CPM296/RPM096. Коммуникационный протокол Modbus. Справочное руководство (англ.)

CPM296/RPM096. Коммуникационный протокол Modbus. Справочное руководство (англ.)
SERIES PM296/RPM096 POWERMETERS
COMMUNICATIONS
Modbus Communications Protocol
REFERENCE GUIDE
Every effort has been made to ensure that the material herein is complete and accurate. However, the
manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this
book. Notification of any errors or misprints will be received with appreciation.
For further information regarding a particular installation, operation or maintenance of equipment,
contact the manufacturer or your local representative or distributor.
REVISION HISTORY
Rev.A2 (F/W Versions 2.26.2/2.36.2 and 2.27/2.37 or later):
Added a firmware build number (register 2563, Table 5-7).
Added setpoint status triggers SP1-SP16 (Table 5-2).
Added Low battery alarm (Table 5-18)
Modbus is a trademark of Modicon, Inc.
BG0292 Rev.A2
2
Table of Contents
1 GENERAL ......................................................................................................5
2 MODBUS FRAMING ......................................................................................6
2.1
2.2
2.3
2.4
2.5
2.6
Transmission Mode ...........................................................................................................6
The RTU Frame Format ....................................................................................................6
Address Field .....................................................................................................................6
Function Field ....................................................................................................................6
Data Field...........................................................................................................................6
Error Check Field ...............................................................................................................7
3 MODBUS MESSAGE FORMATS ..................................................................8
3.1
3.2
3.3
3.4
3.5
3.6
Function 03 - Read Multiple Registers ..............................................................................8
Function 04 - Read Multiple Registers ..............................................................................8
Function 06 - Write Single Register...................................................................................8
Function 16 - Write Multiple Registers...............................................................................8
Function 08 - Loop-back Communications Test................................................................9
Exception Responses ......................................................................................................10
4 PROTOCOL IMPLEMENTATION ................................................................11
4.1 Modbus Register Addresses ...........................................................................................11
4.2 Data Formats ...................................................................................................................11
4.2.1 16-bit Integer Format ...............................................................................................11
4.2.2 32-bit Modulo 10000 Format....................................................................................13
4.2.3 32-bit Long Integer Format ......................................................................................13
4.3 User Assignable Registers ..............................................................................................13
4.4 Configuring and Accessing Log Files ..............................................................................14
4.5 Password Protection........................................................................................................15
5 POWERMETER REGISTERS DESCRIPTION.............................................16
5.1 Basic Data Registers .......................................................................................................16
5.2 Extended Data Registers.................................................................................................17
5.3 Basic Setup Registers .....................................................................................................28
5.4 User Selectable Options Setup Registers .......................................................................29
5.5 Communications Setup Registers ...................................................................................30
5.6 Reset/Clear Registers......................................................................................................30
5.7 Instrument Status Registers ............................................................................................31
5.8 Extended Status Registers ..............................................................................................33
5.9 Memory Allocation Status Registers................................................................................36
5.10 Memory Partition Status/Control Registers ...................................................................37
5.11 Analog Output Setup Registers .....................................................................................39
5.12 Analog Expander Setup Registers ................................................................................40
5.13 Digital Inputs Allocation Registers .................................................................................41
5.14 Timers Setup Registers .................................................................................................42
5.15 Alarm/Event Setpoints Registers ...................................................................................42
5.16 Pulsing Setpoints Registers...........................................................................................44
5.17 Relay Operation Control Registers................................................................................44
5.18 Pulse Counters Setup Registers ...................................................................................45
5.19 User Event Flags Registers ...........................................................................................46
5.20 Programmable Min/Max Log Setup Registers...............................................................46
5.21 Log Memory Partitions Setup Registers ........................................................................46
5.22 Data Log Setup Registers..............................................................................................47
5.23 Event Log Registers (Sequential Access) .....................................................................48
5.24 Event Log Registers (Circular Access)..........................................................................49
5.25 Data Log Registers (Sequential Access).......................................................................52
5.26 Data Log Registers (Circular Access) ...........................................................................52
5.27 Min/Max Log Registers (16-bit registers).......................................................................54
5.28 Min/Max Log Registers (32-bit registers).......................................................................55
3
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
Real Time Clock Registers ............................................................................................59
Time Zone Information Registers ..................................................................................60
TOU System Registers Setup........................................................................................60
TOU Daily Profiles Registers .........................................................................................61
TOU Calendar Registers ...............................................................................................62
TOU Calendar Years Registers.....................................................................................62
Communications Password Register.............................................................................63
Phase Harmonics Registers ..........................................................................................63
Waveform Capture/Log Registers (Sequential Access) ................................................63
Waveform Capture/Log Registers (Circular Access).....................................................65
4
1 GENERAL
This document specifies a subset of the Modbus serial communications protocol used to transfer data between a
master computer station and the PM296/RPM096. The document provides the complete information necessary to
develop a third-party communications software capable of communication with the Series PM296/RPM096
Powermeters. Additional information concerning communications operation, configuring the communications
parameters, and communications connections is found in "Series PM296/RPM096 Powermeters, Installation and
Operation Manual".
IMPORTANT
1.
2.
3.
The voltage parameters throughout the protocol can represent line-to-neutral or line-to-line voltages
depending on the wiring mode selected in the instrument. When the 4LN3 or 3LN3 wiring mode is
selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.
In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-to-neutral voltages. In
a 3-wire direct connection, harmonic voltages will represent line-to-neutral voltages as they appear on the
instrument's input transformers. In a 3-wire open delta connection, harmonic voltages will comprise L12
and L23 line-to-line voltages.
In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active
power, and reactive power will be zeros, because they have no meaning. Only the total three-phase
power values can be used.
Most of the instrument's advanced features are configured using multiple setup parameters that can be
accessed in certain contiguous registers. When writing the setup registers, it is recommended to write all
the registers at once using a single request, or to clear (zero) the setup before writing into separate
registers.
5
2 MODBUS FRAMING
2.1 Transmission Mode
The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the
instrument communications. The data format is shown in the following table.
Table 2-1 RTU Data Format
Field
Start bit
Data bits 1
Parity (optional)
Stop bit
1
No. of bits
1
8
1
1
Least significant bit first
2.2 The RTU Frame Format
Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. The
receiving device monitors the elapsed time between receptions of characters. If three and one-half character
times elapse without a new character or completion of the frame, then the device flushes the frame and assumes
that the next byte received will be an address. The frame format is defined below.
The maximum query and response message length is 256 bytes including check characters.
RTU Message Frame Format
T1 T2 T3
Address
8 bits
Function
8 bits
Data
N * 8 bits
CRC Check
16 bits
T1 T2 T3
2.3 Address Field
The address field contains a user assigned address (1-247) of the instrument that is to receive a message.
Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions
06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a
response. In the PM296/RPM096, the broadcast mode is supported only for register addresses 287-294 and 301302 (reset energies and maximum demands), 3404-3415 (reset/clear registers), and 4352-4358 (real-time clock
registers).
2.4 Function Field
The function field contains a function code that tells the instrument what action to perform. Function codes used in
the protocol are shown below in Table 2-2.
Table 2-2 Modbus Function Codes
Code
(decimal)
03
04
06
16
08
Meaning in Modbus
Action
Read holding registers
Read input registers
Preset single register
Preset multiple registers
Loop-back test
Read multiple registers
Read multiple registers
Write single register
Write multiple registers
Communications test
NOTE Broadcast mode available only for functions code 06 and 16.
2.5 Data Field
The data field contains information needed by the instrument to perform a specific function, or data collected by
the instrument in response to a query.
IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.
6
2.6 Error Check Field
The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in
calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.
The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary
number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by x16 (shifted left 16
bits), and then divided by x16 + x15 + x2 + 1 expressed as a binary number (11000000000000101). The integer
quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros
being an accepted message) is appended to the message (MSB first) as the two CRC check bytes. The resulting
message including CRC, when divided by the same polynomial (x16 + x15 + x2 + 1) at the receiver will give a zero
remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted
CRC). All arithmetic is performed modulo two (no carries).
The device used to serialize the data for transmission will send the conventional LSB or right-most bit of each
character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend. For
convenience, and since there are no carries used in the arithmetic, let's assume while computing the CRC that the
MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of
the polynomial is dropped since it affects only the quotient and not the remainder. This yields 1010 0000 0000
0001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation or bit
order of characters external to the CRC calculations.
The step by step procedure to form the CRC-16 check bytes is as follows:
1.
2.
Load a 16-bit register with all 1's.
Exclusive OR the first 8-bit byte with the low order byte of the 16-bit register, putting the result in the 16-bit
register.
3.
Shift the 16-bit register one bit to the right.
4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010 000 000 0001 with
the 16-bit register.
4b. If the bit shifted out to the right is zero, return to step 3.
5.
Repeat steps 3 and 4 until 8 shifts have been performed.
6.
Exclusive OR the next 8-bit byte with the 16-bit register.
7.
Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register
and shifted 8 times.
8.
When the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by
the high order byte.
For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.
7
3 MODBUS MESSAGE FORMATS
3.1 Function 03 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.
Request
Instrument
Address
1 byte
Function
(03)
1 byte
Starting Address
Word Count
Starting
Address
2 bytes
Word Count
Error Check
2 bytes
2 bytes
Address of the first register to be read
The number of contiguous words to be read
Response
Instrument
Address
1 byte
Function
(03)
1 byte
Byte
Count
1 byte
Data
Word 1
2 bytes
...
Data
Word N
2 bytes
...
Error
Check
2 bytes
The byte count field contains quantity of bytes to be returned.
3.2 Function 04 - Read Multiple Registers
This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can
be used instead of function 03.
Request
Instrument
Address
1 byte
Function
(04)
1 byte
Starting Address
Word Count
Starting
Address
2 bytes
Word Count
Error Check
2 bytes
2 bytes
Address of the first register to be read
The number of contiguous words to be read
Response
Instrument
Address
1 byte
Function
(04)
1 byte
Byte
Count
1 byte
Data
Word 1
2 bytes
...
Data
Word N
2 bytes
...
Error
Check
2 bytes
The byte count field contains quantity of bytes to be returned.
3.3 Function 06 - Write Single Register
This command allows the user to write the contents of a data register in any data table where a register can be
written.
Request
Instrument
Address
1 byte
Function
(06)
1 byte
Starting Address
Data Value
Starting
Address
2 bytes
Data
Word
2 bytes
Error check
2 bytes
Address of the register to be written
Data to be written to the register
Response
The normal response is the retransmission of the write request.
3.4 Function 16 - Write Multiple Registers
This request allows the user to write the contents of multiple contiguous registers to a single data table where
registers can be written.
8
Request
Instrument
Address
1 byte
Function
(16)
1 byte
Starting
Address
2 bytes
Data Word 1
2 bytes
...
...
...
...
Starting Address
Word Count
Byte Count
...
...
Word Count
Byte Count
2 bytes
1 byte
Data Word N
2 bytes
Error Check
2 bytes
Address of the first register to be written
The number of contiguous words to be written
The number of bytes to be written
Response
Instrument
Address
1 byte
Function
(16)
1 byte
Starting
Address
2 bytes
Word
Count
1 word
Error
Check
2 bytes
3.5 Function 08 - Loop-back Communications Test
The purpose of this request is to check the communications link between the specified instrument and PC.
Request
Instrument
Address
1 byte
Function
(08)
1 byte
Diagnostic
Code (0)
2 bytes
Data
Error
Check
2 bytes
2 bytes
Diagnostic Code
Designates action to be taken in Loop-back test. The protocol supports only Diagnostic Code
0 - return query data.
Data
Query data. The data passed in this field will be returned to the master through the
instrument. The entire message returned will be identical to the message transmitted by the
master, field-per-field.
Response
Instrument
Address
1 byte
Function
(08)
1 byte
Diagnostic
Code (0)
2 bytes
Data
2 bytes
The normal response is the re-transmission of a test message.
9
Error
Check
2 bytes
3.6 Exception Responses
The instrument sends an exception response when errors are detected in the received message. To indicate that
the response is notification of an error, the high order bit of the function code is set to 1.
Exception Response
Instrument
Address
1 byte
Function (high
order bit is set to 1)
1 byte
Exception
Code
1 byte
Error Check
2 byte
Exception response codes:
01 - Illegal function
02 - Illegal data address
03 - Illegal data value
06 - Busy, rejected message. The message was received without error, but the instrument is being
programmed from the keypad (only for requests accessing setup registers).
NOTE When the character framing, parity, or redundancy check detects a communication error, processing of
the master's request stops. The instrument will not act on or respond to the message.
10
4 PROTOCOL IMPLEMENTATION
4.1 Modbus Register Addresses
The PM296/RPM096 Modbus registers are referred to by using addresses in the range of 0 to 65535. From within
the Modbus applications, the PM296/RPM096 Modbus registers can be accessed by simulating holding registers
of the Modicon 584, 884 or 984 Programmable Controller, using a 5-digit “4XXXX” or 6-digit “4XXXXX” addressing
scheme. To map the PM296/RPM096 register address to the range of the Modbus holding registers, add a value
of 40001 to the PM296/RPM096 register address. When a register address exceeds 9999, use a 6-digit
addressing scheme by adding 400001 to the PM296/RPM096 register address.
4.2 Data Formats
The PM296/RPM096 uses three data formats to pass data between a master application and the instrument: a
16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.
4.2.1 16-bit Integer Format
A 16-bit data is transmitted in a single 16-bit Modbus register as unsigned or signed integer (whole) numbers
without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16-bit register
format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional
numbers in integer format.
Non-scaled data
The data will be presented exactly as retrieved by the communications program from the instrument. The value
range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.
LIN3 (Linear) Scaling
This conversion maps the raw data received by the communications program in the range of 0-9999 onto the
user-defined LO scale/HI scale range. The conversion is carried out according to the formula:
Engineering _ Units _ Value =
Raw _ Data × (HI − LO)
+ LO
9999
where:
Engineering_Units_Value
Raw_Data
LO, HI
-
the true value in engineering units
the raw input data in the range of 0 - 9999
the data low and high scales in engineering units
When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the
corresponding registers.
EXAMPLES
1. Voltage readings
a) Assume device settings (690V input, direct wiring): PT ratio = 1.
Voltage engineering scales (see Note 1 to Table 5-1 ):
HI = Vmax = 828.0 × PT ratio = 828.0 × 1 = 828.0V
LO = 0V
If the raw data reading is 1449 then the voltage reading in engineering units will be as follows:
Volts reading = 1449 × (828.0 - 0)/9999 + 0 = 120.0V
b) Assume device settings (wiring via PT): PT ratio = 14,400V : 120V = 120.
Voltage engineering scales:
HI = Vmax = 144.0 × PT ratio = 144 × 120 = 17,280V
LO = 0V
If the raw data reading is 8314 then the voltage reading in engineering units will be as follows:
Volts reading = 8314 × (17,280 - 0)/9999 + 0 = 14,368V
11
2. Current readings
Assume device settings: CT primary current = 200A; current input overload = ×200%.
Current engineering scales:
HI = Imax = CT primary current × 2 = 200.00 × 2 = 400.00A
LO = 0A
If the raw data reading is 250 then the current reading in engineering units will be as follows:
Amps reading = 250 × (400.00 - 0)/9999 + 0 = 10.00A
3. Power readings
a) Assume device settings (690V input, direct wiring): wiring configuration 4LN3; PT = 1; CT primary current = 200A.
Active Power engineering scales:
HI = Pmax = Vmax × Imax × 3 = 828.0 × (200.00 × 2) × 3 = 993,600W = 993.6kW
LO = -Pmax = -993.6kW
If the raw data reading is 5500 then the power reading in engineering units will be as follows:
Watts reading = 5500 × (993.6 - (-993.6))/9999 + (-993.6) = 99.469kW
If the raw data reading is 500 then the power reading in engineering units will be as follows:
Watts reading = 500 × (993.6 - (-993.6))/9999 + (-993.6) = -894.23kW
b) Assume device settings (wiring via PT): wiring configuration 4LL3; PT = 120; CT primary current = 200A.
Active Power engineering scales:
HI = Pmax = Vmax × Imax × 2 = (144 × 120) × (200.00 × 2) × 2/1000 = 13824kW
LO = -Pmax = -13824kW
If the raw data reading is 5500 then the power reading in engineering units will be as follows:
Watts reading = 5500 × (13824 - (-13824))/9999 + (-13824) = 1384kW
If the raw data reading is 500 then the power reading in engineering units will be as follows:
Watts reading = 500 × (13824 - (-13824))/9999 + (-13824) = -12441kW
4. Power Factor readings
Power factor engineering scales:
HI = 1.000.
LO = -1.000.
If the raw data reading is 8900 then the power factor in engineering units will be as follows:
Power factor reading = 8900 × (1.000 - (-1.000))/9999 + (-1.000) = 0.78
Decimal Scaling
In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned (UINT32)
or signed (INT32) long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and
the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word
always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed
data the range is -2,147,483,648 to 2,147,483,647.
Negative values are transmitted in a two's complement code. This means that a negative value is added to
4,294,967,296, that is 2 to power 32.
Fractional numbers are pre-multiplied by 10 to power N, where N is the number of decimal places, and are
transmitted as whole numbers.
If your Modbus driver does not support a 32-bit long integer format, you can read the two 16-bit registers
separately, and then convert them into a 32-bit value as follows (using C notation):
32-bit value = (signed short)high_order_register × 65536L + (unsigned short)low_order_register
12
EXAMPLES
1. Unsigned 32-bit Values
If you read unsigned Voltage V1 of 69,000V from registers 13952-13953, then the register readings will be as
follows:
(13952) = 3464
(13953) = 1
The 32-bit value is (1 x 65536 + 3464) = 69000V.
2. Signed 32-bit Values
If you read signed kW of -789kW from registers 14336-14337, then the register readings will be:
(14336) = 64747 (unsigned)
(14337) = 65535 (unsigned) or -1(signed value).
To take the high order register as a signed value, compare it with 32767. If the value is less or equal to 32767,
use it as is. If it is greater than 32767, then this is a negative number in a two's complement code (like in our
example) - just subtract it from 65536 to get the original negative value.
The 32-bit reading is (-1 x 65536 + 64747) = -789kW.
Decimal pre-scaling can be used to accommodate fractional numbers to an integer register format. Fractional
numbers pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the
frequency reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100. Whenever a data
register contains a fractional number, the register measurement unit is given with a multiplier ×0.1, ×0.01 or
×0.001, showing an actual register resolution (the weight of the least significant decimal digit). To get an actual
fractional number with specified precision, scale the register value with the given multiplier. To write a fractional
number into the register, divide the number by the given multiplier.
4.2.2 32-bit Modulo 10000 Format
The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo
10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register
contains the value/10000. To get the true energy reading, the high order register value should be multiplied by
10,000 and added to the low order register.
4.2.3 32-bit Long Integer Format
In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned or signed
long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second
register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts
at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is
-2,147,483,648 to 2,147,483,647.
A 32-bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional
numbers to an integer format as described above (see Decimal Scaling in Section 4.2.1).
4.3 User Assignable Registers
The PM296/RPM096 contains the 120 user assignable registers in the address range of 0 to 119 (see Table 4-1),
any of which you can map to either register address accessible in the instrument. Registers that reside in different
locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable
registers area.
The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the
user assignable register map (see Table 4-2). This map occupies addresses from 120 to 239, where map register
120 should contain the actual address of the register accessed via assignable register 0, register 121 should
contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable
register addresses and the map register addresses may not be re-mapped.
To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or
write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even
addresses. For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 7576/7577
(kWh import, long word) via registers 0-2, then do the following:
- write 7576 to register 120
- write 7577 to register 121
- write 7136 to register 122
13
Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage
reading in register 2.
Table 4-1 User Assignable Registers
Address
0
1
2
…
119
Register contents
Assigned register #0
Assigned register #1
Assigned register #2
…
Assigned register #119
Type
INT16
INT16
INT16
…
INT16
Table 4-2 User Assignable Register Map
Address
120
121
122
…
239
Register contents
Mapped address for register #0
Mapped address for register #1
Mapped address for register #2
…
Mapped address for register #119
Type
UINT16
UINT16
UINT16
…
UINT16
R/W
R/W
R/W
R/W
…
R/W
256
256
256
…
256
Range
to 65535
to 65535
to 65535
to 65535
4.4 Configuring and Accessing Log Files
Configuring Memory for Logging
To use the onboard data logging, allocate a separate log partition for each specific data you want to be recorded
in your instrument. The PM296/RPM096 provides concurrent recording data in 19 different memory partitions, one
of which is intended to record event log data and the others to store 16 different data logs using different sets of
data parameters. Additionally, the two last data logs #15 and #16 can be configured to automatically record TOU
monthly and daily profile data respectively using season TOU tariffs. Refer to Section 5.21 for information on how
to allocate a memory partition for your specific data. Refer to Section 5.22 on how to configure a set of parameters
to be recorded to each data log.
Each memory partition you allocated for logging is organized as a sequential file of records where all data is
recorded in chronological order with a time and date stamp. When a partition is filled up, recording can be stopped
or can continue over the oldest records if you specified a partition with a wrap-around (circular) attribute. TOU
profile log partitions are automatically configured as wrap-around.
Each record within a log file has a unique sequence number that guards against missing or duplicated records
when reading the log file. This number is incremented (modulo 65536) with each log and will not be replicated
within the following 65535 logs. If a record is missing because of a communication problem, the read sequence for
the log can be restored from the record with the desired sequence number.
