CPM296/RPM096. Коммуникационный протокол Modbus. Справочное руководство (англ.)

CPM296/RPM096. Коммуникационный протокол Modbus. Справочное руководство (англ.)

SERIES PM296/RPM096 POWERMETERS

COMMUNICATIONS

Modbus Communications Protocol

REFERENCE GUIDE

Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation.

For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor.

REVISION HISTORY

Rev.A2 (F/W Versions 2.26.2/2.36.2 and 2.27/2.37 or later):

Added a firmware build number (register 2563, Table 5-7).

Added setpoint status triggers SP1-SP16 (Table 5-2).

Added Low battery alarm (Table 5-18)

Modbus is a trademark of Modicon, Inc.

BG0292 Rev.A2

2

Table of Contents

1 GENERAL ......................................................................................................5

2 MODBUS FRAMING ......................................................................................6

2.1 Transmission Mode ...........................................................................................................6

2.2 The RTU Frame Format ....................................................................................................6

2.3 Address Field .....................................................................................................................6

2.4 Function Field ....................................................................................................................6

2.5 Data Field...........................................................................................................................6

2.6 Error Check Field...............................................................................................................7

3 MODBUS MESSAGE FORMATS ..................................................................8

3.1 Function 03 - Read Multiple Registers ..............................................................................8

3.2 Function 04 - Read Multiple Registers ..............................................................................8

3.3 Function 06 - Write Single Register...................................................................................8

3.4 Function 16 - Write Multiple Registers...............................................................................8

3.5 Function 08 - Loop-back Communications Test................................................................9

3.6 Exception Responses ......................................................................................................10

4 PROTOCOL IMPLEMENTATION ................................................................11

4.1 Modbus Register Addresses ...........................................................................................11

4.2 Data Formats ...................................................................................................................11

4.2.1 16-bit Integer Format ...............................................................................................11

4.2.2 32-bit Modulo 10000 Format....................................................................................13

4.2.3 32-bit Long Integer Format ......................................................................................13

4.3 User Assignable Registers ..............................................................................................13

4.4 Configuring and Accessing Log Files ..............................................................................14

4.5 Password Protection........................................................................................................15

5 POWERMETER REGISTERS DESCRIPTION.............................................16

5.1 Basic Data Registers .......................................................................................................16

5.2 Extended Data Registers.................................................................................................17

5.3 Basic Setup Registers .....................................................................................................28

5.4 User Selectable Options Setup Registers .......................................................................29

5.5 Communications Setup Registers ...................................................................................30

5.6 Reset/Clear Registers......................................................................................................30

5.7 Instrument Status Registers ............................................................................................31

5.8 Extended Status Registers ..............................................................................................33

5.9 Memory Allocation Status Registers................................................................................36

5.10 Memory Partition Status/Control Registers ...................................................................37

5.11 Analog Output Setup Registers .....................................................................................39

5.12 Analog Expander Setup Registers ................................................................................40

5.13 Digital Inputs Allocation Registers .................................................................................41

5.14 Timers Setup Registers .................................................................................................42

5.15 Alarm/Event Setpoints Registers...................................................................................42

5.16 Pulsing Setpoints Registers...........................................................................................44

5.17 Relay Operation Control Registers................................................................................44

5.18 Pulse Counters Setup Registers ...................................................................................45

5.19 User Event Flags Registers ...........................................................................................46

5.20 Programmable Min/Max Log Setup Registers...............................................................46

5.21 Log Memory Partitions Setup Registers ........................................................................46

5.22 Data Log Setup Registers..............................................................................................47

5.23 Event Log Registers (Sequential Access) .....................................................................48

5.24 Event Log Registers (Circular Access)..........................................................................49

5.25 Data Log Registers (Sequential Access).......................................................................52

5.26 Data Log Registers (Circular Access) ...........................................................................52

5.27 Min/Max Log Registers (16-bit registers).......................................................................54

5.28 Min/Max Log Registers (32-bit registers).......................................................................55

3

5.29 Real Time Clock Registers ............................................................................................59

5.30 Time Zone Information Registers ..................................................................................60

5.31 TOU System Registers Setup........................................................................................60

5.32 TOU Daily Profiles Registers .........................................................................................61

5.33 TOU Calendar Registers ...............................................................................................62

5.34 TOU Calendar Years Registers.....................................................................................62

5.35 Communications Password Register.............................................................................63

5.36 Phase Harmonics Registers ..........................................................................................63

5.37 Waveform Capture/Log Registers (Sequential Access)................................................63

5.38 Waveform Capture/Log Registers (Circular Access).....................................................65

4

1 GENERAL

This document specifies a subset of the Modbus serial communications protocol used to transfer data between a master computer station and the PM296/RPM096. The document provides the complete information necessary to develop a third-party communications software capable of communication with the Series PM296/RPM096

Powermeters. Additional information concerning communications operation, configuring the communications parameters, and communications connections is found in "Series PM296/RPM096 Powermeters, Installation and

Operation Manual".

IMPORTANT

1. The voltage parameters throughout the protocol can represent line-to-neutral or line-to-line voltages depending on the wiring mode selected in the instrument. When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

In 4LN3, 4LL3, 3LN3 and 3LL3 wiring modes, harmonic voltages will represent line-to-neutral voltages. In a 3-wire direct connection, harmonic voltages will represent line-to-neutral voltages as they appear on the instrument's input transformers. In a 3-wire open delta connection, harmonic voltages will comprise L12 and L23 line-to-line voltages.

2. In 3-wire connection schemes, the unbalanced current and phase readings for power factor, active power, and reactive power will be zeros, because they have no meaning. Only the total three-phase power values can be used.

3. Most of the instrument's advanced features are configured using multiple setup parameters that can be accessed in certain contiguous registers. When writing the setup registers, it is recommended to write all the registers at once using a single request, or to clear (zero) the setup before writing into separate registers.

5

2 MODBUS FRAMING

2.1 Transmission Mode

The protocol uses the Modbus Remote Terminal Unit (RTU) transmission mode. In RTU mode, data is sent in 8bit binary characters. The 8 bit even parity or 8 bit no parity data format must be selected when configuring the instrument communications. The data format is shown in the following table.

Table 2-1 RTU Data Format

Field

Start bit

Data bits

1

Parity (optional)

Stop bit

1

Least significant bit first

No. of bits

1

8

1

1

2.2 The RTU Frame Format

Frame synchronization is maintained in RTU transmission mode by simulating a synchronization message. The receiving device monitors the elapsed time between receptions of characters. If three and one-half character times elapse without a new character or completion of the frame, then the device flushes the frame and assumes that the next byte received will be an address. The frame format is defined below.

The maximum query and response message length is 256 bytes including check characters.

RTU Message Frame Format

T1 T2 T3 Address

8 bits

Function Data

8 bits N * 8 bits

CRC Check

16 bits

T1 T2 T3

2.3 Address Field

The address field contains a user assigned address (1-247) of the instrument that is to receive a message.

Address 0 is used in broadcast mode to transmit to all instruments (broadcast mode is available only for functions

06 and 16). In this case all instruments receive the message and take action on the request, but do not issue a response. In the PM296/RPM096, the broadcast mode is supported only for register addresses 287-294 and 301-

302 (reset energies and maximum demands), 3404-3415 (reset/clear registers), and 4352-4358 (real-time clock registers).

2.4 Function Field

The function field contains a function code that tells the instrument what action to perform. Function codes used in the protocol are shown below in Table 2-2.

Table 2-2 Modbus Function Codes

Code

(decimal)

03

04

06

16

08

Meaning in Modbus

Read holding registers

Read input registers

Preset single register

Preset multiple registers

Loop-back test

Action

Read multiple registers

Read multiple registers

Write single register

Write multiple registers

Communications test

NOTE Broadcast mode available only for functions code 06 and 16.

2.5 Data Field

The data field contains information needed by the instrument to perform a specific function, or data collected by the instrument in response to a query.

IMPORTANT Fields composed of two bytes are sent in the order high byte first, low byte second.

6

2.6 Error Check Field

The error check field contains the Cyclical Redundancy Check (CRC) word. The start of the message is ignored in calculating the CRC. The CRC-16 error check sequence is implemented as described in the following paragraphs.

The message (data bits only, disregarding start/stop and optional parity bits) is considered one continuous binary number whose most significant bit (MSB) is transmitted first. The message is pre-multiplied by x16 (shifted left 16 bits), and then divided by x16 + x15 + x2 + 1 expressed as a binary number (11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all ones at the start to avoid the case of all zeros being an accepted message) is appended to the message (MSB first) as the two CRC check bytes. The resulting message including CRC, when divided by the same polynomial (x16 + x15 + x2 + 1) at the receiver will give a zero remainder if no errors have occurred. (The receiving unit recalculates the CRC and compares it to the transmitted

CRC). All arithmetic is performed modulo two (no carries).

The device used to serialize the data for transmission will send the conventional LSB or right-most bit of each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend. For convenience, and since there are no carries used in the arithmetic, let's assume while computing the CRC that the

MSB is on the right. To be consistent, the bit order of the generating polynomial must be reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder. This yields 1010 0000 0000

0001 (Hex A001). Note that this reversal of the bit order will have no effect whatever on the interpretation or bit order of characters external to the CRC calculations.

The step by step procedure to form the CRC-16 check bytes is as follows:

1. Load a 16-bit register with all 1's.

2. Exclusive OR the first 8-bit byte with the low order byte of the 16-bit register, putting the result in the 16-bit register.

3. Shift the 16-bit register one bit to the right.

4a. If the bit shifted out to the right (flag) is one, exclusive OR the generating polynomial 1010 000 000 0001 with the 16-bit register.

4b. If the bit shifted out to the right is zero, return to step 3.

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. Exclusive OR the next 8-bit byte with the 16-bit register.

7. Repeat step 3 through 6 until all bytes of the message have been exclusive ORed with the 16-bit register and shifted 8 times.

8. When the 16-bit CRC is transmitted in the message, the low order byte will be transmitted first, followed by the high order byte.

For detailed information about CRC calculation, refer to the Modbus Protocol Reference Guide.

7

3 MODBUS MESSAGE FORMATS

3.1 Function 03 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table.

Request

Instrument

Address

1 byte

Function

(03)

1 byte

Starting

Address

2 bytes

Word Count Error Check

2 bytes

Starting Address Address of the first register to be read

Word Count

The number of contiguous words to be read

2 bytes

Response

Instrument

Address

1 byte

Function

(03)

1 byte

Byte

Count

Data

Word 1

1 byte 2 bytes

... Data

Word N

... 2 bytes

The byte count field contains quantity of bytes to be returned.

Error

Check

2 bytes

3.2 Function 04 - Read Multiple Registers

This command allows the user to obtain contents of up to 125 contiguous registers from a single data table. It can be used instead of function 03.

Request

Instrument

Address

1 byte

Function

(04)

1 byte

Starting

Address

2 bytes

Word Count Error Check

2 bytes

Starting Address Address of the first register to be read

Word Count

The number of contiguous words to be read

2 bytes

Response

Instrument

Address

1 byte

Function

(04)

1 byte

Byte

Count

1 byte

Data

Word 1

2 bytes

... Data

Word N

... 2 bytes

The byte count field contains quantity of bytes to be returned.

Error

Check

2 bytes

3.3 Function 06 - Write Single Register

This command allows the user to write the contents of a data register in any data table where a register can be written.

Request

Instrument

Address

1 byte

Starting Address

Function

(06)

1 byte

Starting

Address

2 bytes

Data

Word

2 bytes

Address of the register to be written

Error check

2 bytes

Response

The normal response is the retransmission of the write request.

3.4 Function 16 - Write Multiple Registers

This request allows the user to write the contents of multiple contiguous registers to a single data table where registers can be written.

8

Request

Instrument

Address

1 byte

Function

(16)

1 byte

Starting

Address

2 bytes

Word Count Byte Count

2 bytes 1 byte

Data Word 1

2 bytes

...

...

...

...

...

...

Data Word N

2 bytes

Error Check

2 bytes

Starting Address Address of the first register to be written

Word Count

The number of contiguous words to be written

Byte Count

The number of bytes to be written

Response

Instrument

Address

1 byte

Function

(16)

1 byte

Starting

Address

2 bytes

Word

Count

1 word

Error

Check

2 bytes

3.5 Function 08 - Loop-back Communications Test

The purpose of this request is to check the communications link between the specified instrument and PC.

Request

Instrument

Address

1 byte

Function

(08)

1 byte

Diagnostic

Code (0)

2 bytes

Data

2 bytes

Error

Check

2 bytes

Diagnostic Code Designates action to be taken in Loop-back test. The protocol supports only Diagnostic Code

0 - return query data.

Data

Query data. The data passed in this field will be returned to the master through the instrument. The entire message returned will be identical to the message transmitted by the master, field-per-field.

Response

Instrument

Address

1 byte

Function

(08)

1 byte

Diagnostic

Code (0)

2 bytes

Data

2 bytes

The normal response is the re-transmission of a test message.

Error

Check

2 bytes

9

3.6 Exception Responses

The instrument sends an exception response when errors are detected in the received message. To indicate that the response is notification of an error, the high order bit of the function code is set to 1.

Exception Response

Instrument

Address

1 byte

Function (high order bit is set to 1)

1 byte

Exception response codes:

Exception

Code

1 byte

Error Check

2 byte

02 - Illegal data address

03 - Illegal data value

06 - Busy, rejected message. The message was received without error, but the instrument is being programmed from the keypad (only for requests accessing setup registers).

NOTE When the character framing, parity, or redundancy check detects a communication error, processing of the master's request stops. The instrument will not act on or respond to the message.

10

4 PROTOCOL IMPLEMENTATION

4.1 Modbus Register Addresses

The PM296/RPM096 Modbus registers are referred to by using addresses in the range of 0 to 65535. From within the Modbus applications, the PM296/RPM096 Modbus registers can be accessed by simulating holding registers of the Modicon 584, 884 or 984 Programmable Controller, using a 5-digit “4XXXX” or 6-digit “4XXXXX” addressing scheme. To map the PM296/RPM096 register address to the range of the Modbus holding registers, add a value of 40001 to the PM296/RPM096 register address. When a register address exceeds 9999, use a 6-digit addressing scheme by adding 400001 to the PM296/RPM096 register address.

4.2 Data Formats

The PM296/RPM096 uses three data formats to pass data between a master application and the instrument: a

16-bit integer format, a 32-bit modulo 10000 format, and a 32-bit long integer format.

4.2.1 16-bit Integer Format

A 16-bit data is transmitted in a single 16-bit Modbus register as unsigned or signed integer (whole) numbers without conversion or using pre-scaling to accommodate large-scale and fractional numbers to a 16-bit register format. Scaling can be made using either the LIN3 linear conversion, or decimal pre-scaling to pass fractional numbers in integer format.

Non-scaled data

The data will be presented exactly as retrieved by the communications program from the instrument. The value range for unsigned data is 0 to 65535; for signed data the range is -32768 to 32767.

LIN3 (Linear) Scaling

This conversion maps the raw data received by the communications program in the range of 0-9999 onto the user-defined LO scale/HI scale range. The conversion is carried out according to the formula:

Engineerin g _ Units _ Value =

Raw _ Data ×

9999

( HI − LO )

+ LO where:

Engineering_Units_Value - the true value in engineering units

Raw_Data - the raw input data in the range of 0 - 9999

LO, HI - the data low and high scales in engineering units

When data conversion is necessary, the HI and LO scales, and data conversion method are indicated for the corresponding registers.

EXAMPLES

1. Voltage readings

a) Assume device settings (690V input, direct wiring): PT ratio = 1.

Voltage engineering scales (see Note 1 to Table 5-1 ):

HI = Vmax = 828.0 × PT ratio = 828.0 × 1 = 828.0V

LO = 0V

If the raw data reading is 1449 then the voltage reading in engineering units will be as follows:

Volts reading = 1449 × (828.0 - 0)/9999 + 0 = 120.0V b) Assume device settings (wiring via PT): PT ratio = 14,400V : 120V = 120.

Voltage engineering scales:

HI = Vmax = 144.0 × PT ratio = 144 × 120 = 17,280V

LO = 0V

If the raw data reading is 8314 then the voltage reading in engineering units will be as follows:

Volts reading = 8314 × (17,280 - 0)/9999 + 0 = 14,368V

11

2. Current readings

Assume device settings: CT primary current = 200A; current input overload = ×200%.

Current engineering scales:

HI = Imax = CT primary current × 2 = 200.00 × 2 = 400.00A

LO = 0A

If the raw data reading is 250 then the current reading in engineering units will be as follows:

Amps reading = 250 × (400.00 - 0)/9999 + 0 = 10.00A

3. Power readings

a) Assume device settings (690V input, direct wiring): wiring configuration 4LN3; PT = 1; CT primary current = 200A.

Active Power engineering scales:

HI = Pmax = Vmax × Imax × 3 = 828.0 × (200.00 × 2) × 3 = 993,600W = 993.6kW

LO = -Pmax = -993.6kW

If the raw data reading is 5500 then the power reading in engineering units will be as follows:

Watts reading = 5500 × (993.6 - (-993.6))/9999 + (-993.6) = 99.469kW

If the raw data reading is 500 then the power reading in engineering units will be as follows:

Watts reading = 500 × (993.6 - (-993.6))/9999 + (-993.6) = -894.23kW b) Assume device settings (wiring via PT): wiring configuration 4LL3; PT = 120; CT primary current = 200A.

Active Power engineering scales:

HI = Pmax = Vmax × Imax × 2 = (144 × 120) × (200.00 × 2) × 2/1000 = 13824kW

LO = -Pmax = -13824kW

If the raw data reading is 5500 then the power reading in engineering units will be as follows:

Watts reading = 5500 × (13824 - (-13824))/9999 + (-13824) = 1384kW

If the raw data reading is 500 then the power reading in engineering units will be as follows:

Watts reading = 500 × (13824 - (-13824))/9999 + (-13824) = -12441kW

4. Power Factor readings

Power factor engineering scales:

HI = 1.000.

LO = -1.000.

If the raw data reading is 8900 then the power factor in engineering units will be as follows:

Power factor reading = 8900 × (1.000 - (-1.000))/9999 + (-1.000) = 0.78

Decimal Scaling

In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned (UINT32) or signed (INT32) long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is -2,147,483,648 to 2,147,483,647.

Negative values are transmitted in a two's complement code. This means that a negative value is added to

4,294,967,296, that is 2 to power 32.

Fractional numbers are pre-multiplied by 10 to power N, where N is the number of decimal places, and are transmitted as whole numbers.

If your Modbus driver does not support a 32-bit long integer format, you can read the two 16-bit registers separately, and then convert them into a 32-bit value as follows (using C notation):

32-bit value = (signed short)high_order_register

× 65536L + (unsigned short)low_order_register

12

EXAMPLES

1. Unsigned 32-bit Values

If you read unsigned Voltage V1 of 69,000V from registers 13952-13953, then the register readings will be as follows:

(13952) = 3464

(13953) = 1

The 32-bit value is (1 x 65536 + 3464) = 69000V.

2. Signed 32-bit Values

If you read signed kW of -789kW from registers 14336-14337, then the register readings will be:

(14336) = 64747 (unsigned)

(14337) = 65535 (unsigned) or -1(signed value).

To take the high order register as a signed value, compare it with 32767. If the value is less or equal to 32767, use it as is. If it is greater than 32767, then this is a negative number in a two's complement code (like in our example) - just subtract it from 65536 to get the original negative value.

The 32-bit reading is (-1 x 65536 + 64747) = -789kW.

Decimal pre-scaling can be used to accommodate fractional numbers to an integer register format. Fractional numbers pre-multiplied by 10 in power N, where N is the number of digits in the fractional part. For example, the frequency reading of 50.01 Hz is transmitted as 5001, having been pre-multiplied by 100. Whenever a data register contains a fractional number, the register measurement unit is given with a multiplier

×0.1, ×0.01 or

×0.001, showing an actual register resolution (the weight of the least significant decimal digit). To get an actual fractional number with specified precision, scale the register value with the given multiplier. To write a fractional number into the register, divide the number by the given multiplier.

4.2.2 32-bit Modulo 10000 Format

The short energy registers 287-294, and 301-302 are transmitted in two contiguous 16-bit registers in modulo

10000 format. The first (low order) register contains the value mod 10000, and the second (high order) register contains the value/10000. To get the true energy reading, the high order register value should be multiplied by

10,000 and added to the low order register.

4.2.3 32-bit Long Integer Format

In a 32-bit long integer format, data is transmitted in two adjacent 16-bit Modbus registers as unsigned or signed long integer (whole) numbers. The first register contains the low-order word (lower 16 bits) and the second register contains the high order word (higher 16 bits) of the 32-bit long number. The low-order word always starts at an even Modbus address. The value range for unsigned data is 0 to 4,294,967,295; for signed data the range is

-2,147,483,648 to 2,147,483,647.

A 32-bit data can be transmitted without conversion as is, or by using decimal pre-scaling to transform fractional numbers to an integer format as described above (see Decimal Scaling in Section 4.2.1).

4.3 User Assignable Registers

The PM296/RPM096 contains the 120 user assignable registers in the address range of 0 to 119 (see Table 4-1), any of which you can map to either register address accessible in the instrument. Registers that reside in different locations may be accessed by a single request by re-mapping them to adjacent addresses in the user assignable registers area.

The actual addresses of the assignable registers which are accessed via addresses 0 to 119 are specified in the user assignable register map (see Table 4-2). This map occupies addresses from 120 to 239, where map register

120 should contain the actual address of the register accessed via assignable register 0, register 121 should contain the actual address of the register accessed via assignable register 1, and so on. Note that the assignable register addresses and the map register addresses may not be re-mapped.

To build your own register map, write to map registers (120 to 239) the actual addresses you want to read from or write to via the assignable area (0 to 119). Note that long word registers should always be aligned at even addresses. For example, if you want to read registers 7136 (real-time voltage of phase A, word) and 7576/7577

(kWh import, long word) via registers 0-2, then do the following:

- write 7576 to register 120

- write 7577 to register 121

- write 7136 to register 122

13

Reading from registers 0-2 will return the kWh reading in registers 0 (low word) and 1 (high word), and the voltage reading in register 2.

Table 4-1 User Assignable Registers

Address

119

Register contents

0

1

Assigned register #0

Assigned register #1

2

Assigned register #2

… …

Assigned register #119

Type

INT16

INT16

INT16

INT16

Table 4-2 User Assignable Register Map

Address Register contents Type R/W Range

120

121

239

Mapped address for register #0

Mapped address for register #1

122

Mapped address for register #2

… …

Mapped address for register #119

UINT16 R/W

UINT16 R/W

256 to 65535

256 to 65535

UINT16 R/W

256 to 65535

… …

UINT16 R/W

256 to 65535

4.4 Configuring and Accessing Log Files

Configuring Memory for Logging

To use the onboard data logging, allocate a separate log partition for each specific data you want to be recorded in your instrument. The PM296/RPM096 provides concurrent recording data in 19 different memory partitions, one of which is intended to record event log data and the others to store 16 different data logs using different sets of data parameters. Additionally, the two last data logs #15 and #16 can be configured to automatically record TOU monthly and daily profile data respectively using season TOU tariffs. Refer to Section 5.21 for information on how to allocate a memory partition for your specific data. Refer to Section 5.22 on how to configure a set of parameters to be recorded to each data log.

Each memory partition you allocated for logging is organized as a sequential file of records where all data is recorded in chronological order with a time and date stamp. When a partition is filled up, recording can be stopped or can continue over the oldest records if you specified a partition with a wrap-around (circular) attribute. TOU profile log partitions are automatically configured as wrap-around.

Each record within a log file has a unique sequence number that guards against missing or duplicated records when reading the log file. This number is incremented (modulo 65536) with each log and will not be replicated within the following 65535 logs. If a record is missing because of a communication problem, the read sequence for the log can be restored from the record with the desired sequence number.

Accessing Log Files

Each log file has a separate file read pointer which always points to the current file record that will be read next, and a separate register window which gives access to the record pointed to by this pointer. Initially, the read pointer is associated with the oldest record in the file. Reading a record via the file window returns the current record data, and then the pointer automatically advances to the following record in the file. Consequent requests addressed to the file window will return a new record each time in the direction from the oldest record to the more recent records. Because the file window advances automatically after the instrument responds to the master request (regardless of the number of registers in the window being accessed), the entire window must be read at once using a single request.

The instrument offers you two different techniques for accessing your log files. The first provides sequential reading of a file records until the end of a file is reached. When a record is requested after the end of a file, the response message will contain a zero record with an exception code indicating the end of a log file. Opposed to this, the second method provides circular file reading, i.e., when a record is requested after the end of a file, the file read pointer is automatically shifted to the beginning of the file. Using circular read requests always allows you to read the entire log file regardless of the current file status. You can simply poll the file window registers just as you poll ordinal data in your SCADA applications, without the need to manipulate the file pointer. Refer to Sections

5.23, 5.25 and 5.37 for information on sequential read requests you can use to access your log files, and to

Sections 5.24, 5.26 and 5.38 for information on circular read requests.

A log file can be read both in an arbitrary order and in sequence as explained above. To access the log records in a random order, the file read pointer can be re-written with the desired sequence number to point to the desired

14

record. Refer to Sections 5.9 and 5.10 for information on how to check the log file status and how to re-write the file read pointer. Writing to the memory partition command register (see Section 5.10) allows you to force the file pointer to point to the oldest record in the file or to the first new, unread record in the file. You can also use the instrument reset registers (see Section 5.6) to restore the file read pointer to the oldest record in your log file if you want to re-read the file from the beginning.

IMPORTANT: Take into consideration the fact that in a wrap-around (circular) log partition, the oldest records may be overwritten by the most recent records since you have read either log status register. An attempt to point to the particular record directly by using its sequence number may fail if the addressed record has just been overwritten.

4.5 Password Protection

The PM296/RPM096 has a password protection option allowing you to protect your setups, cumulative registers and logs from being changed or cleared through communications. You can disable or enable password protection for communications via the front panel. For details, refer to your instrument Installation and Operation Manual.

When password protection is enabled, the user password you set in your instrument should be written into the communications password register (see Section 5.35) before another write request will be issued. If the correct password is not supplied while password protection is enabled, the instrument will respond to all write requests with the exception code 01 (illegal operation). It is recommended to clear the password register after you have completed your changes in order to activate password protection.

15

5 POWERMETER REGISTERS DESCRIPTION

5.1 Basic Data Registers

Table 5-1 Basic Data Registers

Parameter Register Type R/W Unit

2

Scale

1

Con-

Voltage L1/L12

Voltage L2/L23

6

256

6

Voltage L3/L31

6

258

Low

R

High version

Current L1

Current L2

Current L3 kW L1

259

260

261

262

UINT16 R

UINT16 R

UINT16 R

UINT16 R

0.01A

0.01A

0.01A

0.001kW/1kW

0

0

0

-Pmax

Imax LIN3

Imax LIN3

Imax LIN3

Pmax LIN3 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

263

264

265

266

267

268

269

270

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

0.001kW/1kW

0.001kW/1kW

-Pmax

-Pmax

0.001kvar/1kvar -Pmax

0.001kvar/1kvar -Pmax

0.001kvar/1kvar -Pmax

0.001kVA/1kVA -Pmax

0.001kVA/1kVA -Pmax

0.001kVA/1kVA -Pmax

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Power factor L1

Power factor L2

Power factor L3

Total power factor

Total kW

Total kvar

Total kVA

Neutral current

Frequency

Max. sliding window kW demand

Accumulated kW demand

5

Max. sliding window kVA demand

Accumulated kVA demand

Max. ampere demand L1

Max. ampere demand L2

Max. ampere demand L3

5

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

0.001

0.001

0.001

0.001

0.001kW/1kW

0.01A

-1.000

-1.000

-1.000

-Pmax

0.001kvar/1kvar -Pmax

0.001kVA/1kVA -Pmax

0

1.000 LIN3

1.000 LIN3

1.000 LIN3

-1.000 1.000 LIN3

Pmax LIN3

Pmax LIN3

Pmax LIN3

Imax LIN3

UINT16 R 0.01Hz 45.00 65.00 LIN3

UINT16 R/W 0.001kW/1kW -Pmax Pmax LIN3

UINT16 R/W 0.001kW/1kW -Pmax Pmax LIN3

UINT16 R/W 0.001kVA/1kVA -Pmax Pmax LIN3

UINT16 R/W 0.001kVA/1kVA -Pmax Pmax LIN3

UINT16 R/W 0.01A 0 Imax LIN3 kWh import (low) kWh import (high) kWh export (low) kWh export (high)

+kvarh net (low)

+kvarh net (high)

3

-kvarh net (low)

4

3

-kvarh net (high)

4

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3

Current THD L1

287

288

289

290

291

292

293

294

295

296

297

298

Current THD L2

Current THD L3 kVAh (low)

299

300

301 kVAh (high)

Present sliding window kW demand

5

Present sliding window kVA demand

5

302

303

304

PF at maximum kVA sliding window demand 305

Current TDD L1

Current TDD L2

Current TDD L3

306

307

308

UINT16 R/W 0.01A

UINT16 R/W 0.01A

UINT16 R/W 1kWh

UINT16 R/W 10,000 kWh

UINT16 R/W 1kWh

UINT16 R/W 10,000 kWh

UINT16 R/W 1kvarh

UINT16 R/W 10,000 kvarh

0

0

0

0

0

0

0

0

Imax LIN3

Imax LIN3

9999 NONE

9999 NONE

9999 NONE

9999 NONE

9999 NONE

9999 NONE

UINT16 R/W 1kvarh

UINT16 R/W 10,000 kvarh

UINT16 R

UINT16 R

0.1%

0.1%

UINT16 R

UINT16 R

0.1%

0.1%

UINT16 R

UINT16 R

0.1%

0.1%

UINT16 R/W 1kVAh

0

0

0

0

0

0

0

0

0

9999 NONE

999 NONE

999.9 LIN3

999.9 LIN3

999.9 LIN3

999.9 LIN3

999.9 LIN3

999.9 LIN3

9999 NONE

UINT16 R/W

UINT16 R

10,000 kVAh 0 9999 NONE

0.001kW/1kW -Pmax Pmax LIN3

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

0.001kVA/1kVA -Pmax Pmax LIN3

0.001 -1.000 1.000 LIN3

0.1%

0.1%

0.1%

0

0

0

100.0 LIN3

100.0 LIN3

100.0 LIN3

1

The parameter limits are as follows:

Imax (100% over-range) = 2

× CT primary current [A]

Imax aux (100% over-range) = 2

× Auxiliary CT primary current [A/mA]

Direct wiring (PT Ratio = 1):

Vmax (690 V input option) = 828.0 V

16

Vmax (120 V input option) = 144.0 V

Pmax = (Imax

× Vmax × 3) [kW x 0.001] if wiring mode is 4LN3 or 3LN3

Pmax = (Imax

× Vmax × 2) [kW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3

Wiring via PTs (PT Ratio > 1):

Vmax (690 V input option) = 144

× PT Ratio [V]

Vmax (120 V input option) = 144

× PT Ratio [V]

Pmax = (Imax

× Vmax × 3)/1000 [MW x 0.001] if wiring mode is 4LN3 or 3LN3

Pmax = (Imax

× Vmax × 2)/1000 [MW x 0.001] if wiring mode is 4LL3, 3OP2, 3DIR2, 3OP3 or 3LL3

2

When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PT (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 0.001 MW/Mvar/MVA units.

3

Positive readings of kvarh net

4

Negative readings of kvarh net

5

To get block interval demand readings, specify the number of demand periods equal to 1 (see Table 5-2).

6

When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

NOTE Writing a zero to one of registers 280-286 causes reset of all maximum demands. Writing a zero to one of registers 287-294 and 301-302 causes reset of all accumulated energies. This does not apply to the TOU system registers.

5.2 Extended Data Registers

The following table lists all registers containing the data measured by the instrument. Notice that these registers are arranged into groups, which are not located at adjacent addresses. You can re-map these registers into adjacent addresses to access multiple data from different data groups by using a single request. Refer to Section

4.3 for information on the user assignable registers. All data can be read either as 16-bit unsigned integer numbers using LIN3 conversion to get true values in engineering units, or as 32-bit long signed or unsigned integer numbers with scaling using multipliers to transmit fractional numbers. Note that in both cases, pulse and energy counters are transmitted as 32-bit unsigned long integers.

Along with the register address, the table shows for each data item its data identifier (ID). This is a one word containing a data group ID in the high byte and the parameter offset in a group in the low byte. Data IDs are used to specify input or output parameters whenever a data parameter specification is needed, for example, when selecting analog output parameters or reading Min/Max log records.

Extended data can be read, written or/and used as event triggers for event/alarm setpoints. A direction attribute shows allowable usage of the registers as follows: R = read, W = write, A = analog (numeric) trigger, B = binary

(digital) trigger, N = new value trigger. On using data for triggering events, see Section 5.15.

Table 5-2 16-bit Extended Data Registers

Parameter

kWh import pulse kWh export pulse kvarh import pulse

UINT16

Reg. Conv.

INT32

Register

None

None

Special Inputs

Voltage disturbance 7

Phase rotation 8

User event flags (bitmap)

Event flags (Table 5-12)

Event flag #1

Event flag #2

Event flag #3

Event flag #4

Event flag #5

Event flag #6

Event flag #7

Event flag #8

Internal events (bitmap)

6776 12160-12161

Point R/W

ID

0x0300 R

0x0300 B

0x0301 B

0x0302 B

0x0303 B

0x0304 B

0x0305 B

0x0306 B

0x0307 B

Unit

2

Range/Scale

1

Low High

0 0

0 100

0 2

0 4095

17

Parameter

kvarh export pulse kvarh total pulse kVAh total pulse

Start new power demand interval

Start new tariff interval

Start new volt/ampere demand interval

Start new sliding window demand interval

Timers

Timer #1

Timer #2

Timer #3

Timer #4

Status inputs (bitmap)

Status inputs (Table 5-13)

Status input #1

Status input #2

Status input #3

Status input #4

Status input #5

Status input #6

Status input #7

Status input #8

Status input #9

Status input #10

Status input #11

Status input #12

Pulse inputs (bitmap)

Pulse input #1

Pulse input #2

Pulse input #3

Pulse input #4

Pulse input #5

Pulse input #6

Pulse input #7

Pulse input #8

Pulse input #9

Pulse input #10

Pulse input #11

Pulse input #12

Relays (bitmap)

Relay status (Table 5-11)

Relay #1 status

Relay #2 status

Relay #3 status

Relay #4 status

Relay #5 status

Relay #6 status

Pulse counters

Pulse counter #1

Pulse counter #2

Pulse counter #3

Pulse counter #4

Pulse counter #5

Pulse counter #6

Pulse counter #7

7056-

7057

7058-

7059

7060-

7061

7062-

7063

7064-

7065

7066-

7067

7068-

7069

UINT16

Reg. Conv.

INT32

Register

6896 12544-12545

6976 12800-12801

Point

ID

0x0600 R

0x0700 B

R/W Unit

0x0800 R

0x0800 B

2

Range/Scale

1

Low High

0 4095

0 63

0 10

9 -1

0 10

9 -1

0 10

9 -1

0 10

9 -1

0 10

9 -1

0 10

9 -1

0 10

9 -1

18

Parameter

Pulse counter #8

Pulse counter #9

Pulse counter #10

Pulse counter #11

Pulse counter #12

Pulse counter #13

Pulse counter #14

Pulse counter #15

Pulse counter #16

UINT16

Reg.

7070-

7071

7072-

7073

7074-

7075

7076-

7077

7078-

7079

7080-

7081

7082-

7083

7084-

7085

7086-

7087

Conv.

INT32

Register

Point

ID

R/W Unit

2

Range/Scale

Low

0 10

0 10

0 10

0 10

0 10

0 10

0 10

0 10

0 10

High

9

9

9

9

9

9

9

9

9

-1

-1

-1

-1

-1

-1

-1

-1

-1

1

Time/Date parameters

Packed date

Packed time

Day of week

9

Year

10

Month

Day of month

Hour

Minute

Second

1= Sun 7=Sat

0 99

1 12

1 31

0 23

0 59

0 59

Real-time values per phase

Voltage L1/L12 6 7136

Voltage L2/L23 6 7137

Voltage L3/L31 6 7138

13314-13315

LIN3

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

7139

7140

7141

7142

7143

7144

7145

7146

7147

7148

7149

7150

7151

7152

7153

7154

7155

7156

7157

7158

7159

7160

7161

7162

7163

7164

7165

7166

7167

7168

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13318-13319

13320-13321

13322-13323

13324-13325

13326-13327

13328-13329

13330-13331

13332-13333

13334-13335

13336-13337

13338-13339

13340-13341

13342-13343

13344-13345

13346-13347

13348-13349

13350-13351

13352-13353

13354-13355

13356-13357

13358-13359

13360-13361

13362-13363

13364-13365

13366-13367

0x0C03 R/A

0x0C04 R/A

0x0C05 R/A

0x0C06 R/A

0x0C07 R/A

0x0C08 R/A

0x0C09 R/A

0x0C0A R/A

0x0C0B R/A

0x0C0C R/A

0x0C0D R/A

0x0C0E R/A

0x0C0F R/A

0x0C10 R/A

0x0C11 R/A

0x0C12 R/A

0x0C13 R/A

0x0C14 R/A

0x0C15 R/A

0x0C16 R/A

0x0C17 R/A

0x0C18 R/A

0x0C19 R/A

0x0C1A R/A

0x0C1B R/A

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0.001kW/1kW

0.001kvar/1kvar

0.001kvar/1kvar

0.001kvar/1kvar

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA

0.001

0.001

0.001

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0.1

0.1%

13368-13369

13370-13371 0x0C1D

13372-13373

0x0C1C R/A

R/A 0.1%

0x0C1E R/A

0.1%

0.1V/1V

13374-13375

13376-13377

0x0C1F R/A

0x0C20 R/A

0.1V/1V

0.1V/1V

0

0

0

Imax

Imax

Imax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax

-Pmax

-Pmax

0

0

0

0

1.0

1.0

1.0

0

0

0

0

0

0

Pmax

Pmax

Pmax

Pmax

Pmax

Pmax

-1.000 1.000

-1.000 1.000

-1.000 1.000

0

0

0

0

0

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

Real-time low values on any phase

Low voltage 6 7176

Low current

Low kW

Low kvar

Low kVA

7177

7178

7179

7180

LIN3

LIN3

LIN3

LIN3

13442-13443

13444-13445

13446-13447

13448-13449

0x0B02 A

0x0B03

0x0B05 A

0x0B06

0x0D01 R/A

0x0D02 R/A

0x0D03 R/A

0x0D04 R/A

0.01A

0.001kW/1kW

0.001kvar/1kvar

0.001kVA/1kVA

0

0

0

0

Vmax

Vmax

Imax

Imax

19

Parameter

Low PF Lag

Low PF Lead

Low voltage THD

Low current THD

Low K-Factor

Low current TDD

Low L-L voltage

Reg. Conv.

7181

7182

7183

7184

7185

7186

7187

UINT16

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

INT32

Register

13450-13451

13452-13453

13454-13455

13456-13457

13458-13459

13460-13461

13462-13463

Real-time high values on any phase

High voltage 6 7216

High current

High kW

High kvar

High kVA

High PF Lag

High PF Lead

High voltage THD

7217

7218

7219

7220

7221

7222

7223

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13570-13571

13572-13573

13574-13575

13576-13577

13578-13579

13580-13581

13582-13583

High current THD

High K-Factor

High current TDD

High L-L voltage

Real-time total values

7224

7225

7226

7227

LIN3

LIN3

LIN3

LIN3

13584-13585

13586-13587

13588-13589

13590-13591

Point

ID

R/W

0x0D05 R/A

0x0D06 R/A

0x0D07 R/A

0x0D08 R/A

0x0D09 R/A

0x0D0A R/A

0x0D0B R/A

0x0E01 R/A

0x0E02 R/A

0x0E03 R/A

0x0E04 R/A

0x0E05 R/A

0x0E06 R/A

0x0E07 R/A

0x0E08 R/A

0x0E09 R/A

0x0E0A R/A

0x0E0B R/A

0.001

0.001

0.1%

0.1%

0.1

0.1%

0.1V/1V

0.01A

0.001

0.1%

0.1%

0.1

0.1%

Unit

0.1V/1V

2

0.001kW/1kW

0.001kvar/1kvar 0

0.001kVA/1kVA

0.001

0

0

0

Range/Scale

Low

-Pmax

-Pmax

-Pmax

High

0 Imax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

0 Vmax

0

0

Vmax

Vmax

Imax

Imax

Imax

-Pmax Pmax

-Pmax Pmax

Pmax

Pmax

Pmax

Vmax

1

Total kW

Total kvar

Total kVA

Total PF

Total PF lag

Total PF lead

7256

7257

7258

7259

7260

7261

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13696-13697

13698-13699

13700-13701

13702-13703

13704-13705

13706-13707

0x0F01 R/A

0x0F02 R/A

0x0F03 R/A

0.001kvar/1kvar

0.001kVA/1kVA

0.001

0x0F04 R/A 0.001

0x0F05 R/A 0.001

-Pmax

0

-1.000

Pmax

Pmax

1.000

-1.000 1.000

-1.000 1.000

Total kW import

Total kW export

Total kvar import

7262

7263

7264

3-phase average L-L voltage 7267

3-phase average current

Real-time auxiliary values

7268

LIN3

LIN3

LIN3

13708-13709

13710-13711

13712-13713

0x0F06 R/A 0.001kW/1kW 0

0x0F07 R/A 0.001kW/1kW 0

0x0F08 R/A 0.001kvar/1kvar 0

Total kvar export

3-phase average voltage 6

7265 LIN3 13714-13715 0x0F09 R/A

7266 LIN3 13716-13717 0x0F0A

0.001kvar/1kvar 0

R/A 0.1V/1V 0

LIN3

LIN3

13718-13719

13720-13721

0x0F0B R/A

0x0F0C R/A

0.1V/1V

0.01A

0

0

Pmax

Pmax

Pmax

Pmax

Vmax

Vmax

Imax

Auxiliary current 7296 LIN3 13824-13825 0x1000 R/A 0.01A/mA 0

Neutral current

Frequency 4

Voltage unbalance

7297

7299

LIN3 13826-13827

LIN3

LIN3 13830-13831

0x1001 R/A

0x1002

0x1003 R/A

0.01A

1%

0

0

Imax

0

300

Current unbalance

DC voltage

7300

7301

LIN3

LIN3

13832-13833

13834-13835

0x1004 R/A

0x1005 R/A

1%

0.01V

0

0

300

9999.00

Average values per phase

Voltage L1/L12 6 7336

Voltage L2/L23 6 7337

Voltage L3/L31 6 7338

13954-13955

LIN3

Current L1

Current L2

Current L3 kW L1 kW L2

7339

7340

7341

7342

7343

LIN3

LIN3

LIN3

LIN3

LIN3

13958-13959

13960-13961

13962-13963

13964-13965

13966-13967

0x1103 R/A

0x1104 R/A

0x1105 R/A

0x1106 R/A

0x1107 R/A kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

Power factor L1

Power factor L2

Power factor L3

7344

7345

7346

7347

7348

7349

7350

7351

7352

7353

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13968-13969

13970-13971

13972-13973

13974-13975

13976-13977

13978-13979

13980-13981

13982-13983

0x1108 R/A

0x1109 R/A

0x110A R/A

0x110B R/A

0x110C R/A

0x110D R/A

0x110E R/A

0x110F R/A

13984-13985 0x1110 R/A

13986-13987 0x1111 R/A

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

7354

7355

7356

7357

7358

7359

7360

7361

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

13988-13989

13990-13991

13992-13993

13994-13995

13996-13997

13998-13999

14000-14001

14002-14003

0x1112 R/A

0x1113 R/A

0x1114 R/A

0x1115 R/A

0x1116 R/A

0x1117 R/A

0x1118 R/A

0x1119 R/A

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0

0

0

0

1.0

1.0

Imax

Imax

Imax

-Pmax Pmax

-Pmax Pmax

0.001kW/1kW -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA 0 Pmax

0.001kVA/1kVA

0.001kVA/1kVA

0.001

0.001

0.001

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0

0

Pmax

Pmax

-1.000 1.000

-1.000 1.000

-1.000 1.000

0

0

0

0

0

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

20

Parameter

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

Reg. Conv.

7362

7363

7364

7365

7366

7367

7368

UINT16

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

INT32

Register

0.001

0.1%

0.1%

0.1

0.1%

Unit

2

14004-14005

14006-14007

0x111A R/A

0x111B R/A

0.1

0.1%

14008-14009

14010-14011 0x111D

14012-14013

0x111C R/A

R/A 0.1%

0x111E R/A

0.1%

0.1V/1V

14014-14015

14016-14017

0x111F R/A

0x1120 R/A

0.1V/1V

0.1V/1V

Average low values on any phase

Low voltage 6 7376

Low current

Low kW

Low kvar

Low kVA

Low PF Lag

Low PF Lead

Low voltage THD

7377

7378

7379

7380

7381

7382

7383

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

14082-14083

14084-14085

14086-14087

14088-14089

14090-14091

14092-14093

14094-14095

Low current THD

Low K-Factor

Low current TDD

7384

7385

7386

Low L-L voltage 7387

Average high values on any phase

LIN3

LIN3

LIN3

LIN3

14096-14097

14098-14099

14100-14101

14102-14103

Point R/W

ID

0x1201 R/A

0x1202 R/A

0x1203 R/A

0x1204 R/A

0x1205 R/A

0x1206 R/A

0x1207 R/A

0x1208 R/A

0x1209 R/A

0x120A R/A

0x120B R/A

0.01A

0.001kW/1kW

0.1V/1V

0

0

0.001kvar/1kvar 0

0.001kVA/1kVA

0.001

0

0

Range/Scale

1

Low

1.0

0

0

0

0

High

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

0

0

Vmax

Vmax

Imax

Imax

Imax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax

0

Pmax

Vmax

High voltage 6 7416

High current

High kW

High kvar

High kVA

High PF Lag

7417

7418

7419

7420

7421

LIN3

LIN3

LIN3

LIN3

LIN3

14210-14211

14212-14213

14214-14215

14216-14217

14218-14219

High PF Lead

High voltage THD

High current THD

High K-Factor

High current TDD

High L-L voltage

Average total values

7422

7423

7424

7425

7426

7427

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

14220-14221

14222-14223

14224-14225

14226-14227

14228-14229

14230-14231

0x1301 R/A

0x1302 R/A

0x1303 R/A

0x1304 R/A

0x1305 R/A

0x1306 R/A

0x1307 R/A

0x1308 R/A

0x1309 R/A

0x130A R/A

0x130B R/A

0.01A

0.001kW/1kW

0

0.001kvar/1kvar 0

0.001kVA/1kVA

0.001

0.001

0.1%

0.1%

0.1

0.1%

0.1V/1V

0

0

0

Vmax

Vmax

Imax

Imax

Imax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

-Pmax Pmax

0 Vmax

Total kW

Total kvar

Total kVA

Total PF

Total PF lag

Total PF lead

Total kW import

7456

7457

7458

7459

7460

7461

7462

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

14336-14337

14338-14339

14340-14341

14342-14343

0x1401 R/A

0x1402 R/A

0x1403 R/A

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA

0.001

0

-1.000

Pmax

1.000

-1.000 1.000

14346-14347 0x1405 R/A

14348-14349 0x1406

0.001 -1.000 1.000

R/A 0.001kW/1kW 0 Pmax

Total kW export

Total kvar import

Total kvar export

7463

7464

7465

LIN3

LIN3

LIN3

14350-14351 0x1407

14352-14353

14354-14355

0x1408 R/A

0x1409 R/A

0.001kvar/1kvar

0.001kvar/1kvar

3-phase average voltage 6 7466 LIN3 14356-14357 0x140A

3-phase average L-L voltage 7467 LIN3 14358-14359 0x140B R/A 0.1V/1V

3-phase average current

Average auxiliary values

7468 LIN3 14360-14361 0x140C R/A 0.01A

0

0

0

0

0

Pmax

Pmax

Pmax

Vmax

Vmax

Imax

Auxiliary current

Neutral current

DC voltage

Present demands

7496

7497

LIN3

LIN3

14464-14465

14466-14467

Frequency 4 7498

Voltage unbalance

Current unbalance

7499

7500

LIN3

LIN3

14470-14471

14472-14473

7501 LIN3 14474-14475

0x1500 R/A 0.01A/mA

0x1501 R/A 0.01A

0x1503 R/A

0x1504 R/A

0x1505 R/A

1%

1%

0.01V

0

0

0

0

0

Imax

300

300

9999.00

Volt demand L1/L12 6 7536

Volt demand L2/L23 6 7537

Volt demand L3/L31 6 7538

Ampere demand L1 7539 LIN3 14598-14599

Ampere demand L2

Ampere demand L3

7540

7541

LIN3

LIN3

14600-14601

14602-14603

R/A 0 Vmax

R/A 0 Vmax

R/A 0 Vmax

0x1603 R/A 0.01A 0 Imax

0x1604 R/A

0x1605 R/A

0.01A

0.01A

0

0

Imax

Imax kW import block demand 7542 kvar import block demand 7543 kVA block demand 7544

LIN3 14604-14605 0x1606

LIN3

LIN3

14606-14607

14608-14609

0x1607 R/A

0x1608 R/A

0.001kvar/1kvar

0.001kVA/1kVA

0

0

Pmax

Pmax

Pmax

7545 LIN3 14610-14611 0x1609 Pmax kW import sliding window demand kvar import sliding window demand

7546 LIN3 14612-14613 0x160A Pmax

21

Parameter UINT16

Reg. Conv.

INT32

Register

Point R/W

ID

Unit

2

Range/Scale

1

Low High

kVA sliding window demand 7547 kW import thermal demand 7548

LIN3 14614-14615 0x160B R/A

LIN3 14616-14617 0x160C

0.001kVA/1kVA 0 Pmax

R/A 0.001kW/1kW 0 Pmax kvar import thermal demand 7549 kVA thermal demand kW import accumulated

7550

LIN3

LIN3

14618-14619

14620-14621

0x160D R/A

0x160E R/A

7551 LIN3 14622-14623 0x160F

0.001kvar/1kvar

0.001kVA/1kVA

0

0

Pmax

Pmax

R/A 0.001kW/1kW 0 Pmax demand kvar import accumulated 7552 LIN3 14624-14625 0x1610 Pmax demand kVA accumulated demand 7553 kW import predicted sliding

LIN3 14626-14627 0x1611 R/A

7554 LIN3 14628-14629 0x1612

0.001kVA/1kVA 0 Pmax

R/A 0.001kW/1kW 0 Pmax window demand kvar import predicted sliding window demand kVA predicted sliding window demand

PF (import) at maximum kVA sliding window demand

7555 LIN3 14630-14631 0x1613

7556 LIN3 14632-14633 0x1614

Pmax

Pmax kW export block demand 7558 kvar export block demand 7559 kW export sliding window

LIN3 14636-14637 0x1616 Pmax

LIN3 14638-14639 0x1617 R/A

7560 LIN3 14640-14641 0x1618

0.001kvar/1kvar 0

R/A 0.001kW/1kW 0

Pmax

Pmax demand kvar export sliding window demand kW export accumulated demand kvar export accumulated demand

7561 LIN3 14642-14643 0x1619

7562 LIN3 14644-14645 0x161A

7563 LIN3 14646-14647 0x161B

Pmax

Pmax

Pmax kW export predicted sliding window demand kvar export predicted sliding

7564 LIN3 14648-14649 0x161C Pmax

7565 LIN3 14650-14651 0x161D Pmax window demand kW export thermal demand 7560 LIN3 14652-14653 0x161E Pmax kvar export thermal demand 7561

Total energies

LIN3 14654-14655 0x161F R/A 0.001kvar/1kvar 0 Pmax

0 10

9 -1 kWh import 7576- kWh export kWh net kWh total kvarh import

7577

7578-

7579

7580-

7581

7582-

7583

7584- kvarh export kvarh net

7585

7586-

7587

7588-

7589 kvarh total kVAh total

7590-

7591

7592-

7593

L1/L12 phase voltage harmonics

14722-14723

14724-14725

14726-14727

14728-14729

14730-14731

14732-14733

14734-14735

14736-14737

0x1701 R

0x1702 R

0x1703 R

0x1704 R

0x1705 R

0x1704 R

0x1705 R

0x1708 R kWh kWh kWh kvarh kvarh kvarh kvarh kVAh

0

-10

0

0

0

-10

0

0

9

9

10

+1 10

10

10

10

+1 10

10

10

9

9

9

9

9

9

9

9

-1

-1

-1

-1

-1

-1

-1

-1

Harmonic H01

Harmonic H02

...

Harmonic H40

7656

7657

...

7695

L2/L23 phase voltage harmonics

Harmonic H01

Harmonic H02

...

7696

7697

...

Harmonic H40 7735

L3 phase voltage harmonics

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

14976-14977

14978-14979

14054-14055

15104-15105

15106-15107

15182-15183

0x1900 R/A

0x1901 R/A

. . .

0x1927 R/A

0x1A00 R/A

0x1A01 R/A

. . .

0x1A27 R/A

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0

0

0

0

0

0

100.00

100.00

100.00

100.00

100.00

100.00

Harmonic H01

Harmonic H02

...

Harmonic H40

L1 phase current harmonics

7736

7737

...

7775

LIN3

LIN3

LIN3

15232-15233

15234-15235

15310-15311

0x1B00 R/A

0x1B01 R/A

. . .

0x1B27 R/A

0.01%

0.01%

0.01%

0

0

0

100.00

100.00

100.00

22

Parameter

Harmonic H01

Harmonic H02

...

Harmonic H40

Reg.

7776

7777

...

7815

L2 phase current harmonics

Harmonic H01 7816

Harmonic H02

...

Harmonic H40

7817

...

7855

UINT16

Conv.

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

INT32

Register

15360-15361

15362-15363

15438-15439

15488-15489

15490-15491

15566-15567

L3 phase current harmonics

Harmonic H01

Harmonic H02

...

Harmonic H40

7856

7857

...

7895

LIN3

LIN3

LIN3

15616-15617

15618-15619

15694-15695

L1/L12 phase harmonic voltages (odd harmonics)

Harmonic H01

Harmonic H03

. . .

Harmonic H39

7896

7897

...

7915

LIN3

LIN3

LIN3

15744-15745

15746-15747

15782-15783

L2/L23 phase harmonic voltages (odd harmonics)

Harmonic H01

Harmonic H03

. . .

7936

7937

...

LIN3

LIN3

15872-15873

15874-15875

Harmonic H39 7955 LIN3

L3 phase harmonic voltages (odd harmonics)

15910-15911

Harmonic H01

Harmonic H03

. . .

Harmonic H39

7976

7977

...

7995

LIN3

LIN3

LIN3

16000-16001

16002-16003

16038-16039

Point

ID

0x1C00 R/A

0x1C01 R/A

. . .

0x1C27 R/A

0x1D00 R/A

0x1D01 R/A

. . .

0x1D27 R/A

0x1E00 R/A

0x1E01 R/A

. . .

R/W

0x1E27 R/A

0x1F00 R/A

0x1F01 R/A

. . .

0x1F13 R/A

0x2000 R/A

0x2001 R/A

. . .

0x2013 R/A

0x2100 R/A

0x2101 R/A

. . .

0x2113 R/A

Unit

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.01%

0.1V/1V

0.1V/1V

0.1V/1V

0.1V/1V

0.1V/1V

0.1V/1V

0.1V/1V

0.1V/1V

0.1V/1V

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Range/Scale

Low

0

0

0

High

100.00

100.00

100.00

100.00

100.00

100.00

Vmax

Vmax

Vmax

Vmax

Vmax

Vmax

Vmax

Vmax

Vmax

1

100.00

100.00

100.00

L1 phase harmonic current (odd harmonics)

Harmonic H01 8016 LIN3

Harmonic H03

. . .

8017

...

LIN3

Harmonic H39 8035 LIN3

L2 phase harmonic current (odd harmonics)

Harmonic H01

Harmonic H03

. . .

Harmonic H39

8056

8057

...

8075

LIN3

LIN3

LIN3

16128-16129

16130-16131

16166-16167

16256-16257

16258-16259

16294-16295

L3 phase harmonic current (odd harmonics)

Harmonic H01 8096 LIN3

Harmonic H03

. . .

8097

...

LIN3

Harmonic H39 8115

Harmonic total kW (odd harmonics)

LIN3

16384-16385

16386-16387

16422-16423

0x2200 R/A

0x2201 R/A

. . .

0x2213 R/A

0x2300 R/A

0x2301 R/A

. . .

0x2313 R/A

0x2400 R/A

0x2401 R/A

. . .

0x2413 R/A

0.01A

0.01A

0.01A

0.01A

0.01A

0.01A

0.01A

0.01A

0.01A

0

0

0

0

0

0

0

0

0

Imax

Imax

Imax

Imax

Imax

Imax

Imax

Imax

Imax

Harmonic H01

Harmonic H03

. . .

Harmonic H39

8136

8137

...

8155

Harmonic total kvar (odd harmonics)

Harmonic H01 8176 LIN3

Harmonic H03

. . .

Harmonic H39

8177

...

8195

LIN3

LIN3

Harmonic total PF (odd harmonics)

LIN3

LIN3

LIN3

16512-16513

16514-16515

16550-16551

16640-16641

16642-16643

16678-16679

. . .

0x2600 R/A

0x2601 R/A

. . .

0x2613 R/A

0.001kvar/1kvar

Harmonic H01

Harmonic H03

. . .

8216

8217

...

LIN3

LIN3

Harmonic H39 8235 LIN3

Minimum real-time values per phase (M)

16768-16769

16770-16771

16806-16807

0x2700 R/A 0.001

0x2701 R/A 0.001

. . .

0x2713 R/A

Voltage L1/L12 6 8416

Voltage L2/L23 6 8417

17408-17409

LIN3

Voltage L3/L31

Current L1

6 8418

8419 LIN3

17412-17413

17414-17415 0x2C03 R/N

Current L2

Current L3 kW L1

8420

8421

8422

LIN3

LIN3

LIN3

17416-17417

17418-17419

17420-17421

0x2C04 R/N

0x2C05 R/N

0x2C06 R/N

0.001

0.01A

0,01A

0,01A

0.001kW/1kW

-Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

-1.000 1.000

-1.000 1.000

-1.000 1.000

0

0

0

Pmax

Imax

Imax

Imax

-Pmax Pmax

23

Parameter UINT16

Reg. Conv.

INT32

Register

Point R/W

ID

Unit

2

Range/Scale

1

Low High

kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

8423

8424

8425

8426

8427

8428

8429

8440

8441

8442

8443

8444

8445

8446

8447

8448

Minimum real-time total values (M)

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

17422-17423

17424-17425

17426-17427

17428-17429

17430-17431

17432-17433

17434-17435

0x2C07 R/N

0x2C08 R/N

0x2C09 R/N

0x2C0A R/N

0x2C0B R/N

0x2C0C R/N

0x2C0D R/N

0.001kW/1kW

0.001kW/1kW

-Pmax Pmax

-Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA

0.001kVA/1kVA

0

0

Pmax

Pmax kVA L3

Power factor L1

Power factor L2

3

3

8430 LIN3

8431

8432

17436-17437 0x2C0E R/N

17438-17439

0.001kVA/1kVA

R/N

R/N

0 Pmax

0.001 -1.000

1.000

Power factor L3 3 8433

Voltage THD L1/L12 8434 LIN3

17442-17443

17444-17445 0x2C12 R/N

Voltage THD L2/L23

Voltage THD L3

Current THD L1

Current THD L2

Current THD L3

8435

8436

8437

8438

8439

LIN3

LIN3

LIN3

LIN3

LIN3

17446-17447

17448-17449

17450-17451

17452-17453

17454-17455

0x2C13 R/N

0x2C14 R/N

0x2C15 R/N

0x2C16 R/N

0x2C17 R/N

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0

0

0

0

0

0

999.9

999.9

999.9

999.9

999.9

999.9

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

17456-17457

17458-17459

17460-17461

17462-17463

17464-17465

17468-17469

17470-17471

17472-17473

0x2C18 R/N

0x2C19 R/N

0x2C1A R/N

0x2C1B R/N

0x2C1C R/N

0x2C1E R/N

0x2C1F R/N

0x2C20 R/N

0.1

0.1

0.1

0.1%

0.1%

0.1V/1V

0.1V/1V

0.1V/1V

1.0

1.0

1.0

0

0

0

0

0

0

999.9

999.9

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

Total kW

Total kvar

Total kVA

Total PF 3

8456

8457

8458

LIN3

LIN3

LIN3

17536-17537

17538-17539

17540-17541

8459

Total PF lag

Total PF lead

8460

8461

LIN3

LIN3

17544-17545

17546-17547

0x2D01 R/N

0x2D02 R/N

0x2D04 R/N

0x2D05 R/N

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA

0x2D03

0

0.001

0.001

0.001

0

0

Pmax

1.000

1.000

1.000

Minimum real-time auxiliary values (M)

Auxiliary current 8496 LIN3 17664-17665 0x2E00 R/N 0.01A/mA 0

Neutral current

Frequency 4

8497 LIN3 17666-17667

8498

0x2E01 R/N 0.01A

0x2E02

0

0.01Hz

Voltage unbalance

Current unbalance

DC voltage

8499

8500

8501

LIN3

LIN3

LIN3

17670-17671

17672-17673

17674-17675

0x2E03 R/N

0x2E04 R/N

0x2E05 R/N

1%

1%

0.01V

0

0

0

Imax

100.00

300

300

9999.00

Minimum demands (M) - Reserved

Reserved 8536-

8552

17792-17793

18824-18825

0x2F00-

0x2F12

Programmable Min/Max minimum registers (M)

Register #1 8576 LIN3 17664-17665

Register #2

. . .

Register #16

8577

...

8590

LIN3

LIN3

17666-17667

...

14470-14471

Maximum real-time values per phase (M)

0x3000 R/N

0x3001 R/N

. . .

R

0x300F R/N

5

5

5

0 0

5

5

5

5

5

5

Voltage L1/L12 6 8736

Voltage L2/L23 6 8737

18432-18433

LIN3

Voltage L3/L31

Current L1

Current L2

Current L3 kW L1 kW L2 kW L3 kvar L1 kvar L2 kvar L3 kVA L1 kVA L2 kVA L3

6

Power factor L1

Power factor L2

8738

3

3

8739

8740

8741

8742

8743

8744

8745

8746

8747

8748

8749

8750

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

8751

8752

18436-18437

18438-18439

18440-18441

18442-18443

18444-18445

18446-18447

18448-18449

18450-18451

18452-18453

18454-18455

18456-18457

18458-18459

18460-18461

0x3403 R/N

0x3404 R/N

0x3405 R/N

0x3406 R/N

0x3407 R/N

0x3408 R/N

0x3409 R/N

0x340A R/N

0x340B R/N

0.01A

0.01A

0.01A

0.001kW/1kW

0.001kW/1kW

0.001kW/1kW

0

0

0

-Pmax

-Pmax

-Pmax

Imax

Imax

Imax

Pmax

Pmax

Pmax

0.001kvar/1kvar -Pmax Pmax

0x340C R/N

0x340D R/N

0x340E R/N

0.001kvar/1kvar -Pmax Pmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA

0

0

0

Pmax

Pmax

Pmax

0x340F 0.001 -1.000

R/N

1.000

1.000

Power factor L3 3 8753

Voltage THD L1/L12 8754 LIN3 18468-18469

0x3411

0x3412 R/N

0.001 -1.000

0.1% 0

1.000

999.9

24

Parameter UINT16

Reg. Conv.

INT32

Register

Voltage THD L2/L23

Voltage THD L3

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

8762

8763

8764

8765

8766

8767

8768

8755

8756

8757

8758

8759

8760

8761

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

18470-18471

18472-18473

18474-18475

18476-18477

18478-18479

18480-18481

18482-18483

18484-18485

18486-18487

18488-18489

Maximum real-time total values (M)

Total kW 8776 LIN3 18560-18561

Total kvar

Total kVA

8777

8778

LIN3

LIN3

18562-18563

18564-18565

Total PF 3 8779

Total PF lag

Total PF lead

8780

8781

LIN3

LIN3

18568-18569

18570-18571

Maximum real-time auxiliary values (M)

18492-18493

18494-18495

18496-18497

Point

ID

R/W

0x3413 R/N

0x3414 R/N

0x3415 R/N

0x3416 R/N

0x3417 R/N

0x3418 R/N

0x3419 R/N

0x341A R/N

0x341B R/N

0x341C R/N

0x341E R/N

0x341F R/N

0x3420 R/N

0x3501 R/N

0x3502 R/N

0x3504 R/N

0x3505 R/N

0.1%

0.1%

0.1%

0.1%

0.1%

0.1

0.1

0.1

0.1%

0.1%

Unit

0.1V/1V

0.1V/1V

0.1V/1V

2

Range/Scale

Low

0

0

0

0

0

1.0

1.0

1.0

0

0

0

0

0

0

High

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

100.0

100.0

1

100.0

Vmax

Vmax

Vmax

0.001kvar/1kvar -Pmax Pmax

0.001kVA/1kVA

R/N

0.001

0.001

0

0.001

Pmax

0

0

0

1.000

1.000

Auxiliary current

Neutral current

Frequency 4

8816

8817

LIN3

LIN3

18688-18689

18680-18681

8818

0x3600 R/N

0x3601 R/N

18682-18683

0.01A/mA

0.01A

0x3602

0

0

0.01Hz

Imax

100.00

Voltage unbalance

Current unbalance

DC voltage

Maximum demands (M)

8819

8820

8821

LIN3

LIN3

LIN3

18684-18685

18686-18687

18688-18689

0x3603 R/N

0x3604 R/N

0x3605 R/N

1%

1%

0.01V

0

0

0

300

300

9999.00

Max. volt demand L1/L12

Max. volt demand L2/L23

Max. volt demand L3/L31

Max. ampere demand L1

Max. ampere demand L2

6

6

6

8856 LIN3 18816-18817 0x3700 R

8857 LIN3 18818-18819 0x3701 R

8858 LIN3 18820-18821 0x3702 R

8859

8860

LIN3

LIN3

18822-18823

18824-18825

0x3703 R

0x3704 R

Max. ampere demand L3 8861 LIN3 18826-18827

Reserved 8862

0x3705 R 0.01A

0x3706

0 Imax

0

Reserved 8864

Max. sliding window kW

LIN3

18832-18833

R 0.001kW/1kW 0 Pmax import demand

Max. sliding window kvar import demand

Max. sliding window kVA demand

Max. kW import thermal demand

8866 LIN3 18836-18837 0x370A

8867 LIN3 18838-18839 0x370B

8868 LIN3 18840-18841 0x370C

0.1V/1V

0.1V/1V

0.1V/1V

0.01A

0.01A

0

0

0

0

0

0.001kvar/1kvar 0

0.001kVA/1kVA 0

0.001kW/1kW 0

Vmax

Vmax

Vmax

Imax

Imax

Pmax

Pmax

Pmax

Max. kvar import thermal demand

8869 LIN3 18842-18843 0x370D

Max. kVA thermal demand 8870 LIN3 18844-18845 0x370E R

0.001kvar/1kvar 0

0.001kVA/1kVA 0

Pmax

Pmax

8871 LIN3 18846-18847 0x370F 0.001kW/1kW 0 Pmax Max. sliding window kW export demand

Max. sliding window kvar export demand

Max. kW export thermal demand

Max. kvar export thermal

8872 LIN3 18848-18849 0x3710

8873 LIN3 18840-18841 0x3711

8874 LIN3 18842-18843 0x3712

0.001kvar/1kvar 0

0.001kW/1kW 0

0.001kvar/1kvar 0

Pmax

Pmax

Pmax demand

Programmable Min/Max maximum registers (M)

Register #1

Register #2

. . .

Register #16

8896

8897

...

8911

LIN3

LIN3

LIN3

18944-18945

18946-18947

...

18974-18975

0x3800 R/N

0x3801 R/N

. . .

0x380F R/N

5

5

5

5

5

5

5

5

5

TOU system parameters

Active tariff

Active profile

TOU energy register #1

Tariff #1 register

9056

9057

9096-

9097

19456-19457

19458-19459

0x3C00 R/A

0x3C01 R/A

R

0

0

-10 9

15

15

+1 10 9 -1

25

Tariff #2 register

...

Parameter

Tariff #16 register

UINT16

Reg. Conv.

9098-

9099

...

9126-

9127

...

INT32

Register

Point

...

ID

19614-19615

R/W

R

5

TOU energy register #2

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

Tariff #2 register

...

Tariff #16 register

9136-

9137

9138-

9139

...

9166-

9167

TOU energy register #3

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

TOU energy register #6

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9176-

9177

9178-

9179

...

9206-

9207

TOU energy register #4

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9216-

9217

9218-

9219

9246-

9247

TOU energy register #5

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9256-

9257

9258-

9259

...

9286-

9287

9296-

9297

9298-

9299

...

9326-

9327

TOU energy register #7

Tariff #1 register 9336-

9337

9338-

9339

...

9366-

9367

TOU energy register #8

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9376

9377

9378

9379

...

9406

9407

TOU energy register #9

Tariff #1 register

Tariff #2 register

...

9656-

9657

9658-

9659

...

...

...

R

...

19998-19999

...

20126-20127

...

...

20382-20383

...

...

...

...

...

...

...

20510-20511

... ...

R

R

R

R

R

R

R

R

R

R

5

R

R

R

R

R

5

R

R

5

R

R

Unit

2

Range/Scale

1

Low High

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-109+1 109-1

-109+1 109-1

-109+1 109-1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

26

Parameter

Tariff #16 register

UINT16

Reg. Conv.

9686-

9687

INT32

Register

Point

ID

R/W

R

TOU energy register #10

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9696-

9697

9698-

9699

...

9726-

9727

... ...

21534-21535

R

R

5

TOU energy register #11

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9736-

9737

9738-

9739

...

9766-

9767

... ...

21662-21663

R

R

5

TOU energy register #12

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9776-

9777

9778-

9779

...

9806-

9807

... ...

21790-21791

R

R

5

TOU energy register #13

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9816-

9817

9818-

9819

...

9846-

9847

... ...

R

R

R

TOU energy register #14

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9856-

9857

9858-

9859

...

9886-

9887

... ...

22046-22047

R

R

5

TOU energy register #15

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

TOU energy register #16

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9936-

9937

9938-

9939

...

9966-

9967

TOU maximum demand register #1 (M)

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

TOU maximum demand register #2 (M)

Tariff #1 register

Tariff #2 register

...

9896-

9897

9898-

9899

...

9926-

9927

9536

9537

...

9551

9576

9577

...

LIN3

LIN3

LIN3

LIN3

LIN3

...

22174-22175

...

20992-20993

20994-20995

...

21022-21023

21120-21121

21122-21123

...

...

...

...

0x4900 R/N

0x4901 R/N

...

R

R

R

R

R

0x4800 R/N

0x4801 R/N

0x480F R/N

5

5

5

5

5

5

Unit

2

Range/Scale

1

Low High

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

0 Pmax

0 Pmax

0 Pmax

0 Pmax

0 Pmax

27

Parameter UINT16

Reg. Conv.

Tariff #16 register 9591 LIN3

TOU maximum demand register #3 (M)

INT32

Register

21150-21151

Point

ID

R/W

0x490F R/N 5

Unit

Tariff #1 register

Tariff #2 register

...

Tariff #16 register

9616

9617

...

9631

LIN3

LIN3

LIN3

21248-21249

21250-21251

...

21278-21279

0x4A00 R/N

0x4A01 R/N

...

0x4A0F R/N

5

5

5

TOU season tariff energy registers - only as a reference for TOU profile logs

Season tariff #1 register

Season tariff #2 register

...

Season tariff #16 register

0x7000 R

0x7001 R

...

0x700F R

5

5

5

TOU season tariff maximum demand registers - only as a reference for TOU profile logs

2

Season tariff #1 register

Season tariff #2 register

...

Season tariff #16 register

Setpoint status (bitmap)

11

LIN3

LIN3

LIN3

0x7100 R

0x7101 R

...

0x710F R

0.001kVA/1kVA

0.001kVA/1kVA

0.001kVA/1kVA status

Setpoint #1 status

Setpoint #2 status

Setpoint #3 status

Setpoint #4 status

Setpoint #5 status

Setpoint #6 status

Setpoint #7 status

Setpoint #8 status

Setpoint #9 status

Setpoint #10 status

Setpoint #11 status

Setpoint #12 status

Setpoint #13 status

Setpoint #14 status

Setpoint #15 status

Setpoint #16 status

0x7C00 B

0x7C01 B

0x7C02 B

0x7C03 B

0x7C04 B

0x7C05 B

0x7C06 B

0x7C07 B

0x7C08 B

0x7C09 B

0x7C0A B

0x7C0B B

0x7C0C B

0x7C0D B

0x7C0E B

0x7C0F B

0

0

0

Range/Scale

1

Low High

0 Pmax

0 Pmax

0 Pmax

0 Pmax

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

-10 9 +1 10 9 -1

Pmax

Pmax

Pmax

1 For parameter limits, see Note 1 to Table 4-1

2 When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.

3 New absolute min/max value (lag or lead).

4 The actual frequency range is 45.00 - 65.00 Hz.

5 The Programmable Min/Max register, TOU energy and TOU maximum demand register unit and range match those of the input parameter for which the register is allocated.

6 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

7 Operate limit for the voltage disturbance trigger specifies the voltage deviation allowed in percentage of nominal (full scale) voltage, which refers to line-to-line voltage in 3OP2 and 3OP3 wiring modes, and to line-toneutral voltage in other modes. The nominal voltage is 120

× PT Ratio VRMS for instruments with the 120V input option, and 380

× PT Ratio VRMS for instruments with the 690V input option.

8 The phase rotation limits: 0 = error, 1 = positive rotation, 2 = negative rotation.

9 Packed date format: year

× 10000 + month × 100 + day of month.

10 Packed time format: hour

× 10000 + minute × 100 + second.

11

Available starting with F/W Versions 2.27.2/2.37.2 or later.

(M) These parameters are logged to the Min/Max log.

5.3 Basic Setup Registers

Table 5-3 Basic Setup Registers

Wiring mode 1

Parameter Register

2304

Type R/W Range

UINT16 R/W 0 = 3OP2, 1 = 4LN3, 2 = 3DIR2,

3 = 4LL3, 4 = 3OP3, 5 = 3LN3,

6 = 3LL3

28

Parameter

PT ratio

CT primary current

Power demand period

Volt/ampere demand period

Averaging buffer size

Reset enable/disable

Auxiliary CT primary current

The number of demand periods

Thermal demand time constant

The number of pre-event cycles for the waveform recorder

Nominal frequency

Maximum demand load current

Reserved

DC voltage offset 2

DC voltage full scale 2

The number of cycles in a waveform series for Waveform Log #1.

Register

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

Type R/W Range

UINT16 R/W 10 to 65000 × 0.1

UINT16 R/W 1 to 5000 A

UINT16 R/W 1,2,5,10,15,20,30,60 min,

255 = external synchronization

UINT16 R/W 0 to 1800 sec

UINT16 R/W 8, 16, 32

UINT16 R/W 0 = disable, 1 = enable

UINT16 R/W 1 to 5000 A/mA

UINT16 R/W 1 to 15

UINT16 R/W 10 to 36000 x 0.1sec

UINT16 R/W 1 to 8

UINT16 R/W 50, 60 Hz

UINT16 R/W 0 to 10,000 A

(0 = CT primary current)

UINT16 R Read as 65535

UINT16 R/W 0 to 9999 (default 0)

UINT16 R/W 0 to 9999 (default 20, 100 or 300)

UINT16 R/W 0 to 2560 (will be rounded to a nearest bigger number multiple of

16),

0 = auto-select 3

1

The wiring mode options are as follows:

3OP2 - 3-wire open delta using 2 CTs (2 element)

4LN3 - 4-wire WYE using 3 PTs (3 element), line to neutral voltage readings

3DIR2 - 3-wire direct connection using 2 CTs (2 element)

4LL3 - 4-wire WYE using 3 PTs (3 element), line to line voltage readings

3OP3 - 3-wire open delta using 3 CTs (2 1/2 element)

3LN3 - 4-wire WYE using 2 PTs (2 1/2 element), line to neutral voltage readings

3LL3 - 4-wire WYE using 2 PTs (2 1/2 element), line to line voltage readings

2 To get true DC voltage readings, set the offset to zero and the full scale to 20, 100 or 300 V according to your order.

3 The waveform recorder logs waveforms in series of records. A compound waveform can have as more as

2560 cycles recorded in 160 consequent records, each record comprising 16 waveform cycles. When the number of cycles is defined as zero, the instrument automatically selects the size of a waveform series. By default, a waveform series is assumed to consist of a single 16-cycle record. When a record is triggered by a voltage disturbance event and the disturbance lasts for more time than a 16-cycle record can include, the disturbance event is assumed to be a single long-duration event. In that case, the recorder will continue storing a waveform in the following adjacent records while the voltage wave shape is still non-stationary. The total number of records in a compound waveform will be limited only by the allocated memory.

5.4 User Selectable Options Setup Registers

Table 5-4 User Selectable Options Registers

Parameter Register Type R/W Range

Power calculation mode

Energy roll value 1

Phase energy calculation mode

2376

2378

UINT16 R/W 0 = using reactive power,

1 = using non-active power

2377 0 = 1 ×104

1 = 1 ×105

2 = 1 ×106

3 = 1 ×107

4 = 1 ×108

5 = 1 ×109

UINT16 R/W 0 = disable, 1 = enable

Analog output option 2379

Analog expander output 2 2380

UINT16 R/W 0 = none

1 = 0-20 mA

2 = 4-20 mA

3 = 0-1 mA

4 = ±1 mA

UINT16 R/W 0 = none

1 = 0-20 mA

2 = 4-20 mA

3 = 0-1 mA

4 = ±1 mA

29

Battery option

Reserved

Thermal demand option

2381

2382

2383

UINT16 R/W 0 = battery OFF, 1 = battery ON

UINT16 R Read as 65535

UINT16 R/W 0 = disable, 1 = enable

1 For short energy registers (see Table 5-1), the maximum roll value will be 1

×10 8 for positive readings and

1

×10 7

for negative readings.

2 Do not enable the analog expander output if the analog expander is not connected to the instrument, otherwise the computer communications will become garbled.

5.5 Communications Setup Registers

Table 5-5 Communications Setup Registers

Comm.

Port

Port #1

Port #2

Protocol

Interface

Address

Baud rate

Parameter

Data format

Incoming flow control

(handshaking)

Register

2344

2345

2346

2347

2348

2349

Outgoing flow control (RTS/DTR) 2350

Protocol

Interface

Address

Baud rate

Data format

Reserved

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Range

0 = ASCII

1 = Modbus RTU

3 = DNP3.0

0 = RS-232

2 = RS-485

1 to 247

0 = 110 bps

1 = 300 bps

2 = 600 bps

3 = 1200 bps

4 = 2400 bps

5 = 4800 bps

6 = 9600 bps

7 = 19200 bps

1 = 8 bits/no parity

2 = 8 bits/even parity

0 = no handshaking

1 = software handshaking

(XON/XOFF protocol)

2 = hardware handshaking (CTS protocol)

0 = RTS signal not used

1 = RTS permanently asserted

(DTR mode)

2 = RTS asserted during the transmission

2352

2353

2354

2355

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

0 = ASCII

1 = Modbus RTU

3 = DNP3.0

1 = RS-422

2 = RS-485

1 to 247

0 = 110 bps

1 = 300 bps

2 = 600 bps

3 = 1200 bps

4 = 2400 bps

5 = 4800 bps

2356 UINT16 R/W

6 = 9600 bps

7 = 19200 bps

1 = 8 bits/no parity

2357-

2 = 8 bits/even parity

UINT16

2358

When changing the instrument address, baud rate or data format, the new communications parameters will take effect 100 ms after the instrument responds to the master's request.

5.6 Reset/Clear Registers

Table 5-6 Reset/Clear Registers

Function Register Type R/W Reset value

30

Function

Clear total energy registers

Register

3404

Clear total maximum demand registers 3405

Type R/W

UINT16 W

UINT16 W

Reset value

0

0 = all maximum demands

1 = power demands

2 = volt/ampere demands

0

0

Clear TOU energy registers 3406

Clear TOU maximum demand registers 3407

Clear pulse counters

Clear Min/Max log

Clear event log

Clear data log

3408

3409

3410

3411

UINT16 W

UINT16 W

UINT16 W

UINT16 W

UINT16 W

UINT16 W

0 = all counters

1-16 = counter #1 - #16

0

0

0-7 = log #1 - #8

Clear Waveform log #1

Clear Waveform log #2

3412

3413

UINT16 W

UINT16 W

Reserved 3414

Restore event log queue pointer 3415 UINT16 W 0

Restore data log queue pointer 3416 UINT16 W

16 = all data logs

0

0

0-15 = data logs #1 - #16

16-31 = monthly profile logs for TOU energy registers #1 - #16

32-34 = monthly profile logs for TOU maximum demand registers #1 - #3

Restore waveform log #1

Restore waveform log #2

3417

3418

UINT16 W

UINT16 W

48-63 = daily profile logs for TOU energy registers #1 - #16

64-66 = daily profile logs for TOU maximum demand registers #1 - #3

0

0

5.7 Instrument Status Registers

Table 5-7 Instrument Status Registers

Parameter Register Type R/W Unit Range

Instrument reset register 1

2560 UINT16 R/W 0 (when read)

65535 (when written) =

Reserved

Relay status

Firmware build number

Status inputs

Firmware version number

Instrument options 1

Instrument options 2

2

2561

2562

2563

2564

2565 UINT16 R 0-65535

2566

2567

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R reset the instrument

Read as 0 see Table 5-8

0-99 see Table 5-11 see Table 5-9 see Table 5-9

1 Writing a value of 65535 into register 2560 will cause the instrument to perform a warm restart.

2 Available starting with F/W Versions 2.26.2/2.36.2 and 2.27.2/2.37.2 or later.

Table 5-8 Relay Status

Bit number

0-1

2

3

4

5

6

7

8-15

Description

Not used (permanently set to 1)

Relay #6 status

Relay #5 status

Relay #4 status

Relay #3 status

Relay #2 status

Relay #1 status

Not used (permanently set to 0)

Bit meaning: 0 = relay is energized, 1 = relay is not energized

Table 5-9 Instrument Options

Options register Bit

Options1 0 option

Description

31

Options register

2-3

4

Bit

N/A

100% current over-range

Description

5

6 Analog output 0/4-20 mA

7

8

9

10

11

Analog output 0-1 mA

±1 mA option

Digital inputs option

Auxiliary current option

12

13

Setup is secured by a password (see Section 4.5)

ASCII compatibility mode enabled

14 ±1 mA

Options 2 0-2

3-6

7-8

Number of relays - 1

Number of digital inputs - 1

Number of analog outputs - 1

9-10

11-12 DC voltage input option: 01 = 20V, 10=100V, 11 = 300V

13

14-15 Memory module size: 11 = 1024 Kbytes

32

5.8 Extended Status Registers

Table 5-10 Extended Status Registers

Parameter Register Type R/W Value range

Relay status

User event flags

Status inputs

Setpoints status

Log status

3452

3453

3454

3455

3456

Data log status 3457

Reserved 3458-

3473

Setpoint alarm status

Self-check alarm status

Active serial port number

Battery status

3474

3475

UINT16

UINT16

UINT16

UINT16

UINT16

R

R

R

UINT16 R

UINT16 R

R

R

UINT16 R/W

UINT16 R/W see Table 5-11 see Table 5-12 see Table 5-13 see Table 5-14 see Table 5-15 see Table 5-16

Read as 0 see Table 5-17 see Table 5-18

3483

UINT16 R Read as 0

3484 UINT16 R 0 = Port 1, 1 = Port 2

3485 UINT16 R 0 = low, 1 = normal

Table 5-11 Relay Status

Bit

0

1

2

3

4

5

6-15

Description

Relay #1 status

Relay #2 status

Relay #3 status

Relay #4 status

Relay #5 status

Relay #6 status

Not used (permanently set to 0)

Bit meaning: 0 = relay is not energized, 1 = relay is energized

Table 5-12 User Event Flags

Bit

0

1

2

3

4

5

6

7

8-15

Description

Event flag #1

Event flag #2

Event flag #3

Event flag #4

Event flag #5

Event flag #6

Event flag #7

Event flag #8

Not used (permanently set to 0)

Bit meaning: 0 = OFF, 1 = ON

Table 5-13 Status Inputs

Bit

4

5

6

7

8

0

1

2

3

9

10

11

12-15

Description

Status input #1

Status input #2

Status input #3

Status input #4

Status input #5

Status input #6

Status input #7

Status input #8

Status input #9

Status input #10

Status input #11

Status input #12

Not used (permanently set to 0)

Bit meaning: 0 = contact open, 1 = contact closed

33

Table 5-14 Setpoints Status

Bit

5

6

7

8

9

0

1

2

3

4

10

11

12

13

14

15

Description

Setpoint # 1 status

Setpoint # 2 status

Setpoint # 3 status

Setpoint # 4 status

Setpoint # 5 status

Setpoint # 6 status

Setpoint # 7 status

Setpoint # 8 status

Setpoint # 9 status

Setpoint # 10 status

Setpoint # 11 status

Setpoint # 12 status

Setpoint # 13 status

Setpoint # 14 status

Setpoint # 15 status

Setpoint # 16 status

Bit meaning: 0 = setpoint is released, 1 = setpoint is operated

Table 5-15 Log Status

Bit Description

0 Reserved

1 New Min/Max log

2

3

New Event log

New Data log (any)

4

5

6-15

New Waveform log #1

New Waveform log #2

Not used (permanently set to 0)

Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)

Table 5-16 Data Log Status

Bit

4

5

6

7

8

0

1

2

3

9

10

11

12

13

14

15

Description

New data log #1

New data log #2

New data log #3

New data log #4

New data log #5

New data log #6

New data log #7

New data log #8

New data log #9

New data log #10

New data log #11

New data log #12

New data log #13

New data log #14

New data log #15

New data log #16

Bit meaning: 0 = no new logs, 1 = new log recorded (the new log flag is reset when the user reads the first log record after the flag has been set)

34

Table 5-17 Setpoint Alarm Status

Bit Description

#2

#3

3 Alarm

#5

#6

#7

#8

8 Alarm

#10

#11

#12

#13

13 Alarm

#15

#16

Bit meaning: 1 = setpoint has been operated

The setpoint alarm register stores the status of the operated setpoints by setting the appropriate bits to 1. The alarm status bits can be reset all together by writing zero to the setpoint alarm register. It is possible to reset each alarm status bit separately by writing back the contents of the alarm register with a corresponding alarm bit set to

0.

Table 5-18 Self-check Alarm Status

Bit

0 Reserved

Description

error error

3

4 Sampling

5

Watchdog timer reset failure

Out of control trap

6 Reserved failure

8

9

Loss of power (power up)

External reset (warm restart)

11 RTC time-synchronization required

12 Low

13-15 Reserved

1 Available starting with F/W Versions 2.26.2/2.36.2 and 2.27.2/2.37.2 or later.

The self-check alarm register indicates possible problems with the instrument hardware or setup configuration.

The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup configuration problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, the instrument will use the default configuration. The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made.

Hardware fault bits can be reset by writing zero to the self-check alarm register. The configuration corrupt status bit and RTC synchronization bit are also reset automatically when you change setup or update RTC either via the front panel or through communications.

35

5.9 Memory Allocation Status Registers

Table 5-19 Memory Allocation Status Registers

Parameter Register

Memory partitions map

Monthly profile log partition map

Daily profile log partition map

Total memory size, Byte

Free memory size, Byte

The total number of event log records

The total number of data log #1 records

The total number of data log #2 records

The total number of data log #3 records

The total number of data log #4 records

The total number of data log #5 records

The total number of data log #6 records

The total number of data log #7 records

The total number of data log #8 records

The total number of data log #9 records

The total number of data log #10 records

The total number of data log #11 records

The total number of data log #12 records

The total number of data log #13 records

The total number of data log #14 records

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

The total number of data log #15 records

The total number of data log #16 records

3525

3526

The number of logged records in the waveform log #1 3527

3500-3501

3502-3503

3504-3505

3506-3507

3508-3509

3510

3511

3512

3513

3514

The number of logged records in the waveform log #2 3528

The number of new event log records 3529

The number of new data log #1 records

The number of new data log #2 records

The number of new data log #3 records

The number of new data log #4 records

The number of new data log #5 records

3530

3531

3532

3533

3534

The number of new data log #6 records

The number of new data log #7 records

The number of new data log #8 records

The number of new data log #9 records

The number of new data log #10 records

3535

3536

3537

3538

3539

The number of new data log #11 records

The number of new data log #12 records

The number of new data log #13 records

The number of new data log #14 records

The number of new data log #15 records

The number of new data log #16 records

The number of new records in the waveform log #1

The number of new records in the waveform log #2

3540

3541

3542

3543

3544

3545

3546

3547

Type

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT32 R

UINT32 R

UINT32 R

UINT32 R

UINT32 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

R/W Range

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

See Table 5-20

See Table 5-20

See Table 5-20

1048576

0 - 1048576

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

0 - 65535

The total number of records shows all the records logged in the memory partition. The number of new records indicates the number of records never read before.

Table 5-20 Memory Partitions Allocation Map

Event log

Memory Partition/Sub-partition

Data log #1

Data log #2

Data log #3

Data log #4

Data log #5

Data log #6

Data log #7

Data log #8

Data log #9

Data log #10

Data log #11

Data log #12

Data log #13

Data log #14

3

4

5

6

7

0

1

2

8

9

10

11

12

13

14

Bit

36

Memory Partition/Sub-partition Bit

Data log #15

Data log #16

Waveform log #1

15

16

17

Waveform log #2 18

Reserved 19-31

TOU Monthly Profile Log. Energy Reg. #1

TOU Monthly Profile Log. Energy Reg. #2

TOU Monthly Profile Log. Energy Reg. #3

TOU Monthly Profile Log. Energy Reg. #4

TOU Monthly Profile Log. Energy Reg. #5

0

1

2

3

4

TOU Monthly Profile Log. Energy Reg. #6

TOU Monthly Profile Log. Energy Reg. #7

TOU Monthly Profile Log. Energy Reg. #8

TOU Monthly Profile Log. Energy Reg. #9

TOU Monthly Profile Log. Energy Reg. #10

TOU Monthly Profile Log. Energy Reg. #11

TOU Monthly Profile Log. Energy Reg. #12

TOU Monthly Profile Log. Energy Reg. #13

TOU Monthly Profile Log. Energy Reg. #14

TOU Monthly Profile Log. Energy Reg. #15

5

6

7

8

9

10

11

12

13

14

TOU Monthly Profile Log. Energy Reg. #16

TOU Monthly Profile Log. Max. Demand Reg. #1

TOU Monthly Profile Log. Max. Demand Reg. #2

15

16

17

TOU Monthly Profile Log. Max. Demand Reg. #3 18

Reserved 19-31

TOU Daily Profile Log. Energy Reg. #1

TOU Daily Profile Log. Energy Reg. #2

TOU Daily Profile Log. Energy Reg. #3

TOU Daily Profile Log. Energy Reg. #4

TOU Daily Profile Log. Energy Reg. #5

0

1

2

3

4

TOU Daily Profile Log. Energy Reg. #6

TOU Daily Profile Log. Energy Reg. #7

TOU Daily Profile Log. Energy Reg. #8

TOU Daily Profile Log. Energy Reg. #9

TOU Daily Profile Log. Energy Reg. #10

TOU Daily Profile Log. Energy Reg. #11

TOU Daily Profile Log. Energy Reg. #12

TOU Daily Profile Log. Energy Reg. #13

TOU Daily Profile Log. Energy Reg. #14

TOU Daily Profile Log. Energy Reg. #15

5

6

7

8

9

10

11

12

13

14

TOU Daily Profile Log. Energy Reg. #16

TOU Daily Profile Log. Max. Demand Reg. #1

TOU Daily Profile Log. Max. Demand Reg. #2

15

16

17

TOU Daily Profile Log. Max. Demand Reg. #3 18

Reserved 19-31

Bit meaning: 0 = a partition is not allocated, 1 = a partition is allocated

5.10 Memory Partition Status/Control Registers

Table 5-21 Partitions’ Status/Control Register Locations

Event log

Data log #1

Data log #2

Data log #3

Data log #4

Data log #5

Data log #6

Data log #7

Data log #8

Data log #9

Data log #10

Data log #11

Data log #12

Data log #13

Data log #14

Data log #15

Memory Partition Registers

28160-28167

28168-28175

28176-28183

28184-28191

28192-28199

28200-28207

28208-28215

28216-28223

28224-28231

28232-28239

28240-28247

28248-28255

28256-28263

28264-28271

28272-28279

28280-28287

37

Memory Partition Registers

Data log #16

Waveform log #1

Waveform log #2

28288-28295

28296-28303

28304-28311

Reserved 28312-28415

TOU Monthly Profile Log. Energy Reg. #1 28416-28423

TOU Monthly Profile Log. Energy Reg. #2

TOU Monthly Profile Log. Energy Reg. #3

TOU Monthly Profile Log. Energy Reg. #4

TOU Monthly Profile Log. Energy Reg. #5

TOU Monthly Profile Log. Energy Reg. #6

28424-28431

28432-28439

28440-28447

28448-28455

28456-28463

TOU Monthly Profile Log. Energy Reg. #7

TOU Monthly Profile Log. Energy Reg. #8

TOU Monthly Profile Log. Energy Reg. #9

TOU Monthly Profile Log. Energy Reg. #10

TOU Monthly Profile Log. Energy Reg. #11

TOU Monthly Profile Log. Energy Reg. #12

TOU Monthly Profile Log. Energy Reg. #13

TOU Monthly Profile Log. Energy Reg. #14

TOU Monthly Profile Log. Energy Reg. #15

TOU Monthly Profile Log. Energy Reg. #16

28464-28471

28472-28479

28480-28487

28488-28495

28496-28503

28504-28511

28512-28519

28520-28527

28528-28535

28536-28543

TOU Monthly Profile Log. Max. Demand Reg. #1

TOU Monthly Profile Log. Max. Demand Reg. #2

TOU Monthly Profile Log. Max. Demand Reg. #3

28544-28551

28552-28559

28560-28567

Reserved 28568-28671

TOU Daily Profile Log. Energy Reg. #1 28672-28679

TOU Daily Profile Log. Energy Reg. #2

TOU Daily Profile Log. Energy Reg. #3

TOU Daily Profile Log. Energy Reg. #4

TOU Daily Profile Log. Energy Reg. #5

TOU Daily Profile Log. Energy Reg. #6

28680-28687

28688-28695

28696-28703

28704-28711

28712-28719

TOU Daily Profile Log. Energy Reg. #7

TOU Daily Profile Log. Energy Reg. #8

TOU Daily Profile Log. Energy Reg. #9

TOU Daily Profile Log. Energy Reg. #10

TOU Daily Profile Log. Energy Reg. #11

TOU Daily Profile Log. Energy Reg. #12

TOU Daily Profile Log. Energy Reg. #13

TOU Daily Profile Log. Energy Reg. #14

TOU Daily Profile Log. Energy Reg. #15

TOU Daily Profile Log. Energy Reg. #16

28720-28727

28728-28735

28736-28743

28744-28751

28752-28759

28760-28767

28768-28775

28776-28783

28784-28791

28792-28799

TOU Daily Profile Log. Max. Demand Reg. #1

TOU Daily Profile Log. Max. Demand Reg. #2

TOU Daily Profile Log. Max. Demand Reg. #3

28800-28807

28808-28815

28816-28823

Reserved 28824-28927

If data log partition #15 is configured as a TOU monthly profile partition, registers 28280-28287 are mapped to registers 28416-28423 for the first TOU monthly profile sub-partition allocated for TOU energy register #1, or for the first following available TOU register if register #1 is not configured.

If data log partition #8 is configured as a TOU daily profile partition, registers 28288-28295 are mapped to registers 28672-28679 for the first TOU daily profile sub-partition allocated for TOU energy register #1, or for the first following available TOU register if register #1 is not configured.

Table 5-22 Log Partition’s Status/Control Window Registers

Parameter

Log partition status

Offset

+0

Type

UINT16 R

R/W Range

Bit-mapped register: bit 0 = 0 - non-wrap partition

= 1 - wrap-around partition bit 4 = 1 - TOU monthly profile partition bit 5 = 1 - TOU daily profile partition bit 9 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, that is, the file is being re-read from the beginning. This bit is cleared when the read pointer [+6] points to a new record, or either command register [+6] or [+7] is written.

38

Parameter

The total number of records logged in the partition/subpartition

The number of the new records never read before

Offset

+1

+2

The next sequence number to be used when the next log event will take place

The sequence number of the first

(oldest) record in the log file

+3

+4

The sequence number of the first new record never read before

+5

Type

UINT16 R

R/W

UINT16

UINT16

UINT16

UINT16

R

R

R

R

Range

0 to 65535. Returns the total number of logged records available in the partition.

0 to 65535. Returns the number of records from the first new one never read before and until the end of the log file.

0 to 65535 (increments modulo 65536 with each log). Returns the sequence number that will be applied to the next record being logged.

The sequence number of the current record to be read

Command register +7 UINT16 R/W

0 to 65535. Returns the sequence number of the oldest record in the log file.

0 to 65535. Returns the sequence number of the first new (most recent) record that has never been read.

If this number is equal to the contents of register

[+3], there are no newest records never read before.

0 to 65535. Points to the record that will be read via the partition read window. Can be overwritten to point to the desired record.

This is a write-only register. Write value:

0 = automatically restores the read sequence to the beginning of the log file, that is puts the read pointer to the first (oldest) record in the log file

(actually, safely copies the contents of the register

[+4] to the register [+6]).

1 = automatically sets the read sequence to the first new record never read before, that is puts the read pointer to the record following the last one whenever read. If there are new records in the partition, this actually copies the contents of the register [+5] to the register [+6]. If there are no new records, the register [+5] will point to the first

(oldest) record in the log file as if the command register was written with zero.

Read as 0.

1 If there is no record in the log file that matches the written sequence number, the instrument will respond with the exception code 03 (invalid data).

5.11 Analog Output Setup Registers

Table 5-23 Analog Output Allocation Registers

Channel #1

Channel #2

Channel Registers (see Table 5-24)

3148-3150

3151-3153

Table 5-24 Analog Channel Allocation Registers

Parameter

Output parameter ID

Zero scale (0-4 mA)

Full scale (1/20 mA)

Offset

+0

+1

+2

Type

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

Range

See Table 5-27

See Table 5-27

See Table 5-27

1. Except for the signed power factor (see Note 3 to Table 5-27), the output scale is linear within the value range. The scale range will be inverted if the full scale specified is less than the zero scale.

2. For bi-directional analog output (

±1 mA), the zero scale corresponds to the center of the scale range (0 mA) and the direction of the current matches the sign of the output parameter. For signed (bi-directional) values, such as powers and signed power factor, the scale is always symmetrical with regard to 0 mA, and the full scale corresponds to +1 mA output for positive readings and to -1 mA output for negative readings. For these, the zero scale (0 mA output) is permanently set in the instrument to zero for all parameters except the signed power factor for which it is set to 1.000. In the write request, the zero scale is ignored. No error will occur when you attempt to change it. Unsigned parameters are output

39

within the current range 0 to +1 mA and can be scaled using both zero and full scales as in the case of single-ended analog output.

5.12 Analog Expander Setup Registers

Table 5-25 Analog Expander Channel Registers

Channel #1

Channel #2

Channel #3

Channel #4

Channel #5

Channel #6

Channel #7

Channel #8

Channel #9

Channel #10

Channel #11

Channel #12

Channel #13

Channel #14

Channel Registers (see Table 5-26)

3196-3198

3199-3201

3202-3204

3205-3207

3208-3210

3211-3213

3214-3216

3217-3219

3220-3222

3223-3225

3226-3228

3229-3231

3232-3234

3235-3237

Table 5-26 Analog Channel Allocation Registers

Parameter

Output parameter ID

Zero scale (0-4 mA)

Full scale (20 mA)

Offset

+0

+1

+2

Type

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

Range

See Table 5-27

See Table 5-27

See Table 5-27

Except for the signed power factor (see Note 3 to Table 5-27), the output scale is linear within the value range.

The scale range will be inverted if the full scale specified is less than the zero scale.

NOTE

Analog expander outputs settings will not be in effect until the analog expander output is globally enabled. To activate the analog expander output, set the analog expander option to the enabled state in the user selectable options setup (see Section 5.3).

Table 5-27 Analog Output Parameters

Output parameter

None

None

Real-time values per phase

Point

ID

Type

0x0000 UINT16

Unit 2

Low

N/A

Scale

1

High

N/A

Con- version

NONE

Voltage L1/L12 5 0x0C00

Voltage L2/L23

Voltage L3/L31

Current L1

5

5

0.1V/1V

UINT16

0x0C03 UINT16 0.01A 0

Vmax

Imax LIN3

Current L2

Current L3

Voltage THD L1/L12

Voltage THD L2/L23

Voltage THD L3

Current THD L1

Current THD L2

Current THD L3

K-Factor L1

K-Factor L2

K-Factor L3

Current TDD L1

Current TDD L2

Current TDD L3

Voltage L12

Voltage L23

Voltage L31

0x0C04 UINT16 0.01A

0x0C05 UINT16 0.01A

0x0C12 UINT16 0.1%

0x0C13 UINT16 0.1%

0x0C14 UINT16 0.1%

0x0C15 UINT16 0.1%

0x0C16 UINT16 0.1%

0x0C17 UINT16 0.1%

0x0C18 UINT16 0.1

0x0C19 UINT16 0.1

0x0C1A UINT16 0.1

0x0C1B UINT16 0.1%

0x0C1C UINT16 0.1%

0x0C1D UINT16 0.1%

0x0C1E UINT16 0.1V/1V

0x0C1F UINT16 0.1V/1V

0x0C20 UINT16 0.1V/1V

0

0

0

0

0

0

0

0

1.0

1.0

1.0

0

0

0

0

0

0

Imax

Imax

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

999.9

100.0

100.0

100.0

Vmax

Vmax

Vmax

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

Real-time total values

Total kW 0x0F00 UINT16 0.001kW/1kW -Pmax Pmax LIN3

40

Output parameter Point

ID

Type

Unit 2

Total kvar

Total kVA

0x0F01 UINT16 0.001kvar/1kvar -Pmax

0x0F02 UINT16 0.001kVA/1kVA 0

Total PF 4 0x0F03

Total PF Lag

Total PF Lead

0x0F04 UINT16 0.001

0x0F05 UINT16 0.001

0

0

Scale

1

Low High

Pmax

Pmax

1.000

1.000

Con- version

LIN3

LIN3

LIN3

LIN3

Real-time auxiliary values

Auxiliary current

Neutral current

0x1000 UINT16 0.01A/mA

0x1001 UINT16 0.01A

0

0

Imax aux LIN3

Imax LIN3

Frequency

DC voltage

3 0x1002

0x1005 UINT16 0.01V 0

100.00

9999.00 LIN3

Average values per phase

Voltage L1/L12 5 0x1100

Voltage L2/L23

Voltage L3/L31

Current L1

5

5

0.1V/1V

UINT16

0x1103 UINT16 0.01A 0

Vmax

Imax LIN3

Current L2

Current L3

Voltage L12

Voltage L23

Voltage L31

0x1104 UINT16 0.01A

0x1105 UINT16 0.01A

0x111E UINT16 0.1V/1V

0x111F UINT16 0.1V/1V

0x1120 UINT16 0.1V/1V

0

0

0

0

0

Imax

Imax

Vmax

Vmax

Vmax

LIN3

LIN3

LIN3

LIN3

LIN3

Average total values

Total kW

Total kvar

Total kVA

0x1400 UINT16 0.001kW/1kW -Pmax

0x1401 UINT16 0.001kvar/1kvar -Pmax

0x1402 UINT16 0.001kVA/1kVA 0

Pmax

Pmax

Pmax

Total PF 4 0x1403

Total PF Lag 0x1404 UINT16 0.001 0 1.000

LIN3

LIN3

LIN3

LIN3

Total PF Lead

3-phase average voltage 5 0x140A

3-phase average L-L voltage

0x1405 UINT16 0.001

UINT16

0x140B UINT16 0.1V/1V

0

0.1V/1V 0 Vmax

0

1.000

Vmax

LIN3

LIN3

LIN3

3-phase average current 0x140C UINT16 0.01A 0 Imax LIN3

Average auxiliary values

Auxiliary current 0x1500 UINT16 0.01A/mA 0 Imax aux LIN3

Neutral current

Frequency 3

0x1501 UINT16 0.01A

0x1502

0

UINT16

Imax

0

LIN3

Present demands

Accumulated kW import demand 0x160F UINT16 0.001kW/1kW 0

Accumulated kvar import demand 0x1610 UINT16 0.001kvar/1kvar 0

Accumulated kVA demand 0x1611 UINT16 0.001kVA/1kVA 0

Accumulated kW export demand 0x161A UINT16 0.001kW/1kW 0

Accumulated kvar export demand 0x161B UINT16 0.001kvar/1kvar 0

Pmax

Pmax

Pmax

LIN3

LIN3

LIN3

Pmax LIN3

Pmax LIN3

1

For parameter limits, see Note

1

to Table 5-1.

2

When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.

3 The actual frequency range is 45.00 to 65.00 Hz.

4 The output scale for signed (bi-directional) power factor is symmetrical with regard to

±1.000 and is linear from

-0 to -1.000, and from 1.000 to +0 (note that -1.000

≡ +1.000). Negative power factor is output as [-1.000 minus measured value], and non-negative power factor is output as [+1.000 minus measured value]. To define the entire range for power factor from -0 to +0, the scales would be specified as -0/0. Because of the fact that negative zero may not be transmitted, the value of -0.001 is used to specify the scale of -0, and both +0.001 and 0.000 are used to specify the scale of +0. To define the range of -0 to 0, you must send -0.001/0.001 or

-0.001/0.

5 When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

5.13 Digital Inputs Allocation Registers

Table 5-28 Digital Inputs Allocation Registers

Parameter

Status inputs allocation mask

Pulse inputs allocation mask

Not used

Register

3292

3293

3294

Type R/W

UINT16 R 1

UINT16 R/W

UINT16 R 1

Range

See Table 5-29

See Table 5-29

Read as 0

41

External demand synchronization input mask

Time synchronization input mask

3295

3296

1 Writing to these locations is ignored. No error will occur.

UINT16 R/W

UINT16 R/W

See Table 5-29

See Table 5-29

NOTES

1. All digital inputs that were not allocated as pulse inputs will be automatically configured as status inputs.

2. A digital input allocated for the external demand synchronization pulse or time synchronization pulse will be automatically configured as a pulse input.

Table 5-29 Digital Inputs Allocation Mask

Bit number

0

1

2

3

4

5

6

7

Description

Digital input # 1 allocation status

Digital input # 2 allocation status

Digital input # 3 allocation status

Digital input # 4 allocation status

Digital input # 5 allocation status

Digital input # 6 allocation status

Digital input # 7 allocation status

Digital input # 8 allocation status

8

9

10

Digital input # 9 allocation status

Digital input # 10 allocation status

Digital input # 11 allocation status

11 Digital input # 12 allocation status used

Bit meaning: 0 = input is not allocated, 1 = input is allocated to the group

5.14 Timers Setup Registers

Table 5-30 Timers Setup Registers

Parameter

Timer #1 time interval

Timer #2 time interval

Timer #3 time interval

Timer #4 time interval

Register Type

3300

3301

3302

3303

R/W Range

UINT16

R/W

UINT16

R/W

UINT16

R/W

UINT16

R/W

1-9999 sec, 0 = timer disabled

1-9999 sec, 0 = timer disabled

1-9999 sec, 0 = timer disabled

1-9999 sec, 0 = timer disabled

5.15 Alarm/Event Setpoints Registers

Table 5-31 Setpoint Registers

Setpoint

Setpoint #1

Setpoint #2

Setpoint #3

Setpoint #4

Setpoint #5

Setpoint #6

Setpoint #7

Setpoint #8

Setpoint #9

Setpoint #10

Setpoint #11

Setpoint #12

Setpoint #13

Setpoint #14

Setpoint #15

Setpoint #16

Setup registers (see Table 5-32)

352-395

396-439

440-483

484-527

528-571

572-615

616-659

660-703

704-747

748-791

792-835

836-879

880-923

924-967

968-1011

1012-1055

Table 5-32 Setpoint Setup Registers

Parameter Offset Type Range

Condition #1 Logical operator

Trigger ID

Relational operator

+0

+1

+2

UINT16

UINT16

UINT16

0 = OR

See Table 5-2

See Table 5-33

Reserved +3

42

Condition #2

Parameter

Operate limit

Release limit

Logical operator

Trigger ID

+8

+9

Offset

+4, +5

+6, +7

Type

UINT32

UINT32

UINT16

UINT16

Range

See Table 5-2

See Table 5-2

0 = OR, 1 = AND

See Table 5-2

Relational operator

Reserved

+10 UINT16

+11

See Table 5-33

UINT16

Operate limit

Release limit

+12, +13

+14, +15

UINT32

UINT32

See Table 5-2

See Table 5-2

Condition #3 Logical operator

Trigger ID

Relational operator

+16

+17

+18

UINT16

UINT16

UINT16

0 = OR, 1 = AND

See Table 5-2

See Table 5-33

Reserved

Operate limit

+19

+20, +21 UINT32

(N/A)

See Table 5-2

Condition #4

Release limit

Logical operator

Trigger ID

+22, +23

+24

+25

UINT32

UINT16

UINT16

See Table 5-2

0 = OR, 1 = AND

See Table 5-2

Relational operator

Reserved +27

Operate limit

+26

+28, +29

UINT16

UINT32

See Table 5-33

UINT16

See Table 5-2

Action #1

Release limit

Action type

+30, +31

+32

UINT32

UINT16

See Table 5-2 see Table 5-34

Action #2

Action target

Action type

Action target

+33

+34

+35

UINT16

UINT16

UINT16 see Table 5-34 see Table 5-34 see Table 5-34

Action #3

Action #4

Action type

Action target

Action type

Action target

+36

+37

+38

+39

UINT16

UINT16

UINT16

UINT16 see Table 5-34 see Table 5-34 see Table 5-34 see Table 5-34

Delays Reserved

Operate delay

Release delay

+41

+42

UINT16

UINT16

0-9999 (x 0.1 sec)

0-9999 (x 0.1 sec)

Reserved +43

1.

The setpoint is disabled when the first trigger parameter ID is set to NONE. To disable the setpoint, write zero into this register.

2.

When writing the setpoint registers (except the event when the setpoint is to be disabled), it is recommended to write all the setpoint registers using a single request, or to disable the setpoint before writing into separate registers. Each written value is checked for compatibility with the other setpoint parameters; if the new value does not conform to these, the request will be rejected.

3.

Operate and release limits for trigger parameters, their ranges and measurement units are indicated in

Table 5-2. Two contiguous registers are allocated in the setup for each setpoint limit. All limits, except for counters and packed date and time, are read/written as 16-bit integer values through the first (low order) register. The second (high order) register is always read as zero. When written, its value is ignored.

Whenever it is indicated for the trigger, a LIN3 conversion is used to accommodate large-scale and fractional numbers to a 16-bit register format

. Counters and packed date and time are read/written as

32-bit unsigned long integers in two registers.

4.

Limits for binary triggers (B) and new value triggers (N) are read as zeros. When writing, they can be omitted or should be written as zeros. Release limits for special inputs (voltage disturbance and phase rotation) and for date/time parameters are not used. Write them as zeros.

5.

When a setpoint action is directed to a relay allocated to output energy pulses, an attempt to re-allocate it for a setpoint will result in a negative response.

Table 5-33 Relational Operators

Relational operator Operate condition Release condition Setpoint limits Used with triggers of type

A, B, N

A

0 = NONE

1 = GREATER OR

EQUAL

2 = LESS OR EQUAL

3 = EQUAL

4 = NOT EQUAL

5 = ON

6 = OFF

7 = NEW

N/A

Over operate limit

N/A

Under release limit

Under operate limit

Equal

Not equal

Binary status ON

Over release limit

Not equal

Equal

Binary status OFF

Binary status OFF Binary status ON

New Min/Max value N/A

Not used

Both limits active

Both limits active

Release limit not used

Release limit not used

Not used

Not used

Not used

A = analog (numeric) trigger, B = binary (digital) trigger, N = new value trigger.

A

A

A

B

B

N

43

Table 5-34 Setpoint Actions

Action type

Description

No action

Set user event flag

Reset user event flag

Operate relay

Increment counter

Decrement counter

Clear counter

Reset total energy registers

Reset total maximum demand registers

ID

0x00

0x20

0x21

0x30

0x40

0x41

0x42

0x60

0x61

Reset TOU energy

Reset TOU demands

Clear all counters

Clear Min/Max registers

Event logging

Data logging

Waveform log #1

Waveform log #2

0x62

0x63

0x64

0x65

0x70

0x71

0x72

0x73

N/A

Flag number

Flag number

Relay number

Counter number

Counter number

Counter number

N/A

N/A

Description

N/A

N/A

N/A

N/A

Setpoint transition mode

Data log number

N/A

N/A

Action target

ID

0

0-7 = flags #1-#8

0-7 = flags #1-#8

0-5 = relays #1-#6

0-15 = counter #1-#16

0-15 = counter #1-#16

0-15 = counter #1-#16

0

0 = reset all maximum demands

1 = reset power maximum demands

2 = reset volt/ampere maximum demands

0

0

0

0

0 = log on operate setpoint

1 = log on release setpoint

2 = log on either transition (both operate and release)

0-15 = data log #1-#16

0

0

5.16 Pulsing Setpoints Registers

Table 5-35 Pulsing Registers

Relay

Relay #1

Relay #2

Relay #3

Relay #4

Relay #5

Relay #6

Setup registers (see Table 5-36)

2892-2893

2894-2895

2896-2895

2898-2899

2900-2901

2902-2903

Table 5-36 Pulsing Setup Registers

Parameter

Output parameter ID

Number of unit-hours per pulse

Offset Type

+0

+1

R/W

UINT16 R/W

UINT16 R/W

Table 5-37 Pulsing Output Parameters

Pulsing parameter ID

None kWh import kWh export kWh total (absolute) kvarh import kvarh export kvarh total (absolute) kVAh total

Start power demand interval

Start tariff interval

Identifier

0

1

2

3

4

5

6

7

8

9

Range

see Table 5-37

1-9999

5.17 Relay Operation Control Registers

These registers allow the user to manually override setpoint relay operations. Either relay may be manually operated or released using commands sent via communications.

NOTES

1. A relay allocated as a pulsing relay may not be manually operated or released. When a relay is allocated for pulsing, it automatically reverts to normal operation.

2. A relay is energized when manually operated, and is de-energized when manually released.

44

Table 5-38 Relay Operation Control Registers

Parameter

Relay #1 control status

Relay #2 control status

Relay #2 control status

Relay #2 control status

Relay #2 control status

Relay #2 control status

Register

3244

3245

3246

3247

3248

3249

Type R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

Table 5-39 Relay Operation Status

Operation status

Normal operation

Force operate

Force release

Value

0

1

2

Range

see Table 5-39 see Table 5-39 see Table 5-39 see Table 5-39 see Table 5-39 see Table 5-39

5.18 Pulse Counters Setup Registers

Table 5-40 Pulse Counters Registers

Counter

Counter #1

Counter #2

Counter #3

Counter #4

Counter #5

Counter #6

Counter #7

Counter #8

Counter #9

Counter #10

Counter #11

Counter #12

Counter #13

Counter #14

Counter #15

Counter #16

Setup registers (see Table 5-41)

2940-2941

2942-2943

2944-2945

2946-2947

2948-2949

2950-2951

2952-2953

2954-2955

2956-2957

2958-2959

2960-2961

2962-2963

2964-2965

2966-2967

2968-2969

2970-2977

Table 5-41 Pulse Counter Setup Registers

Parameter

Associated digital input ID

Scale factor (number of units per input pulse)

Offset Type R/W Range

+0 UINT16 R/W

+1 UINT16

Se Table 5-42

R/W 1-9999

Table 5-42 Digital Inputs Identifiers

Input ID Description

9

10

11

12

4

5

6

7

8

0 Not

1 Digital input # 1

2

3

Digital input # 2

Digital input # 3

Digital input # 4

Digital input # 5

Digital input # 6

Digital input # 7

Digital input # 8

Digital input # 9

Digital input # 10

Digital input # 11

Digital input # 12

45

5.19 User Event Flags Registers

Table 5-43 User Event Flags Registers

Parameter

Event flag #1

Event flag #2

Event flag #3

Event flag #4

Event flag #5

Event flag #6

Event flag #7

Event flag #8

Register

2916

2917

2918

2919

2920

2921

2922

2923

Type

UINT16 W

UINT16 W

UINT16 W

UINT16 W

UINT16 W

UINT16 W

UINT16 W

UINT16 W

R/W

0-1

0-1

0-1

0-1

0-1

0-1

0-1

0-1

Range

Through these registers, event flags can be only written. To read event flags all together, use register 6776 (Table

5-2) or 3453 (Table 5-10).

5.20 Programmable Min/Max Log Setup Registers

Table 5-44 Programmable MIn/Max Log Setup Registers

Parameter

Data ID for Min/Max log register #1

Data ID for Min/Max log register #2

Data ID for Min/Max log register #3

Data ID for Min/Max log register #4

Data ID for Min/Max log register #5

Data ID for Min/Max log register #6

Data ID for Min/Max log register #7

Data ID for Min/Max log register #8

Data ID for Min/Max log register #9

Data ID for Min/Max log register #10

Data ID for Min/Max log register #11

Data ID for Min/Max log register #12

Data ID for Min/Max log register #13

Data ID for Min/Max log register #14

Data ID for Min/Max log register #15

Data ID for Min/Max log register #16

Register

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Range

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

See Table 5-2

These registers allow you to associate any of the 16 programmable Min/Max log registers with either harmonic parameter listed in Table 5-2.

5.21 Log Memory Partitions Setup Registers

Table 5-45 Memory Partitions Setup Registers

Partition

Number

Memory partition Setup registers

(see Table 5-46)

12

13

14

15

16

17

18

7

8

9

10

11

0 Event

1 Data log #1

2

3

4

5

6

Data log #2

Data log #3

Data log #4

Data log #5

Data log #6

Data log #7

Data log #8

Data log #9

Data log #10

Data log #11

3660-3665

3668-3673

3676-3681

3684-3689

3692-3697

3700-3705

3708-3713

3716-3721

3724-3729

3732-3737

3740-3745

3748-3753

Data log #12

Data log #13

Data log #14

3756-3761

3764-3769

3772-3777

Data log #15 (can be configured as a TOU monthly profile log partition) 3780-3785

Data log #16 (can be configured as a TOU daily profile log partition) 3788-3793

Waveform log #1

Waveform log #2

3796-3801

3804-3809

46

Table 5-46 Partition Setup Registers

Parameter

The number of records in the partition

Offset

+0

Type R/W

UINT16 R/W

Range

0-65535,

0 = delete partition

The number of log parameters in the record for a data log partition (for an event log partition, write 0)

Partition type +2 UINT16 R/W 0 = non-wrap

1 = wrap around

16 = TOU monthly profile log

(partition #15 only)

32 = TOU daily profile log

(partition #16 only)

0-1048576

Record size, byte

Partition size, byte

+3

+4

+5

UINT16 R

UINT32 R

These registers allow you to allocate a memory partition for logging and to specify the partition size and type.

Before allocating a partition, it is recommended to check the available memory by reading the extended memory status registers. To help you in planning memory, Table 5-47 shows the record size for each partition.

Note that the existing partition may not be resized. To change the partition properties, you should first delete a partition and then reallocate it with the desirable properties. To delete a partition, write zero into the first partition's register.

Data log partitions #15 and #16 can be configured as TOU monthly and daily profile log partitions respectively.

Both will be set as wrap-around partitions. Before you configure the partition as a profile partition, you should set up your TOU registers, daily profiles and calendars. The memory for a profile log will be allocated automatically in accordance with the number of TOU registers you defined in the TOU setup. For each TOU energy and maximum demand register, a separate log sub-partition will be allocated within a parent log partition. Each of these can be accessed and read individually (see Section 5.26). The number of log parameters in the record should specify the maximum number of active season tariffs. The file record size will be set in accordance with this number. If you specified it as less than the actual number of tariffs that may be in effect within a tariff season, then only part of the tariff registers will be recorded to the profile.

When allocating a memory partition, all partition registers must be written at once using a single request. After reallocation of memory, the instrument performs the memory optimization and will not respond to the host requests for approximately 1 second per 128 Kbytes of memory.

Writing into registers at offsets +3, +4 and +5 does not affect the register contents. No error will occur.

Table 5-47 Partitions' Record Size

Partition

Event log

Data log

Record size, byte

14

8 + 4 ∗ (NUMBER OF PARAMETERS)

5.22 Data Log Setup Registers

Table 5-48 Data Log Setup Registers

Data log #1

Data log #2

Data log #3

Data log #4

Data log #5

Data log #6

Data log #7

Data log #8

Data log #9

Data log #10

Data log #11

Data log #12

Data log #13

Data log #14

Partition Registers (see Table 5-49)

1792-1807

1808-1823

1824-1839

1840-1855

1856-1871

1872-1887

1888-1903

1904-1919

1920-1935

1936-1951

1952-1967

1968-1983

1984-1999

2000-2015

47

Data log #15

Data log #16

2016-2031

2032-2047

Table 5-49 Data Log Setup

Parameter

Log parameter #1 ID

Log parameter #2 ID

Log parameter #3 ID

Log parameter #4 ID

Log parameter #5 ID

Log parameter #6 ID

Log parameter #7 ID

Log parameter #8 ID

Log parameter #9 ID

Log parameter #10 ID

Log parameter #11 ID

Log parameter #12 ID

Log parameter #13 ID

Log parameter #14 ID

Log parameter #15 ID

Log parameter #16 ID

Offset

+0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Range

see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2

1. Parameters that can be selected for data log are listed in Table 5-2. Before setting up the parameters for any data log, the memory partition must be allocated for the log (see Section 5.21). When writing the data log setup registers, only parameters that are specified in the partition record setup will be written. When reading registers, those that are not defined in the data log setup will be read as zeros.

2. If a partition has been allocated as a TOU profile log partition, the data log setup for the partition cannot be written. Write requests will be ignored. A read request will return identifiers of the TOU season tariff energy registers 28672 to 28687.

5.23 Event Log Registers (Sequential Access)

These registers allow you to read the packet of consequent records from the event log partition. From 1 to 10 event log records can be read at a time via the event log windows, which comprise registers 3916 through 4035.

Reading from either event log window always returns the next logged event. All registers within one window must be read at once using a single request. After reading each record, the partition queue pointer is shifted forward until the last logged record has been read. After that, the exception code 98 is returned in the window register at offset +0. It should be checked before accepting the record. To restore the queue to the origin, a zero must be written to the event log queue reset register (see Section 5.6).

Table 5-50 Event Log Windows Registers

Event log window

Event log window #1

Event log window #2

Event log window #3

Event log window #4

Event log window #5

Event log window #6

Event log window #7

Event log window #8

Event log window #9

Event log window #10

Registers (see Table 5-51)

3916-3927

3928-3939

3940-3951

3952-3963

3964-3975

3976-3987

3988-3999

4000-4011

4012-4023

4024-4035

Table 5-51 Event Log Window Registers

Parameter Offset Type R/W Range

UINT16

97 = record corrupted

Minute

Hour

Day

+1

+2

+3

UINT16 R

UINT16 R

UINT16 R

98 = no more events

99 = no events logged

0-59

0-23

1-31

Month

Year +5

Event cause

+4

+6

UINT16 R 1-12

R

UINT16 R see Table 5-52

48

Event origin +7 UINT16 R

Log value (16-bit register/32-bit counter) 1 +8, +9 UINT32 R

Event effect +10 UINT16 R

Event target +11 UINT16 R see Table 5-52 see Table 5-52 see Table 5-52 see Table 5-52

1 The log value can be read in one or two registers depending on the value type. For the value length and conversion scales, refer to Table 5-2.

Table 5-52 Event Log Parameters

Event cause Event cause code

Setpoint event Trigger parameter

ID high byte (see

Table 5-2)

Event origin

(location)

Trigger parameter ID low byte (see Table 5-2)

Setpoint activity 90

Comm. activity

Front panel activity

Self-check

Self-update

External event

91

92

93

94

Hardware failure 98

99

Setpoint number = 0-

15

Data location code (see

Table 5-56)

Data location code (see

Table 5-56)

Data location code (see

Table 5-56)

8 = RTC

Diagnostic code

(see Table 5-57)

0 = power down

8 = power up

Log value Event effect

Trigger parameter value (see Table

5-2)

0

0

0

0

225 = setpoint operated

226 = setpoint released

Setpoint action type

(see

Table 5-34

See Table 5-58

See Table 5-58

See Table 5-58

0 245 = RTC set

0 0

Setpoint number = 0-15

See Table 5-34

See Table 5-58

See Table 5-58

See Table 5-58

0

0

0 0

Event target

0

5.24 Event Log Registers (Circular Access)

These registers allow you to circularly read a packet of consequent records from the event log file. From 1 to 12 event log records can be read at a time via the event log windows, which comprise registers 29440 through

29559. Reading from either register window always returns the next logged event record. All registers within one window must be read at once using a single request. After reading an event log window, the partition queue pointer is shifted forward until the end of the log file. After the last record has been read, the file pointer is automatically restored to the beginning of the log file so that the next read request will return the first (oldest) event. To point to an arbitrary record, use the log partition status/control registers (see Section 5.10).

Table 5-53 Event Log Windows Locations

Event log window

Event log window #1

Event log window #2

Event log window #3

Event log window #4

Event log window #5

Event log window #6

Event log window #7

Event log window #8

Event log window #9

Event log window #10

Event log window #11

Event log window #12

Registers (see Table 5-54)

29440-29449

29450-29459

29460-29469

29470-29479

29480-29489

29490-29499

29500-29509

29510-29519

29520-29529

29530-29539

29540-29549

29550-29559

49

Table 5-54 Event Log Window Registers

Parameter Offset Type R/W Range

Record status +0 UINT16 R Bit-mapped register: bit 0 = 1 - the end record is being read (the end of a log file reached) bit 1 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, i.e., the file is being re-read from the beginning. This bit is cleared when a new record is being read, or the read sequence has changed by overwriting the partition pointer. bit 8 = 1 - no records logged in the partition

Record sequence number 1 +1 UINT16 R bit 9 = 1 - the record is corrupted bit 15 = 1 - read error (detailed by bits 8-9)

0 to 65535 (increments modulo 65536 with each log)

Timestamp 1

Fractional seconds portion of timestamp (milliseconds)

Event cause

Log value (32-bit register) 2

+2, +3 UINT32

+4 UINT16

+5 UINT16

+6, +7 INT32

R

R

R

R

Local time (UNIX-style)

0-990 (at 10 ms resolution) see Table 5-54 see Table 5-54

Event effect +8 UINT16 R

Reserved +9 see Table 5-54

UINT16

1 Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight (00:00:00), January 1, 1970. The time is valid after January 1, 2000.

2 For the log value size and range, refer to Table 5-2.

NOTES:

1. If a requested record is corrupted (the redundant check fails), the record is reported with all zeros (except the sequence number) and the bits 9 and 15 in the status indication word being set to 1.

2. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the status indication word being set to 1.

Table 5-55 Event Log Parameters

Event cause Event cause code

High byte: cause code

Low byte: event origin (location)

Setpoint event Trigger parameter

ID high byte (see

Table 5-2)

Trigger parameter ID low byte (see Table 5-2)

Setpoint activity

Comm. activity

Front panel activity

Self-check

90

91

92

93

Self-update

Hardware failure

94

98

External event 99

Setpoint number = 0-15

Data location code (see

Table 5-56)

Data location code (see

Table 5-56)

Data location code (see

Table 5-56)

8 = RTC

Diagnostic code

(see Table 5-57)

0 = power down

8 = power up

Trigger parameter value (see

Table 5-2)

0

0

0

0

0

Log value Event effect

High byte: effect code

Low byte: target code

225 = setpoint operated

226 = setpoint released

Setpoint action type

(see

Table 5-34

See Table 5-58

See Table 5-58

See Table 5-58

245 = RTC set

0 0

Setpoint number = 0-15

See Table 5-34

See Table 5-58

See Table 5-58

See Table 5-58

0

0

0 0 0

Table 5-56 Data Location Codes

Location code Description

0-2 Reserved

3 Data keeping memory setup setup setup

7 Communications

50

9

10

11

12

Location code Description

Discrete inputs allocation

Pulse counters allocation

Multiplexed analog outputs setup

External analog outputs setup

13 Reserved setup options setpoints

17 Pulsing

18

19

20

21

22

23

24

User assignable register map

Programmable Min/Max log setup

Data log setup

Memory partitions setup

TOU energy registers setup

TOU demand registers setup

TOU daily profiles

25

26

27

TOU calendar

TOU calendar years

Relay control registers

28 User selectable options

29 Reserved

30 Reserved

31

32

DNP 3.0 class 0 map

DNP 3.0 options setup

33

34

DNP 3.0 events setup

DNP 3.0 event setpoints

35 Calibration

36 Time zone information

Table 5-57 Diagnostic Codes

Diagnostic code Description

error error

3

4 Sampling

5

Watch dog timer reset failure

Out of control trap

6 Reserved failure

Table 5-58 Event Effect Codes

96

97

Effect code Description

Clear energy registers

Clear demand registers

98

99

100

101

102

103

Clear TOU energy registers

Clear TOU demand registers

Clear counters

Clear Min/Max log registers

Clear event log

Clear data log

104

105

225

226

241

Clear waveform log #1

Clear waveform log #2

Setpoint operated

Setpoint released

Setpoint disabled

242 Setup

243 Setup set by default changed set

Target

0

0 = all demands

1 = power demands

2 = volt/ampere demands

0

0

0 = clear all counters

1-16 = counter #1-#16

0

0

0-15 = log #1-#16

16 = clear all data logs

0

0

0-15 = setpoint #1-#16

0-15 = setpoint #1-#16

0-15 = setpoint #1-#16

0

0

0

0

51

5.25 Data Log Registers (Sequential Access)

Data log records are read via a data log window, one for each data log partition. Reading from this window always returns the next record logged in the partition. All registers within one window must be read at once using a single request. After reading each record, the partition queue pointer is shifted forward until the last logged record has been read. After that, the exception code 98 is returned in the record's first register. It should be checked before accepting the record. To restore the queue to the origin, a zero must be written to the partition queue reset register (see Section 5.6).

NOTE. The PM296/RPM096 offers you another mechanism to access data logs, allowing you to read records in a circular manner without a need to manipulate the file pointer. In this event, the file pointer is automatically restored to the file origin after the last file record has been read (see Section 5.26).

Table 5-59 Data Logs Window Registers

Data log window

Data log #1 window

Data log #2 window

Data log #3 window

Data log #4 window

Data log #5 window

Data log #6 window

Data log #7 window

Data log #8 window

Data log #9 window

Data log #10 window

Data log #11 window

Data log #12 window

Data log #13 window

Data log #14 window

Data log #15 window

Data log #16 window

Registers (see Table 5-60)

1120-1161

1162-1203

1204-1245

1246-1287

1288-1329

1330-1371

1372-1413

1414-1455

1456-1497

1498-1539

1540-1581

1582-1623

1624-1665

1666-1707

1708-1749

1750-1791

Table 5-60 Data Log Window Registers

Parameter

Trigger setpoint number

Offset

+0

Type

UINT16

R/W

R

Range

1-16,

97 = record corrupted

98 = no more records

99 = no records logged

Hundredths of second +1 UINT16 R

Second +2

0-99

UINT16

Minute

Hour

Day

+3

+4

+5

UINT16

UINT16

UINT16

R

R

R

0-59

0-23

1-31

Month +6 UINT16 R

Year +7

1-12

UINT16

Reserved +8

The number of parameters in the record

+10 UINT16 R 1-16

Log parameter #1 value 1 +11

+12

UINT32 R see Table 5-2

UINT32 R see Table 5-2 Log parameter #2 value 1 +13

+14

...

Log parameter #16 value 1 +40

+41

UINT32 R see Table 5-2

1 The log parameter value is read as a 16-bit register or a 32-bit counter. For the value range and conversion scales, refer to Table 5-2.

When reading the data log window registers, those that reside outside of the specified partition record size will be read as zeros. The actual number of parameters in the record is indicated in the log window register at offset +10.

5.26 Data Log Registers (Circular Access)

These registers allow you to circularly read consequent records from the event log file. Each data log file is accessed via a separate register window. Reading from either register window always returns the next logged record from the corresponding data log. All registers within one window must be read at once using a single

52

request. After reading a log window, the partition queue pointer is shifted forward until the end of the log file. After the last record has been read, the file pointer is automatically restored to the beginning of the log file so that the next read request will return the first (oldest) record. To point to an arbitrary record, use the data log partition status/control registers (see Section 5.9).

Table 5-61 Data Log Window Locations

Data log number Registers (see Table 5-62)

Data log #1

Data log #2

Data log #3

Data log #4

Data log #5

Data log #6

Data log #7

Data log #8

Data log #9

Data log #10

Data log #11

Data log #12

Data log #13

Data log #14

Data log #15

Data log #16

TOU Monthly Profile Log. Energy Reg. #1

TOU Monthly Profile Log. Energy Reg. #2

29696-29735

29736-29775

29776-29815

29816-29855

29856-29895

29896-29935

29936-29975

29976-30015

30016-30055

30056-30095

30096-30135

30136-30175

30176-30215

30216-30255

30256-30295

30296-30335

30336-30375

30376-30415

TOU Monthly Profile Log. Energy Reg. #3

TOU Monthly Profile Log. Energy Reg. #4

TOU Monthly Profile Log. Energy Reg. #5

TOU Monthly Profile Log. Energy Reg. #6

TOU Monthly Profile Log. Energy Reg. #7

TOU Monthly Profile Log. Energy Reg. #8

TOU Monthly Profile Log. Energy Reg. #9

TOU Monthly Profile Log. Energy Reg. #10

TOU Monthly Profile Log. Energy Reg. #11

TOU Monthly Profile Log. Energy Reg. #12

30416-30455

30456-30495

30496-30535

30536-30575

30576-30615

30616-30655

30656-30695

30696-30735

30736-30775

30776-30815

TOU Monthly Profile Log. Energy Reg. #13

TOU Monthly Profile Log. Energy Reg. #14

TOU Monthly Profile Log. Energy Reg. #15

TOU Monthly Profile Log. Energy Reg. #16

TOU Monthly Profile Log. Max. Demand Reg. #1

30816-30855

30856-30895

30896-30935

30936-30975

30976-31015

TOU Monthly Profile Log. Max. Demand Reg. #2

TOU Monthly Profile Log. Max. Demand Reg. #3

31016-31055

31056-31095

Reserved 31096-31615

TOU Daily Profile Log. Energy Reg. #1

TOU Daily Profile Log. Energy Reg. #2

TOU Daily Profile Log. Energy Reg. #3

TOU Daily Profile Log. Energy Reg. #4

TOU Daily Profile Log. Energy Reg. #5

TOU Daily Profile Log. Energy Reg. #6

TOU Daily Profile Log. Energy Reg. #7

TOU Daily Profile Log. Energy Reg. #8

TOU Daily Profile Log. Energy Reg. #9

TOU Daily Profile Log. Energy Reg. #10

TOU Daily Profile Log. Energy Reg. #11

TOU Daily Profile Log. Energy Reg. #12

31616-31655

31656-31695

31696-31735

31736-31775

31776-31815

31816-31855

31856-31895

31896-31935

31936-31975

31976-32015

32016-32055

32056-32095

TOU Daily Profile Log. Energy Reg. #13

TOU Daily Profile Log. Energy Reg. #14

TOU Daily Profile Log. Energy Reg. #15

TOU Daily Profile Log. Energy Reg. #16

TOU Daily Profile Log. Max. Demand Reg. #1

32096-32135

32136-32175

32176-32215

32216-32255

32256-32295

TOU Daily Profile Log. Max. Demand Reg. #2

TOU Daily Profile Log. Max. Demand Reg. #3

32296-32335

32336-32375

Reserved 32376-32895

If data log partition #15 is configured as a TOU monthly profile partition, registers 30256-30295 are mapped to registers 30336-30375 for the first TOU monthly profile sub-partition allocated for TOU energy register #1, or if this register is not configured, for the following first available TOU register.

53

If data log partition #16 is configured as a TOU daily profile partition, registers 30296-30335 are mapped to registers 31616-31655 for the first TOU daily profile sub-partition allocated for TOU energy register #1, or if this register is not configured, for the following first available TOU register.

Table 5-62 Data Log Window Registers

Parameter

Record status

Offset

+0

Type

UINT16

Record sequence number 1

Timestamp 1

Fractional seconds portion of timestamp (milliseconds)

Event setpoint ID

Parameter #1 value 2

Parameter #2 value 2

Parameter #3 value 2

Parameter #4 value 2

Parameter #5 value 2

Parameter #6 value 2

Parameter #7 value 2

Parameter #8 value 2

Parameter #9 value 2

Parameter #10 value 2

Parameter #12 value 2

Parameter #13 value 2

Parameter #13 value 2

Parameter #14 value 2

Parameter #15 value 2

Parameter #16 value 2

+1

+2, +3

+4

UINT16

UINT32

UINT16

+5

+6, +7

UINT16

INT32

+8, +9 INT32

+10, +11 INT32

+12, +13 INT32

+14, +15 INT32

+16, +17 INT32

+18, +19 INT32

+20, +21 INT32

+22, +23 INT32

+24, +25 INT32

+26, +27 INT32

+28, +29 INT32

+30, +31 INT32

+32, +33 INT32

+34, +35 INT32

+36, +37 INT32

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R/W

R

R

R

Range

Bit-mapped register: bit 0 = 1 - the end record is being read (the end of a log file reached) bit 1 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, i.e., the file is being re-read from the beginning. This bit is cleared when a new record is being read, or the read sequence has changed by overwriting the partition pointer. bit 8 = 1 - no records logged in the partition bit 9 = 1 - the record is corrupted bit 15 = 1 - read error (detailed by bits 8-9)

0 to 65535 (increments modulo 65536 with each log)

Local time (UNIX-style)

0-990 (at 10 ms resolution)

0 = TOU profile log, 1 to 16 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2 see Table 5-2

1 Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight (00:00:00), January 1, 1970. The time is valid after January 1, 2000.

2

The log parameters are read in 32-bit registers. For the value ranges and scales, refer to Table 5-2.

NOTES:

1. If a requested record is corrupted (the redundant check fails), the record is reported with all zeros (except the sequence number) and bits 9 and 15 in the status indication word as being set to 1.

2. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the status indication word as being set to 1.

3. The parameters that reside outside of the specified partition record size will be read as zeros.

5.27 Min/Max Log Registers (16-bit registers)

These registers allow you to read time-stamped Min/Max logs in 16-bit Modbus registers using LIN3 conversion.

From 1 to 12 adjacent records can be read at a time via the Min/Max log windows. The starting window #1 can be mapped to any Min/Max log parameter listed in Table 5-2 by writing the parameter ID to the Min/Max log mapping register. This register must be written before reading the Min/Max log windows. Note that through Min/Max log windows, you can read only adjacent parameters within the same Min/Max log data group. Reading parameters outside of the selected Min/Max log data group will return zero.

54

Table 5-63 Min/Max Log Windows Registers

Min/Max log window

Min/Max log window #1

Min/Max log window #2

Min/Max log window #3

Min/Max log window #4

Min/Max log window #5

Min/Max log window #6

Min/Max log window #7

Min/Max log window #8

Min/Max log window #9

Min/Max log window #10

Min/Max log window #11

Min/Max log window #12

Registers (see Table 5-64)

4174-4181

4182-4189

4190-4197

4198-4205

4206-4213

4214-4221

4222-4229

4230-4237

4238-4245

4246-4253

4254-4261

4262-4269

Table 5-64 Min/Max Log Window Registers

Parameter Offset Type R/W Range

Minute

Hour

Day

Month

+1

+2

+3

+4

UINT16

UINT16

UINT16

UINT16

R

R

R

R

0-59

0-23

1-31

1-12

Parameter value 2 +6 UINT16 R

Reserved +7 see Table 5-2

UINT16

1 The Min/Max parameter value is read in a 16-bit register. For the value range and conversion scales, refer to

Table 5-2.

Table 5-65 Min/Max Log Mapping Register

Parameter

Min/Max log start parameter ID for window #1

Register

4172

Type R/W

UINT16 R/W

Range

see Table 5-2

5.28 Min/Max Log Registers (32-bit registers)

These registers allow you to read time-stamped Min/Max logs in 32-bit Modbus registers without mapping.

Table 5-66 Min/Max Log Registers

Parameter

Minimum real-time values per phase

Min. Voltage L1/L12 6

Registers

35840-35841

Type

INT32

Unit

0.1V/1V

Range

0 to Vmax

Min. Voltage L2/L23 6

Min. Voltage L3/L31 6

Min. Current L1

Min. Current L2

35844-35845

35848-35849

35852-35853

35856-35857

INT32

INT32

INT32

INT32

0.1V/1V

0.1V/1V

0.01A

0.01A

0 to Vmax

0 to Vmax

0 to Imax

0 to Imax

Min. Current L3 35860-35861 INT32 0.01A

Timestamp 35862-35863

0 to Imax

UINT32

Min. kW L1 35864-35865 INT32 0.001kW/1kW

Timestamp 35866-35867

-Pmax to Pmax

UINT32

Min. kW L2 35868-35869 INT32 0.001kW/1kW

Timestamp 35870-35871

-Pmax to Pmax

UINT32

Min. kW L3 35872-35873 INT32 0.001kW/1kW

Timestamp 35874-35875

-Pmax to Pmax

UINT32

Min. kvar L1 35876-35877 INT32 0.001kvar/1kvar -Pmax to Pmax

UINT32

Min. kvar L2 35880-35881 INT32 0.001kvar/1kvar -Pmax to Pmax

UINT32

Min. kvar L3 35884-35885 INT32 0.001kvar/1kvar -Pmax to Pmax

55

Parameter Registers Type Unit Range

Min. kVA L1 35888-35889 INT32 0.001kVA/1kVA

Timestamp 35890-35891

0 to Pmax

UINT32

Min. kVA L2 35892-35893 INT32 0.001kVA/1kVA

Timestamp 35894-35895

0 to Pmax

UINT32

Min. kVA L3 35896-35897 INT32 0.001kVA/1kVA

Timestamp 35898-35899

0 to Pmax

UINT32

Min. Power factor L1 3 35900-35901 INT32 0.001

Timestamp 35902-35903

0 to 1000

UINT32

Min. Power factor L2 3 35904-35905 INT32 0.001

Timestamp 35906-35907

0 to 1000

UINT32

Min. Power factor L3 3 35908-35909 INT32 0.001

Timestamp 35910-35911

0 to 1000

UINT32

Min. Voltage THD L1/L12 35912-35913 INT32 0.1%

Timestamp 35914-35915

0 to 9999

UINT32

Min. Voltage THD L2/L23 35916-35917 INT32 0.1% 0 to 9999

Min. Voltage THD L3

Min. Current THD L1

35920-35921

35924-35925

INT32

INT32

0.1%

0.1%

0 to 9999

0 to 9999

Min. Current THD L2

Min. Current THD L3

Min. K-Factor L1

Min. K-Factor L2

35928-35929

35932-35933

35936-35937

35940-35941

INT32

INT32

INT32

INT32

0.1%

0.1%

0.1

0.1

0 to 9999

0 to 9999

10 to 9999

10 to 9999

Min. K-Factor L3 35944-35945 INT32 0.1

Timestamp 35946-35947

10 to 9999

UINT32

Min. Current TDD L1 35948-35949 INT32 0.1%

Timestamp 35950-35951

0 to 1000

UINT32

Min. Current TDD L2 35952-35953 INT32 0.1%

Timestamp 35954-35955

0 to 1000

UINT32

Min. Current TDD L3 35956-35957 INT32 0.1%

Timestamp 35958-35959

0 to 1000

UINT32

Min. Voltage L12 35960-35961 INT32 0.1V/1V

Timestamp 35962-35963

0 to Vmax

UINT32

Min. Voltage L23 35964-35965 INT32 0.1V/1V

Timestamp 35966-35967

0 to Vmax

UINT32

Min. Voltage L31 35968-35969 INT32 0.1V/1V

Timestamp 35970-35971

0 to Vmax

UINT32

Minimum real-time total values

Min. Total kW 36096-36097 INT32 0.001kW/1kW

Timestamp 36098-36099

-Pmax to Pmax

UINT32

Min. Total kvar 36100-36101 INT32 0.001kvar/1kvar -Pmax to Pmax

UINT32

Min. Total kVA 36104-36105 INT32 0.001kVA/1kVA

Timestamp 36106-36107

0 to Pmax

UINT32

Min. Total PF 3 36108-36109 INT32 0.001

Timestamp 36110-36111

0 to 1000

UINT32

Min. Total PF Lag 36112-36113 INT32 0.001

Timestamp 36114-36115

0 to 1000

UINT32

Min. Total PF Lead 36116-36117 INT32 0.001

Timestamp 36118-36119

0 to 1000

UINT32

Minimum real-time auxiliary values

Min. Auxiliary current 36352-36353 INT32 0.01A/mA

Timestamp 36354-36355

0 to Imax aux

UINT32

Min. Neutral current 36356-36357 INT32 0.01A

Timestamp 36358-36359

0 to Imax

UINT32

Min. Frequency 4 36360-36361 INT32 0.01Hz

Timestamp 36362-36363

0 to 10000

UINT32

Min. Voltage unbalance 36364-36365 INT32 1%

Timestamp 36366-36367

0 to 300

UINT32

Min. Current unbalance 36368-36369 INT32 1%

Timestamp 36370-36371

0 to 300

UINT32

56

Min. DC voltage

Parameter Registers

36372-36373

Type

INT32 0.01V

Unit Range

0 to 999900

Programmable Min/Max minimum registers

Min. Register #1 36608-36609 INT32 g

Timestamp 36610-36311 UINT32

Min. Register #2 36612-36313 INT32 g

Timestamp 36614-36315 UINT32

... ...

Min. Register #16 36668-36669 INT32 g

Timestamp 36670-36671 UINT32

Maximum real-time values per phase

Max. Voltage L1/L12 6 36864-36865 INT32 0.1V/1V 0 to Vmax

Max. Voltage L2/L23 6

Max. Voltage L3/L31 6

Max. Current L1

Max. Current L2

36868-36869

36872-36873

36876-36877

36880-36881

INT32

INT32

INT32

INT32

0.1V/1V

0.1V/1V

0.01A

0.01A

0 to Vmax

0 to Vmax

0 to Imax

0 to Imax

Max. Current L3 36884-36885 INT32 0.01A

Timestamp 36886-36887

0 to Imax

UINT32

Max. kW L1 36888-36889 INT32 0.001kW/1kW

Timestamp 36890-36891

-Pmax to Pmax

UINT32

Max. kW L2 36892-36893 INT32 0.001kW/1kW

Timestamp 36894-36895

-Pmax to Pmax

UINT32

Max. kW L3 36896-36897 INT32 0.001kW/1kW

Timestamp 36898-36899

-Pmax to Pmax

UINT32

Max. kvar L1 36900-36901 INT32 0.001kvar/1kvar -Pmax to Pmax

UINT32

Max. kvar L2 36904-36905 INT32 0.001kvar/1kvar -Pmax to Pmax

UINT32

Max. kvar L3 36908-36909 INT32 0.001kvar/1kvar -Pmax to Pmax

UINT32

Max. kVA L1 36912-36913 INT32 0.001kVA/1kVA

Timestamp 36914-36915

0 to Pmax

UINT32

Max. kVA L2 36916-36817 INT32 0.001kVA/1kVA

Timestamp 36918-36919

0 to Pmax

UINT32

Max. kVA L3 36920-36921 INT32 0.001kVA/1kVA

Timestamp 36922-36923

0 to Pmax

UINT32

Max. Power factor L1 3 36924-36925 INT32 0.001 0 to 1000

Max. Power factor L2 3

Max. Power factor L3 3

36928-36929

36932-36933

INT32

INT32

0.001

0.001

0 to 1000

0 to 1000

Max. Voltage THD L1/L12

Max. Voltage THD L2/L23

Max. Voltage THD L3

36936-36937

36940-36941

36944-36945

INT32

INT32

INT32

0.1%

0.1%

0.1%

0 to 9999

0 to 9999

0 to 9999

Max. Current THD L1 36948-36949 INT32 0.1%

Timestamp 36950-36951

0 to 9999

UINT32

Max. Current THD L2 36952-36953 INT32 0.1%

Timestamp 36954-36955

0 to 9999

UINT32

Max. Current THD L3 36956-36957 INT32 0.1%

Timestamp 36858-36959

0 to 9999

UINT32

Max. K-Factor L1 36960-36961 INT32 0.1

Timestamp 36962-36963

10 to 9999

UINT32

Max. K-Factor L2 36964-36965 INT32 0.1

Timestamp 36966-36967

10 to 9999

UINT32

Max. K-Factor L3 36968-36969 INT32 0.1

Timestamp 36970-36971

10 to 9999

UINT32

Max. Current TDD L1 36972-36973 INT32 0.1%

Timestamp 36974-36975

0 to 1000

UINT32

57

Parameter

Max. Current TDD L2

Max. Current TDD L3

Max. Voltage L12

Registers

36976-36977

36980-36981

36984-36985

Type

INT32

INT32

INT32

0.1%

Unit

0.1%

0.1V/1V

Range

0 to 1000

0 to 1000

0 to Vmax

Max. Voltage L23

Max. Voltage L31

36988-36989

36992-36993

INT32

INT32

0.1V/1V

0.1V/1V

0 to Vmax

0 to Vmax

Maximum real-time total values

Max. Total kW 37120-37121 INT32 0.001kW/1kW

Timestamp 37122-37123

-Pmax to Pmax

UINT32

Max. Total kvar 37124-37125 INT32 0.001kvar/1kvar -Pmax to Pmax

Max. Total kVA

Max. Total PF 3

Max. Total PF Lag

Max. Total PF Lead

37128-37129

37132-37133

37136-37137

37140-37141

INT32

INT32

INT32

INT32

0.001kVA/1kVA

0.001

0.001

0.001

0 to Pmax

0 to 1000

0 to 1000

0 to 1000

Maximum real-time auxiliary values

Max. Auxiliary current 37376-37377 INT32 0.01A/mA

Timestamp 37378-37379

0 to Imax aux

UINT32

Max. Neutral current 37380-37381 INT32 0.01A 0 to Imax

Max. Frequency 4

Max. Voltage unbalance

Max. Current unbalance

Max. DC voltage

Maximum demands (M)

Max. volt demand L1/L12 6

37384-37385

37388-37389

37392-37393

37396-37397

37632-37633

INT32

INT32

INT32

INT32

INT32

0.01Hz

1%

1%

0.01V

0.1V/1V

0 to 10000

0 to 300

0 to 300

0 to 999900

0 to Vmax

Max. volt demand L2/L23 6 37636-37637 INT32 0.1V/1V

Timestamp 37638-37639

0 to Vmax

UINT32

Max. volt demand L3/L31 6 37640-37641 INT32 0.1V/1V

Timestamp 37642-37643

0 to Vmax

UINT32

Max. ampere demand L1 37644-37645 INT32 0.01A

Timestamp 37646-37647

0 to Imax

UINT32

Max. ampere demand L2 37648-37649 INT32 0.01A

Timestamp 37650-37651

0 to Imax

UINT32

Max. ampere demand L3 37652-37653 INT32 0.01A

Timestamp 37654-37655

0 to Imax

UINT32

Reserved 37656-37657 0

Reserved 37660-37661 0

Reserved 37664-37665 0

Max. kW import sliding window demand

Max. kvar import sliding window demand

Max. kVA sliding window demand

Max. kW import thermal demand

37668-37669

37672-37673

37676-37677

37680-37681

INT32

INT32

INT32

INT32

0.001kW/1kW 0 to Pmax

0.001kvar/1kvar 0 to Pmax

0.001kVA/1kVA

0.001kW/1kW

0 to Pmax

0 to Pmax

Max. kvar import thermal demand 37684-37685 INT32 0.001kvar/1kvar 0 to Pmax

UINT32

Max. kVA thermal demand 37688-37689 INT32 0.001kVA/1kVA

Timestamp 37690-37691

0 to Pmax

UINT32

58

Parameter

Max. kW export sliding window demand

Max. kvar export sliding window demand

Max. kW export thermal demand

Registers

37692-37693

37696-37687

37700-37701

Type

INT32

INT32

INT32

Unit

0.001kW/1kW

0.001kvar/1kvar

0.001kW/1kW

Range

0 to Pmax

0 to Pmax

0 to Pmax

Max. kvar export thermal demand 37704-37705 INT32 0.001kvar/1kvar 0 to Pmax

Programmable Min/Max maximum registers

Max. Register #1 37888-37889 INT32 g

Timestamp 37890-37891 UINT32

Max. Register #2 37892-37893 INT32 g

Timestamp 37894-37895 UINT32

... ...

Max. Register #16 37948-37949 INT32 g

Timestamp 37950-37951 UINT32

TOU maximum demand register #1

Max. Demand Tariff #1 register 38144-38145 INT32 g 0 to Pmax

Max. Demand Tariff #2 register 38148-38149 INT32 g 0 to Pmax

...

Max. Demand Tariff #16 register

...

38204-38205 INT32 g 0 to Pmax

TOU maximum demand register #2

Max. Demand Tariff #1 register 38400-38401 INT32 g

Timestamp 38402-38403

0 to Pmax

UINT32

Max. Demand Tariff #2 register 38404-38405 INT32 g

Timestamp 38406-38407

0 to Pmax

UINT32

... ...

Max. Demand Tariff #16 register 38460-38461 INT32 g

Timestamp 38462-38463

0 to Pmax

UINT32

TOU maximum demand register #3

Max. Demand Tariff #1 register 38656-38657 INT32 g 0 to Pmax

Max. Demand Tariff #2 register 38650-38651 INT32 g 0 to Pmax

... ...

Max. Demand Tariff #16 register 38716-38717 INT32 g

Timestamp 38718-38719

0 to Pmax

UINT32

Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight

(00:00:00), January 1, 1970. The time is valid after January 1, 2000.

1

The Min/Max log parameters are read in 32-bit registers. For the parameter limits, see Note c to Table 5-1

2 When using direct wiring (PT Ratio = 1), voltages are transmitted in 0.1 V units, currents in 0.01 A units, and powers in 0.001 kW/kvar/kVA units. For wiring via PTs (PT Ratio > 1), voltages are transmitted in 1V units, currents in 0.01 A units, and powers in 1 kW/kvar/kVA units.

3 New absolute min/max value (lag or lead).

4 The actual frequency range is 45.00 - 65.00 Hz.

5 The Programmable Min/Max register and TOU maximum demand register unit and range match those of the input parameter for which the register is allocated.

6

When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line voltages.

5.29 Real Time Clock Registers

Table 5-67 RTC Registers

Parameter Register Type

Seconds 4352

Minutes 4353 UINT16

Hour

Day of month

Month

4354

4355

4356

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

R/W

0-59

0-23

1-31

1-12

Range

59

Parameter Type

Year 4357

Day of week

Register

4358

UINT16

UINT16

R/W

R/W

Range

0-99

1-7 (1=Sunday)

The day of week is not checked when written. It is set automatically when you change the date.

5.30 Time Zone Information Registers

Table 5-68 Time Zone Registers

Parameter

Daylight savings time (DST) option

Register

4320

Type R/W

UINT16 R/W

DST start month

DST start week of the month

DST start weekday

DST end month

DST end week of the month

DST end weekday

4321

4322

4323

4324

4325

4326

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

UINT16 R/W

Range

0 = disable DST (use standard time only),

1 = enable DST

1 - 12

1 - 4 = 1st, 2nd, 3rd and 4th week,

5 = the last weekday in the month

1-7 (1= Sun, 7 = Sat)

1 - 12

1 - 4 = 1st, 2nd, 3rd and 4th week,

5 = the last weekday in the month

1-7 (1= Sun, 7 = Sat)

5.31 TOU System Registers Setup

Table 5-69 TOU System Setup Registers

TOU system register

TOU energy register #1

TOU energy register #2

TOU energy register #3

TOU energy register #4

TOU energy register #5

TOU energy register #6

TOU energy register #7

TOU energy register #8

TOU maximum demand register #1

TOU maximum demand register #2

TOU maximum demand register #3

Setup registers

(see Table 5-70)

4564-4565

4566-4567

4568-4569

4570-4571

4572-4573

4574-4575

4576-4577

4578-4579

4580-4581

4582-4583

4584-4585

Table 5-70 TOU Register Setup

Parameter

TOU register input identifier

For a pulse input = number of unithours per pulse. Otherwise, set to 0.

Offset Type R/W

+0 UINT16 R/W

+1 UINT16

Range

see Tables 5-71, 5-72

0-9999

1. Each TOU register consists of 16 tariff registers.

2. If a pulse input is assigned to an energy register, the register's input ID must be written first.

Table 5-71 TOU Energy Registers Inputs

None kWh import kWh export kWh net kWh total kvarh import

Register input

kvarh export kvarh net kvarh total kVAh total

Pulse input #1

Pulse input #2

Pulse input #3

Pulse input #4

Pulse input #5

6

7

8

9

10

11

12

13

14

Input ID

0

1

2

3

4

5

60

Register input

Pulse input #6

Pulse input #7

Pulse input #8

Pulse input #9

Pulse input #10

Pulse input #11

Pulse input #12

Input ID

15

16

17

18

19

20

21

Table 5-72 TOU Demand Registers Inputs

Register input

None

Maximum kW import sliding window demand

Maximum kW export sliding window demand

Maximum kvar import sliding window demand

Maximum kvar export sliding window demand

Maximum kVA sliding window demand

Maximum kW import thermal demand

Maximum kW export thermal demand

Maximum kvar import thermal demand

Maximum kvar export thermal demand

Maximum kVA thermal demand

Input ID

0

1

2

3

4

5

6

7

8

9

10

5.32 TOU Daily Profiles Registers

Table 5-73 TOU Daily Profiles Registers

TOU daily profile

TOU daily profile #1

TOU daily profile #2

TOU daily profile #3

TOU daily profile #4

TOU daily profile #5

TOU daily profile #6

TOU daily profile #7

TOU daily profile #8

TOU daily profile #9

TOU daily profile #10

TOU daily profile #11

TOU daily profile #12

TOU daily profile #13

TOU daily profile #14

TOU daily profile #15

TOU daily profile #16

Setup registers

(see Table 5-74)

2048-2063

2064-2079

2080-2095

2096-2111

2112-2127

2128-2143

2144-2159

2160-2175

2176-2191

2192-2207

2208-2223

2224-2239

2240-2255

2256-2271

2272-2287

2288-2303

Table 5-74 TOU Profile Setup Registers

Parameter

1st tariff change Tariff start time

Offset

+0

Active tariff number +1

2nd tariff change

3rd tariff change

Tariff start time

Active tariff number

Tariff start time

Active tariff number

+2

+3

+4

+5

4th tariff change

5th tariff change

6th tariff change

7th tariff change

8th tariff change

Tariff start time

Active tariff number

Tariff start time

Active tariff number

Tariff start time

Active tariff number

Tariff start time

Active tariff number

Tariff start time

Active tariff number

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Range

0

0-15 see Table 5-75

0-15 see Table 5-75

0-15 see Table 5-75

0-15 see Table 5-75

0-15 see Table 5-75

0-15 see Table 5-75

0-15 see Table 5-75

0-15

61

Table 5-75 Tariff Start Time Register

Parameter

Tariff start minute

Tariff start hour

Bits

0-7

8-15

Range

0-45

0-23

The daily start time for each tariff is specified with a resolution of 15 minutes. If another value is specified, it will be truncated to the lower value divisible by 15 minutes. No error will occur. The first daily tariff change time is always

00:00. It is preserved internally and cannot be changed.

5.33 TOU Calendar Registers

Table 5-76 TOU Calendars Registers

TOU calendar Calendar month Setup registers

(see Table 5-77)

TOU calendar #1 January 4368-4375

4376-4383

4384-4391

4392-4399

4400-4407

4408-4415

July

4424-4431

4432-4439

4440-4447

4448-4455

December

TOU calendar #2 January 4464-4471

4472-4479

March

4488-4495

4496-4503

4504-4511

4512-4519

August

4528-4535

4536-4543

4544-4551

4552-4559

Table 5-77 TOU Calendar Setup Registers

Parameter

1-4 day profiles

5-8 day profiles

9-12 day profiles

13-16 day profiles

17-20 day profiles

21-24 day profiles

25-28 day profiles

29-31 day profiles

Offset

+0

+1

+2

+3

+4

+5

+6

+7

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Range

see Table 5-78 see Table 5-78 see Table 5-78 see Table 5-78 see Table 5-78 see Table 5-78 see Table 5-78 see Table 5-78

Table 5-78 TOU Calendar Profile Format

Parameter

1st day profile number

2nd day profile number

3rd day profile number

4th day profile number

Bits Range

0-3

4-7

0-15

0-15

8-11 0-15

12-15 0-15

Each profile register defines daily profiles for four days of month.

5.34 TOU Calendar Years Registers

These registers allow to associate calendar years with two TOU annual calendars.

62

Table 5-79 TOU Calendar Years Registers

Parameter

1st annual calendar year

2nd annual calendar year

Register

4560

4561

Type

UINT16

UINT16

R/W

R/W

R/W

0-99

0-99

Range

5.35 Communications Password Register

Table 5-80 Password Register

Parameter

Communications password

Register

2575

Type

UINT16

R/W

R/W

Range

Write: 0 to 65535

Read:

0 = access permitted

65535 = authorization required

5.36 Phase Harmonics Registers

These registers are preserved for compatibility with Series 290HD instruments. All the harmonics parameters can be read through extended data registers (see Table 5-2).

Table 5-81 Phase Harmonics Registers

Harmonics channel

V L1/L12 harmonics

V L2/L23 harmonics

V L3 harmonics

I L1 harmonics

I L2 harmonics

I L3 harmonics

Registers

(see Table 5-82)

2816-2858

3072-3114

3328-3370

3584-3626

3840-3882

4096-4138

Table 5-82 Phase Harmonics

Parameter

Channel RMS value

Fundamental frequency

THD

Harmonic H01 (reference)

Harmonic H02

Harmonic H03

...

Harmonic H40

Offset

+0

+1

+2

+3

+4

+5

...

+42

Type

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

UINT16

R/W

R

R

R

R

R

R

R

Range/Scale

1

0 to Vmax 2 /Imax V/A

0 to 100.00 Hz

0 to 100.00 %

0 to 100.00 %

0 to 100.00 %

0 to 100.00 %

0 to 100.00 %

Conversion

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

LIN3

1 For the RMS value limits and representation, see Notes 1 and 2 to Table 5-1.

2 Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other configurations.

5.37 Waveform Capture/Log Registers (Sequential Access)

Table 5-83 Waveform Header Windows

Waveform header window

Real-time waveform capture, channel V L1/L12

Real-time waveform capture, channel V L2/L23

Real-time waveform capture, channel V L3

Real-time waveform capture, channel I L1

Real-time waveform capture, channel I L2

Real-time waveform capture, channel I L3

Waveform log #1, channel V L1/L12

Waveform log #1, channel V L2/L23

Waveform log #1, channel V L3

Waveform log #1, channel I L1

Waveform log #1, channel I L2

Waveform log #1, channel I L3

Waveform log #2, channel V L1/L12

Registers

(see Tables 5-84 - 5-86)

4608-4617

4864-4873

5120-5129

5376-5385

5632-5641

5888-5897

4624-4633

4880-4889

5136-5145

5392-5401

5648-5657

5904-5913

4640-4650

63

Waveform log #2, channel V L2/L23

Waveform log #2, channel V L3

Waveform log #2, channel I L1

Waveform log #2, channel I L2

Waveform log #2, channel I L3

4896-4906

5152-5162

5408-5418

5664-5674

5920-5930

Table 5-84 Real-time Waveform Header Registers

Parameter

Capture code

Second

Minute

Hour

Day of month

Month

Year

Channel RMS value

Offset

+0

+1

+2

+3

+4

+5

+6

+7

Fundamental frequency +8

THD +9

Type

UINT16 R

R/W

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

Range/Scale

1

0

0 to 59

0 to 59

0 to 23

1 to 31

1 to 12

0 to 99

0 to Vmax 2 /Imax V/A

0 to 100.0 Hz

0 to 100.0 %

Conversion

NONE

NONE

NONE

NONE

NONE

NONE

NONE

LIN3

LIN3

LIN3

1

For the RMS value limits and representation, see Notes

1

and

2

to Table 5-1.

2

Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other configurations.

Table 5-85 Waveform Log #1 Header Registers

Parameter

Capture code: trigger setpoint number

Hundredth of second

Second

Minute

Hour

Day of month

Month

Year

Offset

+0

Type

UINT16 R

R/W

+1

+2

+3

+4

+5

+6

+7

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

Range/Scale

1-16, 98 = no more waveforms,

99 = no waveforms logged

0 to 99

0 to 59

0 to 59

0 to 23

1 to 31

1 to 12

0 to 99

Sampling frequency +9 UINT16 R

Reserved +10

0 to 100.0 Hz

UINT16

Conversion

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

LIN3

LIN3

LIN3

Table 5-86 Waveform Log #2 Header Registers

Parameter

Capture code: trigger setpoint number

Offset

+0

Second

Minute

Hour

Day of month

Month

Year

Channel RMS value +7

Fundamental frequency +8

THD +9

+1

+2

+3

+4

+5

+6

Type

UINT16 R

R/W

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

UINT16 R

Range/Scale

1

1-16, 98 = no more waveforms,

99 = no waveforms logged

0 to 59

0 to 59

0 to 23

1 to 31

1 to 12

0 to 99

0 to Vmax 2 /Imax V/A

0 to 100.0 Hz

0 to 100.0 %

Conversion

NONE

NONE

NONE

NONE

NONE

NONE

NONE

LIN3

LIN3

LIN3

1 For the RMS value limits and representation, see Notes 1 and 2 to Table 5-1.

2 Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other configurations.

These requests allow you to capture and read the real-time waveforms (4 cycles x 128 samples per cycle), and the recorded historical waveform logs – Waveform #1 (16 cycles x 32 samples/cycle records) and Waveform log

#2 (4 cycles x 128 samples/cycle records). The waveform samples are read via the samples window (see Table 5-

89) that can map a record for a single input channel (voltage or current waveform on either phase). To reload this window with a sampled waveform, a corresponding waveform header should be read (Tables 5-84 - 5-86).

64

Each waveform sample is represented by a value in the range of 0 to 1023 for a voltage waveform and 0 to 8191 for a current waveform. A value of 0 corresponds to the highest negative amplitude of the measured signal, and a value of 1023/8191 corresponds to the highest positive amplitude.

Real-time Waveform Capture

The real-time waveforms can be captured simultaneously on both voltage and current channels for a single phase.

To capture two waveforms on a selected phase, the first register (at offset +0) in the voltage waveform header window for this phase should be accessed (register 4608, 4864, or 5120) by reading this register or by reading the entire header window. Before responding to your request, the instrument reloads both the waveform header and waveform samples window with data corresponding to the voltage waveform. Data in these windows does not change until the first (capture code) register in either of the waveform header windows is read.

To reload the waveform header and samples windows with the current waveform data, read the first register in the current waveform header window for the same phase.

To capture and read waveform data on another phase, repeat the above steps for the phase you want to access.

Historical Waveform Logs

The historical waveform logs contain waveform records sampled at a rate of 32 samples per cycle in Waveform log #1 or at a rate of 128 samples per cycle in Waveform log #2, which are captured and logged to a file on some event triggers. Each record contains six waveforms of voltage and current on three phases.

Recorded waveforms are mapped and accessed through register windows in the same manner as the real-time waveforms (see above). On log files organization and managing, see Section 4.4, Configuring and Accessing Log

Files. Before reloading waveform window registers with data for a selected channel, the required record must be obtained from the log file to the communications buffer. This is made automatically when you reload the voltage waveform on phase L1, i.e., when you read the register at offset +0 in the voltage waveform header on phase L1 for the corresponding log file (registers 4624, 4640). Data in this buffer does not change until you read this register once again. Each time you access this register, the next record is read form the file and locked to the communications buffer. To reload waveform windows with data for the current channel or with data for another phase, read the capture code register in the voltage or current header window for the corresponding channel.

Waveform log files are accessed in a sequential manner. When you continue reading after the end of a file, the exception code 98 is returned in the header record's first field. It should be checked before the record will be proceeded. To restore the pointer to the first record in the log file, write zero into register 3417 or 3418 (see

Section 5.6).

5.38 Waveform Capture/Log Registers (Circular Access)

Table 5-87 Waveform Header Windows

Waveform header window

Real-time waveform capture, channel V L1/L12

Real-time waveform capture, channel V L2/L23

Real-time waveform capture, channel V L3

Real-time waveform capture, channel I L1

Real-time waveform capture, channel I L2

Real-time waveform capture, channel I L3

Waveform log #1, channel V L1/L12

Waveform log #1, channel V L2/L23

Waveform log #1, channel V L3

Waveform log #1, channel I L1

Waveform log #1, channel I L2

Waveform log #1, channel I L3

Waveform log #2, channel V L1/L12

Waveform log #2, channel V L2/L23

Waveform log #2, channel V L3

Waveform log #2, channel I L1

Waveform log #2, channel I L2

Waveform log #2, channel I L3

Registers

(see Tables 5-57- 5-60)

35456-35471

35472-35487

35488-35503

35504-35519

35520-35535

35536-35551

35552-35567

35568-35583

35584-35599

35600-35615

35616-35631

35632-35647

35648-35663

35664-35679

35680-35695

35696-35711

35712-35727

35728-35743

65

Table 5-88 Waveform Capture Window Registers

Parameter

Command/Status indication

Offset

+0

Type

UINT16 R

R/W Range

Bit-mapped register: bit 0 = 1 - the end record is being read (the end of a log file reached) bit 1 = 1 - reading after the end of file: the read pointer has rolled over the end of a log file, i.e., the file is being re-read from the beginning. This bit is cleared when a new record is being read, or the read sequence has changed by overwriting the partition pointer. bit 8 = 1 - no records logged in the partition bit 9 = 1 - the record is corrupted bit 15 = 1 - read error (detailed by bits 8-9)

The record sequence number in the log file

The record timestamp 1

Fractional seconds portion of timestamp (milliseconds)

Trigger event setpoint ID

The waveform series (compound waveform) number

+1 UINT16

+2, +3 UINT32

+4 UINT16

+5

+6

UINT16

UINT16

R

R

R

R

R

0 to 65535 (increments modulo 65536 with each log record)

Local time (UNIX-style)

0-990 (at 10 ms resolution)

1 to 16 = setpoint #1-#16,

0 = real-time waveform

1 to 65535 (rolls over to 1 after 65535). Each series can comprise up to 160 contiguous records of a compound waveform

0 to 159 The record sequence number in the waveform series

Analog input full scale, engineering units (volts/amperes)

(ANALOG_SCALE)

Digital full scale for the channel, sample code (DIGITAL_SCALE)

+7 UINT16

+8, +9 UINT32

R

R For the analog input scale units and range, refer to those of voltage and current in Table 5-2

Zero offset, code (ZERO_OFFSET)

Sampling frequency

Trigger sample point offset in the waveform series

Reserved

+10

+11

+12

+13

UINT16 R 1023 (10 bit A/D), 4095 (12 bit A/D), 8191 (13 bit

A/D). Corresponds to twice the analog input full scale range.

INT16 R Corresponds to the center of the digital sample's full scale range

0 to 6500 x 0.01Hz UINT16 R

UINT16 R 0-511 (corresponds to the first record in the series)

UINT16 R 0 +14 to

+15

Registers at offsets +0,+1, +5 to +7, and +13 are applicable only for waveform log records. For real-time waveforms these are read as zeros.

1

Timestamp is given in local time in a UNIX-style time format: it represents the number of seconds since midnight (00:00:00), January 1, 1970. The time is valid after January 1, 2000. Record timestamp shows the time for the last sample point in the waveform record.

To convert digital samples to their analog equivalents in input measurement units (volts, amps), the following scaling should be applied:

ANALOG _ SAMPLE [ Volts / Amps ]

=

( DIGITAL _ SAMPLE

ZERO _ OFFSET )

×

DIGITAL _ SCALE

ANALOG _ SCALE

×

2

NOTES

1. If a record is requested when the log file is empty, the record is reported with all zeros and bits 8 and 15 in the status indication word being set to 1.

2. Phase voltage will be line-to-line voltage in 3OP2 and 3OP3 wiring modes, and line-to-neutral voltage in other configurations.

Table 5-89 Waveform Samples Registers

Parameter

Waveform sample point #1

Waveform sample point #2

Address

6144

6145

Type

INT16

INT16

R

R

R/W Range

+/- 1023/8191

+/- 1023/8191

66

Waveform sample point #3 6146

... ...

Waveform sample point #512 6655

INT16

INT16

R

R

+/- 1023/8191

+/- 1023/8191

Through these registers you can capture and read the real-time waveforms (4 cycles x 128 samples per cycle), and the recorded historical waveform logs - Waveform log #1 (16 cycles x 32 samples per cycle records) and

Waveform log #2 (4 cycles x 128 samples per cycle records). The waveform samples are read via the register window 6144-6655 (see Table 5-89) that can map a record for a single input channel (voltage or current waveform on either phase). To reload this window with a sampled waveform, a corresponding waveform header window should be accessed (see Table 5-87).

Real-time Waveform Capture

The real-time waveforms can be captured simultaneously on both voltage and current channels for a single phase.

To capture two waveforms on a selected phase, the first register (at offset +0) in the voltage waveform header window for this phase (register 35456, 35472, or 35488) should be accessed by reading this register or by reading the entire header window. Before responding to your request, the instrument reloads both the waveform header and waveform samples window with data corresponding to the voltage waveform. Data in these windows does not change until the first (command/status indication) register in either of the waveform header windows is read.

To reload the waveform header and samples windows with the current waveform data, read the first register in the current waveform header window for the same phase.

To capture and read waveform data on another phase, repeat the above steps for the phase you want to access.

Historical Waveform Log

The historical waveform logs contain waveform records sampled at a rate of 32 samples per cycle in Waveform log #1 or at a rate of 128 samples per cycle in Waveform log #2, which are captured and logged to a file on some event triggers. Each record contains six waveforms of voltage and current on three phases.

Recorded waveforms are mapped and accessed through register windows in the same manner as the real-time waveforms (see above). On log files organization and managing, see Section 4.4, Configuring and Accessing Log

Files. Before reloading waveform window registers with data for a selected channel, the required record must be obtained from the log file to the communications buffer. This is made automatically when you reload the voltage waveform on phase L1, i.e., when you read the register at offset +0 in the voltage waveform header on phase L1 for the corresponding log file (registers 35552, 35648). Data in this buffer does not change until you read this register once again. Each time you access this register, the next record is read form the file and locked to the communications buffer. To reload waveform windows with data for the current channel or with data for another phase, read the command/status indication register in the voltage or current header window for the corresponding channel.

Waveform log files are accessed in a circular manner. When the last record in the file is being read, bit 0 in the status indication register in the waveform header windows is set to 1. If you continue reading after the end of a file, the file pointer rolls over to the beginning of the file and the first (oldest) record is returned with bit 1 in the status indication register being set to 1.

67

NOTES

68

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement

Table of contents