B

Welding current is too low.

Electrode too large for joint.

C Insufficient gap.

D Incorrect sequence.

Transarc 250Si, 300Si

Remedy

A

B

C

Increase welding current

Use smaller diameter electrode.

Allow wider gap.

D Use correct build-up sequence.

Figure 5 – Example of insufficient gap or incorrect sequence

4

Portions of the weld run do not fuse to the surface of the metal or edge of the joint.

A

B

Small electrodes used on heavy cold plate.

Welding current is too low.

C Wrong electrode angle.

D Travel speed of electrode is too high.

E Scale or dirt on joint surface.

A

B

Use larger electrodes and pre-heat the plate.

Increase welding current

C Adjust angle so the welding arc is directed more into the base metal

D Reduce travel speed of electrode

E Clean surface before welding.

Figure 6 – Example of lack of fusion

5

Non-metallic particles are trapped in the weld metal (slag inclusion).

A Non-metallic particles may be trapped in undercut from previous run.

B Joint preparation too restricted.

C Irregular deposits allow slag to be trapped.

D Lack of penetration with slag trapped beneath weld bead.

A If bad undercut is present, clean slag out and cover with a run from a smaller diameter electrode.

B Allow for adequate penetration and room for cleaning out the slag.

C If very bad, chip or grind out irregularities.

D Use smaller electrode with sufficient current to give adequate penetration.

Use suitable tools to remove all slag from corners.

E Clean joint before welding.

E Rust or mill scale is preventing full fusion.

F Wrong electrode for position in which welding is done.

F Use electrodes designed for position in which welding is done, otherwise proper control of slag is difficult.

Figure 7 – Examples of slag inclusion

29

Transarc 250Si, 300Si

15.3 Power Source Problems

Description Possible Cause Remedy

1 The welding arc cannot be established

A The Mains supply voltage has not been switched ON.

B The Welding Power Source switch is switched OFF.

C Loose connections internally.

Defective control circuit

A Switch ON the Mains supply voltage.

B Switch ON the Welding Power

Source.

C Have an Accredited CIGWELD

Service Agent repair the connection.

Have an Accredited CIGWELD

Service Agent inspect then repair the welder.

2 Maximum output welding current can not be achieved with nominal Mains supply voltage.

3 Welding current reduces when welding

4 No gas flow when the arc is struck.

Poor work lead connection to the work piece.

Ensure that the work lead has a positive electrical connection to the work piece.

A

B

Gas hose is cut.

Gas passage contains impurities.

A

B

Replace gas hose.

Disconnect gas hose from the TIG torch then raise gas pressure and blow out impurities.

C Gas regulator turned off.

C Turn gas regulator on.

D TIG torch gas valve is turned off D Turn gas valve on

30

Transarc 250Si, 300Si

15.4 Power Source Error Codes

Description

1 E01 error code displayed

Temperature sensor TH1 (protects IGBTs) is greater than 80ºC for about 1 second

2 E02 error code displayed

Temperature sensor TH2 (protects secondary diodes) is greater than 80ºC for about 1 second

3 E03 error code displayed

Primary (input) current too high

4 E11 error code displayed

Over mains supply (input) voltage at primary capacitors is exceeded for one second

Possible Cause

A

B

The Welding Power Source’s duty cycle has been exceeded.

Fan ceases to operate.

A

B

C Air flow is restricted by vents being blocked

C

A

B

The Welding Power Source’s duty cycle has been exceeded.

Fan ceases to operate.

A

B

Remedy

Let Power Source cool down then keep within its duty cycle.

Have an Accredited CIGWELD Service

Agent investigate

Unblock vents then let Power Source cool down.

Let Power Source cool down then keep within its duty cycle.

Have an Accredited CIGWELD Service

Agent investigate

Unblock vents then let Power Source cool down.

Reduce length of welding arc.

C Air flow is restricted by vents being blocked

C

A

B

Primary current is too high because welding arc is too long.

Mains supply voltage is more than 10% below nominal voltage

A

B

Mains supply voltage is greater than the nominal voltage plus 10%

Have an Accredited CIGWELD Service

Agent or a qualified electrician check for low Mains voltage.

Have an Accredited CIGWELD Service

Agent or a qualified electrician check the Mains voltage.

5 E14 error code displayed

Under mains supply (input) voltage warning primary capacitors is reduced for one second

Mains supply voltage warning; it is down to 340V ac for 3 phase machine

Have an Accredited CIGWELD Service

Agent or a qualified electrician check the Mains voltage.

31

Transarc 250Si, 300Si

Description

6 E12 error code displayed

Under mains supply (input) voltage primary capacitors is reduced for one second

7 E81 error code displayed

Wrong mains supply (input) voltage connected

8 E82 error code displayed

Link switch plug not connected

9 E83 error code displayed

CPU checks mains supply (input) voltage when the on/off switch on rear panel of machine is turned ON.

10 E85 error code displayed

Primary capacitors are not charging correctly

11 E93 error code displayed

Memory chip (EEPROM) on control PCB can not read/write weld parameters

12 E94 error code displayed

Temperature sensor TH1 for IGBTs or sensor

TH2 for secondary diodes are open circuit

13 E99 error code displayed

Mains supply (input) voltage has been turned off but control circuit has power from the primary capacitors

Possible Cause

A Mains supply voltage warning; it is down to 304V ac for 3 phase machine.

B One phase has dropped out for 3 phase machine

When 3 phase machine is first turned on with the wrong mains supply (input) voltage connected

Link switch plug not connected

The mains supply (input) voltage fluctuates and is not stable.

A

B

Remedy

Have an Accredited CIGWELD Service

Agent or a qualified electrician check the Mains voltage

Have an Accredited CIGWELD Service

Agent or a qualified electrician check the primary cable & fuses.

Have an Accredited CIGWELD Service

Agent or a qualified electrician check the Mains voltage

Have an Accredited CIGWELD Service

Agent check connector plug on input

PCB

Have an Accredited CIGWELD Service

Agent check connector plug on input

PCB and the Mains voltage

The primary capacitors pre-charge circuit is not functioning correctly

Memory chip (EEPROM) error

The Welding Power Source’s temperature sensors have malfunctioned.

A

B

Main on/off switch on machine has been turned off

Mains supply (input) voltage has been turned off

A

Have an Accredited CIGWELD Service

Agent check or replace the temperature sensors.

Turn on/off switch on.

B

Have an Accredited CIGWELD Service

Agent check the primary circuit on the main PCB

Have an Accredited CIGWELD Service

Agent check the control PCB

Have an Accredited CIGWELD Service

Agent or a qualified electrician check the Mains voltage and fuses

32

Transarc 250Si, 300Si

33

advertisement

Key Features

  • Digital Inverter Technology
  • VRD (Voltage Reduction Device)
  • Hot Start Control
  • Arc Force Control
  • Lift TIG
  • MMAW (Stick) & GTAW (TIG) Welding

Frequently Answers and Questions

What is the maximum welding current for the Transarc 250Si?
The maximum welding current for the Transarc 250Si is 250A at a 40% duty cycle.
What types of welding processes can the Transarc 250Si perform?
The Transarc 250Si can perform both Manual Metal Arc Welding (MMAW) and Gas Tungsten Arc Welding (GTAW).
What is the purpose of the Voltage Reduction Device (VRD)?
The VRD reduces the open circuit voltage (OCV) to a safe level, minimizing the risk of electric shock.
How do I adjust the welding current on the Transarc 250Si?
You can adjust the welding current by rotating the control knob clockwise to increase the current and counter-clockwise to decrease the current.

Related manuals

Download PDF

advertisement