Accessing Log Files
Each log file has a separate file read pointer which always points to the current file record that will be read next,
and a separate register window which gives access to the record pointed to by this pointer. Initially, the read
pointer is associated with the oldest record in the file. Reading a record via the file window returns the current
record data, and then the pointer automatically advances to the following record in the file. Consequent requests
addressed to the file window will return a new record each time in the direction from the oldest record to the more
recent records. Because the file window advances automatically after the instrument responds to the master
request (regardless of the number of registers in the window being accessed), the entire window must be read at
once using a single request.
The instrument offers you two different techniques for accessing your log files. The first provides sequential
reading of a file records until the end of a file is reached. When a record is requested after the end of a file, the
response message will contain a zero record with an exception code indicating the end of a log file. Opposed to
this, the second method provides circular file reading, i.e., when a record is requested after the end of a file, the
file read pointer is automatically shifted to the beginning of the file. Using circular read requests always allows you
to read the entire log file regardless of the current file status. You can simply poll the file window registers just as
you poll ordinal data in your SCADA applications, without the need to manipulate the file pointer. Refer to Sections
5.23, 5.25 and 5.37 for information on sequential read requests you can use to access your log files, and to
Sections 5.24, 5.26 and 5.38 for information on circular read requests.
A log file can be read both in an arbitrary order and in sequence as explained above. To access the log records in
a random order, the file read pointer can be re-written with the desired sequence number to point to the desired
14
record. Refer to Sections 5.9 and 5.10 for information on how to check the log file status and how to re-write the
file read pointer. Writing to the memory partition command register (see Section 5.10) allows you to force the file
pointer to point to the oldest record in the file or to the first new, unread record in the file. You can also use the
instrument reset registers (see Section 5.6) to restore the file read pointer to the oldest record in your log file if you
want to re-read the file from the beginning.
IMPORTANT: Take into consideration the fact that in a wrap-around (circular) log partition, the oldest records may
be overwritten by the most recent records since you have read either log status register. An attempt to point to the
particular record directly by using its sequence number may fail if the addressed record has just been overwritten.
4.5 Password Protection
The PM296/RPM096 has a password protection option allowing you to protect your setups, cumulative registers
and logs from being changed or cleared through communications. You can disable or enable password protection
for communications via the front panel. For details, refer to your instrument Installation and Operation Manual.
When password protection is enabled, the user password you set in your instrument should be written into the
communications password register (see Section 5.35) before another write request will be issued. If the correct
password is not supplied while password protection is enabled, the instrument will respond to all write requests
with the exception code 01 (illegal operation). It is recommended to clear the password register after you have
completed your changes in order to activate password protection.
15
5 POWERMETER REGISTERS DESCRIPTION
5.1 Basic Data Registers
Table 5-1 Basic Data Registers
Parameter
Voltage L1/L12 6
Voltage L2/L23 6
Voltage L3/L31 6
Current L1
Current L2
Current L3
kW L1
kW L2
kW L3
kvar L1
kvar L2
kvar L3
kVA L1
kVA L2
kVA L3
Power factor L1
Power factor L2
Power factor L3
Total power factor
Total kW
Total kvar
Total kVA
Neutral current
Frequency
Max. sliding window kW demand 5
Accumulated kW demand
Max. sliding window kVA demand 5
Accumulated kVA demand
Max. ampere demand L1
Max. ampere demand L2
Max. ampere demand L3
kWh import (low)
kWh import (high)
kWh export (low)
kWh export (high)
+kvarh net (low) 3
+kvarh net (high) 3
-kvarh net (low) 4
-kvarh net (high) 4
Voltage THD L1/L12
Voltage THD L2/L23
Voltage THD L3
Current THD L1
Current THD L2
Current THD L3
kVAh (low)
kVAh (high)
Present sliding window kW demand 5
Present sliding window kVA demand 5
PF at maximum kVA sliding window demand
Current TDD L1
Current TDD L2
Current TDD L3
1
Register
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R
R
R
R
R
R
R/W
R/W
R
R
R
R
R
R
The parameter limits are as follows:
Imax (100% over-range) = 2 × CT primary current [A]
Imax aux (100% over-range) = 2 × Auxiliary CT primary current [A/mA]
Direct wiring (PT Ratio = 1):
Vmax (690 V input option) = 828.0 V
16
Unit 2
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.001
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.01A
0.01Hz
0.001kW/1kW
0.001kW/1kW
0.001kVA/1kVA
0.001kVA/1kVA
0.01A
0.01A
0.01A
1kWh
10,000 kWh
1kWh
10,000 kWh
1kvarh
10,000 kvarh
1kvarh
10,000 kvarh
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
1kVAh
10,000 kVAh
0.001kW/1kW
0.001kVA/1kVA
0.001
0.1%
0.1%
0.1%
Scale 1
Low
High
0
Vmax
0
Vmax
0
Vmax
0
Imax
0
Imax
0
Imax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-1.000
1.000
-1.000
1.000
-1.000
1.000
-1.000
1.000
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
0
Imax
45.00
65.00
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
0
Imax
0
Imax
0
Imax
0
9999
0
9999
0
9999
0
9999
0
9999
0
9999
0
9999
0
999
0
999.9
0
999.9
0
999.9
0
999.9
0
999.9
0
999.9
0
9999
0
9999
-Pmax
Pmax
-Pmax
Pmax
-1.000
1.000
0
100.0
0
100.0
0
100.0
Conversion
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
NONE
NONE
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
Vmax (120 V input option) = 144.0 V
Pmax = (Imax × Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
Wiring via PTs (PT Ratio > 1):
Vmax (690 V input option) = 144 × PT Ratio [V]
Vmax (120 V input option) = 144 × PT Ratio [V]
Pmax = (Imax × Vmax × 3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3
Pmax = (Imax × Vmax × 2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3
2
3
4
5
6
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units.
Positive readings of kvarh net
Negative readings of kvarh net
To get block interval demand readings, specify the number of demand periods equal to 1 (see Table 5-2).
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
NOTE Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of
registers 287-294 and 301-302 causes reset of all accumulated energies. This does not apply to the TOU system
registers.
5.2 Extended Data Registers
The following table lists all registers containing the data measured by the instrument. Notice that these registers
are arranged into groups, which are not located at adjacent addresses. You can re-map these registers into
adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section
4.3 for information on the user assignable registers. All data can be read either as 16-bit unsigned integer
numbers using LIN3 conversion to get true values in engineering units, or as 32-bit long signed or unsigned
integer numbers with scaling using multipliers to transmit fractional numbers. Note that in both cases, pulse and
energy counters are transmitted as 32-bit unsigned long integers.
Along with the register address, the table shows for each data item its data identifier (ID). This is a one word
containing a data group ID in the high byte and the parameter offset in a group in the low byte. Data IDs are used
to specify input or output parameters whenever a data parameter specification is needed, for example, when
selecting analog output parameters or reading Min/Max log records.
Extended data can be read, written or/and used as event triggers for event/alarm setpoints. A direction attribute
shows allowable usage of the registers as follows: R = read, W = write, A = analog (numeric) trigger, B = binary
(digital) trigger, N = new value trigger. On using data for triggering events, see Section 5.15.
Table 5-2 16-bit Extended Data Registers
Parameter
UINT16
Reg.
Conv.
None
None
6656
Special Inputs
Voltage disturbance 7
Phase rotation 8
User event flags (bitmap)
Event flags (Table 5-12)
6776
Event flag #1
Event flag #2
Event flag #3
Event flag #4
Event flag #5
Event flag #6
Event flag #7
Event flag #8
Internal events (bitmap)
kWh import pulse
kWh export pulse
kvarh import pulse
INT32
Register
11776-11777
12160-12161
17
Point
ID
R/W
0
R
0x0100
0x0101
A
A
0x0300
0x0300
0x0301
0x0302
0x0303
0x0304
0x0305
0x0306
0x0307
R
B
B
B
B
B
B
B
B
0x0400
0x0401
0x0402
B
B
B
Unit 2
%
Range/Scale 1
Low
High
0
0
0
0
100
2
0
4095
Parameter
kvarh export pulse
kvarh total pulse
kVAh total pulse
Start new power demand
interval
Start new tariff interval
Start new volt/ampere
demand interval
Start new sliding window
demand interval
New month
Timers
Timer #1
Timer #2
Timer #3
Timer #4
Status inputs (bitmap)
Status inputs (Table 5-13)
Status input #1
Status input #2
Status input #3
Status input #4
Status input #5
Status input #6
Status input #7
Status input #8
Status input #9
Status input #10
Status input #11
Status input #12
Pulse inputs (bitmap)
Pulse input #1
Pulse input #2
Pulse input #3
Pulse input #4
Pulse input #5
Pulse input #6
Pulse input #7
Pulse input #8
Pulse input #9
Pulse input #10
Pulse input #11
Pulse input #12
Relays (bitmap)
Relay status (Table 5-11)
Relay #1 status
Relay #2 status
Relay #3 status
Relay #4 status
Relay #5 status
Relay #6 status
Pulse counters
Pulse counter #1
Pulse counter #2
Pulse counter #3
Pulse counter #4
Pulse counter #5
Pulse counter #6
Pulse counter #7
UINT16
Reg.
Conv.
6896
INT32
Register
12544-12545
Point
ID
0x0403
0x0404
0x0405
0x0406
R/W
B
B
B
B
0x0407
0x0408
B
B
0x0409
B
0x040A
B
0x0500
0x0501
0x0502
0x0503
B
B
B
B
0x0600
0x0600
0x0601
0x0602
0x0603
0x0604
0x0605
0x0606
0x0607
0x0608
0x0609
0x060A
0x060B
R
B
B
B
B
B
B
B
B
B
B
B
B
0x0700
0x0701
0x0702
0x0703
0x0704
0x0705
0x0706
0x0707
0x0708
0x0709
0x070A
0x070B
B
B
B
B
B
B
B
B
B
B
B
B
Unit 2
Range/Scale 1
Low
High
0
4095
6976
12800-12801
0x0800
0x0800
0x0801
0x0802
0x0803
0x0804
0x0805
R
B
B
B
B
B
B
0
63
70567057
70587059
70607061
70627063
70647065
70667067
70687069
13056-13057
0x0A00
R/W/B
0
109-1
13058-13059
0x0A01
R/W/B
0
109-1
13060-13061
0x0A02
R/W/B
0
109-1
13062-13063
0x0A03
R/W/B
0
109-1
13064-13065
0x0A04
R/W/B
0
109-1
13066-13067
0x0A05
R/W/B
0
109-1
13068-13069
0x0A06
R/W/B
0
109-1
18
Parameter
Pulse counter #8
Pulse counter #9
Pulse counter #10
Pulse counter #11
Pulse counter #12
Pulse counter #13
Pulse counter #14
Pulse counter #15
Pulse counter #16
UINT16
Reg.
Conv.
70707071
70727073
70747075
70767077
70787079
70807081
70827083
70847085
70867087
Time/Date parameters
Packed date 9
Packed time 10
Day of week
Year
Month
Day of month
Hour
Minute
Second
Real-time values per phase
Voltage L1/L12 6
7136
Voltage L2/L23 6
7137
Voltage L3/L31 6
7138
Current L1
7139
Current L2
7140
Current L3
7141
kW L1
7142
kW L2
7143
kW L3
7144
kvar L1
7145
kvar L2
7146
kvar L3
7147
kVA L1
7148
kVA L2
7149
kVA L3
7150
Power factor L1
7151
Power factor L2
7152
Power factor L3
7153
Voltage THD L1/L12
7154
Voltage THD L2/L23
7155
Voltage THD L3
7156
Current THD L1
7157
Current THD L2
7158
Current THD L3
7159
K-Factor L1
7160
K-Factor L2
7161
K-Factor L3
7162
Current TDD L1
7163
Current TDD L2
7164
Current TDD L3
7165
Voltage L12
7166
Voltage L23
7167
Voltage L31
7168
Real-time low values on any phase
Low voltage 6
7176
Low current
7177
Low kW
7178
Low kvar
7179
Low kVA
7180
INT32
Register
13070-13071
Point
ID
0x0A07
R/W/B
Range/Scale 1
Low
High
0
109-1
13072-13073
0x0A08
R/W/B
0
109-1
13074-13075
0x0A09
R/W/B
0
109-1
13076-13077
0x0A0A
R/W/B
0
109-1
13078-13079
0x0A0B
R/W/B
0
109-1
13080-13081
0x0A0C
R/W/B
0
109-1
13082-13083
0x0A0D
R/W/B
0
109-1
13084-13085
0x0A0E
R/W/B
0
109-1
13086-13087
0x0A0F
R/W/B
0
109-1
0x0B00
0x0B01
0x0B02
0x0B03
0x0B04
0x0B05
0x0B06
0x0B07
0x0B08
A
A
A
A
A
A
A
A
A
000101
000000
1= Sun
0
1
1
0
0
0
991231
235959
7=Sat
99
12
31
23
59
59
R/W
Unit 2
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
13312-13313
13314-13315
13316-13317
13318-13319
13320-13321
13322-13323
13324-13325
13326-13327
13328-13329
13330-13331
13332-13333
13334-13335
13336-13337
13338-13339
13340-13341
13342-13343
13344-13345
13346-13347
13348-13349
13350-13351
13352-13353
13354-13355
13356-13357
13358-13359
13360-13361
13362-13363
13364-13365
13366-13367
13368-13369
13370-13371
13372-13373
13374-13375
13376-13377
0x0C00
0x0C01
0x0C02
0x0C03
0x0C04
0x0C05
0x0C06
0x0C07
0x0C08
0x0C09
0x0C0A
0x0C0B
0x0C0C
0x0C0D
0x0C0E
0x0C0F
0x0C10
0x0C11
0x0C12
0x0C13
0x0C14
0x0C15
0x0C16
0x0C17
0x0C18
0x0C19
0x0C1A
0x0C1B
0x0C1C
0x0C1D
0x0C1E
0x0C1F
0x0C20
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0
0
0
0
0
0
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
0
0
0
-1.000
-1.000
-1.000
0
0
0
0
0
0
1.0
1.0
1.0
0
0
0
0
0
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
1.000
1.000
1.000
999.9
999.9
999.9
999.9
999.9
999.9
999.9
999.9
999.9
100.0
100.0
100.0
Vmax
Vmax
Vmax
LIN3
LIN3
LIN3
LIN3
LIN3
13440-13441
13442-13443
13444-13445
13446-13447
13448-13449
0x0D00
0x0D01
0x0D02
0x0D03
0x0D04
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.01A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0
0
0
0
0
Vmax
Vmax
Vmax
Imax
Imax
19
Parameter
UINT16
Reg.
Conv.
Low PF Lag
7181
LIN3
Low PF Lead
7182
LIN3
Low voltage THD
7183
LIN3
Low current THD
7184
LIN3
Low K-Factor
7185
LIN3
Low current TDD
7186
LIN3
Low L-L voltage
7187
LIN3
Real-time high values on any phase
High voltage 6
7216
LIN3
High current
7217
LIN3
High kW
7218
LIN3
High kvar
7219
LIN3
High kVA
7220
LIN3
High PF Lag
7221
LIN3
High PF Lead
7222
LIN3
High voltage THD
7223
LIN3
High current THD
7224
LIN3
High K-Factor
7225
LIN3
High current TDD
7226
LIN3
High L-L voltage
7227
LIN3
Real-time total values
Total kW
7256
LIN3
Total kvar
7257
LIN3
Total kVA
7258
LIN3
Total PF
7259
LIN3
Total PF lag
7260
LIN3
Total PF lead
7261
LIN3
Total kW import
7262
LIN3
Total kW export
7263
LIN3
Total kvar import
7264
LIN3
Total kvar export
7265
LIN3
3-phase average voltage 6
7266
LIN3
3-phase average L-L voltage 7267
LIN3
3-phase average current
7268
LIN3
Real-time auxiliary values
Auxiliary current
7296
LIN3
Neutral current
7297
LIN3
Frequency 4
7298
LIN3
Voltage unbalance
7299
LIN3
Current unbalance
7300
LIN3
DC voltage
7301
LIN3
Average values per phase
Voltage L1/L12 6
7336
LIN3
Voltage L2/L23 6
7337
LIN3
Voltage L3/L31 6
7338
LIN3
Current L1
7339
LIN3
Current L2
7340
LIN3
Current L3
7341
LIN3
kW L1
7342
LIN3
kW L2
7343
LIN3
kW L3
7344
LIN3
kvar L1
7345
LIN3
kvar L2
7346
LIN3
kvar L3
7347
LIN3
kVA L1
7348
LIN3
kVA L2
7349
LIN3
kVA L3
7350
LIN3
Power factor L1
7351
LIN3
Power factor L2
7352
LIN3
Power factor L3
7353
LIN3
Voltage THD L1/L12
7354
LIN3
Voltage THD L2/L23
7355
LIN3
Voltage THD L3
7356
LIN3
Current THD L1
7357
LIN3
Current THD L2
7358
LIN3
Current THD L3
7359
LIN3
K-Factor L1
7360
LIN3
K-Factor L2
7361
LIN3
INT32
Register
13450-13451
13452-13453
13454-13455
13456-13457
13458-13459
13460-13461
13462-13463
Point
ID
0x0D05
0x0D06
0x0D07
0x0D08
0x0D09
0x0D0A
0x0D0B
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
Range/Scale 1
Low
High
0
Imax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
0
Vmax
13568-13569
13570-13571
13572-13573
13574-13575
13576-13577
13578-13579
13580-13581
13582-13583
13584-13585
13586-13587
13588-13589
13590-13591
0x0E00
0x0E01
0x0E02
0x0E03
0x0E04
0x0E05
0x0E06
0x0E07
0x0E08
0x0E09
0x0E0A
0x0E0B
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.01A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
0
0
0
0
0
0
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Vmax
13696-13697
13698-13699
13700-13701
13702-13703
13704-13705
13706-13707
13708-13709
13710-13711
13712-13713
13714-13715
13716-13717
13718-13719
13720-13721
0x0F00
0x0F01
0x0F02
0x0F03
0x0F04
0x0F05
0x0F06
0x0F07
0x0F08
0x0F09
0x0F0A
0x0F0B
0x0F0C
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.1V/1V
0.1V/1V
0.01A
-Pmax
-Pmax
0
-1.000
-1.000
-1.000
0
0
0
0
0
0
0
Pmax
Pmax
Pmax
1.000
1.000
1.000
Pmax
Pmax
Pmax
Pmax
Vmax
Vmax
Imax
13824-13825
13826-13827
13828-13829
13830-13831
13832-13833
13834-13835
0x1000
0x1001
0x1002
0x1003
0x1004
0x1005
R/A
R/A
R/A
R/A
R/A
R/A
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
Imax aux
Imax
100.00
300
300
9999.00
13952-13953
13954-13955
13956-13957
13958-13959
13960-13961
13962-13963
13964-13965
13966-13967
13968-13969
13970-13971
13972-13973
13974-13975
13976-13977
13978-13979
13980-13981
13982-13983
13984-13985
13986-13987
13988-13989
13990-13991
13992-13993
13994-13995
13996-13997
13998-13999
14000-14001
14002-14003
0x1100
0x1101
0x1102
0x1103
0x1104
0x1105
0x1106
0x1107
0x1108
0x1109
0x110A
0x110B
0x110C
0x110D
0x110E
0x110F
0x1110
0x1111
0x1112
0x1113
0x1114
0x1115
0x1116
0x1117
0x1118
0x1119
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0
0
0
0
0
0
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
0
0
0
-1.000
-1.000
-1.000
0
0
0
0
0
0
1.0
1.0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
1.000
1.000
1.000
999.9
999.9
999.9
999.9
999.9
999.9
999.9
999.9
20
R/W
Unit 2
Parameter
UINT16
Reg.
Conv.
K-Factor L3
7362
LIN3
Current TDD L1
7363
LIN3
Current TDD L2
7364
LIN3
Current TDD L3
7365
LIN3
Voltage L12
7366
LIN3
Voltage L23
7367
LIN3
Voltage L31
7368
LIN3
Average low values on any phase
Low voltage 6
7376
LIN3
Low current
7377
LIN3
Low kW
7378
LIN3
Low kvar
7379
LIN3
Low kVA
7380
LIN3
Low PF Lag
7381
LIN3
Low PF Lead
7382
LIN3
Low voltage THD
7383
LIN3
Low current THD
7384
LIN3
Low K-Factor
7385
LIN3
Low current TDD
7386
LIN3
Low L-L voltage
7387
LIN3
Average high values on any phase
High voltage 6
7416
LIN3
High current
7417
LIN3
High kW
7418
LIN3
High kvar
7419
LIN3
High kVA
7420
LIN3
High PF Lag
7421
LIN3
High PF Lead
7422
LIN3
High voltage THD
7423
LIN3
High current THD
7424
LIN3
High K-Factor
7425
LIN3
High current TDD
7426
LIN3
High L-L voltage
7427
LIN3
Average total values
Total kW
7456
LIN3
Total kvar
7457
LIN3
Total kVA
7458
LIN3
Total PF
7459
LIN3
Total PF lag
7460
LIN3
Total PF lead
7461
LIN3
Total kW import
7462
LIN3
Total kW export
7463
LIN3
Total kvar import
7464
LIN3
Total kvar export
7465
LIN3
3-phase average voltage 6
7466
LIN3
3-phase average L-L voltage 7467
LIN3
3-phase average current
7468
LIN3
Average auxiliary values
Auxiliary current
7496
LIN3
Neutral current
7497
LIN3
Frequency 4
7498
LIN3
Voltage unbalance
7499
LIN3
Current unbalance
7500
LIN3
DC voltage
7501
LIN3
Present demands
Volt demand L1/L12 6
7536
LIN3
Volt demand L2/L23 6
7537
LIN3
Volt demand L3/L31 6
7538
LIN3
Ampere demand L1
7539
LIN3
Ampere demand L2
7540
LIN3
Ampere demand L3
7541
LIN3
kW import block demand
7542
LIN3
kvar import block demand
7543
LIN3
kVA block demand
7544
LIN3
kW import sliding window
7545
LIN3
demand
kvar import sliding window
7546
LIN3
demand
INT32
Register
14004-14005
14006-14007
14008-14009
14010-14011
14012-14013
14014-14015
14016-14017
Point
ID
0x111A
0x111B
0x111C
0x111D
0x111E
0x111F
0x1120
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
Range/Scale 1
Low
High
1.0
999.9
0
100.0
0
100.0
0
100.0
0
Vmax
0
Vmax
0
Vmax
14080-14081
14082-14083
14084-14085
14086-14087
14088-14089
14090-14091
14092-14093
14094-14095
14096-14097
14098-14099
14100-14101
14102-14103
0x1200
0x1201
0x1202
0x1203
0x1204
0x1205
0x1206
0x1207
0x1208
0x1209
0x120A
0x120B
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.01A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
0
0
0
0
0
0
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Vmax
14208-14209
14210-14211
14212-14213
14214-14215
14216-14217
14218-14219
14220-14221
14222-14223
14224-14225
14226-14227
14228-14229
14230-14231
0x1300
0x1301
0x1302
0x1303
0x1304
0x1305
0x1306
0x1307
0x1308
0x1309
0x130A
0x130B
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.01A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.1%
0.1%
0.1
0.1%
0.1V/1V
0
0
0
0
0
0
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Vmax
14336-14337
14338-14339
14340-14341
14342-14343
14344-14345
14346-14347
14348-14349
14350-14351
14352-14353
14354-14355
14356-14357
14358-14359
14360-14361
0x1400
0x1401
0x1402
0x1403
0x1404
0x1405
0x1406
0x1407
0x1408
0x1409
0x140A
0x140B
0x140C
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.1V/1V
0.1V/1V
0.01A
-Pmax
-Pmax
0
-1.000
-1.000
-1.000
0
0
0
0
0
0
0
Pmax
Pmax
Pmax
1.000
1.000
1.000
Pmax
Pmax
Pmax
Pmax
Vmax
Vmax
Imax
14464-14465
14466-14467
14468-14469
14470-14471
14472-14473
14474-14475
0x1500
0x1501
0x1502
0x1503
0x1504
0x1505
R/A
R/A
R/A
R/A
R/A
R/A
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
Imax aux
Imax
100.00
300
300
9999.00
14592-14593
14594-14595
14596-14597
14598-14599
14600-14601
14602-14603
14604-14605
14606-14607
14608-14609
14610-14611
0x1600
0x1601
0x1602
0x1603
0x1604
0x1605
0x1606
0x1607
0x1608
0x1609
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
R/A
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001kW/1kW
0
0
0
0
0
0
0
0
0
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
14612-14613
0x160A
R/A
0.001kvar/1kvar
0
Pmax
21
R/W
Unit 2
Parameter
kVA sliding window demand
kW import thermal demand
kvar import thermal demand
kVA thermal demand
kW import accumulated
demand
kvar import accumulated
demand
kVA accumulated demand
kW import predicted sliding
window demand
kvar import predicted sliding
window demand
kVA predicted sliding window
demand
PF (import) at maximum kVA
sliding window demand
kW export block demand
kvar export block demand
kW export sliding window
demand
kvar export sliding window
demand
kW export accumulated
demand
kvar export accumulated
demand
kW export predicted sliding
window demand
kvar export predicted sliding
window demand
kW export thermal demand
kvar export thermal demand
Total energies
kWh import
Unit 2
INT32
Register
14614-14615
14616-14617
14618-14619
14620-14621
14622-14623
Point
ID
0x160B
0x160C
0x160D
0x160E
0x160F
R/A
R/A
R/A
R/A
R/A
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001kW/1kW
0
0
0
0
0
7552
LIN3
14624-14625
0x1610
R/A
0.001kvar/1kvar
0
Pmax
7553
7554
LIN3
LIN3
14626-14627
14628-14629
0x1611
0x1612
R/A
R/A
0.001kVA/1kVA
0.001kW/1kW
0
0
Pmax
Pmax
7555
LIN3
14630-14631
0x1613
R/A
0.001kvar/1kvar
0
Pmax
7556
LIN3
14632-14633
0x1614
R/A
0.001kVA/1kVA
0
Pmax
7557
LIN3
14634-14635
0x1615
R/A
0.001
-1.000
1.000
7558
7559
7560
LIN3
LIN3
LIN3
14636-14637
14638-14639
14640-14641
0x1616
0x1617
0x1618
R/A
R/A
R/A
0.001kW/1kW
0.001kvar/1kvar
0.001kW/1kW
0
0
0
Pmax
Pmax
Pmax
7561
LIN3
14642-14643
0x1619
R/A
0.001kvar/1kvar
0
Pmax
7562
LIN3
14644-14645
0x161A
R/A
0.001kW/1kW
0
Pmax
7563
LIN3
14646-14647
0x161B
R/A
0.001kvar/1kvar
0
Pmax
7564
LIN3
14648-14649
0x161C
R/A
0.001kW/1kW
0
Pmax
7565
LIN3
14650-14651
0x161D
R/A
0.001kvar/1kvar
0
Pmax
7560
7561
LIN3
LIN3
14652-14653
14654-14655
0x161E
0x161F
R/A
R/A
0.001kW/1kW
0.001kvar/1kvar
0
0
Pmax
Pmax
14720-14721
0x1700
R
kWh
0
109-1
14722-14723
0x1701
R
kWh
0
109-1
14724-14725
0x1702
R
kWh
-109+1
109-1
14726-14727
0x1703
R
kWh
0
109-1
14728-14729
0x1704
R
kvarh
0
109-1
14730-14731
0x1705
R
kvarh
0
109-1
14732-14733
0x1704
R
kvarh
-109+1
109-1
14734-14735
0x1705
R
kvarh
0
109-1
14736-14737
0x1708
R
kVAh
0
109-1
LIN3
LIN3
14976-14977
14978-14979
R/A
R/A
0.01%
0.01%
0
0
100.00
100.00
LIN3
14054-14055
0x1900
0x1901
...
0x1927
R/A
0.01%
0
100.00
LIN3
LIN3
15104-15105
15106-15107
R/A
R/A
0.01%
0.01%
0
0
100.00
100.00
LIN3
15182-15183
0x1A00
0x1A01
...
0x1A27
R/A
0.01%
0
100.00
LIN3
LIN3
15232-15233
15234-15235
R/A
R/A
0.01%
0.01%
0
0
100.00
100.00
LIN3
15310-15311
0x1B00
0x1B01
...
0x1B27
R/A
0.01%
0
100.00
75767577
kWh export
75787579
kWh net
75807581
kWh total
75827583
kvarh import
75847585
kvarh export
75867587
kvarh net
75887589
kvarh total
75907591
kVAh total
75927593
L1/L12 phase voltage harmonics
Harmonic H01
7656
Harmonic H02
7657
...
...
Harmonic H40
7695
L2/L23 phase voltage harmonics
Harmonic H01
7696
Harmonic H02
7697
...
...
Harmonic H40
7735
L3 phase voltage harmonics
Harmonic H01
7736
Harmonic H02
7737
...
...
Harmonic H40
7775
L1 phase current harmonics
22
R/W
Range/Scale 1
Low
High
Pmax
Pmax
Pmax
Pmax
Pmax
UINT16
Reg.
Conv.
7547
LIN3
7548
LIN3
7549
LIN3
7550
LIN3
7551
LIN3
Parameter
UINT16
INT32
Reg.
Conv.
Register
Harmonic H01
7776
LIN3
15360-15361
Harmonic H02
7777
LIN3
15362-15363
...
...
Harmonic H40
7815
LIN3
15438-15439
L2 phase current harmonics
Harmonic H01
7816
LIN3
15488-15489
Harmonic H02
7817
LIN3
15490-15491
...
...
Harmonic H40
7855
LIN3
15566-15567
L3 phase current harmonics
Harmonic H01
7856
LIN3
15616-15617
Harmonic H02
7857
LIN3
15618-15619
...
...
Harmonic H40
7895
LIN3
15694-15695
L1/L12 phase harmonic voltages (odd harmonics)
Harmonic H01
7896
LIN3
15744-15745
Harmonic H03
7897
LIN3
15746-15747
...
...
Harmonic H39
7915
LIN3
15782-15783
L2/L23 phase harmonic voltages (odd harmonics)
Harmonic H01
7936
LIN3
15872-15873
Harmonic H03
7937
LIN3
15874-15875
...
...
Harmonic H39
7955
LIN3
15910-15911
L3 phase harmonic voltages (odd harmonics)
Harmonic H01
7976
LIN3
16000-16001
Harmonic H03
7977
LIN3
16002-16003
...
...
Harmonic H39
7995
LIN3
16038-16039
L1 phase harmonic current (odd harmonics)
Harmonic H01
8016
LIN3
16128-16129
Harmonic H03
8017
LIN3
16130-16131
...
...
Harmonic H39
8035
LIN3
16166-16167
L2 phase harmonic current (odd harmonics)
Harmonic H01
8056
LIN3
16256-16257
Harmonic H03
8057
LIN3
16258-16259
...
...
Harmonic H39
8075
LIN3
16294-16295
L3 phase harmonic current (odd harmonics)
Harmonic H01
8096
LIN3
16384-16385
Harmonic H03
8097
LIN3
16386-16387
...
...
Harmonic H39
8115
LIN3
16422-16423
Harmonic total kW (odd harmonics)
Harmonic H01
8136
LIN3
16512-16513
Harmonic H03
8137
LIN3
16514-16515
...
...
Harmonic H39
8155
LIN3
16550-16551
Harmonic total kvar (odd harmonics)
Harmonic H01
8176
LIN3
16640-16641
Harmonic H03
8177
LIN3
16642-16643
...
...
Harmonic H39
8195
LIN3
16678-16679
Harmonic total PF (odd harmonics)
Harmonic H01
8216
LIN3
16768-16769
Harmonic H03
8217
LIN3
16770-16771
...
...
Harmonic H39
8235
LIN3
16806-16807
Minimum real-time values per phase (M)
Voltage L1/L12 6
8416
LIN3
17408-17409
Voltage L2/L23 6
8417
LIN3
17410-17411
Voltage L3/L31 6
8418
LIN3
17412-17413
Current L1
8419
LIN3
17414-17415
Current L2
8420
LIN3
17416-17417
Current L3
8421
LIN3
17418-17419
kW L1
8422
LIN3
17420-17421
23
R/A
R/A
0.01%
0.01%
Range/Scale 1
Low
High
0
100.00
0
100.00
R/A
0.01%
0
100.00
0x1D00
0x1D01
...
0x1D27
R/A
R/A
0.01%
0.01%
0
0
100.00
100.00
R/A
0.01%
0
100.00
0x1E00
0x1E01
...
0x1E27
R/A
R/A
0.01%
0.01%
0
0
100.00
100.00
R/A
0.01%
0
100.00
0x1F00
0x1F01
...
0x1F13
R/A
R/A
0.1V/1V
0.1V/1V
0
0
Vmax
Vmax
R/A
0.1V/1V
0
Vmax
0x2000
0x2001
...
0x2013
R/A
R/A
0.1V/1V
0.1V/1V
0
0
Vmax
Vmax
R/A
0.1V/1V
0
Vmax
0x2100
0x2101
...
0x2113
R/A
R/A
0.1V/1V
0.1V/1V
0
0
Vmax
Vmax
R/A
0.1V/1V
0
Vmax
0x2200
0x2201
...
0x2213
R/A
R/A
0.01A
0.01A
0
0
Imax
Imax
R/A
0.01A
0
Imax
0x2300
0x2301
...
0x2313
R/A
R/A
0.01A
0.01A
0
0
Imax
Imax
R/A
0.01A
0
Imax
0x2400
0x2401
...
0x2413
R/A
R/A
0.01A
0.01A
0
0
Imax
Imax
R/A
0.01A
0
Imax
0x2500
0x2501
...
0x2513
R/A
R/A
0.001kW/1kW
0.001kW/1kW
-Pmax
-Pmax
Pmax
Pmax
R/A
0.001kW/1kW
-Pmax
Pmax
0x2600
0x2601
...
0x2613
R/A
R/A
0.001kvar/1kvar
0.001kvar/1kvar
-Pmax
-Pmax
Pmax
Pmax
R/A
0.001kvar/1kvar
-Pmax
Pmax
0x2700
0x2701
...
0x2713
R/A
R/A
0.001
0.001
-1.000
-1.000
1.000
1.000
R/A
0.001
-1.000
1.000
0x2C00
0x2C01
0x2C02
0x2C03
0x2C04
0x2C05
0x2C06
R/N
R/N
R/N
R/N
R/N
R/N
R/N
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0,01A
0,01A
0.001kW/1kW
0
0
0
0
0
0
-Pmax
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Point
ID
0x1C00
0x1C01
...
0x1C27
Unit 2
R/W
Parameter
UINT16
INT32
Reg.
Conv.
Register
kW L2
8423
LIN3
17422-17423
kW L3
8424
LIN3
17424-17425
kvar L1
8425
LIN3
17426-17427
kvar L2
8426
LIN3
17428-17429
kvar L3
8427
LIN3
17430-17431
kVA L1
8428
LIN3
17432-17433
kVA L2
8429
LIN3
17434-17435
kVA L3
8430
LIN3
17436-17437
Power factor L1 3
8431
LIN3
17438-17439
Power factor L2 3
8432
LIN3
17440-17441
Power factor L3 3
8433
LIN3
17442-17443
Voltage THD L1/L12
8434
LIN3
17444-17445
Voltage THD L2/L23
8435
LIN3
17446-17447
Voltage THD L3
8436
LIN3
17448-17449
Current THD L1
8437
LIN3
17450-17451
Current THD L2
8438
LIN3
17452-17453
Current THD L3
8439
LIN3
17454-17455
K-Factor L1
8440
LIN3
17456-17457
K-Factor L2
8441
LIN3
17458-17459
K-Factor L3
8442
LIN3
17460-17461
Current TDD L1
8443
LIN3
17462-17463
Current TDD L2
8444
LIN3
17464-17465
Current TDD L3
8445
LIN3
17466-17467
Voltage L12
8446
LIN3
17468-17469
Voltage L23
8447
LIN3
17470-17471
Voltage L31
8448
LIN3
17472-17473
Minimum real-time total values (M)
Total kW
8456
LIN3
17536-17537
Total kvar
8457
LIN3
17538-17539
Total kVA
8458
LIN3
17540-17541
Total PF 3
8459
LIN3
17542-17543
Total PF lag
8460
LIN3
17544-17545
Total PF lead
8461
LIN3
17546-17547
Minimum real-time auxiliary values (M)
Auxiliary current
8496
LIN3
17664-17665
Neutral current
8497
LIN3
17666-17667
Frequency 4
8498
LIN3
17668-17669
Voltage unbalance
8499
LIN3
17670-17671
Current unbalance
8500
LIN3
17672-17673
DC voltage
8501
LIN3
17674-17675
Minimum demands (M) - Reserved
Reserved
853617792-17793 8552
18824-18825
Programmable Min/Max minimum registers (M)
Register #1
8576
LIN3
17664-17665
Register #2
8577
LIN3
17666-17667
...
...
...
Register #16
8590
LIN3
14470-14471
Maximum real-time values per phase (M)
Voltage L1/L12 6
8736
LIN3
18432-18433
Voltage L2/L23 6
8737
LIN3
18434-18435
Voltage L3/L31 6
8738
LIN3
18436-18437
Current L1
8739
LIN3
18438-18439
Current L2
8740
LIN3
18440-18441
Current L3
8741
LIN3
18442-18443
kW L1
8742
LIN3
18444-18445
kW L2
8743
LIN3
18446-18447
kW L3
8744
LIN3
18448-18449
kvar L1
8745
LIN3
18450-18451
kvar L2
8746
LIN3
18452-18453
kvar L3
8747
LIN3
18454-18455
kVA L1
8748
LIN3
18456-18457
kVA L2
8749
LIN3
18458-18459
kVA L3
8750
LIN3
18460-18461
Power factor L1 3
8751
LIN3
18462-18463
Power factor L2 3
8752
LIN3
18464-18465
Power factor L3 3
8753
LIN3
18466-18467
Voltage THD L1/L12
8754
LIN3
18468-18469
24
Point
ID
0x2C07
0x2C08
0x2C09
0x2C0A
0x2C0B
0x2C0C
0x2C0D
0x2C0E
0x2C0F
0x2C10
0x2C11
0x2C12
0x2C13
0x2C14
0x2C15
0x2C16
0x2C17
0x2C18
0x2C19
0x2C1A
0x2C1B
0x2C1C
0x2C1D
0x2C1E
0x2C1F
0x2C20
Unit 2
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
Range/Scale 1
Low
High
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
-Pmax
Pmax
0
Pmax
0
Pmax
0
Pmax
-1.000
1.000
-1.000
1.000
-1.000
1.000
0
999.9
0
999.9
0
999.9
0
999.9
0
999.9
0
999.9
1.0
999.9
1.0
999.9
1.0
999.9
0
100.0
0
100.0
0
100.0
0
Vmax
0
Vmax
0
Vmax
0x2D00
0x2D01
0x2D02
0x2D03
0x2D04
0x2D05
R/N
R/N
R/N
R/N
R/N
R/N
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax
-Pmax
0
0
0
0
Pmax
Pmax
Pmax
1.000
1.000
1.000
0x2E00
0x2E01
0x2E02
0x2E03
0x2E04
0x2E05
R/N
R/N
R/N
R/N
R/N
R/N
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
Imax aux
Imax
100.00
300
300
9999.00
0
0
R/W
0x2F00- R
0x2F12
0x3000
0x3001
...
0x300F
R/N
R/N
5
5
5
5
5
5
R/N
5
5
5
0x3400
0x3401
0x3402
0x3403
0x3404
0x3405
0x3406
0x3407
0x3408
0x3409
0x340A
0x340B
0x340C
0x340D
0x340E
0x340F
0x3410
0x3411
0x3412
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0.001kW/1kW
0.001kW/1kW
0.001kvar/1kvar
0.001kvar/1kvar
0.001kvar/1kvar
0.001kVA/1kVA
0.001kVA/1kVA
0.001kVA/1kVA
0.001
0.001
0.001
0.1%
0
0
0
0
0
0
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
-Pmax
0
0
0
-1.000
-1.000
-1.000
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
Pmax
1.000
1.000
1.000
999.9
Parameter
UINT16
INT32
Reg.
Conv.
Register
Voltage THD L2/L23
8755
LIN3
18470-18471
Voltage THD L3
8756
LIN3
18472-18473
Current THD L1
8757
LIN3
18474-18475
Current THD L2
8758
LIN3
18476-18477
Current THD L3
8759
LIN3
18478-18479
K-Factor L1
8760
LIN3
18480-18481
K-Factor L2
8761
LIN3
18482-18483
K-Factor L3
8762
LIN3
18484-18485
Current TDD L1
8763
LIN3
18486-18487
Current TDD L2
8764
LIN3
18488-18489
Current TDD L3
8765
LIN3
18490-18491
Voltage L12
8766
LIN3
18492-18493
Voltage L23
8767
LIN3
18494-18495
Voltage L31
8768
LIN3
18496-18497
Maximum real-time total values (M)
Total kW
8776
LIN3
18560-18561
Total kvar
8777
LIN3
18562-18563
Total kVA
8778
LIN3
18564-18565
Total PF 3
8779
LIN3
18566-18567
Total PF lag
8780
LIN3
18568-18569
Total PF lead
8781
LIN3
18570-18571
Maximum real-time auxiliary values (M)
Auxiliary current
8816
LIN3
18688-18689
Neutral current
8817
LIN3
18680-18681
Frequency 4
8818
LIN3
18682-18683
Voltage unbalance
8819
LIN3
18684-18685
Current unbalance
8820
LIN3
18686-18687
DC voltage
8821
LIN3
18688-18689
Maximum demands (M)
Max. volt demand L1/L12 6
8856
LIN3
18816-18817
Max. volt demand L2/L23 6
8857
LIN3
18818-18819
Max. volt demand L3/L31 6
8858
LIN3
18820-18821
Max. ampere demand L1
8859
LIN3
18822-18823
Max. ampere demand L2
8860
LIN3
18824-18825
Max. ampere demand L3
8861
LIN3
18826-18827
Reserved
8862
LIN3
18828-18829
Reserved
8863
LIN3
18830-18831
Reserved
8864
LIN3
18832-18833
Max. sliding window kW
8865
LIN3
18834-18835
import demand
Max. sliding window kvar
8866
LIN3
18836-18837
import demand
Max. sliding window kVA
8867
LIN3
18838-18839
demand
Max. kW import thermal
8868
LIN3
18840-18841
demand
Max. kvar import thermal
8869
LIN3
18842-18843
demand
Max. kVA thermal demand
8870
LIN3
18844-18845
Max. sliding window kW
8871
LIN3
18846-18847
export demand
Max. sliding window kvar
8872
LIN3
18848-18849
export demand
Max. kW export thermal
8873
LIN3
18840-18841
demand
Max. kvar export thermal
8874
LIN3
18842-18843
demand
Programmable Min/Max maximum registers (M)
Register #1
8896
LIN3
18944-18945
Register #2
8897
LIN3
18946-18947
...
...
...
Register #16
8911
LIN3
18974-18975
TOU system parameters
Active tariff
9056
19456-19457
Active profile
9057
19458-19459
TOU energy register #1
Tariff #1 register
909619584-19585
9097
25
Point
ID
0x3413
0x3414
0x3415
0x3416
0x3417
0x3418
0x3419
0x341A
0x341B
0x341C
0x341D
0x341E
0x341F
0x3420
Unit 2
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
R/N
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
Range/Scale 1
Low
High
0
999.9
0
999.9
0
999.9
0
999.9
0
999.9
1.0
999.9
1.0
999.9
1.0
999.9
0
100.0
0
100.0
0
100.0
0
Vmax
0
Vmax
0
Vmax
0x3500
0x3501
0x3502
0x3503
0x3504
0x3505
R/N
R/N
R/N
R/N
R/N
R/N
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
-Pmax
-Pmax
0
0
0
0
Pmax
Pmax
Pmax
1.000
1.000
1.000
0x3600
0x3601
0x3602
0x3603
0x3604
0x3605
R/N
R/N
R/N
R/N
R/N
R/N
0.01A/mA
0.01A
0.01Hz
1%
1%
0.01V
0
0
0
0
0
0
Imax aux
Imax
100.00
300
300
9999.00
0x3700
0x3701
0x3702
0x3703
0x3704
0x3705
0x3706
0x3707
0x3708
0x3709
R
R
R
R
R
R
R
R
R
R
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.001kW/1kW
0
0
0
0
0
0
0
0
0
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
0
0
0
Pmax
0x370A
R
0.001kvar/1kvar
0
Pmax
0x370B
R
0.001kVA/1kVA
0
Pmax
0x370C
R
0.001kW/1kW
0
Pmax
0x370D
R
0.001kvar/1kvar
0
Pmax
0x370E
0x370F
R
R
0.001kVA/1kVA
0.001kW/1kW
0
0
Pmax
Pmax
0x3710
R
0.001kvar/1kvar
0
Pmax
0x3711
R
0.001kW/1kW
0
Pmax
0x3712
R
0.001kvar/1kvar
0
Pmax
0x3800
0x3801
...
0x380F
R/N
R/N
5
5
5
5
5
5
R/N
5
5
5
0x3C00
0x3C01
R/A
R/A
0
0
15
15
0x3D00
R
-109+1
109-1
R/W
5
Parameter
Tariff #2 register
...
Tariff #16 register
TOU energy register #2
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #3
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #4
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #5
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #6
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #7
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #8
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #9
Tariff #1 register
Tariff #2 register
...
UINT16
Reg.
Conv.
90989099
...
91269127
INT32
Register
19586-19587
Point
ID
0x3D01
R
5
Range/Scale 1
Low
High
-109+1 109-1
...
19614-19615
...
0x3D0F
R
5
-109+1
109-1
91369137
91389139
...
91669167
19712-19713
0x3E00
R
5
-109+1
109-1
19714-19715
0x3E01
R
5
-109+1
109-1
...
19742-19743
...
0x3E0F
R
5
-109+1
109-1
91769177
91789179
...
92069207
19840-19841
0x3F00
R
5
-109+1
109-1
19842-19843
0x3F01
R
5
-109+1
109-1
...
19870-19871
...
0x3F0F
R
5
-109+1
109-1
92169217
92189219
...
92469247
19968-19969
0x4000
R
5
-109+1
109-1
19970-19971
0x4001
R
5
-109+1
109-1
...
19998-19999
...
0x400F
R
5
-109+1
109-1
92569257
92589259
...
92869287
20096-20097
0x4100
R
5
-109+1
109-1
20098-20099
0x4101
R
5
-109+1
109-1
...
20126-20127
...
0x410F
R
5
-109+1
109-1
92969297
92989299
...
93269327
20224-20225
0x4200
R
5
-109+1
109-1
20226-20227
0x4201
R
5
-109+1
109-1
...
20254-20255
...
0x420F
R
5
-109+1
109-1
93369337
93389339
...
93669367
20352-20353
0x4300
R
5
-109+1
109-1
20354-20355
0x4301
R
5
-109+1
109-1
...
20382-20383
...
0x430F
R
5
-109+1
109-1
9376
9377
9378
9379
...
9406
9407
20480-20481
0x4400
R
5
-109+1
109-1
20482-20483
0x4401
R
5
-109+1
109-1
...
20510-20511
...
0x440F
R
5
-109+1
109-1
96569657
96589659
...
21376-21377
0x4B00
R
5
-109+1
109-1
21378-21379
0x4B01
R
5
-109+1
109-1
...
...
26
Unit 2
R/W
Parameter
Tariff #16 register
TOU energy register #10
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #11
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #12
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #13
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #14
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #15
Tariff #1 register
Tariff #2 register
...
Tariff #16 register
TOU energy register #16
Tariff #1 register
UINT16
Reg.
Conv.
96869687
INT32
Register
21406-21407
Point
ID
0x4B0F
R
5
Range/Scale 1
Low
High
-109+1 109-1
96969697
96989699
...
97269727
21504-21505
0x4C00
R
5
-109+1
109-1
21506-21507
0x4C01
R
5
-109+1
109-1
...
21534-21535
...
0x4C0F
R
5
-109+1
109-1
97369737
97389739
...
97669767
21632-21633
0x4D00
R
5
-109+1
109-1
21634-21635
0x4D01
R
5
-109+1
109-1
...
21662-21663
...
0x4D0F
R
5
-109+1
109-1
97769777
97789779
...
98069807
21760-21761
0x4E00
R
5
-109+1
109-1
21762-21763
0x4E01
R
5
-109+1
109-1
...
21790-21791
...
0x4E0F
R
5
-109+1
109-1
98169817
98189819
...
98469847
21888-21889
0x4F00
R
5
-109+1
109-1
21890-21891
0x4F01
R
5
-109+1
109-1
...
21918-21919
...
0x4F0F
R
5
-109+1
109-1
98569857
98589859
...
98869887
22016-22017
0x5000
R
5
-109+1
109-1
22018-22019
0x5001
R
5
-109+1
109-1
...
22046-22047
...
0x500F
R
5
-109+1
109-1
98969897
98989899
...
99269927
22144-22145
0x5100
R
5
-109+1
109-1
22146-22147
0x5101
R
5
-109+1
109-1
...
22174-22175
...
0x510F
R
5
-109+1
109-1
22272-22273
0x5200
R
5
-109+1
109-1
22274-22275
0x5201
R
5
-109+1
109-1
...
22302-22303
...
0x520F
R
5
-109+1
109-1
20992-20993
20994-20995
...
21022-21023
0x4800
0x4801
...
0x480F
R/N
R/N
5
5
0
0
Pmax
Pmax
R/N
5
0
Pmax
21120-21121
21122-21123
...
0x4900
0x4901
...
R/N
R/N
5
0
0
Pmax
Pmax
99369937
Tariff #2 register
99389939
...
...
Tariff #16 register
99669967
TOU maximum demand register #1 (M)
Tariff #1 register
9536
LIN3
Tariff #2 register
9537
LIN3
...
...
Tariff #16 register
9551
LIN3
TOU maximum demand register #2 (M)
Tariff #1 register
9576
LIN3
Tariff #2 register
9577
LIN3
...
...
27
Unit 2
R/W
5
UINT16
INT32
Point
R/W
Unit 2
Reg.
Conv.
Register
ID
5
Tariff #16 register
9591
LIN3
21150-21151
0x490F R/N
TOU maximum demand register #3 (M)
5
Tariff #1 register
9616
LIN3
21248-21249
0x4A00 R/N
5
Tariff #2 register
9617
LIN3
21250-21251
0x4A01 R/N
...
...
...
...
5
Tariff #16 register
9631
LIN3
21278-21279
0x4A0F R/N
TOU season tariff energy registers - only as a reference for TOU profile logs
5
Season tariff #1 register
0x7000 R
5
Season tariff #2 register
0x7001 R
...
...
5
Season tariff #16 register
0x700F R
TOU season tariff maximum demand registers - only as a reference for TOU profile logs
Season tariff #1 register
LIN3
0x7100 R
0.001kVA/1kVA
Season tariff #2 register
LIN3
0x7101 R
0.001kVA/1kVA
...
...
Season tariff #16 register
LIN3
0x710F R
0.001kVA/1kVA
Setpoint status (bitmap) 11
Setpoints status
27648-27649
0x7C00 R
Setpoint #1 status
0x7C00 B
Setpoint #2 status
0x7C01 B
Setpoint #3 status
0x7C02 B
Setpoint #4 status
0x7C03 B
Setpoint #5 status
0x7C04 B
Setpoint #6 status
0x7C05 B
Setpoint #7 status
0x7C06 B
Setpoint #8 status
0x7C07 B
Setpoint #9 status
0x7C08 B
Setpoint #10 status
0x7C09 B
Setpoint #11 status
0x7C0A B
Setpoint #12 status
0x7C0B B
Setpoint #13 status
0x7C0C B
Setpoint #14 status
0x7C0D B
Setpoint #15 status
0x7C0E B
Setpoint #16 status
0x7C0F B
Parameter
1
2
3
4
5
6
7
8
9
10
11
Range/Scale 1
Low
High
0
Pmax
0
0
Pmax
Pmax
0
Pmax
-109+1
-109+1
109-1
109-1
-109+1
109-1
0
0
Pmax
Pmax
0
Pmax
For parameter limits, see Note 1 to Table 4-1
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
New absolute min/max value (lag or lead).
The actual frequency range is 45.00 - 65.00 Hz.
The Programmable Min/Max register, TOU energy and TOU maximum demand register unit and range match
those of the input parameter for which the register is allocated.
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
Operate limit for the voltage disturbance trigger specifies the voltage deviation allowed in percentage of
nominal (full scale) voltage, which refers to line-to-line voltage in 3OP2 and 3OP3 wiring modes, and to line-toneutral voltage in other modes. The nominal voltage is 120 × PT Ratio VRMS for instruments with the 120V
input option, and 380 × PT Ratio VRMS for instruments with the 690V input option.
The phase rotation limits: 0 = error, 1 = positive rotation, 2 = negative rotation.
Packed date format: year × 10000 + month × 100 + day of month.
Packed time format: hour × 10000 + minute × 100 + second.
Available starting with F/W Versions 2.27.2/2.37.2 or later.
(M) These parameters are logged to the Min/Max log.
5.3 Basic Setup Registers
Table 5-3 Basic Setup Registers
Parameter
Wiring mode
1
Register
2304
Type
UINT16
28
R/W
R/W
Range
0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,
3 = 4LL3, 4 = 3OP3, 5 = 3LN3,
6 = 3LL3
1
2
3
Parameter
PT ratio
CT primary current
Power demand period
Register
2305
2306
2307
Type
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
Volt/ampere demand period
Averaging buffer size
Reset enable/disable
Auxiliary CT primary current
The number of demand periods
Thermal demand time constant
The number of pre-event cycles for the
waveform recorder
Nominal frequency
Maximum demand load current
2308
2309
2310
2311
2312
2313
2314
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
R/W
R/W
2315
2316
UINT16
UINT16
R/W
R/W
Reserved
DC voltage offset 2
DC voltage full scale 2
The number of cycles in a waveform
series for Waveform Log #1.
2317
2318
2319
2320
UINT16
UINT16
UINT16
UINT16
R
R/W
R/W
R/W
Range
10 to 65000 × 0.1
1 to 5000 A
1,2,5,10,15,20,30,60 min,
255 = external synchronization
0 to 1800 sec
8, 16, 32
0 = disable, 1 = enable
1 to 5000 A/mA
1 to 15
10 to 36000 x 0.1sec
1 to 8
50, 60 Hz
0 to 10,000 A
(0 = CT primary current)
Read as 65535
0 to 9999 (default 0)
0 to 9999 (default 20, 100 or 300)
0 to 2560 (will be rounded to a
nearest bigger number multiple of
16),
0 = auto-select 3
The wiring mode options are as follows:
3OP2 - 3-wire open delta using 2 CTs (2 element)
4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings
3DIR2 - 3-wire direct connection using 2 CTs (2 element)
4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings
3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)
3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings
3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings
To get true DC voltage readings, set the offset to zero and the full scale to 20, 100 or 300 V according to your
order.
The waveform recorder logs waveforms in series of records. A compound waveform can have as more as
2560 cycles recorded in 160 consequent records, each record comprising 16 waveform cycles. When the
number of cycles is defined as zero, the instrument automatically selects the size of a waveform series. By
default, a waveform series is assumed to consist of a single 16-cycle record. When a record is triggered by a
voltage disturbance event and the disturbance lasts for more time than a 16-cycle record can include, the
disturbance event is assumed to be a single long-duration event. In that case, the recorder will continue
storing a waveform in the following adjacent records while the voltage wave shape is still non-stationary. The
total number of records in a compound waveform will be limited only by the allocated memory.
5.4 User Selectable Options Setup Registers
Table 5-4 User Selectable Options Registers
Parameter
Power calculation mode
Register
2376
Type
UINT16
R/W
R/W
Energy roll value
2377
UINT16
R/W
Phase energy calculation mode
Analog output option
2378
2379
UINT16
UINT16
R/W
R/W
Analog expander output
2380
UINT16
R/W
1
2
29
0
1
0
1
2
3
4
5
0
0
1
2
3
4
0
1
2
3
4
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Range
using reactive power,
using non-active power
1×104
1×105
1×106
1×107
1×108
1×109
disable, 1 = enable
none
0-20 mA
4-20 mA
0-1 mA
±1 mA
none
0-20 mA
4-20 mA
0-1 mA
±1 mA
Battery option
Reserved
Thermal demand option
1
2
2381
2382
2383
UINT16
UINT16
UINT16
R/W
R
R/W
0 = battery OFF, 1 = battery ON
Read as 65535
0 = disable, 1 = enable
For short energy registers (see Table 5-1), the maximum roll value will be 1×108 for positive readings and
1×107 for negative readings.
Do not enable the analog expander output if the analog expander is not connected to the instrument,
otherwise the computer communications will become garbled.
5.5 Communications Setup Registers
Table 5-5 Communications Setup Registers
Comm.
Port
Port #1
Port #2
Parameter
Register
Type
R/W
Protocol
2344
UINT16
R/W
Interface
2345
UINT16
R/W
Address
Baud rate
2346
2347
UINT16
UINT16
R/W
R/W
Data format
2348
UINT16
R/W
Incoming flow control
(handshaking)
2349
UINT16
R/W
Outgoing flow control (RTS/DTR)
2350
UINT16
R/W
Protocol
2352
UINT16
R/W
Interface
2353
UINT16
R/W
Address
Baud rate
2354
2355
UINT16
UINT16
R/W
R/W
Data format
2356
UINT16
R/W
Reserved
23572358
UINT16
Range
0 = ASCII
1 = Modbus RTU
3 = DNP3.0
0 = RS-232
2 = RS-485
1 to 247
0 = 110 bps
1 = 300 bps
2 = 600 bps
3 = 1200 bps
4 = 2400 bps
5 = 4800 bps
6 = 9600 bps
7 = 19200 bps
1 = 8 bits/no parity
2 = 8 bits/even parity
0 = no handshaking
1 = software handshaking
(XON/XOFF protocol)
2 = hardware handshaking (CTS
protocol)
0 = RTS signal not used
1 = RTS permanently asserted
(DTR mode)
2 = RTS asserted during the
transmission
0 = ASCII
1 = Modbus RTU
3 = DNP3.0
1 = RS-422
2 = RS-485
1 to 247
0 = 110 bps
1 = 300 bps
2 = 600 bps
3 = 1200 bps
4 = 2400 bps
5 = 4800 bps
6 = 9600 bps
7 = 19200 bps
1 = 8 bits/no parity
2 = 8 bits/even parity
When changing the instrument address, baud rate or data format, the new communications parameters will take
effect 100 ms after the instrument responds to the master's request.
5.6 Reset/Clear Registers
Table 5-6 Reset/Clear Registers
Function
Register
Type
30
R/W
Reset value
Function
Clear total energy registers
Clear total maximum demand registers
Register
3404
3405
Type
UINT16
UINT16
R/W
W
W
Clear TOU energy registers
Clear TOU maximum demand registers
Clear pulse counters
3406
3407
3408
UINT16
UINT16
UINT16
W
W
W
Clear Min/Max log
Clear event log
Clear data log
3409
3410
3411
UINT16
UINT16
UINT16
W
W
W
Clear Waveform log #1
Clear Waveform log #2
Reserved
Restore event log queue pointer
Restore data log queue pointer
3412
3413
3414
3415
3416
UINT16
UINT16
UINT16
UINT16
UINT16
W
W
W
W
Restore waveform log #1
Restore waveform log #2
3417
3418
UINT16
UINT16
W
W
Reset value
0
0 = all maximum demands
1 = power demands
2 = volt/ampere demands
0
0
0 = all counters
1-16 = counter #1 - #16
0
0
0-7 = log #1 - #8
16 = all data logs
0
0
0
0-15 = data logs #1 - #16
16-31 = monthly profile logs for TOU
energy registers #1 - #16
32-34 = monthly profile logs for TOU
maximum demand registers #1 - #3
48-63 = daily profile logs for TOU energy
registers #1 - #16
64-66 = daily profile logs for TOU
maximum demand registers #1 - #3
0
0
5.7 Instrument Status Registers
Table 5-7 Instrument Status Registers
1
2
Parameter
Instrument reset
register 1
Register
2560
Type
R/W
UINT16 R/W
Reserved
Relay status
Firmware build number
Status inputs
Firmware version
number
Instrument options 1
Instrument options 2
2561
2562
2563
2564
2565
UINT16
UINT16
UINT16
UINT16
UINT16
2566
2567
UINT16 R
UINT16 R
2
Unit
R
R
R
R
R
Range
0 (when read)
65535 (when written) =
reset the instrument
Read as 0
see Table 5-8
0-99
see Table 5-11
0-65535
see Table 5-9
see Table 5-9
Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.
Available starting with F/W Versions 2.26.2/2.36.2 and 2.27.2/2.37.2 or later.
Table 5-8 Relay Status
Bit number
0-1
2
3
4
5
6
7
8-15
Description
Not used (permanently set to 1)
Relay #6 status
Relay #5 status
Relay #4 status
Relay #3 status
Relay #2 status
Relay #1 status
Not used (permanently set to 0)
Bit meaning: 0 = relay is energized, 1 = relay is not energized
Table 5-9 Instrument Options
Options register
Options1
Bit
0
1
Description
120V option
690V option
31
Options register
Options 2
Bit
2-3
4
5
6
7
8
9
10
11
12
13
14
15
0-2
3-6
7-8
9-10
11-12
13
14-15
Description
N/A
100% current over-range
N/A
Analog output 0/4-20 mA
Analog output 0-1 mA
Analog output ±1 mA
Relays option
Digital inputs option
Auxiliary current option
Setup is secured by a password (see Section 4.5)
ASCII compatibility mode enabled
Analog expander output ±1 mA
N/A
Number of relays - 1
Number of digital inputs - 1
Number of analog outputs - 1
N/A
DC voltage input option: 01 = 20V, 10=100V, 11 = 300V
N/A
Memory module size: 11 = 1024 Kbytes
32
5.8 Extended Status Registers
Table 5-10 Extended Status Registers
Parameter
Relay status
User event flags
Status inputs
Setpoints status
Log status
Data log status
Reserved
Setpoint alarm status
Self-check alarm status
Reserved
Active serial port number
Battery status
Register
3452
3453
3454
3455
3456
3457
34583473
3474
3475
34763483
3484
3485
Type
R
R
R
R
R
R
R
see Table 5-11
see Table 5-12
see Table 5-13
see Table 5-14
see Table 5-15
see Table 5-16
Read as 0
UINT16
UINT16
UINT16
R/W
R/W
R
see Table 5-17
see Table 5-18
Read as 0
UINT16
UINT16
R
R
0 = Port 1, 1 = Port 2
0 = low, 1 = normal
Description
Relay #1 status
Relay #2 status
Relay #3 status
Relay #4 status
Relay #5 status
Relay #6 status
Not used (permanently set to 0)
Bit meaning: 0 = relay is not energized, 1 = relay is energized
Table 5-12 User Event Flags
Bit
0
1
2
3
4
5
6
7
8-15
Description
Event flag #1
Event flag #2
Event flag #3
Event flag #4
Event flag #5
Event flag #6
Event flag #7
Event flag #8
Not used (permanently set to 0)
Bit meaning: 0 = OFF, 1 = ON
Table 5-13 Status Inputs
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12-15
Value range
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
Table 5-11 Relay Status
Bit
0
1
2
3
4
5
6-15
R/W
Description
Status input #1
Status input #2
Status input #3
Status input #4
Status input #5
Status input #6
Status input #7
Status input #8
Status input #9
Status input #10
Status input #11
Status input #12
Not used (permanently set to 0)
Bit meaning: 0 = contact open, 1 = contact closed
33
Table 5-14 Setpoints Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Description
Setpoint # 1 status
Setpoint # 2 status
Setpoint # 3 status
Setpoint # 4 status
Setpoint # 5 status
Setpoint # 6 status
Setpoint # 7 status
Setpoint # 8 status
Setpoint # 9 status
Setpoint # 10 status
Setpoint # 11 status
Setpoint # 12 status
Setpoint # 13 status
Setpoint # 14 status
Setpoint # 15 status
Setpoint # 16 status
Bit meaning: 0 = setpoint is released, 1 = setpoint is operated
Table 5-15 Log Status
Bit
0
1
2
3
4
5
6-15
Description
Reserved
New Min/Max log
New Event log
New Data log (any)
New Waveform log #1
New Waveform log #2
Not used (permanently set to 0)
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log
record after the flag has been set)
Table 5-16 Data Log Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Description
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
New data log
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log
record after the flag has been set)
34
Table 5-17 Setpoint Alarm Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Description
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Bit meaning: 1 = setpoint has been operated
The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1. The
alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each
alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to
0.
