3300 Hull Mount Sub-bottom Hardware Manual

Add to my manuals
88 Pages

advertisement

3300 Hull Mount Sub-bottom Hardware Manual | Manualzz

3300 HULL MOUNT SUB-BOTTOM PROFILER

U S E R H A R D W A R E M A N U A L

0016732_REV_A March 2015

EdgeTech

4 Little Brook Road

West Wareham, MA 02576

Tel: (508) 291-0057

Fax: (508) 291-2491

www.EdgeTech.com

ii

The information, figures, and specifications in this manual are proprietary and are issued in strict confidence on condition that they not be copied, reprinted, or disclosed to a third party, either wholly or in part, without the prior, written consent of EdgeTech. Any reproduction of EdgeTech supplied software or file sharing is strictly prohibited.

©Copyright 2015 by EdgeTech. All rights reserved.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation.

Kevlar® is a registered trademark of the DuPont Company.

Intel® and Pentium® are registered trademarks of Intel Corporation.

Novagard G624® is a trademark of Novagard Solutions, Inc.

Storm Case™ is a trademark of Pelican.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

iii

ATTENTION – READ THIS FIRST!

All personnel involved with the installation, operation, or maintenance of the equipment described in this manual should read and understand the warnings and cautions provided below.

CAUTION!

This equipment contains devices that are extremely sensitive to static electricity. Therefore, extreme care should be taken when handling them.

Normal handling precautions involve the use of anti-static protection materials and grounding straps for personnel.

WARNING!

High Voltage may be present in all parts of the system. Therefore, use caution when the electronics are removed from their containers for servicing.

CAUTION!

Operation with improper line voltage may cause serious damage to the equipment. Always ensure that the proper line voltage is used.

iv

HARDWARE VARIATIONS AND COMPATIBILITY

The 3300 Hull Mount Sub-Bottom Profiler contains both standard and proprietary hardware. At times,

EdgeTech may change the standard components due to their availability or performance improvements.

Although the component manufacturers—along with their models and styles—may change from unit to unit, replacement parts will generally be interchangeable.

EdgeTech will make every effort to see that replacement components are interchangeable and use the same software drivers (if applicable). At times, however, direct replacements may not exist. When this happens, EdgeTech will provide the necessary drivers with the replacement part, if applicable.

EdgeTech may also change certain hardware per customer requirements. Therefore, portions of this manual, such as parts lists and test features, are subject to change. These sections should be used for reference only. When changes are made that affect system operation, they will be explicitly noted. Also, some options and features may not be active in the customer’s unit at time of delivery. Upgrades will be made available when these features are implemented.

Contact

EdgeTech Customer Service

with any questions relating to compatibility.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

v

ABOUT THIS DOCUMENT

We, the employees at EdgeTech, would like to thank you for purchasing 3300 Hull Mount Sub-Bottom

Profiler. At EdgeTech, it is our policy to provide high-quality, cost-effective products and support services that meet or exceed your requirements. We also strive to deliver them on-time, and to continuously look for ways to improve them. We take pride in the products we manufacture, and want you to be entirely satisfied with your equipment.

Purpose of this Manual

The purpose of this manual is to provide the user with information on the setup and use of EdgeTech’s

3300. Although this manual encompasses the latest operational features of the 3300, some features may be periodically upgraded. Therefore, the information in this manual is subject to change and should be used for reference only.

Liability

EdgeTech has made every effort to document the 3300 in this manual accurately and completely.

However, EdgeTech assumes no liability for errors or for any damages that result from the use of this manual or the equipment it documents. EdgeTech reserves the right to upgrade features of this equipment, and to make changes to this manual, without notice at any time.

Warnings, Cautions, and Notes

Where applicable, warnings, cautions, and notes are provided in this manual as follows:

WARNING!

Identifies a potential hazard that could cause injury or death.

CAUTION!

Identifies a potential hazard that could damage equipment or data.

NOTE:

Recommendations or general information that is particular to the material being presented.

vi

WARRANTY STATEMENT

All equipment manufactured by EdgeTech is warranted against defective components and workmanship for a period of one year after shipment. Warranty repair will be done by EdgeTech free of charge.

Shipping costs are to be borne by the customer. Malfunction due to improper use is not covered in the warranty, and EdgeTech disclaims any liability for consequential damage resulting from defects in the performance of the equipment. No product is warranted as being fit for a particular purpose, and there is no warranty of merchantability. This warranty applies only if:

i.

The items are used solely under the operating conditions and in the manner recommended in

Seller's instruction manual, specifications, or other literature.

ii.

The items have not been misused or abused in any manner, nor have repairs been attempted thereon without the approval of EdgeTech Customer Service.

iii.

Written notice of the failure within the warranty period is forwarded to Seller and the directions received for properly identifying items returned under warranty are followed.

iv.

The return notice authorizes Seller to examine and disassemble returned products to the extent

Seller deems necessary to ascertain the cause for failure.

The warranties expressed herein are exclusive. There are no other warranties, either expressed or implied, beyond those set forth herein, and Seller does not assume any other obligation or liability in connection with the sale or use of said products. Any product or service repaired under this warranty shall be warranted for the remaining portion of the original warranty period only.

Equipment not manufactured by EdgeTech is supported only to the extent of the original manufacturer's warranties.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

vii

SOFTWARE SERVICE OVERVIEW

EdgeTech provides software services free of charge. This software agreement does not address customerspecified modifications or enhancements. These services may be ordered separately. Furthermore,

EdgeTech software upgrades are meant for the sole use of EdgeTech customers. Any reproduction of

EdgeTech-supplied software or file sharing is strictly prohibited.

Software Updates and Enhancements

EdgeTech customers can download new software releases with all modifications and enhancements from the EdgeTech ftp site. Major software issues, should they occur, will be reported directly to the customer.

New software releases consist of the following:

Software enhancements that are not on the price list

Software fixes and changes

Product integration

Documentation updates to on-line help

Tests for compatibility with other modules

Software patches consist of software that has undergone the following:

Minor software enhancements

Software fixes and changes

Software Telephone, Facsimile, and E-mail Support

EdgeTech customers are entitled to contact

EdgeTech Customer Service

by telephone, facsimile, or e-mail

to report a difficulty, to discuss a problem or to receive advice on the best way to perform a task. When contacted, EdgeTech Customer Service will do the following:

Respond within 24 hours

Immediately attend to serious problems affecting operations

Attempt to find an immediate work-around

viii

RETURNED MATERIAL AUTHORIZATION

Prior to returning any equipment to EdgeTech, a Returned Material Authorization (RMA) number must be obtained. The RMA will help us identify your equipment when it arrives at our receiving dock and track the equipment while it is at our facility. The material should be shipped to the address provided in the

EdgeTech Customer Service

section. Please refer to the RMA number on all documents and

correspondences as well.

All returned materials must be shipped prepaid. Freight collect shipments will not be accepted. EdgeTech will pay freight charges on materials going back to the customer after they have been evaluated and/or repaired.

CAUTION!

If your product is a portable topside, never attempt to it in its Storm

Case

TM

alone. Although rugged, these cases are not intended to be used as shipping containers, and the delicate internal components could be damaged if used in this manner.

The following steps apply only to material being returned from outside the Continental United States.

Follow them carefully to prevent delays and additional costs.

1. All shipments must be accompanied by three copies of your proforma invoice, showing the value of the material and the reason for its return. If the reason is for repair, it must be clearly stated in order to move through customs quickly and without duties being charged. Whenever possible, please send copies of original export shipping documents with the consignment.

2. If the value of the equipment is over $1000, the following Shipper's oath must be sent with the invoice. This oath can be typed on the invoice, or on a separate letterhead:

"I, ______________________________, declare that the articles herein specified are the growth, produce, or manufacture of the United States; that they were exported from the

United States from the port of _____________________, on or about _______________; that they are returned without having been advanced in value or improved in condition by any process of manufacture or any other means; and that no drawback, or allowance has been paid or admitted hereof."

Signed ______________________________

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

ix

3. If there is more than one item per consignment, a packing list must accompany the shipment. It is acceptable to combine the proforma invoice and packing list as long as the contents of each carton are clearly numbered and identified on the invoice.

4. Small items can be shipped prepaid directly to EdgeTech by FedEx, DHL, UPS, Airborne, etc.

5. If the equipment is the property of EdgeTech (formerly EG&G Marine Instruments Division), please insure for full value.

6. Fax one invoice, packing list, and a copy of the airway bill to EdgeTech upon shipment.

x

CUSTOMER SERVICE

Customer service personnel at EdgeTech are always eager to hear from users of our products. Your feedback is welcome, and is a valuable source of information which we use to continually improve these products. Therefore we encourage you to contact EdgeTech Customer Service to offer any suggestions or to request technical support:

E-mail:

Mail:

Telephone:

Facsimile:

24-Hour Emergency

Technical Support Line: [email protected]

4 Little Brook Road

West Wareham, MA 02576

(508) 291-0057

(508) 291-2491

(508) 942-8043

NOTE:

Please have your system Serial Number available when contacting Customer Service.

For more information please go to www.EdgeTech.com

.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

xi

COMPANY BACKGROUND

EdgeTech (formerly EG&G Marine Instruments) traces its history in underwater data acquisition and processing back to 1966. EdgeTech has designed, developed, and manufactured products, instruments, and systems—for the acquisition of underwater data, including marine, estuarine, and coastal applications—for over 45 years.

The company has responded to the needs of the scientific, Naval, and offshore communities by providing equipment—such as sub-bottom profilers, side scan sonar, acoustic releases, USBL positioning systems, and bathymetric systems—that have become standards in the industry.

EdgeTech has also consistently anticipated and responded to future needs through an active research and development program. Current efforts are focused on the application of cutting-edge CHIRP and acoustic technology.

xii

TABLE OF CONTENTS

ATTENTION – READ THIS FIRST! ......................................................................................................... iii

HARDWARE VARIATIONS AND COMPATIBILITY .................................................................................. iv

ABOUT THIS DOCUMENT .................................................................................................................... v

Purpose of this Manual ............................................................................................................................. v

Liability ...................................................................................................................................................... v

Warnings, Cautions, and Notes ................................................................................................................. v

WARRANTY STATEMENT ................................................................................................................... vi

SOFTWARE SERVICE OVERVIEW ........................................................................................................ vii

Software Updates and Enhancements.................................................................................................... vii

RETURNED MATERIAL AUTHORIZATION .......................................................................................... viii

CUSTOMER SERVICE ........................................................................................................................... x

COMPANY BACKGROUND ................................................................................................................. xi

TABLE OF CONTENTS ........................................................................................................................ xii

LIST OF FIGURES ............................................................................................................................... xv

LIST OF TABLES ............................................................................................................................... xvi

SECTION 1: OVERVIEW ....................................................................................................................1-1

1.1 Advantages of Full Spectrum CHIRP Technology .......................................................................... 1-1

1.1.1 Compared to Older Technology ............................................................................................. 1-1

1.1.2 Transducer Array .................................................................................................................... 1-2

1.1.3 Resolution ............................................................................................................................... 1-2

1.1.4 Processing Enhancements ...................................................................................................... 1-2

1.1.5 Reduction of Side Lobes and High Repeatability .................................................................... 1-3

1.2 Major Components ....................................................................................................................... 1-3

1.2.1 Deck Unit ................................................................................................................................ 1-5

1.2.2 Interface Box .......................................................................................................................... 1-6

1.2.3 Transducer Array .................................................................................................................... 1-8

1.3 Applications .................................................................................................................................. 1-9

SECTION 2: SPECIFICATIONS ............................................................................................................2-1

2.1 Deck Unit Specifications................................................................................................................ 2-1

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

xiii

2.1.1 Processor Specifications ......................................................................................................... 2-1

2.1.2 Amplifier Specifications .......................................................................................................... 2-3

2.1.3 Display, Keyboard, and Mouse Specifications ........................................................................ 2-5

2.2 Interface Box Specifications .......................................................................................................... 2-5

2.3 Spider & Array Specifications ........................................................................................................ 2-8

2.3.1 Array Sizes ............................................................................................................................ 2-13

2.4 Signal Cable Specifications .......................................................................................................... 2-21

SECTION 3: CONTROLS & CONNECTIONS ..........................................................................................3-1

3.1 Deck Unit Controls and Indicators ................................................................................................ 3-1

3.2 Deck Unit Connections .................................................................................................................. 3-2

SECTION 4: INSTALLATION ...............................................................................................................4-1

4.1 Unpacking & Inspecting ................................................................................................................ 4-1

4.2 Topside Installation ....................................................................................................................... 4-1

4.2.1 Power Supply .......................................................................................................................... 4-2

4.2.2 Use of an Uninterruptable Power Supply............................................................................... 4-2

4.2.3 Selecting the Power Amplifier Input Power Voltage .............................................................. 4-2

4.2.4 Changing to a Non-US Power Plug ......................................................................................... 4-2

4.2.5 Navigation Interface ............................................................................................................... 4-3

4.2.6 Deck Unit Placement .............................................................................................................. 4-3

4.3 Hull Mount Array Installation ....................................................................................................... 4-3

4.4 Connecting the System ................................................................................................................. 4-5

SECTION 5: OPERATION ...................................................................................................................5-1

5.1 Activating the System ................................................................................................................... 5-1

5.2 File Format .................................................................................................................................... 5-1

5.2.1 EdgeTech’s Native JSF Format ................................................................................................ 5-1

5.2.2 Standard SEG-Y Format .......................................................................................................... 5-1

5.2.3 Palette File Format ................................................................................................................. 5-2

5.3 Triggering and Coupling ................................................................................................................ 5-2

SECTION 6: MAINTENANCE ..............................................................................................................6-1

6.1 Hard Drive Disk ............................................................................................................................. 6-1

6.2 Array Connectors .......................................................................................................................... 6-1

SECTION 7: TROUBLESHOOTING ......................................................................................................7-1

xiv

7.1 Freq. Plots and Raw Data Time Series Analysis Using J-STAR ....................................................... 7-1

7.2 System Does Not Operate ............................................................................................................. 7-4

7.2.1 Symptom / Probable Cause .................................................................................................... 7-5

7.2.2 Poor Image Quality or Performance Issues ............................................................................ 7-6

7.3 Sonar Errors .................................................................................................................................. 7-7

7.4 Frequently Asked Questions ......................................................................................................... 7-8

APPENDIX A: SYSTEM RESTORE .................................................................................................... A-1

APPENDIX B: NAVIGATION SYSTEMS ............................................................................................ B-1

B.1 NMEA Approved Sentence Structure ........................................................................................... B-1

B.2 Port Parameters ............................................................................................................................ B-2

B.3 Port Selection ................................................................................................................................ B-2

B.4 Inputs ............................................................................................................................................ B-3

B.4.1 GLL – Geographic Position – Latitude/Longitude ................................................................... B-3

B.4.2 GXY Geographic Position X and Y Coordinates ....................................................................... B-4

B.4.3 GUU – Geographic Position – X and Y Coordinates ................................................................ B-4

B.4.4 GGA – Global Positioning System Fix Data ............................................................................. B-5

B.4.5 RMA – Recommended Minimum Specific Loran-C Data ........................................................ B-6

B.4.6 RMC – Recommended Minimum Specific GNSS Data ............................................................ B-6

B.4.7 VTG – Track Made Good and Ground Speed.......................................................................... B-6

B.4.8 ZDA – Time & Date ................................................................................................................. B-7

B.4.9 HDG - Heading, Deviation and Variation ................................................................................ B-7

B.4.10 EVT – Event * Annotation (EdgeTech Custom) ...................................................................... B-8

B.5 Serial Port Connections ............................................................................................................... B-10

B.6 Troubleshooting .......................................................................................................................... B-10

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

xv

LIST OF FIGURES

Figure 1-1: Overall System Diagram (2x2 Configuration) .......................................................................... 1-4

Figure 1-2: 3300 Rack Mount Deck Unit .................................................................................................... 1-5

Figure 1-3: Interface Box (Interior & Exterior) ........................................................................................... 1-7

Figure 1-4: Spider Array, Single Transducer, and 2x2 Sea Chest (Clockwise) ............................................ 1-8

Figure 2-1: Topside Processor Internals ..................................................................................................... 2-2

Figure 2-2: Interface Box Assembly Drawing ............................................................................................. 2-6

Figure 2-3: Interface Box Wiring Diagram.................................................................................................. 2-7

Figure 2-4: Spider Wiring Diagram ............................................................................................................. 2-9

Figure 2-5 : KT-106 Non-Symmetrical Array Configurations .................................................................... 2-13

Figure 2-6: Deck Cable, Junction Box, and Spider Wiring Diagram (2x2 Configuration) ......................... 2-15

Figure 2-7: Single Transducer Drawing .................................................................................................... 2-16

Figure 2-8: 2x2 Transducer Configuration ............................................................................................... 2-17

Figure 2-9: 3x3 Transducer Configuration ............................................................................................... 2-18

Figure 2-10: 4x4 Transducer Configuration ............................................................................................. 2-19

Figure 2-11: 5x5 Transducer Configuration ............................................................................................. 2-20

Figure 2-12: Topside Unit Sea Cable Plug (Female) Amphenol #97-3106A-20-33F ................................. 2-21

Figure 2-13: Female Marshal Connector – 86-5FC (Deck Cable to Junction Box Connection) ................ 2-22

Figure 2-14: Male Marshal Connector – 86-5MC (Junction Box to Deck Cable Connection) .................. 2-22

Figure 2-15: Deck Cable Schematic .......................................................................................................... 2-23

Figure 3-1: Topside Front Panel Controls and Connections....................................................................... 3-2

Figure 3-2: Topside Rear Panel Controls and Connections ........................................................................ 3-3

Figure 3-3: Rear Panel Schematic .............................................................................................................. 3-4

xvi

LIST OF TABLES

Table 2-1: Overall Physical Deck Unit Specs .............................................................................................. 2-1

Table 2-2: Processor Specifications ........................................................................................................... 2-2

Table 2-3: Power Amp Specifications ........................................................................................................ 2-4

Table 2-4: Display, Keyboard, and Mouse Specifications .......................................................................... 2-5

Table 2-5: Physical Specifications of Interface Box .................................................................................... 2-5

Table 2-6: General Array Specifications ..................................................................................................... 2-8

Table 2-7: KT-216A2H Array Specifications.............................................................................................. 2-10

Table 2-8: KT-106D Array ......................................................................................................................... 2-11

Table 2-9: Array Size vs. Expected Signal-to-Noise Ratio (SNR) ............................................................... 2-13

Table 2-10: Signal Cable Specifications .................................................................................................... 2-21

Table 4-1: AC Power Cord Wiring .............................................................................................................. 4-2

Table 7-1: Troubleshooting Causes and Solutions ..................................................................................... 7-6

Table 7-2: Image Quality or Performance Issues ....................................................................................... 7-7

Table 7-3: Troubleshooting Sonar Errors ................................................................................................... 7-7

Table B-1: NMEA Approved Sentence Structure ....................................................................................... B-2

Table B-2: GLL Geographic Position – Latitude/Longitude ........................................................................ B-3

Table B-3: GXY Geographic Position X and Y Coordinates ......................................................................... B-4

Table B-4: GUU – Geographic Position – X and Y Coordinates .................................................................. B-5

Table B-5: GGA – Global Positioning System Fix Data ............................................................................... B-6

Table B-6: VTG – Track Made Good and Ground Speed ............................................................................ B-6

Table B-7: ZDA – Time and Date ................................................................................................................ B-7

Table B-8: EMA – Event, Set Mark, and Annotation .................................................................................. B-8

Table B-9: 9 Male Pin Out ........................................................................................................................ B-10

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

1-1

SECTION 1:

OVERVIEW

The 3300-HM Full Spectrum Sonar is a versatile, wideband, FM sub-bottom profiler that generates crosssectional images of the seabed and collects digital normal incidence reflection data over many frequency ranges.

The system transmits an FM pulse that is linearly swept over a full spectrum frequency range (also called a “CHIRP pulse”). The reflections, measured by the system, are displayed as shades of gray or color on a computer monitor. Data is stored real-time into a large capacity hard drive, and can be archived to a

CD/DVD ROM or thumb drive.

1.1 Advantages of Full Spectrum CHIRP Technology

EdgeTech’s Full Spectrum Technology has several distinct advantages over conventional sub-bottom systems, including increased penetration and higher resolution. The tapered wave form spectrum results in images that have virtually constant resolution with depth.

The 3300 system also generates virtually no side lobes due to the wide bandwidth of the sweep frequency.

This bandwidth has an effect of smearing the side lobes of the transducer, resulting in a beam pattern with almost no side lobes.

Because the FM pulse is generated by a digital-to-analog converter with a wide dynamic range and a transmitter with linear components, the energy, amplitude, and phase characteristics of the acoustic pulse can be precisely controlled. This precision produces the high repeatability and signal definition required for sediment classification.

The frequency range of operation is determined by the acoustic characteristics and mounting schematic of the transducers. EdgeTech offers various transducer configurations that can transmit acoustic pulses with different center frequencies and bandwidths. Pulse selection is made by the operator while profiling to achieve the best imagery. For detailed information regarding configuration options, contact

1.1.1 Compared to Older Technology

EdgeTech’s 3300 Full Spectrum sonar system transmits FM pulses. FM pulses have been used in radar and sonar systems for over 40 years and are sometimes referred to as CHIRP or swept frequency pulses. The advent of modern digital signal processing components has provided tools for realizing the potential of these methods.

Full Spectrum signal processing technology does not use a conventional matched filter (the correlation filter that is widely used to compress FM signals) to process wide band signals. It uses proprietary amplitude and phase weighting functions for the transmitted pulse and a pulse compression filter that maximizes the signal-to-noise ratio (SNR) of the acoustic images over a wide band of operating frequencies. These functions provide a significant SNR improvement in the acoustic image over other impulse and CHIRP sonar with band-limited components that are limited in dynamic range.

1-2 SECTION 1: OVERVIEW

1.1.2 Transducer Array

The acoustic projectors in the 3300 Hull Mount system are constructed from wideband, piston-type transducers and the acoustic receivers are a discrete line array of PZT crystals. The acoustic transducers mounted in the hull of the ship are designed for profiling at ship speeds varying from zero (drifting) to 7 knots.

The transducer array receives the low amplitude sub-bottom reflections, while a 24-dB gain preamplifier amplifies and drives the signal through a 50-meter cable. A software-controlled, programmable gain amplifier provides a final amplification stage before the signal is digitized with a 16-bit Analog-to-Digital

(A/D) converter at a sampling rate of 24, 40, 50, and 66 kHz. To achieve the theoretical temporal resolution predicted by the inverse of the bandwidth, the FM pulse is compressed using a digital compression filter.

The correlation process is implemented in real-time, with forward and inverse Fast Fourier Transforms.

The compressed pulse resulting from this signal processing procedure has a time duration approximately equal to the inverse of the bandwidth of the FM pulse.

1.1.3 Resolution

High temporal resolution allows for the measurement of fine layering. Good resolution is an important factor in sediment classification, as it provides a more precise impulse response of the sediment, and, in turn, a realistic picture of the true geologic variability of the seafloor and accurate determination of the depositional processes. When the time duration of the processed pulse is too large, individual reflections will be lumped together with random phase causing constructive and destructive interference, thereby making it difficult to estimate the impedance and examine the geologic processes.

1.1.4 Processing Enhancements

In addition to the resolution improvement, correlation processing achieves a signal processing gain over the background noise. This gain is approximately ten times the log of the time-bandwidth product. This improvement is due to the signal having a time duration longer than the inverse of the bandwidth, thus increasing signal energy without increasing the power of the outgoing pulse. To equal the typical performance of the Full Spectrum sonar pulse, conventional pulse sonar would have to operate at a peak pulse power of 100 times greater than the Full Spectrum pulse with a time-bandwidth product of 100.

Another important feature of the Full Spectrum Sub Bottom Sonar is that the computer generates a signal that optimizes the performance of the system. The sonar contains many components, each with a unique dynamic range and linearity characteristic, which are frequency dependent.

In addition to this, the amplitude spectrum of the outgoing pulse is chosen to be approximately Gaussian in shape in order to limit the side lobe level and temporal resolution losses due to attenuation. As a wavelet with a Gaussian-shaped spectrum is attenuated by the sediment, energy is lost but its bandwidth

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

1-3

is nearly preserved. Thus, even after being attenuated by sand, the acoustic pulse has approximately the same resolution as an un-attenuated pulse.

1.1.5 Reduction of Side Lobes and High Repeatability

Full Spectrum sonar has the unique ability to reduce side lobes in the effective transducer aperture. The wide bandwidth of the sweep frequency has the effect of smearing the side lobes of the transducer and thus achieving a beam pattern with virtually no side lobes. The effective spatial beam width obtained after processing the 2-10 kHz signal is 20 degrees measured to -3db points.

Since the transmitted Full Spectrum pulse is highly repeatable, and its peak amplitude is precisely known, the sediment reflectivity values can be estimated from the peak pulse amplitude measurements of the bottom returns.

1.2 Major Components

The hull mounted configuration consists of the topside unit, deck cable, T-R box, spider box assembly, and

the transducer arrays (see an example of a 2x2 system configuration is shown in

Figure 1-1

).

17" LCD Monitor

Keyboard

Track Ball

DUCER KT-216-A2 P/N: 0003228

BRACKET 216 1X2 P/N: 0009923

REV

A

REVISIONS

DESCRIPTION

Initial Release

DATE APPROVED

3300 HM

ASSY TOP 3300 HULL MOUNT TOPSIDE

P/N 0002820

SPIDER BOX

ASSEMBLY

2X2

P/N:0009969

B86-5FC

B86-5MB

TR JUNCTION BOX

3300 HULL MOUNT

P/N: 0009966

3300 HM Deck Cable

50 Meter

P/N: 0002976

APPROVALS

DRAWN:

CHECKED:

TS

ENG:

ISSUED

SYSTEM

DATE

03-18-15

4 Litt le Brook Road

West Wareham, MA 02576

Tel: (508) 291-0057 / Fax: 356-9760

Email: [email protected]

3300 HM

DOC DRAWING ICD 3300 HULL MOUNT 2X2 KT 216

DUCERS

CARDFILE NAME

DRAWING NO.

Rev

SCALE page 1 of 2

0016xxx

A

1-5

1.2.1 Deck Unit

The Deck Unit consists of a processor, amplifier, and monitor (see

Figure 1-2

). The enclosure consists of a

computer-based controller containing a Sonar Interface Board (SIB). The SIB stores the transmitted waveform and the correlation filter, and performs the correlation processing and spherical range correction. At periodic intervals, the SIB sends the transmitted waveform to the 16-bit digital-to-analog converter, which generates an analog pilot signal that is amplified by a 2 kW power amplifier. This amplifier drives the transducer.

The acoustic signal returns from the seafloor are measured by the receiving arrays, and are then increased by a preamplifier. The output of the preamplifier is connected via the underwater signal cable to a digitally-controlled amplifier on the sub-bottom board (mounted on the SIB) before being sampled by a

16-bit analog-to-digital converter. The SIB board performs the correlation processing, corrects for spherical spreading, and transfers the data to the system board.

The DISCOVER Sub-Bottom program is supported under Windows 7 operating systems. The data and control connections to the DISCOVER Sub-Bottom program are entirely through TCP/IP connections.

LCD monitor

DISCOVER software

19-inch Rack

Mount enclosure

Power Amplifier

Keyboard

3300-HM Topside

Processor

Trackball

Figure 1-2: 3300 Rack Mount Deck Unit

1-6 SECTION 1: OVERVIEW

EdgeTech’s Full Spectrum sonar systems employ advanced CHIRP technology to obtain high resolution, low-noise data records. EdgeTech’s advanced CHIRP technology employs long-duration, wide-band, frequency-modulated transmit pulses. Return sonar echo data is processed to remove the FM carrier, and produce high-resolution images of the echo field. DISCOVER Sub-Bottom allows monitoring of this normal, de-CHIRPed, sub-bottom data, as well as raw, CHIRPed data. This latter data type is often useful for diagnostic purposes.

For compatibility with other EdgeTech products, the DISCOVER Sub-Bottom program interfaces to a second program that is run in the background called sonar.exe. Sonar.exe interfaces with both the SIB and the analog interface boards to generate and transmit CHIRP pulses. A startup file launches the sonar.exe program automatically every time the system is booted.

The 3300 Hull Mount topside unit also interfaces with navigation, triggers, motion and heave sensors, echo sounder, and printers.

The computer-based controller and amplifier components of the 3300 Hull Mount are mounted in a rugged case. Alternatively, these modules may be removed from case and installed in a 19" rack.

1.2.2 Interface Box

The interface box connects the topside to the transducers array. It contains a pre-amp, a matching

transformer and the T/R switch. See

Figure 1-3

below:

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

Connect to array

Interface Box

1-7

Figure 1-3: Interface Box (Interior & Exterior)

1-8 SECTION 1: OVERVIEW

1.2.3 Transducer Array

The transducers for the 3300 Hull Mount system are mounted in a two-dimensional array inside a closed well on board a survey vessel. These transducers act as both projectors and hydrophones.

EdgeTech offers a range of transducer arrays, each designed to provide various beam width. In general, lower operating frequencies require multiple receiving arrays and larger transducers, therefore requiring different array sizes.

Figure 1-4: Spider Array, Single Transducer, and 2x2 Sea Chest (Clockwise)

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

1-9

NOTE:

Each of the transducers is fitted with an 81 cm (32 in.) pigtail with a single pin (2 contacts) connectors. All the cables from the transducers connect to a junction box.

1.3 Applications

The 3300 Hull Mount system has the unique ability to strip-away the world’s oceans and provide high resolution sub-bottom images. This tool lends itself to various tasks that include:

Imaging fluidized mud to a resolution of 8 cm

Sediment classification

Buried pipeline and cable location and routing

Dredging studies for inlets

Scour/erosion surveys in rivers and streams

Marine geotechnical surveys

Bridge erosion surveys

Hazardous waste target location

Geological surveys

Archeological surveys

Imaging biologics in water column

Mapping shellfish populations

Beach re-nourishment

Military and Offshore Oil applications

Full ocean depth sub-bottom imaging

2-1

SECTION 2:

SPECIFICATIONS

The 3300-HM system is composed of a deck unit, interface box, and hull-mounted transducer array. This section details the sub-components of the system and provides their specifications. For information related to the DISCOVER software provided with the topside computer, please refer to the corresponding manual.

2.1 Deck Unit Specifications

The Deck Unit is composed of a computer processor, trackball, keyboard, LCD monitor, and a power

amplifier. The physical specifications for the entire deck unit are provided in

Table 2-1

, and the minimum

specifications for the individual parts are given in the sub-sections that follow.

Environment

Enclosure

Shipping Containers

Temperature

0 to 40

C (32 to 104

F)

Humidity 5% to 95% relative

Vibration Normal ship environment

Portable aluminum case suitable for transit. Unit can be removed from case and mounted in a 19” rack.

Size

Weight

50W x 60D x 33H cm (19.5x23.5x13 in)

46 kg (102 lbs.)

Deck Unit (No topside Processor)

Size 76L x 71W x 50H cm (30x28x20 in)

Weight

Material

82 kg (330 lbs.)

Sealed high impact polyurethane case

Table 2-1: Overall Physical Deck Unit Specs

2.1.1 Processor Specifications

Main Processor

Pentium4 class CPU with high speed PCI bus & TMS320 SIB for advanced signal processing

Memory

Hard drive

Floppy-drive

512 MB RAM

40 GB capacity min

1.44 MB, 3.5 inch

2-2

CDRW

Operating System

Input Power

I/O

Data Acquisition

SIB & A/D-D/A

SECTION 2: SPECIFICATIONS

10x4x32 min speed

Windows XP

120 or 220 VAC auto sense

Ethernet, 4 port RS-232, 3 USB ports

Analog Input 16 bit resolution, 200 kHz max. sampling rate

Analog

Output

16 bit resolution, 200 kHz max. sampling rate

Table 2-2: Processor Specifications

Hard Drive

Tiger Board

Mother Board

Power Supply

Figure 2-1: Topside Processor Internals

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

2-3

2.1.2 Amplifier Specifications

The amplifier is also designed for mounting in standard equipment rack. The power amplifier must stay close to the topside processor due to the short cables that connect the two units. The amplifier also requires at least 10 cm (4 in.) of clearance behind the heat sink array to permit vertical air flow through the array. Ensure that the environmental operating temperature ion the rack mount does not exceed 55°

C (131° F).

NOTE:

Should overheating occur because of inadequate ventilation, thermal protection circuit will automatically protect the amplifier. When a safe operating temperature is restored, the amplifier will resume normal operation.

The specifications for the Power Amplifier, EdgeTech PN 0010855, are shown in

Table 2-3

:

POWER OUTPUT

4-ohm Bridge

8-ohm Bridge

PERFORMANCE

Frequency Response

(at 1 watt, 20 Hz – 20 kHz

into 8 ohms)

Signal to Noise Ratio

(below rated full bandwidth power, A-

weighted)

Total Harmonic Distortion (THD)

(at 1 watt into 8 ohms)

THD plus Noise

(at full rated power)

Intermodulation Distortion

(60 Hz and 7kHz at 4:1, from full rated

output to -30 dB)

Damping Factor

(20 Hz to 100 Hz at 8 ohms)

5,600 W

6,000 W

± 0.25 dB

> 108 dB

< 0.1%

< 0.35%, 20 Hz to 20 kHz

< 0.35%

> 5000

2-4 SECTION 2: SPECIFICATIONS

Crosstalk

(below rated power,

20 Hz to 1 kHz)

Common Mode Rejection

(20 Hz to 1 kHz)

DC Output Offset

(Shorted input)

Input Impedance

(Nominal)

Maximum Input Level

Load Impedance

(Safe with All Types of Loads)

Input Sensitivity

(Referenced to 8 ohm rated output)

Voltage Gain

(Referenced to 8 ohm rated output)

Required AC Mains

CONSTRUCTION

Cooling

Front Panel

Weight

Dimensions

Protection

> 80 dB

> 55 dB, typically > 70 dB

< ± 3 mV

10 kilohms balanced, 5 kilohms unbalanced

+20 dBu typical

Stereo: 1/2/4/8/16 ohms Bridge

Mono: 2/4/8 ohms

1.4V, 32 dB gain, and 26 dB gain

37.9 dB to 23.0 dB

Universal AC input, 100-240VAC, 50/60 Hz (±10%).

Maximum AC mains voltage 264VAC.

Dual-zone, microprocessor controlled, continuously variable speed fans, front-to-back airflow

Cast aluminum with integrated handles

28 pounds (12.7 kg) net, 36 pounds (16.3 kg) shipping.

19 in. (48.3 cm) W x 3.5 in. (8.9 cm) H x 16.2 in. (41.1 cm) D.

Amplifier is protected against reactive loads, faults and shorts. If one channel experiences a catastrophic failure, the entire amplifier will shut down.

Table 2-3: Power Amp Specifications

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

2-5

2.1.3 Display, Keyboard, and Mouse Specifications

Video Display

Keyboard

Trackball

One High resolution 17” flat panel monitor

High impact industrial keyboard

High impact industrial trackball

Table 2-4: Display, Keyboard, and Mouse Specifications

2.2 Interface Box Specifications

The physical specifications for the Interface Box are given below in

Table 2-5

:

Weight:

1.8 kg

Dimensions (WxDxH):

18 cm x 18 cm x 12 cm

Table 2-5: Physical Specifications of Interface Box

An assembling drawing and a wiring diagram of the Interface Box are provided in

Figure 2-2

and

Figure

2-3

).

D

4

THESE DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF EDGEONE LLC DBA EDGETECH

(OR ORE) AND ARE ISSUED IN STRICT CONFIDENCE. THEY SHALL NOT BE REPRODUCED, COPIED OR USED IN ANY WAY

WITHOUT THE EXPRESS WRITTEN PERMISSION OF EDGEONE LLC.

2005 EDGEONE LLC

3

18

S/N

19

C

14

3

11

12

17

15

2

1

3

7

9

10

B

A

6

4

8

13

2

REVISIONS

DESCRIPTION ECR#

REV

A Released to Manufacturing

1

DATE

5/13/13

APPROVED

MOUNT INSIDE BOX COVER

22

16

SHRINK TUBING

D

C

B

MATERIAL

FINISH

3

4

5

UNLESS OTHERWISE NOTED:

DIMENSIONS ARE IN INCHES

RESISTORS ARE IN OHMS

CAPACITORS ARE IN MICROFARADS

TOLERANCES

FRACTIONS DECIMALS

3 PLACES

2 PLACES

ANGLES

+/-.010

+/-.005

+/-1/64

DO NOT SCALE PRINT

+/-0.5°

APPROVALS

SIGNATURE & DATE

4 LITTLE BROOK ROAD

WEST WAREHAM, MA 02576

DRAWN

CHECKED

MECH

ELECT

SYSTEM

T. DUCE 5/7/2013

D. FRASER 5/13/2013

TITLE

TRANSCEIVER BOX ASSY, Model 3300HM

CADFILENAME:

DRAWING NO.

REV

C

SCALE

0013186 A

REMOVE BURRS, BREAK SHARP EDGES

A

2 1

SHEET 1 OF 1

D

4

THESE DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF EDGEONE LLC DBA EDGETECH

AND ARE ISSUED IN STRICT CONFIDENCE. THEY SHALL NOT BE REPRODUCED, COPIED OR USED

IN ANYWAY WITHOUT THE EXPRESS WRITTEN PERMISSION OF EDGEONE LLC.

2005 EDGEONE LLC

C

3

SECODARY

T1

TEFLON TUBING(4PL)

ALIGNMENT

HOLE/PIN

MALE

7

8

5

6

1

2

3

4

PRIMARY, NOTE: HEAVY LEADS

ODD #'S

EVEN #'S

1

J1

1

J3

ACK

ITE

CK

BLA

ITE/

UE

2

ECR#

REVISIONS

REV

DESCRIPTION

A RELEASED TO PRODUCTION

1

DATE

APPROVED

D

J2

1

SHIELD

TO TRANSDUCER

C

T1

SECODARY

PRIMARY

1

J1

J3

1

TO SONAR

J2

1

WHITE

SHIELD

BLACK

TO TRANSDUCER

B B

TX -

TX +

COMMON

CH A

+12V

SEA GND

7

8

5

6

3

4

1

2

P1

BLACK

WHITE

RED

GREEN

ORANGE

BLUE

BLACK/WHITE

RED/BLACK

A

4 3

APPROVALS

DRAWN

CHECKED

MECH

ELECT

SYSTEM

SIGNATURE & DATE

R. CARBONE 4/23/08

EdgeTech

4 LITTLE BROOK ROAD

WEST WAREHAM, MA 02576

TITLE

CADFILENAME:

T-R BOX, HULL MOUNT

DRAWING NO.

SCALE

0004638

REV

A

REMOVE BURRS, BREAK SHARP EDGES

2 1

A

2-8 SECTION 2: SPECIFICATIONS

2.3 Spider & Array Specifications

The standard transducers for the 3300 system have a good frequency response from 2 kHz to 16 kHz.

Multiple transducers are mounted to give various beam width options. Specifications for the array are

given in

Table 2-6

and a wiring diagram for the spider box is provided in

Figure 2-4

).

Pulse Type

Pulse Length

Bandwidth

Trigger In

Trigger Out

Sampling Rate

Acoustic Power

Full Spectrum Chirp FM

From 5 to 100 ms

From 500Hz to 12kHz depending on application

TTL negative edge triggered

TTL negative edge triggered. Minimum 5ms long pulse (Lower BNC)

20, 25, 40,50 kHz depending on the pulse upper frequency

About 212 dB ref 1

Pa peak at center frequency of system

Resolution

From 4 to 50 cm of vertical resolution depending on pulse vehicle and pulse bandwidth

Beam width

20 to 40 degrees depending on transducer configuration

Minimum array height

5 meters above seafloor

Table 2-6: General Array Specifications

NOTE:

The 3300-HM system is an application-specific unit; using it for purposes other than sonar data acquisition is strongly discouraged. The above information is for documentation purposes only. Specifications are subject to change without notice.

A wiring diagram of the spider box in a 2x2 configuration is shown in

Figure 2-4

:

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

THESE DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF EDGEONE LLC DBA EDGETECH

AND ARE ISSUED IN STRICT CONFIDENCE. THEY SHALL NOT BE REPRODUCED, COPIED OR USED

IN ANYWAY WITHOUT THE EXPRESS WRITTEN PERMISSION OF EDGEONE LLC.

2005 EDGEONE LLC

ECR#

REVISIONS

DESCRIPTION

REV

A RELEASED TO PRODUCTION

DATE

9/29/11

APPROVED

1

2

J1

1

2

J2

1

2

J3

1

2

J4

6

1 (4 PLACES)

J1

J2

J3

2

3

J4

Note:

1. Spliced connections must be soldered and individually coated with Scotchkote

(0003307) and covered in heat shrink tubing prior to encapsulation.

2. Strip back poly jacket 3 inches. Solder green 20ga wire to shield and tin each lead.

1

2

" of

3. The maximum length of this cable should be 50 feet. However, it should be trimmed to minimum required length during installation.

MATERIAL

FINISH

UNLESS OTHERWISE NOTED:

DIMENSIONS ARE IN INCHES

RESISTORS ARE IN OHMS

CAPACITORS ARE IN MICROFARADS

TOLERANCES

DECIMALS FRACTIONS

2 PLACES 3 PLACES

ANGLES

APPROVALS

DRAWN

CHECKED

MECH

ELECT

SYSTEM

SIGNATURE & DATE

R. Carbone 9/28/11

DO NOT SCALE PRINT

TITLE

REMOVE BURRS, BREAK SHARP EDGES

CADFILENAME:

SCALE

DRAWING NO.

4 Little Brook Road

W. Wareham, MA 02576

REV

2-10 SECTION 2: SPECIFICATIONS

Table 2-7

and

Table 2-8

show the specifications for the KT-216H and KT-106D arrays, respectively:

Frequency Range: 2 - 12 kHz

Pulses (user selected): 2 - 5 kHz, 100 ms

2 - 6 kHz, 40 ms

2 - 8 kHz2 - 8 kHz, 40 ms, Wide Band (WB)

2 - 10 kHz, 20 ms

2 - 12 kHz, 20 ms

2 - 12 kHz, 3 ms

Vertical Resolution

(depends on pulse

selected):

Penetration (typical):

6 - 10 cm

In Course Calcareous Sand:

6 m

In Clay:

80 m

Directivity Index

(per Array Size):

Beam Width

(per Array Size):

2 X 2 :

3 X 3 :

4 X 4 :

5 X 5 :

2 X 2

15 dB

3 X 3

18 dB

@ 4.5 kHz Center Frequency:

40 °

30 °

24 °

20 °

Table 2-7: KT-216A2H Array Specifications

4 X 4

21 dB

5 X 5

23 dB

@ 6 kHz Center Frequency:

33 °

25 °

20 °

17 °

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

2-11

Frequency Range: 1 - 6 kHz

Pulses (user selected): 1.2 - 5.0 kHz, 66 ms

1.5 - 4.5 kHz, 33 ms

1.5 - 4.5 kHz, 12 ms

1.5 - 5.5 kHz, 12 ms

1.5 - 6.0 kHz, 20 ms

1.5 - 6.5 kHz, 12 ms

6 - 10 cm

Vertical Resolution

(depends on pulse

selected):

Penetration (typical):

Directivity Index

(per Array Size):

In Course Calcareous Sand:

6 m

2 X 2

13 dB

5

15 dB

Beam Width

(per Array Size):

2 X 2 :

5

:

7

:

3 X 3 :

4 X 4 :

3.75 kHz

Center Frequency

38 °

26 °

29 °

24 °

18 °

† See

Figure 2-5

Table 2-8: KT-106D Array

In Clay:

80 m

7

16 dB

3 X 3

17 dB

4 X 4

20 dB

2-12 SECTION 2: SPECIFICATIONS

NOTE 1:

Vertical resolution is the smallest distinguishable distance between the peaks of two reflections that can be displayed on the screen as separate reflectors. Sound energy is reflected back to the sonar system when the transmitted pulse encounters a change in density, and the resolution of a sonar system is measured by its ability to distinguish between two adjacent targets. The vertical resolution is dependent of the transmitted chirp pulse bandwidth. It is theoretically calculated by the product of the transmitted pulse length (inverse of the bandwidth) and half the speed of sound in water (approximately 750m/s).

NOTE 2:

The value for sub-bottom penetration is the maximum distance beneath the sea floor that a step change of 10% in density can be seen on the sub-bottom display. This assumes that the sediment is gas-free (no organic materials), and that the lowest frequency of the pulse spectrum is transmitted. Lower frequencies reduce attenuation (absorption of sound).

NOTE 3:

Many factors contribute to the penetration performance of a

Hull Mounted system. However, one of the essential factors in determining the performance of a chirp pulse, along with the expected penetration and resolution, is the center frequency of the chirp pulse?

Therefore, for example if you have a pulse of 1-8 kHz then you use the center frequency (4.5 kHz) to determine resolution and penetration.

Another contributing factor is the size of the array. The low frequency efficiency goes up as you increase the size of the array because of increased directivity.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

2-13

5x Kt-106 7x Kt-106

2 3 2 3

1 6 1 7

5 4 5 4

Figure 2-5 : KT-106 Non-Symmetrical Array Configurations

2.3.1 Array Sizes

Selection of array size depends on transducer type (KT-216 or KT-106) and the geological survey application. The important decision parameter is the water depth in which the system is to be used. For most deployments to 3000 meters, a 4 x 4 array will provide the needed performance. A 2 x 2 array should be considered only for coastal application and water depths to 300 meters. Only a 5 x 5 array can be used for full ocean depth.

The following is a matrix of Signal to Noise Ratio for each array size. It assumes sea state 5, flow noise of

70 dB (about a 10-knot speed), a loss in typical seafloor sediments of 10 dB, a 20 ms pulse length, and a bandwidth of 5 kHz. Several other variables are not included in this matrix. They include hull type and thickness, self-noise, variations in flow noise, other ship’s speeds, other sea states, and roll and pitch. Nor does it consider other conditions that could affect the performance, such as a bubble screen.

ARRAY SIZE

2 X 2

3 X 3

4 X 4

5 X 5

EXPECTED SNR

28 dB

31 dB

34 dB

37 dB

Table 2-9: Array Size vs. Expected Signal-to-Noise Ratio (SNR)

2-14 SECTION 2: SPECIFICATIONS

NOTE:

The 2-way transmission coefficient for a 4 kHz center frequency over a 0.5 inch steel acoustic window is 0.5 (i.e. 50% of the acoustic pulse amplitude is lost due to the 2-way travel of sound through the plate). The coefficient reduces with higher frequencies and thicker steel hull.

See the following figures for images of the various array configurations:

Figure 2-6: Deck Cable, Junction Box, and Spider Wiring Diagram (2x2 Configuration)

Figure 2-7: Single Transducer Drawing

Figure 2-8: 2x2 Transducer Configuration

Figure 2-9: 3x3 Transducer Configuration

Figure 2-10: 4x4 Transducer Configuration

Figure 2-11: 5x5 Transducer Configuration

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

DECK CABLE

P/N 0002976

AMPHENOL

CONNECTOR

E

H

C

Shield

D

B

K

M

J

C

Shield

L

Shield

B86-5FC

1

2

B86-5MB

TX -

1

TX +

2

7

7

3

3

COMMON

4

CHA

4

5

6

8

5

6

8

RS232 DATA

N.C.

12VDC

RS232 COM

N.C.

7,8

1,2

5,6

ODD #'S

EVEN #'S

B86-5MB

3,4

B86-5MB

CAUTION

HIGH VOLTAGE

3

1

4

4 3

TRANSFORMER

PIN OUT

(TOP VIEW)

2

1

2

SEC

SEC

SHL

D

PRI

PRI

1

2

3

4

5

TX

TX

GND

RX

GND

+12V

1

2

3

4

RX

5

VDD

6

+12V

VCC

+

-

VDD

VCC

VDD

-

+

VCC

VDD

PREAMP +

PREAMP -

CAUTION

HIGH

VOLTAGE

R2

R3

3

2

1

WHITE

TX-

SHLD

TX+

BLACK

SHIELD

TR JUNCTION BOX 3300 HULL MOUNT

P/N: 0009966

4.7K

SEA GND

REV

A

REVISIONS

DESCRIPTION

Initial Release

DATE APPROVED

SPIDER BOX

2X2

P/N 0009989

B26-5FC

1

J1

2

B26-5FC

1

J2

2

B26-5FC

1

J3

2

1

J4

2

B26-5FC

APPROVALS

DRAWN: TS

CHECKED:

ENG:

ISSUED

SYSTEM

DATE

4 Litt le Brook Road

West Wareham, MA 02576

Tel: (508) 291-0057 / Fax: 356-9760

Email: [email protected]

3300 HM

DOC DRAWING ICD 3300 HULL MOUNT 2X2 KT 216

DUCERS

CARDFILE NAME DRAWING NO.

SCALE page 2 of 2

0016xxx

Rev

A

C

B

A

F

6

THESE DRAWINGS AND SPECIFICATIONS ARE THE PROPERTY OF EDGEONE LLC DBA EDGETECH (OR

ORE) AND ARE ISSUED IN STRICT CONFIDENCE. THEY SHALL NOT BE REPRODUCED, COPIED OR USED

IN ANY WAY WITHOUT THE EXPRESS WRITTEN PERMISSION OF EDGEONE LLC.

2011 EDGEONE LLC.

1.16

29.37

E

5

4.06

103.19

TYP.

2.81

71.44

D

30.50

774.70

B

28.69

728.66

TYP.

8.38

212.73

.50

12.70

TYP.

27.00

685.80

6 5

.56

14.29

TYP.

4

TRANSDUCER WEIGHT:

21 LBS [9.53 KG] EACH

3.50

88.90

4

3 2

REVISIONS

ECR# REV DESCRIPTION

A RELEASED TO MANUFACTURING

2591 B ADDED MISSING VERTICAL DIMENSION

DATE

10/29/13

04/09/14

APPROVED

PES

F

E

D

C

MATERIAL

FINISH

3

B

NOTES:

1.

2.

3.

DRY WEIGHT: 391 LBS.

WET WEIGHT: 260 LBS.

PLATE THICKNESS: 1/4"

UNLESS OTHERWISE NOTED:

DIMENSIONS ARE IN INCHES

INTERPRET DIM AND TOL PER

ASME Y14.5-1994

THIRD ANGLE PROJECTION

TOLERANCES

DECIMALS FRACTIONS ANGLES

2 PLACES

3 PLACES

+/-.010

+/-.005

+/-1/64 +/-0.5°

DO NOT SCALE PRINT

APPROVALS

DRAWN

CHECKED

MECH

ELECT

SYSTEM

STRITTMATTER 10/29/13

VEILLEUX 10/29/13

TITLE

CADFILENAME:

REMOVE BURRS, BREAK SHARP EDGES

SCALE

D

DRAWING NO.

4 LITTLE BROOK ROAD

WEST WAREHAM, MA 02576

WWW.EDGETECH.COM

TEL. (508)291-0057

ICD, KT-216 4X4 HULL MOUNTED ARRAY

0013960

REV

B

2 1

SHEET 1 OF 1

A

2-21

2.4 Signal Cable Specifications

The deck cable is made of six wires twisted and shielded in pairs. The cable has a Kevlar strength member that provides a 1600 kg (3500 lb.) minimum breaking strength and 295 kg (650 lb.) working strength. See

Table 2-10

:

Nominal Cable Weight: 30.8 kg per 100 m (207 lb/1000 ft.)

Voltage Rating:

Bending Radius:

600 Volts.

10 cm (4 in)

Length:

50, 60, or 75 meters (164, 197, or 245 ft.)

Table 2-10: Signal Cable Specifications

The deck cable is terminated at the topside with a military type Amphenol connector and at the Interface

box with a Marshal underwater wet pluggable connector. See

Figure 2-12

,

Figure 2-13

, and

Figure 2-14

to see the pin-out diagrams for the cable

. Figure 2-15

provides the wiring diagram for the cable.

B

C

D

A

L

E

K

M

F

J

H

A. AMPLIFIER OUTPUT SHIELD

B. +12 VDC

C. SEA GROUND

D. DF1000 SHIELD (SUBSCAN ONLY)

E. AMPLIFIER OUTPUT 1

F. DF1000 DATA (SUBSCAN ONLY)

H. AMPLIFIER OUTPUT 2

J.

PRE-AMPLIFIER INPUT CHANNEL A

K. PRE-AMPLIFIER COMMON

L. NC

M. NC

Figure 2-12: Topside Unit Sea Cable Plug (Female) Amphenol #97-3106A-20-33F

2-22 SECTION 2: SPECIFICATIONS

1

3

7

2

4

5

8

6

1. AMPLIFIER OUTPUT 1

2. AMPLIFIER OUTPUT 2

3. PREAMP COMMON

4. PRE-AMPLIFIER SIGNAL

5. RS-232 DATA

6. +12 VDC

7. SEA GROUND

8. RS-232 COMMON

Figure 2-13: Female Marshal Connector – 86-5FC (Deck Cable to Junction Box Connection)

8 7

2 1

4 3

6 5

1. AMPLIFIER OUTPUT 1

2. AMPLIFIER OUTPUT 2

3. PREAMP COMMON

4. PRE-AMPLIFIER SIGNAL

5. RS-232 DATA

6. +12 VDC

7. SEA GROUND

8. RS-232 COMMON

Figure 2-14: Male Marshal Connector – 86-5MC (Junction Box to Deck Cable Connection)

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

3-1

SECTION 3:

CONTROLS & CONNECTIONS

This section describes the controls and indicators, along with the connections for the 3300 deck unit.

3.1 Deck Unit Controls and Indicators

The deck unit controls and indicators are as follows, and are shown in

Figure 3-1

:

POWER SUPPLY: Rocker switch. Turns on the power supply in the 3300-HM Topside

Processor. This switch can be left in the on position at all times.

SYSTEM POWER:

POWER:

RESET:

Push button toggle switch. Turns the 3300-HM Topside Processor on.

A blue indicator lights up when amplifier is on.

HARD DISK:

SYSTEM:

Momentary push button switch. Resets the 3300-HM Topside

Processor.

Red indicator. Indicates when a hard drive on the 3300-HM Topside

Processor is active.

Green indicator. Illuminated when the 3300-HM Topside Processor is on.

POWER AMP OUT TX1: Red indicator. Flashes when Channel 1 of the Power Amplifier transmits.

POWER AMP OUT TX2: Red indicator. Flashes when Channel 2 of the Power Amplifier transmits.

READY: Green indicators. Illuminate when the system is ready to transmit. On power up it will take one to two minutes for the indicator to illuminate.

12 VDC OUT TO PREAMP: Test point. Used to measure the 12 VDC voltage applied to the preamplifier in the Junction Box.

PREAMP 5 VDC: Test point. Used to measure the 5 VDC voltage preamplifier feedback voltage from the Junction Box.

PREAMP COMMON:

GND:

DATA:

Test point. Common ground for the preamplifier.

System ground connection.

CH1 & 2:

Indicator on the amp that lights up and blinks when data is being transmitted

Defunct dials on the amplifier. Turning these will not affect the performance or function of the 3300 HM system in any way

3-2

SYSTEM indicator

SYSTEM

Power button

SECTION 3: INSTALLATION

DRIVE ACCESS panel

HARD DISK indicator

USB connectors

READY indicators

POWER, BRIDGE

& DATA indicators

HARD DISK reset button

CH1 dial

(defunct)

CH2 dial

(defunct)

Figure 3-1: Topside Front Panel Controls and Connections

3.2 Deck Unit Connections

The topside deck unit connections are as follows, and are shown

Figure 3-2

, and the wiring diagram can

be seen in

Figure 3-3

:

TRACKBALL: PS2 connector. Connects to the trackball.

KEYBOARD:

SEA CABLE:

MONITOR:

COM 1-NAV:

COM 3, 5, 6:

PS2 connector. Connects to the keyboard.

11-Pin female bulkhead connector. Connects to the deck cable.

DB-15 female connector. Connects to the LDC monitor.

DB-9 female connector. RS-232 serial port that connects to the navigation system.

DB-9 female connectors. RS-232 serial ports that can be used to connect to the navigation system.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

3-3

TRIGGER IN:

TRIGGER OUT:

MARK:

ETHERNET:

USB:

AC POWER:

BNC connector. Connects to an external trigger source to trigger the sonar.

BNC connector. Connects to an external sonar system to trigger it.

Creates a short that makes a mark in the sonar record

(2) RJ-45 connector. Available for connection to a local area network

(LAN) and/or printer.

(8) USB connectors. Two on the rear panel and one on the front panel.

CEE-type AC input and output connectors. The AC input connector connects to the AC power source, and the AC output connectors are available for powering the LCD monitor and other equipment if required.

USB ports

POWER

SUPPLY

COM 1-NAV connector

AC POWER input connectors

COM 3

ETHERNET 1 connector

GND

ETHERNET 2 connector

SEA CABLE connector

DVI port s

PREAMP

COMMON test point

TRIGGER IN connector

TRIGGER

OUT connector

Sonar data main I/O connector

POWER AMP

OUT TX1 indicator

TOWFISH

PREAMP 5

VDC test point

POWER AMP

OUT TX2 indicator

12 VDC

OUT TO

PREAMP test point

Figure 3-2: Topside Rear Panel Controls and Connections

4-1

SECTION 4:

INSTALLATION

This section explains how to unpack, inspect, and install the 3300-HM system .It describes placement considerations for the topside and transducer arrays, along with power requirements. Refer to the PN

0016695 for a more detailed explanation of 3300-HM installation.

For information on connecting a navigation device or printer, please refer to

APPENDIX B: NAVIGATION

SYSTEMS

.

4.1 Unpacking & Inspecting

The EdgeTech 3300-HM system is supplied complete with all necessary cables. The system components are individually packed in reusable shipping containers.

Before unpacking the system components, inspect the shipping containers for any damage. Report any damage to the carrier and to EdgeTech Customer Service. If the shipping containers appear free of damage, carefully unpack the components and inspect them for damage. Also check the packing list and verify that all the items on the list are included.

Again, if any damage is found, report it to the carrier and to EdgeTech. If any items are missing, immediately contact EdgeTech. Do not install or operate any equipment that appears to be damaged.

Although the items shipped may vary, depending on the customer requirements, the 3300-HM system typically includes the following:

Topside Unit

Hull Mount Transducer Arrays

Connection Cable

AC power cords (2)

Software CDs

Manuals

After unpacking the system components, be sure to safely store the shipping containers, including any packing materials, for later use. When transporting or storing the system, all items should be packed in their original shipping containers in the same manner in which they were originally shipped, and always store the system in a dry environment when not in use.

4.2 Topside Installation

Once unpacked, the topside unit may be installed in a standard 19” rack. Several requirements are necessary for proper placement of the unit, and are addressed below:

4-2

3300 HULL MOUNT SUB-BOTTOM PROFILER

SECTION 3: INSTALLATION

4.2.1 Power Supply

The system power requirements are 120–220 VAC, 50/60 Hz. For the 3300 Topside Processor, the input voltage is auto sensing. For the Power Amplifier, you must select 120 VAC or 220 VAC operation manually.

4.2.2 Use of an Uninterruptable Power Supply

The AC power source should be continuously free of high-amplitude, high-frequency transients, as this type of interference could cause degraded performance or damage to the equipment. An uninterruptable power supply (UPS) with power surge protection is recommended for powering the equipment.

However, whether or not a UPS is used, the AC power source should never be the same as that being used to power electric motors, such as pumps and winches, on the survey vessel.

4.2.3 Selecting the Power Amplifier Input Power Voltage

To select the Power Amplifier input power voltage, first remove the amplifier from the rack. Then remove the top cover, locate the board at the lower right corner, and switch it to the required input power voltage as indicated by the arrow.

4.2.4 Changing to a Non-US Power Plug

An AC power cord is provided for connecting the Deck Unit to a standard U.S. 3-pronged outlet. For non-

U.S. power outlets you can modify this cord by cutting off the 3-pronged plug and attaching the appropriate plug. Refer to Table 3 1 for connection information.

AC POWER CORD WIRE COLOR

Black

White

Green

FUNCTION

AC line

AC neutral

Earth ground

Table 4-1: AC Power Cord Wiring

NOTE:

The Deck Unit is shipped configured for the end user’s country voltage requirements.

0016732_REV_A

4-3

4.2.5 Navigation Interface

The 3300-HM system accepts all standard National Marine Electronics Association (NEMA) 0183 message sentence formats from a connected global positioning system (GPS) or integrated navigation system.

4.2.6 Deck Unit Placement

The Deck Unit should be located and set up in a dry, sheltered area that is protected from weather and water spray. The placement area should also have a temperature that is consistently between 0°C and

40°C (32°F and 104°F). Avoid areas of direct sunlight, especially in tropical environments, as heat buildup could occur and viewing the LCD monitor and status indicators could prove difficult. The unit should be placed in on a surface that is flat and free from vibrational interference.

Secure the Deck Unit in place, using tie-downs if necessary, near the required AC power source. If you are mounting the 3300 Topside Processor and the Power Amplifier in a 19-inch rack other than the supplied rack mount enclosure, ensure that there is ample room behind the rack for connecting the cables. Support the components inside the rack using appropriate mounting brackets and secure the front panels using standard 19-inch rack front panel mounting hardware.

4.3 Hull Mount Array Installation

NOTE:

This section is a summarized version of the full installation guide, provided in EdgeTech document PN 0016695.

The transducer arrays for the 3300-HM system are mounted to the bottom of the survey vessel in a “Sea

Chest.” This chest is filled with fresh water in order to protect the array from corrosion, while providing a medium for the sub-bottom sonar signal to travel through.

A hatch on the top of the chest allows the deck crew to access the array in order to inspect or remove it between surveys. The bottom of the Sea Chest (facing the sea floor) is an “acoustic window,” which is made of a material that allows the signal to pass through it while still protecting the array.

Stainless steel trays are available from EdgeTech for mounting the transducers inside the user-provided

Sea Chest. However, the user may also construct the trays themselves by following the proper spacing

requirements listed below (for transducer array specifications, see sub-section

2.3

):

Install the transducer array must with the array parallel to the sea surface within a flooded steel enclosure.

For best results, use an acoustic window made of a material such as a high quality fiberglass with no air pockets (e.g., 'G10' glass board), 'Lexan', or a polycarbonate material. Construct the Sea

4-4 SECTION 3: INSTALLATION

Chest so that the acoustic window can be bolted to the sea chest using a bezel to secure it in place.

The steel enclosure is a steel box welded to a section of the hull that is flat and parallel to the sea surface. The sides of the enclosure should be high enough to allow inspection of the array; it is recommended that the sides of the box be at least 30 cm higher than the top of the transducers.

There should be a minimum of 5 cm between the sides of the transducers and the sides of the sea chest.

A sea chest for a 4 x 4 array (of KT-216 transducers) will have the following minimum inside dimensions:

Inside height 22 inches / 56 cm

Inside width 28.25 inches / 72 cm

Inside length 31.25 inches / 80 cm

Locate the steel box away from vibrating equipment and sufficiently deep below the water line to prevent air bubbles passing along the hull and under the array during high sea states.

Line all four vertical sides and the removable cover plate with a foam material such as ¼ inch (0.64 cm) (minimum) diver’s wetsuit neoprene. Attach it with a good neoprene cement (such as 3M

5200 moisture cured) to the sides and top of the sea chest.

Bolt the transducer array to an angle bracket that is welded to the inside of the box so that the faces of the transducers are within 2 cm of the hull plate, but not touching it. The array is installed in the box one row (rack) of transducers at a time.

The steel box should have a removable cover to allow installation and removal of the transducer array. The cover should bolt to the top of the box and have a gasket to prevent leakage. The cover

Plate should have a fill pipe to fill the Sea Chest with fluid and a bleeder valve to exit the air from the Sea Chest. The Sea Chest must be free of any air pockets or bubbles for the transducers to operate properly.

Fill the tank with fresh water (preferably distilled) from the ship’s fresh water supply. If the system will be operated at temperatures near or below the freezing point for fresh water, antifreeze may be added so that the freezing point is below that of sea water (Propylene Glycol antifreeze is acceptable).

Drain the tank and pipes when the ship is in dry dock if there is a risk of freezing weather. Vent all air from the pipes and tank after filling and before operating the sonar to prevent signal degradation.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

4-5

Install a stuffing tube and gland nut to allow a 0.8 cm diameter electrical cable to pass through the tank. This cable connects the transducer array to a water-resistant interface box that is mounted to a bulkhead within 3 meters of the tank. The interface box contains a pre-amp, matching transformer, and T/R switch. The interface box enclosure is plastic and approximately

18 cm high by 18 cm wide by 12 cm deep. A standard 50-meter 3300-HM deck cable connects the interface box to the 3300-HM topside processor.

4.4 Connecting the System

WARNING!

Do not attach any cables or wires while the system is connected to the ship's power, as severe electrical shock may occur.

Once the transducer arrays have been mounted, the Sea Chest has been filled and vented of air, and the topside unit has been unpacked and secured, the user may proceed with connecting the 3300-HM system components in preparation for use:

1. Ensure the AC voltage selection switch in the amplifier is set to the proper voltage.

2. Connect the deck cable to the Hull Mount.

3. Connect the underwater cable to the Amphenol connector at the back of the amplifier unit.

4. Connect the video monitor.

5. Connect the keyboard and trackball to the front panel of the system.

6. Connect a thermal printer (optional)!

CAUTION!

Always connect the T/R box end connector before connecting the cable to the deck unit to prevent connecting an energized connector. This may cause damage to components in the T/R box.

5-1

SECTION 5:

OPERATI ON

The purpose of this section is to provide general information on the interface between the 3300 Hull

Mount transducers and the 3300-HM topside unit. The interface between the 3300-HM and the DISCOVER

Sub-Bottom software can be found in the DISCOVER Sub-Bottom Software Manual

5.1 Activating the System

1. Turn on the POWER SUPPLY switch on the back of the Deck Unit. This switch can be left in the on position at all times if desired.

2. Turn on the POWER switch on the Power Amplifier.

3. Turn on the SYSTEM POWER switch on the 3300 Topside Processor.

4. The SYSTEM indicator on the 3300 Topside Processor should illuminate and remain on, and the

HARD DISK indicator should flash for two to three minutes while a self test is run. After this test is completed, the HARD DISK indicator will flash periodically.

5. Turn on the LCD monitor.

5.2 File Format

Data is archived to the hard drive of the system in two formats, EdgeTech’s native format JSF and the SEG-

Y format. The SEG-Y recording can be turned on or off in the software but the EdgeTech Format is always recorded. This is because the JSF format stores a much greater amount of information than the standard

SEG-Y.

5.2.1 EdgeTech’s Native JSF Format

Please refer to EdgeTech JSF File Format Manual (document 0004824) for more detailed information.

5.2.2 Standard SEG-Y Format

In the standard SEG-Y format, all sonar data in traces is represented via IEEE 32-Bit floating point numbers

(as per the standard). All fields are byte oriented as per the standard (Big Endian). That is, for a 32-bit integer, the 8 MSBs are in the first byte. The EBCDIC header is really in EBCDIC (or ASCII).

For Intel based processors, all of the above are not standard and will require conversions. For example, the sonar data must be converted from IBM to IEEE floating point. Integers must be converted from Big

Endian to Little Endian, and the EBCDIC header must be converted to ascii. ONLY envelope data is saved

(one float per sample).

5-2 SECTION 4: OPERATION

5.2.3 Palette File Format

Each display channel can have a color palette, which is specified by a .jsp file. These files are text files with numbers separated by white space. The numbers must be ordered in groups of 4. For each group the values are:

Index (0 to 255)

Red Intensity (0 to 255)

Green Intensity (0 to 255)

Blue Intensity (0 to 255)

The indices must be increasing in value. If there are gaps in the index then intermediate color values will be interpolated. Here is an example table for a linear gray step wedge type palette:

0 0 0 0

255 255 255 255

5.3 Triggering and Coupling

To avoid interference, the 3300-HM system supports the following different type of triggering Modes:

Internal Trigger:

Coupled Mode:

External Trigger:

In this mode the user may specify the ping rate in Hertz (e.g. 3Hz) or ping range

(in Meters). The system will use the closest available inter-ping interval (e.g.

332.99ms), and repeatedly re-trigger the system at the expiration of this period.

This mode applies only to a combined sub-bottom and side scan system. In coupled mode the applicable subsystem is triggered when the master subsystem triggers. The trigger timing for coupled systems takes account of differing transmit pulse lengths and minimizes inter channel interference.

In this mode the system is triggered by the external event received via the Trigger

IN BNC connector in the back of the system. When the hardware trigger is asserted (active log) a new ping occurs.

Note that there is a minimum trigger interval (maximum rate) of each subsystem which is dependent on the Pulse Type used, and is proportional to the pulse length. That is, a longer pulse will also set a longer minimum interval, to keep the ON/OFF duty cycle of the Power Amplifier below the maximum allowed, typically 1:10. The actual trigger interval used will be the LARGER of the user interval and the Power

Amplifier imposed limit.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

6-1

SECTION 6:

MAINTENANCE

The EdgeTech 3300-HM system is ruggedly designed and built from reliable, long lasting components to reduce maintenance to a minimum. To insure proper and continuing service of the system some periodic maintenance is recommended.

6.1 Hard Drive Disk

The system contains a standard SATA hard drive for storing programs and configuration information. An

image of the hard drive is provided on a thumb drive disk. See

APPENDIX A: SYSTEM RESTORE

for more

information.

6.2 Array Connectors

To extend the life and increase the reliability of the connectors, apply a thin film of silicone dielectric grease to the entire surface of each male pin. Grease should also be applied at the entrance of each socket.

Re-lubrication is recommended every three to five mating cycles. The use of Novagard G624 silicone compound or equivalent is recommended for lubrication.

Inspection should be performed regularly to check for corrosion on the contacts. Oxidation may be removed from the male contacts by using no less than #800 wet/dry emery paper cut in strips equal to or less than the width of the contact and rubbing lightly. A pencil eraser can be used instead. Female sockets may be cleaned using a cotton swab and rubbing alcohol. A .22 caliber bore brush with only nylon bristles may be used to remove light oxidation.

Connections inside the hull mount chest only need to be checked once every year.

Remember to always install the dummy connectors on the sea cable and the pigtail when not in use.

7-1

SECTION 7:

TROUBLESHOOTING

The following tests and solutions are meant to assist with basic troubleshooting. Contact

EdgeTech

Customer Service

if these fixes fail to address the problems with your system.

7.1 Freq. Plots and Raw Data Time Series Analysis Using J-STAR

The ability of the J-STAR program to request and display raw data (directly from the ADC converter) is invaluable in diagnosing many potential failure modes. Raw data (as opposed to processed and chirped data) allows direct interpretation (via scope like display). This helps to determine noise levels, and the proper operation of, transmit power electronics. The J-STAR program also assists interpretation with FFT analysis that show interfering noise sources by frequency distribution and spectral amplitude.

The J-STAR program may also be used to acquire raw data, and log this data to disk for offline analysis.

Having recorded raw data available for analysis by EdgeTech engineers will often speed up the resolution of suspected problems. Such files may be sent to EdgeTech in CD-ROM format or if small as email attachments. Many system control and setup parameters are recorded in these raw data files which will assist in problem diagnosis.

The Graph tab on the Control Panel will display any channel of data and its FFT (frequency spectrum).

1. Start J-STAR

2. Turn pinging on

3. Go to the Graph Tab in the Control Panel

4. You should now see something like the following figure:

7-2

Channel 3 = SS Low, Stbd

SECTION 7: TROUBLESHOOTING

Plots Spectrum(FFT) in dB

Autoscales displays for each re-draw if checked

Manually implement a display rescale

GRAPH display Tab

Saves current

Display data to file

Signal Level Cursor

Start of Tx Pulse

Typ Tx Pulse

End of Tx Pulse

X axis cursor position readout, in msecs

Cursor readout, A/D sample counts

Transmit energy

Frequency scale (Hz)

Curor position readout, amplitude spectral level

Cursor position readout,

Frequency in Hz.

The above figure show a typical raw data display for a side scan channel. The left half of the graph display shows one thousand samples of the raw ADC (analogue to digital converter) output, plotted as time vs. amplitude on the X –Y axes.

The right half shows a frequency analysis (FFT) of the time series in the top half. The axes are Frequency

(Hz) vs. Amplitude (x - y).

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

7-3

This raw data display was obtained by first setting the sub-bottom system to send raw data (as opposed to de-chirped envelope data).

Display Description: (Refer to figure above for item/check box locations)

Channel Selector

[Edit Box]:

FFT in dB

[Check Box]:

Autoscale

[Check Box]:

ReScale

[Push Button]:

Save to File

[Push button and

Edit Window]:

Accessed using the mouse / cursor. Type in the desired data channel to display:

0 = SB - sub-bottom

2 = SSL - Side Scan Low Port

3 = SSL - Side Scan Low Starboard

4 = SSH - Side Scan High Port

5 = SSH - Side Scan High Starboard

If checked displays the FFT amplitudes in dB (a logarithmic display scale).

If unchecked displays vertical scale as linear spectral amplitudes.

If checked the displays are re-scaled for EACH redraw / data update, so that the min / max amplitudes of the current data span the available display range. This can be confusing to the eye if the amplitudes of the signals vary greatly from ping to ping, as each display will appear to have the same amplitude unless the axes values are carefully observed. It is

SAFEST to leave this unchecked, and manually ReScale as required.

A one-time (for each push) activation of the display re-scale function.

(See above description)

The displayed graph data can be saved to a disk file for sending to Edge-

Tech Technical Support, for analysis. Enter a file save name in the edit win

-dow. (Hint, Use the pause check box to freeze the display, to make sure of the data being saved.)

NOTE:

ONLY the data being displayed is saved, i.e. channel 3 in this case.

No other channels are saved.

7-4 SECTION 7: TROUBLESHOOTING

Signal Level Cursor: These 2 yellow lines can be dragged vertically to mark and display amplitude levels. For raw data, the amplitudes are in A/D counts. The ADC values are represented in 16 bits, which allows for 65536 discrete levels.

These are interpreted as bipolar signals with an amplitude range of +/-

32767.

Raw Data Display: All the raw data acquired by the A/D subsystem is displayed in the top window. The A/D capture sequence begins immediately prior to the start of the Transmit pulse for the channel (τ = 0). The entire transmit pulse

(which is unavoidably coupled into the receive channel) is visible in the early part of the display.

Following the transmit pulse (τ = 8.3msecs in this case) the lower amplitude received echo data is visible.

The A/D converter is overloaded during the Transmit pulse by the extremely large amplitude signals injected into the receiver. For this reason, the signal may appear to collapse slightly during the Transmit pulse, but the display should show +32767 and –32767 amplitudes during the Transmit interval. See the figure below for raw data display where the Transmit power for the channel is set to zero.

In this case transmit power for the side scan channel has been set to zero in the SSL control tab. The Power

Amplifier turn on and turn off transients, are still visible in the time record and indicate that the power to the amplifiers is good, and that the power amplifier on/off control is working correctly. The absence of transmit energy would indicate a failure in the transmit signal generator, if the power were not intentionally set to zero.

7.2 System Does Not Operate

This section will guide you through a series of symptoms and actions that you should follow if the sonar is not operating at all. Go to the second section if performance or image quality is poor. Before continuing with this section, please check that the following setup and connections have been completed:

Power the Internal Rear Panel Power Cables from the inside of the power outlet (in the rear of the system) are connected to both the amplifier and 3300-HM control unit.

The main power cable is installed and connected to a clean power source.

Power is switched on (power amplifier and control unit).

NOTE:

The most likely system failures are due to loose or disconnected cables.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

7-5

7.2.1 Symptom / Probable Cause

Based on the symptoms found during the startup process in Chapter 3 check the following items:

SYMPTOM

Blue Switch on the Power

Amplifier does not turn on

PROBABLY CAUSE(S)

1. Bad light bulb

2. Bad power outlet fuse

TESTS & SOLUTION(S)

1. Replace the bulb. System will still operate with a broken bulb.

2. Check fuse in the Power Input

Module on Rear Panel. Fuse is

12.5.

Green POWER light does not turn on

No audible heartbeat chirp from 3300-HM

3. Bad power amplifier

1. No power or damaged LED

1. Transmit signal not getting to T/R box

2. Cable disconnected or damaged

3. Amplifier input connectors disconnected

3. Check that the power switch is turned on in the rear of the

Amplifier.

1. Check LED connections outside control unit

Run topside software in the acquire mode. If no chirping sound can be heard, perform the following:

1. Check deck cable to T/R box

2. Confirm that the red banana plug (amplifier output) is fully inserted in the Red/Red sockets

(not Red/Black sockets).

Confirm that the input to both amplifier channels is secure.

The Configuration LED at the back of the amplifier should be set to Bridge.

3. Check all the connections on rear of Amp and terminations on the hull mount.

7-6 SECTION 7: TROUBLESHOOTING

SYMPTOM

Unit generates audible pulses, communicates with the topside, but does not receive signal

PROBABLY CAUSE(S)

4. Inside 3300 processor, connections loose

5. Damaged amplifier

6. Damaged Tiger SB acquisition PCB

1. Bad connection

2. Damaged Tiger SB

Acquisition board

3. Damaged preamplifier

TESTS & SOLUTION(S)

4. If the Sonar Application doesn’t make the transducer chirp, the test pulse may have been

corrupted, call

EdgeTech

Customer Service

5. Measure each output with scope o-scope

6. Re-seat and then swap in spare

PCB.

1. Tap on the 3300-HM transducers to confirm the problem. Under normal operation, there should be some effect on the display.

2. Check connections and reseat/replace Tiger SB

Acquisition board.

3. Measure both outgoing 12vdc and 5vdc return PA voltage on

Rear Panel.

Table 7-1: Troubleshooting Causes and Solutions

7.2.2 Poor Image Quality or Performance Issues

Table 7-2

will guide the user through a series of symptoms and actions that he or she should follow if

there are performance or image quality problems.

SYMPTOM

Vertical black streaks in sonar profile

PROBABLE CAUSE(S)

1. Bad or loose deck cable or T/R box and spider connections

2. Corroded connector pins

3300 HULL MOUNT SUB-BOTTOM PROFILER

TESTS & SOLUTION(S)

1. Apply silicone grease and secure connectors

2. Polish the contact using a pencil eraser

0016732_REV_A

7-7

SYMPTOM

White Data

Dropout

PROBABLE CAUSE(S)

3. Bad cable or spider

1. Loose or flooded connection

2. Broken wire in splice or cable

TESTS & SOLUTION(S)

3. Replace

1. Wiggle deck cable, T/R box cabling and spider splice while watching for white streaks in display to check for fatigue failure of wire near connection or in splice

2. Replace or repair cable (see wiring

diagram in sub-section

2.3

.

AC Noise

(Periodic Streaks on screen)

Noise in sonar data display

1. Undergrounded generator casing

2. Return signal is being clipped

1. Engine noise is coupling to the sonar band

1. Reduce preamplifier gain, and/or reduce pulse power

1. Use a dedicated power source for SB and possibly a UPS

Table 7-2: Image Quality or Performance Issues

7.3 Sonar Errors

Table 7-3

explains how to troubleshoot sonar errors:

SYMPTOM PROBABLY CAUSE(S) TESTS & SOLUTION(S)

HMSENSORS

12vdc not getting to T/R box Check wiring

Swap in spare T/R box

T/R box PCB faulty

Amp not turned on, plugged in or bad Check all including TX with o-scope

SBO_AMP

IF_DIAG

Tiger SB Acquisition board issue Check Errors in Sonar, Consult

EdgeTech

NO_SONAR_DEVICE

Tiger SB Acquisition board cable issue Check PCB and cabling

Table 7-3: Troubleshooting Sonar Errors

7-8 SECTION 7: TROUBLESHOOTING

7.4 Frequently Asked Questions

1. What are the 3300-HM data cable requirements?

Three shielded twisted pairs. One set is used for the transmitter and is 18-gauge wire. Two sets are used for receiving and are 20 gauge. The receiver set is used for 12 VDC, pre-amp power, common, signal, and spare.

2. Can you interface DISCOVER Sub-Bottom to a transmit/receive hull mounted array that is customer

supplied?

This can be done, but the following special engineering and calibration must be accomplished so that you will get the very best results from the interface.

The output impedance of the DISCOVER Sub-Bottom power amplifier needs to match the input impedance of the transmitting array. This will maximize power transmission; otherwise, power is wasted/lost in the amplifier without getting to the transmitters. The transformer has to be supplied with the correct turns ratio. A hydrophone needs to be placed below the transmitters temporarily so that the system can be calibrated. Based on the calibration, the system needs to be tuned in order to flatten the spectrum to improve the resolution of the records. EdgeTech provides engineering services to do this.

3. How does the system interface to a navigation device?

The 3300-HM system interfaces to Navigation inputs via one of the available RS-232 communication ports.

4. How do the environmental conditions affect the performance of the system?

Geological Conditions The 3300-HM operating parameters and specifications are greatly affected by the geologic conditions that the acoustic energy transmitted from the 3300-HM encounters. A very dense geologic interface such as rock, coral, sand, stone, shell beds, etc, will limit the penetration into the sub-bottom. This is caused by the density interface reflecting most, if not, all normal incidence acoustic energy back to the transmitter / receiver resulting in little penetration.

Air / Water Interface The air / water interface reflects 99.8 percent of all acoustic energy it receives. It therefore is evident that when air or gas is encountered in the water column or sub-bottom geology the acoustic energy transmitted by the array of transducers will be reflected back to the transducers resulting in little or no penetration into the seabed.

Ship's Wake

The ship's wake is a very turbulent area just behind the ship. When operating an acoustic device in or near the wake the transmitted acoustic energy encounters highly charged aerated water caused by the cavitation of the ship's screws. If the 3300 Hull Mount is operated in this area, the

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

Noise

Ship's Motion

7-9

acoustic from the aerated water is reflected back to its source, as in the case discussed in the preceding paragraph.

The 3300-HM is designed to operate in a horizontal position relative to the sea floor. The turbulence encountered when operated in or near the ships wake will cause instability in the 3300-HM reducing the effectiveness of the output energy in penetrating the sub-bottom sediments.

Operating other acoustic instruments with frequencies within the system bandwidth simultaneously with the 3300-HM system can result in data distortion.

The 3300-HM is designed to work in a relatively stable horizontal plane.

Excessive ship motion can cause instability in the reception of sound waves resulting in reduced performance. Rough sea conditions, sharp turns of the ship and any similar external induced motions will have a similar effect on the system operation. However, this can be improved by

DISCOVER Sub-Bottom’s Heave Compensator (see respective software manual for more information).

A P P E N D I X A :

S Y S T E M R E S T O R E

The following section outlines the procedures for backing up and restoring the system drive.

CAUTION!

All data will be lost upon restoring the system to factory settings. Be sure to backup all data before preforming the procedure below.

1. Ensure that topside is off.

2. Insert USB3 flash drive in blue USB3 port.

3. Start topside and be prepared to press F⋆⋆ key when prompted: a. If the topside is rack mount, press F11. b. If the topside is a laptop, press F12.

4. Under Please select boot device: By using up/down arrow keys, select EUFI: Corsair

Voyager 3.0 000A, then press Enter.

5. Wait for Paragon Backup & Recovery 14 Home screen to appear, then click

Restore icon.

6. On Welcome to the Restore Wizard screen click Next.

7. On Browse for Archive screen, drag down menu and click on ⊞ to the left of (E:). Click on folder named as a variation of V.._⋆⋆⋆⋆R for rack mounts, or V.._⋆⋆⋆⋆P for laptops. When Archive File Details window appears, click Next.

8. At What to restore window, click Basic MBR Hard Disk 0, click Next.

9. At Where to restore window, ensure that Basic MBR Hard Disk 0 is already selected

(brown box around it). If it is not, use up/down arrow keys to select. Click Next.

10. At Restore results window, make no selection and click Next.

11. At the Ready to restore from the archive window, select ʘ Yes, apply the changes

physically. Click Next. Restoring will begin.

12. At Completing the restore wizard, click Finish. Click Shutdown.

13. Remove USB3 flash drive and restart topside.

A-1

B-1

A P P E N D I X B :

N A V I G A T I O N S Y S T E M S

Connect any industry-standard NMEA 0183 GPS to the Navigation COM port on the EdgeTech Processor

(Com 1 is default). Most GPS receivers made in the past 5+ years output the NMEA 0183 (version 1.5,

2.0/2.1, or 2.3) data language. GPS receivers can be connected by a serial cable (provided by the GPS manufacturers) to the EdgeTech topside through a standard 9- pin serial port. Refer to sub-section B.5

Serial Port Connections for the pin out of the 9 pin serial connector.

The following information describes the serial port interface parameters for acquiring navigation strings from a connected GPS unit or integrated navigation computer to the DISCOVER processor serial port. The system will also accept Annotation and Event mark strings in accordance.

Several of the messages conform to the NMEA 0183 protocol. For additional information refer to:

NATIONAL MARINE ELECTRONICS ASSOCIATION

NMEA 0183

STANDARD FOR INTERFACING MARINE ELECTRONICS NAVIGATIONAL DEVICES

Version 2.00

January 1, 1992

B.1 NMEA Approved Sentence Structure

The following provides a summary explanation of the approved sentence structure:

$aabbb,c---c*hh<CR><LF>

ASCII HEX

“$” 24 aa bbb

“,” c---c

2C

DESCRIPTION

Start of Sentence

Dummy characters to start the Address Field (e.g. GP), not used by

EdgeTech products.

Sentence Formatter. Mnemonic code identifying the data type and the string format of the successive fields.

Field Delimiter. Starts each field except Address and Checksum fields. If it is followed by a null field, it is all that remains to indicate no data in the field.

Data Sentence Block. Data field(s) preceded and separated by delimiters.

B-2 APPENDIX B: NAVIGATION SYSTEMS

ASCII HEX

“*” 2A

DESCRIPTION

Optional Checksum Delimiter. hh Optional Checksum Field

<CR><LF> 0D 0A Terminates Sentence

Table B-1: NMEA Approved Sentence Structure

B.2 Port Parameters

Interface:

Com Port:

Baud Rate:

Data Bits:

Start Bits:

Stop Bits:

Parity:

Handshaking:

RS-232C

User Choice limited to installed serial ports

4800

8

1

1 none none

B.3 Port Selection

The port assigned to receive the navigation messages is assigned in a supporting file for the DISCOVER application or any other user named *.jni file. This is a simple text file with many system settings and parameters, to set the assigned port, edit the file and make the changes as below:

The section and syntax for the serial port assignment and configuration is:

[Nav0]

Baud=4800

Port=1

Enable=1

The file is large so it is easiest to search for the Keyword [Nav0] to find this section.

The baud rate and port number to use are set here. Valid Baud rates are 4800 to 19200 depending on your NMEA source.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

B-3

The DISCOVER software will support up to 3 serial ports for connecting to any sources of these serial data strings. The messages may come in on any enabled port, or they may all be input via one port. No distinction or priority is given to any port over another. It is safest to only enable those ports you need that are supplying valid data.

The format for the remaining ports is as above with the keywords, [Nav1, Nav2].

B.4 Inputs

The following are the approved NMEA sentences recommended for use wityh the DISCOVER-based systems.

B.4.1 GLL – Geographic Position – Latitude/Longitude

Latitude and Longitude of the present vessel position, time of position fix and status.

$--GLL,xxxx.xxx,a,yyyyyy.yyy,b,hhmmss.ss,A*hh<CR><LF>

xxxx.xxx a yyyyy.yyy b hhmmss.ss

A

Degrees|Minutes.decimal - 2 fixed digits of degrees, 2 fixed digits of minutes and a variable number of digits for decimal fractions of minutes. Leading zeros always included for degrees and minutes to maintain fixed length.

N for North Latitude or S for South Latitude

Degrees|Minutes.decimal - 3 fixed digits of degrees, 2 fixed digits of minutes and a variable number of digits for decimal fractions of minutes. Leading zeros always included for degrees and minutes to maintain fixed length.

E for East Longitude or W for West Longitude

Time of position fix. Hours|Minutes|Seconds.decimal - 2 fixed digits of hours, 2 fixed digits of minutes, 2 fixed digits of seconds and a variable number of digits for decimal fractions of seconds. Always pad with leading zeros. This field is optional

Status. Single character field:

A = Yes, Data Valid, Warning Flag Clear

V = No, Data Invalid, Warning Flag Set

Table B-2: GLL Geographic Position – Latitude/Longitude

B-4 APPENDIX B: NAVIGATION SYSTEMS

NOTE:

Other supported navigation strings for position are: GGA, RMA,

RMC.

B.4.2 GXY Geographic Position X and Y Coordinates

X and Y coordinates of the present vessel position, time of position fix and status.

$--GXY,xxxxxx.xxx,a,yyyyyy.yyy,b,hhmmss.ss,*hh<CR><LF>

xxxxxx.xxx a yyyyyy.yyy b hhmmss.ss

Floating point numeric, may have leading negative sign. Represents horizontal axis of plane (X coord)

Character label for X (Must be valid ASCII character, but value is ignored)

Floating point numeric, may have leading negative sign. Represents horizontal axis of plane (Y coord)

Character label for Y ( Must be valid ascii character, but value is ignored)

Time of position fix. Hours|Minutes|Seconds.decimal - 2 fixed digits of hours, 2 fixed digits of minutes, 2 fixed digits of seconds and a variable number of digits for decimal fractions of seconds. Always pad with leading zeros.

Table B-3: GXY Geographic Position X and Y Coordinates

NOTE:

The hhmmss.ss field is optional.

B.4.3 GUU – Geographic Position – X and Y Coordinates

X and Y coordinates of the present vessel position, time of position fix and status.

NOTE:

GGU string has a similar format as GXY but provides support for larger planes.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

B-5

$--GGU,xxxxxxxx.x,a,yyyyyyyy.y,b,hhmmss.ss,*hh<CR><LF>

xxxxxxxx.x a

Floating point numeric, may have leading negative sign. Represents horizontal axis of plane (X coordinate).

Character label for X (Must be a valid ASCII character, but value is ignored). yyyyyyyy.y

Floating point numeric, may have leading negative sign. Represents vertical axis of plane (Y coordinate).

Character label for Y (Must be a valid ASCII character, but value is ignored). b hhmmss.ss Time of position fix. Hours|Minutes|Seconds.decimal - 2 fixed digits of hours, 2 fixed digits of minutes, 2 fixed digits for seconds and a variable number of digits for decimal fractions of seconds. Always pad with leading zeros.

Table B-4: GUU – Geographic Position – X and Y Coordinates

NOTE:

The hhmmss.ss field is optional.

B.4.4 GGA – Global Positioning System Fix Data

Time, Position and fix data for a GPS receiver.

$--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,q,nn,d.d,a.a,M,g.g,M,e.e,rrrr,*hh<CR><LF>

llll.ll a yyyy.yy q nn d.d a.a

Latitude

Character label for N/S or E/W

Longitude

Quality indicator

Number of satellites in use

Horizontal dilution

Altitude

B-6 APPENDIX B: NAVIGATION SYSTEMS

g.g e.e rrrr

Geoidal separation (meters)

Age of differential data

Reference Station ID

Table B-5: GGA – Global Positioning System Fix Data

B.4.5 RMA – Recommended Minimum Specific Loran-C Data

Position , course, and speed from a Loran-C receiver

$--RMA,A,llll.ll,a,yyyyy.yy,a,d.d,.e.e,f.f,g.g,h.h,j,k*hh<CR><LF>

For fields see NMEA 0183 Specification

B.4.6 RMC – Recommended Minimum Specific GNSS Data

Time, Date, Position, course and speed provided from a GNSS receiver

$--RMC,hhmmss.ss,A,llll.ll,a,yyyyy.yy,a,d.d,e.e,ddmmyy,g.g,j,k*hh<CR><LF>

For fields see NMEA 0183 Specification

B.4.7 VTG – Track Made Good and Ground Speed

The actual track made good and speed relative to the ground

$--VTG,x.x,T,x.x,M,x.x,N,x.x,K*hh<CR><LF>

x.x

T

M

N

K

Floating point numeric

Degrees True

Degrees Magnetic knots

Kilometer/hour

Table B-6: VTG – Track Made Good and Ground Speed

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

B-7

NOTE:

Magnetic heading corrected for local deviation and

Easterly/Westerly variation would provide more accurate True vessel heading in degrees.

B.4.8 ZDA – Time & Date

UTC, day, month, year, and local time zone

$--ZDA,hhmmss.ss,dd,mm,yyyy,ll,zz*hh<CR><LF>

hhmmss.ss dd.mm yyyy ll zz

Universal Time Coordinated (UTC). Hours|Minutes|Seconds.decimal - 2 fixed digits of hours, 2 fixed digits of minutes, 2 fixed digits of seconds and a variable number of digits for decimal fractions of seconds. Always pad with leading zeros.

Day(01 to 31)|.Month(01 to 12)

Year

Local zone description, 00 to

13 hour. This field is optional and ignored.

Local zone minutes description, same sign as local hours This field is optional and ignored.

Table B-7: ZDA – Time and Date

NOTE:

Zone description is the number of whole hours added to local time to obtain GMT, Zone description is negative for East longitudes.

The GLL string provides a more accurate time reference since it is related to the position fix.

Time and date from the computer CPU are also recorded and could be displayed if GPS time and date are not available.

Fix marks are bars across the time zero line in all channels.

B.4.9 HDG - Heading, Deviation and Variation

Heading (magnetic sensor reading), which if corrected for deviation, will produce Magnetic heading, which if offset by variation will provide True heading.

B-8 APPENDIX B: NAVIGATION SYSTEMS

$--HDG,x.x,x.x,a,x.x,a*hh<CR><LF>

Magnetic Variation, degrees, E/W(2,3)

Magnetic Deviation, degrees, E/W(1,3)

Magnetic Sensor Heading, degrees

NOTE 1:

To obtain Magnetic Heading:

Add Easterly deviation (E) to Magnetic sensor Reading

Subtract Westerly deviation (W) from Magnetic Sensor Reading

NOTE 2:

To obtain True Heading:

Add Easterly variation (E) to Magnetic Heading

Subtract Westerly variation (W) from Magnetic Heading

NOTE 3:

Variation and deviation fields shall be null fields if unknown.

B.4.10 EVT – Event * Annotation (EdgeTech Custom)

Event mark and related annotation provided by an integrated navigation system

$EGEVT,S,<Message>,*hh<CR><LF>

NNNNNN

Message

Mark number to use for this event.

Event annotation message up to 23 characters long.

Table B-8: EMA – Event, Set Mark, and Annotation

NOTE 1:

This message should only be used if it is imperative that the event mark number be externally controlled, otherwise the $EGEVT message should be used. If the mark number sent is the same as the current mark number the message will be ignored.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

NOTE 2:

A shortcut to the Windows HyperTerminal application is provided to check the navigation input. You must quit the DISCOVER application before running, and may need to modify the properties if not running at 4800 baud. A sample display is shown below.

$GPGLL,2600.0100,N,800000.0000,W,151228.99,A*67

$GPVTG,315.65,T,314.15,M,3.8,N,7.0,K*48

$GPZDA,151229.25,28.08,1997,06,00*45

$EGEVT,M,EventNo,Time,Position,Annotation,*73

$GPGLL,2600.0125,N,8000.0025,W,151229.50,A*84

$GPVTG,316.65,T,315.15,M,3.9,N,7.1,K*33

$GPZDA,151229.75,28.08,1997,06,00*45

$EGEVT,M,EventNo,Time,Position,Annotation,*48

$GPGLL,2600.0150,N,800000.0050,W,151229.99,A*12

$GPVTG,315.85,T,314.65,M,3.8,N,7.0,K*58

$GPZDA,151230.25,28.08,1997,06,00*72

$EGEVT,M,EventNo,Time,Position,Annotation,*48

NOTE:

The number of incoming strings should be limited to the four mentioned above. For accurate fixes, the navigation strings should be updated once a second (1 Hz) or faster.

B-9

B-10 APPENDIX B: NAVIGATION SYSTEMS

B.5 Serial Port Connections

The following chart depicts the pin out of the male DB9, RS232 connector found on the computer.

PIN #

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

Pin 8

Pin 9

ROLE

Carrier Detect (CD) input

Receive Data (RD) input

Transmitted Data (TD) output

Data Terminal Ready (DTR) output

Signal Ground

Data Set Ready (DSR) input

Request To Send (RTS) output

Clear To Send (CTS) input

Ring Indicator (RI) input

Table B-9: 9 Male Pin Out

The following outlines the different pins from the comport connection that EdgeTech processor uses for communication

Pin # 2: (usually brown) is Receive (which would connect to the transmit pin on the GPS). This connection will take the position data from the GPS for use in the DISCOVER software. This is a necessary connection for GPS communications

Pin # 5: (usually green) is Ground. This can be connected to the common ground from the GPS wiring. This is a necessary connection for GPS communications

Pin # 3: (usually red) is Transmit. This connection will go back to the GPS. Pin # 3 is not a necessary connection for using DISCOVER software for Real-Time positioning. Only proper connections to pins number 2 and 5 are needed for to log navigation data.

B.6 Troubleshooting

Problem: When connected to a GPS, the computer’s mouse acts erratically and seems to be 'jumping' around

Solution: A Windows bug discovered by Microsoft where Windows detects a connected GPS as a mouse-

-this produces a jumping cursor problem. The following are the directions supplied by Microsoft support to correct the problem:

1. Turn off the GPS and close DISCOVER Software.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

B-11

2. Right-click on the My Computer icon and select Properties.

3. Select the Hardware tab, and click the Device Manager button.

4. Next to "Mice and other pointing devices," click the plus button to expand this list. You should see at least two items listed. One is the mouse you normally use, and the other will probably be listed as "Microsoft Serial Ball Point."

5. Highlight "Microsoft Serial Ball Point" and click the Disable button at the top of the window (it is usually the second button from the right; hover the cursor over it and read the Tool Tip to verify).

6. In the confirmation message window that appears, click Yes.

7. Close the Device Manager.

8. Plug in/turn on your GPS.

9. Restart DISCOVER Software.

Problem: No communications between GPS and DISCOVER Software

Solution: When DISCOVER isn't getting the GPS data during data acquisition, it's a good idea to check outside of DISCOVER to be sure the serial port is receiving the data. If the ports do not see any GPS data coming in, then DISCOVER will not be able to see the signal. HyperTerminal, one of the programs which come with Windows, is a useful troubleshooting utility, since it reads any information being received by the system through any available COM port. Here are the steps:

NOTE:

DISCOVER and all other programs, especially any that use COM ports for other connections, should be closed while running the

HyperTerminal program. The GPS should be set to its NMEA mode in its

Interface Setup area for this test. The GPS should be set to its Simulator mode if indoors or having difficulty obtaining the GPS Sat. fix.

1. Click Start, then Programs, then Accessories, then Communications, then HyperTerminal

2. In the window that opens titled HyperTerminal, double-click on the icon which says "Hyperterm", the one with the monitor sitting next to a phone.

3. If a window comes up asking if you want to configure a modem now, select "No" or "Cancel".

Otherwise, proceed to the next step.

4. Another window titled "Connection Description" appears. In the Name: box, type in the letter t for "test". Click on OK.

5. Another window pops up with the title "Phone Number". The only field of interest here is Connect

Using:, which must be set to "Connect to COM1". Click on OK.

B-12 APPENDIX B: NAVIGATION SYSTEMS

6. The window "COM1 Properties" appears. The only field to change here is Bits per second:, which should be set to "4800", since the NMEA 0183 standard specifies 4800 baud rate. Click on OK.

7. The main white HyperTerminal window becomes completely visible, hopefully with GPS data scrolling upward. Every sentence must begin with a dollar sign and five letters. If the screen is blank, this means no data is coming in through the port.

8. When finished viewing the screen, select "Exit" from the File menu. When asked if you want to disconnect now, click on Yes. When asked if you want to save session, click on No.

Repeat the above steps for other COMs, replacing COM1 with COM2, COM3 and COM4. If none of these will reveal GPS input, then the problem lies in the physical serial port, the GPS receiver, or the connection between the two.

At this point, one of three things can happen:

1. An error message appears:

This means that the COM port selected is not available or functioning properly. Close

HyperTerminal and repeat the process, trying a different COM port. If you are certain that you are

selecting the proper COM port, contact

EdgeTech Customer Service

for further troubleshooting

tips.

2. The screen goes blank screen with a flashing cursor.

The chosen COM port is not currently receiving NMEA data. Close HyperTerminal and repeat the process, trying a different COM port. If you are certain that you are selecting the proper COM port, check the output settings on the GPS. If you are certain that the GPS is outputting NMEA strings, use a Null Modem to swap pin 2 and 3 (TX & RX).

3. A screen with text scrolling upward appears.

The GPS unit is successfully connected. Good GPS data will look like the following:

$GPRMC,201502,A,4251.2939,N,07054.4254,W,000.0,000.0,291002,016.3,W*7C

$GPGGA,201502,4251.2939,N,07054.4254,W,1,07,1.7,55.6,M,-32.7,M,,*4A

$GPGLL,2600.0100,N,800000.0000,W,151228.99,A*67

$GPVTG,315.65,T,314.15,M,3.8,N,7.0,K*48

$GPZDA,151229.25,28.08,1997,06,00*45

The data you see scrolling by indicates current position (among other things). Note the COM port used and exit HyperTerminal. When asked if you want to disconnect now, click on Yes. When asked if you want to save session "Test", click OK.

3300 HULL MOUNT SUB-BOTTOM PROFILER 0016732_REV_A

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement