STM32L051x6 STM32L051x8 Access line ultra-low-power 32-bit MCU ARM®-based Cortex®-M0+, up to 64 KB Flash, 8 KB SRAM, 2 KB EEPROM, ADC Datasheet - production data Features • • • • • • • • Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 to 125 °C temperature range – 0.27 µA Standby mode (2 wakeup pins) – 0.4 µA Stop mode (16 wakeup lines) – 0.8 µA Stop mode + RTC + 8 KB RAM retention – 139 µA/MHz Run mode at 32 MHz – 3.5 µs wakeup time (from RAM) – 5 µs wakeup time (from Flash) Core: ARM® 32-bit Cortex®-M0+ with MPU – From 32 kHz up to 32 MHz max. – 0.95 DMIPS/MHz Reset and supply management – Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds – Ultralow power POR/PDR – Programmable voltage detector (PVD) Clock sources – 1 to 25 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – High speed internal 16 MHz factory-trimmed RC (+/- 1%) – Internal low-power 37 kHz RC – Internal multispeed low-power 65 kHz to 4.2 MHz RC – PLL for CPU clock Pre-programmed bootloader – USART, SPI supported Development support – Serial wire debug supported Up to 51 fast I/Os (45 I/Os 5V tolerant) Memories – Up to 64 KB Flash with ECC – 8KB RAM – 2 KB of data EEPROM with ECC – 20-byte backup register – Sector protection against R/W operation September 2014 This is information on a product in full production. &"'! UFQFPN32 5x5 mm • • LQFP32 7x7 mm LQFP48 7x7 mm LQFP64 10x10 mm WLCSP36 TFBGA64 5x5mm Rich Analog peripherals – 12-bit ADC 1.14 Msps up to 16 channels (down to 1.65 V) – 2x ultra-low-power comparators (window mode and wake up capability, down to 1.8 V) 7-channel DMA controller, supporting ADC, SPI, I2C, USART, Timers • 7x peripherals communication interface • 2x USART (ISO 7816, IrDA), 1x UART (low power) • 2x SPI 16 Mbits/s • 2x I2C (SMBus/PMBus) • 9x timers: 1x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x SysTick, 1x RTC, 1x 16-bit basic, and 2x watchdogs (independent/window) • CRC calculation unit, 96-bit unique ID • All packages are ECOPACK®2 Table 1. Device summary Reference Part number STM32L051x6 STM32L051C6 STM32L051K6 STM32L051R6 STM32L051T6 STM32L051x8 STM32L051C8 STM32L051K8 STM32L051R8 STM32L051T8 DocID025938 Rev 4 1/119 www.st.com Contents STM32L051x6 STM32L051x8 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 ARM® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 24 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.9 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11.1 2/119 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.12 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27 3.13 System configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.14.1 General-purpose timers (TIM2, TIM21 and TIM22) . . . . . . . . . . . . . . . . 28 3.14.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID025938 Rev 4 STM32L051x6 STM32L051x8 3.15 Contents Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.15.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 31 3.15.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 31 3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 32 3.16 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 32 3.17 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 51 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DocID025938 Rev 4 3/119 4 Contents 7 STM32L051x6 STM32L051x8 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.17 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.1 7.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.1.1 LQFP32 7 x 7 mm low profile quad flat package . . . . . . . . . . . . . . . . . . 98 7.1.2 UFQFPN32 5 x 5 mm package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.1.3 LQFP48 7 x 7 mm low profile quad flat package . . . . . . . . . . . . . . . . . 104 7.1.4 LQFP64 10 x 10 mm low profile quad flat package . . . . . . . . . . . . . . . 107 7.1.5 WLCSP36 0.4 mm pitch wafer-level chip scale package . . . . . . . . . . . 110 7.1.6 TFBGA64 5 x 5 mm thin profile fine pitch ball grid array package . . . . 111 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ultra-low-power STM32L051x6/x8 device features and peripheral counts. . . . . . . . . . . . . 11 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STM32L051x6/8 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 STM32L051x6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Alternate function port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Alternate function port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Alternate function port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Alternate function port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 51 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Current consumption in Run mode, code with data processing running from Flash. . . . . . 55 Current consumption in Run mode vs code type, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Current consumption in Run mode, code with data processing running from RAM . . . . . . 57 Current consumption in Run mode vs code type, code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Current consumption in Low-power Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Current consumption in Low-power Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 61 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 62 Average current consumption during wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Peripheral current consumption in run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 64 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID025938 Rev 4 5/119 6 List of tables Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. 6/119 STM32L051x6 STM32L051x8 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 74 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 99 UFQFPN32, 5 x 5 mm, 32-pin package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . 102 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 105 LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 108 WLCSP36 0.4 mm pitch wafer-level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 TFBGA64, 5 x 5 mm, 64-bump thin profile fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 STM32L051x6/8 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 DocID025938 Rev 4 STM32L051x6 STM32L051x8 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. STM32L051x6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 STM32L051x6/8 WLCSP36 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32L051x6/8 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32L051x6/8 UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L051x6/8 LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STM32L051x6/8 LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STM32L051x6/8 TFBGA64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 70 VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 87 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 87 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 98 LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 UFQFPN32, 5 x 5 mm, 32-pin package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 UFQFPN32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 104 DocID025938 Rev 4 7/119 8 List of figures Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. 8/119 STM32L051x6 STM32L051x8 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 107 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 WLCSP36 0.4 mm pitch wafer-level chip scale package outline . . . . . . . . . . . . . . . . . . . 110 TFBGA64, 5 x 5 mm, 64-bump thin profile fine pitch ball grid array package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 TFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 DocID025938 Rev 4 STM32L051x6 STM32L051x8 1 Introduction Introduction The ultra-low-power STM32L051x6/8 are offered in 6 different package types: from 48 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L051x6/8 microcontrollers suitable for a wide range of applications: • Gas/water meters and industrial sensors • Healthcare and fitness equipment • Remote control and user interface • PC peripherals, gaming, GPS equipment • Alarm system, wired and wireless sensors, video intercom This STM32L051x6/8 datasheet should be read in conjunction with the STM32L0x1xx reference manual (RM0377). For information on the ARM® Cortex®-M0+ core please refer to the Cortex®-M0+ Technical Reference Manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family. DocID025938 Rev 4 9/119 32 Description 2 STM32L051x6 STM32L051x8 Description The access line ultra-low-power STM32L051x6/8 microcontrollers incorporate the highperformance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (64 Kbytes of Flash program memory, 2 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. The STM32L051x6/8 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. The STM32L051x6/8 devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. Moreover, the STM32L051x6/8 devices embed standard and advanced communication interfaces: up to two I2Cs, two SPIs, one I2S, two USARTs, a low-power UART (LPUART), . The STM32L051x6/8 also include a real-time clock and a set of backup registers that remain powered in Standby mode. The ultra-low-power STM32L051x6/8 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications. 10/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 2.1 Description Device overview Table 2. Ultra-low-power STM32L051x6/x8 device features and peripheral counts Peripheral STM32 L051K6 STM32 STM32 L051T6 L051C6 STM32 L051R6 STM32 L051K8 STM32 STM32 L051T8 L051C8 Flash (Kbytes) 32 64 Data EEPROM (Kbytes) 2 2 RAM (Kbytes) 8 8 Generalpurpose 3 3 Basic 1 1 LPTIMER 1 1 1/1/1/1 1/1/1/1 Timers RTC/SYSTICK/IWDG/WWDG SPI/(I2S) I2C Communicati on interfaces USART LPUART GPIOs Clocks: HSE/LSE/HSI/MSI/LSI 12-bit synchronized ADC Number of channels 1/(0) 1/(0) 2/(1) 2/(1) 1/(0) 1/(1) 2/(1) 2/(1) 1 2 2 2 1 2 2 2 2 2 0 1 1 1 0 1 1 1 27(1) 29 37 51(2) 27(1) 29 37 51(2) 0/1/1/1/1 1 10 1/1/1/1/ 1/1/1/1/1 1/1/1/1/1 1 1 10 Comparators 1 10 0/1/1/1/1 1/1/1/1/ 1/1/1/1/1 1/1/1/1/1 1 1 10 1 10 1 16(2) 2 1 10 1 16(2) 2 Max. CPU frequency 32 MHz 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option Operating voltage Ambient temperature: –40 to +125 °C Junction temperature: –40 to +130 °C Operating temperatures Packages STM32 L051R8 LQFP32, UFQFPN 32 WLCS P36 LQFP48 LQFP64 TFBGA 64 LQFP32, UFQFPN 32 WLCS P36 LQFP48 LQFP64 TFBGA 64 1. LQFP32 has two GPIOs, less than UFQFPN32 (27). 2. TFBGA64 has one GPIO, one ADC input and one capacitive sensing channel less than LQFP64. DocID025938 Rev 4 11/119 32 Description STM32L051x6 STM32L051x8 Figure 1. STM32L051x6/8 block diagram 7HPS VHQVRU 6:' 6:' )/$6+ ((3520 %227 ),5(:$// &257(;0&38 )PD[0+] 5$0 038 '%* '0$ 19,& (;7, $ 3 % $'& $,1[ 63, 0,62026, 6&.166 86$57 5;7;576 &76&. 7,0 FK 7,0 FK %5,'*( &203 ,13,10287 &203 ,13,10287 /37,0 ,1,1 (75287 &5& %5,'*( *3,23257$ 3%>@ *3,23257% 3&>@ *3,23257& 3'>@ 3+>@ 26&B,1 26&B287 $+%)PD[0+] 3$>@ 7,0 ::'* $ 3 % *3,23257' *3,23257+ +6( +6,0 /6, ,:'* 3// 06, ,& 6&/6'$ 60%$ ,& 6&/6'$ 60%$ 86$57 5;7;576 &76&. /38$57 5;7;576 &76 63,,6 0,620&. 026,6' 6&.&.166 :6 7,0 FK 57& %&.35(* 5(6(7&/. :.83[ 26&B,1 26&B287 /6( 39'B,1 95()B287 308 1567 9''$ 9'' 5(*8/$725 069 12/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 2.2 Description Ultra-low-power device continuum The ultra-low-power family offers a large choice of core and features, from proprietary 8-bit core to up ARM® Cortex®-M3, including ARM® Cortex®-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 Ultralow-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power Run mode, operational amplifiers, AES 128-bit, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements. DocID025938 Rev 4 13/119 32 Functional overview STM32L051x6 STM32L051x8 3 Functional overview 3.1 Low-power modes The ultra-low-power STM32L051x6/8 support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply. There are three power consumption ranges: • Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz • Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz • Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. • Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited. • Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on. • Stop mode with RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event 14/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Functional overview (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USART/I2C/LPUART/LPTIMER wakeup events. • Stop mode without RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USART/I2C/LPUART/LPTIMER wakeup events. • Standby mode with RTC The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. • Standby mode without RTC The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. DocID025938 Rev 4 15/119 32 Functional overview STM32L051x6 STM32L051x8 Table 3. Functionalities depending on the operating power supply range Functionalities depending on the operating power supply range Operating power supply range ADC operation Dynamic voltage scaling range I/O operation VDD = 1.65 to 1.71 V ADC only, conversion time up to 570 Msps Range 2 or range 3 Degraded speed performance VDD = 1.71 to 1.8 V(1) ADC only, conversion time up to 1.14 Msps Range 1, range 2 or range 3 Degraded speed performance VDD = 1.8 to 2.0 V(1) Conversion time up to 1.14 Msps Range1, range 2 or range 3 Degraded speed performance VDD = 2.0 to 2.4 V Conversion time up to 1.14 Msps Range 1, range 2 or range 3 Full speed operation VDD = 2.4 to 3.6 V Conversion time up to 1.14 Msps Range 1, range 2 or range 3 Full speed operation 1. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz. Table 4. CPU frequency range depending on dynamic voltage scaling CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 32 kHz to 4.2 MHz (0ws) Range 3 Table 5. Functionalities depending on the working mode (from Run/active down to standby) (1) Standby Run/Active Sleep CPU Y -- Y -- -- -- Flash memory O O O O -- -- RAM Y Y Y Y Y -- Backup registers Y Y Y Y Y Y IPs 16/119 DocID025938 Rev 4 Lowpower sleep Stop Lowpower run Wakeup capability Wakeup capability STM32L051x6 STM32L051x8 Functional overview Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)(1) Standby Run/Active Sleep EEPROM O O O O -- Brown-out reset (BOR) O O O O O DMA O O O O -- Programmable Voltage Detector (PVD) O O O O O O - Power-on/down reset (POR/PDR) Y Y Y Y Y Y Y High Speed Internal (HSI) O O -- -- (2) -- High Speed External (HSE) O O O O -- -- Low Speed Internal (LSI) O O O O O O Low Speed External (LSE) O O O O O O Multi-Speed Internal (MSI) O O Y Y -- -- Inter-Connect Controller Y Y Y Y Y -- RTC O O O O O O O RTC Tamper O O O O O O O O Auto WakeUp (AWU) O O O O O O O O USART O O O O O(3) O -- O -- IPs Lowpower sleep Stop Lowpower run Wakeup capability LPUART O O O O O(3) SPI O O O O -(4) -O O O -- Y -O -- I2C O O O O ADC O O O O -- -- Temperature sensor O O O O O -- Comparators O O O O O 16-bit timers O O O O -- LPTIMER O O O O O O IWDG O O O O O O DocID025938 Rev 4 O Wakeup capability O --- O O 17/119 32 Functional overview STM32L051x6 STM32L051x8 Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)(1) Run/Active Sleep Lowpower run WWDG O O O O SysTick Timer O O O O GPIOs O O O O 0 µs 0.36 µs 3 µs 32 µs IPs Wakeup time to Run mode Lowpower sleep Stop Standby Wakeup capability -- Wakeup capability --- O O 3.5 µs 2 pins 50 µs 0.28 µA (No 0.4 µA (No RTC) VDD=1.8 V RTC) VDD=1.8 V Consumption VDD=1.8 to 3.6 V (Typ) Down to 140 µA/MHz (from Flash) Down to 37 µA/MHz (from Flash) Down to 8 µA 0.65 µA (with 0.8 µA (with =1.8 V RTC) VDD=1.8 V RTC) V DD Down to 4.5 µA 0.4 µA (No 0.29 µA (No RTC) VDD=3.0 V RTC) VDD=3.0 V 1 µA (with RTC) 0.85 µA (with VDD=3.0 V RTC) VDD=3.0 V 1. Legend: “Y” = Yes (enable). “O” = Optional can be enabled/disabled by software) “-” = Not available 2. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore. 3. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start.To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock. 4. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception. 3.2 Interconnect matrix Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes. 18/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Functional overview Table 6. STM32L0xx peripherals interconnect matrix Interconnect source Lowpower sleep Stop Y Y - Y Y Y Y Y Y Y Y - Timer triggered by Auto wake-up Y Y Y Y - LPTIM Timer triggered by RTC event Y Y Y Y Y TIMx Clock source used as input channel for RC measurement and trimming Y Y Y Y - TIMx Timer input channel and trigger Y Y Y Y - LPTIM Timer input channel and trigger Y Y Y Y Y ADC Conversion trigger Y Y Y Y - Interconnect action Run TIM2,TIM21, TIM22 Timer input channel, trigger from analog signals comparison Y Y LPTIM Timer input channel, trigger from analog signals comparison Y TIMx Timer triggered by other timer TIM21 COMPx TIMx RTC All clock source GPIO 3.3 LowSleep power run Interconnect destination ARM® Cortex®-M0+ core with MPU The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including: • a simple architecture that is easy to learn and program • ultra-low power, energy-efficient operation • excellent code density • deterministic, high-performance interrupt handling • upward compatibility with Cortex-M processor family • platform security robustness, with integrated Memory Protection Unit (MPU). The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers. DocID025938 Rev 4 19/119 32 Functional overview STM32L051x6 STM32L051x8 Owing to its embedded ARM core, the STM32L051x6/8 are compatible with all ARM tools and software. Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L051x6/8 embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels. The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC: • includes a Non-Maskable Interrupt (NMI) • provides zero jitter interrupt option • provides four interrupt priority levels The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode. This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.4 Reset and supply management 3.4.1 Power supply schemes 3.4.2 • VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. • VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. Power supply supervisor The deviceshave an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. Two versions are available: • The version with BOR activated at power-on operates between 1.8 V and 3.6 V. • The other version without BOR operates between 1.65 V and 3.6 V. After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on). When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits the POR area. 20/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Functional overview Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up. The devices feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.4.3 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. 3.4.4 • MR is used in Run mode (nominal regulation) • LPR is used in the Low-power run, Low-power sleep and Stop modes • Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR). Boot modes At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options: • Boot from Flash memory • Boot from System memory • Boot from embedded RAM The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1(PA9, PA10), SPI1(PA4, PA5, PA6, PA7) or SPI2(PB12, PB13, PB14, PB15) and USART2(PA2, PA3). See STM32™ microcontroller system memory boot mode AN2606 for details. DocID025938 Rev 4 21/119 32 Functional overview 3.5 STM32L051x6 STM32L051x8 Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: • Clock prescaler To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. • Safe clock switching Clock sources can be changed safely on the fly in Run mode through a configuration register. • Clock management To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. • System clock source Three different clock sources can be used to drive the master clock SYSCLK: • – 1-24 MHz high-speed external crystal (HSE), that can supply a PLL – 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL – Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy. Auxiliary clock source Two ultra-low-power clock sources that can be used to drive the real-time clock: • – 32.768 kHz low-speed external crystal (LSE) – 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. RTC clock source The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock. • Startup clock After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. • Clock security system (CSS) This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled. • Clock-out capability (MCO: microcontroller clock output) It outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. 22/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Functional overview Figure 2. Clock tree #9 (QDEOH:DWFKGRJ /6,5& :DWFKGRJ/6 /6,WHPSR /HJHQG +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO +6, +LJKVSHHGLQWHUQDOFORFNVLJQDO /6, /RZVSHHGLQWHUQDOFORFNVLJQDO /6( /RZVSHHGH[WHUQDOFORFNVLJQDO 06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO 57&6(/ 57&HQDEOH /6(26& 57& /6(WHPSR /68 /6' /6' #9 0+] #9 06,5& /6, /6( 06, /HYHOVKLIWHUV #9 0&26(/ $'&HQDEOH $'&&/. 0&2 QRWGHHSVOHHS #9 +6,5& /HYHOVKLIWHUV #9 &.B3:5 QRWGHHSVOHHS FNBUFKV +6, 6\VWHP &ORFN 06, +6, +6( #9 +6(26& /HYHOVKLIWHUV #9 3//65& /68 #9 0+]&ORFN 'HWHFWRU #9 3//&/. QRWVOHHSRU GHHSVOHHS +&/. 7,0[&/. $+% 35(6& « FNBSOOLQ 3// ; /HYHOVKLIWHUV #9''&25( +6(SUHVHQWRUQRW )&/. 3&/.WR$3% SHULSKHUDOV $3% 35(6& 3HULSKHUDO FORFNHQDEOH WR7,0[ ,I$3%SUHVF [ HOVH[ /6' QRWVOHHSRU GHHSVOHHS &ORFN 6RXUFH &RQWURO $3% 35(6& 3HULSKHUDO FORFNHQDEOH 3&/.WR$3% 0+] SHULSKHUDOV PD[ 3HULSKHUDO FORFNHQDEOH ,I$3%SUHVF [ HOVH[ /6, /6( +6, 6<6&/. 3&/. WR7,0[ 3HULSKHUDOV HQDEOH 3HULSKHUDOV HQDEOH /37,0&/. 3HULSKHUDOV HQDEOH /38$57 8$57&/. ,&&/. 06Y9 DocID025938 Rev 4 23/119 32 Functional overview 3.6 STM32L051x6 STM32L051x8 Low-power real-time clock and backup registers The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: • • • • • • • • • Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format Automatically correction for 28, 29 (leap year), 30, and 31 day of the month Two programmable alarms with wake up from Stop and Standby mode capability Periodic wakeup from Stop and Standby with programmable resolution and period On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. The RTC clock sources can be: • • • • 3.7 A 32.768 kHz external crystal A resonator or oscillator The internal low-power RC oscillator (typical frequency of 37 kHz) The high-speed external clock General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz. Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 28 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected to the 16 configurable interrupt/event lines. The 12 other lines are connected to PVD, RTC, USARTs, LPUART, LPTIMER or comparator events. 24/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 3.8 Functional overview Memories The STM32L051x6/8 deviceshave the following features: • 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). • The non-volatile memory is divided into three arrays: – 32 or 64 Kbytes of embedded Flash program memory – 2 Kbytes of data EEPROM – Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options: • Level 0: no protection • Level 1: memory readout protected. The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected • Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse) The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the nonvolatile data segment is 256 bytes (Flash or EEPROM) against 64 bytes for the volatile data segment (RAM). The whole non-volatile memory embeds the error correction code (ECC) feature. 3.9 Direct memory access (DMA) The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART, general-purpose timers, and ADC. 3.10 Analog-to-digital converter (ADC) A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L051x6/8 device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference). It performs conversions in singleshot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. DocID025938 Rev 4 25/119 32 Functional overview STM32L051x6 STM32L051x8 The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 µA at 10 kSPS, ~200 µA at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase. The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V. The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668). An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. 3.11 Temperature sensor The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 7. Temperature sensor calibration values Calibration value name 3.11.1 Description Memory address TSENSE_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TSENSE_CAL2 TS ADC raw data acquired at temperature of 130 °C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available for ADC). The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. 26/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Functional overview Table 8. Internal voltage reference measured values Calibration value name VREFINT_CAL 3.12 Description Raw data acquired at temperature of 30 °C VDDA = 3 V Memory address 0x1FF8 0078 - 0x1FF8 0079 Ultra-low-power comparators and reference voltage The STM32L051x6/8 embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). • One comparator with ultra low consumption • One comparator with rail-to-rail inputs, fast or slow mode. • The threshold can be one of the following: – External I/O pins – Internal reference voltage (VREFINT) – submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator. Both comparators can wake up the devices from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). 3.13 System configuration controller The system configuration controller provides the capability to remap some alternate functions on different I/O ports. The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM21, TIM22 and LPTIM timer input captures. It also controls the routing of internal analog signals to ADC, COMP1 and COMP2 and the internal reference voltage VREFINT. DocID025938 Rev 4 27/119 32 Functional overview 3.14 STM32L051x6 STM32L051x8 Timers and watchdogs The ultra-low-power STM32L051x6/8 devices include three general-purpose timers, one low- power timer (LPTM), one basic timer, two watchdog timers and the SysTick timer. Table 9 compares the features of the general-purpose and basic timers. Table 9. Timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request generation TIM2 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM21, TIM22 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM6 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.14.1 Capture/compare Complementary channels outputs General-purpose timers (TIM2, TIM21 and TIM22) There are three synchronizable general-purpose timers embedded in the STM32L051x6/8 devices (see Table 9 for differences). TIM2 TIM2 is based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or onepulse mode output. The TIM2 general-purpose timers can work together or with the TIM21 and TIM22 generalpurpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2 has independent DMA request generation. This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM21 and TIM22 TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2, fullfeatured general-purpose timers. They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. 28/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 3.14.2 Functional overview Low-power Timer (LPTIM) The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 3.14.3 • 16-bit up counter with 16-bit autoreload register • 16-bit compare register • Configurable output: pulse, PWM • Continuous / one shot mode • Selectable software / hardware input trigger • Selectable clock source – Internal clock source: LSE, LSI, HSI or APB clock – External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) • Programmable digital glitch filter • Encoder mode Basic timer (TIM6) This timer can be used as a generic 16-bit timebase. 3.14.4 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches ‘0’. 3.14.5 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 3.14.6 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. DocID025938 Rev 4 29/119 32 Functional overview STM32L051x6 STM32L051x8 3.15 Communication interfaces 3.15.1 I2C bus Up to two I2C interfaces (I2C1, I2C2) can operate in multimaster or slave modes. All I2C interfaces can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os. All I2C interfaces support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. Table 10. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. All I2C interfaces can be served by the DMA controller. Refer to Table 11 for the differences between I2C interfaces. Table 11. STM32L051x6/8 I2C implementation I2C features(1) I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X(2) Independent clock X - SMBus X - Wakeup from STOP X - 1. X = supported. 2. See for the list of I/Os that feature Fast Mode Plus capability 30/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 3.15.2 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The two USART interfaces (USART1, USART2) are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. They also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode. All USART interfaces can be served by the DMA controller. Table 12 for the supported modes and features of USART interfaces. Table 12. USART implementation USART modes/features(1) USART1 and USART2 Hardware flow control for modem X Continuous communication using DMA X Multiprocessor communication X Synchronous mode X Smartcard mode X Single-wire half-duplex communication X IrDA SIR ENDEC block X LIN mode X Dual clock domain and wakeup from Stop mode X Receiver timeout interrupt X Modbus communication X Auto baud rate detection (4 modes) X Driver Enable X 1. X = supported. 3.15.3 Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode. The Wakeup events from Stop mode are programmable and can be: • Start bit detection • Or any received data frame • Or a specific programmed data frame Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while DocID025938 Rev 4 31/119 32 Functional overview STM32L051x6 STM32L051x8 having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. 3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. The SPIs can be served by the DMA controller. Refer to Table 13 for the differences between SPI1 and SPI2. Table 13. SPI/I2S implementation SPI features(1) SPI1 SPI2 Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X I2S mode - X TI mode X X 1. X = supported. 3.16 Cyclic redundancy check (CRC) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.17 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. 32/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Pin descriptions Figure 3. STM32L051x6/8 WLCSP36 ballout 3& 26& B,1 9'' 3% 3% 3$ 3$ % 3& 26& B287 3% 3% 3% 3$ 3$ & 1567 %22 7 3% 3% 3$ 3$ ' 966 9''$ 3$ 3% 3% 3$ ( 95() 3$ 3$ 3$ 3% 3$ ) 3$ 3$ 3$ 3$ 3% 9'' $ 06Y9 1. The above figure shows the package bump view. 9'' 3&26&B,1 3&26&B287 1567 9''$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 3$ 966 %227 Figure 4. STM32L051x6/8 LQFP32 pinout 4)1 3$ 3$ 3$ 3$ 3$ 3$ 3$ 9'' 3$ 3$ 3$ 3$ 3$ 3% 3% 966 4 Pin descriptions 06Y9 1. The above figure shows the package top view. DocID025938 Rev 4 33/119 44 Pin descriptions STM32L051x6 STM32L051x8 9'' 3&26&B,1 3&26&B287 966 3$ 3$ 3$ 3$ 3$ 3$ 3$ 9'' 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 1567 9''$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 3$ 3% %227 Figure 5. STM32L051x6/8 UFQFPN32 pinout 069 1. The above figure shows the package top view. 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ Figure 6. STM32L051x6/8 LQFP48 pinout - 7 x 7 mm /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9'' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 966$ 9''$ 3$ 3$ 3$ 069 1. The above figure shows the package top view. 34/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Pin descriptions 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 7. STM32L051x6/8 LQFP64 pinout - 10 x 10 mm /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% 966 9'' 9'' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 3$ 069 1. The above figure shows the package top view. DocID025938 Rev 4 35/119 44 Pin descriptions STM32L051x6 STM32L051x8 Figure 8. STM32L051x6/8 TFBGA64 ballout - 5x 5 mm $ 3$ 3$ 3$ 3% 3% 3% 3& 3& 26& B,1 % 3$ 3& 3& 3' %227 3% 9'' 3& 26& B287 & 3$ 3$ 3$ 3& 3% 3% 966 3+ 26&B,1 ' 3& 3$ 966 966 966 3% 9'' 3+ 26&B 287 ( 3& 3& 9'' 9'' 9'' 3& 3& 1567 ) 3% 3% 3& 3% 3$ 3$ 3& 966$ * 3% 3% 3% 3% 3$ 3$ 3$ 95() + 3% 3% 3& 3& 3$ 3$ 3$ 9''$ 06Y9 1. The above figure shows the package bump view. Table 14. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TC Standard 3.3V I/O B RST Notes Pin functions 36/119 Definition Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID025938 Rev 4 STM32L051x6 STM32L051x8 Pin descriptions Table 15. STM32L051x6/8 pin definitions LQFP48 LQFP64 TFBGA64 - 1 1 B2 VDD S I/O FT RTC_TAMP1/ RTC_TS/ RTC_OUT/ WKUP2 Notes WLCSP36(2) - I/O structure UFQFPN32(1) - Pin name (function after reset) Pin type LQFP32 Pin Number Alternate functions Additional functions - - - 2 2 A2 PC13ANTI_TAMP 2 2 A6 3 3 A1 PC14OSC32_IN I/O FT OSC32_IN 3 3 B6 4 4 B1 PC15OSC32_OUT I/O TC OSC32_OUT - - - 5 5 C1 PH0-OSC_IN I/O TC OSC_IN - - - 6 6 D1 PH1OSC_OUT I/O TC OSC_OUT 4 4 C6 7 7 E1 NRST I/O RST - - - - 8 E3 PC0 I/O FT LPTIM1_IN1, EVENTOUT ADC_IN10 - - - - 9 E2 PC1 I/O FT LPTIM1_OUT, EVENTOUT ADC_IN11 - - - - 10 F2 PC2 I/O FT LPTIM1_IN2, SPI2_MISO/I2S2_MCK ADC_IN12 - - - - 11 - PC3 I/O FT LPTIM1_ETR, SPI2_MOSI/I2S2_SD ADC_IN13 - - - 8 12 F1 VSSA S - - E6 - - G1 VREF+ S 5 5 D5 9 13 H1 VDDA S TC TIM2_CH1, USART2_CTS, TIM2_ETR, COMP1_OUT COMP1_INM6, ADC_IN0, RTC_TAMP2/W KUP1 6 6 D4 10 14 G2 PA0 I/O DocID025938 Rev 4 37/119 44 Pin descriptions STM32L051x6 STM32L051x8 Table 15. STM32L051x6/8 pin definitions (continued) 7 7 F6 11 15 H2 PA1 I/O Notes I/O structure Pin name (function after reset) Pin type TFBGA64 LQFP64 LQFP48 WLCSP36(2) UFQFPN32(1) LQFP32 Pin Number Alternate functions Additional functions FT EVENTOUT, TIM2_CH2, USART2_RTS, TIM21_ETR COMP1_INP, ADC_IN1 COMP2_INM6, ADC_IN2 8 8 E5 12 16 F3 PA2 I/O FT TIM21_CH1, TIM2_CH3, USART2_TX, COMP2_OUT 9 9 F5 13 17 G3 PA3 I/O FT TIM21_CH2, TIM2_CH4, USART2_RX COMP2_INP, ADC_IN3 - - - - 18 C2 VSS S - - - - 19 D2 VDD S 10 10 E4 14 20 H3 PA4 I/O TC SPI1_NSS, USART2_CK, TIM22_ETR COMP1_INM4, COMP2_INM4, ADC_IN4 11 11 F4 15 21 F4 PA5 I/O TC 12 12 E3 16 22 G4 PA6 I/O (3) COMP1_INM5, SPI1_SCK, TIM2_ETR, COMP2_INM5, TIM2_CH1 ADC_IN5 FT SPI1_MISO, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT ADC_IN6 ADC_IN7 13 13 F3 17 23 H4 PA7 I/O FT SPI1_MOSI, TIM22_CH2, EVENTOUT, COMP2_OUT - - - - 24 H5 PC4 I/O FT EVENTOUT, LPUART1_TX ADC_IN14 - - - - 25 H6 PC5 I/O TC LPUART1_RX, ADC_IN15 14 14 D3 18 26 F5 PB0 I/O FT EVENTOUT ADC_IN8, VREF_OUT 15 15 C3 19 27 G5 PB1 I/O FT LPUART1_RTS ADC_IN9, VREF_OUT 38/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Pin descriptions Table 15. STM32L051x6/8 pin definitions (continued) UFQFPN32(1) WLCSP36(2) LQFP48 LQFP64 TFBGA64 Pin type I/O structure - 16 F2 20 28 G6 PB2 I/O FT LPTIM1_OUT - - E2 21 29 G7 PB10 I/O FT TIM2_CH3, LPUART1_TX, SPI2_SCK, I2C2_SCL FT EVENTOUT, TIM2_CH4, LPUART1_RX, I2C2_SDA FT SPI2_NSS/I2S2_WS, LPUART1_RTS, I2C2_SMBA, EVENTOUT FTf SPI2_SCK/I2S2_CK, LPUART1_CTS, I2C2_SCL, TIM21_CH1 Pin name (function after reset) - - D2 22 30 H7 PB11 I/O 16 - - 23 31 D6 VSS S 17 17 F1 24 32 E6 VDD S - - - - - - 25 26 33 34 H8 G8 PB12 PB13 I/O I/O Notes LQFP32 Pin Number Alternate functions - - - 27 35 F8 PB14 I/O FTf SPI2_MISO/I 2S2_MCK, RTC_OUT, LPUART1_RTS, I2C2_SDA, TIM21_CH2 - - - 28 36 F7 PB15 I/O FT SPI2_MOSI/I2S2_SD, RTC_REFIN - - - - 37 F6 PC6 I/O FT TIM22_CH1 - - - - 38 E7 PC7 I/O FT TIM22_CH2 - - - - 39 E8 PC8 I/O FT TIM22_ETR - - - - 40 D8 PC9 I/O FT TIM21_ETR 18 18 E1 29 41 D7 PA8 I/O FT MCO, EVENTOUT, USART1_CK 19 19 D1 30 42 C7 PA9 I/O FT MCO, USART1_TX DocID025938 Rev 4 Additional functions 39/119 44 Pin descriptions STM32L051x6 STM32L051x8 Table 15. STM32L051x6/8 pin definitions (continued) LQFP48 LQFP64 TFBGA64 C1 31 43 C6 21 21 C2 32 44 C8 PA10 PA11 I/O FT USART1_RX FT SPI1_MISO, EVENTOUT, USART1_CTS, COMP1_OUT I/O Notes WLCSP36(2) 20 I/O structure UFQFPN32(1) 20 Pin name (function after reset) Pin type LQFP32 Pin Number Alternate functions 22 22 B1 33 45 B8 PA12 I/O FT SPI1_MOSI, EVENTOUT, USART1_RTS, COMP2_OUT 23 23 A1 34 46 A8 PA13 I/O FT SWDIO - - - 35 47 D5 VSS S - - - 36 48 E5 VDDIO2 S 24 24 B2 37 49 A7 PA14 I/O FT SWCLK, USART2_TX Additional functions 25 25 A2 38 50 A6 PA15 I/O FT SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1 - - - - 51 B7 PC10 I/O FT LPUART1_TX - - - - 52 B6 PC11 I/O FT LPUART1_RX - - - - 53 C5 PC12 I/O FT - - - - 54 B5 PD2 I/O FT LPUART1_RTS 26 26 B3 39 55 A5 PB3 I/O FT SPI1_SCK, TIM2_CH2, EVENTOUT COMP2_INN 27 27 A3 40 56 A4 PB4 I/O FT SPI1_MISO, EVENTOUT, TIM22_CH1 COMP2_INP FT SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM22_CH2 COMP2_INP 28 40/119 28 C4 41 57 C4 PB5 I/O DocID025938 Rev 4 STM32L051x6 STM32L051x8 Pin descriptions Table 15. STM32L051x6/8 pin definitions (continued) UFQFPN32(1) WLCSP36(2) LQFP48 LQFP64 TFBGA64 Pin type I/O structure 29 29 B4 42 58 D3 PB6 I/O FTf USART1_TX, I2C1_SCL, LPTIM1_ETR COMP2_INP 30 30 A4 43 59 C3 PB7 I/O FTf USART1_RX, I2C1_SDA, LPTIM1_IN2 COMP2_INP, PVD_IN 31 31 C5 44 60 B4 BOOT0 B - 32 B5 45 61 B3 PB8 I/O FTf I2C1_SCL - - - 46 62 A3 PB9 I/O FTf EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS 32 - D6 47 63 D4 VSS S 1 1 A5 48 64 E4 VDD S Pin name (function after reset) Notes LQFP32 Pin Number Alternate functions Additional functions 1. VSS pins are connected to the exposed pad (see Figure 40: UFQFPN32, 5 x 5 mm, 32-pin package outline). 2. PB9/12/13/14/15, PH0/1 and PC13 GPIOs should be configured as output and driven Low, even if they are not available on this package. 3. PA4 offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O. DocID025938 Rev 4 41/119 44 Port AF0 AF1 AF2 AF3 SPI1/TIM21/SYS_A F/EVENTOUT/ - TIM2/ EVENTOUT/ EVENTOUT PA0 DocID025938 Rev 4 Port A AF4 AF5 AF6 AF7 USART1/2/3 TIM2/21/22 EVENTOUT COMP1/2 TIM2_CH1 USART2_CTS TIM2_ETR TIM21_ETR PA1 EVENTOUT TIM2_CH2 USART2_RTS PA2 TIM21_CH1 TIM2_CH3 USART2_TX PA3 TIM21_CH2 TIM2_CH4 USART2_RX PA4 SPI1_NSS PA5 SPI1_SCK PA6 SPI1_MISO PA7 SPI1_MOSI PA8 MCO PA9 MCO USART2_CK TIM2_ETR COMP1_OUT Pin descriptions 42/119 Table 16. Alternate function port A COMP2_OUT TIM22_ETR TIM2_CH1 LPUART1_CTS EVENTOUT TIM22_CH1 EVENTOUT COMP1_OUT TIM22_CH2 EVENTOUT COMP2_OUT USART1_CK USART1_TX PA10 USART1_RX PA11 SPI1_MISO EVENTOUT USART1_CTS COMP1_OUT PA12 SPI1_MOSI EVENTOUT USART1_RTS COMP2_OUT PA13 SWDIO PA14 SWCLK PA15 SPI1_NSS USART2_TX EVENTOUT USART2_RX TIM2_CH1 STM32L051x6 STM32L051x8 TIM2_ETR Port PB0 AF0 AF1 AF2 AF3 AF4 AF5 AF6 SPI1/SPI2/I2S2/ USART1/ EVENTOUT/ I2C1 LPUART1/LPTIM /TIM2/SYS_AF/ EVENTOUT I2C1 I2C1/TIM22/ EVENTOUT/ LPUART1 SPI2/I2S2/I2C2 I2C2/TIM21/ EVENTOUT EVENTOUT PB1 LPUART1_RTS PB2 DocID025938 Rev 4 Port B LPTIM1_OUT PB3 SPI1_SCK TIM2_CH2 EVENTOUT PB4 SPI1_MISO EVENTOUT TIM22_CH1 PB5 SPI1_MOSI LPTIM1_IN1 PB6 USART1_TX I2C1_SCL LPTIM1_ETR PB7 USART1_RX I2C1_SDA LPTIM1_IN2 PB8 I2C1_SMBA STM32L051x6 STM32L051x8 Table 17. Alternate function port B TIM22_CH2 I2C1_SCL PB9 EVENTOUT I2C1_SDA SPI2_NSS/I2S2_ WS PB10 TIM2_CH3 LPUART1_TX SPI2_SCK LPUART1_RX PB11 EVENTOUT TIM2_CH4 PB12 SPI2_NSS/I2S2_WS LPUART1_RTS PB13 SPI2_SCK/I2S2_CK PB14 SPI2_MISO/I2S2_MCK RTC_OUT PB15 SPI2_MOSI/I2S2_SD RTC_REFIN I2C2_SCL I2C2_SDA I2C2_SMBA EVENTOUT LPUART1_CTS I2C2_SCL TIM21_CH1 LPUART1_RTS I2C2_SDA TIM21_CH2 Pin descriptions 43/119 AF0 AF1 AF2 LPUART1/LPTIM/TIM21/12/EVENTOUT - SPI2/I2S2/LPUART1/EVENTOUT Port PC0 LPTIM1_IN1 EVENTOUT PC1 LPTIM1_OUT EVENTOUT PC2 LPTIM1_IN2 SPI2_MISO/I2S2_MCK PC3 LPTIM1_ETR SPI2_MOSI/I2S2_SD PC4 EVENTOUT LPUART1_TX PC5 DocID025938 Rev 4 Port C Pin descriptions 44/119 Table 18. Alternate function port C LPUART1_RX PC6 TIM22_CH1 PC7 TIM22_CH2 PC8 TIM22_ETR PC9 TIM21_ETR PC10 LPUART1_TX PC11 LPUART1_RX PC12 PC13 PC14 PC15 AF0 AF1 LPUART1 - Port Port D PD2 LPUART1_RTS STM32L051x6 STM32L051x8 Table 19. Alternate function port D STM32L051x6 STM32L051x8 5 Memory mapping Memory mapping Figure 9. Memory map [)))))))) [( [( [))) &RUWH[0 SHULSKHUDOV )/0/24 [ RESERVED [& [)) !(" [ RESERVED [$ [ [))))))) 2SWLRQE\WHV !0" [ [ 6\VWHP PHPRU\ !0" [ [ RESERVED [ 3HULSKHUDOV [ RESERVED [ )ODVKV\VWHP PHPRU\ 65$0 [ RESERVED &2'( [ [ &LASHSYSTEM MEMORYOR 32!- DEMENDINGON "//4 CONFIGURATION 5HVHUYHG 069 DocID025938 Rev 4 45/119 45 Electrical characteristics STM32L051x6 STM32L051x8 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the 1.65 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 10. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 11. Figure 10. Pin loading conditions Figure 11. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 DLF 46/119 DocID025938 Rev 4 DLF STM32L051x6 STM32L051x8 6.1.6 Electrical characteristics Power supply scheme Figure 12. Power supply scheme 287 *3,2V ,1 /HYHOVKLIWHU 6WDQGE\SRZHUFLUFXLWU\ 26&57&:DNHXS ORJLF57&EDFNXS UHJLVWHUV ,2 /RJLF .HUQHOORJLF &38 'LJLWDO 0HPRULHV 9'' 9'' 5HJXODWRU 1îQ) î) 966 9''$ 9''$ 95() Q) ) Q) ) 95() 95() $'& $QDORJ 5&3//&203 « 966$ 06Y9 6.1.7 Current consumption measurement Figure 13. Current consumption measurement scheme 9''$ ,'' 1[9'' 1îQ) î) 1[966 06Y9 DocID025938 Rev 4 47/119 97 Electrical characteristics 6.2 STM32L051x6 STM32L051x8 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 20: Voltage characteristics, Table 21: Current characteristics, and Table 22: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 20. Voltage characteristics Symbol VDD–VSS VIN(2) Ratings Min Max External main supply voltage (including VDDA, VDDIO2, VDD)(1) –0.3 4.0 Input voltage on FT and FTf pins VSS − 0.3 VDD+4.0 Input voltage on TC pins VSS − 0.3 4.0 Input voltage on BOOT0 VSS VDD + 4.0 VSS − 0.3 4.0 Input voltage on any other pin |ΔVDD| Variations between different VDD/VDDA power pins(3) - 50 |ΔVSS| Variations between all different ground pins - 50 - 0.4 VREF+ –VDDA Allowed voltage difference for VREF+ > VDDA VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV V see Section 6.3.11 1. All main power (VDD, VDDIO2, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 21 for maximum allowed injected current values. 3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and device operation. VDDIO2 is independent from VDD and VDDA: its value does not need to respect this rule. 48/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 21. Current characteristics Symbol Ratings Max. ΣIVDD(2) Total current into sum of all VDD power lines (source)(1) 105 ΣIVSS(2) (1) 105 Total current out of sum of all VSS ground lines (sink) (1) IVDD(PIN) Maximum current into each VDD power pin (source) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100 Output current sunk by any I/O and control pin except FTf pins 16 Output current sunk by FTf pins 22 Output current sourced by any I/O and control pin -16 Total output current sunk by sum of all IOs and control pins(2) 90 Total output current sourced by sum of all IOs and control pins(2) -90 IIO ΣIIO(PIN) IINJ(PIN) ΣIINJ(PIN) Injected current on FT, FFf, RST and B pins Unit mA -5/+0(3) Injected current on TC pin ± 5(4) Total injected current (sum of all I/O and control pins)(5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 20 for maximum allowed input voltage values. 4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 20: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 22. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature DocID025938 Rev 4 Value Unit –65 to +150 °C 150 °C 49/119 97 Electrical characteristics STM32L051x6 STM32L051x8 6.3 Operating conditions 6.3.1 General operating conditions Table 23. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - 0 32 fPCLK1 Internal APB1 clock frequency - 0 32 fPCLK2 Internal APB2 clock frequency - 0 32 BOR detector disabled 1.65 3.6 BOR detector enabled, at power on 1.8 3.6 BOR detector disabled, after power on 1.65 3.6 Must be the same voltage as VDD(1) 1.8 3.6 V 1.65 3.6 V 2.0 V ≤ VDD ≤ 3.6 V -0.3 5.5 1.65 V ≤ VDD ≤ 2.0 V -0.3 5.2 VDD VDDA VDDIO2 Standard operating voltage Analog operating voltage (all features) Standard operating voltage Input voltage on FT, FTf and RST pins(2) VIN Input voltage on BOOT0 pin - 0 5.5 Input voltage on TC pin - -0.3 VDD+0.3 TFBGA64 package - 327 LQFP64 package - 444 - 363 - 318 LQFP32 package - 526 UFQFPN32 - 351 TFBGA64 package - 81 LQFP64 package - 111 LQFP48 package - 91 WLCSP36 package - 79 LQFP32 package - 88 UFQFPN32 - 132 Power dissipation at TA = 85 °C (range 6) LQFP48 package or TA =105 °C (rage 7) (3) WLCSP36 package PD Power dissipation at TA = 125 °C (range 3) (3) 50/119 DocID025938 Rev 4 MHz V V mW STM32L051x6 STM32L051x8 Electrical characteristics Table 23. General operating conditions (continued) Symbol TA TJ Parameter Conditions Min Max Maximum power dissipation (range 6) –40 85 Maximum power dissipation (range 7) –40 105 Maximum power dissipation (range 3) –40 125 Junction temperature range (range 6) -40 °C ≤ TA ≤ 85 ° –40 105 Junction temperature range (range 7) -40 °C ≤ TA ≤ 105 °C –40 125 Junction temperature range (range 3) -40 °C ≤ TA ≤ 125 °C –40 130 Temperature range Unit °C 1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and normal operation. 2. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled. 3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 22: Thermal characteristics on page 49). 6.3.2 Embedded reset and power control block characteristics The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in Table 23. Table 24. Embedded reset and power control block characteristics Symbol Parameter VDD rise time rate tVDD(1) VDD fall time rate TRSTTEMPO(1) Reset temporization VPOR/PDR Power on/power down reset threshold VBOR0 Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 Conditions Min Typ Max BOR detector enabled 0 - ∞ BOR detector disabled 0 - 1000 BOR detector enabled 20 - ∞ BOR detector disabled 0 - 1000 VDD rising, BOR enabled - 2 3.3 0.4 0.7 1.6 Falling edge 1 1.5 1.65 Rising edge 1.3 1.5 1.65 Falling edge 1.67 1.7 1.74 Rising edge 1.69 1.76 1.8 Falling edge 1.87 1.93 1.97 Rising edge 1.96 2.03 2.07 Falling edge 2.22 2.30 2.35 Rising edge 2.31 2.41 2.44 VDD rising, BOR DocID025938 Rev 4 disabled(2) Unit µs/V ms V 51/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 24. Embedded reset and power control block characteristics (continued) Symbol Parameter Conditions VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst Hysteresis voltage Min Typ Max Falling edge 2.45 2.55 2.6 Rising edge 2.54 2.66 2.7 Falling edge 2.68 2.8 2.85 Rising edge 2.78 2.9 2.95 Falling edge 1.8 1.85 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.20 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - Unit V mV 1. Guaranteed by characterization results, not tested in production. 2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details. 52/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 6.3.3 Electrical characteristics Embedded internal reference voltage The parameters given in Table 26 are based on characterization results, unless otherwise specified. Table 25. Embedded internal reference voltage calibration values Calibration value name Description Memory address Raw data acquired at temperature of 30 °C VDDA= 3 V VREFINT_CAL 0x1FF8 0078 - 0x1FF8 0079 Table 26. Embedded internal reference voltage(1) Symbol VREFINT out Parameter (2) Internal reference voltage Conditions Min Typ Max Unit – 40 °C < TJ < +125 °C 1.202 1.224 1.242 V TVREFINT Internal reference startup time - - 2 3 ms VVREF_MEAS VDDA and VREF+ voltage during VREFINT factory measure - 2.99 3 3.01 V AVREF_MEAS Accuracy of factory-measured VREF value(3) Including uncertainties due to ADC and VDDA/VREF+ values - - ±5 mV –40 °C < TJ < +125 °C - 20 50 0 °C < TJ < +50 °C - - 20 TCoeff(4) Temperature coefficient ACoeff(4) Long-term stability 1000 hours, T= 25 °C - - 1000 ppm VDDCoeff(4) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V ppm/°C TS_vrefint(4)(5) ADC sampling time when reading the internal reference voltage - 5 10 - µs TADC_BUF(4) Startup time of reference voltage buffer for ADC - - - 10 µs IBUF_ADC(4) Consumption of reference voltage buffer for ADC - - 13.5 25 µA IVREF_OUT(4) VREF_OUT output current(6) - - - 1 µA CVREF_OUT(4) VREF_OUT output load - - - 50 pF Consumption of reference voltage buffer for VREF_OUT and COMP - - 730 1200 nA VREFINT_DIV1(4) 1/4 reference voltage - 24 25 26 VREFINT_DIV2(4) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(4) 3/4 reference voltage - 74 75 76 ILPBUF(4) % VREFINT 1. Refer to Table 38: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current consumption (IREFINT). 2. Guaranteed by test in production. 3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes. DocID025938 Rev 4 53/119 97 Electrical characteristics STM32L051x6 STM32L051x8 4. Guaranteed by design, not tested in production. 5. Shortest sampling time can be determined in the application by multiple iterations. 6. To guarantee less than 1% VREF_OUT deviation. 6.3.4 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise. The current consumption values are derived from the tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23: General operating conditions unless otherwise specified. The MCU is placed under the following conditions: • All I/O pins are configured in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified. • When the peripherals are enabled fAPB1 = fAPB2 = fAPB • When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used) • The HSE user clock applied to OSCI_IN input follows the characteristic specified in Table 40: High-speed external user clock characteristics • For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins • For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not specified otherwise The parameters given in Table 47, Table 23 and Table 24 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. 54/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 27. Current consumption in Run mode, code with data processing running from Flash Symbol Parameter fHCLK Typ Max(1) 1 MHz 165 230 2 MHz 290 360 4 MHz 555 630 4 MHz 0.665 0.74 8 MHz 1.3 1.4 16 MHz 2.6 2.8 8 MHz 1.55 1.7 16 MHz 3.1 3.4 32 MHz 6.3 6.8 65 kHz 36.5 110 524 kHz 99.5 190 4.2 MHz 620 700 Range 2, VCORE=1.5 V, VOS[1:0]=10, 16 MHz 2.6 2.9 Range 1, VCORE=1.8 V, VOS[1:0]=01 32 MHz 6.25 7 Conditions Range 3, VCORE=1.2 V VOS[1:0]=11 IDD (Run from Flash) fHSE = fHCLK up to 16 MHz included, Range 2, VCORE=1.5 V, fHSE = fHCLK/2 above VOS[1:0]=10, 16 MHz (PLL on)(2) Supply current in Run mode, code executed from Flash Range 1, VCORE=1.8 V, VOS[1:0]=01 Range 3, VCORE=1.2 V, VOS[1:0]=11 MSI clock HSI clock Unit µA mA µA mA 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Table 28. Current consumption in Run mode vs code type, code with data processing running from Flash Symbol IDD (Run from Flash) Parameter Supply current in Run mode, code executed from Flash Conditions Range 3, VCORE=1.2 V, VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL on)(1) Range 1, VOS[1:0]=01, VCORE=1.8 V fHCLK Typ Dhrystone 555 CoreMark 585 Fibonacci 4 MHz 440 while(1) 355 while(1), prefetch off 353 Dhrystone 6.3 CoreMark 6.3 Fibonacci 32 MHz 6.55 while(1) 5.4 while(1), prefetch off 5.2 Unit µA mA 1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DocID025938 Rev 4 55/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Figure 14. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS /;ŵͿ ϯ͘ϬϬ Ϯ͘ϱϬ Ϯ͘ϬϬ ϭ͘ϱϬ ϭ͘ϬϬ Ϭ͘ϱϬ Ϭ s;sͿ ϭ͘ϴϬнϬϬ Ϯ͘ϬϬнϬϬ Ϯ͘ϮϬнϬϬ Ϯ͘ϰϬнϬϬ Ϯ͘ϲϬнϬϬ Ϯ͘ϴϬнϬϬ ϯ͘ϬϬнϬϬ ϯ͘ϮϬнϬϬ ϯ͘ϰϬнϬϬ ϯ͘ϲϬнϬϬ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϱϱΣ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϴϱΣ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ʹϮϱΣ ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϭϬϱΣ 06Y9 Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS ,''P$ ϯ͘ϬϬ Ϯ͘ϱϬ Ϯ͘ϬϬ ϭ͘ϱϬ ϭ͘ϬϬ Ϭ͘ϱϬ Ϭ 9''9 ( ( ( ( ( ( ( ( ( ( 'KU\VWRQH:6& 'KU\VWRQH:6& 'KU\VWRQH:6±& ŚƌLJƐƚŽŶĞϮ͘ϭͲϭt^ͲϭϬϱΣ 06Y9 56/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 29. Current consumption in Run mode, code with data processing running from RAM Symbol Parameter fHCLK Typ Max(1) 1 MHz 135 170 2 MHz 240 270 4 MHz 450 480 4 MHz 0.52 0.6 8 MHz 1 1.2 16 MHz 2 2.3 8 MHz 1.25 1.4 16 MHz 2.45 2.8 32 MHz 5.1 5.4 65 kHz 34.5 75 524 kHz 83 120 4.2 MHz 485 540 Range 2, VCORE=1.5 V, VOS[1:0]=10 16 MHz 2.1 2.3 Range 1, VCORE=1.8 V, VOS[1:0]=01 32 MHz Conditions Range 3, VCORE=1.2 V, VOS[1:0]=11 fHSE = fHCLK up to 16 MHz, included fHSE = fHCLK/2 above 16 MHz (PLL on)(2) IDD (Run from RAM) Range 2, VCORE=1.5 ,V, VOS[1:0]=10 Range 1, VCORE=1.8 V, VOS[1:0]=01 Supply current in Run mode, code executed from RAM, Flash switched off Range 3, VCORE=1.2 V, VOS[1:0]=11 MSI clock HSI16 clock source (16 MHz) Unit µA mA µA mA 5.1 5.6 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Table 30. Current consumption in Run mode vs code type, code with data processing running from RAM(1) Symbol Parameter Conditions fHCLK Dhrystone IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash switched off fHSE = fHCLK up to 16 MHz, included, fHSE = fHCLK/2 above 16 MHz (PLL on)(2) Range 3, VCORE=1.2 V, VOS[1:0]=11 Range 1, VCORE=1.8 V, VOS[1:0]=01 CoreMark Fibonacci Typ 450 4 MHz 575 370 while(1) 340 Dhrystone 5.1 CoreMark Fibonacci while(1) Unit 32 MHz 6.25 4.4 µA mA 4.7 1. Guaranteed by characterization results, not tested in production, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DocID025938 Rev 4 57/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 31. Current consumption in Sleep mode Symbol Parameter Conditions Range 3, VCORE=1.2 V, VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, Range 2, fHSE = fHCLK/2 VCORE=1.5 V, above 16 MHz (PLL VOS[1:0]=10 on)(2) Range 1, VCORE=1.8 V, VOS[1:0]=01 Supply current in Sleep mode, Flash off MSI clock Range 3, VCORE=1.2 V, VOS[1:0]=11 Range 2, VCORE=1.5 V, HSI16 clock source VOS[1:0]=10 (16 MHz) Range 1, VCORE=1.8 V, VOS[1:0]=01 IDD (Sleep) Range 3, VCORE=1.2 V, VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, Range 2, fHSE = fHCLK/2 CORE=1.5 V, above 16 MHz (PLL VOS[1:0]=10 on)(2) Range 1, VCORE=1.8 V, VOS[1:0]=01 Supply current in Sleep mode, Flash on MSI clock Range 3, VCORE=1.2 V, VOS[1:0]=11 Range 2, VCORE=1.5 V, HSI16 clock source VOS[1:0]=10 (16 MHz) Range 1, VCORE=1.8 V, VOS[1:0]=01 fHCLK Typ Max(1) 1 MHz 43.5 90 2 MHz 72 120 4 MHz 130 180 4 MHz 160 210 8 MHz 305 370 16 MHz 590 710 8 MHz 370 430 16 MHz 715 860 32 MHz 1650 1900 65 kHz 18 65 524 kHz 31.5 75 4.2 MHz 140 210 16 MHz 665 830 32 MHz 1750 2100 1 MHz 57.5 130 2 MHz 84 170 4 MHz 150 280 4 MHz 170 310 8 MHz 315 420 16 MHz 605 770 8 MHz 380 460 16 MHz 730 950 32 MHz 1650 2400 65 kHz 29.5 110 524 kHz 44.5 130 4.2 MHz 150 270 16 MHz 680 950 32 MHz 1750 2100 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 58/119 DocID025938 Rev 4 Unit µA STM32L051x6 STM32L051x8 Electrical characteristics Table 32. Current consumption in Low-power Run mode Symbol Parameter Typ Max(1) TA = -40 °C to 25 °C 8.5 10 TA = 85 °C 11.5 48 TA = 105 °C 15.5 53 TA = 125 °C 27.5 130 10 15 TA = 85 °C 15.5 50 TA = 105 °C 19.5 54 TA = 125 °C 31.5 130 TA = -40 °C to 25 °C 20 25 TA = 55 °C 23 50 TA = 85 °C 25.5 55 TA = 105 °C 29.5 64 TA = 125 °C 40 140 TA = -40 °C to 25 °C 22 28 TA = 85 °C 26 68 TA = 105 °C 31 75 TA = 125 °C 44 95 TA = -40 °C to 25 °C 27.5 33 TA = 85 °C 31.5 73 TA = 105 °C 36.5 80 TA = 125 °C 49 100 TA = -40 °C to 25 °C 39 46 TA = 55 °C 41 80 TA = 85 °C 44 86 TA = 105 °C 49.5 100 TA = 125 °C 60 120 Conditions MSI clock, 65 kHz fHCLK = 32 kHz All peripherals off, code executed MSI clock, 65 kHz from RAM, f HCLK = 65 kHz Flash switched off, VDD from 1.65 V to 3.6 V MSI clock, 131 kHz fHCLK = 131 kHz Supply IDD current in (LP Run) Low-power run mode MSI clock, 65 kHz fHCLK = 32 kHz All peripherals off, code executed from Flash, VDD from 1.65 V to 3.6 V MSI clock, 65 kHz fHCLK = 65 kHz MSI clock, 131 kHz fHCLK = 131 kHz TA =-40 °C to 25 °C Unit µA 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified. DocID025938 Rev 4 59/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Figure 16. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS ,''P$ ( ( ( ( ( ( ( ( 9''9 ( ( ( ( ( ( ( ( ( ( :6& :6& :6±& :6& :6& 06Y9 Table 33. Current consumption in Low-power Sleep mode Symbol Parameter MSI clock, 65 kHz fHCLK = 32 kHz Flash off MSI clock, 65 kHz fHCLK = 32 kHz Flash on IDD (LP Sleep) Supply All peripherals current in off, VDD from Low-power 1.65 V to 3.6 V sleep mode Typ Max(1) TA = -40 °C to 25 °C 4.7(2) - TA = -40 °C to 25 °C 17 23 TA = 85 °C 19.5 63 TA = 105 °C 23 69 TA = 125 °C 32.5 90 TA = -40 °C to 25 °C 17 23 TA = 85 °C 20 63 TA = 105 °C 23.5 69 TA = 125 °C 32.5 90 TA = -40 °C to 25 °C 19.5 36 20.5 64 22.5 66 26 72 35 95 Conditions MSI clock, 65 kHz fHCLK = 65 kHz, Flash on T = 55 °C MSI clock, 131 kHz A fHCLK = 131 kHz, TA = 85 °C Flash on TA = 105 °C TA = 125 °C Unit µA 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified. 2. As the CPU is in Sleep mode, the difference between the current consumption with Flash on and off (nearly 12 µA) is the same whatever the clock frequency. 60/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 34. Typical and maximum current consumptions in Stop mode Symbol Parameter Conditions IDD (Stop) Supply current in Stop mode Typ Max(1) Unit TA = -40°C to 25°C 0.41 1 TA = 55°C 0.63 2.1 TA= 85°C 1.7 4.5 TA = 105°C 4 9.6 TA = 125°C 11 24(2) µA 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified. 2. Guaranteed by test in production. Figure 17. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive ,''P$ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 9''9 & & & & & 06Y9 Figure 18. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off ,''P$ ( ( ( ( ( ( ( ( 9''9 ( ( ( ( ( ( ( ( ( ( & & & & & DocID025938 Rev 4 06Y9 61/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 35. Typical and maximum current consumptions in Standby mode Symbol Parameter Typ Max(1) 1.3 1.7 TA = 55 °C - 2.9 TA= 85 °C - 3.3 TA = 105 °C - 4.1 TA = 125 °C - 8.5 TA = -40 °C to 25 °C 0.29 0.6 TA = 55 °C 0.32 0.9 TA = 85 °C 0.5 2.3 TA = 105 °C 0.94 3 TA = 125 °C 2.6 7 Conditions TA = -40 °C to 25 °C Independent watchdog and LSI enabled Supply current in Standby IDD (Standby) mode Independent watchdog and LSI off Unit µA 1. Guaranteed by characterization results at 125 °C, not tested in production, unless otherwise specified Table 36. Average current consumption during wakeup System frequency Current consumption during wakeup HSI 1 HSI/4 0,7 MSI 4,2 MHz 0,7 MSI 1,05 MHz 0,4 MSI 65 KHz 0,1 Reset pin pulled down - 0,21 BOR on - 0,23 With Fast wakeup set MSI 2,1 MHz 0,5 With Fast wakeup disabled MSI 2,1 MHz 0,12 Symbol parameter IDD (WU from Stop) IDD (Reset) IDD (Power Up) IDD (WU from StandBy) Supply current during wakeup from Stop mode Unit mA On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions: 62/119 • all I/O pins are in input mode with a static value at VDD or VSS (no load) • all peripherals are disabled unless otherwise mentioned • the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 37. Peripheral current consumption in run or Sleep mode(1) Typical consumption, VDD = 3.0 V, TA = 25 °C Peripheral Range 1, Range 2, Range 3, VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 Low-power sleep and run WWDG 3 2 2 2 SPI2 9 4.5 3.5 4 LPUART1 8 6.5 5.5 6 I2C1 11 9.5 7.5 9 I2C2 4 3.5 3 2.5 USART2 14.5 12 9.5 11 LPTIM1 10 8.5 6.5 8 TIM2 10.5 8.5 7 9 TIM6 3.5 3 2.5 2 2.5 2 2 2 5.5 5 3.5 4 4 3 3 2.5 USART1 14.5 11.5 9.5 12 TIM21 7.5 6 5 5.5 TIM22 7 6 5 6 FIREWALL 1.5 1 1 0.5 DBGMCU 1.5 1 1 0.5 SYSCFG 2.5 2 2 1.5 GPIOA 3.5 3 2.5 2.5 GPIOB CortexM0+ core GPIOC I/O port GPIOD 3.5 2.5 2 2.5 8.5 6.5 5.5 7 1 0.5 0.5 0.5 GPIOH 1.5 1 1 0.5 CRC 1.5 1 1 1 FLASH 0(3) 0(3) 0(3) 0(3) DMA1 10 8 6.5 8.5 RNG 5.5 1 0.5 0.5 TSC 3 2.5 2 3 All enabled 279 221.5 219.5 215 PWR 2.5 2 2 1 APB1 CRS ADC1 (2) SPI1 APB2 AHB DocID025938 Rev 4 Unit µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) µA/MHz (fHCLK) 63/119 97 Electrical characteristics STM32L051x6 STM32L051x8 1. Data based on differential IDD measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production. 2. HSI oscillator is off for this measure. 3. Current consumption is negligible and close to 0 µA. Table 38. Peripheral current consumption in Stop and Standby mode Symbol Typical consumption, TA = 25 °C Peripheral IDD(PVD / BOR) - IREFINT (1) - LSE Low drive - LPTIM1, Input 100 Hz VDD=1.8 V VDD=3.0 V 0.7 1.2 - 1.4 0,1 0,1 0,01 0,01 Unit µA 1. - LPTIM1, Input 1 MHz 6 6 - LPUART1 0,2 0,2 - RTC 0,3 0,48 LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.- 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode: • Sleep mode: the clock source is the clock that was set before entering Sleep mode • Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4. • Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. 64/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 39. Low-power mode wakeup timings Symbol Parameter tWUSLEEP Wakeup from Sleep mode 0.42 fHCLK = 262 kHz Flash enabled 4.5 fHCLK = 262 kHz Flash switched off 7.7 fHCLK = fMSI = 4.2 MHz 5.09 fHCLK = fHSI = 16 MHz 4.90 fHCLK = fHSI/4 = 4 MHz 7.93 fHCLK = fMSI = 4.2 MHz Voltage range 1 5.13 fHCLK = fMSI = 4.2 MHz Voltage range 2 5.09 fHCLK = fMSI = 4.2 MHz Voltage range 3 5.08 fHCLK = fMSI = 2.1 MHz 7.5 fHCLK = fMSI = 1.05 MHz 13.5 fHCLK = fMSI = 524 kHz 27.6 fHCLK = fMSI = 262 kHz 51.7 fHCLK = fMSI = 131 kHz 102.3 fHCLK = MSI = 65 kHz 197.2 fHCLK = fHSI = 16 MHz 4.80 fHCLK = fHSI/4 = 4 MHz 7.95 fHCLK = fHSI = 16 MHz 4.86 fHCLK = fHSI/4 = 4 MHz 8.04 fHCLK = fMSI = 4.2 MHz 5.06 Wakeup from Standby mode FWU bit = 1 fHCLK = MSI = 2.1 MHz 67.5 Wakeup from Standby mode FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.56 Wakeup from Stop mode, regulator in Run mode Wakeup from Stop mode, regulator in low-power mode Wakeup from Stop mode, regulator in low-power mode, code running from RAM tWUSTDBY 6.3.6 Typ fHCLK = 32 MHz Wakeup from Low-power sleep mode, tWUSLEEP_LP fHCLK = 262 kHz tWUSTOP Conditions Unit µs ms External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 19. DocID025938 Rev 4 65/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 40. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Unit CSS is on or PLL is used 1 8 32 MHz CSS is off, PLL not used 0 8 32 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time 12 - - tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 OSC_IN input capacitance - 2.6 - pF 45 - 55 % - - ±1 µA Cin(HSE) ns - DuCy(HSE) Duty cycle IL OSC_IN Input leakage current V VSS ≤ VIN ≤ VDD 1. Guaranteed by design, not tested in production. Figure 19. High-speed external clock source AC timing diagram 9+6(+ 9+6(/ WU+6( WI+6( W:+6( W:+6( W 7+6( (;7(5 1$/ &/2&. 6285& ( I+6(BH[W 26& B,1 ,/ 670/[[ DLF 66/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Low-speed external user clock generated from an external source The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 23. Table 41. Low-speed external user clock characteristics(1) Symbol Parameter Conditions fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tw(LSE) OSC32_IN high or low time tr(LSE) tf(LSE) OSC32_IN rise or fall time CIN(LSE) Typ Max Unit 1 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 465 - ns - - 10 - - 0.6 - pF - 45 - 55 % VSS ≤ VIN ≤ VDD - - ±1 µA OSC32_IN input capacitance DuCy(LSE) Duty cycle IL Min OSC32_IN Input leakage current 1. Guaranteed by design, not tested in production Figure 20. Low-speed external clock source AC timing diagram 9/6(+ 9/6(/ WU/6( WI/6( W:/6( W:/6( W 7/6( (;7(5 1$/ &/2&. 6285& ( I/6(BH[W 26&B,1 ,/ 670/[[ DLF High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 42. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization DocID025938 Rev 4 67/119 97 Electrical characteristics STM32L051x6 STM32L051x8 time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 42. HSE oscillator characteristics(1) Symbol Parameter Conditions fOSC_IN Oscillator frequency RF Feedback resistor Gm Maximum critical crystal transconductance tSU(HSE) (2) Startup time Min Typ - 1 - - Startup VDD is stabilized Max Unit 25 MHz 200 - kΩ - - 700 µA /V - 2 - ms 1. Guaranteed by design, not tested in production. 2. Guaranteed by characterization results, not tested in production. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 21). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 21. HSE oscillator circuit diagram I+6(WRFRUH 5P /P 5) &2 &/ 26&B,1 &P JP 5HVRQDWRU 5HVRQDWRU &RQVXPSWLRQ FRQWURO 670 26&B287 &/ DLE Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 43. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization 68/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 43. LSE oscillator characteristics(1) Symbol fLSE Gm Conditions(2) Min(2) Typ Max Unit - 32.768 - kHz LSEDRV[1:0]=00 lower driving capability - - 0.5 LSEDRV[1:0]= 01 medium low driving capability - - 0.75 LSEDRV[1:0] = 10 medium high driving capability - - 1.7 LSEDRV[1:0]=11 higher driving capability - - 2.7 VDD is stabilized - 2 - Parameter LSE oscillator frequency Maximum critical crystal transconductance tSU(LSE)(3) Startup time µA/V s 1. Guaranteed by design, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. Guaranteed by characterization results, not tested in production. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 22. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWK LQWHJUDWHGFDSDFLWRUV &/ I/6( 26&B,1 'ULYH SURJUDPPDEOH DPSOLILHU N+ ] UHVRQDWRU 26&B28 7 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID025938 Rev 4 69/119 97 Electrical characteristics 6.3.7 STM32L051x6 STM32L051x8 Internal clock source characteristics The parameters given in Table 44 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. High-speed internal 16 MHz (HSI16) RC oscillator Table 44. 16 MHz HSI16 oscillator characteristics Symbol fHSI16 TRIM (1)(2) ACCHSI16 (2) Parameter Conditions Min Typ Max Unit Frequency VDD = 3.0 V - 16 - MHz HSI16 usertrimmed resolution Trimming code is not a multiple of 16 - ± 0.4 0.7 % Trimming code is a multiple of 16 - Accuracy of the factory-calibrated HSI16 oscillator - ± 1.5 % VDDA = 3.0 V, TA = 25 °C -1(3) - 1(3) % VDDA = 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 % VDDA = 3.0 V, TA = -10 to 70 °C -2 - 2 % VDDA = 3.0 V, TA = -10 to 85 °C -2.5 - 2 % VDDA = 3.0 V, TA = -10 to 105 °C -4 - 2 % -5.45 - 3.25 % VDDA = 1.65 V to 3.6 V TA = -40 to 125 °C tSU(HSI16)(2) HSI16 oscillator startup time - - 3.7 6 µs IDD(HSI16)(2) HSI16 oscillator power consumption - - 100 140 µA 1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). 2. Guaranteed by characterization results, not tested in production. 3. Guaranteed by test in production. Figure 23. HSI16 minimum and maximum value versus temperature 9PLQ 9W\S 9PD[ 9PD[ 9PLQ 06Y9 70/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Low-speed internal (LSI) RC oscillator Table 45. LSI oscillator characteristics Symbol Parameter Min Typ Max Unit fLSI(1) LSI frequency 26 38 56 kHz DLSI(2) LSI oscillator frequency drift 0°C ≤ TA ≤ 85°C -10 - 4 % LSI oscillator startup time - - 200 µs LSI oscillator power consumption - 400 510 nA tsu(LSI)(3) IDD(LSI) (3) 1. Guaranteed by test in production. 2. This is a deviation for an individual part, once the initial frequency has been measured. 3. Guaranteed by design, not tested in production. Multi-speed internal (MSI) RC oscillator Table 46. MSI oscillator characteristics Symbol Condition Typ MSI range 0 65.5 - MSI range 1 131 - MSI range 2 262 - MSI range 3 524 - MSI range 4 1.05 - MSI range 5 2.1 - MSI range 6 4.2 - Frequency error after factory calibration - ±0.5 - % DTEMP(MSI)(1) MSI oscillator frequency drift 0 °C ≤ TA ≤ 85 °C - ±3 - % DVOLT(MSI)(1) MSI oscillator frequency drift 1.65 V ≤ VDD ≤ 3.6 V, TA = 25 °C - - 2.5 %/V MSI range 0 0.75 - MSI range 1 1 - MSI range 2 1.5 - MSI range 3 2.5 - MSI range 4 4.5 - MSI range 5 8 - MSI range 6 15 - fMSI ACCMSI IDD(MSI)(2) Parameter Frequency after factory calibration, done at VDD= 3.3 V and TA = 25 °C MSI oscillator power consumption DocID025938 Rev 4 Max Unit kHz MHz µA 71/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 46. MSI oscillator characteristics (continued) Symbol tSU(MSI) tSTAB(MSI)(2) fOVER(MSI) Parameter MSI oscillator startup time MSI oscillator stabilization time MSI oscillator frequency overshoot Condition Typ Max Unit MSI range 0 30 - MSI range 1 20 - MSI range 2 15 - MSI range 3 10 - MSI range 4 6 - MSI range 5 5 - MSI range 6, Voltage range 1 and 2 3.5 - MSI range 6, Voltage range 3 5 - MSI range 0 - 40 MSI range 1 - 20 MSI range 2 - 10 MSI range 3 - 4 MSI range 4 - 2.5 MSI range 5 - 2 MSI range 6, Voltage range 1 and 2 - 2 MSI range 3, Voltage range 3 - 3 Any range to range 5 - 4 Any range to range 6 - 6 µs µs MHz 1. This is a deviation for an individual part, once the initial frequency has been measured. 2. Guaranteed by characterization results, not tested in production. 6.3.8 PLL characteristics The parameters given in Table 47 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. Table 47. PLL characteristics Value Symbol fPLL_IN 72/119 Parameter Unit Min Typ Max(1) PLL input clock(2) 2 - 24 MHz PLL input clock duty cycle 45 - 55 % DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 47. PLL characteristics (continued) Value Symbol Parameter Min Typ Max(1) Unit fPLL_OUT PLL output clock 2 - 32 MHz tLOCK PLL input = 16 MHz PLL VCO = 96 MHz - 115 160 µs Jitter Cycle-to-cycle jitter - ± 600 ps IDDA(PLL) Current consumption on VDDA - 220 450 IDD(PLL) Current consumption on VDD - 120 150 µA 1. Guaranteed by characterization results, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 6.3.9 Memory characteristics RAM memory Table 48. RAM and hardware registers Symbol VRM Parameter Conditions Data retention mode(1) STOP mode (or RESET) Min Typ Max Unit 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode). DocID025938 Rev 4 73/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Flash memory and data EEPROM Table 49. Flash memory and data EEPROM characteristics Symbol Conditions Min Typ Max(1) Unit - 1.65 - 3.6 V Erasing - 3.28 3.94 Programming - 3.28 3.94 Average current during the whole programming / erase operation - 500 700 µA Maximum current (peak) TA = 25 °C, VDD = 3.6 V during the whole programming / erase operation - 1.5 2.5 mA Parameter VDD Operating voltage Read / Write / Erase tprog Programming time for word or half-page IDD ms 1. Guaranteed by design, not tested in production. Table 50. Flash memory and data EEPROM endurance and retention Value Symbol Parameter Cycling (erase / write) Program memory NCYC(2) Cycling (erase / write) EEPROM data memory Cycling (erase / write) Program memory Unit TA = -40°C to 105 °C 100 kcycles 0.2 Data retention (program memory) after 10 kcycles at TA = 85 °C Data retention (EEPROM data memory) after 100 kcycles at TA = 85 °C Data retention (program memory) after 10 kcycles at TA = 105 °C Data retention (EEPROM data memory) after 100 kcycles at TA = 105 °C Data retention (program memory) after 200 cycles at TA = 125 °C Data retention (EEPROM data memory) after 2 kcycles at TA = 125 °C TA = -40°C to 125 °C 2 30 TRET = +85 °C 30 TRET = +105 °C years 10 TRET = +125 °C 1. Guaranteed by characterization results, not tested in production. 2. Characterization is done according to JEDEC JESD22-A117. 74/119 Min(1) 10 Cycling (erase / write) EEPROM data memory tRET(2) Conditions DocID025938 Rev 4 STM32L051x6 STM32L051x8 6.3.10 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 51. They are based on the EMS levels and classes defined in application note AN1709. Table 51. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 32 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25 °C, fHCLK = 32 MHz conforms to IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. DocID025938 Rev 4 75/119 97 Electrical characteristics STM32L051x6 STM32L051x8 To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 52. EMI characteristics Max vs. frequency range Symbol Parameter SEMI 6.3.11 Conditions VDD = 3.3 V, TA = 25 °C, Peak level LQFP100 package compliant with IEC 61967-2 Monitored frequency band 4 MHz 16 MHz 32 MHz voltage voltage voltage range 3 range 2 range 1 0.1 to 30 MHz 3 -6 -5 30 to 130 MHz 18 4 -7 130 MHz to 1GHz 15 5 -7 SAE EMI Level 2.5 2 1 Unit dBµV - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 53. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions TA = +25 °C, Electrostatic discharge conforming to voltage (human body model) ANSI/JEDEC JS-001 Electrostatic discharge VESD(CDM) voltage (charge device model) TA = +25 °C, conforming to ANSI/ESD STM5.3.1. 1. Guaranteed by characterization results, not tested in production. 76/119 DocID025938 Rev 4 Class Maximum value(1) 2 2000 Unit V C4 500 STM32L051x6 STM32L051x8 Electrical characteristics Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 54. Electrical sensitivities Symbol LU 6.3.12 Parameter Static latch-up class Conditions Class TA = +125 °C conforming to JESD78A II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator frequency deviation). The test results are given in the Table 55. Table 55. I/O current injection susceptibility Functional susceptibility Symbol Description Injected current on BOOT0 IINJ Injected current on all FT pins Injected current on any other pin Negative injection Positive injection -0 NA -5 (1) NA (1) +5 -5 Unit mA 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID025938 Rev 4 77/119 97 Electrical characteristics 6.3.13 STM32L051x6 STM32L051x8 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 56 are derived from tests performed under the conditions summarized in Table 23. All I/Os are CMOS and TTL compliant. Table 56. I/O static characteristics Symbol VIL VIH Vhys Ilkg RPU Parameter Input low level voltage Conditions Min Typ Max TC, FT, FTf, RST I/Os - - 0.3VDD BOOT0 pin - - 0.14VDD(1) All I/Os 0.7 VDD - - Standard I/Os - 10% VDD(3) - BOOT0 pin - 0.01 - VSS ≤ VIN ≤ VDD I/Os with analog switches - - ±50 VSS ≤ VIN ≤ VDD Standard I/Os - - ±50 FT I/O VDD≤ VIN ≤ 5 V - - ±10 nA µA VIN = VSS 30 45 60 kΩ VIN = VDD 30 45 60 kΩ - - 5 - pF Input high level voltage I/O Schmitt trigger voltage hysteresis (2) (4) Input leakage current Weak pull-up equivalent resistor(5) RPD Weak pull-down equivalent CIO I/O pin capacitance resistor(5) Unit V 1. Guaranteed by characterization, not tested in production 2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production. 3. With a minimum of 200 mV. Guaranteed by characterization results, not tested in production. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 78/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Figure 24. VIH/VIL versus VDD (CMOS I/Os) 9,/9,+9 LQV DOOS 9 '' 3+ 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' + 3 9 ,+PLQ 3& 7 %22 9 ' ' PLQ 9,+PLQ LUH UHTX DUG WDQG 6V &02 WV9 ,+ PHQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9,/PD[ 9''9 06Y9 Figure 25. VIH/VIL versus VDD (TTL I/Os) 9,/9,+9 SLQV DOO 3+ ' ' 9 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' 3+ LQ 9 ,+P 3& 7 %22 77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9 9,+PLQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG 9,/PD[ 77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9 9''9 06Y9 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±15 mA with the non-standard VOL/VOH specifications given in Table 57. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD(Σ) (see Table 21). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS(Σ) (see Table 21). DocID025938 Rev 4 79/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Output voltage levels Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. All I/Os are CMOS and TTL compliant. Table 57. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2), IIO = +8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 VDD-0.4 - (1) Output low level voltage for an I/O pin TTL port(2), IIO =+ 8 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 (3)(4) Output high level voltage for an I/O pin TTL port(2), IIO = -6 mA 2.7 V ≤ VDD ≤ 3.6 V 2.4 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +15 mA 2.7 V ≤ VDD ≤ 3.6 V - 1.3 VOH(3)(4) Output high level voltage for an I/O pin IIO = -15 mA 2.7 V ≤ VDD ≤ 3.6 V VDD-1.3 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V ≤ VDD < 3.6 V - 0.45 VOH(3)(4) Output high level voltage for an I/O pin IIO = -4 mA V -0.45 1.65 V ≤ VDD ≤ 3.6 V DD VOL VOH Output low level voltage for an FTf VOLFM+(1)(4) I/O pin in Fm+ mode Unit V - IIO = 20 mA 2.7 V ≤ VDD ≤ 3.6 V - 0.4 IIO = 10 mA 1.65 V ≤ VDD ≤ 3.6 V - 0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 21. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣIIO(PIN). 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 21. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣIIO(PIN). 4. Guaranteed by characterization results, not tested in production. 80/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 26 and Table 58, respectively. Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. Table 58. I/O AC characteristics(1) OSPEEDRx [1:0] bit value(1) Symbol Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time 00 01 Fmax(IO)out Maximum frequency(3) 10 Output rise and fall time Fmax(IO)out Maximum frequency(3) 11 - Max(2) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400 CL = 50 pF, VDD = 1.65 V to 2.7 V - 100 CL = 50 pF, VDD = 2.7 V to 3.6 V - 125 CL = 50 pF, VDD = 1.65 V to 2.7 V - 320 CL = 50 pF, VDD = 2.7 V to 3.6 V - 2 CL = 50 pF, VDD = 1.65 V to 2.7 V - 0.6 CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 CL = 50 pF, VDD = 1.65 V to 2.7 V - 65 CL = 50 pF, VDD = 2.7 V to 3.6 V - 10 CL = 50 pF, VDD = 1.65 V to 2.7 V - 2 CL = 50 pF, VDD = 2.7 V to 3.6 V - 13 CL = 50 pF, VDD = 1.65 V to 2.7 V - 28 CL = 30 pF, VDD = 2.7 V to 3.6 V - 35 CL = 50 pF, VDD = 1.65 V to 2.7 V - 10 CL = 30 pF, VDD = 2.7 V to 3.6 V - 6 CL = 50 pF, VDD = 1.65 V to 2.7 V - 17 8 - Conditions fmax(IO)out tf(IO)out tr(IO)out Min Parameter tf(IO)out tr(IO)out Output rise and fall time tEXTIpw Pulse width of external signals detected by the EXTI controller - Unit kHz ns MHz ns MHz ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design. Not tested in production. 3. The maximum frequency is defined in Figure 26. DocID025938 Rev 4 81/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Figure 26. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU,2RXW WI,2RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´ 6.3.14 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU , except when it is internally driven low (see Table 59). Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 23. Table 59. NRST pin characteristics Symbol VIL(NRST) (1) Parameter Conditions Min Typ NRST input low level voltage - VSS - 0.8 - 1.4 - VDD IOL = 2 mA 2.7 V < VDD < 3.6 V - - IOL = 1.5 mA 1.65 V < VDD < 2.7 V - - - - 10%VDD(2) - mV Weak pull-up equivalent resistor(3) VIN = VSS 30 45 60 kΩ NRST input filtered pulse - - - 50 ns NRST input not filtered pulse - 350 - - ns VIH(NRST)(1) NRST input high level voltage NRST output low level VOL(NRST)(1) voltage Vhys(NRST)(1) RPU VF(NRST)(1) VNF(NRST) (1) NRST Schmitt trigger voltage hysteresis Max Unit V 0.4 1. Guaranteed by design, not tested in production. 2. 200 mV minimum value 3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. 82/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Figure 27. Recommended NRST pin protection 9'' ([WHUQDOUHVHWFLUFXLW 1567 538 ,QWHUQDOUHVHW )LOWHU ) 670/[[ DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 59. Otherwise the reset will not be taken into account by the device. 6.3.15 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 60 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 23: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 60. ADC characteristics Symbol VDDA IDDA (ADC) fADC fS(2) Parameter Conditions Analog supply voltage for ADC on Min Typ Max Unit 1.65 - 3.6 V Current consumption of the ADC on VDDA and VREF+ 1.14 Msps - 200 - 10 ksps - 40 - Current consumption of the ADC on VDD(1) 1.14 Msps - 70 - 10 ksps - 1 - Voltage scaling Range 1 0.14 - 16 Voltage scaling Range 2 0.14 - 8 Voltage scaling Range 3 0.14 - 4 0.05 - 1.14 MHz - - 941 kHz - - 17 1/fADC 0 - VDDA V - - 50 kΩ ADC clock frequency Sampling rate fADC = 16 MHz µA MHz fTRIG(2) External trigger frequency VAIN Conversion voltage range RAIN(2) External input impedance RADC(2) Sampling switch resistance - - 1 kΩ CADC(2) Internal sample and hold capacitor - - 8 pF See Equation 1 and Table 61 for details DocID025938 Rev 4 83/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 60. ADC characteristics (continued) Symbol tCAL(2) Parameter Conditions fADC = 16 MHz Calibration time tlatr(2) JitterADC ADC_DR register write latency Trigger conversion latency Sampling time tSTAB(2) Power-up time tConV (2) Max Unit 5.2 µs 83 1/fADC - 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle fADC = fPCLK/2 = 16 MHz 0.266 µs fADC = fPCLK/2 8.5 1/fPCLK fADC = fPCLK/4 = 8 MHz 0.516 µs fADC = fPCLK/4 16.5 1/fPCLK fADC = fHSI16 = 16 MHz 0.252 - 0.260 µs fADC = fHSI16 - 1 - 1/fHSI16 fADC = 16 MHz 0.093 - 15 µs 1.5 - 239.5 1/fADC 0 0 1 µs 15.75 µs ADC jitter on trigger conversion tS(2) Typ 1.5 ADC cycles + 2 fPCLK cycles ADC clock = HSI16 WLATENCY Min Total conversion time (including sampling time) fADC = 16 MHz 1 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. A current consumption proportional to the APB clock frequency has to be added (see Table 37: Peripheral current consumption in run or Sleep mode). 2. Guaranteed by design, not tested in production. Equation 1: RAIN max formula TS - – R ADC R AIN < ------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). 84/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 61. RAIN max for fADC = 14 MHz Ts (cycles) tS (µs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 62. ADC accuracy(1)(2)(3) Symbol Parameter Conditions Min Typ Max ET Total unadjusted error - 2 4 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 2.5 ED Differential linearity error - 1 1.5 10.2 11 11.3 12.1 - Effective number of bits 1.65 V < VDDA = VREF+ < 3.6 V, range 1/2/3 ENOB Effective number of bits (16-bit mode oversampling with ratio =256)(4) SINAD Signal-to-noise distortion 63 69 - Signal-to-noise ratio 63 69 - SNR Signal-to-noise ratio (16-bit mode oversampling with ratio =256)(4) 70 76 - THD Total harmonic distortion - -85 -73 ET Total unadjusted error - 2 5 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 3 - 1 2 1.65 V < VREF+ < VDDA < 3.6 V, range 1/2/3 ED Differential linearity error ENOB Effective number of bits 10.0 11.0 - SINAD Signal-to-noise distortion 62 69 - SNR Signal-to-noise ratio 61 69 - THD Total harmonic distortion - -85 -65 Unit LSB bits dB LSB bits dB 1. ADC DC accuracy values are measured after internal calibration. DocID025938 Rev 4 85/119 97 Electrical characteristics STM32L051x6 STM32L051x8 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode. Figure 28. ADC accuracy characteristics (* ([DPSOHRIDQDFWXDO WUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QG SRLQWFRUUHODWLRQOLQH (7 (7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKH ILUVWLGHDORQH (* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO WUDQVLWLRQDQGWKH ODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW FRUUHODWLRQOLQH (2 (/ (' /6%,'($/ 966$ 9''$ -36 Figure 29. Typical connection diagram using the ADC 9''$ 97 5$,1 9$,1 $,1[ &SDUDVLWLF 97 6DPSOHDQGKROG$'& FRQYHUWHU 5$'& ELW FRQYHUWHU ,/Q$ &$'& 06Y9 1. Refer to Table 60: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 86/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 30 or Figure 31, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip. Figure 30. Power supply and reference decoupling (VREF+ not connected to VDDA) 670/[[ 95() VHHQRWH )Q) 9''$ )Q) 966$ 95()± VHHQRWH DLE Figure 31. Power supply and reference decoupling (VREF+ connected to VDDA) 670/[[ 62%&6$$! 3EENOTE &N& 62%&n633! 3EENOTE DLD DocID025938 Rev 4 87/119 97 Electrical characteristics 6.3.16 STM32L051x6 STM32L051x8 Temperature sensor characteristics Table 63. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TS_CAL2 TS ADC raw data acquired at temperature of 130 °C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F Table 64. Temperature sensor characteristics Symbol Parameter TL(1) VSENSE linearity with temperature Avg_Slope(1) Average slope V130 Voltage at 130°C I ±5°C(2) Min Typ Max Unit - ±1 ±2 °C 1.48 1.61 1.75 mV/°C 640 670 700 mV µA Current consumption - 3.4 6 tSTART(3) Startup time - - 10 TS_temp(4)(3) ADC sampling time when reading the temperature 10 - - (3) DDA(TEMP) µs 1. Guaranteed by characterization results, not tested in production. 2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte. 3. Guaranteed by design, not tested in production. 4. Shortest sampling time can be determined in the application by multiple iterations. 6.3.17 Comparators Table 65. Comparator 1 characteristics Symbol Conditions Min(1) Typ Max(1) Unit 3.6 V VDDA Analog supply voltage - 1.65 R400K R400K value - - 400 - R10K R10K value - - 10 - Comparator 1 input voltage range - 0.6 - VDDA Comparator startup time - - 7 10 VIN tSTART 88/119 Parameter (2) td Propagation delay - - 3 10 Voffset Comparator offset - - ±3 ±10 DocID025938 Rev 4 kΩ V µs mV STM32L051x6 STM32L051x8 Electrical characteristics Table 65. Comparator 1 characteristics (continued) Symbol dVoffset/dt ICOMP1 Min(1) Typ Max(1) Unit VDDA = 3.6 V Comparator offset VIN+ = 0 V variation in worst voltage VIN- = VREFINT stress conditions TA = 25 °C 0 1.5 10 mV/1000 h Current consumption(3) - 160 260 nA Parameter Conditions - 1. Guaranteed by characterization, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage not included. Table 66. Comparator 2 characteristics Symbol VDDA VIN Parameter Min Analog supply voltage - 1.65 - 3.6 V Comparator 2 input voltage range - 0 - VDDA V Fast mode - 15 20 Slow mode - 20 25 1.65 V ≤ VDDA ≤ 2.7 V - 1.8 3.5 2.7 V ≤ VDDA ≤ 3.6 V - 2.5 6 1.65 V ≤ VDDA ≤ 2.7 V - 0.8 2 2.7 V ≤ VDDA ≤ 3.6 V - 1.2 4 - ±4 ±20 mV VDDA = 3.3V TA = 0 to 50 °C V- =VREFINT, 3/4 VREFINT, 1/2 VREFINT, 1/4 VREFINT. - 15 30 ppm /°C Fast mode - 3.5 5 Slow mode - 0.5 2 tSTART Comparator startup time td slow Propagation delay(2) in slow mode td fast Propagation delay(2) in fast mode Voffset Comparator offset error dThreshold/ Threshold voltage temperature dt coefficient ICOMP2 Typ Max(1) Unit Conditions Current consumption(3) µs µA 1. Guaranteed by characterization results, not tested in production. 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference. 3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included. 6.3.18 Timer characteristics TIM timer characteristics The parameters given in the Table 67 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). DocID025938 Rev 4 89/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 67. TIMx(1) characteristics Symbol tres(TIM) fEXT ResTIM tCOUNTER Parameter Timer resolution time Conditions fTIMxCLK = 32 MHz Timer external clock frequency on CH1 to CH4 f TIMxCLK = 32 MHz Timer resolution - 16-bit counter clock period when internal clock is selected (timer’s prescaler disabled) - tMAX_COUNT Maximum possible count Min Max Unit 1 - tTIMxCLK 31.25 - ns 0 fTIMxCLK/2 MHz 0 16 MHz 16 bit 65536 tTIMxCLK 2048 µs 1 fTIMxCLK = 32 MHz 0.0312 - - 65536 × 65536 tTIMxCLK fTIMxCLK = 32 MHz - 134.2 s 1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers. 90/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 6.3.19 Electrical characteristics Communications interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm) : with a bit rate up to 100 kbit/s • Fast-mode (Fm) : with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s. The I2C timing requirements are guaranteed by design when the I2C peripheral is properly configured (refer to the reference manual for details). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os characteristics). All I2C SDA and SCL I/Os embed an analog filter (see Table 68 for the analog filter characteristics). Table 68. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered DocID025938 Rev 4 91/119 97 Electrical characteristics STM32L051x6 STM32L051x8 SPI characteristics Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 23. Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 69. SPI characteristics in voltage Range 1 (1) Symbol Parameter Conditions Min Typ - - Slave mode Transmitter 1.71<VDD<3.6V - - 12(2) Slave mode Transmitter 2.7<VDD<3.6V - - 16(2) Master mode Slave mode receiver fSCK 1/tc(SCK) SPI clock frequency Max 16 16 Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 8.5 - - Slave mode 8.5 - - Master mode 6 - - Slave mode 1 - - tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO Data output access time Slave mode 15 - 36 tdis(SO) Data output disable time Slave mode 10 - 30 Slave mode 1.71<VDD<3.6V - 29 41 Slave mode 2.7<VDD<3.6V - 22 28 Master mode - 10 17 Slave mode 9 - - Master mode 3 - - tv(SO) Data output valid time tv(MO) th(SO) th(MO) Data output hold time Unit MHz % ns 1. Guaranteed by characterization results, not tested in production. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. 92/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Table 70. SPI characteristics in voltage Range 2 (1) Symbol Parameter Conditions Min Typ Master mode fSCK 1/tc(SCK) SPI clock frequency Slave mode Transmitter 1.65<VDD<3.6V Max 8 - - Slave mode Transmitter 2.7<VDD<3.6V 8 Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 12 - - Slave mode 11 - - Master mode 6.5 - - Slave mode 2 - - tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO Data output access time Slave mode 18 - 52 tdis(SO) Data output disable time Slave mode 12 - 42 tv(SO) Data output valid time 40 55 tv(MO) th(SO) Data output hold time Slave mode MHz 8(2) Duty(SCK) tsu(MI) Unit - Master mode - 16 26 Slave mode 12 - - Master mode 4 - - % ns 1. Guaranteed by characterization results, not tested in production. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. DocID025938 Rev 4 93/119 97 Electrical characteristics STM32L051x6 STM32L051x8 Table 71. SPI characteristics in voltage Range 3 (1) Symbol Parameter Min Typ fSCK 1/tc(SCK) SPI clock frequency - - Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*Tpclk - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2*Tpclk - - tw(SCKH) tw(SCKL) SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2 Master mode 28.5 - - Slave mode 22 - - Master mode 7 - - Slave mode 5 - - tsu(MI) Conditions Data input setup time tsu(SI) th(MI) Data input hold time th(SI) Master mode Slave mode Max 2 Data output access time Slave mode 30 - 70 tdis(SO) Data output disable time Slave mode 40 - 80 tv(SO) Data output valid time Slave mode - 53 86 Master mode - 30 54 Slave mode 18 - - Master mode 8 - - Data output hold time th(SO) MHz 2(2) ta(SO tv(MO) Unit % ns 1. Guaranteed by characterization results, not tested in production. 2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. Figure 32. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) tSU(NSS) SCK Input CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT tsu(SI) MOSI I NPUT M SB IN B I T1 IN LSB IN th(SI) ai14134c 94/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Figure 33. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) CPHA=1 CPOL=1 tv(SO) ta(SO) MISO OUT P UT th(SO) MS B O UT tsu(SI) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Figure 34. SPI timing diagram - master mode(1) High NSS input SCK Input CPHA= 0 CPOL=0 SCK Input tc(SCK) CPHA=1 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) MS BIN BI T6 IN LSB IN th(MI) MOSI OUTPUT M SB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. DocID025938 Rev 4 95/119 97 Electrical characteristics STM32L051x6 STM32L051x8 I2S characteristics Table 72. I2S characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S Main clock output - 256 x 8K 256xFs (2) MHz fCK I2S clock frequency Master data: 32 bits - 64xFs Slave data: 32 bits - 64xFs DCK I2S clock frequency duty cycle Slave receiver 30 70 tv(WS) WS valid time Master mode - 15 th(WS) WS hold time Master mode 11 - tsu(WS) WS setup time Slave mode 6 - th(WS) WS hold time Slave mode 2 - Master receiver 18 - Slave receiver 16 - Master receiver 11 - Slave receiver 0 - Slave transmitter (after enable edge) - 77 Master transmitter (after enable edge) - 26 Slave transmitter (after enable edge) 8 - Master transmitter (after enable edge) 3 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) Data input setup time Data input hold time Data output valid time Data output hold time MHz % ns 1. Guaranteed by characterization results, not tested in production. 2. 256xFs maximum value is equal to the maximum clock frequency. Note: 96/119 Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition. DocID025938 Rev 4 STM32L051x6 STM32L051x8 Electrical characteristics Figure 35. I2S slave timing diagram (Philips protocol)(1) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 36. I2S master timing diagram (Philips protocol)(1) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Guaranteed by characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. DocID025938 Rev 4 97/119 97 Package characteristics STM32L051x6 STM32L051x8 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at http://www.st.com. ECOPACK® is an ST trademark. 7.1.1 LQFP32 7 x 7 mm low profile quad flat package Figure 37. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM CCC '!5'%0,!.% # + $ , ! $ , $ 0). )$%.4)&)#!4)/. % E 1. Drawing is not to scale. 98/119 % % B DocID025938 Rev 4 [email protected]&@7 STM32L051x6 STM32L051x8 Package characteristics Table 73. LQFP32, 7 x 7 mm, 32-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.300 0.370 0.450 0.0118 0.0146 0.0177 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.600 - - 0.2205 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.600 - - 0.2205 - e - 0.800 - - 0.0315 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.100 - - 0.0039 A - - 1.600 - - 0.0630 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 38. LQFP32 recommended footprint 6?&0?6 1. Dimensions are expressed in millimeters. DocID025938 Rev 4 99/119 115 Package characteristics STM32L051x6 STM32L051x8 Device marking Figure 39. LQFP32 marking (package top view) (QJLQHHULQJVDPSOH PDUNLQJ (6 'DWHFRGH <HDUZHHN <HDU 3LQ :HHN $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH 069 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 100/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 7.1.2 Package characteristics UFQFPN32 5 x 5 mm package Figure 40. UFQFPN32, 5 x 5 mm, 32-pin package outline !"?-%?6 1. Drawing is not to scale. DocID025938 Rev 4 101/119 115 Package characteristics STM32L051x6 STM32L051x8 Table 74. UFQFPN32, 5 x 5 mm, 32-pin package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 A3 - 0.200 - - 0.0079 - b 0.180 0.250 0.300 0.0071 0.0098 0.0118 D 4.900 5.000 5.100 0.1929 0.1969 0.2008 D2 3.200 3.450 3.700 0.1260 0.1358 0.1457 E 4.900 5.000 5.100 0.1929 0.1969 0.2008 E2 3.200 3.450 3.700 0.1260 0.1358 0.1457 e - 0.500 - - 0.0197 - L 0.300 0.400 0.500 0.0118 0.0157 0.0197 ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 41. UFQFPN32 recommended footprint 1. Dimensions are expressed in millimeters. 102/119 DocID025938 Rev 4 $%B)3B9 STM32L051x6 STM32L051x8 Package characteristics Device marking Figure 42. UFQFPN32 marking (package top view) (QJLQHHULQJVDPSOH PDUNLQJ ( 'DWHFRGH <HDUZHHN <HDU :HHN $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH 069 1. Samples marked "E" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. DocID025938 Rev 4 103/119 115 Package characteristics 7.1.3 STM32L051x6 STM32L051x8 LQFP48 7 x 7 mm low profile quad flat package Figure 43. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ 0). )$%.4)&)#!4)/. % E 1. Drawing is not to scale. 104/119 % % B DocID025938 Rev 4 "?-%?6 STM32L051x6 STM32L051x8 Package characteristics Table 75. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID025938 Rev 4 105/119 115 Package characteristics STM32L051x6 STM32L051x8 Figure 44. LQFP48 recommended footprint AID 1. Dimensions are expressed in millimeters. Device marking Figure 45. LQFP48 marking (package top view) (QJLQHHULQJVDPSOH PDUNLQJ (6 'DWHFRGH <HDUZHHN <HDU 3LQ :HHN $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH 06Y9 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 106/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 LQFP64 10 x 10 mm low profile quad flat package Figure 46. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( E ( 7.1.4 Package characteristics H :B0(B9 1. Drawing is not to scale. DocID025938 Rev 4 107/119 115 Package characteristics STM32L051x6 STM32L051x8 Table 76. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3858 0.3937 0.4016 D3 - 7.500 - - 0.2953 - E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3858 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0.0 3.5 7.0 0.0 3.5 7.0 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 47. LQFP64 recommended footprint 1. Dimensions are expressed in millimeters 108/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 Package characteristics Device marking Figure 48. LQFP64 marking (package top view) $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH (QJLQHHULQJVDPSOH PDUNLQJ (6 'DWHFRGH <HDUZHHN <HDU :HHN 069 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. DocID025938 Rev 4 109/119 115 Package characteristics 7.1.5 STM32L051x6 STM32L051x8 WLCSP36 0.4 mm pitch wafer-level chip scale package Figure 49. WLCSP36 0.4 mm pitch wafer-level chip scale package outline H $EDOOORFDWLRQ ) H * $ 'HWDLO$ H H ) $ $ $ %XPSVLGH 6LGHYLHZ %XPS $ RULHQWDWLRQ UHIHUHQFH HHH = DDD $ EEDOOV FFF = ; < GGG = [ :DIHUEDFNVLGH E = 6HDWLQJSODQH 'HWDLO$ URWDWHG $<B0(B9 1. Drawing is not to scale. Table 77. WLCSP36 0.4 mm pitch wafer-level chip scale package mechanical data inches(1) millimeters Symbol 110/119 Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - A3(2) - 0.025 - - 0.0010 - b 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 2.561 2.596 2.631 0.1008 0.1022 0.1036 E 2.833 2.868 2.903 0.1115 0.1129 0.1143 e - 0.400 - - 0.0157 - e1 - 2.000 - - 0.0787 - e2 - 2.000 - - 0.0787 - F - 0.298 - - 0.0117 - DocID025938 Rev 4 STM32L051x6 STM32L051x8 Package characteristics Table 77. WLCSP36 0.4 mm pitch wafer-level chip scale package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max G - 0.434 - - 0.0171 - aaa - 0.100 - - 0.0039 - bbb - 0.100 - - 0.0039 - ccc - 0.100 - - 0.0039 - ddd - 0.050 - - 0.0020 - eee - 0.050 - - 0.0020 - 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 7.1.6 TFBGA64 5 x 5 mm thin profile fine pitch ball grid array package Figure 50. TFBGA64, 5 x 5 mm, 64-bump thin profile fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) ; ( $ ) ' ' H < + %277209,(: EEDOOV HHH 0 = < ; III 0 = 7239,(: 5B0(B9 1. Drawing is not to scale. DocID025938 Rev 4 111/119 115 Package characteristics STM32L051x6 STM32L051x8 Table 78. TFBGA64, 5 x 5 mm, 64-bump thin profile fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.200 - - 0.0472 A1 0.150 - - 0.0059 - - A2 - 0.200 - - 0.0079 - A4 - - 0.600 - - 0.0236 b 0.250 0.300 0.350 0.0098 0.0118 0.0138 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D1 - 3.500 - - 0.1378 - E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E1 - 3.500 - - 0.1378 - e - 0.500 - - 0.0197 - F - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Device marking Figure 51. TFBGA64 marking (package top view) (QJLQHHULQJVDPSOH PDUNLQJ (6 'DWHFRGH <HDUZHHN <HDU :HHN $GGLWLRQDOLQIRUPDWLRQ ILHOGLQFOXGLQJUHYLVLRQ FRGH 3LQ 06Y9 1. Samples marked "ES" are to be considered as "Engineering Samples": i.e. they are intended to be sent to customer for electrical compatibility evaluation and may be used to start customer qualification where specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production. Only if ST has authorized in writing the customer qualification Engineering Samples can be used for reliability qualification trials. 112/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 7.2 Package characteristics Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max × ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 79. Thermal characteristics Symbol ΘJA Parameter Value Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch 61 Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient WLCSP36 - 0.4 mm pitch 63 Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch 55 Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch 57 Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch 38 DocID025938 Rev 4 Unit °C/W 113/119 115 Package characteristics STM32L051x6 STM32L051x8 Figure 52. Thermal resistance ϰϬϬϬ ϯϱϬϬ ϯϬϬϬ 3'P: hY&EϯϮ >Y&Wϲϰ ϮϱϬϬ >Y&Wϰϴ >Y&WϯϮ ϮϬϬϬ d&'ϲϰ ϭϱϬϬ t>^Wϯϲ ϭϬϬϬ ϱϬϬ Ϭ ϭϮϱ ϭϬϬ ϳϱ ϱϬ 7HPSHUDWXUH& 7.2.1 Ϯϱ Ϭ 06Y9 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 114/119 DocID025938 Rev 4 STM32L051x6 STM32L051x8 8 Ordering information Ordering information Table 80. STM32L051x6/8 ordering information scheme Example: STM32 L 051 R 8 T 6 D xxx Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low power Device subfamily 051 = Access line Pin count K = 32 pins T = 36 pins C = 48/49 pins R = 64 pins Flash memory size 6 = 32 Kbytes 8 = 64 Kbytes Package T = LQFP H = TFBGA U = UFQFPN Y = WLCSP pins Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C 3 = Industrial temperature range, –40 to 125 °C Options No character = VDD range: 1.8 to 3.6 V and BOR enabled D = VDD range: 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID025938 Rev 4 115/119 115 Revision history 9 STM32L051x6 STM32L051x8 Revision history Table 81. Document revision history Date Revision 13-Feb-2014 1 Initial release. 2 Added WLCSP36 package. Updated Table 2: Ultra-low-power STM32L051x6/x8 device features and peripheral counts Updated Table 5: Functionalities depending on the working mode (from Run/active down to standby). Added Section 3.2: Interconnect matrix. Updated Figure 8: STM32L051x6/8 TFBGA64 ballout - 5x 5 mm Replaced TTa I/O structure by TC, updated PA0/4/5, PC5/14, BOOT0 and NRST I/O structure in Table 15: STM32L051x6/8 pin definitions. Updated Table 23: General operating conditions, Table 20: Voltage characteristics and Table 21: Current characteristics. Modified conditions in Table 26: Embedded internal reference voltage. Updated Table 27: Current consumption in Run mode, code with data processing running from Flash, Table 29: Current consumption in Run mode, code with data processing running from RAM, Table 31: Current consumption in Sleep mode, Table 32: Current consumption in Lowpower Run mode, Table 33: Current consumption in Low-power Sleep mode, Table 34: Typical and maximum current consumptions in Stop mode and Table 35: Typical and maximum current consumptions in Standby mode. Added Figure 14: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS, Figure 15: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS, Figure 16: IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS, Figure 17: IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 18: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off. Updated Table 42: HSE oscillator characteristics and Table 43: LSE oscillator characteristics. Added Figure 23: HSI16 minimum and maximum value versus temperature. Updated Table 53: ESD absolute maximum ratings, Table 55: I/O current injection susceptibility and Table 56: I/O static characteristics, and added Figure 24: VIH/VIL versus VDD (CMOS I/Os) and Figure 25: VIH/VIL versus VDD (TTL I/Os). Updated Table 57: Output voltage characteristics, Table 58: I/O AC characteristics and Figure 26: I/O AC characteristics definition. Updated Table 60: ADC characteristics, Table 62: ADC accuracy, and Figure 29: Typical connection diagram using the ADC. Updated Table 64: Temperature sensor characteristics. Updated Table 69: SPI characteristics in voltage Range 1 and Table 72: I2S characteristics. Added Figure 52: Thermal resistance. 29-Apr-2014 116/119 Changes DocID025938 Rev 4 STM32L051x6 STM32L051x8 Revision history Table 81. Document revision history (continued) Date 25-Jun-2014 Revision Changes 3 Cover page: changed LQFP32 size, updated core speed. updated core speed, added minimum supply voltage for ADC and comparators. ADC now guaranteed down to 1.65 V. Updated list of applications in Section 1: Introduction. Changed number of I2S interfaces to one in Section 2: Description. Updated Table 2: Ultra-low-power STM32L051x6/x8 device features and peripheral counts. Updated Table 3: Functionalities depending on the operating power supply range. Updated RTC/TIM21 in Table 6: STM32L0xx peripherals interconnect matrix. Added note related to UFQFPN32 and note related to WLCSP36 in Table 15: STM32L051x6/8 pin definitions. Split LQFP32/UFQFPN32 pinout schematics into two distinct figures: Figure 4 and Figure 5. Updated VDDA in Table 23: General operating conditions. Split Table Current consumption in Run mode, code with data processing running from Flash into Table 27 and Table 28 and content updated. Split Table Current consumption in Run mode, code with data processing running from RAM into Table 29 and Table 30 and content updated. Updated Table 31: Current consumption in Sleep mode, Table 32: Current consumption in Low-power Run mode, Table 33: Current consumption in Low-power Sleep mode, Table 34: Typical and maximum current consumptions in Stop mode, Table 35: Typical and maximum current consumptions in Standby mode, and added Table 36: Average current consumption during wakeup. Updated Table 37: Peripheral current consumption in run or Sleep mode and added Table 38: Peripheral current consumption in Stop and Standby mode. Updated tLOCK in Table 47: PLL characteristics. Removed note 1 below Figure 21: HSE oscillator circuit diagram. Updated Table 49: Flash memory and data EEPROM characteristics and Table 50: Flash memory and data EEPROM endurance and retention. Updated Table 58: I/O AC characteristics. Updated Table 60: ADC characteristics. Updated Figure 52: Thermal resistance and added note 1. DocID025938 Rev 4 117/119 118 Revision history STM32L051x6 STM32L051x8 Table 81. Document revision history (continued) Date 05-Sep-2104 118/119 Revision Changes 4 Extended operating temperature range to 125 °C. Updated minimum ADC operating voltage to 1.65 V. Updated Section 3.4.1: Power supply schemes. Replaced USART3 by LPUART1 in Table 15: STM32L051x6/8 pin definitions and LPUART by LPUART1 in Table 16: Alternate function port A, Table 17: Alternate function port B, Table 18: Alternate function port C and Table 19: Alternate function port D. Updated temperature range in Section 2: Description, Table 2: Ultralow-power STM32L051x6/x8 device features and peripheral counts. Updated PD, TA and TJ to add range 3 in Table 23: General operating conditions. Added range 3 in Table 50: Flash memory and data EEPROM endurance and retention, Table 80: STM32L051x6/8 ordering information scheme. Update note 1 in Table 27: Current consumption in Run mode, code with data processing running from Flash, Table 29: Current consumption in Run mode, code with data processing running from RAM, Table 31: Current consumption in Sleep mode, Table 32: Current consumption in Low-power Run mode, Table 33: Current consumption in Low-power Sleep mode, Table 34: Typical and maximum current consumptions in Stop mode, Table 35: Typical and maximum current consumptions in Standby mode and Table 39: Low-power mode wakeup timings. Updated Figure 52: Thermal resistance and removed note 1. Updated Table 60: ADC characteristics and Table 62: ADC accuracy. Updated Figure 16: IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Lowpower run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS, Figure 17: IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive, Figure 18: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off. Updated Table 35: Typical and maximum current consumptions in Standby mode. Updated SYSCFG in Table 37: Peripheral current consumption in run or Sleep mode. Updated Table 38: Peripheral current consumption in Stop and Standby mode and Table 39: Low-power mode wakeup timings. Updated ACCHSI16 temperature conditions in Table 44: 16 MHz HSI16 oscillator characteristics. Updated VF(NRST) and VNF(NRST) in Table 59: NRST pin characteristics. Updated Table 60: ADC characteristics and Table 62: ADC accuracy. Added range 3 in Table 80: STM32L051x6/8 ordering information scheme. DocID025938 Rev 4 STM32L051x6 STM32L051x8 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2014 STMicroelectronics – All rights reserved DocID025938 Rev 4 119/119 119
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement