Memória
DDR3 SDRAM
Unbuffered DIMM
DDR3 SDRAM Specification
240pin Unbuffered DIMM based on 1Gb D-die
64/72-bit Non-ECC/ECC
82/100FBGA with Lead-Free
(RoHS compliant)
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT
GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar
applications where Product failure could result in loss of life or personal or physical harm, or any military or
defense application, or any governmental procurement to which special terms or provisions may apply.
* Samsung Electronics reserves the right to change products or specification without notice.
1 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Table Contents
1.0 DDR3 Registered DIMM Ordering Information ...........................................................................5
2.0 Key Features .................................................................................................................................5
3.0 Address Configuration .................................................................................................................5
4.0 x64 DIMM Pin Configurations (Front side/Back Side) ...............................................................6
5.0 x72 DIMM Pin Configurations (Front side/Back side) ...............................................................7
6.0 Pin Description .............................................................................................................................8
7.0 SPD and Thermal Sensor for ECC UDIMMs ...............................................................................8
8.0 Input/Output Functional Description ..........................................................................................9
8.1 Address Mirroring Feature ...........................................................................................................10
8.1.1 DRAM Pin Wiring Mirroring ...................................................................................................10
9.0 Function Block Diagram: ...........................................................................................................11
9.1 512MB, 64Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs) ................................................11
9.2 1GB, 128Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs) ...................................................12
9.3 1GB, 128Mx72 ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) ............................................13
9.4 2GB, 256Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs) .................................................14
9.5 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ..........................................15
10.0 Absolute Maximum Ratings .....................................................................................................16
10.1 Absolute Maximum DC Ratings ..................................................................................................16
10.2 DRAM Component Operating Temperature Range ........................................................................16
11.0 AC & DC Operating Conditions ...............................................................................................16
11.1 Recommended DC Operating Conditions (SSTL - 15) ....................................................................16
12.0 AC & DC Input Measurement Levels .......................................................................................17
12.1 AC & DC Logic Input Levels for Single-ended Signals ...................................................................17
12.2 VREF Tolerances .......................................................................................................................18
12.3 AC & DC Logic Input Levels for Differential Signals ......................................................................19
12.3.1 Differential Signals Definition ..............................................................................................19
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................19
12.3.3 Single-ended Requirements for Differential Signals ...............................................................20
12.3.4 Differential Input Cross Point Voltage ...................................................................................21
12.4 Slew Rate Definition for Single-ended Input Signals ......................................................................21
12.5 Slew Rate Definition for Differential Input Signals .........................................................................21
13.0 AC & DC Output Measurement Levels ....................................................................................22
13.1 Single-ended AC & DC Output Levels ..........................................................................................22
13.2 Differential AC & DC Output Levels .............................................................................................22
13.3 Single-ended Output Slew Rate ..................................................................................................22
13.4 DIfferential Output Slew Rate
....................................................................................................23
2 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
14.0 IDD Specification Definition .....................................................................................................24
14.1 IDD SPEC Table ........................................................................................................................26
15.0 Input/Output Capacitance ........................................................................................................29
15.1 Non ECC UDIMM ......................................................................................................................29
15.2 ECC UDIMM .............................................................................................................................29
16.0 Electrical Characteristics and AC timing ...............................................................................30
16.1 Refresh Parameters by Device Density ........................................................................................30
16.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin .............................................30
16.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ..............................................30
16.3.1 Speed Bin Table Notes .......................................................................................................31
17.0 Timing Parameters by Speed Grade .......................................................................................32
17.1 Jitter Notes ..............................................................................................................................35
17.2 Timing Parameter Notes ............................................................................................................36
17.3 Address / Command Setup, Hold and Derating .............................................................................37
17.4 Data Setup, Hold and Slew Rate Derating:
...................................................................................43
18.0 Physical Dimensions ................................................................................................................48
18.1 64Mbx16 based 64Mx64 Module (1 Rank) .....................................................................................48
18.2 128Mbx8 based 128Mx64/x72 Module (1 Rank) .............................................................................49
18.3 128Mbx8 based 256Mx64/x72 Module (2 Ranks) ............................................................................50
3 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Revision History
Revision
Month
Year
History
1.0
April
2008
- First release
1.1
August
2008
- Change Current SPEC.
- Corrected Typo.
1.2
October
2008
- Changed AC parameters to support binning down backward compatibility
(1333 Mbps 9-9-9 to 1066Mbps 7-7-7)
1.21
January
2009
- Corrected Module Physical Dimensions.
1.22
February
2009
- Added Tolerances to Physical Dimensions
1.23
July
2009
- Corrected Typo.
4 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
1.0 DDR3 Registered DIMM Ordering Information
Organization
Component Composition
Number of
Rank
Height
512MB
64Mx64
64Mx16(K4B1G1646D-HC##)*4
1
30mm
1GB
128Mx64
128Mx8(K4B1G0846D-HC##)*8
1
30mm
M391B2873DZ1-CF8/H9
1GB
128Mx72
128Mx8(K4B1G0846D-HC##)*9
1
30mm
M378B5673DZ1-CF8/H9
2GB
256Mx64
128Mx8(K4B1G0846D-HC##)*16
2
30mm
M391B5673DZ1-CF8/H9
2GB
256Mx72
128Mx8(K4B1G0846D-HC##)*18
2
30mm
Part Number
Density
M378B6474DZ1-CF8/H9
M378B2873DZ1-CF8/H9
Note :
- "##" - F8/H9
- F8 - 1066Mbps 7-7-7 & H9 - 1333Mbps 9-9-9
2.0 Key Features
Speed
tCK(min)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
DDR3-1066
DDR3-1333
7-7-7
9-9-9
1.875
1.5
ns
Unit
CAS Latency
7
9
tCK
tRCD(min)
13.125
13.5
ns
tRP(min)
13.125
13.5
ns
tRAS(min)
37.5
36
ns
tRC(min)
50.625
49.5
ns
JEDEC standard 1.5V ± 0.075V Power Supply
VDDQ = 1.5V ± 0.075V
533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin
8 independent internal bank
Programmable CAS Latency: 6,7,8,9,10
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
Programmable CAS Write Latency(CWL) = 6(DDR3-1066) and 7(DDR3-1333)
8-bit pre-fetch
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
Bi-directional Differential Data Strobe
Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%)
On Die Termination using ODT pin
Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C
Asynchronous Reset
3.0 Address Configuration
Organization
Row Address
Column Address
Bank Address
Auto Precharge
128x8(1Gb) based Module
A0-A13
A0-A9
BA0-BA2
A10/AP
64x16(1Gb) based Module
A0-A12
A0-A9
BA0-BA2
A10/AP
5 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
4.0 x64 DIMM Pin Configurations (Front side/Back Side)
Pin
Front
Pin
Back
Pin
Front
Pin
Back
Pin
Front
Pin
Back
1
VREFDQ
121
VSS
42
NC
2
VSS
122
DQ4
43
NC
162
NC
82
DQ33
202
VSS
163
VSS
83
VSS
203
DM4
3
DQ0
123
DQ5
44
VSS
164
NC
84
DQS4
204
NC
4
DQ1
124
VSS
45
NC
165
NC
85
DQS4
205
VSS
5
VSS
125
DM0
46
NC
166
VSS
86
VSS
206
DQ38
6
DQS0
126
NC
47
VSS
167
NC (TEST)3
87
DQ34
207
DQ39
7
DQS0
127
VSS
48
NC
168
Reset
88
DQ35
208
VSS
49
NC
169
CKE1,NC1
8
VSS
128
DQ6
9
DQ2
129
DQ7
10
DQ3
130
VSS
50
CKE0
170
11
VSS
131
DQ12
51
VDD
171
89
VSS
209
DQ44
90
DQ40
210
DQ45
VDD
91
DQ41
211
VSS
NC
92
VSS
212
DM5
KEY
12
DQ8
132
DQ13
52
BA2
172
NC
93
DQS5
213
NC
13
DQ9
133
VSS
53
NC
173
VDD
94
DQS5
214
VSS
14
VSS
134
DM1
54
VDD
174
A12/BC
95
VSS
215
DQ46
15
DQS1
135
NC
55
A11
175
A9
96
DQ42
216
DQ47
16
DQS1
136
VSS
56
A7
176
VDD
97
DQ43
217
VSS
17
VSS
137
DQ14
57
VDD
177
A8
98
VSS
218
DQ52
18
DQ10
138
DQ15
58
A5
178
A6
99
DQ48
219
DQ53
19
DQ11
139
VSS
59
A4
179
VDD
100
DQ49
220
VSS
20
VSS
140
DQ20
60
VDD
180
A3
101
VSS
221
DM6
21
DQ16
141
DQ21
61
A2
181
A1
102
DQS6
222
NC
22
DQ17
142
VSS
62
VDD
182
VDD
103
DQS6
223
VSS
23
VSS
143
DM2
63
CK1,NC2
183
VDD
104
VSS
224
DQ54
24
DQS2
144
NC
64
CK1,NC2
184
CK0
105
DQ50
225
DQ55
25
DQS2
145
VSS
65
VDD
185
CK0
106
DQ51
226
VSS
26
VSS
146
DQ22
66
VDD
186
VDD
107
VSS
227
DQ60
27
DQ18
147
DQ23
67
VREFCA
187
NC
108
DQ56
228
DQ61
28
DQ19
148
VSS
68
NC
188
A0
109
DQ57
229
VSS
DM7
29
VSS
149
DQ28
69
VDD
189
VDD
110
VSS
230
30
DQ24
150
DQ29
70
A10/AP
190
BA1
111
DQS7
231
NC
232
VSS
31
DQ25
151
VSS
71
BA0
191
VDD
112
DQS7
32
VSS
152
DM3
72
VDD
192
RAS
113
VSS
233
DQ62
33
DQS3
153
NC
73
WE
193
S0
114
DQ58
234
DQ63
34
DQS3
154
VSS
74
CAS
194
VDD
115
DQ59
235
VSS
VDD
195
ODT0
116
VSS
236
VDDSPD
196
A13
117
SA0
237
SA1
35
VSS
155
DQ30
75
36
DQ26
156
DQ31
76
S1, NC
37
DQ27
157
VSS
77
ODT1, NC1
197
VDD
118
SCL
238
SDA
38
VSS
158
NC
78
VDD
198
NC
119
SA2
239
VSS
120
VTT
240
VTT
1
39
NC
159
NC
79
NC
199
VSS
40
NC
160
VSS
80
VSS
200
DQ36
41
VSS
161
NC
81
DQ32
201
DQ37
NC = No Connect; NF = No Function; NU = Not Usable; RFU = Reserved Future Use
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs
2. CK1,NC2 and CK1,NC2 : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
6 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
5.0 x72 DIMM Pin Configurations (Front side/Back side)
Pin
Front
Pin
Back
Pin
Front
Pin
Back
Pin
Front
Pin
1
VREFDQ
121
VSS
42
NC
2
VSS
122
DQ4
43
NC
162
NC
82
DQ33
202
VSS
163
VSS
83
VSS
203
DM4
3
DQ0
123
DQ5
44
VSS
164
CB6
84
DQS4
204
NC
4
DQ1
124
VSS
45
CB2
165
CB7
85
DQS4
205
VSS
5
VSS
125
DM0
46
CB3
166
VSS
86
VSS
206
DQ38
6
DQS0
126
NC
47
VSS
167
NC (TEST)3
87
DQ34
207
DQ39
7
DQS0
127
VSS
48
NC
168
Reset
88
DQ35
208
VSS
49
NC
169
CKE1,NC1
8
VSS
128
DQ6
9
DQ2
129
DQ7
10
DQ3
130
VSS
50
CKE0
170
11
VSS
131
DQ12
51
VDD
171
Back
89
VSS
209
DQ44
90
DQ40
210
DQ45
VDD
91
DQ41
211
VSS
NC
92
VSS
212
DM5
KEY
12
DQ8
132
DQ13
52
BA2
172
NC
93
DQS5
213
NC
13
DQ9
133
VSS
53
NC
173
VDD
94
DQS5
214
VSS
14
VSS
134
DM1
54
VDD
174
A12/BC
95
VSS
215
DQ46
DQ47
15
DQS1
135
NC
55
A11
175
A9
96
DQ42
216
16
DQS1
136
VSS
56
A7
176
VDD
97
DQ43
217
VSS
17
VSS
137
DQ14
57
VDD
177
A8
98
VSS
218
DQ52
18
DQ10
138
DQ15
58
A5
178
A6
99
DQ48
219
DQ53
19
DQ11
139
VSS
59
A4
179
VDD
100
DQ49
220
VSS
20
VSS
140
DQ20
60
VDD
180
A3
101
VSS
221
DM6
21
DQ16
141
DQ21
61
A2
181
A1
102
DQS6
222
NC
22
DQ17
142
VSS
62
VDD
182
VDD
103
DQS6
223
VSS
23
VSS
143
DM2
63
CK1,NC2
183
VDD
104
VSS
224
DQ54
24
DQS2
144
NC
64
CK1,NC2
184
CK0
105
DQ50
225
DQ55
25
DQS2
145
VSS
65
VDD
185
CK0
106
DQ51
226
VSS
26
VSS
146
DQ22
66
VDD
186
VDD
107
VSS
227
DQ60
27
DQ18
147
DQ23
67
VREFCA
187
EVENT
108
DQ56
228
DQ61
28
DQ19
148
VSS
68
NC
188
A0
109
DQ57
229
VSS
DM7
29
VSS
149
DQ28
69
VDD
189
VDD
110
VSS
230
30
DQ24
150
DQ29
70
A10/AP
190
BA1
111
DQS7
231
NC
232
VSS
31
DQ25
151
VSS
71
BA0
191
VDD
112
DQS7
32
VSS
152
DM3
72
VDD
192
RAS
113
VSS
233
DQ62
33
DQS3
153
NC
73
WE
193
S0
114
DQ58
234
DQ63
34
DQS3
154
VSS
74
CAS
194
VDD
115
DQ59
235
VSS
VDD
195
ODT0
116
VSS
236
VDDSPD
196
A13
117
SA0
237
SA1
35
VSS
155
DQ30
75
36
DQ26
156
DQ31
76
S1, NC
37
DQ27
157
VSS
77
ODT1, NC1
197
VDD
118
SCL
238
SDA
38
VSS
158
CB4
78
VDD
198
NC
119
SA2
239
VSS
120
VTT
240
VTT
1
39
CB0
159
CB5
79
NC
199
VSS
40
CB1
160
VSS
80
VSS
200
DQ36
41
VSS
161
DM8
81
DQ32
201
DQ37
NC = No Connect; NF = No Function; NU = Not Usable; RFU = Reserved Future Use
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs
2. CK1,NC2 and CK1,NC2 : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
7 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
6.0 Pin Description
Pin Name
Description
Pin Name
Description
A0-A13
SDRAM address bus
SCL
I2C serial bus clock for EEPROM
BA0-BA2
SDRAM bank select
SDA
I2C serial bus data line for EEPROM
RAS
SDRAM row address strobe
SA0-SA2
I2C serial address select for EEPROM
CAS
SDRAM column address strobe
VDD*
SDRAM core power supply
WE
SDRAM write enable
VDDQ*
SDRAM I/O Driver power supply
S0, S1
DIMM Rank Select Lines
VREFDQ
SDRAM I/O reference supply
CKE0,CKE1
SDRAM clock enable lines
VREFCA
SDRAM command/address reference supply
ODT0, ODT1
On-die termination control lines
VSS
Power supply return (ground)
DQ0 - DQ63
DIMM memory data bus
VDDSPD
Serial EEPROM positive power supply
CB0 - CB7
DIMM ECC check bits
NC
Spare Pins(no connect)
DQS0 - DQS8
SDRAM data strobes
(positive line of differential pair)
TEST
Used by memory bus analysis tools
(unused on memory DIMMs)
DQS0-DQS8
SDRAM differential data strobes
(negative line of differential pair)
RESET
Set DRAMs Known State
DM0-DM8
SDRAM data masks/high data strobes
(x8-based x72 DIMMs)
EVENT
Reserved for optional temperature-sensing hardware
CK0, CK1
SDRAM clocks
(positive line of differential pair)
VTT
SDRAM I/O termination supply
CK0, CK1
SDRAM clocks
(negative line of differential pair)
RFU
Reserved for future use
*The VDD and VDDQ pins are tied common to a single power-plane on these designs.
7.0 SPD and Thermal Sensor for ECC UDIMMs
On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor.
SCL
SDA
EVENT
WP/EVENT
R1
0Ω
R2
0Ω
SA0
SA1
SA2
SA0
SA1
SA2
Note :
1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor.
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.
When only the SPD is placed on the module, R2 is placed but R1 is not.
Temperature Sensor Characteristics
Grade
Range
B
-20 < Ta < 125
Temperature Sensor Accuracy
Min.
Typ.
Max.
75 < Ta < 95
-
+/- 0.5
+/- 1.0
40 < Ta < 125
-
+/- 1.0
+/- 2.0
-
+/- 2.0
+/- 3.0
Resolution
0.25
8 of 50
Units
Notes
-
°C
-
°C /LSB
-
-
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
8.0 Input/Output Functional Description
Symbol
Type
Function
CK0-CK1
CK0-CK1
SSTL
CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive
edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of
crossing)
CKE0-CKE1
SSTL
Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low
initiates the Power Down mode, or the Self-Refresh mode
S0-S1
SSTL
Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the
command decoder is disabled, new command are ignored but previous operations continue. This signal provides for
external rank selection on systems with multiple ranks.
RAS, CAS, WE
SSTL
RAS, CAS, and WE (ALONG WITH S) define the command being entered.
ODT0-ODT1
SSTL
When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming the function is enabled in
the Extended Mode Register Set (EMRS).
VREFDQ
Supply
Reference voltage for SSTL 15 I/O inputs.
VREFCA
Supply
Reference voltage for SSTL 15 command/address inputs.
VDDQ
Supply
Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered
DIMM designs, VDDQ shares the same power plane as VDD pins.
BA0-BA2
SSTL
Selects which SDRAM bank of eight is activated.
A0-A13
SSTL
During a Bank Activate command cycle, Address input defines the row address (RA0-RA13)
During a Read or Write command cycle, Address input defines the column address, In addition to the column address,
AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is
selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is
high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used
to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop
(on-the-fly) will be performed (HIGH, no burst chop; Low, burst chopped).
DQ0-DQ63
CB0-CB7
SSTL
Data and Check Bit Input/Output pins.
DM0-DM8
SSTL
DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data
during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches
the DQ and DQS loading.
VDD,VSS
Supply
DQS0-DQS8
DQS0-DQS8
SSTL
SA0-SA2
-
Power and ground for DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on
these modules.
Data strobe for input and output data. For raw cards using x16 organized DRAMs, Pins DQ0-7 are associated with the
LDQS and LDQS pins and Pins DQ8-15 are associated with UDQS and UDQS pins.
These signals and tied at the system planar to either VSS or VDDSPD to configure the serial SPD EERPOM address
range.
SDA
-
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected
from the SDA bus line to VDDSPD to act as a pull-up on the system board.
SCL
-
This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL
bus time to VDDSPD to act as a pull-up on the system board.
VDDSPD
Supply
RESET
-
EVENT
Output
Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable
from 3.0V to 3.6V.
The RESET pin is connected to the RESET pin on each DRAM. When low, all DRAMs are set to a know state.
This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part
9 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
8.1 Address Mirroring Feature
There is a via grid located under the DRAMs for wiring the CA signals (address, bank address, command, and control lines) to the DRAM pins. The length
of the traces from the vias to the DRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend
the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces.
The pins on the DRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical
support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5,
A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 DRAM pins are wired straight, with no mismatch between the connector pin
assignment and the DRAM pin assignment. Some of the Rank 1 DRAM pins are cross wired as defined in the table. Pins not listed in the table are wired
straight.
8.1.1 DRAM Pin Wiring Mirroring
Connector Pin
DRAM Pin
Rank 0
Rank 1
A3
A3
A4
A4
A4
A3
A5
A5
A6
A6
A6
A5
A7
A7
A8
A8
A8
A7
BA0
BA0
BA1
BA1
BA1
BA0
Figure 1 illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the DRAM pins, is obviously shorter. The via grid is smaller as well.
Figure 1 - Wiring Differences for Mirrored and Non-Mirrored Addresses
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know
if the rank is mirrored or not. This requires a few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a
requirement that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been designed with the mirrored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring
the address when accessing the second rank.
10 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
9.0 Function Block Diagram:
9.1 512MB, 64Mx64 Module (Populated as 1 rank of x16 DDR3 SDRAMs)
S0
LDQS
LDQS
LDM
DQS0
DQS0
DM0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQS1
DQS1
DM1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDQS
UDM
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQS3
DQS3
DM3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
D0
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDQS
UDM
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDQS
UDM
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
DQS5
DQS5
DM5
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
LDQS
LDQS
LDM
DQS2
DQS2
DM2
LDQS
LDQS
LDM
DQS4
DQS4
DM4
CS
ZQ
D1
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
LDQS
LDQS
LDM
DQS6
DQS6
DM6
CS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
UDQS
UDQS
UDM
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
DQS3
DQS3
DM3
ZQ
CS
D0
ZQ
CS
D1
ZQ
Serial PD
SCL
BA0 - BA2
A0 - A14
RAS
BA0-BA2 : SDRAMs D0 - D3
A0-A14 : SDRAMs D0 - D3
RAS : SDRAMs D0 - D3
SDA
WP
A0
A1
A2
SA0
SA1
SA2
VDDSPD
SPD
VDD/VDDQ
D0 - D3
VREFDQ
D0 - D3
CAS
CAS : SDRAMs D0 - D3
VSS
D0 - D3
CKE0
CKE : SDRAMs D0 - D3
VREFCA
D0 - D3
WE
ODT0
WE : SDRAMs D0 - D3
ODT : SDRAMs D0 - D3
CK0
CK : SDRAMs D0 - D3
CK0
CK : SDRAMs D0 - D3
RESET
RESET : SDRAMs D0 - D3
11 of 50
Note :
1. DQ-to-I/O wiring is shown as recommended but may be
changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be
maintained as shown.
3. DQ, DM, DQS/DQS resistors: Refer to associated
topology diagram.
4. Refer to the appropriate clock wiring topology under the
DIMM wiring details section of this document.
5. The pair CK1 and CK1 is terminated in 7.5Ω but is not
used on the module.
6. A15 is not routed on the module.
7. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ω ± 1%
8. One SPD exists per module.
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
9.2 1GB, 128Mx64 Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DM
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D0
ZQ
DQS1
DQS1
DM1
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D4
ZQ
DQS5
DQS5
DM5
DM
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
D1
ZQ
DQS2
DQS2
DM2
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D5
ZQ
DQS6
DQS6
DM6
DM
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D2
ZQ
DQS3
DQS3
DM3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D6
ZQ
DQS7
DQS7
DM7
DM
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
NU/ CS
DQS DQS
DM
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D3
ZQ
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D7
ZQ
Serial PD
SCL
BA0 - BA2
A0 - A13
BA0-BA2 : SDRAMs D0 - D7
A0-A13 : SDRAMs D0 - D7
RAS
RAS : SDRAMs D0 - D7
CAS
CAS : SDRAMs D0 - D7
CKE0
CKE : SDRAMs D0 - D7
WE
ODT0
CK0
WE : SDRAMs D0 - D7
ODT : SDRAMs D0 - D7
CK : SDRAMs D0 - D7
SDA
WP
A0
A1
A2
SA0
SA1
SA2
VDDSPD
SPD
VDD/VDDQ
D0 - D7
VREFDQ
D0 - D7
VSS
D0 - D7
VREFCA
D0 - D7
12 of 50
Note :
1. DQ-to-I/O wiring is shown as recommended but may be
changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be
maintained as shown.
3. DQ, DM, DQS/DQS resistors: Refer to associated
topology diagram.
4. Refer to the appropriate clock wiring topology under the
DIMM wiring details section of this document.
5. Refer to section 7.1 of this document for details on
address mirroring.
6. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
7. One SPD exists per module.
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
9.3 1GB, 128Mx72 ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DM
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D0
ZQ
DQS1
DQS1
DM1
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
D1
ZQ
DQS2
DQS2
DM2
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DM
DM
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D2
ZQ
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
D5
ZQ
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS DQS
DM
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D3
ZQ
DQS8
DQS8
DM8
DQS DQS
D6
ZQ
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS DQS
D7
ZQ
Serial PD
DM
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
SCL
DQS DQS
EVENT
D8
BA0-BA2 : SDRAMs D0 - D8
A0-A15 : SDRAMs D0 - D8
SDA
EVENT
A0
A1
A2
SA0
SA2
SA1
ZQ
VDDSPD
SPD
VDD/VDDQ
D0 - D8
RAS
RAS : SDRAMs D0 - D8
VREFDQ
D0 - D8
CAS
CAS : SDRAMs D0 - D8
VSS
D0 - D8
CKE0
CKE : SDRAMs D0 - D8
VREFCA
D0 - D8
CK0
DQS DQS
DQS7
DQS7
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
ODT0
ZQ
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS DQS
DQS3
DQS3
DM3
WE
D4
DQS6
DQS6
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
A0 - A15
DQS DQS
DQS5
DQS5
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
BA0 - BA2
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
WE : SDRAMs D0 - D8
ODT : SDRAMs D0 - D8
CK : SDRAMs D0 - D8
13 of 50
Note :
1. DQ-to-I/O wiring is shown as recommended but may be
changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be
maintained as shown.
3. DQ, CB, DM, DQS/DQS resistors: Refer to associated
topology diagram.
4. Refer to the appropriate clock wiring topology under the
DIMM wiring details section of this document.
5. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
6. Refer to "SPD and Thermal sensor for ECC UDIMMs"
for SPD detail.
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
9.4 2GB, 256Mx64 Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DM
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D0
ZQ
DQS1
DQS1
DM1
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
D1
ZQ
DQS2
DQS2
DM2
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DM
DM
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D2
ZQ
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
D5
ZQ
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS DQS
DM
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D3
ZQ
DQS8
DQS8
DM8
DQS DQS
D6
ZQ
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS DQS
D7
ZQ
Serial PD
DM
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
SCL
DQS DQS
EVENT
D8
BA0-BA2 : SDRAMs D0 - D8
A0-A15 : SDRAMs D0 - D8
SDA
EVENT
A0
A1
A2
SA0
SA2
SA1
ZQ
VDDSPD
SPD
VDD/VDDQ
D0 - D8
RAS
RAS : SDRAMs D0 - D8
VREFDQ
D0 - D8
CAS
CAS : SDRAMs D0 - D8
VSS
D0 - D8
CKE0
CKE : SDRAMs D0 - D8
VREFCA
D0 - D8
CK0
DQS DQS
DQS7
DQS7
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
ODT0
ZQ
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS DQS
DQS3
DQS3
DM3
WE
D4
DQS6
DQS6
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
A0 - A15
DQS DQS
DQS5
DQS5
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
BA0 - BA2
CS
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
WE : SDRAMs D0 - D8
ODT : SDRAMs D0 - D8
CK : SDRAMs D0 - D8
14 of 50
Note :
1. DQ-to-I/O wiring is shown as recommended but may be
changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be
maintained as shown.
3. DQ, CB, DM, DQS/DQS resistors: Refer to associated
topology diagram.
4. Refer to the appropriate clock wiring topology under the
DIMM wiring details section of this document.
5. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
6. Refer to "SPD and Thermal sensor for ECC UDIMMs"
for SPD detail.
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
9.5 2GB, 256Mx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
S1
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D0
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D9
ZQ
DQS1
DQS1
DM1
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D4
ZQ
CS
DQS DQS
D13
ZQ
DQS5
DQS5
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D1
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
D10
ZQ
DQS2
DQS2
DM2
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D5
ZQ
CS
DQS DQS
D14
ZQ
DQS6
DQS6
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D2
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D11
ZQ
DQS3
DQS3
DM3
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D6
ZQ
CS
DQS DQS
D15
ZQ
DQS7
DQS7
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D3
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D12
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D7
ZQ
CS
DQS DQS
D16
ZQ
DQS8
DQS8
DM8
Serial PD
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
BA0 - BA2
A0 - A15
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D8
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
SCL
D17
EVENT
SA0
SA2
SA1
ZQ
A0-A15 : SDRAMs D0 - D17
1. DQ-to-I/O wiring is shown as recommended but may be
changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be
maintained as shown.
3. DQ, CB, DM, DQS, DQS resistors: Refer to associated
topology diagram.
4. Refer to section 7.1 of this document for details on
address mirroring.
5. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
6. Refer to "SPD and Thermal sensor for ECC UDIMMs"
for SPD detail.
CKE0
CKE : SDRAMs D0 - D8
RAS : SDRAMs D0 - D17
VDDSPD
SPD
VDD/VDDQ
D0 - D17
VREFDQ
D0 - D17
CAS
CAS : SDRAMs D0 - D17
WE
WE : SDRAMs D0 - D17
VSS
D0 - D17
ODT : SDRAMs D0 - D8
VREFCA
D0 - D17
ODT1
A2
Note :
CKE : SDRAMs D9 - D17
ODT0
SDA
EVENT
A0
A1
BA0-BA2 : SDRAMs D0 - D17
CKE1
RAS
ZQ
DM
ODT : SDRAMs D9 - D17
CK0
CK : SDRAMs D0 - D8
CK1
CK : SDRAMs D9 - D17
15 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
10.0 Absolute Maximum Ratings
10.1 Absolute Maximum DC Ratings
Symbol
Parameter
Rating
Units
Notes
VDD
Voltage on VDD pin relative to VSS
-0.4 V ~ 1.975 V
V
1,3
VDDQ
Voltage on VDDQ pin relative to VSS
-0.4 V ~ 1.975 V
V
1,3
VIN, VOUT
Voltage on any pin relative to VSS
-0.4 V ~ 1.975 V
V
1
TSTG
Storage Temperature
-55 to +100
°C
1, 2
Note :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2
standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than
500mV; VREF may be equal to or less than 300mV.
10.2 DRAM Component Operating Temperature Range
Symbol
Parameter
rating
Unit
Notes
TOPER
Operating Temperature Range
0 to 95
°C
1, 2, 3
Note :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the
JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode
(MR2 A6 = 1b and MR2 A7 = 0b)
11.0 AC & DC Operating Conditions
11.1 Recommended DC Operating Conditions (SSTL - 15)
Symbol
VDD
VDDQ
Parameter
Rating
Min.
Typ.
Max.
Units
Notes
Supply Voltage
1.425
1.5
1.575
V
1,2
Supply Voltage for Output
1.425
1.5
1.575
V
1,2
Note :
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
16 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
12.0 AC & DC Input Measurement Levels
12.1 AC & DC Logic Input Levels for Single-ended Signals
Single Ended AC and DC input levels for Command and Address
Symbol
VIH.CA(DC)
Parameter
DDR3-1066
Min.
DDR3-1333
Max.
Min.
Max.
Unit
Notes
mV
1
DC input logic high
VREF + 100
VDD
VREF + 100
VDD
VIL.CA(DC)
DC input logic low
VSS
VREF - 100
VSS
VREF - 100
mV
1
VIH.CA(AC)
AC input logic high
VREF + 175
-
VREF + 175
-
mV
1,2
VIL.CA(AC)
AC input logic low
-
VREF - 175
-
VREF - 175
mV
1,2
VIH.CA(AC150) AC input logic high
-
-
VREF+150
-
mV
1,2
VIL.CA(AC150) AC input logic low
-
-
-
VREF-150
mV
1,2
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
Unit
Notes
VREFCA(DC)
Reference Voltage for ADD,
CMD inputs
Note :
1. For input only pins except RESET, VREF = VREFCA(DC)
2. See "Overshoot and Undershoot specifications" section.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
Single Ended AC and DC input levels for DQ and DM
Symbol
Parameter
DDR3-1066
DDR3-1333
Min.
Max.
Min.
Max.
VIH.DQ(DC)
DC input logic high
VREF + 100
VDD
VREF + 100
VDD
mV
1
VIL.DQ(DC)
DC input logic low
VSS
VREF - 100
VSS
VREF - 100
mV
1
VIH.DQ(AC)
AC input logic high
VREF + 175
-
VREF + 150
-
mV
1,2,5
VIL.DQ(AC)
AC input logic low
-
VREF - 175
-
VREF - 150
mV
1,2,5
VREFDQ(DC)
I/O Reference Voltage(DQ)
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
Note :
1. For input only pins except RESET, VREF = VREFDQ(DC)
2. See 9.6 "Overshoot and Undershoot specifications" section.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).
17 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
12.2 VREF Tolerances
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
voltage
VDD
VSS
time
Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.
"VREF" shall be understood as VREF(DC), as defined in Figure 2.
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
18 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
12.3 AC & DC Logic Input Levels for Differential Signals
12.3.1 Differential Signals Definition
tDVAC
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
VIH.DIFF.AC.MIN
VIH.DIFF.MIN
0.0
half cycle
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
tDVAC
time
Figure 3 : Definition of differential ac-swing and "time above ac level" tDVAC
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)
Symbol
Parameter
VIHdiff
DDR3-1066/1333
unit
Note
note 3
V
1
-0.2
V
1
2 x (VIH(AC)-VREF)
note 3
V
2
note 3
2 x (VREF - VIL(AC))
V
2
min
max
differential input high
+0.2
VILdiff
differential input low
note 3
VIHdiff(AC)
differential input high ac
VILdiff(AC)
differential input low ac
Notes:
1. Used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(AC) of DQs and VREFDQ; if a
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet
Specification " on page20.
Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS.
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV
min
max
min
max
> 4.0
75
-
175
-
4.0
57
-
170
-
3.0
50
-
167
-
2.0
38
-
163
-
1.8
34
-
162
-
1.6
29
-
161
-
1.4
22
-
159
-
1.2
13
-
155
-
1.0
0
-
150
-
< 1.0
0
-
150
-
19 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
12.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for
single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle
proceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK .
VDD or VDDQ
VSEH min
VSEH
VDD/2 or VDDQ/2
CK or DQS
VSEL max
VSEL
VSS or VSSQ
time
Figure 4 : Single-ended requirement for differential signals.
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU
Symbol
VSEH
VSEL
Parameter
DDR3-1066/1333
Unit
Notes
Note3
V
1, 2
(VDD/2)+0.175
Note3
V
1, 2
Note3
(VDD/2)-0.175
V
1, 2
Note3
(VDD/2)-0.175
V
1, 2
Min
Max
Single-ended high-level for strobes
(VDD/2)+0.175
Single-ended high-level for CK, CK
Single-ended low-level for strobes
Single-ended low-level for CK, CK
Notes:
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs.
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a
signal group, then the reduced level applies also here
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot
Specification"
20 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
12.3.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
VDD
CK, DQS
VIX
VDD/2
VIX
VIX
CK, DQS
VSS
Figure 5. VIX Definition
Cross point voltage for differential input signals (CK, DQS)
Symbol
DDR3-1066/1333
Parameter
VIX
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
VIX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
Unit
Min
Max
-150
150
mV
-175
175
mV
-150
150
mV
Notes
1
Note :
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL /
VSEH of at least VDD/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to table 11 on page 17 for VSEL and VSEH standard
values.
12.4 Slew Rate Definition for Single-ended Input Signals
See "Address / Command Setup, Hold and Derating" on page 36 for single-ended slew rate definitions for address and command signals.
See "Data Setup, Hold and Slew Rate Derating"° on page 42 for single-ended slew rate definitions for data signals.tDH nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF
12.5 Slew Rate Definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
Differential input slew rate definition
Measured
Description
Differential input slew rate for rising edge (CK-CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
From
To
VILdiffmax
VIHdiffmin
VIHdiffmin
Defined by
VIHdiffmin - VILdiffmax
Delta TRdiff
VIHdiffmin - VILdiffmax
VILdiffmax
Delta TFdiff
VIHdiffmin
0
VILdiffmax
delta TRdiff
delta TFdiff
Figure 6. Differential Input Slew Rate definition for DQS, DQS and CK, CK
21 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
13.0 AC & DC Output Measurement Levels
13.1 Single-ended AC & DC Output Levels
Single Ended AC and DC output levels
Symbol
Parameter
DDR3-1066/1333
Units
VOH(DC)
DC output high measurement level (for IV curve linearity)
0.8 x VDDQ
V
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.2 x VDDQ
V
Notes
VOH(AC)
AC output high measurement level (for output SR)
VTT + 0.1 x VDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
VTT - 0.1 x VDDQ
V
1
Note : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω
and an effective test load of 25Ω to VTT=VDDQ/2.
13.2 Differential AC & DC Output Levels
Differential AC and DC output levels
DDR3-1066/1333
Units
Notes
VOHdiff(AC)
Symbol
AC differential output high measurement level (for output SR)
Parameter
+0.2 x VDDQ
V
1
VOLdiff(DC)
AC differential output low measurement level (for output SR)
-0.2 x VDDQ
V
1
Note : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω
and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs.
13.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
Single Ended Output slew rate definition
Measured
Description
Single ended output slew rate for rising edge
To
VOL(AC)
VOH(AC)
VOH(AC)
Single ended output slew rate for falling edge
Defined by
From
VOH(AC)-VOL(AC)
Delta TRse
VOH(AC)-VOL(AC)
VOL(AC)
Delta TFse
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
Single Ended Output slew rate
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-1066
DDR3-1333
Min
Max
Min
Max
2.5
5
2.5
5
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output
se : Singe-ended Signals
For Ron = RZQ/7 setting
Units
V/ns
VOH(AC)
VTT
VOL(AC)
delta TFse
delta TRse
Figure 7. Single Ended Output Slew Rate definition
22 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
13.4 DIfferential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and
VOHdiff(AC) for differential signals as shown in below.
Differential Output slew rate definition
Description
Measured
Defined by
From
To
Differential output slew rate for rising edge
VOLdiff(AC)
VOHdiff(AC)
Differential output slew rate for falling edge
VOHdiff(AC)
VOLdiff(AC)
VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
VOHdiff(AC)-VOLdiff(AC)
Delta TFdiff
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output slew rate
Parameter
Differential output slew rate
Symbol
SRQse
DDR3-1066
DDR3-1333
Min
Max
Min
Max
5
10
5
10
Units
V/ns
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output
diff : Singe-ended Signals
VOHdiff(AC)
VTT
VOLdiff(AC)
delta TFdiff
delta TRdiff
Figure 8. Differential Output Slew Rate definition
23 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
14.0 IDD Specification Definition
Symbol
Description
Operating One Bank Active-Precharge Current
IDD0
CKE: High; External clock: On; tCK, nRC, nRAS, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between ACT and PRE; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Operating One Bank Active-Read-Precharge Current
IDD1
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between ACT, RD and PRE; Command, Address,
Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;
Precharge Standby Current
IDD2N
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ;
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Precharge Standby ODT Current
DD2NT
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ;
Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling
DDQ2NT
(optional)
Precharge Standby ODT IDDQ Current
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current
Precharge Power-Down Current Slow Exit
IDD2P0
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge
Power Down Mode: Slow Exitc)
Precharge Power-Down Current Fast Exit
IDD2P1
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data
IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pecharge
Power Down Mode: Fast Exitc)
Precharge Quiet Standby Current
IDD2Q
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Active Standby Current
IDD3N
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling
according to Table 34 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Active Power-Down Current
IDD3P
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:
FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
Operating Burst Read Current
IDD4R
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank Activity: all
banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Registersb); ODT
Signal: stable at 0
IDDQ4R
(optional)
Operating Burst Read IDDQ Current
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current
Operating Burst Write Current
IDD4W
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH
Burst Refresh Current
IDD5B
CKE: High; External clock: On; tCK, CL, nRFC: AC Timing Table ; BL: 8a); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling according to Table 38 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and RTT:
Enabled in Mode Registersb); ODT Signal: stable at 0
Self Refresh Current: Normal Temperature Range
IDD6
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK:
LOW; CL: AC Timing Table ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING
24 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Symbol
Description
Self-Refresh Current: Extended Temperature Range (optional)f)
IDD6ET
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Extendede); CKE: Low; External clock: Off; CK and CK:
LOW; CL: AC Timing Table ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING
Auto Self-Refresh Current (optional)f)
IDD6TC
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK:
LOW; CL: AC Timing Table ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING; DM:stable at 0; Bank Activity: Auto
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING
Operating Bank Interleave Read Current
IDD7
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: AC Timing Table; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0;
Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
g) IDD current measure method and detail patterns are described on DDR3 component datasheet
25 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
14.1 IDD SPEC Table
M378B6474DZ1 : 512MB(64Mx64) Module
Symbol
F8
([email protected]=7)
H9
([email protected]=9)
Unit
IDD0
360
400
mA
IDD1
500
540
mA
IDD2P0(slow exit)
44
48
mA
IDD2P1(fast exit)
180
200
mA
IDD2N
220
240
mA
IDD2Q
220
240
mA
IDD3P(fast exit)
180
200
mA
IDD3N
240
260
mA
IDD4R
920
1160
mA
IDD4W
940
1160
mA
IDD5B
840
880
mA
IDD6
40
40
mA
IDD7
1240
1480
mA
Notes
M378B2873DZ1 : 1GB(128Mx64) Module
Symbol
F8
([email protected]=7)
H9
([email protected]=9)
Unit
IDD0
680
720
mA
IDD1
840
880
mA
IDD2P0(slow exit)
88
96
mA
IDD2P1(fast exit)
360
400
mA
IDD2N
440
480
mA
IDD2Q
440
480
mA
IDD3P(fast exit)
360
400
mA
IDD3N
480
520
mA
IDD4R
1360
1640
mA
IDD4W
1520
1840
mA
IDD5B
1680
1760
mA
IDD6
80
80
mA
IDD7
2200
2920
mA
26 of 50
Notes
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
M378B5673DZ1: 2GB(256Mx64) Module
F8
([email protected]=7)
H9
([email protected]=9)
Unit
IDD0
1120
1200
mA
IDD1
1280
1360
mA
IDD2P0(slow exit)
176
192
mA
IDD2P1(fast exit)
720
800
mA
Symbol
IDD2N
880
960
mA
IDD2Q
880
960
mA
IDD3P(fast exit)
720
800
mA
IDD3N
920
1000
mA
mA
IDD4R
1800
2120
IDD4W
1960
2320
mA
IDD5B
2120
2240
mA
IDD6
160
160
mA
IDD7
2640
3400
mA
Notes
M391B2873DZ1: 1GB(128Mx72) Module
Symbol
F8
([email protected]=7)
H9
([email protected]=9)
Unit
IDD0
765
810
mA
IDD1
945
990
mA
IDD2P0(slow exit)
100
108
mA
IDD2P1(fast exit)
405
450
mA
IDD2N
495
540
mA
IDD2Q
495
540
mA
IDD3P(fast exit)
405
450
mA
IDD3N
540
585
mA
IDD4R
1530
1845
mA
IDD4W
1710
2070
mA
IDD5B
1890
1980
mA
IDD6
90
90
mA
IDD7
2475
3285
mA
27 of 50
Notes
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
M391B5673DZ1 : 2GB(256Mx72) Module
Symbol
F8
([email protected]=7)
H9
([email protected]=9)
Unit
IDD0
1260
1350
mA
IDD1
1440
1530
mA
IDD2P0(slow exit)
200
220
mA
IDD2P1(fast exit)
810
900
mA
IDD2N
990
1080
mA
IDD2Q
990
1080
mA
IDD3P(fast exit)
810
900
mA
IDD3N
1035
1125
mA
mA
IDD4R
2025
2385
IDD4W
2205
2610
mA
IDD5B
2385
2520
mA
IDD6
180
180
mA
IDD7
2970
3825
mA
28 of 50
Notes
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
15.0 Input/Output Capacitance
15.1 Non ECC UDIMM
M378B6474DZ1
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
-
TBD
-
TBD
pF
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
CZQ
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
Input/output capacitance of ZQ pin
Notes
M378B2873DZ1
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
-
TBD
-
TBD
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
CZQ
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
Input/output capacitance of ZQ pin
Notes
pF
M378B5673DZ1
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
-
TBD
-
TBD
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
CZQ
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
Input/output capacitance of ZQ pin
Notes
pF
15.2 ECC UDIMM
M391B2873DZ1
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
-
TBD
-
TBD
pF
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
CZQ
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
Input/output capacitance of ZQ pin
Notes
M391B5673DZ1
Parameter
Symbol
DDR3-1066
DDR3-1333
Min
Max
Min
Max
Units
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
CIO
-
TBD
-
TBD
pF
Input capacitance (CK and CK)
CCK
-
TBD
-
TBD
pF
CI
-
TBD
-
TBD
pF
CZQ
-
TBD
-
TBD
pF
Input capacitance (All other input-only pins)
Input/output capacitance of ZQ pin
29 of 50
Notes
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
16.0 Electrical Characteristics and AC timing
(0 °C<TCASE ≤95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)
16.1 Refresh Parameters by Device Density
Parameter
Symbol
1Gb
2Gb
4Gb
8Gb
Units
tRFC
110
160
300
350
ns
0 °C ≤ TCASE ≤ 85°C
7.8
7.8
7.8
7.8
µs
85 °C < TCASE ≤ 95°C
3.9
3.9
3.9
3.9
µs
All Bank Refresh to active/refresh cmd time
Average periodic refresh interval
tREFI
Note
1
Note :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or
requirements referred to in this material.
16.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
Speed
DDR3-1066
DDR3-1333
Bin (CL - tRCD - tRP)
7-7-7
9-9-9
Parameter
min
min
CL
7
9
tCK
tRCD
13.13
13.5
ns
tRP
13.13
13.5
ns
Units
tRAS
37.5
36
ns
tRC
50.63
49.5
ns
tRRD
7.5
6.0
ns
tFAW
37.5
30
ns
Note
16.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
DDR3-1066 Speed Bins
Speed
DDR3-1066
CL-nRCD-nRP
Parameter
Internal read command to first data
7-7-7
Units
Symbol
min
max
tAA
13.125
20
ns
tRCD
13.125
-
ns
PRE command period
tRP
13.125
-
ns
ACT to ACT or REF command period
tRC
50.625
-
ns
ACT to internal read or write delay time
ACT to PRE command period
CL = 6
CL = 7
CL = 8
Note
tRAS
37.5
9*tREFI
ns
8
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,6
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4
CWL = 5
tCK(AVG)
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3
1.875
<2.5
Reserved
1.875
Supported CL Settings
Supported CWL Settings
30 of 50
<2.5
6,7,8
nCK
5,6
nCK
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
DDR3-1333 Speed Bins
Speed
DDR3-1333
CL-nRCD-nRP
Parameter
Internal read command to first data
ACT to internal read or write delay time
9 -9 - 9
Units
Symbol
min
max
tAA
13.5 (13.125)5,9
20
ns
tRCD
13.5 (13.125)5,9
-
ns
5,9
PRE command period
tRP
13.5 (13.125)
-
ns
ACT to ACT or REF command period
tRC
49.5 (49.125)5,9
-
ns
ACT to PRE command period
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
Note
tRAS
36
9*tREFI
ns
8
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,7
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 7
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
ns
4
ns
1,2,3,4,7
ns
1,2,3,4,
CWL = 6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
Reserved
1.875
<2.5
(Optional) Note 5,9
Reserved
Reserved
1.875
<2.5
ns
4
ns
1,2,3,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,
CWL = 5,6
tCK(AVG)
Reserved
ns
4
ns
1,2,3,4
ns
4
CWL = 7
tCK(AVG)
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
Reserved
1.5
Supported CL Settings
Supported CWL Settings
ns
1,2,3
(Optional)
<1.875
ns
5
6,7,8,9
nCK
5,6,7
nCK
16.3.1 Speed Bin Table Notes
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
Note :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns
or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/
or the DIMM SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but
verified by Design/Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to
match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte
16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and
48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).
31 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
17.0 Timing Parameters by Speed Grade
Speed
Parameter
DDR3-1066
DDR3-1333
Units
Note
ns
6
Symbol
MIN
MAX
MIN
MAX
tCK(DLL_OF
F)
8
-
8
-
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
ps
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
tCK(avg)
See Speed Bins Table
ps
Clock Period
tCK(abs)
tCK(avg)min +
tJIT(per)min
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Clock Period Jitter
tJIT(per)
-90
90
-80
80
ps
tJIT(per, lck)
-80
80
-70
70
ps
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
tJIT(cc)
180
160
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
160
140
Cumulative error across 2 cycles
tERR(2per)
- 132
132
- 118
118
ps
Cumulative error across 3 cycles
tERR(3per)
- 157
157
- 140
140
ps
Cumulative error across 4 cycles
tERR(4per)
- 175
175
- 155
155
ps
Cumulative error across 5 cycles
tERR(5per)
- 188
188
- 168
168
ps
Cumulative error across 6 cycles
tERR(6per)
- 200
200
- 177
177
ps
Cumulative error across 7 cycles
tERR(7per)
- 209
209
- 186
186
ps
Cumulative error across 8 cycles
tERR(8per)
- 217
217
- 193
193
ps
Cumulative error across 9 cycles
tERR(9per)
- 224
224
- 200
200
ps
Cumulative error across 10 cycles
tERR(10per)
- 231
231
- 205
205
ps
Cumulative error across 11 cycles
tERR(11per)
- 237
237
- 210
210
ps
Cumulative error across 12 cycles
tERR(12per)
- 242
242
- 215
215
ps
Cumulative error across n = 13, 14 ... 49, 50 cycles
ps
ps
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max
tERR(nper)
ps
24
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
0.43
-
tCK(avg)
25
Absolute clock Low pulse width
tCL(abs)
0.43
-
0.43
-
tCK(avg)
26
tDQSQ
-
150
-
125
ps
13
tQH
0.38
-
0.38
-
tCK(avg)
13, g
DQ low-impedance time from CK, CK
tLZ(DQ)
-600
300
-500
250
ps
13,14, f
DQ high-impedance time from CK, CK
tHZ(DQ)
-
300
-
250
ps
13,14, f
Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels
tDS(base)
25
-
30
-
ps
d, 17
Data hold time to DQS, DQS referenced to VIH(AC)VIL(AC) levels
tDH(base)
100
-
65
-
ps
d, 17
tDIPW
490
-
400
-
ps
28
DQS, DQS READ Preamble
tRPRE
0.9
Note 19
0.9
Note 19
tCK
13, 19, g
DQS, DQS differential READ Postamble
tRPST
0.3
Note 11
0.3
Note 11
tCK
11, 13, b
DQS, DQS output high time
tQSH
0.38
-
0.4
-
tCK(avg)
13, g
DQS, DQS output low time
tQSL
0.38
-
0.4
-
tCK(avg)
13, g
tWPRE
0.9
-
0.9
-
tCK
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
DQ and DM Input pulse width for each input
Data Strobe Timing
DQS, DQS WRITE Preamble
DQS, DQS WRITE Postamble
tWPST
0.3
-
0.3
-
tCK
DQS, DQS rising edge output access time from rising CK, CK
tDQSCK
-300
300
-255
255
ps
13,f
DQS, DQS low-impedance time (Referenced from RL-1)
tLZ(DQS)
-600
300
-500
250
ps
13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2)
tHZ(DQS)
-
300
-
250
ps
12,13,14
DQS, DQS differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
tCK
29, 31
DQS, DQS differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
tCK
30, 31
DQS, DQS rising edge to CK, CK rising edge
tDQSS
-0.25
0.25
-0.25
0.25
tCK(avg)
c
DQS,DQS falling edge setup time to CK, CK rising edge
tDSS
0.2
-
0.2
-
tCK(avg)
c, 32
DQS,DQS falling edge hold time to CK, CK rising edge
tDSH
0.2
-
0.2
-
tCK(avg)
c, 32
32 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Speed
Parameter
DDR3-1066
Symbol
DDR3-1333
MIN
MAX
tDLLK
512
internal READ Command to PRECHARGE Command delay
tRTP
max
(4nCK,7.5ns)
Delay from start of internal write transaction to internal read command
tWTR
Units
MIN
MAX
-
512
-
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
tWR
15
-
15
-
ns
Mode Register Set command cycle time
tMRD
4
-
4
-
nCK
Mode Register Set command update delay
tMOD
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
tCCD
4
-
4
-
Note
Command and Address Timing
DLL locking time
WRITE recovery time
CAS# to CAS# command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
ACTIVE to PRECHARGE command period
tDAL(min)
WR + roundup (tRP / tCK(AVG))
tMPRR
tRAS
1
-
1
nCK
e
e,18
e
nCK
nCK
-
See " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin"
nCK
22
ns
e
ACTIVE to ACTIVE command period for 1KB page size
tRRD
max
(4nCK,7.5ns)
ACTIVE to ACTIVE command period for 2KB page size
tRRD
max
(4nCK,10ns)
-
max
(4nCK,7.5ns)
-
Four activate window for 1KB page size
tFAW
37.5
-
30
-
ns
Four activate window for 2KB page size
tFAW
50
-
45
-
ns
e
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
tIS(base)
125
-
65
-
ps
b,16
Command and Address hold time from CK, CK referenced to VIH(AC) / VIL(AC) levels
tIH(base)
200
-
140
-
ps
b,16
Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels
tIS(base)
AC150
125 + 150
-
65+125
-
ps
b,16,27
tIPW
780
-
620
-
ps
28
Power-up and RESET calibration time
tZQinitI
512
-
512
-
nCK
Normal operation Full calibration time
tZQoper
256
-
256
-
nCK
tZQCS
64
-
64
-
nCK
tXPR
max(5nCK, tRFC +
10ns)
-
max(5nCK, tRFC +
10ns)
-
tXS
max(5nCK,tRFC +
10ns)
-
max(5nCK,tRFC +
10ns)
-
Control & Address Input pulse width for each input
-
max
(4nCK,6ns)
-
e
e
e
Calibration Timing
Normal operation short calibration time
23
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL
Exit Self Refresh to commands requiring a locked DLL
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry to exit timing
tCKESR
tCKE(min) + 1tCK
-
tCKE(min) + 1tCK
-
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)
tCKSRE
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX)
or Reset Exit
tCKSRX
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
33 of 50
nCK
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Speed
Parameter
DDR3-1066
DDR3-1333
Symbol
MIN
MAX
MIN
MAX
tXP
max
(3nCK,
7.5ns)
-
max
(3nCK,6ns)
-
tXPDLL
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
tCKE
max
(3nCK,
5.625ns)
-
max
(3nCK,
5.625ns)
-
Units
Note
Power Down Timing
Exit Power Down with DLL on to any valid command;Exit Precharge Power
Down with DLL
frozen to commands not requiring a locked DLL
Exit Precharge Power Down with DLL frozen to commands requiring a locked
DLL
CKE minimum pulse width
Command pass disable delay
2
tCPDED
1
-
1
-
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCK
15
Timing of ACT command to Power Down entry
tACTPDEN
1
-
1
-
nCK
20
Timing of PRE command to Power Down entry
tPRPDEN
1
-
1
-
nCK
20
Timing of RD/RDA command to Power Down entry
tRDPDEN
RL + 4 +1
-
RL + 4 +1
-
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
tWRPDEN
WL + 4 +(tWR/
tCK(avg))
-
WL + 4 +(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL + 4 +WR +1
-
WL + 4 +WR +1
-
nCK
10
tWRPDEN
WL + 2 +(tWR/
tCK(avg))
-
WL + 2 +(tWR/
tCK(avg))
-
nCK
9
Timing of WRA command to Power Down entry
(BL4MRS)
tWRAPDEN
WL +2 +WR +1
-
WL +2 +WR +1
-
nCK
Timing of REF command to Power Down entry
tREFPDEN
1
-
1
-
Timing of MRS command to Power Down entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
ODT high time without write command or with write command and BC4
ODTH4
4
-
4
-
nCK
ODT high time with Write command and BL8
ODTH8
6
-
6
-
nCK
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
tAONPD
2
8.5
2
8.5
ns
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
tAOFPD
2
8.5
2
8.5
ns
ODT turn-on
tAON
-300
300
-250
250
ps
7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference
tAOF
0.3
0.7
0.3
0.7
tCK(avg)
8,f
RTT dynamic change skew
tADC
0.3
0.7
0.3
0.7
tCK(avg)
f
Power Down Entry to Exit Timing
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BL4OTF)
Timing of WR command to Power Down entry
(BL4MRS)
nCK
10
20,21
ODT Timing
Write Leveling Timing
First DQS pulse rising edge after tDQSS margining mode is programmed
tWLMRD
40
-
40
-
tCK
3
tWLDQSEN
25
-
25
-
tCK
3
Setup time for tDQSS latch
tWLS
245
-
195
-
ps
Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing
tWLH
245
-
195
-
ps
Write leveling output delay
tWLO
0
9
0
9
ns
Write leveling output error
tWLOE
0
2
0
2
ns
DQS/DQS delay after tDQS margining mode is programmed
34 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
17.1 Jitter Notes
Specific Note a
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input
clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge
to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),
tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not.
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe
signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =
RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the
device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to
input clock jitter.
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,
where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,
then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =
tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =
- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =
2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9
x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min =
0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)
35 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
17.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation"
8. For definition of RTT turn-off time tAOF see "Device Operation".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See Device Operation Datasheet
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is valid for RON34
14. Single ended signal parameter.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VREFDQ(DC). FOr input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Address/ Command Setup, Hold and Derating"
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Data Setup, Hold and Slew Rate Derating".
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133 ~
~ 128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
36 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
17.3 Address / Command Setup, Hold and Derating
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the ∆tIS
and ∆tIH derating value respectively.
Example: tIS (total setup time) = tIS(base) + ∆tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VREF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as
the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate
line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If
the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see
Figure 9). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line
to the actual signal from the dc level to VREF(DC) level is used for derating value.
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC.
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).
For slew rates in between the values listed in Table below, the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization.
ADD/CMD Setup and Hold Base-Values for 1V/ns
[ps]
DDR3-1066
DDR3-1333
reference
tIS(base)
125
65
VIH/L(AC)
tIH(base)
200
140
VIH/L(DC)
tIS(base)-AC150
125 + 150
65+125
VIH/L(AC)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate
Note : The tIS(base)-AC150 specifications are further adjusted to add an additional 100ps of derating to accommodate for the lower alternate thresh-old
of 150mV and another 25ps to account for the earlier reference point [(175mv-150mV)/1 V/ns].
Derating values DDR3-1066/1333 tIS/tIH-ac/dc based
∆tIS, ∆tIH Derating [ps] AC/DC based
AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV
CLK,CLK Differential Slew Rate
4.0 V/ns
CMD/
ADD
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
2.0
88
50
88
50
88
50
96
58
104
66
112
74
120
84
128
100
1.5
59
34
59
34
59
34
67
42
75
50
83
58
91
68
99
84
1.0
0
0
0
0
0
0
8
8
16
16
24
24
32
34
40
50
0.9
-2
-4
-2
-4
-2
-4
6
4
14
12
20
20
30
30
38
46
0.8
-6
-10
-6
-10
-6
-10
2
-2
10
6
13
14
26
24
34
40
0.7
-11
-16
-11
-16
-11
-16
-3
-8
5
0
13
8
21
18
29
34
0.6
-17
-26
-17
-26
-17
-26
-9
-18
-1
-10
7
-2
15
8
23
24
0.5
-35
-40
-35
-40
-35
-40
-27
-32
-19
-24
-11
-16
-2
-6
5
10
0.4
-62
-60
-62
-60
-62
-60
-54
-52
-46
-44
-38
-36
-30
-26
-22
-10
37 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold
∆tIS, ∆tIH Derating [ps] AC/DC based
Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV
CLK,CLK Differential Slew Rate
4.0 V/ns
CMD/
ADD
Slew
rate
V/ns
3.0 V/ns
2.0 V/ns
1.8 V/ns
1.6 V/ns
1.4V/ns
1.2V/ns
1.0V/ns
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
∆tIS
∆tIH
2.0
75
50
75
50
75
50
83
58
91
66
99
74
107
84
115
100
1.5
50
34
50
34
50
34
58
42
66
50
74
58
82
68
90
84
1.0
0
0
0
0
0
0
8
8
16
16
24
24
32
34
40
50
0.9
0
-4
0
-4
0
-4
8
4
16
12
24
20
32
30
40
46
0.8
0
-10
0
-10
0
-10
8
-2
16
6
24
14
32
24
40
40
0.7
0
-16
0
-16
0
-16
8
-8
16
0
24
8
32
18
40
34
0.6
-1
-26
-1
-26
-1
-26
7
-18
15
-10
23
-2
31
8
39
24
0.5
-10
-40
-10
-40
-10
-40
-2
-32
6
-24
14
-16
22
-6
30
10
0.4
-25
-60
-25
-60
-25
-60
-17
-52
-9
-44
-1
-36
7
-26
15
-10
Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition
tVAC @175mV [ps]
Slew Rate[V/ns]
tVAC @150mV [ps]
min
max
min
max
>2.0
75
-
175
-
2.0
57
-
170
-
1.5
50
-
167
-
1.0
38
-
163
-
0.9
34
-
162
-
0.8
29
-
161
-
0.7
22
-
159
-
0.6
13
-
155
-
0.5
0
-
150
-
< 0.5
0
-
150
-
38 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
nominal
slew rate
VREF(DC)
nominal slew
rate
VIL(DC) max
VREF to ac
region
VIL(AC) max
tVAC
VSS
Delta TF
Delta TR
Setup Slew Rate= VREF(DC) - VIL(AC)max
Falling Signal
Delta TF
Setup Slew Rate VIH(AC)min - VREF(DC)
Rising Signal =
Delta TR
Figure 9 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
39 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
VIH(DC) min
dc to VREF
region
nominal
slew rate
VREF(DC)
dc to VREF
region
nominal
slew rate
dc to VREF
region
VIL(DC) max
VIL(AC) max
VSS
Delta TR
Hold Slew Rate VREF(DC) - VIL(DC)max
Rising Signal =
Delta TR
Delta TF
Hold Slew Rate VIH(DC)min - VREF(DC)
=
Falling Signal
Delta TF
Figure 10 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
40 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
nominal
line
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
tangent
line
VREF(DC)
tangent
line
VIL(DC) max
VREF to ac
region
VIL(AC) max
nominal
line
Delta TR
VSS
Delta TF
Setup Slew Rate tangent line[VIH(AC)min - VREF(DC)]
=
Rising Signal
Delta TR
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]
Falling Signal =
Delta TF
Figure 11. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
41 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
nominal
line
VIH(DC) min
dc to VREF
region
tangent
line
VREF(DC)
dc to VREF
region
tangent
line
nominal
line
VIL(DC) max
VIL(AC) max
VSS
Delta TR
Delta TF
Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ]
Rising Signal =
Delta TR
Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ]
Falling Signal =
Delta TF
Figure 12 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
42 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
17.4 Data Setup, Hold and Slew Rate Derating:
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the ∆
tDS and ∆tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + ∆tDS.
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If
the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the
actual signal is later than the nominal slew rate line anywhere
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If
the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for derating value. If
the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual
signal from the dc level to VREF(DC) level is used for derating value.
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC.
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.
These values are typically not subject to production test. They are verified by design and characterization
Data Setup and Hold Base-Value
[ps]
tDS(base)
tDH(base)
DDR3-1066
25
100
DDR3-1333
30
65
reference
VIH/L(AC)
VIH/L(DC)
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)
Derating values DDR3-1066/1333 tIS/tIH-ac/dc based
DDR3 DQ
Slew
800/ rate
1066 V/ns
DDR3 DQ
Slew
1333/ rate
1600 V/ns
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
0.4
4.0 V/ns
∆tDS ∆tDH
88
50
59
34
0
0
75
50
50
34
0
0
-
3.0 V/ns
∆tDS ∆tDH
88
50
59
34
0
0
-2
-4
75
50
50
34
0
0
0
-4
-
∆tDS, ∆tDH Derating [ps] AC/DC baseda
DQS,DQS Differential Slew Rate
2.0 V/ns
1.8 V/ns
1.6 V/ns
∆tDS ∆tDH ∆tDS ∆tDH ∆tDS ∆tDH
88
50
59
34
67
42
0
0
8
8
16
16
-2
-4
6
4
14
12
-6
-10
2
-2
10
6
-3
-8
5
0
-1
-10
75
50
50
34
58
42
0
0
8
8
16
16
0
-4
8
4
16
12
0
-10
8
-2
16
6
8
-8
16
0
15
-10
-
1.4V/ns
∆tDS ∆tDH
22
20
18
14
13
8
7
-2
-11
-16
24
20
24
14
24
8
23
-2
14
-16
-
1.2V/ns
∆tDS ∆tDH
26
24
21
18
15
8
-2
-6
-30
-26
32
24
32
18
31
8
22
-6
7
-26
1.0V/ns
∆tDS ∆tDH
29
34
23
24
6
10
-22
-10
40
34
39
24
30
10
15
-10
Note : a. Cell contents shaded in red are defined as ’not supported’.
Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition
Slew Rate[V/ns]
>2.0
2.0
1.5
1.0
0.9
0.8
0.7
0.6
0.5
<0.5
tVAC[ps] DDR3-1066
tVAC[ps] DDR3-1333
min
max
min
max
75
57
50
38
34
29
22
13
0
0
-
175
170
167
163
162
161
159
155
155
150
-
43 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
nominal
slew rate
VREF(DC)
nominal slew
rate
VIL(DC) max
VREF to ac
region
VIL(AC) max
tVAC
VSS
Delta TF
Delta TR
Setup Slew Rate= VREF(DC) - VIL(AC)max
Falling Signal
Delta TF
Setup Slew Rate VIH(AC)min - VREF(DC)
=
Rising Signal
Delta TR
Figure 13 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock).
44 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
VIH(DC) min
dc to VREF
region
nominal
slew rate
VREF(DC)
dc to VREF
region
nominal
slew rate
dc to VREF
region
VIL(DC) max
VIL(AC) max
VSS
Delta TR
Hold Slew Rate
=
Rising Signal
VREF(DC) - VIL(DC)max
Delta TR
Delta TF
VIH(DC)min - VREF(DC)
Hold Slew Rate
=
Falling Signal
Delta TF
Figure 14 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock).
45 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
nominal
line
tVAC
VIH(AC) min
VREF to ac
region
VIH(DC) min
tangent
line
VREF(DC)
tangent
line
VIL(DC) max
VREF to ac
region
VIL(AC) max
nominal
line
Delta TR
VSS
Delta TF
Setup Slew Rate tangent line[VIH(AC)min - VREF(DC)]
=
Rising Signal
Delta TR
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]
Falling Signal =
Delta TF
Figure 15 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS
(for ADD/CMD with respect to clock)
46 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
Note :Clock and Strobe are drawn on a different time scale.
tIS
tIH
tIS
tIH
tDS
tDH
tDS
tDH
CK
CK
DQS
DQS
VDDQ
VIH(AC) min
nominal
line
VIH(DC) min
dc to VREF
region
tangent
line
VREF(DC)
dc to VREF
region
tangent
line
nominal
line
VIL(DC) max
VIL(AC) max
VSS
Delta TR
Delta TF
Hold Slew Rate tangent line [ VREF(DC) - VIL(DC)max ]
Rising Signal =
Delta TR
Hold Slew Rate tangent line [ VIH(DC)min - VREF(DC) ]
Falling Signal =
Delta TF
Figure 16 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH
(for ADD/CMD with respect to clock)
47 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
18.0 Physical Dimensions
18.1 64Mbx16 based 64Mx64 Module (1 Rank)
Units : Millimeters
9.50
128.95
2.30
17.30
SPD
30.00 ± 0.15
(4X)3.00 ± 0.1
133.35 ± 0.15
(2)
2.50
54.675
A
B
47.00
71.00
Max 4.00
2.50 ± 0.20
1.270 ± 0.10
5.00
0.80 ± 0.05
3.80
2x 2.10 ± 0.15
0.2 ± 0.15
1.50±0.10
1.00
2.50
Detail A
Detail B
The used device is 64M x16 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G1646D-HC∗∗
* Note : Tolerances on all dimensions ±0.15 unless otherwise specified.
48 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
18.2 128Mbx8 based 128Mx64/x72 Module (1 Rank)
Units : Millimeters
128.95
ECC
SPD
17.30
9.50
N/A
(for x64)
2.30
(for x72)
30.00 ± 0.15
(4X)3.00 ± 0.1
133.35 ± 0.15
(2)
2.50
54.675
A
B
47.00
71.00
Max 4.00
2.50 ± 0.20
1.270 ± 0.10
5.00
0.80 ± 0.05
3.80
2x 2.10 ± 0.15
0.2 ± 0.15
1.50±0.10
1.00
2.50
Detail A
Detail B
The used device is 128M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0846D-HC∗∗
* Note : Tolerances on all dimensions ±0.15 unless otherwise specified.
49 of 50
Rev. 1.23 July 2009
DDR3 SDRAM
Unbuffered DIMM
18.3 128Mbx8 based 256Mx64/x72 Module (2 Ranks)
Units : Millimeters
128.95
ECC
SPD
17.30
9.50
N/A
(for x64)
2.30
(for x72)
30.00 ± 0.15
(4X)3.00 ± 0.1
133.35 ± 0.15
(2)
2.50
54.675
A
B
47.00
Max 4.00
71.00
N/A
(for x64)
ECC
(for x72)
2.50 ± 0.20
1.270 ± 0.10
5.00
0.80 ± 0.05
3.80
2x 2.10 ± 0.15
0.2 ± 0.15
1.50±0.10
1.00
2.50
Detail A
Detail B
The used device is 128M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B1G0846D-HC∗∗
* Note : Tolerances on all dimensions ±0.15 unless otherwise specified.
50 of 50
Rev. 1.23 July 2009
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement