Project: IEEE P802.15 Working Group for Wireless Personal Area Networks...

March 2003 doc.: IEEE 802.15-03/151r1
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
Submission Title: [TG3a-Wisair-CFP-Presentation]
Date Submitted: [3 March, 2003]
Source: [Gadi Shor] Company: [Wisair]
Address: [24 Raoul Wallenberg st. Ramat Hachayal, Tel-Aviv, ISRAEL]
Voice: [+972-3-7676605] FAX: [+972-3-6477608], E-Mail: [[email protected]]
Re: [802.15.3a Call for proposal]
Abstract: [Wisair’s presentation for the P802.15.3a PHY standard]
Purpose: [Response to WPAN-802.15.3a Call for Proposals]
Notice:
This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release:
The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.
Submission Slide 1 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Wisair’s Variable-Pulse-Rate Multi-Band
PHY layer Proposal for TG3a
Submission
Gadi Shor, Yaron Knobel, David Yaish,
Sorin Goldenberg, Amir Krause, Erez Wineberger, Rafi Zack,
Benny Blumer, Zeev Rubin, David Meshulam, Amir Freund
Wisair
Slide 2 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 3
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Targets
• Proposal for high bit-rate
Multi-Band
PHY layer for 802.15.3 MAC
• Support applications with wireless transmission of Audio/Video and High-
Rate data communication
• Allow cost effective , low power implementation on chip
Submission Slide 4 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 5
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Main Features
• Variable-Pulse-Rate Multi-band PHY
• Flexible
(use 1->14 sub-bands out of 30)
World-wide regulation
Co-existence with current and future systems
Interference mitigation
• Scalable
(Variable pulse repetition frequency)
20 to 1000 Mbps
Reduced ADC sampling rate at lower Bit-rate
Power consumption vs. Bit-rate trade off
• Support 802.15.3 MAC without modifications
, only enhancements
• Support all selection criteria
Submission Slide 6 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 7
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Variable-Pulse-Rate Multi-Band PHY layer
• Sub-bands frequency plan
• Pulse shape
• Operation modes
• Variable-Pulse-Rate time-frequency interleaving sequences
Submission Slide 8 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Frequency Plan Consideration Points
Consideration points :
• FCC mask
In band mask – 3.1-10.6 GHz
Indoor FCC mask require 10db attenuation at 3.1GHz rejection
Outdoor FCC mask require 20db attenuation at 3.1GHz rejection
• 802.11a Frequency range :
US & Canada: 5.15 - 5.350GHz & 5.725 - 5.825GHz
Japan: 4.9-5GHz ,5.15 - 5.25GHz
Europe: 5.15 - 5.35GHz & 5.47 - 5.725GHz
Submission Slide 9 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Multi-Band Frequency-Plan
• Sub-bands are spaced 470 MHz apart
For flexible co-existence and simple implementation
• Each sub band is generated by a pulse with 10 dB bandwidth of
~520 MHz
Supports FCC requirements
Submission Slide 10 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Two overlapping frequency groups (A, B)
•A Second group overlap the first group 235 MHz aside
enhance system flexibility with respect to co-existence, interference mitigation and multiple access
Submission Slide 11 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Upper and Lower Sub-Band Sets
• Each group is divided into lower (sub-bands
1-8) and upper (sub-bands 9-15) sets
• Only 7 sub-bands are used in the lower set
One sub-band can be avoided for co-existence
• The upper set is used in parallel to the lower set to increase the bit-rate
First generation support lower set
Next generation devices has backward compatibility
Submission Slide 12 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Signal spectrum: Group A - Lower Set
(ADS Simulation)
-80
-100
-120
-140
-160
-180
2 3 4 5 6 freq, GHz
7 8 9
• The sub-bands are divided into a lower set (lower
8 sub-bands) and an upper set (higher 7 subbands)
Submission Slide 13 Gadi Shor, Wisair
F #
F1a
F2a
F3a
F4a
F5a
F6a
F7a
F8a
F9a
F10a
F11a
F12a
F13a
F14a
F15a
March 2003 doc.: IEEE 802.15-03/151r1
Co-existence
FC[GHz] FL[GHz] FH[GHz] F # FC[GHz] FL[GHz] FH[GHz]
3.76
4.23
4.7
5.17
5.64
6.11
6.58
7.05
7.52
7.99
8.46
8.93
9.4
9.87
10.34
3.5
3.97
4.44
4.91
5.38
5.85
6.32
6.79
7.26
7.73
8.2
4.02
4.49
4.96
5.43
8.67
9.14
9.19
9.66
9.61
10.13
10.08
10.6
5.9
6.37
6.84
7.31
7.78
8.25
8.72
F1b
F2b
F3b
F4b
F5b
F6b
F7b
F8b
F9b
F10b
F11b
F12b
F13b
F14b
F15b
3.525
3.995
4.465
4.935
5.405
5.875
6.345
6.815
7.285
7.755
8.225
8.695
9.165
9.635
10.105
3.265
3.735
4.205
4.675
5.145
5.615
6.085
6.555
7.025
7.495
7.965
3.785
4.255
4.725
5.195
8.435
8.905
8.955
9.425
9.375
9.895
9.845
10.365
5.665
6.135
6.605
7.075
7.545
8.015
8.485
Center frequencies selected to allow elimination of one sub-band per region
Only 7 sub-bands are used in the lower set according to the region
Submission Slide 14 Gadi Shor, Wisair
March 2003
Co-existence
doc.: IEEE 802.15-03/151r1
Only 7 sub-bands out of 8 are used in the lower set according to the region
Submission Slide 15 Gadi Shor, Wisair
March 2003
Co-existence (US)
doc.: IEEE 802.15-03/151r1
F # FC[GHz] FL[GHz] FH[GHz] F # FC[GHz] FL[GHz] FH[GHz]
F9a
F10a
F11a
F12a
F13a
F14a
F15a
F5a
F6a
F7a
F8a
F1a
F2a
F3a
F4a
Submission
7.52
7.99
8.46
8.93
9.4
9.87
10.34
3.76
4.23
4.7
5.17
5.64
6.11
6.58
7.05
7.26
7.73
8.2
8.67
9.14
9.61
10.08
3.5
3.97
4.44
4.91
5.38
5.85
6.32
6.79
7.78
8.25
8.72
9.19
9.66
10.13
10.6
4.02
4.49
4.96
5.43
5.15
5.9
5.725
6.37
6.84
7.31
F9b
F10b
F11b
F12b
F13b
F14b
F15b
F5b
F6b
F7b
F8b
F1b
F2b
F3b
F4b
7.285
7.755
8.225
8.695
9.165
9.635
10.105
3.525
3.995
4.465
4.935
5.405
5.875
6.345
6.815
US Co existence with 802.11a: avoid one of the Sub Channels: 4a,5a,5b,6b
Slide 16
3.265
3.735
4.205
4.675
5.145
5.615
6.085
6.555
7.025
7.495
7.965
8.435
7.545
8.015
8.485
8.955
8.905
9.375
9.425
9.895
9.845
10.365
3.785
4.255
4.725
5.195
5.665
5.35
6.135
5.825
6.605
7.075
Gadi Shor, Wisair
March 2003
Co-existence (US)
doc.: IEEE 802.15-03/151r1
Submission
Example: Avoid sub band 6b
Slide 17 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Co-existence (Europe)
F #
F1a
F2a
F3a
F4a
F5a
F6a
F7a
F8a
F9a
F10a
F11a
F12a
F13a
F14a
F15a
FC[GHz] FL[GHz] FH[GHz]
3.76
4.23
4.7
5.17
5.64
6.11
6.58
7.05
7.52
7.99
8.46
3.5
3.97
4.44
4.91
5.38
5.85
6.32
6.79
7.26
7.73
8.2
4.02
4.49
4.96
5.43 5.15
5.9 5.725
6.37
6.84
7.31
7.78
8.25
8.72
8.93
9.4
8.67
9.14
9.19
9.66
9.87
9.61
10.13
10.34
10.08
10.6
F #
F1b
F2b
F3b
F4b
F5b
F6b
F7b
F8b
F9b
F10b
F11b
F12b
F13b
F14b
F15b
FC[GHz] FL[GHz] FH[GHz]
3.525
3.265
3.785
3.995
3.735
4.255
4.465
4.205
4.725
4.935
4.675
5.195
5.405
5.145
5.665 5.35,5.47
5.875
5.615
6.135 5.825
6.345
6.085
6.605
6.815
6.555
7.075
7.285
7.025
7.545
7.755
7.495
8.015
8.225
7.965
8.485
8.695
8.435
8.955
9.165
8.905
9.425
9.635
9.375
9.895
10.105
9.845
10.365
Submission
Europe Co existence with 802.11a: avoid one of the Sub Channels: 4a,5a,5b,6b
Slide 18 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Co-existence (Europe)
Submission
Example: Avoid sub band 5a
Slide 19 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Co-existence (Japan)
F #
F8a
F9a
F10a
F11a
F12a
F13a
F14a
F15a
F1a
F2a
F3a
F4a
F5a
F6a
F7a
FC[GHz] FL[GHz] FH[GHz]
7.05
7.52
7.99
8.46
8.93
9.4
9.87
10.34
3.76
4.23
4.7
5.17
5.64
6.11
6.58
6.79
7.26
7.73
8.2
8.67
9.14
9.61
10.08
3.5
3.97
4.44
4.91
5.38
5.85
6.32
7.31
7.78
8.25
8.72
9.19
9.66
10.13
10.6
4.02
4.49
4.96
5.43 5.15-5.25
5.9
6.37
6.84
Submission
Japan Co existence with 802.11a: avoid one of the Sub Channels: 4a,4b
Slide 20
F #
F8b
F9b
F10b
F11b
F12b
F13b
F14b
F15b
F1b
F2b
F3b
F4b
F5b
F6b
F7b
FC[GHz] FL[GHz] FH[GHz]
6.815
7.285
7.755
8.225
8.695
9.165
9.635
10.105
3.525
3.995
4.465
4.935
5.405
5.875
6.345
3.265
3.735
4.205
4.675
5.145
5.615
6.085
6.555
7.025
7.495
7.965
7.075
7.545
8.015
8.485
8.435
8.905
8.955
9.425
9.375
9.895
9.845
10.365
3.785
4.255
4.725
5.195
4.9-5
5.665
6.135
6.605
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Co-existence (Japan)
Submission
Example: Avoid sub band 4a
Slide 21 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Variable-Pulse-Rate Multi-Band
Modulation and Coding Scheme
• The waveform is generated by time interleaving of pulses from different frequency sub-bands
• Modulation schemes: QPSK and BPSK
• Coding Schemes: Viterbi K=7, Rate ½, ¾
• Three pulse repetition intervals supported to allow
Reduced ADC sampling rate for improved power consumption
Improved multiple access
Improved ISI mitigation
Energy collection
Submission Slide 22 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Variable-Pulse-Rate Multi-Band
•Pulse repetition interval per sub-band is longer than channel response
28 nSec: 7 pulses ~3.9 nSec each with 250 Mpps
56 nSec: 7 pulses ~3.9 nSec each with 125 Mpps
84 nSec: 7 pulses ~3.9 nSec each with 83.3 Mpps
Reduce sampling rate for reduced bit rates
Submission Slide 23 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mpps signal example
(ADS simulation)
400
200
0
-200
-400
0 10 20 30 40 50 time, nsec
•
Any number of sub-bands (N<=7) can be used
Unused sub-bands are not transmitted
• Example shows 4 sub-bands in use
60
Submission Slide 24 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Multi-band signal generation
Data F1A
Da I
Lower Bands Set
Data
Stream
Scrambling+
Coding +
Interleaving
Stream
DeMultiplexer
+
Inner Coding
Data F2A
Physical
Sub-Bands
Multiplexer
PFIa(t)
Da Q
Sub Band select
Db I
PFQa(t)
Optional Upper Bands
PFIb(t)
Data FnA
Db Q
Sub Band select
PFQb(t)
•Above 500 Mbps the upper band optional section (Gray section) may be used to allow up to 1000 Mbps
Submission Slide 25 Gadi Shor, Wisair
March 2003
Pulse Shape
RF QPSK signal shape, Pulse-rate=250 Mbps
1
0.5
0
-0.5
doc.: IEEE 802.15-03/151r1
Pulse shape defines the envelope of the pulse
-1
0 4 8 12 16 t [nSec]
20 24 28
f env
env
1
f T
2
guard
RF QPSK signal shape, Pulse-rate=250 Mbps
1
0.5
,
1
t T t
2
guard
,
f env
1
2
1
f env
125 MHz,
T guard
T guard
0.1 nSec
0
The Envelope spectrum
-0.5
-1
1 2 t [nSec]
3.9 nSec
4.0 nSec
3 4
0
-5
-10
-15
-20
-25
-30
-35
-40
0 0.2
0.4
0.6
Frequency [GHz]
0.8
1
Submission Slide 26 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Operation Modes (7 bands example)
Mode
6
7
4
5
8
1
2
3
Modulation Coding
QPSK
QPSK
QPSK
QPSK
QPSK
QPSK
BPSK
BPSK
Rate
1
¾
½
250
250
250
¾
½
125
125
½ 83.33
¾
Repetition code x bands
83.33
125
Pulse Rate
[Mpulse/sec]
56
56
84
84
56
Sub-
Band
PRI
[nsec]
28
28
28
Data Rate
[Mbs] -7 bands example
500
375
250
187.5
125
83.3
62.5
17.86
Submission Slide 27 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Bit rates vs. Number of sub-bands
Sub bands/
Mode
1
4
5
2
3
6
7
8
14
1000
750
500
375
250
166.6
125
17.86
7
500
375
250
187.5
125
83.3
62.5
17.86
6
428.57
321.43
214.29
160.71
107.14
71.40
53.57
17.86
5
357.14
267.86
178.57
133.93
89.29
59.50
44.64
17.86
4
285.71
214.29
142.86
107.14
71.43
47.60
35.71
17.86
3
214.29
160.71
107.14
80.36
53.57
35.70
26.79
17.86
2
142.86
107.14
71.43
53.57
35.71
23.80
17.86
17.86
1
71.43
53.57
35.71
26.79
17.86
11.90
8.93
17.86
• In each operation mode different number of sub-bands can be used
• The table shows Bit-Rates for different number of sub-bands under different operation modes
• Mode 5 with 7 sub-bands supports 125Mbps (Meets IEEE 110Mpbs requirement)
• Mode 3 with 7 sub-bands supports 250Mbps (Meets IEEE 200Mpbs requirement)
• Mode 1 with 7 sub-bands supports 500Mbps for scalability
• Mode 8 is used for the beacon, same information is transmitted over all sub-bands
Submission Slide 28 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Time-Frequency interleaving sequences
• Each piconet uses a different time-frequency interleaving sequence of length 7
• The “same” sequence is used for the upper frequency set (in parallel to the lower set )
• The set is used according to the sequence, the mode of operation and the number of sub-bands to be used
Submission
S1
S2
S3
S4
S5
S6
1 2 3 4 5 6 7
1 3 5 7 2 4 6
1 4 7 3 6 2 5
1 5 2 6 3 7 4
1 6 4 2 7 5 3
1 7 6 5 4 3 2
Slide 29 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Collision Example: S1 and S2
S1
S2, Phase A
S2, Phase B
S2, Phase C
S2, Phase D
1
1
2
3
3
5
4
7
5
2
6
4
7
6
1
1
2
3
3
5
4
7
5
2
6
4
7
6
6
1 3 5 7 2 4 6
1 3 5 7 2 4
4 6
1 3 5 7 2 4 6
1 3 5 7 2
2 4 6
1 3 5 7 2 4 6
1 3 5 7
S2, Phase E
S2, Phase F
5
1
7
3
2
5
6
4
1
6
3
1
5
3
7
5
2
7
4
2
6
4
1
6
3
1
5
3
S2, Phase G
6 1 3 2 4 6
1 3 5 7 2 4 6
1
Only one collision for every possible time offset
Submission Slide 30 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Variable-rate Time-Frequency interleaving sequences
• Example for 7 sub-bands using S2 in the different operation modes: 250, 125 and 83.3
Mpps
250
Mpps
1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4 6 1 3 5 7 2 4 6
125
Mpps
1 5 2 6 3 7 4 1 5 2 6 3 7 4 1 5 2 6 3 7 4
83.3
Mpps
1 7 6 5 4 3 2 1 7 6 5 4 3 2
•Preserve time-frequency sequences collision properties for all modes
•Reduce multi-path effect on collision between Piconets
•Improve multi-path mitigation and enable energy collection
Submission Slide 31 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Variable Rate Time Frequency interleaving sequences
• Example for 4 sub-bands using S2 in the different operation modes: 250, 125 and 83.3
Mpps
250
Mpps
1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4 1 3 2 4
125
Mpps
1 2 3 4 1 2 3 4 1 2 3 4
83.3
Mpps
1 4 3 2 1 4 3 2
•For lower number of sub-bands only relevant sub-bands are used
•Preserve the collision properties for any number of sub-bands
Submission Slide 32 Gadi Shor, Wisair
March 2003
Multiple-Access
doc.: IEEE 802.15-03/151r1
• Use of different time-frequency interleaving sequences in different Piconets to reduce collisions
• Reduce number of channels in use, to reduce collisions (FDM alternative when link budget good enough)
• Reduce pulse repetition frequency to reduce multi-path effects on Multiple access
Submission Slide 33 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Preamble
• Use CAZAC sequences over all subbands in use (Similar to mode 8)
• Approximately 10 Micro Seconds
• Achieve False-Alarm and Miss-Detect requirements under multi-path and multiple access interference
• Use color code to improve Piconet identification
Submission Slide 34 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 35
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
Antenna
March 2003 doc.: IEEE 802.15-03/151r1
Block Diagram – Analog Section
UWB
Filter
T/R
Down
Conversion +
Baseband
Including
Rake
I
Q
Analog To
Digital
Submission
Driver
Wave
Generator
Slide 36
Timing
Timing Control
TX Data
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Block Diagram – Digital Section
From Analog
DeModulator
Inner
Decoder +
DeInterleaver
+ Viterbi
Decoder
Descrambler
To MAC
To Analog
Timing &
Phase
Control
Coded bits are being spread over the different sub-bands
To Analog
Modulator
Submission
Viterbi
Encoder +
Interleaver +
Inner
Encoder
Slide 37
Scrambler
From MAC
Gadi Shor, Wisair
March 2003
Technical Feasibility
doc.: IEEE 802.15-03/151r1
Establish wireless link using prototype:
15Mbps @ 30 meters
30Mbps @ 25 meters
60Mbps @ 18 meters
Submission Slide 38 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Size
The size was calculated using SiGe process with f
T
=60GHz for the analog blocks and 0.13 CMOS process for the digital blocks. The size includes pads overhead.
Block
Analog Blocks
Analog to Digital
Digital Blocks + Pads
Total Die Size
Die Size [mm
2
]
3.3
0.4
3.1
6.8
Submission Slide 39 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Main Modes: Bit Rates versus Power
Consumption and Link Margin
Mode
5
Bit Rate with 7 subbands
Link Budget
Margin
RF- Tx
Power
[mW]
PHY Tx
Power
[mW]
(0.13u)
Total
PHY
Tx
Power
[mw]
125
4.84 dB @10m
65 20
RF- Rx
Power
[mW]
PHY Rx
Power
[mW]
(0.13u)
Total
PHY Rx
Power
[mW]
85 100 30 130
3 250
9.79 dB @4m
95 30 125 140 40 180
Less than 1 mWatt per 1 Mbps
Submission Slide 40 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 41
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
PHY Mapping on current 802.15.3 MAC
• The proposed PHY can be used with the current
MAC without modifications
• Piconet channel is represented by a Time–Frequency interleaving seed sequence
Each Piconet choose a different seed sequence (channel)
Devices in the same piconet use the same seed sequence
(channel)
Channel = Sequence
• The Piconet beacon frames are transmitted over all sub-bands
This is done transparently to the MAC (using PHY mode 8)
Submission Slide 42 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Location Awareness
• Special command frame that support Time
Advanced measurement between two
Piconet devices
• Two devices exchange two messages
Dev A to Dev B: Send time A
Dev B to Dev A: Time Diff A(Receive Time A -
Send Time A ) and Send Time B
Dev A calculates
Time Diff B (Receive Time B - Send Time B )
Time between Dev A to Dev B = ½ (Diff A + Diff B)
Submission Slide 43 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 44
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Link Budget (7 sub-bands)
Mode
Bit Rate
Bit Rate per Band
Average Tx power
Distance
Path loss
Rx power
Average noise power per bit
Rx Noise Figure
Link Margin
5
125
17.86
-16.42
10
66.62
-83.04
-101.48
7
4.84
3
250
35.71
-16.42
4
58.66
-75.08
-98.47
7
9.79
1
500 Mbps
71.43 Mbps
-16.42 dBm
4 Meter
58.66 dB
-75.08 dBm
-95.46 dBm
7 dB
1.78 dB
Submission
Positive link margins for main modes
Slide 45 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Performance under multi-path condition
Without Equalizer
• Bit rate: 125 Mbps (Mode 5)
• Number of bands: 7
• Simulating 400 channel realizations
• For each point either 250 packets or 21 packet errors were used
• Results represent statistics of 5 Gbits
• Note: Shadow parameter in channel model is very dominant
Submission Slide 46 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps LOS 0-4 (CM1)
(with Shadow)
Submission Slide 47 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps LOS 0-4 (CM1)
(No Shadow)
Submission Slide 48 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps LOS 0-4 (CM1) Statistics
(With Shadow)
Submission Slide 49 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM1-4 Statistics
(90% Average PER with Shadow)
Submission Slide 50 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Performance under multi-path condition
(Distance for 8% Average PER Best 90%)
90% criteria
RMS 25 7.2
NLOS 4 to 10 9.8
NLOS 0 to 4 10.7
LOS - 0 to 4
13.3
0 2 4 10 12 14 6
distance [m ]
8
Modulation scheme copes with multi-path condition without any equalization
Submission Slide 51 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Co-Existence with 802.11A and 802.11B:
Required attenuation below FCC limits
Interferer
Center frequency
15.3a Transmitted Power Per 1MHz
Reciever BW
Reciever Sensitivity
15.3a Interference permitted power
Received Power at 1 Meter
Received Power at 0.3 Meter
Required attenuation at 1 meter
Required attenuation at 0.3 meter
11b
2.4
-52
11
-76
-82
-81.63
-71.17
0.37
10.83
11a Units
5.3 Ghz
-41.3 dBm
20 MHz
-82 dBm
-88 dBm
-75.21 dBm
-64.76 dBm
12.79 dB
23.24 dB
802.11a requires attenuation above FCC limits
Submission Slide 52 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Co-Existence (ADS simulation)
SPECTRUM 30cm from UWB Antenna with with 5.17GHz Channel turned off dBm/2MHz
-60
-80
-100
-120
-140
-160
-2 0 2 8 10 12 4 6 freq, GHz
System co-exist with 802.11a and 802.11b
Submission Slide 53 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Interference
Required attenuation in Mode 5 (125Mbps with r = 0.5)
11b 11a
Center frequency
Tx power
Rx power at 1 meter
Rx power at 0.3 meter
Interference permitted power
Processing + Coding gain
2.4
20
-20.04
-9.58
-81.03
16.46
Units
5.3 Ghz
15 dBm
-31.92 dBm
-21.47 dBm
-81.03 dBm
16.46 dB
Required attenuation at 1 meter
Required attenuation at 0.3 meter
44.53
54.99
32.65 dB
43.10 dB
Required attenuation in Mode 3 (250Mbps with r = 0.5)
11b 11a
Center frequency
Tx power
2.4
Rx power at 1 meter
Rx power at 0.3 meter
Interference permitted power
Processing + Coding gain
Required attenuation at 1 meter
Required attenuation at 0.3 meter
20
-20.04
-9.58
-78.02
13.45
44.53
54.99
Units
5.3 Ghz
15 dBm
-31.92 dBm
-21.47 dBm
-78.02 dBm
13.45 dB
32.65 dB
43.10 dB
Submission Slide 54 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
802.11a Interference 100 cm
(ADS Simulation)
Wanted signal bit energy @RED
Intereferer signal bit energy @Blue
0.008
0.006
0.004
0.002
0.000
0
C/I F1A
31.129
C/I F2A
23.761
10 20 30 40 time, nsec
50 60 70
C/I [dB] @Interefer: 5.15GHz, -30dBm
C/I F3A
13.492
C/I F5A
11.335
C/I F6A
24.262
C/I F7A
36.603
C/I F8A
44.194
• Seven sub-bands with C/I better than 10 dB after eliminating one sub-band (F4A)
Submission Slide 55 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
802.11a Interference 30 cm
(ADS Simulation)
Wanted signal bit energy @RED
Intereferer signal bit energy @Blue
0.008
0.006
0.004
0.002
0.000
0
C/I F1A
21.697
C/I F2A
14.143
10 20 30 40 time, nsec
50 60 70
C/I [dB] @Interefer: 5.15GHz, -20dBm
C/I F3A
3.996
C/I F5A
1.425
C/I F6A
14.582
C/I F7A
26.718
C/I F8A
34.313
• Five sub-bands with C/I better than 10 dB after eliminating one sub-band (F4A)
Submission Slide 56 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Performance with 802.11a under AWGN
Per with 802.11a Interference, AWGN, EbN0=EbN0(sensitivity)+6dB
0
10
10
-1
-2
10
-58 -57.5
-57 -56.5
-56
SIR [dB]
-55.5
-55 -54.5
-54
• ISR=55 dB in AWGN (including F.E. rejection)
• Allows 30 cm separation
Submission Slide 57 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Performance with 802.11a under CM1
Per with 802.11a Interference, CM1 realization 49, EbN0 = EbN0 (sensitivity) + 6dB
0
10
10
-1
-2
10
-54 -53 -52
SIR [dB]
-51 -50 -49
• ISR=50 dB in CM1 (including F.E. rejection)
• Allows 50 cm separation
Submission Slide 58 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Performance Under Multiple-Access
• Desired piconet:
LOS 0-4 (CM1:49)
• Interfering piconet:
LOS 0-4 (CM1:1)
• Worst case shift between piconets
•ISR=12.3 dB for 8% per
•Allows R(Ref)/R(Int) = 4
Uncoordinated
Piconets’
Transmitters
Uncoordinated
Piconet Transmitter
Separation
Distance: d int
Receiver
Under
Test
Reference Piconet distance: d ref
Desired
Transmitter
•Example: R(Ref)=10 meters allows R(Int)=2.5 meters
•ISR can be improved by reducing number of sub-bands or increasing PRI
Submission Slide 59 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 60
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Self Evaluation – General Solution Criteria
CRITERIA Evaluation
Signal Robustness
Technical Feasibility
Scalability
Location Awareness
Unit Manufacturing Cost (UMC) +
Interference And Susceptibility +
Coexistence
Manufacturability
Time To Market
Regulatory Impact +
+
0
+
+
+
Submission Slide 61 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Self Evaluation – PHY Protocol Criteria
CRITERIA
Size and Form Factor
Payload Bit Rate
Packet Overhead
PHY-SAP Throughput
Simultaneously Operation Piconets
Signal Acquisition
System Performance
Link Budget
Sensitivity
Power Management Modes
Power Consumption
Antenna Practicality
+
+
+
+
+
+
+
+
+
+
Evaluation
+
+
Submission Slide 62 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Self Evaluation – MAC Protocol
Enhancement Criteria
CRITERIA
MAC Enhancement and Modifications
Evaluation
+
Meets all selection criteria
Submission Slide 63 Gadi Shor, Wisair
March 2003
Contents
• Targets
• Main Features
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
• Self Evaluation
• Conclusions
Submission Slide 64
doc.: IEEE 802.15-03/151r1
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Conclusions
• Multi-Band scheme
30 Sub-bands allows flexible system
meets all selection criteria
• Variable-Pulse-Rate
Low power for lower bit rates
Reduces ISI problem without equalizer
Improves multiple access
• Technology demonstrated on prototype
Submission Slide 65 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
802.15.3a Early Merge Work
Wisair will be cooperating with:
• Intel
• Time Domain
• Discrete Time
• General Atomics
• Philips
• FOCUS Enhancements
• Samsung
Objectives:
• “Best” Technical Solution
• ONE Solution
• Excellent Business Terms
• Fast Time To Market
Submission Slide 66
We encourage participation by any party who can help us reach our goals.
Gadi Shor, Wisair
March 2003
Backup Slides
doc.: IEEE 802.15-03/151r1
Submission Slide 67 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Contents
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
Submission Slide 68 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Contents
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
Submission Slide 69 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Contents
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
Submission Slide 70 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (1)
• UWB based WPAN system should support a higher bit rate (e.g. 110Mbps, 200Mbps)
Current MAC Throughput is degraded in high bit rate
• Support a bigger packet length
Bigger packets may be needed for high data rate applications
• Improve the throughput
For both small and large packet sizes
For retransmission mode
• Support Multiband channel assignment
Decide on usable sub bands
Select the time frequency interleaving sequence
Submission Slide 71 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (2)
PHY SAP Data Throughput Calculation
Frame n Transmision
MPDU_bits
(variable)
Preamble PHY Header
MAC
Header
HCS MPDU FCS MIFS
T_PA_INIT T_PHYHDR T_MACHDR T_HCS T_MPDU T_FCS T_MIFS
Payload Throughput PHY-SAP = N x Payload_bits /
[ T_PA_INITIAL+T_SIFS +
(N-1) x (T_PA_CONT+T_MIFS) +
N x (Payload_bits/R_Pay+T_MACHDR +
T_PHYHDR+T_HCS+T_FCS)]
Submission Slide 72 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (3)
IEEE802.15.3 PHY-SAP Data Throughput
802.15.3 PHY SAP Data Throughput
60
50
40
30
20
10
0
0 1000 2000 3000
Packet Size [Octets]
4000 5000
Payload Throughput
R_PAY=55Mbps
Payload Throughput
R_PAY=44Mbps
Payload Throughput
R_PAY=33Mbps
Payload Throughput
R_PAY=22Mbps
N= 5 Frames
T_PA_INITIAL = 15uSec
T_PA_CONT = 15uSec
Submission
MACHDR=10 Octets
PHYHDR=2 Octets
Slide 73
HCS=2 Octets
FCS = 4 Octets
T_SIFS = 10uSec
T_MIFS = 2uSec
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (4)
IEEE802.15.3 PHY-SAP Data Throughput in High Bit Rates
802.15.3 Data Throughput for high bit rates
300
250
200
150
100
50
0
0
N= 5 Frames
T_PA_INITIAL = 15uSec
T_PA_CONT = 15uSec
Submission
1000 2000 3000 4000 5000
packet size [Octets]
MACHDR=10 Octets
PHYHDR=2 Octets
Slide 74
HCS=2 Octets
FCS = 4 Octets
Payload Throughput
R_PAY=110Mbps
Payload Throughput
R_PAY=220Mbps
Payload Throughput
R_PAY=330Mbps
T_SIFS = 10uSec
T_MIFS = 2uSec
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements(5)
Proposed MAC Performance PHY-SAP Data Throughput in
High Bit Rates
Modified MAC Data Throughput
350
300
250
200
150
100
50
0
0 1000 2000 3000 4000 5000
Packet Size [Octets]
Payload Throughput
R_PAY=110Mbps
Payload Throughput
R_PAY=220Mbps
Payload Throughput
R_PAY=330Mbps
N= 5 Frames
T_PA_INITIAL = 15uSec
T_PA_CONT = 15uSec
Submission
MACHDR=10 Octets
PHYHDR=2 Octets
Slide 75
HCS=2 Octets
FCS = 4 Octets
T_SIFS = 10uSec
T_MIFS = 2uSec
Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (6)
Proposed MAC Frame Structure
• Allow larger MAC frame body size (e.g. 4096
Octets
Frame body consists of N Sub-frames
Sub-frame consists of Data block unit and CRC
Data block unit is limited by a maximum number of octets (e.g. 512 octets)
FCS#1
(CRC16)
Data Block #1
MAC Sub Frame
FCS#2
(CRC16)
Data Block #2
MAC Frame Body
FCS#N
(CRC16)
Data Block #N MAC Header
Submission Slide 76 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (7)
• The proposed UWB PHY structure is based on multi-band UWB system
MAC logical channel is mapped to several frequency bands
Some bands might be interfered (useless) by other existing systems (I.e IEEE802.11a
– 5GHz)
MAC should be able to drive a Bands Quality
Assessment (BQA) that determines whether a specific band is usable or not
The Piconet Coordinator (PNC) should be able to distribute the usable bands to all its associated devices
Submission Slide 77 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (8)
• Provide BQA time slot at the Supperframe
• Useful information is distributed as
Information Element (IE) over PNC
Beacon
• Beacon will transmitted over the whole frequency bands
Submission Slide 78 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
MAC Enhancements (9)
IE#1 IE#2 Beacon
IE#i Usable
Bands
Beacon CAP CTA#1 CTA#2 CTA#i
Bands
Quality
Assessment
CTA# i+1
CFP
MAC Super-Frame
CTA#
N
Submission Slide 79 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
Contents
• Physical layer
• Implementation and Feasibility
• MAC enhancements
• Performance
Submission Slide 80 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM1 channels
Submission Slide 81 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM1 (No Shadow)
Submission Slide 82 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM1 Statistics
Submission Slide 83 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM2 channels
Submission Slide 84 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM2 (No Shadow)
Submission Slide 85 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM2 Statistics
Submission Slide 86 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM3 channels
Submission Slide 87 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM3 (No Shadow)
Submission Slide 88 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM3 Statistics
Submission Slide 89 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM4 channels
Submission Slide 90 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM4 (No Shadow)
Submission Slide 91 Gadi Shor, Wisair
March 2003 doc.: IEEE 802.15-03/151r1
125 Mbps CM4 Statistics
Submission Slide 92 Gadi Shor, Wisair
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Related manuals
advertisement