Table 5-18 Self-check Alarm Status
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13-15
1
Description
Reserved
ROM error
RAM error
Watchdog timer reset
Sampling failure
Out of control trap
Reserved
Timing failure
Loss of power (power up)
External reset (warm restart)
Configuration corrupted
RTC time-synchronization required
Low battery 1
Reserved
Available starting with F/W Versions 2.26.2/2.36.2 and 2.27.2/2.37.2 or later.
The self-check alarm register indicates possible problems with the instrument hardware or setup configuration.
The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test
diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit
which is set when either configuration register is corrupted. In this event, the instrument will use the default
configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup
configuration since the instrument might implicitly change or clear other setups if they are affected by the changes
made.
Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status
bit and RTC synchronization bit are also reset automatically when you change setup or update RTC either via the
front panel or through communications.
35
5.9 Memory Allocation Status Registers
Table 5-19 Memory Allocation Status Registers
Parameter
Memory partitions map
Monthly profile log partition map
Daily profile log partition map
Total memory size, Byte
Free memory size, Byte
The total number of event log records
The total number of data log #1 records
The total number of data log #2 records
The total number of data log #3 records
The total number of data log #4 records
The total number of data log #5 records
The total number of data log #6 records
The total number of data log #7 records
The total number of data log #8 records
The total number of data log #9 records
The total number of data log #10 records
The total number of data log #11 records
The total number of data log #12 records
The total number of data log #13 records
The total number of data log #14 records
The total number of data log #15 records
The total number of data log #16 records
The number of logged records in the waveform log #1
The number of logged records in the waveform log #2
The number of new event log records
The number of new data log #1 records
The number of new data log #2 records
The number of new data log #3 records
The number of new data log #4 records
The number of new data log #5 records
The number of new data log #6 records
The number of new data log #7 records
The number of new data log #8 records
The number of new data log #9 records
The number of new data log #10 records
The number of new data log #11 records
The number of new data log #12 records
The number of new data log #13 records
The number of new data log #14 records
The number of new data log #15 records
The number of new data log #16 records
The number of new records in the waveform log #1
The number of new records in the waveform log #2
Register
3500-3501
3502-3503
3504-3505
3506-3507
3508-3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
Type
UINT32
UINT32
UINT32
UINT32
UINT32
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Range
See Table 5-20
See Table 5-20
See Table 5-20
1048576
0 - 1048576
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
0 - 65535
The total number of records shows all the records logged in the memory partition. The number of new records
indicates the number of records never read before.
Table 5-20 Memory Partitions Allocation Map
Memory Partition/Sub-partition
Event log
Data log #1
Data log #2
Data log #3
Data log #4
Data log #5
Data log #6
Data log #7
Data log #8
Data log #9
Data log #10
Data log #11
Data log #12
Data log #13
Data log #14
Bit
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
36
Memory Partition/Sub-partition
Data log #15
Data log #16
Waveform log #1
Waveform log #2
Reserved
TOU Monthly Profile Log. Energy Reg. #1
TOU Monthly Profile Log. Energy Reg. #2
TOU Monthly Profile Log. Energy Reg. #3
TOU Monthly Profile Log. Energy Reg. #4
TOU Monthly Profile Log. Energy Reg. #5
TOU Monthly Profile Log. Energy Reg. #6
TOU Monthly Profile Log. Energy Reg. #7
TOU Monthly Profile Log. Energy Reg. #8
TOU Monthly Profile Log. Energy Reg. #9
TOU Monthly Profile Log. Energy Reg. #10
TOU Monthly Profile Log. Energy Reg. #11
TOU Monthly Profile Log. Energy Reg. #12
TOU Monthly Profile Log. Energy Reg. #13
TOU Monthly Profile Log. Energy Reg. #14
TOU Monthly Profile Log. Energy Reg. #15
TOU Monthly Profile Log. Energy Reg. #16
TOU Monthly Profile Log. Max. Demand Reg. #1
TOU Monthly Profile Log. Max. Demand Reg. #2
TOU Monthly Profile Log. Max. Demand Reg. #3
Reserved
TOU Daily Profile Log. Energy Reg. #1
TOU Daily Profile Log. Energy Reg. #2
TOU Daily Profile Log. Energy Reg. #3
TOU Daily Profile Log. Energy Reg. #4
TOU Daily Profile Log. Energy Reg. #5
TOU Daily Profile Log. Energy Reg. #6
TOU Daily Profile Log. Energy Reg. #7
TOU Daily Profile Log. Energy Reg. #8
TOU Daily Profile Log. Energy Reg. #9
TOU Daily Profile Log. Energy Reg. #10
TOU Daily Profile Log. Energy Reg. #11
TOU Daily Profile Log. Energy Reg. #12
TOU Daily Profile Log. Energy Reg. #13
TOU Daily Profile Log. Energy Reg. #14
TOU Daily Profile Log. Energy Reg. #15
TOU Daily Profile Log. Energy Reg. #16
TOU Daily Profile Log. Max. Demand Reg. #1
TOU Daily Profile Log. Max. Demand Reg. #2
TOU Daily Profile Log. Max. Demand Reg. #3
Reserved
Bit
15
16
17
18
19-31
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19-31
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19-31
Bit meaning: 0 = a partition is not allocated, 1 = a partition is allocated
5.10 Memory Partition Status/Control Registers
Table 5-21 Partitions’ Status/Control Register Locations
Memory Partition
Event log
Data log #1
Data log #2
Data log #3
Data log #4
Data log #5
Data log #6
Data log #7
Data log #8
Data log #9
Data log #10
Data log #11
Data log #12
Data log #13
Data log #14
Data log #15
Registers
28160-28167
28168-28175
28176-28183
28184-28191
28192-28199
28200-28207
28208-28215
28216-28223
28224-28231
28232-28239
28240-28247
28248-28255
28256-28263
28264-28271
28272-28279
28280-28287
37
Memory Partition
Data log #16
Waveform log #1
Waveform log #2
Reserved
TOU Monthly Profile Log. Energy Reg. #1
TOU Monthly Profile Log. Energy Reg. #2
TOU Monthly Profile Log. Energy Reg. #3
TOU Monthly Profile Log. Energy Reg. #4
TOU Monthly Profile Log. Energy Reg. #5
TOU Monthly Profile Log. Energy Reg. #6
TOU Monthly Profile Log. Energy Reg. #7
TOU Monthly Profile Log. Energy Reg. #8
TOU Monthly Profile Log. Energy Reg. #9
TOU Monthly Profile Log. Energy Reg. #10
TOU Monthly Profile Log. Energy Reg. #11
TOU Monthly Profile Log. Energy Reg. #12
TOU Monthly Profile Log. Energy Reg. #13
TOU Monthly Profile Log. Energy Reg. #14
TOU Monthly Profile Log. Energy Reg. #15
TOU Monthly Profile Log. Energy Reg. #16
TOU Monthly Profile Log. Max. Demand Reg. #1
TOU Monthly Profile Log. Max. Demand Reg. #2
TOU Monthly Profile Log. Max. Demand Reg. #3
Reserved
TOU Daily Profile Log. Energy Reg. #1
TOU Daily Profile Log. Energy Reg. #2
TOU Daily Profile Log. Energy Reg. #3
TOU Daily Profile Log. Energy Reg. #4
TOU Daily Profile Log. Energy Reg. #5
TOU Daily Profile Log. Energy Reg. #6
TOU Daily Profile Log. Energy Reg. #7
TOU Daily Profile Log. Energy Reg. #8
TOU Daily Profile Log. Energy Reg. #9
TOU Daily Profile Log. Energy Reg. #10
TOU Daily Profile Log. Energy Reg. #11
TOU Daily Profile Log. Energy Reg. #12
TOU Daily Profile Log. Energy Reg. #13
TOU Daily Profile Log. Energy Reg. #14
TOU Daily Profile Log. Energy Reg. #15
TOU Daily Profile Log. Energy Reg. #16
TOU Daily Profile Log. Max. Demand Reg. #1
TOU Daily Profile Log. Max. Demand Reg. #2
TOU Daily Profile Log. Max. Demand Reg. #3
Reserved
Registers
28288-28295
28296-28303
28304-28311
28312-28415
28416-28423
28424-28431
28432-28439
28440-28447
28448-28455
28456-28463
28464-28471
28472-28479
28480-28487
28488-28495
28496-28503
28504-28511
28512-28519
28520-28527
28528-28535
28536-28543
28544-28551
28552-28559
28560-28567
28568-28671
28672-28679
28680-28687
28688-28695
28696-28703
28704-28711
28712-28719
28720-28727
28728-28735
28736-28743
28744-28751
28752-28759
28760-28767
28768-28775
28776-28783
28784-28791
28792-28799
28800-28807
28808-28815
28816-28823
28824-28927
If data log partition #15 is configured as a TOU monthly profile partition, registers 28280-28287 are mapped to
registers 28416-28423 for the first TOU monthly profile sub-partition allocated for TOU energy register #1, or for
the first following available TOU register if register #1 is not configured.
If data log partition #8 is configured as a TOU daily profile partition, registers 28288-28295 are mapped to
registers 28672-28679 for the first TOU daily profile sub-partition allocated for TOU energy register #1, or for the
first following available TOU register if register #1 is not configured.
Table 5-22 Log Partition’s Status/Control Window Registers
Parameter
Log partition status
Offset
+0
Type
UINT16
R/W
R
38
Range
Bit-mapped register:
bit 0 = 0 - non-wrap partition
= 1 - wrap-around partition
bit 4 = 1 - TOU monthly profile partition
bit 5 = 1 - TOU daily profile partition
bit 9 = 1 - reading after the end of file:
the read pointer has rolled over the end of a log
file, that is, the file is being re-read from the
beginning. This bit is cleared when the read
pointer [+6] points to a new record, or either
command register [+6] or [+7] is written.
Parameter
The total number of records
logged in the partition/subpartition
Offset
+1
Type
UINT16
R
R/W
The number of the new records
never read before
+2
UINT16
R
0 to 65535. Returns the number of records from the
first new one never read before and until the end of
the log file.
The next sequence number to be +3
used when the next log event will
take place
UINT16
R
0 to 65535 (increments modulo 65536 with each
log). Returns the sequence number that will be
applied to the next record being logged.
The sequence number of the first
(oldest) record in the log file
+4
UINT16
R
0 to 65535. Returns the sequence number of the
oldest record in the log file.
The sequence number of the first +5
new record never read before
UINT16
R
0 to 65535. Returns the sequence number of the first
new (most recent) record that has never been read.
If this number is equal to the contents of register
[+3], there are no newest records never read before.
The sequence number of the
current record to be read
+6
UINT16
R/W
Command register
+7
UINT16
R/W
1
Range
0 to 65535. Returns the total number of logged
records available in the partition.
0 to 65535. Points to the record that will be read via
the partition read window. Can be overwritten to
point to the desired record.
This is a write-only register. Write value:
0 = automatically restores the read sequence to the
beginning of the log file, that is puts the read
pointer to the first (oldest) record in the log file
(actually, safely copies the contents of the register
[+4] to the register [+6]).
1 = automatically sets the read sequence to the first
new record never read before, that is puts the read
pointer to the record following the last one
whenever read. If there are new records in the
partition, this actually copies the contents of the
register [+5] to the register [+6]. If there are no
new records, the register [+5] will point to the first
(oldest) record in the log file as if the command
register was written with zero.
Read as 0.
If there is no record in the log file that matches the written sequence number, the instrument will respond with
the exception code 03 (invalid data).
1
5.11 Analog Output Setup Registers
Table 5-23 Analog Output Allocation Registers
Channel
Channel #1
Channel #2
Registers (see Table 5-24)
3148-3150
3151-3153
Table 5-24 Analog Channel Allocation Registers
Parameter
Output parameter ID
Zero scale (0-4 mA)
Full scale (1/20 mA)
Offset
+0
+1
+2
Type
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
Range
See Table 5-27
See Table 5-27
See Table 5-27
1.
Except for the signed power factor (see Note 3 to Table 5-27), the output scale is linear within the value
range. The scale range will be inverted if the full scale specified is less than the zero scale.
2.
For bi-directional analog output (±1 mA), the zero scale corresponds to the center of the scale range (0
mA) and the direction of the current matches the sign of the output parameter. For signed (bi-directional)
values, such as powers and signed power factor, the scale is always symmetrical with regard to 0 mA,
and the full scale corresponds to +1 mA output for positive readings and to -1 mA output for negative
readings. For these, the zero scale (0 mA output) is permanently set in the instrument to zero for all
parameters except the signed power factor for which it is set to 1.000. In the write request, the zero
scale is ignored. No error will occur when you attempt to change it. Unsigned parameters are output
39
within the current range 0 to +1 mA and can be scaled using both zero and full scales as in the case of
single-ended analog output.
5.12 Analog Expander Setup Registers
Table 5-25 Analog Expander Channel Registers
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
Channel
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
Registers (see Table 5-26)
3196-3198
3199-3201
3202-3204
3205-3207
3208-3210
3211-3213
3214-3216
3217-3219
3220-3222
3223-3225
3226-3228
3229-3231
3232-3234
3235-3237
Table 5-26 Analog Channel Allocation Registers
Parameter
Output parameter ID
Zero scale (0-4 mA)
Full scale (20 mA)
Offset
+0
+1
+2
Type
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
Range
See Table 5-27
See Table 5-27
See Table 5-27
Except for the signed power factor (see Note 3 to Table 5-27), the output scale is linear within the value range.
The scale range will be inverted if the full scale specified is less than the zero scale.
NOTE
Analog expander outputs settings will not be in effect until the analog expander output is globally enabled. To
activate the analog expander output, set the analog expander option to the enabled state in the user selectable
options setup (see Section 5.3).
Table 5-27 Analog Output Parameters
Output parameter
None
None
Real-time values per phase
Voltage L1/L12 5
Voltage L2/L23 5
Voltage L3/L31 5
Current L1
Current L2
Current L3
Voltage THD L1/L12
Voltage THD L2/L23
Voltage THD L3
Current THD L1
Current THD L2
Current THD L3
K-Factor L1
K-Factor L2
K-Factor L3
Current TDD L1
Current TDD L2
Current TDD L3
Voltage L12
Voltage L23
Voltage L31
Real-time total values
Total kW
Point
ID
Type
0x0000
UINT16
0x0C00
0x0C01
0x0C02
0x0C03
0x0C04
0x0C05
0x0C12
0x0C13
0x0C14
0x0C15
0x0C16
0x0C17
0x0C18
0x0C19
0x0C1A
0x0C1B
0x0C1C
0x0C1D
0x0C1E
0x0C1F
0x0C20
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
0x0F00
UINT16
Unit
2
Scale 1
Low
High
Conversion
N/A
N/A
NONE
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.1%
0.1%
0.1%
0.1%
0.1%
0.1%
0.1
0.1
0.1
0.1%
0.1%
0.1%
0.1V/1V
0.1V/1V
0.1V/1V
0
0
0
0
0
0
0
0
0
0
0
0
1.0
1.0
1.0
0
0
0
0
0
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
999.9
999.9
999.9
999.9
999.9
999.9
999.9
999.9
999.9
100.0
100.0
100.0
Vmax
Vmax
Vmax
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
0.001kW/1kW
-Pmax
Pmax
LIN3
40
Output parameter
Total kvar
Total kVA
Total PF 4
Total PF Lag
Total PF Lead
Real-time auxiliary values
Auxiliary current
Neutral current
Frequency 3
DC voltage
Average values per phase
Voltage L1/L12 5
Voltage L2/L23 5
Voltage L3/L31 5
Current L1
Current L2
Current L3
Voltage L12
Voltage L23
Voltage L31
Average total values
Total kW
Total kvar
Total kVA
Total PF 4
Total PF Lag
Total PF Lead
3-phase average voltage 5
3-phase average L-L voltage
3-phase average current
Average auxiliary values
Auxiliary current
Neutral current
Frequency 3
Present demands
Accumulated kW import demand
Accumulated kvar import demand
Accumulated kVA demand
Accumulated kW export demand
Accumulated kvar export demand
1
2
3
4
5
Point
ID
0x0F01
0x0F02
0x0F03
0x0F04
0x0F05
Type
Unit
2
Scale 1
UINT16
UINT16
UINT16
UINT16
UINT16
Low
0.001kvar/1kvar -Pmax
0.001kVA/1kVA 0
0.001
-1.000
0.001
0
0.001
0
High
Pmax
Pmax
1.000
1.000
1.000
Conversion
LIN3
LIN3
LIN3
LIN3
LIN3
0x1000
0x1001
0x1002
0x1005
UINT16
UINT16
UINT16
UINT16
0.01A/mA
0.01A
0.01Hz
0.01V
0
0
0
0
Imax aux
Imax
100.00
9999.00
LIN3
LIN3
LIN3
LIN3
0x1100
0x1101
0x1102
0x1103
0x1104
0x1105
0x111E
0x111F
0x1120
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
0.1V/1V
0.1V/1V
0.1V/1V
0.01A
0.01A
0.01A
0.1V/1V
0.1V/1V
0.1V/1V
0
0
0
0
0
0
0
0
0
Vmax
Vmax
Vmax
Imax
Imax
Imax
Vmax
Vmax
Vmax
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
0x1400
0x1401
0x1402
0x1403
0x1404
0x1405
0x140A
0x140B
0x140C
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001
0.001
0.001
0.1V/1V
0.1V/1V
0.01A
-Pmax
-Pmax
0
-1.000
0
0
0
0
0
Pmax
Pmax
Pmax
1.000
1.000
1.000
Vmax
Vmax
Imax
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
0x1500
0x1501
0x1502
UINT16
UINT16
UINT16
0.01A/mA
0.01A
0.01Hz
0
0
0
Imax aux
Imax
100.00
LIN3
LIN3
LIN3
0x160F
0x1610
0x1611
0x161A
0x161B
UINT16
UINT16
UINT16
UINT16
UINT16
0.001kW/1kW
0.001kvar/1kvar
0.001kVA/1kVA
0.001kW/1kW
0.001kvar/1kvar
0
0
0
0
0
Pmax
Pmax
Pmax
Pmax
Pmax
LIN3
LIN3
LIN3
LIN3
LIN3
For parameter limits, see Note 1 to Table 5-1.
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
The actual frequency range is 45.00 to 65.00 Hz.
The output scale for signed (bi-directional) power factor is symmetrical with regard to ±1.000 and is linear from
-0 to -1.000, and from 1.000 to +0 (note that -1.000 ≡ +1.000). Negative power factor is output as [-1.000
minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To define
the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because of the fact that
negative zero may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both +0.001
and 0.000 are used to specify the scale of +0. To define the range of -0 to 0, you must send -0.001/0.001 or
-0.001/0.
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
5.13 Digital Inputs Allocation Registers
Table 5-28 Digital Inputs Allocation Registers
Parameter
Status inputs allocation mask
Pulse inputs allocation mask
Not used
Register
3292
3293
3294
41
Type
UINT16
UINT16
UINT16
R/W
R1
R/W
R1
Range
See Table 5-29
See Table 5-29
Read as 0
External demand synchronization input mask
Time synchronization input mask
1
3295
3296
UINT16
UINT16
R/W
R/W
See Table 5-29
See Table 5-29
Writing to these locations is ignored. No error will occur.
NOTES
1.
All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs.
2.
A digital input allocated for the external demand synchronization pulse or time synchronization pulse will
be automatically configured as a pulse input.
Table 5-29 Digital Inputs Allocation Mask
Bit number
0
1
2
3
4
5
6
7
8
9
10
11
12-15
Description
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Not used
1 allocation status
2 allocation status
3 allocation status
4 allocation status
5 allocation status
6 allocation status
7 allocation status
8 allocation status
9 allocation status
10 allocation status
11 allocation status
12 allocation status
Bit meaning: 0 = input is not allocated, 1 = input is allocated to the group
5.14 Timers Setup Registers
Table 5-30 Timers Setup Registers
Parameter
Timer #1 time
Timer #2 time
Timer #3 time
Timer #4 time
interval
interval
interval
interval
Register
3300
3301
3302
3303
Type
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
Range
1-9999 sec,
1-9999 sec,
1-9999 sec,
1-9999 sec,
0
0
0
0
=
=
=
=
timer
timer
timer
timer
disabled
disabled
disabled
disabled
5.15 Alarm/Event Setpoints Registers
Table 5-31 Setpoint Registers
Setpoint
Setpoint #1
Setpoint #2
Setpoint #3
Setpoint #4
Setpoint #5
Setpoint #6
Setpoint #7
Setpoint #8
Setpoint #9
Setpoint #10
Setpoint #11
Setpoint #12
Setpoint #13
Setpoint #14
Setpoint #15
Setpoint #16
Setup registers (see Table 5-32)
352-395
396-439
440-483
484-527
528-571
572-615
616-659
660-703
704-747
748-791
792-835
836-879
880-923
924-967
968-1011
1012-1055
Table 5-32 Setpoint Setup Registers
Condition #1
Parameter
Logical operator
Trigger ID
Relational operator
Reserved
Offset
+0
+1
+2
+3
Type
UINT16
UINT16
UINT16
UINT16
42
Range
0 = OR
See Table 5-2
See Table 5-33
0 (N/A)
Condition #2
Condition #3
Condition #4
Action #1
Action #2
Action #3
Action #4
Delays
Parameter
Operate limit
Release limit
Logical operator
Trigger ID
Relational operator
Reserved
Operate limit
Release limit
Logical operator
Trigger ID
Relational operator
Reserved
Operate limit
Release limit
Logical operator
Trigger ID
Relational operator
Reserved
Operate limit
Release limit
Action type
Action target
Action type
Action target
Action type
Action target
Action type
Action target
Reserved
Operate delay
Release delay
Reserved
Offset
+4, +5
+6, +7
+8
+9
+10
+11
+12, +13
+14, +15
+16
+17
+18
+19
+20, +21
+22, +23
+24
+25
+26
+27
+28, +29
+30, +31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
Type
UINT32
UINT32
UINT16
UINT16
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT16
UINT16
UINT32
UINT32
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
Range
See Table 5-2
See Table 5-2
0 = OR, 1 = AND
See Table 5-2
See Table 5-33
0 (N/A)
See Table 5-2
See Table 5-2
0 = OR, 1 = AND
See Table 5-2
See Table 5-33
0 (N/A)
See Table 5-2
See Table 5-2
0 = OR, 1 = AND
See Table 5-2
See Table 5-33
0 (N/A)
See Table 5-2
See Table 5-2
see Table 5-34
see Table 5-34
see Table 5-34
see Table 5-34
see Table 5-34
see Table 5-34
see Table 5-34
see Table 5-34
0 (N/A)
0-9999 (x 0.1 sec)
0-9999 (x 0.1 sec)
0 (N/A)
1. The setpoint is disabled when the first trigger parameter ID is set to NONE. To disable the setpoint, write
zero into this register.
2. When writing the setpoint registers (except the event when the setpoint is to be disabled), it is
recommended to write all the setpoint registers using a single request, or to disable the setpoint before
writing into separate registers. Each written value is checked for compatibility with the other setpoint
parameters; if the new value does not conform to these, the request will be rejected.
3. Operate and release limits for trigger parameters, their ranges and measurement units are indicated in
Table 5-2. Two contiguous registers are allocated in the setup for each setpoint limit. All limits, except for
counters and packed date and time, are read/written as 16-bit integer values through the first (low order)
register. The second (high order) register is always read as zero. When written, its value is ignored.
Whenever it is indicated for the trigger, a LIN3 conversion is used to accommodate large-scale and
fractional numbers to a 16-bit register format. Counters and packed date and time are read/written as
32-bit unsigned long integers in two registers.
4. Limits for binary triggers (B) and new value triggers (N) are read as zeros. When writing, they can be
omitted or should be written as zeros. Release limits for special inputs (voltage disturbance and phase
rotation) and for date/time parameters are not used. Write them as zeros.
5. When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re-allocate it
for a setpoint will result in a negative response.
Table 5-33 Relational Operators
Relational operator
0 = NONE
1 = GREATER OR
EQUAL
2 = LESS OR EQUAL
3 = EQUAL
4 = NOT EQUAL
5 = ON
6 = OFF
7 = NEW
Operate condition
Release condition
Setpoint limits
N/A
Over operate limit
N/A
Under release limit
Not used
Both limits active
Used with
triggers of type
A, B, N
A
Under operate limit
Equal
Not equal
Binary status ON
Binary status OFF
New Min/Max value
Over release limit
Not equal
Equal
Binary status OFF
Binary status ON
N/A
Both limits active
Release limit not used
Release limit not used
Not used
Not used
Not used
A
A
A
B
B
N
A = analog (numeric) trigger, B = binary (digital) trigger, N = new value trigger.
43
Table 5-34 Setpoint Actions
Action type
Description
No action
Set user event flag
Reset user event flag
Operate relay
Increment counter
Decrement counter
Clear counter
Reset total energy registers
Reset total maximum demand
registers
ID
0x00
0x20
0x21
0x30
0x40
0x41
0x42
0x60
0x61
Action target
N/A
Flag number
Flag number
Relay number
Counter number
Counter number
Counter number
N/A
N/A
Reset TOU energy
Reset TOU demands
Clear all counters
Clear Min/Max registers
Event logging
0x62
0x63
0x64
0x65
0x70
N/A
N/A
N/A
N/A
Setpoint transition mode
Data logging
Waveform log #1
Waveform log #2
0x71
0x72
0x73
Data log number
N/A
N/A
Description
ID
0
0-7 = flags #1-#8
0-7 = flags #1-#8
0-5 = relays #1-#6
0-15 = counter #1-#16
0-15 = counter #1-#16
0-15 = counter #1-#16
0
0 = reset all maximum demands
1 = reset power maximum demands
2 = reset volt/ampere maximum
demands
0
0
0
0
0 = log on operate setpoint
1 = log on release setpoint
2 = log on either transition (both operate
and release)
0-15 = data log #1-#16
0
0
5.16 Pulsing Setpoints Registers
Table 5-35 Pulsing Registers
Relay
Relay
Relay
Relay
Relay
Relay
Relay
#1
#2
#3
#4
#5
#6
Setup registers (see Table 5-36)
2892-2893
2894-2895
2896-2895
2898-2899
2900-2901
2902-2903
Table 5-36 Pulsing Setup Registers
Parameter
Output parameter ID
Number of unit-hours per pulse
Offset
+0
+1
Type
UINT16
UINT16
R/W
R/W
R/W
Range
see Table 5-37
1-9999
Table 5-37 Pulsing Output Parameters
Pulsing parameter ID
None
kWh import
kWh export
kWh total (absolute)
kvarh import
kvarh export
kvarh total (absolute)
kVAh total
Start power demand interval
Start tariff interval
Identifier
0
1
2
3
4
5
6
7
8
9
5.17 Relay Operation Control Registers
These registers allow the user to manually override setpoint relay operations. Either relay may be
manually operated or released using commands sent via communications.
NOTES
1.
2.
A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated
for pulsing, it automatically reverts to normal operation.
A relay is energized when manually operated, and is de-energized when manually released.
44
Table 5-38 Relay Operation Control Registers
Relay
Relay
Relay
Relay
Relay
Relay
#1
#2
#2
#2
#2
#2
Parameter
control status
control status
control status
control status
control status
control status
Register
3244
3245
3246
3247
3248
3249
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
R/W
R/W
see
see
see
see
see
see
Range
Table 5-39
Table 5-39
Table 5-39
Table 5-39
Table 5-39
Table 5-39
Table 5-39 Relay Operation Status
Operation status
Normal operation
Force operate
Force release
Value
0
1
2
5.18 Pulse Counters Setup Registers
Table 5-40 Pulse Counters Registers
Counter
Counter #1
Counter #2
Counter #3
Counter #4
Counter #5
Counter #6
Counter #7
Counter #8
Counter #9
Counter #10
Counter #11
Counter #12
Counter #13
Counter #14
Counter #15
Counter #16
Setup registers (see Table 5-41)
2940-2941
2942-2943
2944-2945
2946-2947
2948-2949
2950-2951
2952-2953
2954-2955
2956-2957
2958-2959
2960-2961
2962-2963
2964-2965
2966-2967
2968-2969
2970-2977
Table 5-41 Pulse Counter Setup Registers
Parameter
Associated digital input ID
Scale factor (number of units per
input pulse)
Offset
+0
+1
Type
UINT16
UINT16
R/W
R/W
R/W
Table 5-42 Digital Inputs Identifiers
Input ID
0
1
2
3
4
5
6
7
8
9
10
11
12
Description
Not allocated
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
Digital input #
1
2
3
4
5
6
7
8
9
10
11
12
45
Range
Se Table 5-42
1-9999
5.19 User Event Flags Registers
Table 5-43 User Event Flags Registers
Event
Event
Event
Event
Event
Event
Event
Event
flag
flag
flag
flag
flag
flag
flag
flag
Parameter
#1
#2
#3
#4
#5
#6
#7
#8
Register
2916
2917
2918
2919
2920
2921
2922
2923
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
Range
W
W
W
W
W
W
W
W
0-1
0-1
0-1
0-1
0-1
0-1
0-1
0-1
Through these registers, event flags can be only written. To read event flags all together, use register 6776 (Table
5-2) or 3453 (Table 5-10).
5.20 Programmable Min/Max Log Setup Registers
Table 5-44 Programmable MIn/Max Log Setup Registers
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
Parameter
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
Min/Max log register
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Register
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
Range
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
These registers allow you to associate any of the 16 programmable Min/Max log registers with either harmonic
parameter listed in Table 5-2.
5.21 Log Memory Partitions Setup Registers
Table 5-45 Memory Partitions Setup Registers
Partition
Number
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Memory partition
Event log
Data log #1
Data log #2
Data log #3
Data log #4
Data log #5
Data log #6
Data log #7
Data log #8
Data log #9
Data log #10
Data log #11
Data log #12
Data log #13
Data log #14
Data log #15 (can be configured as a TOU monthly profile log partition)
Data log #16 (can be configured as a TOU daily profile log partition)
Waveform log #1
Waveform log #2
46
Setup registers
(see Table 5-46)
3660-3665
3668-3673
3676-3681
3684-3689
3692-3697
3700-3705
3708-3713
3716-3721
3724-3729
3732-3737
3740-3745
3748-3753
3756-3761
3764-3769
3772-3777
3780-3785
3788-3793
3796-3801
3804-3809
Table 5-46 Partition Setup Registers
Parameter
The number of records in the partition
Offset
+0
Type
UINT16
R/W
R/W
The number of log parameters in the
record for a data log partition (for an
event log partition, write 0)
Partition type
+1
UINT16
R/W
+2
UINT16
R/W
Record size, byte
Partition size, byte
+3
+4
+5
UINT16
UINT32
R
R
Range
0-65535,
0 = delete partition
0-16
0 = non-wrap
1 = wrap around
16 = TOU monthly profile log
(partition #15 only)
32 = TOU daily profile log
(partition #16 only)
0-1048576
These registers allow you to allocate a memory partition for logging and to specify the partition size and type.
Before allocating a partition, it is recommended to check the available memory by reading the extended memory
status registers. To help you in planning memory, Table 5-47 shows the record size for each partition.
Note that the existing partition may not be resized. To change the partition properties, you should first delete a
partition and then reallocate it with the desirable properties. To delete a partition, write zero into the first partition's
register.
Data log partitions #15 and #16 can be configured as TOU monthly and daily profile log partitions respectively.
Both will be set as wrap-around partitions. Before you configure the partition as a profile partition, you should set
up your TOU registers, daily profiles and calendars. The memory for a profile log will be allocated automatically in
accordance with the number of TOU registers you defined in the TOU setup. For each TOU energy and maximum
demand register, a separate log sub-partition will be allocated within a parent log partition. Each of these can be
accessed and read individually (see Section 5.26). The number of log parameters in the record should specify the
maximum number of active season tariffs. The file record size will be set in accordance with this number. If you
specified it as less than the actual number of tariffs that may be in effect within a tariff season, then only part of
the tariff registers will be recorded to the profile.
When allocating a memory partition, all partition registers must be written at once using a single request. After
reallocation of memory, the instrument performs the memory optimization and will not respond to the host
requests for approximately 1 second per 128 Kbytes of memory.
Writing into registers at offsets +3, +4 and +5 does not affect the register contents. No error will occur.
Table 5-47 Partitions' Record Size
Partition
Event log
Data log
Record size, byte
14
8 + 4 ∗ (NUMBER OF PARAMETERS)
5.22 Data Log Setup Registers
Table 5-48 Data Log Setup Registers
Partition
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
log
log
log
log
log
log
log
log
log
log
log
log
log
log
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
Registers (see Table 5-49)
1792-1807
1808-1823
1824-1839
1840-1855
1856-1871
1872-1887
1888-1903
1904-1919
1920-1935
1936-1951
1952-1967
1968-1983
1984-1999
2000-2015
47
Data log #15
Data log #16
2016-2031
2032-2047
Table 5-49 Data Log Setup
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
Parameter
#1 ID
#2 ID
#3 ID
#4 ID
#5 ID
#6 ID
#7 ID
#8 ID
#9 ID
#10 ID
#11 ID
#12 ID
#13 ID
#14 ID
#15 ID
#16 ID
Offset
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
see
see
see
see
see
see
see
see
see
see
see
see
see
see
see
see
Range
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
Table 5-2
1. Parameters that can be selected for data log are listed in Table 5-2. Before setting up the parameters for any
data log, the memory partition must be allocated for the log (see Section 5.21). When writing the data log setup
registers, only parameters that are specified in the partition record setup will be written. When reading
registers, those that are not defined in the data log setup will be read as zeros.
2. If a partition has been allocated as a TOU profile log partition, the data log setup for the partition cannot be
written. Write requests will be ignored. A read request will return identifiers of the TOU season tariff energy
registers 28672 to 28687.
5.23 Event Log Registers (Sequential Access)
These registers allow you to read the packet of consequent records from the event log partition. From 1 to 10
event log records can be read at a time via the event log windows, which comprise registers 3916 through 4035.
Reading from either event log window always returns the next logged event. All registers within one window must
be read at once using a single request. After reading each record, the partition queue pointer is shifted forward
until the last logged record has been read. After that, the exception code 98 is returned in the window register at
offset +0. It should be checked before accepting the record. To restore the queue to the origin, a zero must be
written to the event log queue reset register (see Section 5.6).
Table 5-50 Event Log Windows Registers
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
log
log
log
log
log
log
log
log
log
log
Event log window
window #1
window #2
window #3
window #4
window #5
window #6
window #7
window #8
window #9
window #10
Registers (see Table 5-51)
3916-3927
3928-3939
3940-3951
3952-3963
3964-3975
3976-3987
3988-3999
4000-4011
4012-4023
4024-4035
Table 5-51 Event Log Window Registers
Second
Parameter
Offset
+0
Type
UINT16
Minute
Hour
Day
Month
Year
Event cause
+1
+2
+3
+4
+5
+6
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
48
R/W
Range
R
0-59,
97 = record corrupted
98 = no more events
99 = no events logged
R
0-59
R
0-23
R
1-31
R
1-12
R
0-99
R
see Table 5-52
Event origin
Log value (16-bit register/32-bit counter)
Event effect
Event target
1
1
+7
+8, +9
+10
+11
UINT16
UINT32
UINT16
UINT16
R
R
R
R
see
see
see
see
Table
Table
Table
Table
5-52
5-52
5-52
5-52
The log value can be read in one or two registers depending on the value type. For the value length and
conversion scales, refer to Table 5-2.
Table 5-52 Event Log Parameters
Event cause
Event cause code
Setpoint event
Trigger parameter
ID high byte (see
Table 5-2)
Setpoint activity
90
Comm. activity
91
Front panel
activity
Self-check
92
93
Self-update
94
Hardware failure 98
External event
99
Event origin
Log value
(location)
Trigger parameter ID
Trigger
low byte (see Table 5-2) parameter
value (see Table
5-2)
Setpoint number = 00
15
Data location code (see
Table 5-56)
Data location code (see
Table 5-56)
Data location code (see
Table 5-56)
8 = RTC
Diagnostic code
(see Table 5-57)
0 = power down
8 = power up
Event effect
Event target
Setpoint
number = 0-15
0
225 = setpoint
operated
226 = setpoint
released
Setpoint action type
(see
Table 5-34
See Table 5-58
0
See Table 5-58
See Table 5-58
0
See Table 5-58
See Table 5-58
0
0
245 = RTC set
0
0
0
0
0
0
See Table 5-34
See Table 5-58
5.24 Event Log Registers (Circular Access)
These registers allow you to circularly read a packet of consequent records from the event log file. From 1 to 12
event log records can be read at a time via the event log windows, which comprise registers 29440 through
29559. Reading from either register window always returns the next logged event record. All registers within one
window must be read at once using a single request. After reading an event log window, the partition queue
pointer is shifted forward until the end of the log file. After the last record has been read, the file pointer is
automatically restored to the beginning of the log file so that the next read request will return the first (oldest)
event. To point to an arbitrary record, use the log partition status/control registers (see Section 5.10).
Table 5-53 Event Log Windows Locations
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
Event
log
log
log
log
log
log
log
log
log
log
log
log
Event log window
window #1
window #2
window #3
window #4
window #5
window #6
window #7
window #8
window #9
window #10
window #11
window #12
Registers (see Table 5-54)
29440-29449
29450-29459
29460-29469
29470-29479
29480-29489
29490-29499
29500-29509
29510-29519
29520-29529
29530-29539
29540-29549
29550-29559
49
Table 5-54 Event Log Window Registers
Parameter
Record status
Record sequence number
1
Timestamp 1
Fractional seconds portion of
timestamp (milliseconds)
Event cause
Log value (32-bit register) 2
Event effect
Reserved
1
2
Offset
+0
Type
UINT16
R
R/W
Range
Bit-mapped register:
bit 0 = 1 - the end record is being read (the end
of a log file reached)
bit 1 = 1 - reading after the end of file: the
read pointer has rolled over the end of a log
file, i.e., the file is being re-read from the
beginning. This bit is cleared when a new
record is being read, or the read sequence has
changed by overwriting the partition pointer.
bit 8 = 1 - no records logged in the partition
bit 9 = 1 - the record is corrupted
bit 15 = 1 - read error (detailed by bits 8-9)
+1
UINT16
R
+2, +3
+4
UINT32
UINT16
R
R
0 to 65535 (increments modulo 65536 with each
log)
Local time (UNIX-style)
0-990 (at 10 ms resolution)
+5
+6, +7
+8
+9
UINT16
INT32
UINT16
UINT16
R
R
R
R
see Table 5-54
see Table 5-54
see Table 5-54
0
Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since
midnight (00:00:00), January 1, 1970. The time is valid after January 1, 2000.
For the log value size and range, refer to Table 5-2.
NOTES:
1. If a requested record is corrupted (the redundant check fails), the record is reported with all zeros (except the
sequence number) and the bits 9 and 15 in the status indication word being set to 1.
2. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the
status indication word being set to 1.
Table 5-55 Event Log Parameters
Event cause
Event cause code
High byte:
Low byte:
cause code
event origin (location)
Setpoint event Trigger parameter
Trigger parameter ID low
ID high byte (see
byte (see Table 5-2)
Table 5-2)
Setpoint
activity
90
Setpoint number = 0-15
Comm.
activity
Front panel
activity
Self-check
91
Data location code (see
Table 5-56)
Data location code (see
Table 5-56)
Data location code (see
Table 5-56)
8 = RTC
Diagnostic code
(see Table 5-57)
0 = power down
8 = power up
92
93
Self-update
94
Hardware
98
failure
External event 99
Table 5-56 Data Location Codes
Location code
0-2
3
4
5
6
7
8
Description
Reserved
Data keeping memory
Factory setup
Access setup
Basic setup
Communications setup
Real-time clock
50
Log value
0
Event effect
High byte:
Low byte:
effect code
target code
225 = setpoint
Setpoint
operated
number = 0-15
226 = setpoint
released
Setpoint action type See Table 5-34
(see
Table 5-34
See Table 5-58
See Table 5-58
0
See Table 5-58
See Table 5-58
0
See Table 5-58
See Table 5-58
0
0
245 = RTC set
0
0
0
0
0
0
Trigger
parameter
value (see
Table 5-2)
0
Location code
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Description
Discrete inputs allocation
Pulse counters allocation
Multiplexed analog outputs setup
External analog outputs setup
Reserved
Timers setup
Display options
Event/alarm setpoints
Pulsing setpoints
User assignable register map
Programmable Min/Max log setup
Data log setup
Memory partitions setup
TOU energy registers setup
TOU demand registers setup
TOU daily profiles
TOU calendar
TOU calendar years
Relay control registers
User selectable options
Reserved
Reserved
DNP 3.0 class 0 map
DNP 3.0 options setup
DNP 3.0 events setup
DNP 3.0 event setpoints
Calibration registers
Time zone information
Table 5-57 Diagnostic Codes
Diagnostic code
0
1
2
3
4
5
6
7
8
Description
Power down
ROM error
RAM error
Watch dog timer reset
Sampling failure
Out of control trap
Reserved
Timing failure
Power up
Table 5-58 Event Effect Codes
96
97
Effect code
Description
Clear energy registers
Clear demand registers
98
99
100
Clear TOU energy registers
Clear TOU demand registers
Clear counters
101
102
103
Clear Min/Max log registers
Clear event log
Clear data log
104
105
225
226
241
242
243
244
245
Clear waveform log #1
Clear waveform log #2
Setpoint operated
Setpoint released
Setpoint disabled
Setup cleared
Setup set by default
Setup changed
RTC set
Target
0
0 = all demands
1 = power demands
2 = volt/ampere demands
0
0
0 = clear all counters
1-16 = counter #1-#16
0
0
0-15 = log #1-#16
16 = clear all data logs
0
0
0-15 = setpoint #1-#16
0-15 = setpoint #1-#16
0-15 = setpoint #1-#16
0
0
0
0
51
5.25 Data Log Registers (Sequential Access)
Data log records are read via a data log window, one for each data log partition. Reading from this window always
returns the next record logged in the partition. All registers within one window must be read at once using a single
request. After reading each record, the partition queue pointer is shifted forward until the last logged record has
been read. After that, the exception code 98 is returned in the record's first register. It should be checked before
accepting the record. To restore the queue to the origin, a zero must be written to the partition queue reset
register (see Section 5.6).
NOTE. The PM296/RPM096 offers you another mechanism to access data logs, allowing you to read records in a
circular manner without a need to manipulate the file pointer. In this event, the file pointer is automatically restored
to the file origin after the last file record has been read (see Section 5.26).
Table 5-59 Data Logs Window Registers
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
log
log
log
log
log
log
log
log
log
log
log
log
log
log
log
log
Data log window
#1 window
#2 window
#3 window
#4 window
#5 window
#6 window
#7 window
#8 window
#9 window
#10 window
#11 window
#12 window
#13 window
#14 window
#15 window
#16 window
Registers (see Table 5-60)
1120-1161
1162-1203
1204-1245
1246-1287
1288-1329
1330-1371
1372-1413
1414-1455
1456-1497
1498-1539
1540-1581
1582-1623
1624-1665
1666-1707
1708-1749
1750-1791
Table 5-60 Data Log Window Registers
Parameter
Trigger setpoint number
Offset
+0
Type
UINT16
R/W
R
Hundredths of second
Second
Minute
Hour
Day
Month
Year
Reserved
The number of parameters in
the record
Log parameter #1 value 1
+1
+2
+3
+4
+5
+6
+7
+8
+10
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R
R
R
R
R
R
R
R
R
Range
1-16,
97 = record corrupted
98 = no more records
99 = no records logged
0-99
0-59
0-59
0-23
1-31
1-12
0-99
0
1-16
+11
+12
+13
+14
UINT32
R
see Table 5-2
UINT32
R
see Table 5-2
+40
+41
UINT32
R
see Table 5-2
Log parameter #2 value
1
...
Log parameter #16 value
1
1
The log parameter value is read as a 16-bit register or a 32-bit counter. For the value range and conversion
scales, refer to Table 5-2.
When reading the data log window registers, those that reside outside of the specified partition record size will be
read as zeros. The actual number of parameters in the record is indicated in the log window register at offset +10.
5.26 Data Log Registers (Circular Access)
These registers allow you to circularly read consequent records from the event log file. Each data log file is
accessed via a separate register window. Reading from either register window always returns the next logged
record from the corresponding data log. All registers within one window must be read at once using a single
52
request. After reading a log window, the partition queue pointer is shifted forward until the end of the log file. After
the last record has been read, the file pointer is automatically restored to the beginning of the log file so that the
next read request will return the first (oldest) record. To point to an arbitrary record, use the data log partition
status/control registers (see Section 5.9).
Table 5-61 Data Log Window Locations
Data log number
Data log #1
Data log #2
Data log #3
Data log #4
Data log #5
Data log #6
Data log #7
Data log #8
Data log #9
Data log #10
Data log #11
Data log #12
Data log #13
Data log #14
Data log #15
Data log #16
TOU Monthly Profile Log. Energy Reg. #1
TOU Monthly Profile Log. Energy Reg. #2
TOU Monthly Profile Log. Energy Reg. #3
TOU Monthly Profile Log. Energy Reg. #4
TOU Monthly Profile Log. Energy Reg. #5
TOU Monthly Profile Log. Energy Reg. #6
TOU Monthly Profile Log. Energy Reg. #7
TOU Monthly Profile Log. Energy Reg. #8
TOU Monthly Profile Log. Energy Reg. #9
TOU Monthly Profile Log. Energy Reg. #10
TOU Monthly Profile Log. Energy Reg. #11
TOU Monthly Profile Log. Energy Reg. #12
TOU Monthly Profile Log. Energy Reg. #13
TOU Monthly Profile Log. Energy Reg. #14
TOU Monthly Profile Log. Energy Reg. #15
TOU Monthly Profile Log. Energy Reg. #16
TOU Monthly Profile Log. Max. Demand Reg. #1
TOU Monthly Profile Log. Max. Demand Reg. #2
TOU Monthly Profile Log. Max. Demand Reg. #3
Reserved
TOU Daily Profile Log. Energy Reg. #1
TOU Daily Profile Log. Energy Reg. #2
TOU Daily Profile Log. Energy Reg. #3
TOU Daily Profile Log. Energy Reg. #4
TOU Daily Profile Log. Energy Reg. #5
TOU Daily Profile Log. Energy Reg. #6
TOU Daily Profile Log. Energy Reg. #7
TOU Daily Profile Log. Energy Reg. #8
TOU Daily Profile Log. Energy Reg. #9
TOU Daily Profile Log. Energy Reg. #10
TOU Daily Profile Log. Energy Reg. #11
TOU Daily Profile Log. Energy Reg. #12
TOU Daily Profile Log. Energy Reg. #13
TOU Daily Profile Log. Energy Reg. #14
TOU Daily Profile Log. Energy Reg. #15
TOU Daily Profile Log. Energy Reg. #16
TOU Daily Profile Log. Max. Demand Reg. #1
TOU Daily Profile Log. Max. Demand Reg. #2
TOU Daily Profile Log. Max. Demand Reg. #3
Reserved
Registers (see Table 5-62)
29696-29735
29736-29775
29776-29815
29816-29855
29856-29895
29896-29935
29936-29975
29976-30015
30016-30055
30056-30095
30096-30135
30136-30175
30176-30215
30216-30255
30256-30295
30296-30335
30336-30375
30376-30415
30416-30455
30456-30495
30496-30535
30536-30575
30576-30615
30616-30655
30656-30695
30696-30735
30736-30775
30776-30815
30816-30855
30856-30895
30896-30935
30936-30975
30976-31015
31016-31055
31056-31095
31096-31615
31616-31655
31656-31695
31696-31735
31736-31775
31776-31815
31816-31855
31856-31895
31896-31935
31936-31975
31976-32015
32016-32055
32056-32095
32096-32135
32136-32175
32176-32215
32216-32255
32256-32295
32296-32335
32336-32375
32376-32895
If data log partition #15 is configured as a TOU monthly profile partition, registers 30256-30295 are mapped to
registers 30336-30375 for the first TOU monthly profile sub-partition allocated for TOU energy register #1, or if this
register is not configured, for the following first available TOU register.
53
If data log partition #16 is configured as a TOU daily profile partition, registers 30296-30335 are mapped to
registers 31616-31655 for the first TOU daily profile sub-partition allocated for TOU energy register #1, or if this
register is not configured, for the following first available TOU register.
Table 5-62 Data Log Window Registers
Parameter
Record status
Offset
+0
Type
UINT16
R
+1
UINT16
R
0 to 65535 (increments modulo 65536 with each
log)
+2, +3
UINT32
R
Local time (UNIX-style)
Fractional seconds portion of
timestamp (milliseconds)
+4
UINT16
R
0-990 (at 10 ms resolution)
Event setpoint ID
Parameter #1 value 2
Parameter #2 value 2
Parameter #3 value 2
Parameter #4 value 2
Parameter #5 value 2
Parameter #6 value 2
Parameter #7 value 2
Parameter #8 value 2
Parameter #9 value 2
Parameter #10 value 2
Parameter #12 value 2
Parameter #13 value 2
Parameter #13 value 2
Parameter #14 value 2
Parameter #15 value 2
Parameter #16 value 2
Reserved
+5
+6, +7
+8, +9
+10, +11
+12, +13
+14, +15
+16, +17
+18, +19
+20, +21
+22, +23
+24, +25
+26, +27
+28, +29
+30, +31
+32, +33
+34, +35
+36, +37
+38, +39
UINT16
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0 = TOU profile log, 1 to 16
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
see Table 5-2
0
Record sequence number
Timestamp
1
1
R/W
Range
Bit-mapped register:
bit 0 = 1 - the end record is being read (the end
of a log file reached)
bit 1 = 1 - reading after the end of file: the
read pointer has rolled over the end of a log
file, i.e., the file is being re-read from the
beginning. This bit is cleared when a new
record is being read, or the read sequence has
changed by overwriting the partition pointer.
bit 8 = 1 - no records logged in the partition
bit 9 = 1 - the record is corrupted
bit 15 = 1 - read error (detailed by bits 8-9)
1
Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since
midnight (00:00:00), January 1, 1970. The time is valid after January 1, 2000.
2
The log parameters are read in 32-bit registers. For the value ranges and scales, refer to Table 5-2.
NOTES:
1. If a requested record is corrupted (the redundant check fails), the record is reported with all zeros (except the
sequence number) and bits 9 and 15 in the status indication word as being set to 1.
2. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the
status indication word as being set to 1.
3. The parameters that reside outside of the specified partition record size will be read as zeros.
5.27 Min/Max Log Registers (16-bit registers)
These registers allow you to read time-stamped Min/Max logs in 16-bit Modbus registers using LIN3 conversion.
From 1 to 12 adjacent records can be read at a time via the Min/Max log windows. The starting window #1 can be
mapped to any Min/Max log parameter listed in Table 5-2 by writing the parameter ID to the Min/Max log mapping
register. This register must be written before reading the Min/Max log windows. Note that through Min/Max log
windows, you can read only adjacent parameters within the same Min/Max log data group. Reading parameters
outside of the selected Min/Max log data group will return zero.
54
Table 5-63 Min/Max Log Windows Registers
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max
Min/Max log window
log window #1
log window #2
log window #3
log window #4
log window #5
log window #6
log window #7
log window #8
log window #9
log window #10
log window #11
log window #12
Registers (see Table 5-64)
4174-4181
4182-4189
4190-4197
4198-4205
4206-4213
4214-4221
4222-4229
4230-4237
4238-4245
4246-4253
4254-4261
4262-4269
Table 5-64 Min/Max Log Window Registers
Parameter
Second
Minute
Hour
Day
Month
Year
Parameter value 2
Reserved
1
Offset
+0
+1
+2
+3
+4
+5
+6
+7
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R
R
R
R
R
R
R
R
Range
0-59
0-59
0-23
1-31
1-12
0-99
see Table 5-2
0
The Min/Max parameter value is read in a 16-bit register. For the value range and conversion scales, refer to
Table 5-2.
Table 5-65 Min/Max Log Mapping Register
Parameter
Min/Max log start parameter ID for
window #1
Register
4172
Type
UINT16
R/W
R/W
Range
see Table 5-2
5.28 Min/Max Log Registers (32-bit registers)
These registers allow you to read time-stamped Min/Max logs in 32-bit Modbus registers without mapping.
Table 5-66 Min/Max Log Registers
Parameter
Minimum real-time values per phase
Min. Voltage L1/L12 6
Timestamp
Min. Voltage L2/L23 6
Timestamp
Min. Voltage L3/L31 6
Timestamp
Min. Current L1
Timestamp
Min. Current L2
Timestamp
Min. Current L3
Timestamp
Min. kW L1
Timestamp
Min. kW L2
Timestamp
Min. kW L3
Timestamp
Min. kvar L1
Timestamp
Min. kvar L2
Timestamp
Min. kvar L3
Registers
Type
35840-35841
35842-35843
35844-35845
35846-35847
35848-35849
35850-35851
35852-35853
35854-35855
35856-35857
35858-35859
35860-35861
35862-35863
35864-35865
35866-35867
35868-35869
35870-35871
35872-35873
35874-35875
35876-35877
35878-35879
35880-35881
35882-35883
35884-35885
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
55
Unit
Range
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.01A
0 to Imax
0.01A
0 to Imax
0.01A
0 to Imax
0.001kW/1kW
-Pmax to Pmax
0.001kW/1kW
-Pmax to Pmax
0.001kW/1kW
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
Parameter
Timestamp
Min. kVA L1
Timestamp
Min. kVA L2
Timestamp
Min. kVA L3
Timestamp
Min. Power factor L1 3
Timestamp
Min. Power factor L2 3
Timestamp
Min. Power factor L3 3
Timestamp
Min. Voltage THD L1/L12
Timestamp
Min. Voltage THD L2/L23
Timestamp
Min. Voltage THD L3
Timestamp
Min. Current THD L1
Timestamp
Min. Current THD L2
Timestamp
Min. Current THD L3
Timestamp
Min. K-Factor L1
Timestamp
Min. K-Factor L2
Timestamp
Min. K-Factor L3
Timestamp
Min. Current TDD L1
Timestamp
Min. Current TDD L2
Timestamp
Min. Current TDD L3
Timestamp
Min. Voltage L12
Timestamp
Min. Voltage L23
Timestamp
Min. Voltage L31
Timestamp
Minimum real-time total values
Min. Total kW
Timestamp
Min. Total kvar
Timestamp
Min. Total kVA
Timestamp
Min. Total PF 3
Timestamp
Min. Total PF Lag
Timestamp
Min. Total PF Lead
Timestamp
Minimum real-time auxiliary values
Min. Auxiliary current
Timestamp
Min. Neutral current
Timestamp
Min. Frequency 4
Timestamp
Min. Voltage unbalance
Timestamp
Min. Current unbalance
Timestamp
Registers
35886-35887
35888-35889
35890-35891
35892-35893
35894-35895
35896-35897
35898-35899
35900-35901
35902-35903
35904-35905
35906-35907
35908-35909
35910-35911
35912-35913
35914-35915
35916-35917
35918-35919
35920-35921
35922-35923
35924-35925
35926-35927
35928-35929
35930-35931
35932-35933
35934-35935
35936-35937
35938-35939
35940-35941
35942-35943
35944-35945
35946-35947
35948-35949
35950-35951
35952-35953
35954-35955
35956-35957
35958-35959
35960-35961
35962-35963
35964-35965
35966-35967
35968-35969
35970-35971
Type
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
36096-36097
36098-36099
36100-36101
36102-36103
36104-36105
36106-36107
36108-36109
36110-36111
36112-36113
36114-36115
36116-36117
36118-36119
36352-36353
36354-36355
36356-36357
36358-36359
36360-36361
36362-36363
36364-36365
36366-36367
36368-36369
36370-36371
56
Unit
Range
0.001kVA/1kVA
0 to Pmax
0.001kVA/1kVA
0 to Pmax
0.001kVA/1kVA
0 to Pmax
0.001
0 to 1000
0.001
0 to 1000
0.001
0 to 1000
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1
10 to 9999
0.1
10 to 9999
0.1
10 to 9999
0.1%
0 to 1000
0.1%
0 to 1000
0.1%
0 to 1000
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
0.001kW/1kW
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kVA/1kVA
0 to Pmax
0.001
0 to 1000
0.001
0 to 1000
0.001
0 to 1000
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
0.01A/mA
0 to Imax aux
0.01A
0 to Imax
0.01Hz
0 to 10000
1%
0 to 300
1%
0 to 300
Parameter
Registers
Min. DC voltage
36372-36373
Timestamp
36374-36375
Programmable Min/Max minimum registers
Min. Register #1
36608-36609
Timestamp
36610-36311
Min. Register #2
36612-36313
Timestamp
36614-36315
...
...
Min. Register #16
36668-36669
Timestamp
36670-36671
Maximum real-time values per phase
Max. Voltage L1/L12 6
36864-36865
Timestamp
36866-36867
Max. Voltage L2/L23 6
36868-36869
Timestamp
36870-36871
Max. Voltage L3/L31 6
36872-36873
Timestamp
36874-36875
Max. Current L1
36876-36877
Timestamp
36878-36879
Max. Current L2
36880-36881
Timestamp
36882-36883
Max. Current L3
36884-36885
Timestamp
36886-36887
Max. kW L1
36888-36889
Timestamp
36890-36891
Max. kW L2
36892-36893
Timestamp
36894-36895
Max. kW L3
36896-36897
Timestamp
36898-36899
Max. kvar L1
36900-36901
Timestamp
36902-36903
Max. kvar L2
36904-36905
Timestamp
36906-36907
Max. kvar L3
36908-36909
Timestamp
36910-36911
Max. kVA L1
36912-36913
Timestamp
36914-36915
Max. kVA L2
36916-36817
Timestamp
36918-36919
Max. kVA L3
36920-36921
Timestamp
36922-36923
Max. Power factor L1 3
36924-36925
Timestamp
36926-36927
Max. Power factor L2 3
36928-36929
Timestamp
36930-36931
Max. Power factor L3 3
36932-36933
Timestamp
36934-36935
Max. Voltage THD L1/L12
36936-36937
Timestamp
36938-36939
Max. Voltage THD L2/L23
36940-36941
Timestamp
36942-36943
Max. Voltage THD L3
36944-36945
Timestamp
36946-36947
Max. Current THD L1
36948-36949
Timestamp
36950-36951
Max. Current THD L2
36952-36953
Timestamp
36954-36955
Max. Current THD L3
36956-36957
Timestamp
36858-36959
Max. K-Factor L1
36960-36961
Timestamp
36962-36963
Max. K-Factor L2
36964-36965
Timestamp
36966-36967
Max. K-Factor L3
36968-36969
Timestamp
36970-36971
Max. Current TDD L1
36972-36973
Timestamp
36974-36975
Type
INT32
UINT32
57
Unit
0.01V
Range
0 to 999900
INT32
UINT32
INT32
UINT32
g
INT32
UINT32
g
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.01A
0 to Imax
0.01A
0 to Imax
0.01A
0 to Imax
0.001kW/1kW
-Pmax to Pmax
0.001kW/1kW
-Pmax to Pmax
0.001kW/1kW
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kVA/1kVA
0 to Pmax
0.001kVA/1kVA
0 to Pmax
0.001kVA/1kVA
0 to Pmax
0.001
0 to 1000
0.001
0 to 1000
0.001
0 to 1000
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1%
0 to 9999
0.1
10 to 9999
0.1
10 to 9999
0.1
10 to 9999
0.1%
0 to 1000
g
Parameter
Max. Current TDD L2
Timestamp
Max. Current TDD L3
Timestamp
Max. Voltage L12
Timestamp
Max. Voltage L23
Timestamp
Max. Voltage L31
Timestamp
Maximum real-time total values
Max. Total kW
Timestamp
Max. Total kvar
Timestamp
Max. Total kVA
Timestamp
Max. Total PF 3
Timestamp
Max. Total PF Lag
Timestamp
Max. Total PF Lead
Timestamp
Maximum real-time auxiliary values
Max. Auxiliary current
Timestamp
Max. Neutral current
Timestamp
Max. Frequency 4
Timestamp
Max. Voltage unbalance
Timestamp
Max. Current unbalance
Timestamp
Max. DC voltage
Timestamp
Maximum demands (M)
Max. volt demand L1/L12 6
Timestamp
Max. volt demand L2/L23 6
Timestamp
Max. volt demand L3/L31 6
Timestamp
Max. ampere demand L1
Timestamp
Max. ampere demand L2
Timestamp
Max. ampere demand L3
Timestamp
Reserved
Reserved
Reserved
Max. kW import sliding window demand
Timestamp
Max. kvar import sliding window demand
Timestamp
Max. kVA sliding window demand
Timestamp
Max. kW import thermal demand
Timestamp
Max. kvar import thermal demand
Timestamp
Max. kVA thermal demand
Timestamp
Registers
36976-36977
36978-36979
36980-36981
36982-36983
36984-36985
36986-36987
36988-36989
36990-36991
36992-36993
36994-36995
Type
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
37120-37121
37122-37123
37124-37125
37126-37127
37128-37129
37130-37131
37132-37133
37134-37135
37136-37137
37138-37139
37140-37141
37142-37143
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
37376-37377
37378-37379
37380-37381
37382-37383
37384-37385
37386-37387
37388-37389
37390-37391
37392-37393
37394-37395
37396-37397
37398-37399
37632-37633
37634-37635
37636-37637
37638-37639
37640-37641
37642-37643
37644-37645
37646-37647
37648-37649
37650-37651
37652-37653
37654-37655
37656-37657
37658-37659
37660-37661
37662-37663
37664-37665
37666-37667
37668-37669
37670-37671
37672-37673
37674-37675
37676-37677
37678-37679
37680-37681
37682-37683
37684-37685
37686-37687
37688-37689
37690-37691
58
0.1%
Unit
Range
0 to 1000
0.1%
0 to 1000
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.001kW/1kW
-Pmax to Pmax
0.001kvar/1kvar
-Pmax to Pmax
0.001kVA/1kVA
0 to Pmax
0.001
0 to 1000
0.001
0 to 1000
0.001
0 to 1000
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
0.01A/mA
0 to Imax aux
0.01A
0 to Imax
0.01Hz
0 to 10000
1%
0 to 300
1%
0 to 300
0.01V
0 to 999900
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.1V/1V
0 to Vmax
0.01A
0 to Imax
0.01A
0 to Imax
0.01A
0 to Imax
0
0
0
0.001kW/1kW
0 to Pmax
0.001kvar/1kvar
0 to Pmax
0.001kVA/1kVA
0 to Pmax
0.001kW/1kW
0 to Pmax
0.001kvar/1kvar
0 to Pmax
0.001kVA/1kVA
0 to Pmax
Parameter
Registers
Max. kW export sliding window demand
37692-37693
Timestamp
37694-37695
Max. kvar export sliding window demand
37696-37687
Timestamp
37698-37699
Max. kW export thermal demand
37700-37701
Timestamp
37702-37703
Max. kvar export thermal demand
37704-37705
Timestamp
37706-37707
Programmable Min/Max maximum registers
Max. Register #1
37888-37889
Timestamp
37890-37891
Max. Register #2
37892-37893
Timestamp
37894-37895
...
...
Max. Register #16
37948-37949
Timestamp
37950-37951
TOU maximum demand register #1
Max. Demand Tariff #1 register
38144-38145
Timestamp
38146-38147
Max. Demand Tariff #2 register
38148-38149
Timestamp
38150-38151
...
...
Max. Demand Tariff #16 register
38204-38205
Timestamp
38206-38207
TOU maximum demand register #2
Max. Demand Tariff #1 register
38400-38401
Timestamp
38402-38403
Max. Demand Tariff #2 register
38404-38405
Timestamp
38406-38407
...
...
Max. Demand Tariff #16 register
38460-38461
Timestamp
38462-38463
TOU maximum demand register #3
Max. Demand Tariff #1 register
38656-38657
Timestamp
38658-38659
Max. Demand Tariff #2 register
38650-38651
Timestamp
38652-38653
...
...
Max. Demand Tariff #16 register
38716-38717
Timestamp
38718-38719
Type
INT32
UINT32
INT32
UINT32
INT32
UINT32
INT32
UINT32
Unit
0.001kW/1kW
Range
0 to Pmax
0.001kvar/1kvar
0 to Pmax
0.001kW/1kW
0 to Pmax
0.001kvar/1kvar
0 to Pmax
INT32
UINT32
INT32
UINT32
g
INT32
UINT32
g
INT32
UINT32
INT32
UINT32
g
0 to Pmax
g
0 to Pmax
INT32
UINT32
g
0 to Pmax
INT32
UINT32
INT32
UINT32
g
0 to Pmax
g
0 to Pmax
INT32
UINT32
g
0 to Pmax
INT32
UINT32
INT32
UINT32
g
0 to Pmax
g
0 to Pmax
INT32
UINT32
g
0 to Pmax
g
Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight
(00:00:00), January 1, 1970. The time is valid after January 1, 2000.
1
The Min/Max log parameters are read in 32-bit registers. For the parameter limits, see Note c to Table 5-1
2
When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and
powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units,
currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.
3
New absolute min/max value (lag or lead).
4
The actual frequency range is 45.00 - 65.00 Hz.
5
The Programmable Min/Max register and TOU maximum demand register unit and range match those of the
input parameter for which the register is allocated.
6
When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode,
they will be line-to-line voltages.
5.29 Real Time Clock Registers
Table 5-67 RTC Registers
Parameter
Seconds
Minutes
Hour
Day of month
Month
Register
4352
4353
4354
4355
4356
Type
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
R/W
59
Range
0-59
0-59
0-23
1-31
1-12
Parameter
Year
Day of week
Register
4357
4358
Type
UINT16
UINT16
R/W
R/W
R/W
Range
0-99
1-7 (1=Sunday)
The day of week is not checked when written. It is set automatically when you change the date.
5.30 Time Zone Information Registers
Table 5-68 Time Zone Registers
Parameter
Daylight savings time (DST) option
Register
Type
4320
UINT16
R/W
R/W
DST start month
DST start week of the month
4321
4322
UINT16
UINT16
R/W
R/W
DST start weekday
DST end month
DST end week of the month
4323
4324
4325
UINT16
UINT16
UINT16
R/W
R/W
R/W
DST end weekday
4326
UINT16
R/W
Range
0 = disable DST (use standard time only),
1 = enable DST
1 - 12
1 - 4 = 1st, 2nd, 3rd and 4th week,
5 = the last weekday in the month
1-7 (1= Sun, 7 = Sat)
1 - 12
1 - 4 = 1st, 2nd, 3rd and 4th week,
5 = the last weekday in the month
1-7 (1= Sun, 7 = Sat)
5.31 TOU System Registers Setup
Table 5-69 TOU System Setup Registers
TOU system register
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
Setup registers
(see Table 5-70)
4564-4565
4566-4567
4568-4569
4570-4571
4572-4573
4574-4575
4576-4577
4578-4579
4580-4581
4582-4583
4584-4585
energy register #1
energy register #2
energy register #3
energy register #4
energy register #5
energy register #6
energy register #7
energy register #8
maximum demand register #1
maximum demand register #2
maximum demand register #3
Table 5-70 TOU Register Setup
Parameter
TOU register input identifier
For a pulse input = number of unithours per pulse. Otherwise, set to 0.
1.
2.
Offset
+0
+1
Type
UINT16
UINT16
R/W
R/W
R/W
Range
see Tables 5-71, 5-72
0-9999
Each TOU register consists of 16 tariff registers.
If a pulse input is assigned to an energy register, the register's input ID must be written first.
Table 5-71 TOU Energy Registers Inputs
Register input
None
kWh import
kWh export
kWh net
kWh total
kvarh import
kvarh export
kvarh net
kvarh total
kVAh total
Pulse input #1
Pulse input #2
Pulse input #3
Pulse input #4
Pulse input #5
Input ID
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
60
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
Pulse
input
input
input
input
input
input
input
Register input
#6
#7
#8
#9
#10
#11
#12
Input ID
15
16
17
18
19
20
21
Table 5-72 TOU Demand Registers Inputs
Register input
None
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Input ID
0
1
2
3
4
5
6
7
8
9
10
kW import sliding window demand
kW export sliding window demand
kvar import sliding window demand
kvar export sliding window demand
kVA sliding window demand
kW import thermal demand
kW export thermal demand
kvar import thermal demand
kvar export thermal demand
kVA thermal demand
5.32 TOU Daily Profiles Registers
Table 5-73 TOU Daily Profiles Registers
TOU daily profile
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
TOU
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
profile
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
#15
#16
Setup registers
(see Table 5-74)
2048-2063
2064-2079
2080-2095
2096-2111
2112-2127
2128-2143
2144-2159
2160-2175
2176-2191
2192-2207
2208-2223
2224-2239
2240-2255
2256-2271
2272-2287
2288-2303
Table 5-74 TOU Profile Setup Registers
Parameter
1st tariff change
Tariff start time
Active tariff number
2nd tariff change
Tariff start time
Active tariff number
3rd tariff change
Tariff start time
Active tariff number
4th tariff change
Tariff start time
Active tariff number
5th tariff change
Tariff start time
Active tariff number
6th tariff change
Tariff start time
Active tariff number
7th tariff change
Tariff start time
Active tariff number
8th tariff change
Tariff start time
Active tariff number
Offset
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
61
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Range
0
0-15
see Table 5-75
0-15
see Table 5-75
0-15
see Table 5-75
0-15
see Table 5-75
0-15
see Table 5-75
0-15
see Table 5-75
0-15
see Table 5-75
0-15
Table 5-75 Tariff Start Time Register
Parameter
Tariff start minute
Tariff start hour
Bits
0-7
8-15
Range
0-45
0-23
The daily start time for each tariff is specified with a resolution of 15 minutes. If another value is specified, it will be
truncated to the lower value divisible by 15 minutes. No error will occur. The first daily tariff change time is always
00:00. It is preserved internally and cannot be changed.
5.33 TOU Calendar Registers
Table 5-76 TOU Calendars Registers
TOU calendar
TOU calendar #1
TOU calendar #2
Calendar month
Setup registers
(see Table 5-77)
4368-4375
4376-4383
4384-4391
4392-4399
4400-4407
4408-4415
4416-4423
4424-4431
4432-4439
4440-4447
4448-4455
4456-4463
4464-4471
4472-4479
4480-4487
4488-4495
4496-4503
4504-4511
4512-4519
4520-4527
4528-4535
4536-4543
4544-4551
4552-4559
January
February
March
April
May
June
July
August
September
October
November
December
January
February
March
April
May
June
July
August
September
October
November
December
Table 5-77 TOU Calendar Setup Registers
Parameter
1-4 day profiles
5-8 day profiles
9-12 day profiles
13-16 day profiles
17-20 day profiles
21-24 day profiles
25-28 day profiles
29-31 day profiles
Offset
+0
+1
+2
+3
+4
+5
+6
+7
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
see
see
see
see
see
see
see
see
Range
Table 5-78
Table 5-78
Table 5-78
Table 5-78
Table 5-78
Table 5-78
Table 5-78
Table 5-78
Table 5-78 TOU Calendar Profile Format
Parameter
1st day profile number
2nd day profile number
3rd day profile number
4th day profile number
Bits
0-3
4-7
8-11
12-15
Range
0-15
0-15
0-15
0-15
Each profile register defines daily profiles for four days of month.
5.34 TOU Calendar Years Registers
These registers allow to associate calendar years with two TOU annual calendars.
62
Table 5-79 TOU Calendar Years Registers
Parameter
1st annual calendar year
2nd annual calendar year
Register
4560
4561
Type
UINT16
UINT16
R/W
R/W
R/W
Range
0-99
0-99
5.35 Communications Password Register
Table 5-80 Password Register
Parameter
Communications password
Register
2575
Type
UINT16
R/W
R/W
Range
Write: 0 to 65535
Read:
0 = access permitted
65535 = authorization required
5.36 Phase Harmonics Registers
These registers are preserved for compatibility with Series 290HD instruments. All the harmonics parameters can
be read through extended data registers (see Table 5-2).
Table 5-81 Phase Harmonics Registers
Harmonics channel
Registers
(see Table 5-82)
2816-2858
3072-3114
3328-3370
3584-3626
3840-3882
4096-4138
V L1/L12 harmonics
V L2/L23 harmonics
V L3 harmonics
I L1 harmonics
I L2 harmonics
I L3 harmonics
Table 5-82 Phase Harmonics
1
2
Parameter
Channel RMS value
Fundamental frequency
THD
Harmonic H01 (reference)
Harmonic H02
Harmonic H03
...
Offset
+0
+1
+2
+3
+4
+5
...
Harmonic H40
+42
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R/W
R
R
R
R
R
R
0
0
0
0
0
0
UINT16
R
0 to 100.00 %
to
to
to
to
to
to
Range/Scale 1
Vmax2/Imax V/A
100.00 Hz
100.00 %
100.00 %
100.00 %
100.00 %
Conversion
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
LIN3
For the RMS value limits and representation, see Notes 1 and 2 to Table 5-1.
Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other
configurations.
5.37 Waveform Capture/Log Registers (Sequential Access)
Table 5-83 Waveform Header Windows
Waveform header window
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Waveform log #1, channel V L1/L12
Waveform log #1, channel V L2/L23
Waveform log #1, channel V L3
Waveform log #1, channel I L1
Waveform log #1, channel I L2
Waveform log #1, channel I L3
Waveform log #2, channel V L1/L12
Registers
(see Tables 5-84 - 5-86)
4608-4617
4864-4873
5120-5129
5376-5385
5632-5641
5888-5897
4624-4633
4880-4889
5136-5145
5392-5401
5648-5657
5904-5913
4640-4650
V L1/L12
V L2/L23
V L3
I L1
I L2
I L3
63
Waveform
Waveform
Waveform
Waveform
Waveform
log
log
log
log
log
#2,
#2,
#2,
#2,
#2,
channel
channel
channel
channel
channel
V L2/L23
V L3
I L1
I L2
I L3
4896-4906
5152-5162
5408-5418
5664-5674
5920-5930
Table 5-84 Real-time Waveform Header Registers
Parameter
Capture code
Second
Minute
Hour
Day of month
Month
Year
Channel RMS value
Fundamental frequency
THD
Offset
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
Type
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
Range/Scale 1
R/W
R
R
R
R
R
R
R
R
R
R
0
0
0
0
1
1
0
0
0
0
to
to
to
to
to
to
to
to
to
59
59
23
31
12
99
Vmax2/Imax V/A
100.0 Hz
100.0 %
Conversion
NONE
NONE
NONE
NONE
NONE
NONE
NONE
LIN3
LIN3
LIN3
For the RMS value limits and representation, see Notes 1 and 2 to Table 5-1.
2
Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other
configurations.
1
Table 5-85 Waveform Log #1 Header Registers
Parameter
Capture code: trigger
setpoint number
Offset
+0
Type
UINT16
R
R/W
Hundredth of second
Second
Minute
Hour
Day of month
Month
Year
Reserved
Sampling frequency
Reserved
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R
R
R
R
R
R
R
R
R
R
Range/Scale
1-16, 98 = no more
waveforms,
99 = no waveforms
logged
0 to 99
0 to 59
0 to 59
0 to 23
1 to 31
1 to 12
0 to 99
0
0 to 100.0 Hz
0
Conversion
NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE
LIN3
LIN3
LIN3
Table 5-86 Waveform Log #2 Header Registers
Parameter
Capture code: trigger
setpoint number
Offset
+0
Type
UINT16
R
R/W
Second
Minute
Hour
Day of month
Month
Year
Channel RMS value
Fundamental frequency
THD
+1
+2
+3
+4
+5
+6
+7
+8
+9
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
UINT16
R
R
R
R
R
R
R
R
R
Range/Scale 1
1-16, 98 = no more
waveforms,
99 = no waveforms
logged
0 to 59
0 to 59
0 to 23
1 to 31
1 to 12
0 to 99
0 to Vmax2/Imax V/A
0 to 100.0 Hz
0 to 100.0 %
Conversion
NONE
NONE
NONE
NONE
NONE
NONE
NONE
LIN3
LIN3
LIN3
For the RMS value limits and representation, see Notes 1 and 2 to Table 5-1.
Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other
configurations.
1
2
These requests allow you to capture and read the real-time waveforms (4 cycles x 128 samples per cycle), and
the recorded historical waveform logs – Waveform #1 (16 cycles x 32 samples/cycle records) and Waveform log
#2 (4 cycles x 128 samples/cycle records). The waveform samples are read via the samples window (see Table 589) that can map a record for a single input channel (voltage or current waveform on either phase). To reload this
window with a sampled waveform, a corresponding waveform header should be read (Tables 5-84 - 5-86).
64
Each waveform sample is represented by a value in the range of 0 to 1023 for a voltage waveform and 0 to 8191
for a current waveform. A value of 0 corresponds to the highest negative amplitude of the measured signal, and a
value of 1023/8191 corresponds to the highest positive amplitude.
Real-time Waveform Capture
The real-time waveforms can be captured simultaneously on both voltage and current channels for a single phase.
To capture two waveforms on a selected phase, the first register (at offset +0) in the voltage waveform header
window for this phase should be accessed (register 4608, 4864, or 5120) by reading this register or by reading the
entire header window. Before responding to your request, the instrument reloads both the waveform header and
waveform samples window with data corresponding to the voltage waveform. Data in these windows does not
change until the first (capture code) register in either of the waveform header windows is read.
To reload the waveform header and samples windows with the current waveform data, read the first register in the
current waveform header window for the same phase.
To capture and read waveform data on another phase, repeat the above steps for the phase you want to access.
Historical Waveform Logs
The historical waveform logs contain waveform records sampled at a rate of 32 samples per cycle in Waveform
log #1 or at a rate of 128 samples per cycle in Waveform log #2, which are captured and logged to a file on some
event triggers. Each record contains six waveforms of voltage and current on three phases.
Recorded waveforms are mapped and accessed through register windows in the same manner as the real-time
waveforms (see above). On log files organization and managing, see Section 4.4, Configuring and Accessing Log
Files. Before reloading waveform window registers with data for a selected channel, the required record must be
obtained from the log file to the communications buffer. This is made automatically when you reload the voltage
waveform on phase L1, i.e., when you read the register at offset +0 in the voltage waveform header on phase L1
for the corresponding log file (registers 4624, 4640). Data in this buffer does not change until you read this register
once again. Each time you access this register, the next record is read form the file and locked to the
communications buffer. To reload waveform windows with data for the current channel or with data for another
phase, read the capture code register in the voltage or current header window for the corresponding channel.
Waveform log files are accessed in a sequential manner. When you continue reading after the end of a file, the
exception code 98 is returned in the header record's first field. It should be checked before the record will be
proceeded. To restore the pointer to the first record in the log file, write zero into register 3417 or 3418 (see
Section 5.6).
5.38 Waveform Capture/Log Registers (Circular Access)
Table 5-87 Waveform Header Windows
Waveform header window
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Real-time waveform capture, channel
Waveform log #1, channel V L1/L12
Waveform log #1, channel V L2/L23
Waveform log #1, channel V L3
Waveform log #1, channel I L1
Waveform log #1, channel I L2
Waveform log #1, channel I L3
Waveform log #2, channel V L1/L12
Waveform log #2, channel V L2/L23
Waveform log #2, channel V L3
Waveform log #2, channel I L1
Waveform log #2, channel I L2
Waveform log #2, channel I L3
Registers
(see Tables 5-57- 5-60)
35456-35471
35472-35487
35488-35503
35504-35519
35520-35535
35536-35551
35552-35567
35568-35583
35584-35599
35600-35615
35616-35631
35632-35647
35648-35663
35664-35679
35680-35695
35696-35711
35712-35727
35728-35743
V L1/L12
V L2/L23
V L3
I L1
I L2
I L3
65
Table 5-88 Waveform Capture Window Registers
Parameter
Command/Status indication
Offset
+0
Type
UINT16
R
The record sequence number in the
log file
+1
UINT16
R
0 to 65535 (increments modulo 65536 with each
log record)
The record timestamp
1
R/W
Range
Bit-mapped register:
bit 0 = 1 - the end record is being read (the end
of a log file reached)
bit 1 = 1 - reading after the end of file: the
read pointer has rolled over the end of a log
file, i.e., the file is being re-read from the
beginning. This bit is cleared when a new
record is being read, or the read sequence has
changed by overwriting the partition pointer.
bit 8 = 1 - no records logged in the partition
bit 9 = 1 - the record is corrupted
bit 15 = 1 - read error (detailed by bits 8-9)
+2, +3
UINT32
R
Local time (UNIX-style)
Fractional seconds portion of
timestamp (milliseconds)
+4
UINT16
R
0-990 (at 10 ms resolution)
Trigger event setpoint ID
+5
UINT16
R
1 to 16 = setpoint #1-#16,
0 = real-time waveform
The waveform series (compound
waveform) number
+6
UINT16
R
1 to 65535 (rolls over to 1 after 65535). Each
series can comprise up to 160 contiguous records
of a compound waveform
The record sequence number in the
waveform series
+7
UINT16
R
0 to 159
Analog input full scale, engineering
units (volts/amperes)
(ANALOG_SCALE)
+8, +9
UINT32
R
For the analog input scale units and range, refer
to those of voltage and current in Table 5-2
Digital full scale for the channel,
sample code (DIGITAL_SCALE)
+10
UINT16
R
1023 (10 bit A/D), 4095 (12 bit A/D), 8191 (13 bit
A/D). Corresponds to twice the analog input full
scale range.
Zero offset, code (ZERO_OFFSET)
+11
INT16
R
Corresponds to the center of the digital sample's
full scale range
Sampling frequency
+12
UINT16
R
0 to 6500 x 0.01Hz
Trigger sample point offset in the
waveform series
+13
UINT16
R
0-511 (corresponds to the first record in the
series)
Reserved
+14 to
+15
UINT16
R
0
Registers at offsets +0,+1, +5 to +7, and +13 are applicable only for waveform log records. For real-time
waveforms these are read as zeros.
1
Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since
midnight (00:00:00), January 1, 1970. The time is valid after January 1, 2000. Record timestamp shows the
time for the last sample point in the waveform record.
To convert digital samples to their analog equivalents in input measurement units (volts, amps), the following
scaling should be applied:
ANALOG _ SAMPLE [ Volts / Amps ] =
(DIGITAL _ SAMPLE − ZERO _ OFFSET ) × ANALOG _ SCALE × 2
DIGITAL _ SCALE
NOTES
1. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15
in the status indication word being set to 1.
2. Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in
other configurations.
Table 5-89 Waveform Samples Registers
Parameter
Waveform sample point #1
Waveform sample point #2
Address
6144
6145
Type
INT16
INT16
R/W
R
R
66
Range
+/- 1023/8191
+/- 1023/8191
Waveform sample point #3
...
Waveform sample point #512
6146
...
6655
INT16
R
+/- 1023/8191
INT16
R
+/- 1023/8191
Through these registers you can capture and read the real-time waveforms (4 cycles x 128 samples per cycle),
and the recorded historical waveform logs - Waveform log #1 (16 cycles x 32 samples per cycle records) and
Waveform log #2 (4 cycles x 128 samples per cycle records). The waveform samples are read via the register
window 6144-6655 (see Table 5-89) that can map a record for a single input channel (voltage or current waveform
on either phase). To reload this window with a sampled waveform, a corresponding waveform header window
should be accessed (see Table 5-87).
Real-time Waveform Capture
The real-time waveforms can be captured simultaneously on both voltage and current channels for a single phase.
To capture two waveforms on a selected phase, the first register (at offset +0) in the voltage waveform header
window for this phase (register 35456, 35472, or 35488) should be accessed by reading this register or by reading
the entire header window. Before responding to your request, the instrument reloads both the waveform header
and waveform samples window with data corresponding to the voltage waveform. Data in these windows does not
change until the first (command/status indication) register in either of the waveform header windows is read.
To reload the waveform header and samples windows with the current waveform data, read the first register in the
current waveform header window for the same phase.
To capture and read waveform data on another phase, repeat the above steps for the phase you want to access.
Historical Waveform Log
The historical waveform logs contain waveform records sampled at a rate of 32 samples per cycle in Waveform
log #1 or at a rate of 128 samples per cycle in Waveform log #2, which are captured and logged to a file on some
event triggers. Each record contains six waveforms of voltage and current on three phases.
Recorded waveforms are mapped and accessed through register windows in the same manner as the real-time
waveforms (see above). On log files organization and managing, see Section 4.4, Configuring and Accessing Log
Files. Before reloading waveform window registers with data for a selected channel, the required record must be
obtained from the log file to the communications buffer. This is made automatically when you reload the voltage
waveform on phase L1, i.e., when you read the register at offset +0 in the voltage waveform header on phase L1
for the corresponding log file (registers 35552, 35648). Data in this buffer does not change until you read this
register once again. Each time you access this register, the next record is read form the file and locked to the
communications buffer. To reload waveform windows with data for the current channel or with data for another
phase, read the command/status indication register in the voltage or current header window for the corresponding
channel.
Waveform log files are accessed in a circular manner. When the last record in the file is being read, bit 0 in the
status indication register in the waveform header windows is set to 1. If you continue reading after the end of a file,
the file pointer rolls over to the beginning of the file and the first (oldest) record is returned with bit 1 in the status
indication register being set to 1.
67
NOTES
68
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement