VFD-B-P
Preface
Thank you for choosing DELTA’s high-performance VFD-B-P Series. The VFD-B-P Series is
manufactured with high-quality components and materials and incorporates the latest
microprocessor technology available.
This manual is to be used for the installation, parameter setting, troubleshooting, and daily
maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the
following safety guidelines before connecting power to the AC motor drive. Keep this operating
manual at hand and distribute to all users for reference.
To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor
drive are to do installation, start-up and maintenance. Always read this manual thoroughly before
using VFD-B-P series AC Motor Drive, especially the WARNING, DANGER and CAUTION notes.
Failure to comply may result in personal injury and equipment damage. If you have any questions,
please contact your dealer.
PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.
DANGER!
1.
2.
AC input power must be disconnected before any wiring to the AC motor drive is made.
A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power
has been turned off. To prevent personal injury, please ensure that power has been turned off
before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe
voltage levels.
3.
Never reassemble internal components or wiring.
4.
The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the
input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and
W/T3 directly to the AC mains circuit power supply.
5.
Ground the VFD-B-P using the ground terminal. The grounding method must comply with the
laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring
Diagram.
6.
VFD-B-P series is used only to control variable speed of 3-phase induction motors, NOT for 1phase motors or other purpose.
7.
VFD-B-P series shall NOT be used for life support equipment or any life safety situation.
WARNING!
1.
DO NOT use Hi-pot test for internal components. The semi-conductor used in the AC motor
drive is easily damaged by high-pressure.
2.
There are highly sensitive MOS components on the printed circuit boards. These components
are especially sensitive to static electricity. To prevent damage to these components, do not
touch these components or the circuit boards with metal objects or your bare hands.
3.
Only qualified persons are allowed to install, wire and maintain AC motor drives.
CAUTION!
1.
Some parameter settings will cause the motor to run immediately after applying power.
2.
DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight,
high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic
particles.
3.
Only use AC motor drives within specification. Failure to comply may result in fire, explosion or
electric shock.
4.
To prevent personal injury, please keep children and unqualified people away from the
equipment.
5.
When the motor cable between the AC motor drive and motor is too long, the layer insulation of
the motor may be damaged. Please use a frequency inverter duty motor or add an AC output
reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
6.
The rated voltage for the AC motor drive must be ≤ 240V (≤ 480V for 460V models, ≤ 600V for
575V models) and the mains supply current capacity must be ≤ 5000A RMS (≤10000A RMS for
the ≥ 40hp (30kW) models).
Table of Contents
Preface ............................................................................................................. i
Table of Contents .......................................................................................... iii
Chapter 1 Introduction ................................................................................ 1-1
1.1 Receiving and Inspection ................................................................... 1-1
1.1.1 Nameplate Information................................................................ 1-1
1.1.2 Model Explanation ...................................................................... 1-2
1.1.3 Serial Number Explanation ......................................................... 1-3
1.1.4 Capacity Modules ....................................................................... 1-4
1.1.4.1 Side Label ........................................................................... 1-4
1.1.4.2 Model Explanation............................................................... 1-4
1.1.4.3 Serial Number Explanation.................................................. 1-4
1.2 Appearances ...................................................................................... 1-5
1.3 Preparation for Installation and Wiring ............................................... 1-7
1.3.1 Remove Keypad ......................................................................... 1-8
1.3.2 Remove Front Cover................................................................... 1-9
1.4 Storage............................................................................................. 1-10
Chapter 2 Installation and Wiring .............................................................. 2-1
2.1 Ambient Conditions ............................................................................ 2-1
2.2 Installation .......................................................................................... 2-1
2.2.1 Minimum mounting clearances ................................................... 2-2
2.2.2 Optional Heatsink ........................................................................ 2-4
2.2.2.1 Thermal Grease................................................................... 2-4
2.2.2.2 Heatsink Installation and Cutout Dimensions ...................... 2-7
2.3 Dimensions .......................................................................................2-10
2.4 Wiring ...............................................................................................2-19
2.4.1 Basic Wiring .............................................................................. 2-19
2.4.2 External Wiring .......................................................................... 2-25
2.4.3 Main Terminals Connections ..................................................... 2-26
2.4.4 Control Terminals ...................................................................... 2-28
2.4.5 Main Circuit Terminals............................................................... 2-32
Chapter 3 Start Up .......................................................................................3-1
3.1 Preparations before Start-up...............................................................3-1
3.2 Operation Method ...............................................................................3-2
3.3 Trial Run .............................................................................................3-2
Chapter 4 Digital Keypad Operation ..........................................................4-1
4.1 Description of the Digital Keypad VFD-PU01......................................4-1
4.2 How to Operate the Digital Keypad VFD-PU01 ..................................4-3
Chapter 5 Parameters..................................................................................5-1
5.1 Summary of Parameter Settings.........................................................5-2
5.2 Parameter Settings for Applications..................................................5-18
5.3 Description of Parameter Settings ....................................................5-23
Chapter 6 Fault Code Information ..............................................................6-1
6.1 Common Problems and Solutions ......................................................6-1
6.2 Reset ..................................................................................................6-4
Chapter 7 Troubleshooting .........................................................................7-1
7.1 Over Current (OC).............................................................................. 7-1
7.2 Ground Fault ...................................................................................... 7-2
7.3 Over Voltage (OV).............................................................................. 7-2
7.4 Low Voltage (Lv) ................................................................................ 7-3
7.5 Over Heat (OH) .................................................................................. 7-4
7.6 Overload............................................................................................. 7-4
7.7 Display of PU01 is Abnormal.............................................................. 7-5
7.8 Phase Loss (PHL) .............................................................................. 7-5
7.9 Motor cannot Run............................................................................... 7-6
7.10 Motor Speed cannot be Changed..................................................... 7-7
7.11 Motor Stalls during Acceleration....................................................... 7-8
7.12 The Motor does not Run as Expected .............................................. 7-8
Chapter 8 Maintenance and Inspections ................................................... 8-1
Appendix A Specifications ........................................................................ A-1
Appendix B Accessories ........................................................................... B-1
B.1 Dimensions for Heatsinks ..................................................................B-1
B.2 All Brake Resistors & Brake Units Used in AC Motor Drives..............B-5
B.1.1 Dimensions and Weights for Brake Resistors ............................ B-7
B.1.2 Specifications for Brake Unit ...................................................... B-8
B.1.3 Dimensions for Brake Unit .......................................................... B-9
B.2 AMD - EMI Filter Cross Reference...................................................B-10
B.2.1 Dimensions............................................................................... B-13
B.3 PG Card (for Encoder) .....................................................................B-17
B.3.1 PG02 Installation ...................................................................... B-17
B.3.1.1 PG Card and Pulse Generator (Encoder)..........................B-18
B.3.1.2 PG-02 Terminal Descriptions ............................................B-19
B.3.2 PG03.........................................................................................B-21
B.3.2.1 Installation .........................................................................B-21
B.3.2.2 PG Card and Pulse Generator (Encoder)..........................B-23
B.3.2.3 PG-03 Terminal Descriptions ............................................B-24
B.4 Remote Controller RC-01 ................................................................ B-27
B.5 Remote Panel Adapter (RPA 01) .................................................... B-28
B.6 AC Reactor...................................................................................... B-29
B.6.1 AC Input Reactor Recommended Value ...................................B-29
B.6.2 AC Output Reactor Recommended Value ................................B-29
B.6.3 Applications for AC Reactor......................................................B-29
B.7 Zero Phase Reactor (RF220X00A) ................................................. B-32
B.8 DC Choke Recommended Values................................................... B-36
B.9 No-fuse Circuit Breaker Chart ......................................................... B-36
B.10 Fuse Specification Chart ............................................................... B-37
B.11 PU06 ............................................................................................. B-37
B.11.1 Description of the Digital keypad VFD-PU06 ..........................B-37
B.11.2 Explanation of Display Message .............................................B-37
B.11.3 Operation Flow Chart..............................................................B-38
Appendix C How to Select the Right AC Motor Drive .............................. C-1
C.1 Capacity Formulas ............................................................................ C-2
C.2 General Precaution ........................................................................... C-4
C.3 How to Choose a Suitable Motor....................................................... C-5
C.4 Malfunction Reasons and Solutions for the AC Motor Drive............. C-8
C.4.1 Solutions for Electromagnetic/Induction Noise ...........................C-8
C.4.2 Environmental Condition ............................................................C-8
C.4.3 Affecting Other Machines ...........................................................C-9
Chapter 1 Introduction
1.1 Receiving and Inspection
This VFD-B-P AC motor drive has gone through rigorous quality control tests at the factory before
shipment. After receiving the AC motor drive, please check for the following:
„ Inspect the unit to assure it was not damaged during shipment.
„ Make sure that the part number indicated on the nameplate corresponds with the part
number of your order.
1.1.1 Nameplate Information
1. For standard plate drives (models VFD055B43P~VFD300B43P (7.5~40HP))
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive
AC Drive Mod el
In put Spec.
Ou tput Sp ec.
Ou tput Freque ncy Ran ge
En closure t yp e
Se rial Nu mber & Bar Cod e
MODE
: V FD05 5B 43 P
INPUT
: 3 PH 3 80 -4 80 V 5 0/6 0Hz 1 4A
OUTP UT
: 3 PH 0 -4 80 V 1 3A 1 0kVA 7 .5HP
Fre q. Ra ng e : 0 .1~4 00 Hz
ENCL OS URE: IP 20
055B43PST6010001
2. For standard plate drives (models VFD370B43W-P~ VFD450B43W-P (50~60HP))
Example for 50HP/37kW 3-phase 460V AC motor drive
AC Drive Mod el
In put Spec.
Ou tput Sp ec.
Ou tput Freque ncy Ran ge
En closure t yp e
Se rial Nu mber & Bar Cod e
MODE
: V FD37 0B 43 W-P
INPUT
: 3 PH 3 80 -4 80 V 5 0/6 0Hz 6 3A
OUTP UT
: 3 PH 0 -4 80 V 7 3A 5 6kVA 5 0HP
Fre q. Ra ng e : 0 .1~4 00 Hz
ENCL OS URE: IP 20
370B43WPW7010001
3. For models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP))
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive with heatsink type C0
AC Drive Mod el
In put Spec.
Ou tput Sp ec.
Ou tput Freque ncy Ran ge
En closure t yp e
Se rial Nu mber & Bar Cod e
MODE
: V FD05 5B 43 P
INPUT
: 3 PH 3 80 -4 80 V 5 0/6 0Hz 1 4A
OUTP UT
: 3 PH 0 -4 80 V 1 3A 1 0kVA 7 .5HP
Fre q. Ra ng e : 0 .1~4 00 Hz
ENCL OS URE: IP 20
055B43P0T6010001
NOTE
The models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP)) are only for China
market.
Revision April 2009, SW V1.00
1-1
Chapter 1 Introduction|VFD-B-P Series
1.1.2 Model Explanation
1. For standard plate drives (models VFD055B43P~VFD300B43P (7.5~40HP))
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive
V FD 05 5 B 43 P
P late drive
Mains In put Voltag e
43 :46 0V Th ree p has e
V FD- B- P S eries
A pplica ble mot or c apa city
05 5: 7 .5H P (5. 5kW )
185: 25 HP(18.5kW)
07 5: 1 0 HP (7 .5k W)
22 0: 3 0 HP (2 2kW )
11 0: 1 5 HP (11kW )
30 0: 4 0HP (3 0kW )
15 0: 2 0HP (1 5kW )
S eries Na me ( V ariab le F req uenc y D rive )
2. For standard plate drives (models VFD370B43W-P~ VFD450B43W-P (50~60HP))
Example for 50HP/37kW 3-phase 460V AC motor drive
VFD 370 B 43 W P
Plate drive
version for Wujiang plant
Mains Input Voltage 43:460V Three phase
VFD-B-P Series
Applicable motor capacity
370: 50 HP(37kW)
450: 60HP(45kW)
Series Name (V ariable F requency Drive)
-
3. For models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP))
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive with heatsink type C0
V FD 05 5 B 43 P C Fra me C, hea ts in k t yp e is C 0
(r efe r to NOTE f or d eta ils )
P late drive
Mains In put Volta ge 43 : 46 0V Th ree p has e
V FD- B- P Series
A pplica ble mot or c apa city
02 2: 3 HP(2. 2k W)
185: 25 HP(18.5kW)
03 7: 5 HP(3. 7k W)
22 0: 3 0 HP(2 2kW )
05 5: 7 .5H P(5. 5kW )
30 0: 4 0HP (3 0kW )
07 5: 1 0 HP (7 .5k W )
37 0: 5 0 HP(3 7kW )
11 0: 1 5 HP (11kW )
45 0: 6 0HP (4 5kW )
15 0: 2 0HP(1 5kW )
-
S eries Na me ( V aria ble F req uenc y D riv e)
NOTE
VFDXXXB43P-A: frame A with heatsink type A0.
VFDXXXB43P-B: frame B with heatsink type B0.
VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
1-2
Revision April 2009, SW V1.00
Chapter 1 Introduction|VFD-B-P Series
1.1.3 Serial Number Explanation
1. For standard plate drives (models VFD055B43P~VFD300B43P (7.5~40HP))
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive
055B 43P S T
9
01
0001
460V 3-phase 7. 5HP(5.5kW)
Prod uctio n num ber
Prod uctio n week
Prod uctio n year 2009
Prod uctio n facto ry
(T: Taoyuan, W: Wuj iang )
Standard p late drive
Model
2. For standard plate drives (models VFD370B43W-P~ VFD450B43W-P (50~60HP))
Example for 50HP/37kW 3-phase 460V AC motor drive
370B 43WP W 9
01
0001
Prod uctio n num ber
Prod uctio n week
Prod uctio n year 2009
Prod uctio n facto ry
(T: Taoyuan, W: Wuj iang )
Standard p late drive
460V 3-phase 50HP(37kW) standar d plate dr ive
Model
3. For models with heatsink (models VFD022B43P-X~ VFD450B43P-X (3~60HP))
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive with heatsink type C0
055B 43P 0 T
9
01
0001
460V 3-phase 7. 5HP(5.5kW)
Prod ucti on num ber
Prod ucti on week
Prod ucti on year 2009
Prod ucti on factory
(T: Taoyuan, W: Wuj ian g S: Shangh ai)
heatsin k type C0
(r efer to NOT E for details)
Mod el
NOTE
0: heatsink type for each frame X0 (X means frame A, B, C or D, such as A0, B0, C0 and D0(see following for
details)
1: heatsink type for each frame X1 (X means frame C or D, such C1 or D1. see following for details.)
VFDXXXB43P-A: frame A with heatsink type A0.
VFDXXXB43P-B: frame B with heatsink type B0.
VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
If the nameplate information does not correspond to your purchase order or if there are
any problems, please contact your distributor.
Revision April 2009, SW V1.00
1-3
Chapter 1 Introduction|VFD-B-P Series
1.1.4 Capacity Modules
1.1.4.1 Side Label
Example for 7.5HP/5.5kW 3-phase 460V AC motor drive
Mo de l n umb er
A pp li cab le mod el s
Co rr esp on di ng ba rco de
MO DULE NO: 3 81 27 03 80 0
EXTERN AL CAPAC ITOR MOD ULE
USED ON : VF D055 B4 3P
3 80 0
S er ia l n umb er
AA XXX6 0 00 0 01
1.1.4.2 Model Explanation
381 270
38 0 0
Ve rsi on
38:VFD055B43P 36:VFD075B43P
35:VFD110B43P 37:VF D150B43P
33:VFD185B43P 32:VFD220B43P
31:VFD300B43P, VFD 370B43W-P
65:VFD450B43W-P
De lta pa rt n umb er for cap aci ty mo du le
1.1.4.3 Serial Number Explanation
AA XXX 9 00000 1
P ro du ctio n n umb er
P ro du ctio n ye ar (2 00 9)
P ro du ctio n co de
The AC motor drive should be used with the corresponding capacity module.
Please check if the applicable model shown on the label of capacity module
corresponds to the AC motor drive. If the nameplate information does not
correspond to the AC motor drive or if there are any problems, please contact
your distributor.
1-4
Revision April 2009, SW V1.00
Chapter 1 Introduction|VFD-B-P Series
1.2 Appearances
(Refer to chapter 2.3 for exact dimensions)
3HP/2.2kW with heatsink
5HP/3.7kW with heatsink
7.5-20HP/5.5-15kW (standard plate drive)
25-50HP/18.5-37kW (standard plate drive)
NOTE
The capacity module can be installed in parallel or vertical at the two sides of the AC motor drive.
Revision April 2009, SW V1.00
1-5
Chapter 1 Introduction|VFD-B-P Series
7.5HP-20HP/5.5kW-15kW optional heatsink
(MKB-PHC) VFDXXXB43P-C
(MKB-PHD) VFDXXXB43P-D
25HP-50HP/18.5kW-37kW optional heatsink
7.5-20HP/5.5-15kW optional heatsink (MKBPHC1) VFDXXXB43P-C1
25-40HP/18.5-30kW optional heatsink (MKBPHD1) VFDXXXB43P-D1
NOTE
The capacity module can be installed in parallel or vertical at the two sides of the AC motor drive
as shown above.
1-6
Revision April 2009, SW V1.00
Chapter 1 Introduction|VFD-B-P Series
60HP/45kW Standard plate drive
VFD450B43W-P
60HP/45kW Optional heatsink (MKB-PHD)
VFD450B43P-D
NOTE
VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
1.3 Preparation for Installation and Wiring
Revision April 2009, SW V1.00
1-7
Chapter 1 Introduction|VFD-B-P Series
1.3.1 Remove Keypad
3HP/2.2kW
5HP/3.7kW
7.5-20HP/5.5-15kW
25-60HP/18.5-45kW
1-8
Revision April 2009, SW V1.00
Chapter 1 Introduction|VFD-B-P Series
1.3.2 Remove Front Cover
3HP/2.2kW
5HP/3.7kW
7.5-20HP/5.5-15kW
25-60HP/18.5-45kW
Revision April 2009, SW V1.00
1-9
Chapter 1 Introduction|VFD-B-P Series
1.4 Storage
The AC motor drive should be kept in the shipping carton or crate before installation. In order to
retain the warranty coverage, the AC motor drive should be stored properly when it is not to be
used for an extended period of time. Storage conditions are:
Store in a clean and dry location free from direct sunlight or corrosive fumes.
Store within an ambient temperature range of -20 °C to +60 °C.
Store within a relative humidity range of 0% to 90% and non-condensing environment.
Store within an air pressure range of 86 kPA to 106kPA.
CAUTION!
7.
DO NOT store in an area with rapid changes in temperature. It may cause condensation and
frost.
8.
DO NOT place on the ground directly. It should be stored properly. Moreover, if the surrounding
environment is humid, you should put exsiccator in the package.
9.
If the AC motor drive is stored for more than 3 months, the temperature should not be higher
than 30 °C. Storage longer than one year is not recommended, it could result in the degradation
of the electrolytic capacitors.
10.
When the AC motor drive is not used for a long time after installation on building sites or places
with humidity and dust, it’s best to move the AC motor drive to an environment as stated above.
1-10
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring
2.1 Ambient Conditions
Install the AC motor drive in an environment with the following conditions:
Operation
Air Temperature:
Relative Humidity:
Atmosphere pressure:
Installation Site Altitude:
Vibration:
-10 ~ +40°C (14 ~ 104°F)
<90%, no condensation allowed
86 ~ 106 kPa
<1000m
<20Hz: 9.80 m/s2 (1G) max
20 ~ 50Hz: 5.88 m/s2 (0.6G) max
Storage
Transportation
Temperature:
Relative Humidity:
Atmosphere pressure:
Vibration:
-20°C ~ +60°C (-4°F ~ 140°F)
<90%, no condensation allowed
86 ~ 106 kPa
<20Hz: 9.80 m/s2 (1G) max
20 ~ 50Hz: 5.88 m/s2 (0.6G) max
Pollution Degree
2: good for a factory type environment.
CAUTION!
1.
Operating, storing or transporting the AC motor drive outside these conditions may cause
damage to the AC motor drive.
2.
Failure to observe these precautions may void the warranty!
2.2 Installation
1.
Mount the AC motor drive vertically on a flat vertical surface by using bolts or screws. Other
directions are not allowed.
2.
The AC motor drive will generate heat during operation. Allow sufficient space around the unit
for heat dissipation.
3.
The heat sink temperature may rise to 90°C when running. The material on which the AC motor
drive is mounted must be noncombustible and be able to withstand this high temperature.
4.
When the AC motor drive is installed in a confined space (e.g. cabinet), the surrounding
temperature must be within 10 ~ 40°C with good ventilation. DO NOT install the AC motor drive
in a space with bad ventilation.
Revision April 2009, SW V1.00
2-1
Chapter 2 Installation and Wiring|VFD-B-P Series
5.
When installing multiple AC motor drives in the same cabinet, they should be adjacent in a row
with enough space in-between. When installing one AC motor drive below another one, use a
metal separation barrier between the AC motor drives to prevent mutual heating.
6.
Prevent fiber particles, scraps of paper, saw dust, metal particles, etc. from adhering to the
heatsink.
2.2.1 Minimum mounting clearances
3HP/2.2kW
5HP/3.7kW
UNIT:mm(inch)
7.5-20HP/5.5-15kW and figure for capacity
installed in parallel
UNIT:mm(inch)
25-60HP/18.5-45kW and figure for capacity
installed in vertical position
UNIT:mm(inch)
2-2
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
60HP/45kW and figure for capacity installed in parallel
Refer to the following figure for heat sink system
NOTE
Please note that the AC motor drive will generate the heat during operation. Due to the surrounding
temperature, the temperature of the AC motor drive for models 3-20HP should be within 85oC(185 oF)
and models 25-60HP should be within 75oC(167 oF). It can use Pr.00-04 (set to 14) to monitor the
temperature.
Revision April 2009, SW V1.00
2-3
Chapter 2 Installation and Wiring|VFD-B-P Series
2.2.2 Optional Heatsink
2.2.2.1 Thermal Grease
Please note the applying area and thickness of thermal grease for installation.
Heatsink (MKB-PHC/MKB-PHC1) for models VFD055B43P, VFD075B43P, VFD110B43P
and VFD150B43P
Area f or thermal grease
Thic kness =0.125mm~0.15mm
10
.0
1
10
1
0 .0
Left 10mm from edge
.0
0 .0
Screw ty pe: M6* p1. 0
8 piec es wi th screw torque: 35~40Kgf-c m
2-4
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Heatsink (MKB-PHD/MKB-PHD1) for models VFD185B43P, VFD220B43P and VFD300B43P
12
10
.5
.0
10
12
Area f or t hermal greas e
.0 Thic kness: 0.125mm~0.15mm
Left 10mm (top and bottom) and
12.5mm (right and left) from edge
.5
Screw ty pe: M5* p0.8
Screw numbers: 6PCE
Screw torque: 20~25Kgf-c m
Revision April 2009, SW V1.00
2-5
Chapter 2 Installation and Wiring|VFD-B-P Series
Heatsink (MKB-PHD) for models VFD370B43W-P and VFD450B43W-P
Area for thermal greas e
Thic kness: 0.125mm~0.15mm
Left 10mm (top and bottom) and
12.5mm (right and left) from edge
12
10
.5
.0
10
12
.0
.5
Screw ty pe: M5* p0.8
Screw numbers: 6PCE
Screw torque: 20~25Kgf-c m
2-6
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
2.2.2.2 Heatsink Installation and Cutout Dimensions
Applicable model: VFD022B43P-A
201.0 [7.91]
Cutout dimension
187.6 [7.39]
Installation
120.8 [4.76]
120.8 [4.76]
Screw type: M5*p0.8(4 PCE), screw length: 8mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 20kgf-cm
Applicable model: VFD037B43P-B
140.0 [5.51]
263.0 [10.35]
Cutout dimension
276.0 [10.87]
Installation
153.0 [6.02]
166.0 [6.54]
Screw type: M5*p0.8(6 PCE), screw length: 8mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 20kgf-cm
Revision April 2009, SW V1.00
2-7
Chapter 2 Installation and Wiring|VFD-B-P Series
Applicable model: VFD055B43P, VFD075B43P, VFD110B43P and VFD150B43/ heatsink (MKBPHC/MKB-PHC1)
Installation (capacity module installed in
parallel)
Cutout dimension (capacity module installed in
parallel)
For heatsink: Screw type: M6*p1.0(8 PCE), screw length: 10mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 30kgf-cm
For capacity module: Screw type: M5*p0.8(4 PCE), screw length: 10mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 20kgf-cm
Applicable model: VFD185B43P, VFD220B43P, VFD300B43P / Heatsink(MKB-PHD/MKBPHD1)
Installation (capacity module installed
in vertical position)
Cutout dimension (capacity module installed in
vertical position)
Screw type: M6*p1.0(11PCE), screw length: 10mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 30kgf-cm
2-8
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Applicable model: VFD370B43W-P/ Heatsink(MKB-PHD)
Installation (capacity module installed in
vertical position)
Cutout dimension (capacity module installed in
vertical position)
Screw type: M6*p1.0(11PCE), screw length: 10mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 30kgf-cm
Applicable model: VFD450B43W-P / Heatsink (MKB-PHD)
Installation (capacity module installed in
parallel)
Cutout dimension (capacity module installed
in parallel)
Screw type: M6*p1.0(11PCE), screw length: 10mm(max.),
max. spacer outer diameter: φ D=18mm(max), Torque: 30kgf-cm
Revision April 2009, SW V1.00
2-9
Chapter 2 Installation and Wiring|VFD-B-P Series
2.3 Dimensions
(Dimensions are in millimeter and [inch])
VFD022B43P-A
148.0 [5.83]
160.0 [6.30]
134.0 [5.28]
65.0 [2.56]
215.0 [8.46]
201.0 [7.91]
215.0 [8.46]
M5
.0(
4X
)
184.6 [7.27]
117.8 [4.64]
0.87]
22.0[
10](2X)
28.0[ 1.
1]
5[0.1
R2.7
5.5[0.22]
2-10
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
VFD037B43P-B
180.0 [7.09]
162.6 [6.40]
166.0 [6.54]
22
[
.0
87
0.
290.0 [11.42]
X)
R3.25
28
.0[
Revision April 2009, SW V1.00
](2
276.0 [10.87]
140.0 [5.51]
67.0 [2.64]
260.0 [10.24]
150.0 [5.91]
[0.13]
6.5[0.26]
1.1
0](
2X
)
2-11
Chapter 2 Installation and Wiring|VFD-B-P Series
VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P
219.0 [8.62]
116.0 [4.57]
200.0 [7.87]
9.3 [0.37]
355.0 [13.98]
110.0 [4.33]
323.0 [12.72]
342.0 [13.46]
180.0 [7.09]
7.1 [0.28]
180.0 [7.09]
NOTE
This is only the dimension of the AC motor drive and it needs to be used with a capacity module to
be a complete product.
2-12
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
AC motor drive with heatsink MKB-PHC
AC motor drive with heatsink MKB-PHC1
VFD055B43P-C
VFD055B43P-C1
VFD075B43P-C
VFD075B43P-C1
VFD110B43P-C
VFD110B43P-C1
VFD150B43P-C
VFD150B43P-C1
323.0 [12.72]
355.0 [13.98]
375.0 [14.76]
390.0 [15.35]
198.0 [7.80]
89.1 [3.51]
82.0 [3.23]
M6*P1.0(8X)
300.0 [11.81]
252.0 [9.92]
232.0 [9.13]
219.0 [8.62]
200.0 [7.87]
170.5 [6.71]
61.6 [2.43]
54.5 [2.15]
323.0 [12.72]
355.0 [13.98]
375.0 [14.76]
390.0 [15.35]
300.0 [11.81]
252.0 [9.92]
232.0 [9.13]
219.0 [8.62]
200.0 [7.87]
M6*P1.0(8X)
NOTE
1. This is only the dimension for the AC motor drive with heatsink, it needs to be used with a capacity module to
be a complete product.
2. VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
Revision April 2009, SW V1.00
2-13
Chapter 2 Installation and Wiring|VFD-B-P Series
Capacity modules
VFD055B43P; VFD055B43P-C/-C1
VFD075B43P; VFD075B43P-C/-C1
VFD110B43P; VFD110B43P-C/-C1
VFD150B43P; VFD150B43P-C/-C1
58.8 [2.31]
30.0 [1.18]
30.0 [1.18]
RE D
DC(+)
BLACK
DC(-)
Co nn ec t to +1
Co nn ec t to
350.0[13.78](min)
302.0 [11.89]
15.0 [0.59]
1]
0.1
[R
]
.8
.25
0
2
R .3 [R
R6
302.0 [11.89]
315.0 [12.40]
150.0 [5.91]
100.0 [3.94]
5.5 [0.22]
NOTE
1. This is only the dimension for the capacity module, it needs to be used with an AC motor drive to be a
complete product.
2. VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
2-14
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
The AC motor drives: VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P and
VFD450B43W-P
275.0 [10.83]
263.0 [10.35]
250.1 [9.84]
.0[
42
1.6
430.0 [16.93]
415.0 [16.34]
200.0 [7.87]
.0[
28
0]
1.1
400.9 [15.78]
139.0 [5.47]
10.0 [0.39]
)
2X
5](
NOTE
This is only the dimension of the AC motor drive and it needs to be used with a capacity module to
be a complete product.
Revision April 2009, SW V1.00
2-15
Chapter 2 Installation and Wiring|VFD-B-P Series
AC motor drive with heatsink MKB-PHD
AC motor drive with heatsink MKB-PHD1
VFD185B43P-D
VFD185B43P-D1
VFD220B43P-D
VFD220B43P-D1
VFD300B43P-D
VFD300B43P-D1
VFD370B43P-D
VFD450B43P-D
300.0 [11.81]
300.0 [11.81]
290.0 [11.42]
290.0 [11.42]
275.0 [10.83]
275.0 [10.83]
263.0 [10.35]
263.0 [10.35]
221.0 [8.70]
250.0 [9.84]
193.5 [7.62]
250.0 [9.84]
54.5 [2.15]
M6
.0(
8X
)
.0
28
.0[
28
0]
1 .1
.0
42
[
1.6
5](
[
0]
1.1
.0[
42
480.0 [18.90]
455.0 [17.91]
430.0 [16.93]
400.9 [15.78]
M6
.0
(8X
)
480.0 [18.90]
455.0 [17.91]
430.0 [16.93]
400.9 [15.78]
92.0 [3.62]
)
2X
5](
1.6
)
2X
NOTE
1. This is only the dimension for the AC motor drive with heatsink, it needs to be used with a capacity module to
be a complete product.
2. VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
2-16
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Capacity modules
VFD185B43P; VFD185B43P-D/-D1
VFD220B43P; VFD220B43P-D/-D1
VFD300B43P; VFD300B43P-D/-D1
VFD370B43W-P; VFD370B43P-D
Revision April 2009, SW V1.00
26.0 [1.02]
350.0[13.78](min)
382.0 [15.04]
20.0 [0.79]
.5
R7
]
.30
[R0
382.0 [15.04]
398.0 [15.67]
200.0 [7.87]
120.0 [4.72]
60.0 [2.36]
33.0 [1.30]
7.0 [0.28]
2-17
Chapter 2 Installation and Wiring|VFD-B-P Series
Capacity modules
3.
R7
R
208.0 [8.19]
158.0 [6.22]
5
[R
0.
14
]
VFD450B43W-P; VFD450B43P-D
.5
0]
0.3
[R
7.0 [0.28]
360.0 [14.17]
8.0 [0.31]
500[16.69]
342.5 [13.48]
10.0 [0.39]
130.4 [5.13]
130.4 [5.13]
NOTE
1. This is only the dimension for the capacity module, it needs to be used with an AC motor drive to be a
complete product.
2. VFDXXXB43P-C: frame C with heatsink type C0 (this type is only for China market).
VFDXXXB43P-D: frame D with heatsink type D0 (this type is only for China market).
VFDXXXB43P-C1: frame C with heatsink type C1 (this type is only for China market).
VFDXXXB43P-D1: frame D with heatsink type D1 (this type is only for China market).
2-18
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
VFD-PU01
F
H
U
VFD-PU01
RUN
STOP
JOG
FWD
JOG
REV
MODE
PROG
DATA
RUN
STOP
RESET
2.4 Wiring
After removing the front cover, check if the power and control terminals are clear of debris. Be sure
to observe the following precautions when wiring.
2.4.1 Basic Wiring
„ Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply
may result in damage to the equipment. The voltage and current should lie within the range
as indicated on the nameplate.
„ Check the following items after completing the wiring:
1. Are all connections correct?
2. No loose wires?
3. No short-circuits between terminals or to ground?
A charge may still remain in the DC bus capacitors with hazardous voltages even if the power
has been turned off. To prevent personal injury, please ensure that the power is turned off
and wait ten minutes for the capacitors to discharge to safe voltage levels before opening the
AC motor drive.
Revision April 2009, SW V1.00
2-19
Chapter 2 Installation and Wiring|VFD-B-P Series
DANGER!
1.
All the units must be grounded directly to a common ground terminal to prevent electric shock,
fire and interference.
2.
Only qualified personnel familiar with AC motor drives are allowed to perform installation, wiring
and commissioning.
3.
Make sure that the power is off before doing any wiring to prevent electric shocks.
Basic Wiring Diagrams
Users must connect wires according to the circuit diagrams on the following pages. Do not plug a
modem or telephone line to the RS-485 communication port or permanent damage may result. The
pins 1 & 2 are the power supply for the optional copy keypad PU06 only and should not be used for
RS-485 communication.
2-20
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Figure 1 for models of VFD-B-P Series
VFD022B43P-A
* T hree phase input power may apply to single phase drives . D C choke
(optional) Br ak e res istor
* For the single phas e driv es, the A C input line can
be connected to any tw o of the thr ee input terminals R ,S,T
(optional)
Jumper
F us e/NF B(N one F us e Br eak er)
+1 +2/B1
B2
R(L1)
U(T 1)
S(L2)
V(T2)
T(L3)
W(T 3)
E
E
R(L1)
S(L2)
T(L3)
R ecommended C ircuit when
pow er s upply is turned O FF
by a fault output.
T he contact w ill be ON
w hen the fault occur s to
turn off the pow er and
protect the pow er sys tem.
SA
MC
ON
OF F
F act ory set ting :
SINK Mod e
F WD /ST OP
Sw1
JO G
Source
Please refer to F ig ure 4
fo r w irin g of SINK
m od e and SOURCE
m od e.
F ac tor y
setting
E.F.
Multi-s tep 2
Multi-s tep 3
Multi-s tep 4
R ESET
Acc el/D ecel prohibit
C ounter
D igital Signal C omm on
* Don't apply the mains v oltage directly
to abov e terminals.
4~20mA
-10~+10V
Analog S ignal C ommon
Main c ircui t (pow er) terminals
Revision April 2009, SW V1.00
MO1
factory setti ng:
indicates dur ing operation
48V50mA
MO2
factory setti ng:
F req. Setting Indi cation
48V50mA
MO3
E
+10V
MCM
AFM
ACM
E
DFM
Master Fr equency
0 to 10V 47K
ACI
AUI
ACM
R efer to C ontrol
Ter minal Ex pl anation
RC
AVI
2
1
+24V
FWD
REV
JOG
EF
MI1
MI2
MI3
MI4
MI5
MI6
TRG
DCM
Pow er supply
+10V 20mA
3
5K
RB
MC
Multi-s tep 1
IM
3~
RA
RC
R EV/STO P
Sink
RB
Motor
DCM
E
C ontr ol ci rcuit ter minals
factory setti ng:
Low -voltage Indication
48V50mA
Multi-function
Photocoulper O utput
Analog Multi- function Output
Ter minal
factory setti ng: Analog freq.
/ c ur rent meter 0~1 0VDC/2 mA
Analog S ignal common
D igital F requency Output
Ter minal
factory setti ng: 1:1
D uty =50%
D igital Signal C omm on
RS-485
Seri al interface
1: EV 2: G ND 3: SG4: SG + 5:R eserv ed
6: R eserv ed
Shielded l eads & Cable
2-21
Chapter 2 Installation and Wiring|VFD-B-P Series
Figure 2 for models of VFD-B-P Series
VFD037B43P-B, VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P
* T hree phase input power may apply to single phas e driv es.
* For the single phas e driv es, the AC input line can
be connected to any two of the three input termi nal s R,S,T
F us e/NF B(None F use Br eaker)
T(L3)
SA
MC
ON
OF F
F act ory Settin g:
SINK Mo de
F WD/ST OP
Sw1
JO G
Please refer to F ig u re 4
fo r w irin g of S INK
m od e an d SOURCE
m od e.
F ac tor y
setting
Multi-s tep 1
Multi-s tep 2
Multi-s tep 3
Multi-s tep 4
RESET
Acc el/Decel prohibit
Counter
Digital Si gnal Common
* Don't apply the mains voltage direc tly
to abov e terminals.
4~20mA
-10~+10V
Main c irc ui t (power) terminals
Motor
IM
3~
V(T2)
W(T 3)
E
RA
RB
+24V
FWD
REV
JOG
EF
MI1
MI2
MI3
MI4
MI5
MI6
TRG
DCM
E
+10V
AVI
2
Analog S ignal Common
2-22
-( min us sig n)
U(T1)
RB
Power supply
+10V 20m A
3
1
B2
RC
E.F.
5K
+2/B1
MC
REV/STO P
Sink
Source
BR
+1
R(L1)
S(L2)
T( L3)
E
R(L1)
S(L2)
Recommended Circ ui t when
power s upply is turned O FF
by a fault output.
T he contact will be O N
when the fault occur s to
turn off the power and
protect the power sys tem.
Br ak e r es istor (optional )
R efer to Appendi x B for the use of
special brake resi stor
DC chock
(optional)
Jumper
RC
MO1
F ac tor y setting:
indicates during operation
48V50mA
MO2
F ac tor y setting:
F req. Setting Indication
48V50mA
MO3
MCM
AFM
ACM
E
DFM
Master Fr equency
0 to 10V 47K
ACI
AUI
ACM
Please refer to Contr ol
Ter minal Ex pl anation.
DCM
6
E
Contr ol c ircuit ter minals
F ac tor y setting:
Low-voltage Indication
48V50mA
Multi-function
Photocoulper Output
Analog Multi- func tion Output
Ter minal
F ac tor y default: A nal og freq.
/ c ur rent meter 0~1 0VDC/2 mA
Analog S ignal common
Digital F requency Output
Ter minal
F ac tor y setting: 1:1
Duty =50%
Digital Si gnal Common
RS-485
1 Seri al interface
1: EV 2: G ND 3: SG4: SG + 5:Reserv ed
6: Reserv ed
Shielded l eads & Cable
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Figure 3 for models of VFD-B-P Series
VFD185B43P, VFD220B43P, VF D300B43P, VFD370B43W-P, VF D450B43W- P
* T hree phase input power may apply to single phas e driv es.
* For the single phas e driv es, the AC input line can
be connected to any two of the three input termi nal s R,S,T
DC chock
(optional)
Jumper
F us e/NF B(None F use Br eaker)
+1
R(L1)
S(L2)
T( L3)
E
R(L1)
S( L2)
T(L3)
Recommended Circui t when
power s upply is turned O FF
by a fault output.
T he contact will be O N
when the fault occur s to
turn off the power and
protect the power sys tem.
SA
MC
ON
OF F
F act ory set tin g:
SINK Mo de
F WD/ST OP
Sw1
JO G
Please refer to F ig u re 4
fo r w irin g of SINK
m od e an d SOURCE
m od e.
F ac tor y
setting
Multi-s tep 1
Multi-s tep 2
Multi-s tep 3
Multi-s tep 4
RESET
Acc el/Decel prohibit
Counter
Digital Si gnal Common
* Don't apply the mains voltage directly
to abov e terminals.
4~20mA
-10~+10V
Analog S ignal Common
Main c irc ui t (power) terminals
Revision April 2009, SW V1.00
IM
3~
V(T2)
W(T 3)
E
RA
RB
+24V
FWD
REV
JOG
EF
MI1
MI2
MI3
MI4
MI5
MI6
TRG
DCM
E
+10V
AVI
2
Motor
U(T 1)
RB
Power supply
+10V 20m A
3
1
-( min us sig n)
RC
E.F.
5K
+2
MC
REV/STO P
Sink
Source
Br ak e r es istor/unit(optional )
Refer to Appendi x B for the use of
special brake resi stor/uni t
VF DB
RC
MO1
Please refer to Contr ol
Ter minal Ex pl anation
F ac tor y setting:
indicates dur ing operation
48V50mA
MO2
F ac tor y setting:
F req. Setting Indication
48V50mA
MO3
MCM
AFM
ACM
E
DFM
Master Fr equency
0 to 10V 47K
ACI
AUI
ACM
E
Contr ol c ircuit ter minals
DCM
6
F ac tor y setting:
Low-voltage Indication
48V50mA
Multi-function
Photocoulper Output
Analog Multi- func tion Output
Ter minal
factory setti ng: Analog fr eq.
/ c ur rent meter 0~1 0VDC/2 mA
Analog S ignal common
Digital F requency Output
Ter minal
F ac tor y setting: 1:1
Duty =50%
Digital Si gnal Common
RS-485
1 Seri al interface
1: EV 2: G ND 3: SG4: SG + 5:Reserv ed
6: Reserv ed
Shielded l eads & Cable
2-23
Chapter 2 Installation and Wiring|VFD-B-P Series
Figure 4 Wiring for SINK mode and SOURCE mode
SINK Mode
Sink
SW1
Source
FWD/STOP
REV/STOP
JOG
E.F.
+24V
FWD
REV
JOG
EF
Multi-step1
MI1
Multi-step2
MI2
Multi-step3
Factory
setting
MI3
Multi-step4
MI4
RESET
MI5
Accel./Decel. prohibit
Counter
Digital Signal Common
*Don't apply the mains voltage directly
to above terminals.
SOURCE Mode
Sink
Sw1
Source
FWD/STOP
REV/STOP
JOG
E.F.
MI6
TRG
DCM
E
+24V
FWD
REV
JOG
EF
Multi-step1
MI1
Multi-step2
MI2
Multi-step3
Factory
setting
MI3
Multi-step4
MI4
RESET
MI5
Accel./Decel. prohibit
Counter
Digital Signal Common
*Don't apply the mains voltage directly
to above terminals.
2-24
MI6
TRG
DCM
E
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
2.4.2 External Wiring
Power Supply
Items
Power
supply
FUSE/NFB
There may be an inrush current
during power up. Please check the
Fuse/NFB chart of Appendix B and select the
(Optional)
correct fuse with rated current. Use of
an NFB is optional.
Magnetic
contactor
Magnetic
contactor
(Optional)
Input AC
Line Reactor
Zero-phase
Reactor
EMI Fi lter
R/L1
S/L2
T/L3
+1
DC
Chock
U/T1
V/T2
B2
-
BR
VFDB
+2/B1
E
W/T3
Zero-phase
Reactor
Output AC
Line Reactor
Motor
Explanations
Please follow the specific power
supply requirements shown in
Appendix A.
Please do not use a Magnetic
contactor as the I/O switch of the AC
motor drive, as it will reduce the
operating life cycle of the AC drive.
Used to improve the input power
factor, to reduce harmonics and
provide protection from AC line
disturbances (surges, switching
spikes, short interruptions, etc.). AC
Input AC
Line Reactor line reactor should be installed when
the power supply capacity is 500kVA
(Optional)
or more or advanced capacity is
activated .The wiring distance should
be ≤ 10m. Refer to appendix B for
details.
Zero phase reactors are used to
reduce radio noise especially when
Zero-phase
audio equipment is installed near the
Reactor
inverter. Effective for noise reduction
(Ferrite Core
on both the input and output sides.
Common
Attenuation quality is good for a wide
Choke)
range from AM band to 10MHz.
(Optional)
Appendix B specifies the zero phase
reactor. (RF220X00A)
EMI filter
(Optional)
To reduce electromagnetic
interference, please refer to Appendix
B for more details.
Brake
Resistor
(Optional)
Used to reduce the deceleration time
of the motor. Please refer to the chart
in Appendix B for specific Brake
Resistors.
Motor surge voltage amplitude
Output AC
depends on motor cable length. For
Line Reactor
applications with long motor cable
(Optional)
(>20m), it is necessary to install a
reactor at the inverter output side
Revision April 2009, SW V1.00
2-25
Chapter 2 Installation and Wiring|VFD-B-P Series
2.4.3 Main Terminals Connections
Terminal Symbol
R, S, T
R/L1, S/L2, T/L3
U, V, W
U/T1, V/T2, W/T3
P1, P2
+1, +2
P-B, P2/B1~B2
+2/B1~B2
P2~N, P2/B1~N
+2~(-), +2/B1~(-)
Explanation of Terminal Function
AC line input terminals (1-phase/3-phase)
AC drive output terminals for connecting 3-phase
induction motor
Connections for DC Choke (optional)
Connections for Brake Resistor (optional)
Connections for External Brake Unit (VFDB series)
Earth connection, please comply with local regulations.
Mains power terminals (R/L1, S/L2, T/L3)
„ Connect these terminals (R/L1, S/L2, T/L3) via a no-fuse breaker or earth leakage breaker to
3-phase AC power (some models to 1-phase AC power) for circuit protection. It is
unnecessary to consider phase-sequence.
„ It is recommended to add a magnetic contactor (MC) in the power input wiring to cut off
power quickly and reduce malfunction when activating the protection function of AC motor
drives. Both ends of the MC should have an R-C surge absorber.
„ Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives
by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC
drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.
„ Do NOT connect 3-phase models to a 1-phase power source.
Control circuit terminals (U, V, W)
„ When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor
terminals U/T1, V/T2, and W/T3, respectively, the motor will rotate counterclockwise (as
viewed on the shaft end of the motor) when a forward operation command is received. To
permanently reverse the direction of motor rotation, switch over any of the two motor leads.
Forward
running
2-26
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
„ DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals
of AC motor drives.
„ With long motor cables, high capacitive switching current peaks can cause over-current, high
leakage current or lower current readout accuracy. To prevent this, the motor cable should
be less than 20m for 3.7kW models and below. And the cable should be less than 50m for
5.5kW models and above. For longer motor cables use an AC output reactor.
„ Use a well-insulated motor, suitable for inverter operation.
Terminals [+1, +2] for connecting DC reactor
DC reactor
Jumper
+1
„ To improve the power factor and reduce harmonics, connect a DC reactor between terminals
[+1, +2]. Please remove the jumper before connecting the DC reactor.
NOTE Models of 45kW and above have a built-in DC reactor.
Terminals [+2/B1, B2] for connecting brake resistor and terminals [+1, +2/B1] for
connecting external brake unit
BR
+2/B1
B2 -(minus si gn)
„ Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short
deceleration time, too low brake torque or requiring increased brake torque.
„ If the AC motor drive has a built-in brake chopper (all models of 11kW and below), connect
the external brake resistor to the terminals [+2/B1, B2].
„ Models of 15kW and above don’t have a built-in brake chopper. Please connect an external
optional brake unit (VFDB-series) and brake resistor. Refer to VFDB series user manual for
details.
„ Connect the terminals [+(P), -(N)] of the brake unit to the AC motor drive terminals
[+2(+2/B1), (-)]. The length of wiring should be less than 5m with twisted cable.
„ When not used, please leave the terminals [+2/B1, -] open.
WARNING!
1.
Short-circuiting [B2] or [-] to [+2/B1] can damage the AC motor drive.
Revision April 2009, SW V1.00
2-27
Chapter 2 Installation and Wiring|VFD-B-P Series
Grounding terminals (
)
„ Make sure that the leads are connected correctly and the AC drive is properly grounded.
(Ground resistance should not exceed 0.1Ω.)
„ Use ground leads that comply with local regulations and keep them as short as possible.
„ Multiple VFD-B-P units can be installed in one location. All the units should be grounded
directly to a common ground terminal, as shown in the figure below. Ensure there are no
ground loops.
excellent
not allowed
good
2.4.4 Control Terminals
Circuit diagram for digital inputs (SINK current 16mA.)
SOURCE Mode
DCM
SINK Mode
+24
Multi-Input
Terminal
multi-input
terminal
DCM
+24V
Internal Circuit
Internal Circuit
Terminal symbols and functions
Terminal
Symbol
FWD
2-28
Factory Settings (SINK)
Terminal Function
Forward-Stop command
REV
Reverse-Stop command
JOG
Jog command
EF
External fault
ON: Connect to DCM
ON:
Run in FWD direction
OFF:
Stop acc. to Stop Method
ON:
Run in REV direction
OFF:
Stop acc. to Stop Method
ON:
JOG operation
OFF:
Stop acc. to Stop Method
ON:
External Fault. Display “EF” and stop
acc. To Stop Method.
OFF:
No fault
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Terminal
Symbol
TRG
External counter input
MI1
Multi-function Input 1
MI2
Multi-function Input 2
MI3
Multi-function Input 3
MI4
Multi-function Input 4
MI5
Multi-function Input 5
MI6
Multi-function Input 6
Digital Frequency Meter
(Open Collector Output)
DFM-DCM
DFM
DCM
Max: 48V
50mA
50%
internal circuit
+24V
Factory Settings (SINK)
Terminal Function
100%
DC Voltage Source
Digital Signal Common
RA
Multi-function Relay output
(N.O.) a
RB
Multi-function Relay output
(N.C.) b
ON: Connect to DCM
ON:
At every pulse counter is advanced
by 1.
Refer to Pr.04-04 to Pr.04-09 for programming
the Multi-function Inputs.
Pulse voltage output monitor signal,
proportional to output frequency
Duty-cycle:
50%
Ratio:
Pr.03-07
Min. load:
10KΩ
Max. current:
50mA
Max. voltage:
48VDC.
+24VDC, 20mA
used for SOURCE mode.
Common for digital inputs and used for SINK
mode.
Resistive Load:
5A(N.O.)/3A(N.C.) 240VAC
5A(N.O.)/3A(N.C.) 24VDC
RC
Multi-function Relay common
MO1
Multi-function Output 1
(Photocoupler)
MO2
Multi-function Output 2
(Photocoupler)
MO3
Multi-function Output 3
(Photocoupler)
Inductive Load:
1.5A(N.O.)/0.5A(N.C.) 240VAC
1.5A(N.O.)/0.5A(N.C.) 24VDC
Refer to Pr.03-00~03-03 for programming
Maximum 48VDC, 50mA
Refer to Pr.03-00 to Pr.03-03 for programming
MO1~MO3-DCM
Max: 48Vdc
50mA
MO1~MO3
MCM
Internal Circuit
Revision April 2009, SW V1.00
2-29
Chapter 2 Installation and Wiring|VFD-B-P Series
Terminal
Symbol
Factory Settings (SINK)
Terminal Function
ON: Connect to DCM
MCM
Multi-function output common Common for Multi-function Outputs
+10V
Potentiometer power supply
+10VDC 20mA (variable resistor 3-5kΩ)
Analog voltage Input
Impedance:
+10V
AVI
AVI circuit
10 bits
Range:
0 ~ 10VDC =
0 ~ Max. Output
Frequency (Pr.01-00)
AVI
Selection:
Pr.02-00, Pr.02-13,
Pr.10-00
Set-up:
Pr.04-00 ~ Pr.04-03
Impedance:
250Ω
ACM
internal circuit
Analog current Input
ACI
ACI circuit
Resolution:
10 bits
Range:
4 ~ 20mA =
0 ~ Max. Output
Frequency (Pr.01-00)
ACI
ACM internal circuit
Auxiliary analog voltage input
+10
~
-10V
AUI
AUI circuit
Selection:
Pr.02-00, Pr.02-13,
Pr.10-00
Set-up:
Pr.04-11 ~ Pr.04-14
Impedance:
47kΩ
Resolution:
10 bits
Range:
-10 ~ +10VDC =
0 ~ Max. Output
Frequency (Pr.01-00)
AUI
ACM
internal circuit
Selection:
Pr.02-00, Pr.02-13,
Pr.10-00
Set-up:
Pr.04-15 ~ Pr.04-18
Analog output meter
0 to 10V, 2mA
ACM circuit
Impedance:
AFM
AFM
0~10V
potentiometer
Max. 2mA
internal circuit
ACM
47kΩ
Resolution:
ACM
Analog control signal
(common)
470Ω
Output current
2mA max
Resolution:
8 bits
Range:
0 ~ 10VDC
Function:
Pr.03-05
Common for AVI, ACI, AUI, AFM
Control signal wiring size: 18 AWG (0.75 mm2) with shielded wire.
2-30
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
Analog input terminals (AVI, ACI, AUI, ACM)
„ Analog input signals are easily affected by external noise. Use shielded wiring and keep it as
short as possible (<20m) with proper grounding. If the noise is inductive, connecting the
shield to terminal ACM can bring improvement.
„ If the analog input signals are affected by noise from the AC motor drive, please connect a
capacitor and ferrite core as indicated in the following diagrams:
AVI/ACI/AUI
C
ACM
ferrite core
wind each wires 3 times or more around the core
Digital inputs (FWD, REV, JOG, EF, TRG, MI1~MI6, DCM)
„ When using contacts or switches to control the digital inputs, please use high quality
components to avoid contact bounce.
Digital outputs (MO1, MO2, MO3, MCM)
„ Make sure to connect the digital outputs to the right polarity, see wiring diagrams.
„ When connecting a relay to the digital outputs, connect a surge absorber or fly-back diode
across the coil and check the polarity.
General
„ Keep control wiring as far away as possible from the power wiring and in separate conduits
to avoid interference. If necessary let them cross only at 90º angle.
„ The AC motor drive control wiring should be properly installed and not touch any live power
wiring or terminals.
NOTE
„ If a filter is required for reducing EMI (Electro Magnetic Interference), install it as close as
possible to AC drive. EMI can also be reduced by lowering the Carrier Frequency.
„ When using a GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity
of 200mA, and not less than 0.1-second detection time to avoid nuisance tripping. For the
specific GFCI of the AC motor drive, please select a current sensor with sensitivity of 30mA
or above.
DANGER!
Damaged insulation of wiring may cause personal injury or damage to circuits/equipment if it
comes in contact with high voltage.
Revision April 2009, SW V1.00
2-31
Chapter 2 Installation and Wiring|VFD-B-P Series
2.4.5 Main Circuit Terminals
3HP (2.2kW): VFD022B43P-A
S
T
R
/L1 /L2 /L3
+1
+2
/B1
B2
V
W
U
/T1 / T2 /T3
Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2 mm2)
Power Terminal
Torque: 18 kgf-cm (15.6 in-lbf)
Wire Gauge: 10-18 AWG (5.3-0.8 mm2) stranded wire, 12-18 AWG (3.3-0.8 mm2) solid wire
Wire Type: Copper only, 75°C
2-32
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
5HP (3.7kW): VFD037B43P-B
+1 +2 B1 -
B2
U/T1 V/T2 W/T3
Screw Torque :
18Kgf-cm
Wire Gauge :
18~10AWG
R/L1 S/L2 T/L3
Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2mm2)
Power Terminal
Torque: 18 kgf-cm (15.6 in-lbf)
Wire Gauge: 10-18 AWG (5.3-0.8mm2)
Wire Type: Stranded copper only, 75°C
Revision April 2009, SW V1.00
2-33
Chapter 2 Installation and Wiring|VFD-B-P Series
7.5HP to 20HP (5.5-15kW)
VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P
POWER
IM
3
MOTOR
Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2mm2)
Power Terminal
Torque: 30Kgf-cm (26 in-lbf)
Wire: 8-12 AWG (8.4-3.3mm2)
Wire Type: Stranded Copper only, 75°C
NOTE To connect 6 AWG (13.3 mm2) wires, use Recognized Ring Terminals
2-34
Revision April 2009, SW V1.00
Chapter 2 Installation and Wiring|VFD-B-P Series
25 HP to 50 HP(18.5-37kW)
VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P
R/L1S/L2 T/L3
PO W ER
Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2 mm2)
Power Terminal
Torque: 30Kgf-cm (26 in-lbf)
Wire: 2-8 AWG (33.6-8.4 mm2)
Revision April 2009, SW V1.00
2-35
Chapter 2 Installation and Wiring|VFD-B-P Series
60 HP(45kW)
VFD450B43W-P
R/L1 S/L2 T/L3
POWER
Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG (3.3-0.2 mm2)
Power Terminal
Torque: 30kgf-cm (26 in-lbf)
Wire Gauge: 1- 4 AWG (42.41-21.15 mm2)
2-36
Revision April 2009, SW V1.00
Chapter 3 Start Up
3.1 Preparations before Start-up
Carefully check the following items before proceeding.
„ Make sure that the wiring is correct. In particular, check that the output terminals U, V, W.
are NOT connected to power and that the drive is well grounded.
„ Verify that there are no short-circuits between terminals and from terminals to ground or
mains power.
„ Check for loose terminals, connectors or screws.
„ Verify that no other equipment is connected to the AC motor
„ Make sure that all switches are OFF before applying power to ensure that the AC motor
drive doesn’t start running and there is no abnormal operation after applying power.
„ Make sure that the front cover is correctly installed before applying power.
„ Do NOT operate the AC motor drive with humid hands.
„ Check the following items after applying power:
- The keypad should light up as follows (normal status with no error)
F
H
U
VFD-PU01
RUN STOP JOG FWD REV
JOG
RUN
Revision April 2009, SW V1.00
When power is ON, LEDs "F", "STOP" and
"FWD" should light up. The display will
show "60.00" with the least signification "0"
flashing.
STOP
RESET
3-1
Chapter 3 Start Up|VFD-B-P Series
3.2 Operation Method
Refer to 4.2 How to operate the digital keypad VFD-PU01 and chapter 5 parameters for setting.
Please choose a suitable method depending on application and operation rule. The operation is
usually used as shown in the following table.
Operation Method
Operation
Command Source
Frequency Source
RUN
PU01 keypad
STOP
RESET
MI1
Operate from
external signal
MI2
Parameter
setting:
04-04=11
External terminals
input:
DCM
04-05=12
FWD-DCM
REV-DCM
AVI, ACI, AUI
3.3 Trial Run
After finishing checking the items in “3.1 preparation before start-up”, you can perform a trial run.
The factory setting of the operation source is from the keypad (Pr.02-01=00).
1.
After applying power, verify that LED “F” is on and the display shows 60.00Hz.
2.
Setting frequency to about 5Hz by using
3.
Pressing RUN
key for forward running. And if you want to change to reverse running,
you should press
please press
4.
key.
STOP
RESET
key in
F
H
U
page. And if you want to decelerate to stop,
key.
Check following items:
„ Check if the motor direction of rotation is correct.
„ Check if the motor runs steadily without abnormal noise and vibration.
„ Check if acceleration and deceleration are smooth.
If the results of trial run are normal, please start the formal run.
3-2
Revision April 2009, SW V1.00
Chapter 3 Start Up|VFD-B-P Series
NOTE
1.
Stop running immediately if any fault occurs and refer to the troubleshooting guide for solving
the problem.
2.
Do NOT touch output terminals U, V, W when power is still applied to L1/R, L2/S, L3/T even
when the AC motor drive has stopped. The DC-link capacitors may still be charged to
hazardous voltage levels, even if the power has been turned off.
3.
To avoid damage to components, do not touch them or the circuit boards with metal objects or
your bare hands.
Revision April 2009, SW V1.00
3-3
Chapter 3 Start Up|VFD-B-P Series
This page intentionally left blank.
3-4
Revision April 2009, SW V1.00
Chapter 4 Digital Keypad Operation
4.1 Description of the Digital Keypad VFD-PU01
LED Display
Display frequency, current, voltage
and error, etc.
F
H
U
VFD-PU01
Part Number
Status Display
Display of drive status
JOG
Jog operation selector
MODE
Display mode selector
JOG
Left key
Moves cursor to the left
UP and DOWN Key
Sets the parameter
number and changes the
numerical data, such as
Master Frequency.
STOP/RESET
RUN
Display Message
STOP
RESET
RUN key
Descriptions
Displays the AC drive Master Frequency.
Displays the actual output frequency present at terminals U/T1, V/T2, and
W/T3.
User defined unit (where U = F x Pr.00-05)
Displays the output current present at terminals U/T1, V/T2, and W/T3.
Displays the AC motor drive forward run status.
Revision April 2009, SW V1.00
4-1
Chapter 4 Digital Keypad Operation|VFD-B-P Series
Display Message
Descriptions
Displays the AC motor drive reverse run status.
The counter value (C).
Displays the selected parameter.
Displays the actual stored value of the selected parameter.
External Fault.
Display “End” for approximately 1 second if input has been accepted by
key. After a parameter value has been set, the new
pressing
value is automatically stored in memory. To modify an entry, use the
,
and
keys.
Display “Err”, if the input is invalid.
4-2
Revision April 2009, SW V1.00
Chapter 4 Digital Keypad Operation|VFD-B-P Series
4.2 How to Operate the Digital Keypad VFD-PU01
Selection mode
STA RT
F
F
F
H
U
F
H
H
H
U
U
U
MODE
MODE
F
H
U
MODE
MODE
MODE
GO START
NO TE : In the selection mode, press
to set the parameters.
To set parameters
F
H
U
F
H
U
F
H
U
parameter set successfully
F
H
U
F
H
U
parameter set error
MODE
move to previous display
NO TE : In the parameter setting mode, you can press
MODE
to return to the selection mode.
To shift cursor
START
F
F
F
F
F
F
H
U
F
H
U
H
U
H
U
H
U
F
H
U
F
H
U
To modify data
F
START
H
U
H
U
H
U
To set dir ection
F
H
U
or
Revision April 2009, SW V1.00
or
4-3
Chapter 4 Digital Keypad Operation|VFD-B-P Series
This page intentionally left blank.
4-4
Revision April 2009, SW V1.00
Chapter 5 Parameters
The VFD-B-P parameters are divided into 12 groups by property for easy setting. In most
applications, the user can finish all parameter settings before start-up without the need for readjustment during operation.
The 12 groups are as follows:
Group 0: User Parameters
Group 1: Basic Parameters
Group 2: Operation Method Parameters
Group 3: Output Function Parameters
Group 4: Input Function Parameters
Group 5: Multi-Step Speed and PLC Parameters
Group 6: Protection Parameters
Group 7: Motor Parameters
Group 8: Special Parameters
Group 9: Communication Parameters
Group 10: PID Control Parameters
Group 11: Fan & Pump Control Parameters
Revision April 2009, SW V1.00
5-1
Chapter 5 Parameters|VFD-B-P Series
5.1 Summary of Parameter Settings
: The parameter can be set during operation.
Group 0 User Parameters
Parameter
00-00
00-01
00-02
00-03
00-04
Settings
Identity Code of
Read-only
the AC motor drive
Read-only
Rated Current
Display of the AC
motor drive
08: Keypad lock
09: All parameters are reset to factory settings
Parameter Reset
(50Hz, 380V)
10: All parameters are reset to factory settings
(60Hz, 440V)
00: Display the frequency command value (LED
F)
01: Display the actual output frequency (LED H)
Start-up Display
02: Display the content of user-defined unit
Selection
(LED U)
03: Multifunction display, see Pr.00-04
04: FWD/REV command
00: Display output current (A)
01: Display counter value (C)
02: Display process operation (1.tt)
Content of Multi
Function Display
00-06
00-07
00-08
User-Defined
Coefficient K
Software Version
Password Input
Password Set
00-09
Control Method
00-05
5-2
Explanation
03: Display DC-BUS voltage ( u )
04: Display output voltage (E)
05: Output power factor angle (n)
06: Display output power (P)
07: Display actual motor speed (HU)
08: Display the estimated value of torque as it
relates to current (t)
09: Display PG numbers/10ms (G)
10: Display analog feedback signal value (b)(%)
11: Display AVI (U1.) (%)
12: Display ACI (U2.) (%)
13: Display AUI (U3.) (%)
14: Display the temperature of heat sink (°C)
Factory
Customer
Setting
##
#.#
00
00
00
0.01 to 160.00
1.00
Read-only
00 to 65535
00 to 65535
00: V/f Control
01: V/f + PG Control
02: Vector Control
03: Vector + PG Control
#.##
00
00
00
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
00-10
Explanation
Settings
Factory
Customer
Setting
Reserved
Group 1 Basic Parameters
Parameter
01-00
01-01
01-02
01-03
01-04
01-05
01-06
01-07
01-08
01-09
01-10
01-11
01-12
01-13
01-14
01-15
01-16
01-17
01-18
01-19
01-20
01-21
01-22
01-23
Explanation
Settings
Factory
Customer
Setting
Maximum Output
50.00 to 400.00 Hz
60.00
Frequency (Fmax)
Maximum Voltage
0.10 to 400.00 Hz
60.00
Frequency (Fbase)
Maximum Output
460V series: 0.1V to 510.0V
440.0
Voltage (Vmax)
Mid-Point Frequency
0.10 to 400.00 Hz
0.50
(Fmid)
Mid-Point Voltage
460V series: 0.1V to 510.0V
3.4
(Vmid)
Minimum Output
0.10 to 400.00 Hz
0.50
Frequency (Fmin)
Minimum Output
460V series: 0.1V to 510.0V
3.4
Voltage (Vmin)
Output Frequency
1 to 120%
100
Upper Limit
Output Frequency
0 to100 %
0
Lower Limit
Accel Time 1
0.01 to 3600.0 sec
10.0
Decel Time 1
0.01 to 3600.0 sec
10.0
Accel Time 2
0.01 to 3600.0 sec
10.0
Decel Time 2
0.01 to 3600.0 sec
10.0
01-09 ~ 01-12: Factory setting for models of 30hp (22kW) and above is 60sec.
Jog Acceleration
0.1 to 3600.0 sec
1.0
Time
Jog Frequency
0.10 Hz to 400.00 Hz
6.00
00: Linear Accel/Decel
Auto acceleration /
01: Auto Accel, Linear Decel
deceleration (refer to 02: Linear Accel, Auto Decel
00
Accel/Decel time
03: Auto Accel/Decel (Set by load)
setting)
04: Auto Accel/Decel (set by Accel/Decel
Time setting)
Acceleration S00 to 07
00
Curve
Deceleration S00 to 07
00
Curve
Accel Time 3
0.01 to 3600.0 sec
10.0
Decel Time 3
0.01 to 3600.0 sec
10.0
Accel Time 4
0.01 to 3600.0 sec
10.0
Decel Time 4
0.01 to 3600.0 sec
10.0
01-18 ~ 01-21: Factory setting for models of 30hp (22kW) and above is 60sec.
Jog Deceleration
0.1 to 3600.0 sec
1.0
Time
Accel/Decel Time
00: Unit: 1 sec
01
Revision April 2009, SW V1.00
5-3
Chapter 5 Parameters|VFD-B-P Series
Parameter
Explanation
Unit
Settings
Factory
Customer
Setting
Settings
Factory
Customer
Setting
01: Unit: 0.1 sec
02: Unit: 0.01 sec
Group 2 Operation Method Parameters
Parameter
Explanation
00: Digital keypad (PU01)
01: 0 to +10V from AVI
02-00
02-01
02-02
Source of First
Master Frequency
Command
02: 4 to 20mA from ACI
03: -10 to +10Vdc from AUI
04: RS-485 serial communication (RJ-11).
Last used frequency saved.
05: RS-485 serial communication (RJ-11).
Last used frequency not saved.
06: Combined use of master and auxiliary
frequency command
(See Pr. 02-10 to 02-12)
00: Digital keypad (PU01)
01: External terminals. Keypad STOP/RESET
enabled.
02: External terminals. Keypad STOP/RESET
Source of First
disabled.
Operation Command
03: RS-485 serial communication (RJ-11).
Keypad STOP/RESET enabled.
04: RS-485 serial communication (RJ-11).
Keypad STOP/RESET disabled.
00: STOP: ramp to stop; E.F.: coast to stop
01: STOP: coast to stop; E.F.: coast to stop
Stop Method
02: STOP: ramp to stop; E.F.: ramp to stop
03: STOP: coast to stop; E.F.: ramp to stop
V/f control:3-7.5hp/2.2-5.5kW: 01-15kHz
02-03
5-4
PWM Carrier
Frequency
Selections
02-04
Motor Direction
Control
02-05
2-wire/3-wire
Operation Control
Modes
02-06
Line Start Lockout
00
00
00
10
10-30hp/7.5-22kW: 01-09kHz
06
40-60hp/30-45kW: 01-06kHz
04
Vector control: 3-25hp/2.2-18.5kW: 01-15kHz
30-60hp/22-45kW: 01-09 kHz
00: Enable forward/reverse operation
01: Disable reverse operation
02: Disabled forward operation
00: 2-wire: FWD/STOP, REV/STOP
01: 2-wire: FWD/REV, RUN/STOP
02: 3-wire operation
00: Disable. Operation status is not changed
even if operation command source Pr.0201 and/or Pr.02-14 is changed.
10
06
00
00
00
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
02-07
Explanation
Loss of ACI Signal
(4-20mA)
02-08
Up/Down Mode
02-09
Accel/Decel Rate of
Change of
UP/DOWN
Operation with
Constant Speed
02-10
02-11
02-12
02-13
Settings
01: Enable. Operation status is not changed
even if operation command source Pr.0201 and/or Pr.02-14 is changed.
02: Disable. Operation status will change if
operation command source Pr.02-01
and/or Pr.02-14 is changed.
03: Enable. Operation status will change if
operation command source Pr.02-01
and/or Pr.02-14 is changed.
00: Decelerate to 0 Hz
01: Coast to stop and display “EF”
02: Continue operation by last frequency
command
00: Based on accel/decel time
01: Constant speed (Pr.02-09)
02: Based on accel/decel time, but frequency
command will be 0 when stopped. Only
used when the frequency command
source is PU01
0.01~1.00 Hz/msec
00: Digital keypad (PU01)
Source of the Master 01: 0 to +10V from AVI
Frequency
02: 4 to 20mA from ACI
Command
03: -10 to +10Vdc from AUI
04: RS-485 serial communication (RJ-11)
00: Digital keypad (PU01)
01: 0 to +10V from AVI
Source of the
Auxiliary Frequency 02: 4 to 20mA from ACI
Command
03: -10 to +10Vdc from AUI
04: RS-485 serial communication (RJ-11)
Combination of the
00: Master frequency + auxiliary frequency
Master and Auxiliary
Frequency
01: Master frequency - auxiliary frequency
Command
00: Digital keypad (PU01)
01: 0 to +10V from AVI
02: 4 to 20mA from ACI
03: -10 to +10Vdc from AUI
Source of Second
04: RS-485 serial communication (RJ-11).
Frequency
Last used frequency saved
Command
05: RS-485 serial communication (RJ-11).
Last used frequency not saved.
06: Combined use of master and auxiliary
frequency command (See Pr. 02-10 to 0212)
Revision April 2009, SW V1.00
Factory
Customer
Setting
00
00
0.01
00
00
00
00
5-5
Chapter 5 Parameters|VFD-B-P Series
Parameter
02-14
02-15
Explanation
Factory
Customer
Setting
Settings
00: Digital keypad (PU01)
01: External terminals. Keypad STOP/RESET
enabled.
02: External terminals. Keypad STOP/RESET
Source of Second
disabled.
Operation Command
03: RS-485 serial communication (RJ-11).
Keypad STOP/RESET enabled.
04: RS-485 serial communication (RJ-11).
Keypad STOP/RESET disabled.
Keypad Frequency
0.00 ~ 400.00Hz
Command
00
60.00
Group 3 Output Function Parameters
Parameter
Explanation
03-00
Multi-Function
Output Relay (RA1,
RB1, RC1)
03-01
Multi-Function
Output Terminal
MO1
03-02
Multi-Function
Output Terminal
MO2
Factory
Customer
Setting
08
Settings
00: No function
01: AC drive operational
02: Master frequency attained
03: Zero speed
04: Over torque detection
05: Base-Block (B.B.) indication
01
06: Low-voltage indication
07: Operation mode indication
08: Fault indication
09: Desired frequency attained 1
10: PLC program running
02
11: PLC program step completed
12: PLC program completed
13: PLC program operation paused
03-03
5-6
Multi-Function
Output Terminal
MO3
14: Terminal count value attained
15: Preliminary count value attained
16: Auxiliary motor No.1
17: Auxiliary motor No.2
18: Auxiliary motor No.3
19: Heat sink overheat warning
20: AC motor drive ready
21: Emergency stop indication
22: Desired frequency attained 2
23: Software brake signal
24: Zero speed output signal
25: Under-current detection
26: Operation indication (H>=Fmin)
27: Feedback signal error
28: User-defined low-voltage detection
29: Brake control (Desired frequency attained
3)
20
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
03-04
Explanation
Desired Frequency
Attained 1
Settings
0.00 to 400.00 Hz
Factory
Customer
Setting
0.00
00: Analog frequency meter
03-05
03-06
03-07
03-08
03-09
03-10
03-11
03-12
03-13
03-14
Analog Output
Signal
Analog Output Gain
Digital Output
Multiplying Factor
Terminal Count
Value
Preliminary Count
Value
Desired Frequency
Attained 2
EF Active When
Preliminary Count
Value Attained
Reserved
Brake Release
Frequency
Brake Engage
Frequency
01: Analog current meter
02: Output voltage
03: Output frequency command
04: Output motor speed
05: Load power factor (cos90o to Cos0o)
01 to 200%
01 to 20
100
01
00 to 65500
00
00 to 65500
00
0.00 to 400.00 Hz
00
0.00
00: Preliminary count value attained, no EF
display
01: Preliminary count value attained, EF
active
00
0.00 to 400.00Hz
0.00
0.00 to 400.00Hz
0.00
Group 4 Input Function Parameters
Parameter
04-00
04-01
04-02
04-03
04-04
Explanation
AVI Analog Input
Bias
AVI Bias Polarity
AVI Input Gain
AVI Negative Bias,
Reverse Motion
Enable/Disable
Multi-Function Input
Terminal 1 (MI1)
Settings
0.00~200.00 %
00: Positive bias
01: Negative bias
Factory
Customer
Setting
0.00
00
1 to 200 %
00: No AVI negative bias command
100
01: Negative bias: REV motion enabled
02: Negative bias: REV motion disabled
00: No function
00
01
01: Multi-Step speed command 1
02: Multi-Step speed command 2
04-05
Multi-Function Input
Terminal 2 (MI2)
03: Multi-Step speed command 3
04: Multi-Step speed command 4
02
05: External reset (N.O.)
06: Accel/Decel inhibit
Revision April 2009, SW V1.00
5-7
Chapter 5 Parameters|VFD-B-P Series
Parameter
Explanation
Factory
Customer
Setting
Settings
07: Accel/Decel time selection command 1
08: Accel/Decel time selection command 2
04-06
Multi-Function Input
Terminal 3 (MI3)
04-07
Multi-Function Input
Terminal 4 (MI4)
04-08
Multi-Function Input
Terminal 5 (MI5)
04-09
Multi-Function Input
Terminal 6 (MI6)
09: External base block (N.O.)
10: External base block (N.C.)
03
11: Up: Increment master frequency
12: Down: Decrement master frequency
04
13: Counter reset
14: Run PLC program
15: Pause PLC program
16: Auxiliary motor No.1 output disable
17: Auxiliary motor No.2 output disable
18: Auxiliary motor No.3 output disable
19: Emergency stop (N.O.)
20: Emergency stop (N.C.)
21: Master frequency selection AVI/ACI
22: Master frequency selection AVI/AUI
23: Operation command selection
(keypad/external terminals)
24: Auto accel/decel mode disable
25: Forced stop (N.C.)
26: Forced stop (N.O.)
27: Parameter lock enable (N.O.)
05
06
28: PID function disabled
29: Jog FWD/REV command
30: External reset (N.C.)
31: Source of second frequency command
enabled
32: Source of second operation command
enabled
33: One shot PLC
34: Proximity sensor input for simple Index
function
35: Output shutoff stop (NO)
36: Output shutoff stop (NC)
04-10
04-11
04-12
04-13
5-8
Digital Terminal
Input Debouncing
Time
ACI Analog Input
Bias
ACI Bias Polarity
ACI Input Gain
1 to 20 (*2ms)
01
0.00~200.00 %
0.00
00: Positive bias
01: Negative bias
01 to 200 %
00
100
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
04-14
04-15
04-16
04-17
04-18
04-19
04-20
04-21
04-22
04-23
04-24
04-25
Explanation
ACI Negative Bias,
Reverse Motion
Enable/Disable
Settings
00: No ACI negative bias command
01: Negative bias: REV motion enabled
0.00~200.00 %
AUI Bias Polarity
00: Positive bias
01: Negative bias
AUI Input Gain
AVI Analog Input
Delay
ACI Analog Input
Delay
AUI Analog Input
Delay
Analog Input
Frequency
Resolution
Gear Ratio for
Simple Index
Function
Index Angle for
Simple Index
Function
Deceleration Time
for Simple Index
Function
00
02: Negative bias: REV motion disabled
AUI Analog Input
Bias
AUI Negative Bias
Reverse Motion
Enable/Disable
Factory
Customer
Setting
0.00
00
01 to 200 %
00: No AUI negative bias command
100
01: Negative bias: REV motion enabled
02: Negative bias: REV motion disabled
0.00 to 10.00 sec
00
0.05
0.00 to 10.00 sec
0.05
0.00 to 10.00 sec
0.05
00: 0.01Hz
01
01: 0.1Hz
4 ~ 1000
200
0.0 ~360.0o
180.0
0.00 ~100.00 sec
0.00
Group 5 Multi-Step Speed and PLC Parameters
Parameter
05-00
05-01
05-02
05-03
05-04
05-05
05-06
Explanation
st
1 Step Speed
Frequency
2nd Step Speed
Frequency
3rd Step Speed
Frequency
4th Step Speed
Frequency
5th Step Speed
Frequency
6th Step Speed
Frequency
7th Step Speed
Frequency
Revision April 2009, SW V1.00
Settings
0.00 to 400.00 Hz
Factory
Customer
Setting
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
5-9
Chapter 5 Parameters|VFD-B-P Series
Parameter
05-07
05-08
05-09
05-10
05-11
05-12
05-13
05-14
Explanation
th
8 Step Speed
Frequency
9th Step Speed
Frequency
10th Step Speed
Frequency
11th Step Speed
Frequency
12th Step Speed
Frequency
13th Step Speed
Frequency
14th Step Speed
Frequency
15th Step Speed
Frequency
Factory
Customer
Setting
0.00
Settings
0.00 to 400.00 Hz
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
00: Disable PLC operation
01: Execute one program cycle
05-15
PLC Mode
02: Continuously execute program cycles
00
03: Execute one program cycle step by step
04: Continuously execute program cycles
step by step
05-16
05-17
05-18
05-19
05-20
05-21
05-22
05-23
05-24
05-25
05-26
05-27
05-28
05-29
5-10
PLC Forward/
Reverse Motion
Time Duration of 1st
Step Speed
Time Duration of 2nd
Step Speed
Time Duration of 3rd
Step Speed
Time Duration of 4th
Step Speed
Time Duration of 5th
Step Speed
Time Duration of 6th
Step Speed
Time Duration of 7th
Step Speed
Time Duration of 8th
Step Speed
Time Duration of 9th
Step Speed
Time Duration of
10th Step Speed
Time Duration of
11th Step Speed
Time Duration of
12th Step Speed
Time Duration of
13th Step Speed
00 to 32767 (00: FWD, 01: REV)
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
00 to 65500 sec or 00 to 6550.0 sec
00
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
05-30
05-31
05-32
05-33
05-34
Explanation
Time Duration of
14th Step Speed
Time Duration of
15th Step Speed
Time Unit Settings
The Amplitude of
Wobble Vibration
Wobble Skip
Frequency
Settings
00 to 65500 sec or 00 to 6550.0 sec
00 to 65500 sec or 00 to 6550.0 sec
00: 1 sec
01: 0.1 sec
0.00~400.00 Hz
Factory
Customer
Setting
00
00
00
0.00
0.00~400.00 Hz
0.00
Group 6 Protection Parameters
Parameter
06-00
06-01
06-02
Explanation
Over-Voltage Stall
Prevention
Over-Current Stall
Prevention during
Accel
Over-Current Stall
Prevention during
Operation
Settings
460V series: 660.0V to 820.0V
Factory
Customer
Setting
780.0V
00: Disable over-voltage stall prevention
V/f control: 20 to 150%
120
Vector control: 20 to 250%
170
V/f control: 20 to 150%
120
Vector control: 20 to 250%
170
00: Disabled
06-03
06-04
06-05
06-06
06-07
06-08
Over-Torque
Detection Mode
(OL2)
Over-Torque
Detection Level
Over-Torque
Detection Time
Electronic Thermal
Overload Relay
Selection
Electronic Thermal
Characteristic
Present Fault
Record
Revision April 2009, SW V1.00
01: Enabled during constant speed operation.
After the over-torque is detected, keep
running until OL2 occurs.
02: Enabled during constant speed operation.
After the over-torque is detected, stop
running.
03: Enabled during accel. After the overtorque is detected, keep running until OL2
occurs.
04: Enabled during accel. After the overtorque is detected, stop running.
V/f control: 30 to 150%
Vector control: 10 to 200%
110
150
0.1 to 60.0 sec
0.1
00
00: Standard motor (self cooled by fan)
01: Special motor (forced external cooling)
02
02: Disabled
30 to 600 sec
60
00: No fault
01: Over current (oc)
02: Over voltage (ov)
00
5-11
Chapter 5 Parameters|VFD-B-P Series
Parameter
Explanation
Factory
Customer
Setting
Settings
03: Over heat (oH)
04: Over load (oL)
05: Over load (oL1)
06: External fault (EF)
07: IGBT protection (occ)
06-09
Second Most Recent 08: CPU failure (cF3)
Fault Record
09: Hardware protection failure (HPF)
10: Excess current during acceleration (ocA)
11: Excess current during deceleration (ocd)
12: Excess current during steady state (ocn)
13: Ground fault (GFF)
14: Reserved
06-10
Third Most Recent
Fault Record
15: CF1
16: CF2
17: Reserved
18: Motor over-load (oL2)
19: Auto Acel/Decel failure (CFA)
20: SW/Password protection (codE)
06-11
Fourth Most Recent
Fault Record
21: External Emergency Stop (EF1)
22: Phase-Loss (PHL)
23: Preliminary count value attained, EF
active (cEF)
24: Under-current (Lc)
25: Analog feedback signal error (AnLEr)
26: PG feedback signal error (PGErr)
06-12
06-13
Under-Current
Detection Level
Under-Current
Detection Time
00~100% (00: Disabled)
00
0.1~ 3600.0 sec
10.0
00: Warn and keep operating
06-14
06-15
06-16
5-12
Under-Current
Detection Mode
Under-Current
Detection Restart
Delay Time (Lv)
User-Defined LowVoltage Detection
Level
01: Warn and ramp to stop
00
02: Warn and coast to stop
03: Warn, after coast to stop, restart (delay
06-15 setting time)
1~600 Min.
10
00: Disabled
460V: 440 to 600VDC
00
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
06-17
06-18
Explanation
User-Defined LowVoltage Detection
Time
Reserved
Settings
0.1~ 3600.0 sec
Factory
Customer
Setting
0.5
Group 7 Motor Parameters
Parameter
07-00
07-01
07-02
07-03
07-04
07-05
07-06
07-07
07-08
07-09
07-10
07-11
07-12
07-13
07-14
07-15
Explanation
Motor Rated Current
Motor No-Load
Current
Torque
Compensation
Slip Compensation
(Used without PG)
Number of Motor
Poles
Motor Parameters
Auto Tuning
Motor Line-to-line
Resistance R1
Reserved
Motor Rated Slip
Slip Compensation
Limit
Reserved
Reserved
Torque
Compensation Time
Constant
Slip Compensation
Time Constant
Accumulative Motor
Operation Time
(Min.)
Accumulative Motor
Operation Time
(Day)
Settings
30 to 120%
01 to 90%
Factory
Customer
Setting
100
40
0.0 to 10.0
0.0
0.00 to 3.00
0.00
02 to 10
04
00: Disable
01: Auto tuning R1
02: Auto tuning R1 + no-load test
00
00~65535 mΩ
00
0.00 to 20.00 Hz
3.00
0 to 250%
200
0.01 ~10.00 Sec
0.05
0.05 ~10.00 sec
0.10
00 to 1439 Min.
00
00 to 65535 Day
00
Group 8 Special Parameters
Parameter
08-00
08-01
Explanation
DC Brake Current
Level
DC Brake Time
during Start-Up
Revision April 2009, SW V1.00
Settings
Factory
Customer
Setting
00 to 100%
00
0.0 to 60.0 sec
0.0
5-13
Chapter 5 Parameters|VFD-B-P Series
Parameter
08-02
08-03
08-04
08-05
08-06
08-07
08-08
08-09
08-10
08-11
08-12
08-13
08-14
Explanation
DC Brake Time
during Stopping
Start-Point for DC
Brake
Momentary Power
Loss Operation
Selection
Maximum Allowable
Power Loss Time
B.B. Time for Speed
Search
Current Limit for
Speed Search
Skip Frequency 1
Upper Limit
Skip Frequency 1
Lower Limit
Skip Frequency 2
Upper Limit
Skip Frequency 2
Lower Limit
Skip Frequency 3
Upper Limit
Skip Frequency 3
Lower Limit
Auto Restart After
Fault
Factory
Customer
Setting
Settings
0.0 to 60.0 sec
0.0
0.00 to 400.00Hz
0.00
00: Operation stops after momentary power
loss
01: Operation continues after momentary
power loss, speed search starts with the
Master Frequency reference value
02: Operation continues after momentary
power loss, speed search starts with the
minimum frequency
00
0.1 to 5.0 sec
2.0
0.1 to 5.0 sec
0.5
V/f control: 30 to 150%
Vector control: 30 to 200%
110
150
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
0.00 to 400.00 Hz
0.00
00 to 10 (00=disable)
00
00: Disable
01: Enable
00: AVR function enable
01: AVR function disable
02: AVR function disable for decel.
08-15
Auto Energy Saving
08-16
AVR Function
08-17
Software Brake
Level
460V series: 740 to 860V
760
08-18
Base-block Speed
Search
00: Speed search starts with last frequency
command
01: Starts with minimum output frequency
00
08-19
Speed Search
during Start-up
08-20
08-21
5-14
Speed Search
Frequency during
Start-up
Auto Reset Time at
Restart after Fault
00
00
00: Speed search disable
01: Speed search enable
00: Setting frequency
01: Maximum operation frequency (01-00)
00 to 60000 sec
00
00
600
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
08-22
Explanation
Settings
Compensation
00~1000
Coefficient for Motor
Instability
Factory
Customer
Setting
00
Group 9 Communication Parameters
Parameter
09-00
Explanation
Settings
Communication
Address
01 to 254
Factory
Customer
Setting
01
00: Baud rate 4800bps
01: Baud rate 9600bps
09-01
Transmission Speed
09-02
Transmission Fault
Treatment
09-03
Time-out Detection
09-04
Communication
Protocol
09-05
HMI Register 1
00~65535
00
09-06
HMI Register 2
00~65535
00
09-07
Response Delay
Time
00 ~ 200 msec
02: Baud rate 19200bps
03: Baud rate 38400bps
00: Warn and keep operating
01: Warn and ramp to stop
02: Warn and coast to stop
03: No warning and keep operating
0.0 ~ 60.0 seconds
0.0: Disable
00: 7,N,2 (Modbus, ASCII)
01: 7,E,1 (Modbus, ASCII)
02: 7,O,1 (Modbus, ASCII)
03: 8,N,2 (Modbus, RTU)
04: 8,E,1 (Modbus, RTU)
05: 8,O,1 (Modbus, RTU)
01
03
0.0
00
00
Group 10 PID Control Parameters
Parameter
10-00
Explanation
Input terminal for
PID Feedback
Revision April 2009, SW V1.00
Settings
00: Inhibit PID operation
01: Negative PID feedback from external
terminal (AVI) 0 to +10V
02: Negative PID feedback from external
terminal (ACI) 4 to 20mA
03: Positive PID feedback from external
terminal (AVI) 0 to +10V
04: Positive PID feedback from external
terminal (ACI) 4 to 20mA
Factory
Customer
Setting
00
5-15
Chapter 5 Parameters|VFD-B-P Series
Parameter
10-01
Explanation
Gain over PID
Detection value
Factory
Customer
Setting
Settings
0.00 to 10.00
10-02
Proportional Gain (P) 0.0 to 10.0
10-03
Integral Gain (I)
10-04
Derivative Control
(D)
1.00
1.0
0.00 to 100.00 sec (0.00=disable)
1.00
0.00 to 1.00 sec
0.00
10-05
Upper Bound for
Integral Control
00 to 100%
100
10-06
Primary Delay Filter
Time
0.0 to 2.5 sec
0.0
10-07
PID Output Freq
Limit
0 to 110%
100
10-08
Feedback Signal
Detection Time
0.0 to 3600.0 sec
60.0
00: Warn and keep operation
10-09
10-10
10-11
10-12
10-13
10-14
10-15
10-16
Treatment of the
Erroneous Feedback 01: Warn and RAMP to stop
Signals
02: Warn and COAST to stop
00
PG Pulse Range
1 to 40000
600
PG Input
00: Disable PG
01: Single phase
02: Forward / Counterclockwise rotation
03: Reverse / Clockwise rotation
00
0.0 to 10.0
1.0
0.00 to 100.00 (0.00 disable)
1.00
0.00 to 10.00 Hz
10.00
0.01~1.00 seconds
0.10
ASR (Auto Speed
Regulation) control
(with PG only) (P)
ASR (Auto Speed
Regulation) control
(with PG only) (I)
Speed Control
Output Frequency
Limit
Sample time for
refreshing the
content of 210DH
and 210EH
Deviation Range of
PID Feedback Signal
Error
0.00~100.00%
100.00
Group 11 Fan & Pump Control Parameters
Parameter
Explanation
11-00
V/f Curve Selection
5-16
Factory
Customer
Setting
Settings
00: V/f curve determined by Pr.01-00 to
Pr.01-06
00
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Parameter
Explanation
Settings
Factory
Customer
Setting
01: 1.5 power curve
02: 1.7 power curve
03: Square curve
04: Cube curve
11-01
Start-Up Frequency
of the Auxiliary
Motor
0.00 to 400.00 Hz
0.00
11-02
Stop Frequency of
the Auxiliary Motor
0.00 to 400.00 Hz
0.00
11-03
Time Delay before
Starting the Auxiliary 0.0 to 3600.0 sec
Motor
0.0
11-04
Time Delay before
Stopping the
Auxiliary Motor
0.0 to 3600.0 sec
0.0
11-05
Sleep/Wake Up
Detection Time
0.0 ~6550.0 sec
0.0
11-06
Sleep Frequency
0.00~Fmax
0.00
11-07
Wakeup Frequency
0.00~Fmax
0.00
Revision April 2009, SW V1.00
5-17
Chapter 5 Parameters|VFD-B-P Series
5.2 Parameter Settings for Applications
„
Speed Search
Applications
Windmill, winding
machine, fan and all
inertia load
„
Purpose
Restart freerunning motor
Purpose
Keep the freeWhen e.g. windmills,
fans and pumps rotate running motor at
freely by wind or flow standstill.
without applying power
Windmills, pumps,
extruders
If the running direction of the freerunning motor is not steady, please
execute DC brake before start-up.
08-00
08-01
Related
Parameters
Functions
Switching motor
power between AC
motor drive and
commercial power
When switching motor power between
the AC motor drive and commercial
power, it is unnecessary to stop the
motor or start by commercial power
with heavy duty before switching to by
AC motor drive control
Purpose
Functions
03-00
03-01
03-02
03-03
Energy Saving
Punching machines
and precision
machinery
Energy saving and
less vibrations
Related
Parameters
Energy saving when the AC motor
drive runs at constant speed, yet full
power acceleration and deceleration
For precision machinery it also helps
to lower vibrations.
08-15
Multi-step Operation
Applications
Conveying machinery
5-18
Related
Parameters
Functions
Purpose
Applications
„
08-06
08-07
08-19
08-20
Motor power switch-over between AC motor drive and commercial power
Applications
„
Before the free-running motor is
completely stopped, it can be restarted
without detecting motor speed. The AC
motor drive will auto search motor
speed and will accelerate when its
speed is the same as the motor speed.
DC Brake before Running
Applications
„
Related
Parameters
Functions
Purpose
Related
Parameters
Functions
Cyclic operation by To control 15-step speeds and duration
multi-step speeds. by simple contact signal.
04-04~04-09
05-00~05-14
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
„
Switching acceleration and deceleration times
Applications
Auto turntable for
conveying machinery
„
Functions
Switching
acceleration and
deceleration times
by external signal
Switching the multi-step
acceleration/deceleration by external
signals. When an AC motor drive
drives two or more motors, it can reach
high-speed but still start and stop
smoothly.
01-09~01-12
01-18~01-21
04-04~04-09
Overheat Warning
Applications
Air conditioner
„
Related
Parameters
Purpose
Functions
Related
Parameters
When the AC motor drive overheats, it
uses a thermal sensor to generate a
overheat warning.
03-00~03-03
04-04~04-09
Functions
Related
Parameters
Purpose
Safety measure
Two-wire/three-wire
Applications
Purpose
FW D: ("O PEN ":STOP)
(" CL OS E" :FW D)
FWD/STOP
R EV:(" OP EN" : S TOP )
(" CL OS E" : R E V)
REV/STOP
D CM
General application
To run, stop,
forward and
reverse by external
terminals
VFD-B-P
FW D: ("O PE N ": STOP)
(" CL OS E" :R UN )
RUN/STOP
R EV :(" OP EN" : F W D)
(" CL OSE" : R E V)
FWD/REV
D CM
S TOP
02-05
04-04~04-09
VFD-B-P
R UN
FW D: ("C LOS E ": RU N)
E F: ( "OP E N" :S TOP )
R EV / FWD
R EV :(" OP E N" : F W D)
(" CL OS E": R E V)
D CM
„
Operation Command
Applications
General application
„
VFD-B-P
Purpose
Selecting the
source of control
signal
Functions
Related
Parameters
Selection of AC motor drive control by
02-01
external terminals, digital keypad or
04-04~04-09
RS485.
Frequency Hold
Applications
General application
Purpose
Functions
Acceleration/
Hold output frequency during
deceleration pause Acceleration/deceleration
Revision April 2009, SW V1.00
Related
Parameters
04-04~04-09
5-19
Chapter 5 Parameters|VFD-B-P Series
„
Auto Restart after Fault
Applications
Air conditioners,
remote pumps
„
Purpose
For continuous and
The AC motor drive can be
reliable operation
restarted/reset automatically up to 10
without operator
times after a fault occurs.
intervention
High-speed rotors
Pumps, fans and
extruders
Pump and fan
AC motor drive can use DC brake for
emergency stop when a quick stop is
needed without brake resistor. When
used often, take motor cooling into
consideration.
08-00
08-02
08-03
Purpose
To protect
machines and to
have continuous/
reliable operation
Related
Parameters
Functions
The over-torque detection level can be
set. Once OC stall, OV stall and overtorque occurs, the output frequency
will be adjusted automatically. It is
suitable for machines like fans and
pumps that require continuous
operation.
06-00~06-05
Purpose
Control the motor
speed within
upper/lower limit
Related
Parameters
Functions
When user cannot provide
upper/lower limit, gain or bias from
external signal, it can be set
individually in AC motor drive.
01-07
01-08
Skip Frequency Setting
Applications
Pumps and fans
5-20
Emergency stop
without brake
resistor
Related
Parameters
Functions
Upper/Lower Limit Frequency
Applications
„
Purpose
Over-torque Setting
Applications
„
08-14~08-21
Emergency Stop by DC Brake
Applications
„
Related
Parameters
Functions
Purpose
To prevent
machine vibrations
Related
Parameters
Functions
The AC motor drive cannot run at
constant speed in the skip frequency
range. Three skip frequency ranges
can be set. It is used to smooth
vibration at certain frequencies.
08-00~08-13
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
„
Carrier Frequency Setting
Applications
General application
„
Purpose
Low noise
Air conditioners
Purpose
For continuous
operation
General application
Purpose
Display running
status
General application
Purpose
When the frequency command is lost
by a system malfunction, the AC
motor drive can still run. Suitable for
intelligent air conditioners.
Functions
Display motor speed(rpm) and
machine speed(rpm) on keypad.
Functions
Signal available to stop braking when
Provide a signal for the AC motor drive is running. (This
running status
signal will disappear when the AC
motor drive is free-running.)
Related
Parameters
02-07
Related
Parameters
00-04
03-05
Related
Parameters
03-00~03-03
Output Signal in Zero Speed
Applications
General application
„
Functions
Output Signal during Running
Applications
„
02-03
Display the Speed of Load
Applications
„
The carrier frequency can be
increased when required to reduce
motor noise.
Related
Parameters
Keep Running when Frequency Command is Lost
Applications
„
Functions
Purpose
Functions
When the output frequency is lower
Provide a signal for than the min. output frequency, a
signal is given for external system or
running status
control wiring.
Related
Parameters
03-00~03-03
Output Signal at Setting Frequency
Applications
General application
Purpose
Functions
When the output frequency is at the
Provide a signal for
setting frequency, a signal is sent by
running status
an external system or control wiring.
Revision April 2009, SW V1.00
Related
Parameters
03-00~03-03
5-21
Chapter 5 Parameters|VFD-B-P Series
„
Output Signal at Over-torque Signal
Applications
General application,
pumps for fans and
extruders
„
General application
General application
General application
General application
Purpose
Functions
Related
Parameters
When the voltage between P-N is
Provide a signal for lower than the voltage level, a signal is
running status
sent by an external system or control
wiring.
03-00~03-03
Purpose
Related
Parameters
Functions
When the output frequency is at the
Provide a signal for desired frequency (by frequency
running status
command), a signal is sent by an
external system or control wiring.
03-00~03-03
03-04
03-10
Purpose
Related
Parameters
Functions
When executing Base Block, a signal
Provide a signal for
is sent by an external system or
running status
control wiring.
03-00~03-03
Purpose
For safety
Related
Parameters
Functions
When heat sink is overheated, it will
send a signal by an external system or
control wiring.
03-00~03-03
Multi-function Analog Output
Applications
General application
5-22
03-00~03-03
06-04
06-05
Overheat Warning for Heat Sink
Applications
„
When the torque exceeds the overtorque level, a signal is sent to prevent
the machines from damage.
Output Signal for Base Block
Applications
„
Related
Parameters
Output Signal at Desired Frequency
Applications
„
To protect
machines and to
have reliable
operation
Functions
Output Signal at Low Voltage
Applications
„
Purpose
Purpose
Display running
status
Related
Parameters
Functions
The value of frequency, output
current/voltage can be read by
adding a frequency meter or
voltage/current meter.
03-05
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
5.3 Description of Parameter Settings
Group 0: User Parameters
: This parameter can be set during operation.
00 - 00 Identity Code of the AC motor drive
Settings
Read Only
Factory setting: ##
00 - 01 Rated Current Display of the AC motor drive
Settings
Read Only
Factory setting: #.#
Pr. 00-00 displays the identity code of the AC motor drive. The capacity, rated current, rated
voltage and the max. carrier frequency relate to the identity code. Users can use the following
table to check how the rated current, rated voltage and max. carrier frequency of the AC motor
drive correspond to the identity code.
Pr.00-01 displays the rated current of the AC motor drive. By reading this parameter the user
can check if the AC motor drive is correct.
460V Series
kW
HP
Pr.00-00
Rated Output
Current (A)
V/f
Max.
Control
Carrier
Frequency Vector
Control
2.2
3.0
09
3.7
5.0
11
5.5
7.5
13
7.5
10
15
11
15
17
15
20
19
18.5
25
21
22
30
23
30
40
25
37
50
27
45
60
29
4.2
5.5
13
18
24
32
38
45
60
73
91
15kHz
9kHz
6kHz
15kHz
9kHz
00 - 02 Parameter Reset
Factory Setting: 00
Settings 08
Keypad Lock
09
All parameters are reset to factory settings (50Hz, 380V)
10
All parameters are reset to factory settings (60Hz, 440V)
This parameter allows the user to reset all parameters to the factory settings except the fault
records (Pr.06-08 ~ Pr.06-11).
When Pr.00-02=08, the VFD-PU01 keypad is locked. To unlock the keypad, set Pr.00-02=00.
00 - 03
Start-up Display Selection
Factory Setting: 00
Settings 00
Display the frequency command value. (LED F)
Revision April 2009, SW V1.00
5-23
Chapter 5 Parameters|VFD-B-P Series
01
Display the actual output frequency (LED H)
02
Display the content of user-defined unit (LED U)
03
Multifunction display, see Pr.00-04
04
FWD/REV command
This parameter determines the start-up display page after power is applied to the drive.
00 - 04
Content of Multi-Function Display
Factory Setting: 00
Settings 00
01
5-24
Display the output current in A supplied to the motor
Display the counter value which counts the number
of pulses on TRG terminal
02
When the PLC function is active, the current step and
its remaining operation time in s are shown.
03
Display the actual DC BUS voltage in VDC of the AC
motor drive
04
Display the output voltage in VAC of terminals U, V, W
to the motor.
05
Display the power factor angle in º of terminals U, V, W
to the motor.
06
Display the output power in kW of terminals U, V and W
to the motor.
07
Display the actual motor speed in rpm (enabled in
vector control mode or PG (Encoder) feedback control)
(LED H and LED U).
08
Display the estimated value of torque in Nm as it relates
to current.
09
Display PG encoder feedback pulses/10ms.
Display value= (rpm*PPR)/6000 (see note)
10
Display analog feedback signal value in %.
11
Display the signal of AVI analog input terminal in %.
Range 0~10V corresponds to 0~100%. (LED U)
12
Display the signal of ACI analog input terminal in %.
Range 4~20mA corresponds to 0~100%. (LED U)
13
Display the signal of AUI analog input terminal in %.
Range -10V~10V corresponds to 0~100%. (LED U)
14
Display the temperature of heat sink in °C.
This parameter sets the display when Pr. 00-03 is set to 03.
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Pr.00-04=09. The display value is (((rpm/60)*PPR)/1000ms)*10ms
with rpm=motor speed in revs/min and PPR=encoder pulse per revolution
When the display shows the multi-function display (Pr.00-03=03), the user also can view other
information by pressing the “LEFT” key
00 - 05
User Defined Coefficient K
Settings
on the VFD-PU01 keypad.
0.01 to d 160.00
Unit: 0.01
Factory Setting: 1.00
The coefficient K determines the multiplying factor for the user-defined unit.
The display value is calculated as follows:
U (User-defined unit) = Frequency Command * K (Pr.00-05)
H (actual output) = Actual output frequency * K (Pr.00-05)
Example:
A conveyor belt runs at 13.6m/s at motor speed 60Hz.
K = 13.6/60 = 0.23 (0.226667 rounded to 2 decimals), therefore Pr.00-05=0.23
With Frequency command 35Hz, display shows LED U and 35*0.23=8.05m/s.
(To increase accuracy, use K=2.27 or K=22.67 and disregard decimal point.)
00 - 06 Software Version
Settings
Read Only
Display
#.##
00 - 07 Password Input
Unit: 1
Settings
00 to 65535
Display
00~02 (times of wrong password)
Factory Setting: 00
The function of this parameter is to input the password that is set in Pr.00-08. Input the correct
password here to enable changing parameters. You are limited to a maximum of 3 attempts.
After 3 consecutive failed attempts, a blinking “PcodE” will show up to force the user to restart
the AC motor drive in order to try again to input the correct password.
00 - 08 Password Set
Unit: 1
Settings
00 to 65535
Display
00
No password set or successful input in Pr. 00-07
01
Password has been set
Revision April 2009, SW V1.00
Factory Setting: 00
5-25
Chapter 5 Parameters|VFD-B-P Series
To set a password to protect your parameter settings.
If the display shows 00, no password is set or password has been correctly entered in Pr.0007. All parameters can then be changed, including Pr.00-08.
The first time you can set a password directly. After successful setting of password the display
will show 01.
Be sure to record the password for later use.
To cancel the parameter lock, set the parameter to 00 after inputting correct password into Pr.
00-07.
The password consists of min. 2 digits and max. 5 digits.
How to make the password valid again after decoding by Pr.00-07:
Method 1: Re-input original password into Pr.00-08 (Or you can enter a new password if you
want to use a changed or new one).
Method 2: After rebooting, password function will be recovered.
Password Decode Flow Chart
00-08
Displays 00 when
entering correct
password into
Pr.00-07.
00-07
Correct Password
END
Incorrect Password
END
00-08
00-07
Displays 00 when
entering correct
password into
Pr.00-07.
3 chances to enter the correct
password.
1st time displays "01" if
password is incorrect.
2nd time displays "02", if
password is incorrect.
3rd time displays "P code"
(blinking)
If the password was entered
incorrectly after three tries,
the keypad will be locked.
Turn the power OFF/ON to
re-enter the password.
5-26
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
00 - 09 Control method
Factory Setting: 00
Settings
00
V/f control
01
V/f + PG Control
02
Vector Control
03
Vector + PG Control
This parameter determines the control method of the AC motor drive.
PG is encoder (Pulse Generator) feedback for which an option PG card is required.
Setting 00 and 01 are for V/f control mode. Setting 02 and 03 are for vector control mode.
When the control model is changed, the settings of Pr.02-03(PWM Carrier Frequency
Selections), Pr.06-01(Over-Current Stall Prevention during Accel), Pr.06-02(Over-Current Stall
Prevention during Operation), Pr.06-04(Over-Torque Detection Level) and Pr.08-07(Current
Limit for Speed Search) will be reset to the factory setting of the setting model.
00 - 10 Reserved
Revision April 2009, SW V1.00
5-27
Chapter 5 Parameters|VFD-B-P Series
Group 1: Basic Parameters
01 - 00
Maximum Output Frequency (Fmax)
Settings
50.00 to 400.00 Hz
Unit: 0.01
Factory Setting: 60.00
This parameter determines the AC motor drive’s Maximum Output Frequency. All the AC
motor drive frequency command sources (analog inputs 0 to +10V and 4 to 20mA) are scaled
to correspond to the output frequency range.
01 - 01
Maximum Voltage Frequency (Fbase)
Settings
0.10 to 400.00Hz
Unit: 0.01
Factory Setting: 60.00
This value should be set according to the rated frequency of the motor as indicated on the
motor nameplate.
01 - 02 Maximum Output Voltage (Vmax)
Settings
0.1 to 510.0V
Unit: 0.1
Factory Setting: 440.0
This parameter determines the Maximum Output Voltage of the AC motor drive. The Maximum
Output Voltage setting must be smaller than or equal to the rated voltage of the motor as
indicated on the motor nameplate.
01 - 03
Mid-Point Frequency (Fmid)
Settings
0.10 to 400.00Hz
Unit: 0.01
Factory Setting: 0.50
This parameter sets the Mid-Point Frequency of the V/f curve. With this setting, the V/f ratio
between Minimum Frequency and Mid-Point frequency can be determined.
If Pr.11-00 is NOT set to 0, this parameter is invalid.
When it is vector control mode, the settings of Pr.01-03, Pr.01-04 and Pr.01-06 are invalid.
01 - 04
Mid-Point Voltage (Vmid)
Settings
0.1 to 510.0V
Unit: 0.1
Factory Setting: 3.4
This parameter sets the Mid-Point Voltage of any V/f curve. With this setting, the V/f ratio
between Minimum Frequency and Mid-Point Frequency can be determined.
If Pr.11-00 is NOT set to 0, this parameter is invalid.
01 - 05
Minimum Output Frequency (Fmin)
Settings
5-28
0.10 to 400.00Hz
Unit: 0.01
Factory Setting: 0.50
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
This parameter sets the Minimum Output Frequency of the AC motor drive.
01 - 06
Minimum Output Voltage (Vmin)
Settings
Unit: 0.1
0.1 to 510.0V
Factory Setting: 3.4
This parameter sets the Minimum Output Voltage of the AC motor drive.
The settings of Pr.01-01 to Pr.01-06 have to meet the condition of Pr.01-02 ≥ Pr.01-04 ≥ Pr.0106 and Pr.01-01 ≥ Pr.01-03 ≥ Pr.01-05.
When it is vector control mode, the settings of Pr.01-03, Pr.01-04 and Pr.01-06 are invalid.
Pr.01-05 is still the minimum output frequency.
01 - 07
Output Frequency Upper Limit
Settings
Unit: 1
1 to 120%
Factory Setting: 100
This parameter must be equal to or greater than the Output Frequency Lower Limit (Pr.01-08).
The Maximum Output Frequency (Pr.01-00) is regarded as 100%.
Output Frequency Upper Limit value = (Pr.01-00 * Pr.01-07)/100.
1-08
Voltage
1-07
Output Frequency
Lower Limit
Output Frequency
Upper Limit
1-02
Maximum
Output
Voltage
1-04
Mid-point
Voltage
The limit of
Output
Frequency
Frequency
1-06
Minimum
1-05
Output
Voltage Minimum
Output
Freq.
1-03
Mid-point
Freq.
1-01
Maximum Voltage
Frequency
(Base Frequency)
1-00
Maximum
Output
Frequency
V/f Curve
01 - 08
Output Frequency Lower Limit
Settings
0 to 100%
Unit: 1
Factory Setting: 0
The Output Frequency Lower Limit value = (Pr.01-00 * Pr.01-08) /100.
The Upper/Lower Limits are to prevent operation errors and machine damage.
If the Output Frequency Upper Limit is 50Hz and the Maximum Output Frequency is 60Hz, the
Output Frequency will be limited to 50Hz.
Revision April 2009, SW V1.00
5-29
Chapter 5 Parameters|VFD-B-P Series
If the Output Frequency Lower Limit is 10Hz, and the Minimum Output Frequency (Pr.01-05) is
set to 1.5Hz, the drive will run with 10Hz.
The upper limit of output frequency will be limited to 60Hz even after slip compensation when
the max. output frequency is set to 60Hz and the setting frequency is also 60Hz. To make the
output frequency exceeds 60Hz, it just only needs to increase the upper limit of output
frequency or max. output frequency.
01 - 09
Acceleration Time 1 (Taccel 1)
Unit: 0.1/0.01
01 - 10
Deceleration Time 1 (Tdecel 1)
Unit: 0.1/0.01
01 - 11
Acceleration Time 2 (Taccel 2)
Unit: 0.1/0.01
01 - 12
Deceleration Time 2 (Tdecel 2)
Unit: 0.1/0.01
01 - 18
Acceleration Time 3 (Taccel 3)
Unit: 0.1/0.01
01 - 19
Deceleration Time 3 (Tdecel 3)
Unit: 0.1/0.01
01 - 20
Acceleration Time 4 (Taccel 4)
Unit: 0.1/0.01
01 - 21
Deceleration Time 4 (Tdecel 4)
Settings
Unit: 0.1/0.01
0.01 to 3600.0 sec
Factory Setting: 10.0
Factory setting for models of 30hp (22kW) and above is 60sec.
01 - 23 Accel/Decel Time Unit
Factory Setting: 01
Settings
00
Unit: 1 sec
01
Unit: 0.1 sec
02
Unit: 0.01 sec
The Acceleration Time is used to determine the time required for the AC motor drive to ramp
from 0 Hz to Maximum Output Frequency (Pr.01-00). The Deceleration Time is used to
determine the time required for the AC motor drive to decelerate from the Maximum Output
Frequency (Pr.01-00) down to 0 Hz.
The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-Function
Input Terminals Settings. See Pr.04-04 to Pr.04-09 for more details.
Pr.01-23 setting can change the accel./decel. time unit of Pr.01-09~01-12, Pr.01-18~01-21,
Pr.01-13 and Pr.01-22 and also affect the setting of accel./decel. time.
5-30
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Frequency
01-00
Max. output
Frequency
setting
operation
frequency
01-05
Min. output
frequency
0 Hz
Decel. Time
Accel. Time
01-09
01-11
01-18
01-20
The definition of
Accel./Decel. Time
Resulting
01-10
01-12
01-19
01-21
Time
Resulting
Decel. Time
Accel. Time
Resulting Accel./Decel. Time
01 - 13
Jog Acceleration Time
Settings
01 - 22
0.1 to 3600.0 sec
Unit: 0.1
Factory Setting: 1.0
Jog Frequency
Settings
Unit: 0.1
Factory Setting: 1.0
Jog Deceleration Time
Settings
01 - 14
0.1 to 3600.0 sec
0.10 to 400.00Hz
Unit: 0.1
Factory Setting: 1.0
Both external terminal JOG and key “JOG” on the keypad can be used. When the Jog
command is “ON”, the AC motor drive will accelerate from Minimum Output Frequency (Pr.0105) to Jog Frequency (Pr.01-14). When the Jog command is “OFF”, the AC motor drive will
decelerate from Jog Frequency to zero. The used Accel/Decel time is set by the Jog
Accel/Decel time (Pr.01-13, Pr.01-22).
Before using the JOG command, the drive must be stopped first. And during Jog operation,
other operation commands cannot be accepted, except command via the FORWARD,
REVERSE and STOP keys on the digital keypad.
Revision April 2009, SW V1.00
5-31
Chapter 5 Parameters|VFD-B-P Series
Frequency
01-14
JOG
Frequency
01-05
Min. output
frequency
0 Hz
JOG Accel. Time
01-13
JOG Decel. Time
Time
01-22
The definition of JOG Accel./Decel. Time
01 -15
Auto-Acceleration / Deceleration
Factory Setting: 00
Settings
00
Linear acceleration / deceleration
01
Auto acceleration, linear Deceleration.
02
Linear acceleration, auto Deceleration.
03
Auto acceleration / deceleration (set by load)
04
Auto acceleration / deceleration (set by Accel/Decel Time setting)
With Auto acceleration / deceleration it is possible to reduce vibration and shocks during
starting/stopping the load.
During Auto acceleration the torque is automatically measured and the drive will accelerate to
the set frequency with the fastest acceleration time and the smoothest start current.
During Auto deceleration, regenerative energy is measured and the motor is smoothly stopped
with the fastest deceleration time.
But when this parameter is set to 04, the actual accel/decel time will be equal to or more than
parameter Pr.01-09 ~Pr.01-12 and Pr.01-18 to Pr.01-21.
Auto acceleration/deceleration makes the complicated processes of tuning unnecessary. It
makes operation efficient and saves energy by acceleration without stall and deceleration
without brake resistor.
5-32
In applications with brake resistor or brake unit, Auto deceleration shall not be used.
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
01 - 16 Acceleration S-Curve
01 - 17 Deceleration S-Curve
Factory Setting: 00
Settings
00
S-curve disabled
01 to 07
S-curve enabled (07 is the smoothest)
This parameter is used to ensure smooth acceleration and deceleration via S-curve.
The S-curve is disabled when set to 00 and enabled when set to 01 to 07.
Setting 01 gives the quickest and setting 07 the longest and smoothest S-curve.
The diagram below shows that the original setting of the Accel/Decel Time is only for reference
when the S-curve is enabled. The actual Accel/Decel Time depends on the selected S-curve
(01 to 07).
2
1
3
4
2
1
3
4
1 2
3 4
Disable S curve
Enable S curve
Acceleration/deceleration Characteristics
Revision April 2009, SW V1.00
5-33
Chapter 5 Parameters|VFD-B-P Series
Group 2: Operation Method Parameters
02 - 00
Source of First Master Frequency Command
Factory Setting: 00
Settings
02 - 13
00
Digital keypad (PU01)
01
AVI 0 ~ +10VDC
02
ACI 4 ~ 20mA
03
AUI -10 ~ +10VDC
04
RS-485 serial communication (RJ-11). Last used frequency saved.
05
RS-485 serial communication (RJ-11). Last used frequency not
saved.
06
Combined use of master and auxiliary frequency command
See Pr. 02-10 to 02-12
Source of Second Master Frequency Command
Factory Setting: 00
Settings
00
Digital keypad (PU01)
01
AVI 0 ~ +10VDC
02
ACI 4 ~ 20mA
03
AUI -10 ~ +10VDC
04
RS-485 serial communication (RJ-11). Last used frequency saved.
05
RS-485 serial communication (RJ-11). Last used frequency not
saved.
06
Combined use of master and auxiliary frequency command
See Pr. 02-10 to 02-12
These parameters set the Master Frequency Command Source of the AC motor drive.
02 - 01
Source of First Operation Command
Factory Setting: 00
Settings
5-34
00
Digital keypad (PU01)
01
External terminals. Keypad STOP/RESET enabled.
02
External terminals. Keypad STOP/RESET disabled.
03
RS-485 serial communication (RJ-11). Keypad STOP/RESET
enabled.
04
RS-485 serial communication (RJ-11). Keypad STOP/RESET
disabled.
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
02 - 14
Source of Second Operation Command
Factory Setting: 00
Settings
00
Digital keypad (PU01)
01
External terminals. Keypad STOP/RESET enabled.
02
External terminals. Keypad STOP/RESET disabled.
03
RS-485 serial communication (RJ-11). Keypad STOP/RESET
enabled.
04
RS-485 serial communication (RJ-11). Keypad STOP/RESET
disabled.
These parameters are used to set the source of operation command.
The first /second frequency/operation command is enabled/disabled by Multi Function Input
Terminals. Please refer to of Pr.04-04 ~ 04-09(setting 31 and 32). When one of Pr.04-04 ~ 0409 is set to 31 or 32, the frequency and source of operation command will be according to the
setting of Pr.02-13 and Pr.02-14. The first frequency/operation and the second
frequecny/operation command can’t be enabled at the same time.
02 - 10
Source of the Master Frequency Command
Factory Setting: 00
Settings
02 - 11
00
Digital keypad (PU01)
01
AVI 0 ~ +10VDC
02
ACI 4 ~ 20mA
03
AUI -10 ~ +10VDC
04
RS-485 serial communication (RJ-11)
Source of the Auxiliary Frequency Command
Factory Setting: 00
Settings
00
Digital keypad (PU01)
01
AVI 0 ~ +10VDC
02
ACI 4 ~ 20mA
03
AUI -10 ~ +10VDC
04
RS-485 serial communication (RJ-11)
Combination of the Master and Auxiliary Frequency
02 - 12
Command
Factory Setting: 00
Settings
00
Master frequency + Auxiliary frequency
01
Master frequency - Auxiliary frequency
Revision April 2009, SW V1.00
5-35
Chapter 5 Parameters|VFD-B-P Series
These three parameters (Pr.02-10~02-12) are enabled when Pr.02-00 or Pr.02-13 are set to
06. If they are enabled, the frequency command will be determined by these parameters.
02 - 02 Stop Method
Factory Setting: 00
Settings
00
STOP: ramp to stop
E.F.: coast to stop
01
STOP: coast to stop
E.F.: coast to stop
02
STOP: ramp to stop
E.F.: ramp to stop
03
STOP: coast to stop
E.F.: ramp to stop
The parameter determines how the motor is stopped when the AC motor drive receives a valid
stop command or detects External Fault.
1. Ramp:
the AC motor drive decelerates to Minimum Output Frequency (Pr.01-05)
according to the deceleration time and then stops.
2. Coast:
the AC motor drive stops the output instantly upon command, and the motor
free runs until it comes to a complete standstill.
3. The motor stop method is usually determined by the characteristics of the motor load and
how frequently it is stopped.
(1)
It is recommended to use “ramp to stop” for safety of personnel or to prevent
material from being wasted in applications where the motor has to stop after the
drive is stopped. The deceleration time has to be set accordingly.
(2)
If the motor free running is allowed or the load inertia is large, it is
recommended to select “coast to stop”.
For example: blowers, pumps and stirring machines.
Frequency
output
frequency
Frequency
output
frequency
motor
speed
motor
speed
Time
operation
command
RUN
stops according to
decel eration time
STOP
operation
command
Time
RUN
free run to stop
STOP
ramp to stop and free run to stop
5-36
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Frequency
Frequency
frequency output
motor
speed
frequency
output
motor
speed
stops according to
decel eration time
operation
command
EF
02 - 03
When Pr.02-02 is set to 2 or 3
EF
When Pr.02-02 is set to 0 or 1
Unit: 1
PWM Carrier Frequency Selections
V/f Control
3-7.5hp
2.2-5.5kW
01-15 kHz
10
Power
Setting Range
Factory Setting
10-30hp
7.5-22kW
01-09 kHz
06
Vector Control
3-25hp
2.2-18.5kW
01-15 kHz
10
Power
Setting Range
Factory Setting
free run to stop
operation
command
40-60hp
30-45kW
01-06 kHz
04
30-60hp
22-45kW
01-09 kHz
06
This parameter determines the PWM carrier frequency of the AC motor drive.
Heat
D issi pation
Significant
Electr om agnetic
N oise or leakage
curr ent
Minimal
Minimal
Minimal
Minimal
Significant
Significant
Significant
Carri er
F requenc y
Acoustic
Noise
1kHz
Current
Wave
9kHz
15kHz
From the table, we see that the PWM carrier frequency has a significant influence on the
electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise.
02 - 04 Motor Direction Control
Factory Setting: 00
Settings
00
Enable Forward/Reverse operation
01
Disable Reverse operation
02
Disabled Forward operation
Revision April 2009, SW V1.00
5-37
Chapter 5 Parameters|VFD-B-P Series
The parameter determines the AC motor drive direction of rotation. See Chapter 2 for definition
of direction of rotation.
02 - 05 2-wire/ 3-wire Operation Control Modes
Factory Setting: 00
Settings
00
2-wire: FWD/STOP, REV/STOP
01
2-wire: FWD/REV, RUN/STOP
02
3-wire Operation
There are three different types of control modes:
02-05
00
External Terminal
2-wire
FWD /STOP
REV / STOP
FWD/STOP
FW D: ("O PE N ": STO P)
(" CL OSE" :FW D)
REV/STOP
R EV: ("O PE N ": STO P)
(" CL OS E" : R EV)
D CM
01
2-wire
FWD/ REV
RUN / STOP
RUN/STOP
FW D: ("O PE N ": STO P)
(" CL OS E" :R UN )
FWD/REV
R EV : ("O PEN ": F W D)
(" CL OSE": R EV)
D CM
S TOP
02
R UN
3-wire
R EV / FWD
VFD-B-P
FW D: ("C LOS E ": RU N)
E F: ( "OP E N" :S TOP )
R EV : ("O PE N ": F W D)
(" CL OS E" : R E V)
D CM
02- 06
VFD-B-P
VFD-B-P
Line Start Lockout
Factory Setting: 00
Settings
5-38
00
Disable. Operation status is not changed even if operation
command source Pr.02-01 and/or Pr.02-14 is changed.
01
Enable. Operation status is not changed even if operation command
source Pr.02-01 and/or Pr.02-14 is changed.
02
Disable. Operation status will change if operation command source
Pr.02-01 and/or Pr.02-14 is changed.
03
Enable. Operation status will change if operation command source
Pr.02-01 and/or Pr.02-14 is changed.
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
This parameter determines the response of the drive when power is on and the operation
command source is changed.
Pr.02-06
Operation status when operation
command source is changed
Start lockout (Run when power is ON)
00
Disable (AC motor drive will run)
Keep previous status
01
Enable (AC motor drive won’t run)
Keep previous status
02
Disable (AC motor drive will run)
Change according to the new
operation command source
03
Enable (AC motor drive won’t run)
Change according to the new
operation command source
When the operation command source is from an external terminal and operation command is
ON (FWD/REV-DCM=close), the AC motor drive will operate according to Pr.02-06 after
power is applied. <For terminals FWD and REV only>
1.
2.
When Pr.02-06 is set to 00 or 02, AC motor drive will run immediately.
When Pr.02-06 is set to 01 or 03, AC motor drive will remain stopped until operation
command is received after previous operation command is cancelled.
FWD-DCM (close)
Pr.02-01=0
OFF
ON
RUN
STOP
RUN
STOP
output frequency
Pr.02-06=2 or 3
Change operation
command source
Pr.02-01=1 or 2
This action will follow FWD/DCM
or REV/DCM status
(ON is close/OFF is open)
output frequency
Pr.02-06=0 or 1
When the operation command source isn’t from the external terminals, independently from
whether the AC motor drive runs or stops, the AC motor drive will operate according to Pr.0206 if the two conditions below are both met.
1.
When operation command source is changed to external terminal (Pr.02-14=1 or 2)
2.
The status of terminal and AC motor drive is different.
Revision April 2009, SW V1.00
5-39
Chapter 5 Parameters|VFD-B-P Series
And the operation of the AC motor drive will be:
1.
2.
When setting 00 or 01, the status of AC motor drive is not changed by the terminal status.
When setting 02 or 03, the status of AC motor drive is changed by the terminal status.
FWD-DCM (close)
power is applied
OFF
ON
OFF
output frequency
Pr.02-06=0 or 2
ON
ON
it will run
output frequency
Pr.02-06=1 or 3
it won't run
when power is applied
It needs to received a run command
after previous command is cancelled
The Line Start Lockout feature does not guarantee that the motor will never start under this
condition. It is possible the motor may be set in motion by a malfunctioning switch.
02- 07
Loss of ACI Signal (4-20mA)
Factory Setting: 00
Settings
00
Decelerate to 0Hz
01
Coast to stop and display “EF”
02
Continue operation by the last frequency command
This parameter determines the behavior when ACI is lost.
When set to 00 or 02, it will display warning message “AnLEr” on the keypad in case of loss of
ACI signal and execute the setting. When ACI signal is recovered, the warning message
usually disappears automatically. If the warning message is still displayed, please press
“MODE” key to make it disappear.
02 - 08
Up/Down Mode
Factory Setting: 00
Settings
5-40
00
Based on Accel/Decel time acc. to Pr.01-09 to 01-12 and Pr.01-18
to 01-21
01
Constant speed (acc. to Pr. 02-09)
02
Based on Accel/Decel time acc. to Pr.01-09 to 01-12 and Pr.01-18
to 01-21, but frequency command will be 0 when stopped. Only
used when the frequency command source is PU01
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Accel/Decel Rate of Change of UP/DOWN Operation with
02 - 09
Constant Speed
Settings
0.01~1.00 Hz/ms
Unit: 0.01
Factory Setting: 0.01
These parameters determine the increase/decrease of the master frequency when operated
via the Multi-Function Inputs when Pr.04-04~Pr.04-09 are set to 11 (Up command) or 12
(Down command).
Pr.02-08 is set to 00: to increase/decrease frequency command according to the setting of
accel./decel.. (only valid when the AC motor drive is in operation)
Pr.02-08 is set to 01: to increase/decrease frequency command according to Pr.02-09.
02 - 15
Keypad Frequency Command
Settings
0.00 ~ 400.00Hz
Unit: 0.01
Factory Setting: 60.00
This parameter can be used to set frequency command or read keypad frequency command.
Revision April 2009, SW V1.00
5-41
Chapter 5 Parameters|VFD-B-P Series
Group 3: Output Function Parameters
03 - 00
Multi-function Output Relay (RA1, RB1, RC1)
03 - 01
Multi-function Output Terminal MO1
03 - 02
Multi-function Output Terminal MO2
03 - 03
Multi-function Output Terminal MO3
Factory Setting: 08
Factory Setting: 01
Factory Setting: 02
Factory Setting: 20
Settings
No Function
01
AC Drive Operational
02
frequency setting.
Over-Torque Detection
08
09
10
11
12
command is “ON”.
Active when the AC motor drive reaches the output
04
07
Active when there is an output from the drive or RUN
Attained
Zero Speed
06
Description
Master Frequency
03
05
5-42
Function
00
Baseblock (B.B.)
Indication
Active when Command Frequency is lower than the
Minimum Output Frequency.
Active as long as over-torque is detected. (Refer to Pr.06-03
~ Pr.06-05)
Active when the output of the AC motor drive is shut off
during baseblock. Base block can be forced by Multi-function
input (setting 9 or 10).
Low-Voltage Indication
Active when low voltage(Lv) is detected.
Operation Mode
Active when operation command is controlled by external
Indication
terminal.
Fault Indication
Desired Frequency
Attained 1
PLC Program Running
PLC Program Step
Completed
PLC Program Completed
Active when faults occur (oc, ov, oH, oL, oL1, EF, cF3, HPF,
ocA, ocd, ocn, GFF).
Active when the desired frequency (Pr.03-04) is attained.
Active when PLC Program is running.
Active for 0.5 sec each time the multi-step speed is attained.
Active for 0.5 sec when the PLC program cycle has
completed
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Settings
13
14
15
Function
PLC Operation Paused
Terminal Count Value
Attained
Preliminary Count Value
Attained
Auxiliary Motor 1, 2 and 3
18
19
20
21
22
Active when the counter reaches Terminal Count Value.
Active when the counter reaches Preliminary Count Value.
For the fan & pump control applications, one can use the
16
17
Description
Active when PLC operation is paused.
Multi-function Output Terminals (1-3) to define the auxiliary
motor. When using with group 10 PID Controls and group 11
Fan and Pump Control, it can control flow of many motors.
Heat Sink Overheat
Warning (OH1)
AC Motor Drive Ready
Emergency Stop
Indication
Desired Frequency
Attained 2
When the heatsink overheats, it will signal to prevent OH
from turning off the drive. When it is higher than 85oC
(185oF), it will be ON. If not, it will be OFF.
Active when the drive is on and no abnormality detected.
Active once the drive’s emergency stop function is activated.
Active when the desired frequency (Pr.03-10) is attained.
This function is used in conjunction with a VFDB Brake Unit.
23
Software Brake Signal
The output will be activated when the drive needs help
braking the load. A smooth deceleration is achieved by using
this function.
24
25
26
27
28
29
Zero Speed Output
Signal
Under-current Detection
Operation Indication
(H>=Fmin)
Feedback Signal Error
Active unless there is an output frequency present at
terminals U/T1, V/T2, and W/T3.
Active once the drive’s current has fallen below its minimum
allowable value. (Refer to Pr.06-12, 06-13)
Active when there is output voltage from U, V, W.
Active when the feedback signal is abnormal. (Refer to
Pr.10-08, Pr.10-16)
User-defined Low-
Active once the DC Bus voltage is too low. (Refer to Pr.06-
voltage Detection
16, Pr.06-17)
Brake Control (Desired
Active when output frequency ≥Pr.03-13. Deactivated when
Frequency Attained 3)
output frequency ≤Pr.03-14 after STOP command.
03 - 04 Desired Frequency Attained 1
Revision April 2009, SW V1.00
Unit: 0.01
5-43
Chapter 5 Parameters|VFD-B-P Series
Settings
0.00 to 400.00 Hz
Factory Setting: 0.00
03 - 10 Desired Frequency Attained 2
Settings
Unit: 0.01
Factory Setting: 0.00
0.00 to 400.00 Hz
If a multi-function output terminal is set to function as Desired Frequency Attained 1 or 2
(Pr.03-00 to Pr.03-03 = 09 or 22), then the output will be activated when the programmed
frequency is attained.
F requenc y
master
2Hz
frequency
detec ti on range
desir ed
frequency waiting time
for
frequency
run/stop
setting 03 z ero s peed indication
setting 24 z ero s peed indication
DC brake time
during stop
OF F
OF F
T ime
OF F
ON
master fr eq. attained
(output signal)
desir ed freq. attained
detec ti on
range
detec ti on
-2Hz range
4Hz
ON
ON
OF F
OF F
ON
OF F
ON
ON
OF F
ON
output timing chart of multi pl e fu nction terminals
when setting to frequency attained or zer o speed i ndi cati on
03 - 05 Analog Output Signal (AFM)
Factory Setting: 00
Settings
01
Analog Current Meter (0 to 250% of rated AC motor drive current)
02
Output voltage (0 to Pr.01-02)
03
Output frequency command (0 to Maximum Frequency)
04
Output motor speed (0 to the Maximum Frequency)
05
Load power factor (cos90o to 0o)
Analog Output Gain
Settings
5-44
Analog Frequency Meter (0 to Maximum Output Frequency)
This parameter sets the function of the AFM output 0~+10VDC (ACM is common).
03 - 06
00
01 to 200%
Unit: 1
Factory Setting: 100
This parameter sets the voltage range of the analog output signal.
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
When Pr.03-05 is set to 0, the analog output voltage is directly proportional to the output
frequency of the AC motor drive. With Pr.03-06 set to 100%, the Maximum Output Frequency
(Pr.01-00) of the AC motor drive corresponds to +10VDC on the AFM output.
Similarly, if Pr.03-05 is set to 1, the analog output voltage is directly proportional to the output
current of the AC drive. With Pr.03-06 set to 100%, then 2.5 times the rated current
corresponds to +10VDC on the AFM output.
NOTE
Any type of voltmeter can be used. If the meter reads full scale at a voltage less than 10 volts,
the parameter 03-06 should be set using the following formula:
Pr. 03-06 = ((meter full scale voltage)/10) x 100%
For Example: When using the meter with full scale of 5 volts, adjust Pr.03-06 to 50%. If
Pr.03-05 is set to 0, then 5VDC will correspond to Maximum Output Frequency.
03 - 07
Digital Output Multiplying Factor
Settings
01 to 20 times
Unit: 1
Factory Setting: 01
This parameter determines the multiplying factor for the AC drives digital output frequency at
the digital output terminals (DFM-DCM). The pulse frequency is equal to the AC motor drive
output frequency multiplied by Pr.03-07. (Pulse frequency = actual output frequency x Pr.03-07)
03 - 08
Terminal Count Value
Settings
00 to 65500
Unit: 1
Factory Setting: 00
This parameter sets the count value of the internal counter. The external terminal TRG
increases the internal counter. Upon completion of counting, the specified output terminal will
be activated. (Pr.03-00 to Pr.03-03 set to 14).
When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it
means that real counter value is between 55,550 to 55,559.
03 - 09
Preliminary Count Value
Settings
00 to 65500
Unit: 1
Factory Setting: 00
When the counter value reaches this value, the corresponding multi-function output terminal
will be activated, provided one of Pr.03-00 to Pr.03-03 set to 15 (Preliminary Count Value
Revision April 2009, SW V1.00
5-45
Chapter 5 Parameters|VFD-B-P Series
Setting). This multi-function output terminal will be deactivated upon completion of Terminal
Count Value Attained.
The timing diagram:
2msec
Display
(Pr.00-04=01)
TRG
Counter Trigger
2msec
Preliminary Count Value
(Pr. 03-00~Pr. 03-03=15) Ex:03-08=5,03-09=3
The width of trigger signal
should not be less than
2ms(<250 Hz)
Terminal Count Value
(Pr. 03-00~Pr. 03-03=14)
03 - 11 EF Active when Preliminary Count Value Attained
Factory Setting: 00
Settings
00
Preliminary count value attained, no EF display
01
Preliminary count value attained, EF active
If this parameter is set to 01 and the desired value of counter is attained, the AC drive will treat
it as a fault. The drive will stop and show the “cEF” message on the display.
03 - 12 Reserved
03 - 13 Brake Release Frequency
Settings
0.00 to 400.00Hz
03 - 14 Brake Engage Frequency
Settings
0.00 to 400.00Hz
Unit: 0.01
Factory Setting: 0.00
Unit: 0.01
Factory Setting: 0.00
These two parameters are used to set control of mechanical brake via the output terminals
(MO1~MO3) when Pr.03-00~03-03 is set to 29. Refer to the following example for details.
Example:
1. Case 1: Pr.03-14 ≥ Pr.03-13
2. Case 2: Pr.03-14 ≤ Pr.03-13
5-46
Revision April 2009, SW V1.00
Frequency
Output
Chapter 5 Parameters|VFD-B-P Series
Case 1: Pr.03-14
Pr. 03-13
Case 2: Pr.03-14
Time
Run/Stop
Case 1: MOX=29
Case 2: MOX=29
Note: MOX: setting value of Pr.03-00~Pr.03-03
When one of Pr.03-00~Pr.03-03 is set to 29(Brake Control): If the output frequency reaches
the setting of Pr.03-13, the multi-function output terminal will be ON. If the output frequency
reaches the setting of Pr.03-14, the multi-function output terminal will be OFF.
Revision April 2009, SW V1.00
5-47
Chapter 5 Parameters|VFD-B-P Series
Group 4: Input Function Parameters
04 - 00
AVI Analog Input Bias
Settings
Unit: 0.01
0.00 to 200.00%
Factory Setting: 0.00
04 - 01 AVI Bias Polarity
Factory Setting: 00
Settings
04 - 02
00
Positive Bias
01
Negative Bias
AVI Input Gain
Settings
Unit: 1
1 to 200%
Factory Setting: 100
04 - 03 AVI Negative Bias, Reverse Motion Enable/Disable
Factory Setting: 00
Settings
04 - 11
00
No AVI Negative Bias Command
01
Negative Bias: REV Motion Enabled
02
Negative Bias: REV Motion Disabled
ACI Analog Input Bias
Settings
Unit: 0.01
0.00 to 200.00%
Factory Setting: 0.00
04 - 12 ACI Bias Polarity
Factory Setting: 00
Settings
04 - 13
00
Positive Bias
01
Negative Bias
ACI Input Gain
Settings
Unit: 1
01 to 200%
Factory Setting: 100
04 - 14 ACI Negative Bias, Reverse Motion Enable/Disable
Factory Setting: 00
Settings
04 - 15
00
No ACI Negative Bias Command
01
Negative Bias: REV Motion Enabled
02
Negative Bias: REV Motion Disabled
AUI Analog Input Bias
Settings
Unit: 0.01
0.00 to 200.00%
Factory Setting: 0.00
04 - 16 AUI Bias Polarity
Factory Setting: 00
Settings
04 - 17
Positive Bias
01
Negative Bias
AUI Input Gain
Settings
5-48
00
01 to 200%
Unit: 1
Factory Setting: 100
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
04 - 18 AUI Negative Bias, Reverse Motion Enable/Disable
Factory Setting: 00
Settings
00
No AUI Negative Bias Command
01
Negative Bias: REV Motion Enabled
02
Negative Bias: REV Motion Disabled
In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is
recommended NOT to use the signal under 1V to set the operation frequency of the AC motor
drive in the bad application environment.
Pr.04-00 ~ 04-03, Pr.04-11 ~ 04-18 are used when the source of frequency command is the
analog signal. Refer to the following examples.
Example 1: Standard application
This is the most used setting. The user only needs to set Pr.02-00 to 01 or 02 (setting 01 and 02 are
used with the external terminals to set the frequency by the potentiometer on the keypad or
potentiometer/current signal of the external terminal.
Max.
Output Pr.01-00
Freq.
60Hz
Factory Settings
Pr.01-00=60Hz--Max. output Freq.
Pr.04-11=0%--bias adjustment
Pr.04-12 =0-- bias polarity
Pr.04-13=100% -- pot. freq. gain
Pr.04-14=0 -- REV disable in negative bias
30Hz
0Hz
0V
4mA
5V
12mA
10V
20mA
Example 2: Use of bias
This example shows the influence of changing the bias. When the input is 0V (4mA), the output
frequency is 10 Hz. At mid-point a potentiometer will give 40 Hz. Once the Maximum Output
Frequency is reached, any further increase of the potentiometer or signal will not increase the output
frequency. (To use the full potentiometer range, please refer to Example 3.) The value of external
input voltage/current 0-8.33V (4-17.33mA) corresponds to the setting frequency 10-60Hz.
Revision April 2009, SW V1.00
5-49
Chapter 5 Parameters|VFD-B-P Series
Pr.01-00 Max. Output Freq.
60Hz
10Hz
Bias
Adjustment
0Hz 0V
4mA
Factory Settings
Pr.01-00=60Hz--Max. output Freq.
Pr.04-11=16.7%-- bias adjustment
Pr.04-12=0 -- bias polarity
Pr.04-13=100% -- pot. freq. gain
Pr.04-14=0 -- REV motion disable in negative bias
5V
12mA
10V
20mA
Example 3: Use of bias and gain for use of full range
This example also shows a popular method. The whole scale of the potentiometer can be used as
desired. In addition to signals of 0 to 10V and 4 to 20mA, the popular voltage signals also include
signals of 0 to 5V, 4 to 20mA or any value under 10V. Regarding the setting, please refer to the
following examples.
Pr.01-00 Max. Output Freq.
60Hz
10Hz
Bias
Adjustment
-2V 0Hz 0V
4mA
XV
10V
20mA
Pr. 04-13 = 10V X 100% = 83.3%
12V
Negative bias:
60-10Hz
10-0Hz
=
10V
XV
2
XV = 100 = 2V
Pr.04-11 =
X 100%
50
10
Example 4: Use of 0-5V potentiometer range via gain adjustment
This example shows a potentiometer range of 0 to 5 Volts. Instead of adjusting gain as shown in the
example below, you can set Pr. 01-00 to 120Hz to achieve the same results.
Max. Output Freq.
Pr.01-00
Gain
adjustment
60Hz
30Hz
0Hz 0V
5-50
5V
Factory Settings
Pr.01-00=60Hz--Max. output Freq.
Pr.04-11=0.0% bias adjustment
Pr.04-12=0 -- bias polarity
Pr.04-13=200% -- pot. freq. gain
Pr.04-14=0 -- REV motion disable in negative bias
Calculation of gain
10V )X100% = 200%
5V
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Example 5: Use of negative bias in noisy environment
In this example, a 1V negative bias is used. In noisy environments it is advantageous to use negative
bias to provide a noise margin (1V in this example).
Pr.01-00 Max. Output Freq.
Factory Settings
Pr.01-00=60Hz--Max. output Freq.
Pr.04-11=10.0% -- bias adjustment
Pr.04-12=1 -- bias polarity
Pr.04-13=100% -- pot. freq. gain
Pr.04-14=0 -- Rev. motion disable in negative bias
60Hz
54Hz
0Hz
Negative
0V 1V
bias 6Hz
10V
Example 6: Use of negative bias in noisy environment and gain adjustment to use full
potentiometer range
In this example, a negative bias is used to provide a noise margin. Also a potentiometer frequency
gain is used to allow the Maximum Output Frequency to be reached.
Max. Output Freq.
Pr.01-00
Bias
adjustment
Factory Settings
Pr.01-00=60Hz--Max. output Freq.
Pr.04-11=10%--bias adjustment
Pr.04-12=1 -- bias polarity
Pr.04-13=111% -- pot. freq. gain
Pr.04-14=0 -- REV. motion disable in negative bias
60Hz
0Hz
Negative
0V 1V
bias 6.6Hz
Calculation of gain
Pr.04-13=( 10V )X100%=111%
9V
10V
Example 7: Use of 0-10V potentiometer signal to run motor in FWD and REV direction
In this example, the input is programmed to run a motor in both forward and reverse direction. The
motor will be idle when the potentiometer position is at mid-point of its scale. Using this example will
disable the external FWD and REV controls.
Pr.01-00 Max. Output Freq.
60Hz
30Hz
FWD
0V 0Hz
REV
5V
10V
30Hz
Factory Settings
Pr.01-00=60Hz--Max. output Freq.
Pr.04-11=50%--bias adjustment
Pr.04-12=1 -- bias polarity
Pr.04-13=200% -- pot. freq. gain
Pr.04-14=1 -- REV motion enable in negative bias
60Hz
Revision April 2009, SW V1.00
5-51
Chapter 5 Parameters|VFD-B-P Series
Example 8: Use negative slope
In this example, the use of negative slope is shown. Negative slopes are used in applications for
control of pressure, temperature or flow. The sensor that is connected to the input generates a large
signal (10V or 20mA) at high pressure or flow. With negative slope settings, the AC motor drive will
slow stop the motor. With these settings the AC motor drive will always run in only one direction
(reverse). This can only be changed by exchanging 2 wires to the motor.
Pr.01- 00 Max. O utput Fr eq.
60Hz
F ac tor y Settings
n eg ati ve- slo pe
0Hz
0V
4mA
Pr.01- 00=60Hz -- Max . output Fr eq.
Pr.04- 11=100%- -bias adjustment
Pr.04- 12=1 - - bias polar ity
Pr.04- 13=100% -- pot. freq. gain
Pr.04- 14=1 - - RE V. motion enable in negativ e bias
10V
20mA
04 - 19 AVI Analog Input Delay
Settings
0.00 to 10.00 sec
04 - 20 ACI Analog Input Delay
Settings
0.00 to 10.00 sec
04 - 21 AUI Analog Input Delay
Settings
0.00 to 10.00 sec
Unit: 0.01
Factory Setting: 0.05
Unit: 0.01
Factory Setting: 0.05
Unit: 0.01
Factory Setting: 0.05
These input delays can be used to filter noisy analog signals.
04 - 22 Analog Input Frequency Resolution
Factory Setting: 01
Settings
00
0.01Hz
01
0.1Hz
It is used to set the unit of the resolution of frequency command when the input source is an
analog signal.
5-52
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
04 - 04 Multi-function Input Terminal (MI1)
Factory Setting: 01
04 - 05 Multi-function Input Terminal (MI2)
Factory Setting: 02
04 - 06 Multi-function Input Terminal (MI3)
Factory Setting: 03
04 - 07 Multi-function Input Terminal (MI4)
Factory Setting: 04
04 - 08 Multi-function Input Terminal (MI5)
Factory Setting: 05
04 - 09 Multi-function Input Terminal (MI6)
Factory Setting: 06
Settings
Function
Description
Any unused terminals should be programmed to 0 to
insure they have no effect on operation.
00
No Function
01
Multi-Step Speed Command 1 These four inputs select the multi-speed defined by
Pr.05-00 to Pr.05-14 as shown in the diagram at the
end of this table.
Multi-Step Speed Command 2
NOTE: Pr.05-00 to Pr.05-14 can also be used to
Multi-Step Speed Command 3 control output speed by programming the AC motor
drive’s internal PLC function. There are 17 step
speed frequencies (including Master Frequency and
Multi-Step Speed Command 4 Jog Frequency) to select for application.
02
03
04
05
External Reset (N.O.)
06
Accel/Decel Inhibit
07
Accel/Decel Time Selection
Command 1
08
Accel/Decel Time Selection
Command 2
Revision April 2009, SW V1.00
The External Reset has the same function as the
Reset key on the Digital keypad. After faults such as
O.H., O.C. and O.V. are cleared this input can be
used to reset the drive.
When the command is active, acceleration and
deceleration is stopped and the AC motor drive
maintains a constant speed.
Used to select the one of four Accel/Decel Times
(Pr.01-09 to Pr.01-12, Pr.01-18 to Pr.01-21). See
explanation at the end of this table.
5-53
Chapter 5 Parameters|VFD-B-P Series
Settings
Function
09
External Base Block (N.O.)
(Refer to Pr. 08-06)
10
External Base Block (N.C.)
(Refer to Pr. 08-06)
11
UP: Increment Master
Frequency
12
DOWN: Decrement Master
Frequency
13
Counter Reset
14
Run PLC Program
15
Pause PLC Program
16
17
18
Auxiliary Motor No.1 output
disable
Auxiliary Motor No.2 output
disable
Auxiliary Motor No.3 output
disable
19
Emergency Stop (N.O.)
20
Emergency Stop (N.C.)
21
Master Frequency Selection
AVI/ACI
22
Master Frequency Selection
AVI/AUI
23
Operation Command
Selection (keypad
PU01/external terminals)
24
Auto accel/decel mode
disable
5-54
Description
Parameter values 9, 10 program Multi-Function Input
Terminals for external Base Block control.
NOTE: When a Base-Block signal is received, the
AC motor drive will block all output and the motor
will free run. When base block control is
deactivated, the AC drive will start its speed search
function and synchronize with the motor speed, and
then accelerate to Master Frequency.
Increment/decrement the Master Frequency each time
an input is received or continuously when the input
stays active. When both inputs are active at the same
time, the Master Frequency increment/decrement is
halted. Please refer to Pr.02-08, 02-09. This function is
also called “motor potentiometer”.
When active, the counter is reset and inhibited. To
enable counting the input should be OFF. Refer to
Pr.03-08 and 03-09.
To run the AC motor drive internal PLC program.
NOTE: Pr.05-00 to Pr.05-16 define the PLC program.
When the PLC program runs, a Multi-Function Input
Terminal, when set to 15, can be used to pause the
PLC program.
Parameter value 16 to 18 program Multi-Function Input
Terminal to disable the corresponding auxiliary motor
via the AC motor drive Multi-function Output Terminals
Pr.03-00 to 3-03 (Relay and MO1 to MO3) when set to
16-18.
When set to 19 or 20, the Multi-Function Input Terminal
can be used to stop the AC motor drive in case of
malfunction in the application. It will display “EF1”.
Please “RESET” after the fault has been cleared.
Refer to Pr.02-02 for Stop Method.
ON: ACI
OFF: AVI
Pr.02-00 and Pr.02-13 are disabled if this parameter
value 21 is set. See the explanation below the table.
ON: AUI
OFF: AVI
Pr.02-00 and Pr.02-13 are disabled if this parameter
value 22 is set. See the explanation below the table.
ON: Operation command via Ext. Terminals
OFF: Operation command via Keypad PU01
Pr.02-01 and Pr.02-14 are disabled if this parameter
value 23 is set. See the explanation below the table.
ON: Linear accel/decel (Auto accel/decel mode set by
Pr.01-15 disabled)
OFF: Auto accel/decel mode
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Settings
Function
25
Forced Stop (N.C.)
26
Forced Stop (N.O.)
27
Parameter lock enable (N.O.)
28
PID function disabled
29
Jog FWD/REV command
30
External Reset (N.C.)
31
Source of second frequency
command enabled
32
Source of second operation
command enabled
33
One shot PLC
34
Proximity sensor input for
simple Index function
35
Output Shutoff Stop (N.O.)
36
Output Shutoff Stop (N.C.)
Description
These two parameters have the same function as the
“STOP” command with stop method acc. to Pr.02-02.
No error message is displayed. When parameter value
25 or 26 is enabled, a new RUN command is needed.
When this setting is enabled, all parameters will be
locked and write parameters are disabled.
When the input is ON for this setting, the PID function
will be disabled.
ON: REV
OFF: FWD
This command will be effective only when external
terminal JOG is active.
The function is the same as setting 05 but for use with
normally close contact.
Used to select the first/second frequency command
source. Refer to Pr.02-00 and 02-13.
ON: 2nd Frequency command source
OFF: 1st Frequency command source
Used to select the first/second operation command
source. Refer to Pr.02-01 and 02-14.
ON: 2nd Operation command source
OFF: 1st Operation command source
The function is the same as setting 14 but the trigger
signal is a one shot pulse, for example: a push button
input. It can be cancelled by a “STOP” command.
This function should be used with Pr.04-23 ~ Pr.04-25.
AC motor drive will stop output and the motor free run if
one of these settings is enabled. If the status of terminal
is changed, AC motor drive will restart from 0Hz.
N.O.= Normally Open.
N.C.= Normally Closed.
When parameter value 21 and 22 are set and these two terminals are ON, the priority of
analog input signals are AVI > ACI > AUI.
Revision April 2009, SW V1.00
5-55
Chapter 5 Parameters|VFD-B-P Series
Frequency
Master
Freq.
Accel time 4
01-20
Decel time 1
01-10
Acceleration
Delceleration
Decel time 2
01-12
Accel time 3
01-18
Accel time 2
01-11
Decel time 3
01-19
Decel time 4
01-21
Time
3
4
Accel time 1
01-09
RUN/STOP
PU External terminal
communication
Accel/Decel time 1 & 2
Multi-function Input
Terminals Pr.04-04 to
Pr.04-09(MI1 to MI6 7)
Accel/Decel time 3 & 4
Multi-function Input
Terminals Pr.04-04 to
Pr.04-09(MI1 to MI6 8)
1
3
2
1
4
OFF
1
2
ON
OFF
ON
ON
OFF
ON
Accel/Decel Time and Multi-function Input Terminals
MI2=08
MI1=07
Accel/decel time 1
OFF
OFF
Accel/decel time 2
OFF
ON
Accel/decel time 3
ON
OFF
Accel/decel time 4
ON
ON
05-07
Frequency
05-06
05-08
05-05
05-09
05-04
05-10
05-03
05-11
05-02
05-12
05-01
JOG Freq.
05-13
05-00
01-14
05-14
Master Speed
Multi-function
terminals
MI1~MI6
04-04~04-09
Run/Stop
PU/external terminals
/communication
1st speed
(MI1 to MI6 1)
2nd speed
(MI1 to MI6 2)
3rd speed
(MI1 to MI6 3)
4th speed
(MI1 to MI6 4)
Jog Freq.
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15
ON
OFF ON
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
OFF
Multi-speed via External Terminals
5-56
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
MI4=4
MI3=3
MI2=2
MI1=1
Master frequency
OFF
OFF
OFF
OFF
1st speed
2nd speed
OFF
OFF
OFF
OFF
OFF
ON
ON
OFF
3rd speed
OFF
OFF
ON
ON
4th speed
OFF
ON
OFF
OFF
5th speed
OFF
ON
OFF
ON
6th speed
OFF
ON
ON
OFF
7th speed
8th speed
OFF
ON
ON
OFF
ON
OFF
ON
OFF
9th speed
ON
OFF
OFF
ON
10th speed
ON
OFF
ON
OFF
11th speed
ON
OFF
ON
ON
12th speed
13th speed
ON
ON
ON
ON
OFF
OFF
OFF
ON
14th speed
ON
ON
ON
OFF
15th speed
ON
ON
ON
ON
04 - 10 Digital Terminal Input Debouncing Time
Settings
1 to 20
Unit: 2
Factory Setting: 1
This parameter is to delay the signals on digital input terminals. 1 unit is 2 msec, 2 units are 4
msec, etc. The delay time is used to debounce noisy signals that could cause the digital
terminals to malfunction.
04 - 23 Gear Ratio for Simple Index Function
Settings
4 ~ 1000
04 - 24 Index Angle for Simple Index Function
Settings
0.0 ~360.0°
04 - 25 Deceleration Time for Simple Index Function
Settings
0.00 ~100.00 sec
Unit: 1
Factory Setting: 200
Unit: 0.1
Factory Setting: 180.0
Unit: 0.01
Factory Setting: 0.00
The simple index function is used to position the machine/motor at the same position when it
stops. The function should be used with setting 34 for Multi-Function Input Terminals (04-04 to
04-09).
The function diagram is shown below. The machine is driven by a gear motor or other
reduction gearbox. The trigger position of the proximity sensor is used as the starting point of
Revision April 2009, SW V1.00
5-57
Chapter 5 Parameters|VFD-B-P Series
the index angle. When the stop command is initiated, the AC motor drive will not decelerate
until the proximity sensor is triggered. After that the AC motor drive begins to decelerate and
stop according to the Pr.04-24 and Pr.04-25.
Frequency
Proximity Sensor Actives
Time
Signal of Zero
time between STOP and triggering by proximity
sensor. It depends on the moment the STOP
command is given.
=Pr.04-25
5-58
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Group 5: Multi-step speeds and PLC (Process Logic Control) parameters
05 - 00
1st Step Speed Frequency
Unit: 0.01
05 - 01
2nd Step Speed Frequency
Unit: 0.01
05 - 02
3rd Step Speed Frequency
Unit: 0.01
05 - 03
4th Step Speed Frequency
Unit: 0.01
05 - 04
5th Step Speed Frequency
Unit: 0.01
05 - 05
6th Step Speed Frequency
Unit: 0.01
05 - 06
7th Step Speed Frequency
Unit: 0.01
05 - 07
8th Step Speed Frequency
Unit: 0.01
05 - 08
9th Step Speed Frequency
Unit: 0.01
05 - 09
10th Step Speed Frequency
Unit: 0.01
05 - 10
11th Step Speed Frequency
Unit: 0.01
05 - 11
12th Step Speed Frequency
Unit: 0.01
05 - 12
13th Step Speed Frequency
Unit: 0.01
05 - 13
14th Step Speed Frequency
Unit: 0.01
05 - 14
15th Step Speed Frequency
Unit: 0.01
Factory Setting: 0.00
Settings
0.00 to 400.00 Hz
The Multi-Function Input Terminals (refer to Pr.04-04 to 04-09) are used to select one of the
AC motor drive Multi-step speeds. The speeds (frequencies) are determined by Pr.05-00 to
05-14 as shown above. They are also used in conjunction with Pr.05-15 to 05-31 for PLC
programs.
05 - 15 PLC Mode
Factory Setting: 00
Settings
00
Disable PLC operation
01
Execute one program cycle
02
Continuously execute program cycles
03
Execute one program cycle step by step
04
Continuously execute program cycles step by step
This parameter selects the mode of PLC operation for the AC motor drive. The AC motor drive
will change speeds and directions according to the desired user programming.
This parameter can be applied in the PLC operation of general small machines, food
processing machines and washing equipment.
Revision April 2009, SW V1.00
5-59
Chapter 5 Parameters|VFD-B-P Series
Example 1 (Pr.05-15 = 1): Execute one cycle of the PLC program. The parameter settings are:
1.
Pr.05-00 to 05-14: 1st to 15th speed (sets the frequency of each speed)
2.
Pr.04-04 to 04-09: Multi-Function Input Terminals (set one multi-function terminal as 14 - PLC
auto-operation).
3.
Pr.03-00 to 03-03: Multi-Function Output Terminals (set a Multi-Function Terminal as 10-PLC
running indication, 11-PLC step completed and/or 12-PLC program completed).
4.
Pr.05-15: PLC mode setting.
5.
Pr.05-16: Direction of operation for the 1st to 15th speed.
6.
Pr.05-17 to 05-31: Operation time setting of the 1st to 15th speed.
05-07
Frequency
05-06
05-08
05-05
05-09
05-04
05-10
05-03
05-11
05-02
05-12
05-01
05-13
05-00
1
multi-function input terminals
Program operation OFF
command
multi-function output terminals
Program operation OFF
indication
Step operation indication
multi-function output terminals OFF
05-14
2
3
4
5
6
7
8
9
10
11
12 13 14
15
05-19
05-25 05-27
05-29
05-17
05-21 05-23
05-31
05-30
05-18 05-20
05-22
05-24
05-26
05-28
ON
Time
ON
Program operation fulfillment indication
multi-function input terminals OFF
NOTE
The above diagram shows one complete PLC cycle. To restart the cycle, turn the PLC program off
and on again.
5-60
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Example 2 (Pr.05-15 = 2): Continuously execute program cycles:
The diagram above shows the PLC program stepping through each speed. Setting Pr.05-15 to 2
continuously executes the program. To stop the PLC program, one must either pause the program or
turn it off. (Refer to Pr.04-04 to 04-09 values 14 and 15).
Example 3 (Pr.05-15 = 3) Execute one cycle step by step:
The example below shows how the PLC can perform one cycle at a time, within a complete cycle.
Each step will use the accel/decel times in Pr.01-09 to Pr.01-12. Note that the actual time each step
stays at its intended frequency is reduced, due to the time for accel/decel.
Frequency
PLC operation execution one cycle step by step
05-03
05-02
05-01
05-00
1
05-17
Program operation
command
OFF
2
t
05-18
3
t
05-19
4
t
Time
05-20
ON
Program operation
indication
OFF
ON
ONON
ON
Step operation
OFF
indication
05 - 16 PLC Forward/Reverse Motion
Settings
00 to 32767
Unit: 1
Factory Setting: 00
This parameter controls the direction of motion for the Multi-Step Speeds Pr.05-00 to Pr.05-14
during PLC mode. All other direction commands are invalid during the PLC mode.
NOTE
The equivalent 15-bit number is used to program the forward/reverse motion for each of the 15 speed
steps. The binary notation for the 15-bit number must be translated into decimal notation and then
entered.
Revision April 2009, SW V1.00
5-61
Chapter 5 Parameters|VFD-B-P Series
Weights
Bit 15 14 13 12 11 10 9 8
7
6
5
4
3
2
1
0
0=Forward
1=Reverse
Direction of 1st speed for Pr.05-00
Direction of 2nd speed for Pr.05-01
Direction of 3rd speed for Pr.05-02
Direction of 4th speed for Pr.05-03
Direction of 5th speed for Pr.05-04
Direction of 6th speed for Pr.05-05
Direction of 7th speed for Pr.05-06
Direction of 8th speed for Pr.05-07
Direction of 9th speed for Pr.05-08
Direction of 10th speed for Pr.05-09
Direction of 11th speed for Pr.05-10
Direction of 12th speed for Pr.05-11
Direction of 1 3th speed for Pr.05-12
Direction of 14th speed for Pr.05-13
Direction of 15th speed for Pr.05-14
Weights
Bit
0
1
0
0
1 1
0 0
0
1
1
1
0
0
1
0
0=Forward
1=Reverse
Direction of Pr.05-00, 1st speed = Forward
Direction of Pr.05-01,2nd speed=Reverse
Direction of Pr.05-02 ,3rd speed=Forward
Direction of Pr.05-03 ,4th speed=Forward
Direction of Pr.05-04 ,5th speed=Reverse
Direction of Pr.05-05,6th speed=Reverse
Direction of Pr.05-06,7th speed=Reverse
Direction of Pr.05-07,8th speed=Forward
Direction of Pr.05-08,9th speed=Forward
Direction of Pr.05-09,10th speed=Forward
Direction of Pr.05-10,11th speed=Reverse
Direction of Pr.05-11,12th speed=Reverse
Direction of Pr.05-12, 13th speed=Forward
Direction of Pr.05-13,14th speed=Forward
Direction of Pr.05-14,15th speed=Reverse
The setting value
14
13
2
1
0
= bit14x2 + bit13x2 +....+bit2x2 +bit1x2 +bit0x2
14
11
10
6
5
4
1
= 1x2 + 1x2 +1x2 +1x2 +1x2 +1x2 +1x2
=16384+2048+1024+64+32+16+2 =19570
Setting 05-16
5-62
NOTE:
14
13
2 =16384 2 =8192
9
2 =512
4
2 =16
8
2 =256
3
2 =8
12
11
2 =4096
7
2 =128
2
2 =4
10
2 =2048
6
2 =64
1
2 =2
2 =1024
5
2 =32
0
2 =1
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
05 - 17 Time Duration of 1st Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 18 Time Duration of 2nd Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 19 Time Duration of 3rd Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 20 Time Duration of 4th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 21 Time Duration of 5th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 22 Time Duration of 6th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 23 Time Duration of 7th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 24 Time Duration of 8th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 25 Time Duration of 9th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 26 Time Duration of 10th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 27 Time Duration of 11th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 28 Time Duration of 12th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 29 Time Duration of 13th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 30 Time Duration of 14th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
05 - 31 Time Duration of 15th Step Speed
Unit: 1 or 0.1sec (See Pr.05-32)
Settings
0.0 to 65500
Factory Setting: 0.0
Pr.05-17 to Pr.05-31 correspond to operation time of each step speed defined by Pr.05-00 to
Pr.05-14. The maximum setting of 65500 seconds will be displayed as “t6550•”. If display
shows “t6550”, it means 6550 seconds.
If a parameter is set to “00” (0 sec), the corresponding step will be skipped. This is commonly
used to reduce the number of program steps.
05 - 32 Time Unit Settings
Factory Setting: 00
Settings
00
1 sec
01
0.1 sec
This parameter sets the time unit for Pr.05-17~Pr.05-31.
05 - 33 The Amplitude of Wobble Vibration
Settings
0.00 to 400.00 Hz
Factory Setting: 0.00
05 - 34 Wobble Skip Frequency
Settings
0.00 to 400.00 Hz
Factory Setting: 0.00
The frequency change will be as shown in the following diagram. These two parameters are
specific for textile machinery.
Revision April 2009, SW V1.00
5-63
Chapter 5 Parameters|VFD-B-P Series
Frequency of Δ top point Fup= master frequency F + Pr.05-33 + Pr.05-34.
Frequency of Δ down point Fdown= master frequency F - Pr.05-33 - Pr.05-34.
Pr.05-33
Double
Pr. 05-34
Fup
Pr.01-09
Pr.01-11
Master
Frequency(F)
Pr.01-10
Pr.01-12
Fdown
5-64
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Group 6: Protection Parameters
06 - 00 Over-Voltage Stall Prevention
Unit: 0.1
Settings
660.0 to 820.0V
Factory Setting: 780.0
00
Disable Over-voltage Stall Prevention (with brake unit or brake resistor)
During deceleration, the DC bus voltage may exceed its Maximum Allowable Value due to
motor regeneration. When this function is enabled, the AC motor drive will not decelerate
further and keep the output frequency constant until the voltage drops below the preset value
again.
Over-Voltage Stall Prevention must be disabled (Pr.06-00=00) when a brake unit or brake
resistor is used.
NOTE
With moderate inertia load, over-voltage stall prevention will not occur and the real deceleration time
will be equal to the setting of deceleration time. The AC drive will automatically extend the
deceleration time with high inertia loads. If the deceleration time is critical for the application, a brake
resistor or brake unit should be used.
high voltage at DC side
over-voltage
detection level
time
output
frequency
Frequency Held
Deceleration characteristic
when Over-Voltage Stall
Prevention enabled
time
previous deceleration time
actual time to decelerate to stop when over-voltage
stall prevention is enabled
06 - 01 Over-Current Stall Prevention during Acceleration
V/f control
Unit: 1
Settings
20 to 150%
Factory Setting: 120
Vector control Settings
20 to 250%
Factory Setting: 170
Revision April 2009, SW V1.00
5-65
Chapter 5 Parameters|VFD-B-P Series
A setting of 100% is equal to the Rated Output Current of the drive.
During acceleration, the AC drive output current may increase abruptly and exceed the value
specified by Pr.06-01 due to rapid acceleration or excessive load on the motor. When this
function is enabled, the AC drive will stop accelerating and keep the output frequency constant
until the current drops below the maximum value.
The control model is set by Pr.00-09.
06-01
Over-Current
Detection
Level
output current
setting
frequency
Over-Current Stall
prevention during
Acceleration,
frequency held
Output
Frequency
time
previous acceleration time
actual acceleration time when over-current stall
prevention is enabled
06 - 02 Over-current Stall Prevention during Operation
Unit: 1
V/f control
Settings
20 to 150%
Factory Setting: 120
Vector control
Settings
20 to 250%
Factory Setting: 170
If the output current exceeds the setting specified in Pr.06-02 when the drive is operating, the
drive will decrease its output frequency to prevent the motor stall. If the output current is lower
than the setting specified in Pr.06-02, the drive will accelerate again to catch up with the set
frequency command value.
The control model is set by Pr.00-09.
Ov er-Curr ent
Detec ti on Level
06-02
Ov er-Curr ent Stall P revention duri ng
Oper ation, output frequency decrease
Output Curr ent
Output
F requenc y
over- curr ent stall pr evention during oper ati on
5-66
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
06 - 03 Over-Torque Detection Mode (OL2)
Factory Setting: 00
Settings
00
Over-Torque detection disabled.
01
Over-Torque detection enabled during constant speed operation.
After over-torque is detected, keep running until OL2 occurs.
02
Over-Torque detection enabled during constant speed operation.
After over-torque is detected, stop running.
03
Over-Torque detection enabled during acceleration. After overtorque is detected, keep running until OL2 occurs.
04
Over-Torque detection enabled during acceleration. After overtorque is detected, stop running.
This parameter determines the operation mode of the drive after the over-torque (OL2) is
detected via the following method: if the output current exceeds the over-torque detection level
(Pr.06-04) longer than the setting of Pr.06-05 Over-Torque Detection Time, the warning
message “OL2” is displayed. If a Multi-Functional Output Terminal is set to over-torque
detection (Pr.03-00~03-03=04), the output is on. Please refer to Pr.03-00~03-03 for details.
06 - 04 Over-Torque Detection Level (OL2)
Unit: 1
V/f Control
Settings
30 to 150%
Factory Setting: 110
Vector Control
Settings
10 to 200%
Factory Setting: 150
The control mode is set by Pr.00-09.
06 - 05 Over-Torque Detection Time (OL2)
Settings
0.1 to 60.0 sec
Unit: 0.1
Factory Setting: 0.1
This parameter sets the time for how long over-torque must be detected before “OL2” is
displayed.
06 - 06 Electronic Thermal Overload Relay Selection (OL1)
Factory Setting: 02
Settings
00
Operate with a Standard Motor (self-cooled by fan)
01
Operate with a Special Motor (forced external cooling)
02
Operation disabled
This function is used to protect the motor from overloading or overheating.
06 - 07 Electronic Thermal Characteristic
Settings
30 to 600 sec
Revision April 2009, SW V1.00
Unit: 1
Factory Setting: 60
5-67
Chapter 5 Parameters|VFD-B-P Series
The parameter determines the time required for activating the I2t electronic thermal protection
function. The graph below shows I2t curves for 150% output power for 1 minute.
Operation
time(min)
5
60Hz or more
4
50Hz
3
10Hz
2
5Hz
1
0
20 40 60
80 100 120 140 160 180 200
Load
factor (%)
06 - 08 Present Fault Record
06 - 09 Second Most Recent Fault Record
06 - 10 Third Most Recent Fault Record
06 - 11 Fourth Recent Fault Record
Factory Setting: 00
Readings
5-68
00
No fault
01
Over-current (oc)
02
Over-voltage (ov)
03
Overheat (oH)
04
Overload (oL)
05
Overload1 (oL1)
06
External fault (EF)
07
IGBT protection (occ)
08
CPU failure (cF3)
09
Hardware protection failure (HPF)
10
Current exceeds 2 times rated current during accel.(ocA)
11
Current exceeds 2 times rated current during decel.(ocd)
12
Current exceeds 2 times rated current during steady state operation
(ocn)
13
Ground fault (GFF)
14
Reserved
15
CPU READ failure (CF1)
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
16
CPU WRITE failure (CF2)
17
Reserved
18
Motor over load (oL2)
19
Auto accel/decel failure (CFA)
20
Software/password protection (codE)
21
Emergency stop (EF1)
22
Phase-Loss (PHL)
23
Preliminary count value attained, EF active (cEF)
24
Under-current (Lc)
25
Analog feedback signal error (AnLEr)
26
PG feedback signal error (PGErr)
06 - 12 Under-Current Detection Level
Settings
00 ~ 100%
Unit: 1
Factory Setting: 00
00 Disabled
06 - 13 Under-Current Detection Time
Settings
0.1~ 3600.0 sec
Unit: 0.1
Factory Setting: 10.0
06 - 14 Under-Current Detection Mode
Factory Setting: 00
Settings
00
Warn and keep operating
01
Warn and ramp to stop
02
Warn and coast to stop
03
Warn, after coast to stop, restart (delay 06-15 setting time)
06 - 15 Under-Current Detection Restart Delay Time
Settings
1~600 min
Unit: 1
Factory Setting: 10
If output current is lower than the setting Pr.06-12 for a time that exceeds Pr.06-13 setting
during operation, the AC drive will warn per Pr.06-14 setting. If Pr.06-14 is set to 03, the AC
drive will restart after the delay time set by Pr.06-15 is up.
06 - 16 User-Defined Low-Voltage Detection Level (Lv)
Settings
440 ~ 600VDC
06 - 17 User-Defined Low-Voltage Detection Time
Settings
Unit: 1
00 Disabled
0.1~ 3600.0 sec
Revision April 2009, SW V1.00
Factory Setting: 00
Unit: 0.1
Factory Setting: 0.5
5-69
Chapter 5 Parameters|VFD-B-P Series
When the DC BUS voltage is lower than the setting of Pr.06-16 for a time exceeding the
setting of Pr.06-17, the AC motor drive will output a signal when Pr.03-00 ~ Pr.03-03 is set to
28.
06 - 18 Reserved
5-70
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Group 7: Motor Parameters
07 - 00
Motor Rated Current
Settings
30 to 120%
Unit: 1
Factory Setting: 100
Use the following formula to calculate the percentage value entered into this parameter:
(Motor Current / AC Drive Current) x 100%
with Motor Current=Motor rated current in A shown to motor nameplate
AC Drive Current=Rated current of AC drive in A (see Pr.00-01)
Pr.07-00 and Pr.07-01 must be set if the drive is programmed to operate in Vector Control
mode (Pr.0-09 = 2 or 3). They also must be set if the "Electronic Thermal Overload Relay"
(Pr.06-06) or "Slip Compensation" functions are selected.
07 - 01
Motor No-load Current
Settings
01 to 90%
Unit: 1
Factory Setting: 40
The rated current of the AC drive is regarded as 100%. The setting of the Motor no-load
current will affect the slip compensation.
The setting value must be less than Pr.07-00 (Motor Rated Current).
07 - 02
Torque Compensation
Settings
0.0 to 10.0
Unit: 0.1
Factory Setting: 0.0
This parameter may be set so that the AC drive will increase its voltage output to obtain a
higher torque. Only to be used for V/f control mode.
Too high torque compensation can overheat the motor.
07 - 03
Slip Compensation (Used without PG)
Settings
0.00 to 3.00
Unit: 0.01
Factory Setting: 0.00
While driving an asynchronous motor, increasing the load on the AC motor drive will cause an
increase in slip and decrease in speed. This parameter may be used to compensate the slip by
increasing the output frequency. When the output current of the AC motor drive is bigger than
the motor no-load current (Pr.07-01), the AC drive will adjust its output frequency according to
this parameter.
When the control mode is changed from V/f mode to vector mode, this parameter will be auto
reset to 1.00.
Revision April 2009, SW V1.00
5-71
Chapter 5 Parameters|VFD-B-P Series
07 - 04 Number of Motor Poles
Settings
Unit: 2
02 to 10
Factory Setting: 04
This parameter sets the number of motor poles (must be an even number).
07 - 05 Motor Parameters Auto Tuning
Unit: 1
Factory Setting: 00
Settings
00
Disable
01
Auto Tuning R1 (motor doesn’t run)
02
Auto Tuning R1 + No-load Test (with running motor)
Start Auto Tuning by pressing RUN key after this parameter is set to 01 or 02.
When set to 01, it will only auto detect R1 value and Pr.07-01 must be input manually. When
set to 02, the AC motor drive should be unloaded and the values of Pr.07-01 and Pr.07-06 will
be set automatically.
The steps to AUTO-Tuning are:
1.
Make sure that all the parameters are set to factory settings and the motor wiring is
correct.
2.
Make sure the motor has no-load before executing auto-tuning and the shaft is not
connected to any belt or gear motor.
3.
Fill in Pr.01-01, Pr.01-02, Pr.07-00, Pr.07-04 and Pr.07-08 with correct values.
4.
After Pr.07-05 is set to 2, the AC motor drive will execute auto-tuning immediately after
receiving a ”RUN” command. (Note: The motor will run!). The total auto tune time will be
15 seconds + Pr.01-09 + Pr.01-10. Higher power drives need longer Accel/|Decel time
(factory setting is recommended). After executing, Pr.07-05 is set to 0.
5.
After successful execution, the drive will set Pr.07-01 and Pr.07-06 accordingly. If not,
repeat steps 3 and 4.
6.
Then you can set Pr.00-09 to 02/03 and set other parameters according to your
application requirement.
NOTE
1. In vector control mode it is not recommended to have motors run in parallel.
2. It is not recommended to use vector control mode if motor rated power exceeds the rated power of
the AC motor drive.
5-72
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
07 - 06 Motor Line-to-line Resistance R1
Settings
00 to 65535 mΩ
Unit: 1
Factory Setting: 00
The motor auto tune procedure will set this parameter. The user may also set this parameter
without using Pr.07-05.
07 - 07 Reserved
07 - 08 Motor Rated Slip
Settings
0.00 to 20.00Hz
Unit: 0.01
Factory Setting: 3.00
Refer to the rated rpm and the number of poles on the nameplate of the motor and use the
following equation to calculate the rated slip.
Rated Slip (Hz) = Fbase (Pr.01-01 base frequency) - (rated rpm x motor pole/120)
This parameter is valid only in vector mode.
07 - 09 Slip Compensation Limit
Settings
00 to 250%
Unit: 1
Factory Setting: 200
This parameter sets the upper limit of the compensation frequency (the percentage of Pr.0708).
07 - 10 Reserved
07 - 11 Reserved
07 - 12 Torque Compensation Time Constant
Settings
0.01 ~10.00 sec
Unit: 0.01
Factory Setting: 0.05
07 - 13 Slip Compensation Time Constant
Settings
0.05 ~10.00 sec
Unit: 0.01
Factory Setting: 0.10
Setting Pr.07-12 and Pr.07-13 changes the response time for the compensation.
When Pr.07-12 and Pr.07-13 are set to 10.00 sec, its response time for the compensation will
be the longest. But if the settings are too short, unstable system may occur.
07 - 14 Accumulative Motor Operation Time (Min.)
Settings
00 ~1439
07 - 15 Accumulative Motor Operation Time (Day)
Settings
00 ~65535
Revision April 2009, SW V1.00
Unit: 1
Factory Setting: 00
Unit: 1
Factory Setting: 00
5-73
Chapter 5 Parameters|VFD-B-P Series
Pr.07-14 and Pr.07-15 are used to record the motor operation time. They can be cleared by
setting to 00 and time is less than 60 seconds is not recorded.
5-74
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Group 8: Special Parameters
08 - 00 DC Brake Current Level
Settings
Unit: 1
00 to 100%
Factory Setting: 00
This parameter sets the level of DC Brake Current output to the motor during start-up and
stopping. When setting DC Brake Current, the Rated Current (Pr.00-01) is regarded as 100%.
It is recommended to start with a low DC Brake Current Level and then increase until proper
holding torque has been attained.
08 - 01 DC Brake Time during Start-up
Settings
Unit: 0.1
0.0 to 60.0 sec
Factory Setting: 0.0
This parameter determines the duration of the DC Brake current after a RUN command.
08 - 02 DC Brake Time during Stopping
Settings
Unit: 0.1
0.0 to 60.0 sec
Factory Setting: 0.0
This parameter determines the duration of the DC Brake current during stopping. If stopping
with DC Brake is desired, Pr.02-02 Stop Method must be set to 00 RAMP stop.
08 - 03 Start-Point for DC Brake
Settings
Unit: 0.01
0.00 to 400.00Hz
Factory Setting: 0.00
This parameter determines start frequency of DC brake before the AC motor drive decelerates
to stop. When this parameter is less than Pr.01-05, the start frequency of DC brake starts from
the min. output frequency.
Output Frequency
Start-Point for
DC Brake
Time during
Stopping
01-05
08-03
Minimum Output
Frequency
DC Brake Time
during Stopping
Run/Stop
ON
OFF
DC Brake during Start-up is used for loads that may move before the AC drive starts, such as
fans and pumps. Under such circumstances, DC Brake can be used to hold the load in
position before setting it in motion.
Revision April 2009, SW V1.00
5-75
Chapter 5 Parameters|VFD-B-P Series
DC Brake during stopping is used to shorten the stopping time and also to hold a stopped load
in position. For high inertia loads, a dynamic brake resistor or brake unit may also be needed
for fast decelerations.
08 - 04 Momentary Power Loss Operation Selection
Factory Setting: 00
Settings
00
Operation stops after momentary power loss.
01
Operation continues after momentary power loss, speed search
starts with the Master Frequency reference value.
02
Operation continues after momentary power loss, speed search
starts with the minimum frequency.
This parameter determines the operation mode when the AC motor drive restarts from a
momentary power loss.
When using a PG card with PG (encoder), speed search will begin at the actual PG (encoder)
feedback speed and settings 01 and 02 will be invalid.
08 - 05 Maximum Allowable Power Loss Time
Settings
0.1 to 5.0 sec
Unit: 0.1
Factory Setting: 2.0
If the duration of a power loss is less than this parameter setting, the AC motor drive will
resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive
output is then turned off (coast stop).
The selected operation after power loss in Pr.08-04 is only executed when the maximum
allowable power loss time is ≤5 seconds and the AC motor drive displays “Lu”.
But if the AC motor drive is powered off due to overload, even if the maximum allowable power
loss time is ≤5 seconds, the operation mode as set in Pr.08-04 is not executed. In that case it
starts up normally.
08 - 06 Baseblock Time for Speed Search (BB)
Settings
0.1 to 5.0 sec
Unit: 0.1
Factory Setting: 0.5
When momentary power loss is detected, the AC drive will block its output and then wait for a
specified period of time (determined by Pr.08-06, called Base-Block Time) before resuming
operation. This parameter should be set at a value to ensure that any residual regeneration
voltage from the motors on the output has disappeared before the drive is activated again.
5-76
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
This parameter also determines the waiting time before resuming operation after External
Baseblock and after Auto Restart after Fault (Pr.08-14).
When using a PG card with PG (encoder), speed search will begin at the actual PG (encoder)
feedback speed and accelerate to the setting frequency.
08 - 07 Current Limit for Speed Search
Unit: 1
V/f Control
Settings
30 to 150%
Factory Setting: 110
Vector Control
Settings
30 to 200%
Factory Setting: 150
This parameter is used to set the max. output current of the AC motor drive for speed search.
When executing speed search, the V/f curve will use the group 1 settings as the basic value.
The control method is set by parameter 00-09.
Power
Input
08-05
Maximum Allowable
Power Loss Time
Speed Search
Output
Frequency
08-04=01
Baseblock Time
08-06
Speed
Synchronization
Detection
08-05
Maximum
Allowable Power
08-04=02
Baseblock Time
08-06
Output
Voltage
08 - 08 Skip Frequency 1 Upper Limit
Unit: 0.01
08 - 09 Skip Frequency 1 Lower Limit
Unit: 0.01
08 - 10 Skip Frequency 2 Upper Limit
Unit: 0.01
08 - 11 Skip Frequency 2 Lower Limit
Unit: 0.01
08 - 12 Skip Frequency 3 Upper Limit
Unit: 0.01
08 - 13 Skip Frequency 3 Lower Limit
Unit: 0.01
Settings
0.00 to 400.00Hz
Factory Setting: 0.00
These parameters set the Skip Frequencies. It will cause the AC motor drive to never remain
within these frequency ranges with continuous frequency output.
These six parameters should be set as follows Pr.08-08 ≥ Pr.08-09 ≥ Pr.08-10 ≥ Pr.08-11 ≥
Pr.08-12 ≥ Pr.08-13.
Revision April 2009, SW V1.00
5-77
internal frequency command
Chapter 5 Parameters|VFD-B-P Series
08-08
08-09
08-10
08-11
08-12
08-13
0
setting frequency
08 - 14 Auto Restart After Fault
Settings
00 to 10
00
Disable
08 - 21 Auto Reset Time at Restart after Fault
Settings
Unit: 1
Factory Setting: 00
00 to 60000 sec
Unit: 1
Factory Setting: 600
Only after an over-current OC or over-voltage OV fault occurs, the AC motor drive can be
reset/restarted automatically up to 10 times.
Setting this parameter to 00 will disable the reset/restart operation after any fault has occurred.
When enabled, the AC motor drive will restart with speed search, which starts at the frequency
before the fault.
This parameter should be used in conjunction with Pr.08-14.
For example: If Pr.08-14 is set to 10 and Pr.08-21 is set to 600s (10 min), and if there is no
fault for over 600 seconds from the restart for the previous fault, the Auto Reset Time for
restart after fault will be reset to 10.
08 - 15 Automatic Energy-saving
Factory Setting: 00
Settings
00
Energy-saving operation disabled
01
Energy-saving operation enabled
When automatic energy-saving function is enabled, it will operate with full voltage during
acceleration/deceleration. For the constant speed, it will give the best voltage which is auto
calculated by the load power to load.
5-78
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Output
Voltage
100%
70%
During auto-energy saving
operation, the output
voltage is lowered as much
as possible while maintaining
the load. Maximum output voltage
is 70% of the normal output voltage.
Output Frequency
08 - 16 Automatic Voltage Regulation (AVR)
Factory Setting: 00
Settings
00
AVR function enabled
01
AVR function disabled
02
AVR function disabled for deceleration
The rated voltage of the motor is usually 440V/400VAC 50Hz/60Hz and the input voltage of
the AC motor drive may vary between 342V to 528 VAC 50Hz/60Hz. Therefore, when the AC
motor drive is used without AVR function, the output voltage will be the same as the input
voltage. When the motor runs at voltages exceeding the rated voltage with 12% - 20%, its
lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and
unstable torque output.
AVR function automatically regulates the AC motor drive output voltage to the Maximum
Output Voltage (Pr.01-02). For instance, if V/f curve is set at 400 VAC/50Hz and the input
voltage is at 400V to 528VAC, then the output voltage to motor will be less than 400VAC/50Hz.
If the input power varies between 342V to 400VAC, the output voltage to the motor and the
input voltage will be in direct proportion.
When motor stops with deceleration, it will shorten deceleration time. When setting this
parameter to 02 with auto acceleration/deceleration, it will offer a quicker deceleration.
08 - 17
Software Brake Level
(the Action Level of the Brake Resistor)
Settings
740 to 860V
Revision April 2009, SW V1.00
Unit: 1
Factory Setting: 760
5-79
Chapter 5 Parameters|VFD-B-P Series
This parameter sets the DC-bus voltage at which the brake chopper is activated.
This parameter will be invalid for models above 15kW/20hp for which VFDB brake unit must be
used.
08 - 18 Base Block Speed Search
Factory Setting: 00
Settings
00
Speed search starts with last frequency command
01
Speed search starts with minimum output frequency (Pr.01-05)
This parameter determines the AC motor drive restart method after External Base Block is
enabled.
Output frequency
(H)
Input B.B. signal
Output voltage(V)
Disable B.B. signal
Stop output voltage
Waiting time 08-06
Output current A
08-07
Current limit for
speed search
Speed search
Synchronization speed detection
time
FWD Run
B.B.
Fig. 1: B.B. speed search with last output frequency downward timing chart
Out put frequency
(H )
Input B.B. signal
O utput voltage(V)
Dis abl e B. B. s ignal
Out put current
08-07
Current li mit for
speed s ear ch
Stop output voltage
Wai ting t ime 08-06
A
Speed s earc h
Synchronization speed detection
Time
FWD Run
B.B.
Fig. 2: B.B. s peed search wit h mi n. output f requency upward ti ming c hart
5-80
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Out put frequency
(H )
Input B.B. signal
Stop output voltage
O utput voltage(V)
Dis abl e B. B. s ignal
Wai ting t ime 08-06
Speed s earc h
Out put current
A
06-01
O ver current
st all preventi on
during ac celeration
Synchronization speed detection
In RUN s tate
Time
FWD Run
B.B.
Fig. 3: B.B. s peed search wit h mi n. output f requency upward ti ming c hart
08 - 19 Speed Search during Start-up
Factory Setting: 00
Settings
00
Speed search disable
01
Speed search enable
This parameter is used for starting and stopping a motor with high inertia. A motor with high
inertia will take a long time to stop completely. By setting this parameter, the user does not
need to wait for the motor to come to a complete stop before restarting the AC motor drive. If a
PG card and encoder is used on the drive and motor, then the speed search will start from the
speed that is detected by the encoder and accelerate quickly to the setting frequency.
To enable the speed search function of PG, it only needs to set Pr.10-10 and Pr.10-11. It
doesn’t need to use with Pr.00-09. Pr.08-04 and Pr.08-18 will be disabled when using this
parameter with PG feedback control.
CAUTION!
Please make sure Pr.07-04, Pr.10-10, and Pr.10-11 are set correctly. An incorrect setting may cause
the motor to exceed its speed limit and permanent damage to the motor and machine can occur.
08 - 20
Speed Search Frequency during Start-up
Factory Setting: 00
Settings
00
Setting Frequency
01
Maximum Operation Frequency (01-00)
This parameter determines the start value of the speed search frequency.
Revision April 2009, SW V1.00
5-81
Chapter 5 Parameters|VFD-B-P Series
08 - 22
Compensation Coefficient for Motor Instability
Settings
00~1000
Unit: 1
Factory Setting: 00
The drift current will occur in a specific zone of the motor and instability. By using this
parameter, greatly improves motor instability.
The drift current zone of the larger horsepower motor is usually in the low frequency range.
A setting of more than 500 is recommended.
5-82
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Group 9: Communication Parameters
6
09 - 00
Communication Address
Settings
1
1: EV
2: GND
3: SG4: SG+
5: Reserved
6: Reserved
01 to 254
Factory Setting: 01
If the AC motor drive is controlled by RS-485 serial communication, the communication
address for this drive must be set via this parameter. And the communication address for each
AC motor drive must be different and unique.
09 - 01
Transmission Speed
Factory Setting: 01
Settings
00
Baud rate 4800 bps (bits / second)
01
Baud rate 9600 bps
02
Baud rate 19200 bps
03
Baud rate 38400 bps
This parameter is used to set the transmission speed between the RS485 master (PLC, PC,
etc.) and AC motor drive.
09 - 02
Transmission Fault Treatment
Factory Setting: 03
Settings
00
Warn and keep operating
01
Warn and RAMP to stop
02
Warn and COAST to stop
03
No warning and keep operating
This parameter is set to how to react if transmission errors occur.
09 - 03
Time-out Detection
Settings
0.0 ~ 60.0 sec
0.0
Unit: 0.1
Factory Setting: 0.0
Disable
If Pr.09-03 is not equal to 0.0, Pr.09-02=00~02, and there is no communication on the bus
during the Time Out detection period (set by Pr.09-03), “cE10” will be shown on the keypad.
Revision April 2009, SW V1.00
5-83
Chapter 5 Parameters|VFD-B-P Series
09 - 04
Communication Protocol
Factory Setting: 00
Settings
00
Modbus ASCII mode, protocol <7,N,2>
01
Modbus ASCII mode, protocol <7,E,1>
02
Modbus ASCII mode, protocol <7,O,1>
03
Modbus RTU mode, protocol <8,N,2>
04
Modbus RTU mode, protocol <8,E,1>
05
Modbus RTU mode, protocol <8,O,1>
1. Control by PC or PLC
When using RS-485 communication, it needs to set the communication address (Pr.09-00) in
each VFD-B-P. So the computer can control by the communication address.
A VFD-B-P can be set up to communicate on Modbus networks using one of the following modes:
ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit).
Users can select the desired mode along with the serial port communication protocol in Pr.09-04.
Code Description:
ASCII mode:
Each 8-bit data is the combination of two ASCII characters. For example, an 1-byte data:
64 Hex, shown as ‘64’ in ASCII, consists of ‘6’ (36Hex) and ‘4’ (34Hex).
Character
‘0’
‘1’
‘2’
‘3’
‘4’
‘5’
‘6’
ASCII code
30H
31H
32H
33H
34H
35H
36H
Character
ASCII code
‘8’
38H
‘9’
39H
‘A’
41H
‘B’
42H
‘C’
43H
‘D’
44H
‘E’
45H
‘7’
37H
‘F’
46H
RTU mode:
Each 8-bit data is the combination of two 4-bit hexadecimal characters. For example, 64
Hex.
2. Data Format
For ASCII mode:
5-84
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
( 7.N.2)
Start
bit
0
1
2
3
5
4
6
Stop Stop
bit
bit
6
Even Stop
parity bit
6
Odd
7-bit character
10-bit character frame
( 7.E.1)
Start
bit
0
1
3
2
4
5
7-bit character
10-bit character frame
( 7.O.1)
Start
bit
0
1
2
3
4
5
Stop
parity bit
7-bit character
10-bit character frame
For RTU mode:
( 8.N.2 )
Start
bit
0
1
2
3
4
5
6
7
Stop Stop
bit
bit
6
7
Even Stop
parity bit
6
7
8-bit character
11-bit character frame
( 8.E.1 )
Start
bit
0
1
2
3
4
5
8-bit character
11-bit character frame
( 8.O.1 )
Start
bit
0
1
2
3
4
5
Odd
Stop
parity bit
8-bit character
11-bit character frame
3. Communication Protocol
3.1 Communication Data Frame:
ASCII mode:
STX
Address Hi
Address Lo
Function Hi
Function Lo
Revision April 2009, SW V1.00
Start character ‘:’ (3AH)
Communication address:
8-bit address consists of 2 ASCII codes
Command code:
8-bit command consists of 2 ASCII codes
5-85
Chapter 5 Parameters|VFD-B-P Series
DATA (n-1)
to
DATA 0
LRC CHK Hi
LRC CHK Lo
END Hi
END Lo
Contents of data:
Nx8-bit data consist of 2n ASCII codes
n<=20, maximum of 40 ASCII codes
LRC check sum:
8-bit check sum consists of 2 ASCII codes
End characters:
END1= CR (0DH), END0= LF(0AH)
RTU mode:
START
A silent interval of more than 10 ms
Address
Communication address: 8-bit address
Function
Command code: 8-bit command
DATA (n-1)
to
DATA 0
CRC CHK Low
CRC CHK High
END
Contents of data:
n×8-bit data, n<=40 (20 x 16-bit data)
CRC check sum:
16-bit check sum consists of 2 8-bit characters
A silent interval of more than 10 ms
3.2 Address (Communication Address)
Valid communication addresses are in the range of 0 to 254. A communication address equal to 0,
means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the
master device.
00H: broadcast to all AC drives
01H: AC drive of address 01
0FH: AC drive of address 15
10H: AC drive of address 16
:
FEH: AC drive of address 254
For example, communication to AMD with address 16 decimal (10H):
ASCII mode: Address=’1’,’0’ => ‘1’=31H, ‘0’=30H
RTU mode: Address=10H
3.3 Function (Function code) and DATA (data characters)
The format of data characters depends on the function code.
03H: read data from register
06H: write single register
08H: loop detection
10H: write multiple registers
The available function codes and examples for VFD-B-P are described as follows:
(1) 03H: multi read, read data from registers.
Example: reading continuous 2 data from register address 2102H, AMD address is 01H.
5-86
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
ASCII mode:
Command message:
STX
‘:’
‘0’
Address
‘1’
‘0’
Function
‘3’
‘2’
‘1’
Starting data
address
‘0’
‘2’
‘0’
‘0’
Number of data
(count by word)
‘0’
‘2’
‘D’
LRC Check
‘7’
CR
END
LF
Response message:
STX
Address
Function
Number of data
(Count by byte)
Content of starting
address
2102H
Content of address
2103H
LRC Check
END
‘:’
‘0’
‘1’
‘0’
‘3’
‘0’
‘4’
‘1’
‘7’
‘7’
‘0’
‘0’
‘0’
‘0’
‘0’
‘7’
‘1’
CR
LF
RTU mode:
Command message:
Address
Function
Starting data
address
Number of data
(count by word)
CRC CHK Low
CRC CHK High
01H
03H
21H
02H
00H
02H
6FH
F7H
Response message:
Address
Function
Number of data
(count by byte)
Content of address
2102H
Content of address
2103H
CRC CHK Low
CRC CHK High
01H
03H
04H
17H
70H
00H
00H
FEH
5CH
(2) 06H: single write, write single data to register.
Example: writing data 6000(1770H) to register 0100H. AMD address is 01H.
Revision April 2009, SW V1.00
5-87
Chapter 5 Parameters|VFD-B-P Series
ASCII mode:
Command message:
STX
‘:’
‘0’
Address
‘1’
‘0’
Function
‘6’
‘0’
‘1’
Data address
‘0’
‘0’
‘1’
‘7’
Data content
‘7’
‘0’
‘7’
LRC Check
‘1’
CR
END
LF
Response message:
STX
‘:’
‘0’
Address
‘1’
‘0’
Function
‘6’
‘0’
‘1’
Data address
‘0’
‘0’
‘1’
‘7’
Data content
‘7’
‘0’
‘7’
LRC Check
‘1’
CR
END
LF
RTU mode:
Command message:
Address
01H
Function
06H
01H
Data address
00H
17H
Data content
70H
CRC CHK Low
86H
CRC CHK High
22H
Response message:
Address
Function
Data address
Data content
CRC CHK Low
CRC CHK High
01H
06H
01H
00H
17H
70H
86H
22H
(3) 08H: loop detection
This command is used to detect if the communication between master device (PC or PLC) and AC
motor drive is normal. The AC motor drive will send the received message to the master device.
ASCII mode:
Command message:
STX
‘:’
‘0’
Address
‘1’
‘0’
Function
‘8’
‘0’
‘0’
Data address
‘0’
‘0’
‘1’
‘7’
Data content
‘7’
‘0’
LRC Check
‘7’
5-88
Response message:
STX
‘:’
‘0’
Address
‘1’
‘0’
Function
‘8’
‘0’
‘0’
Data address
‘0’
‘0’
‘1’
‘7’
Data content
‘7’
‘0’
LRC Check
‘7’
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Command message:
‘0’
CR
END
LF
Response message:
‘0’
CR
END
LF
RTU mode:
Command message:
Address
01H
Function
08H
00H
Data address
00H
17H
Data content
70H
CRC CHK Low
FEH
CRC CHK High
1FH
Response message:
Address
Function
Data address
Data content
CRC CHK Low
CRC CHK High
01H
08H
00H
00H
17H
70H
FEH
1FH
(4) 10H: write multiple registers (write multiple data to registers)
Example: Set the multi-step speed,
Pr.05-00=50.00 (1388H), Pr.05-01=40.00 (0FA0H). AC drive address is 01H.
ASCII Mode:
Command message:
STX
‘:’
Address 1
‘0’
Address 0
‘1’
Function 1
‘1’
Function 0
‘0’
‘0’
Starting data
‘5’
address
‘0’
‘0’
‘0’
Number of data
‘0’
(count by word)
‘0’
‘2’
‘0’
Number of data
(count by byte)
‘4’
‘1’
‘3’
The first data
content
‘8’
‘8’
‘0’
‘F’
The second data
content
‘A’
‘0’
‘9’
LRC Check
‘A’
CR
END
LF
Revision April 2009, SW V1.00
Response message:
STX
‘:’
Address 1
‘0’
Address 0
‘1’
Function 1
‘1’
Function 0
‘0’
‘0’
Starting data
‘5’
address
‘0’
‘0’
‘0’
Number of data
‘0’
(count by word)
‘0’
‘2’
‘E’
LRC Check
‘8’
CR
END
LF
5-89
Chapter 5 Parameters|VFD-B-P Series
RTU mode:
Command message:
Address
01H
Function
10H
Starting data
05H
address
00H
Number of data
00H’
(count by word)
02H
Number of data
04
(count by byte)
13H
The first data
content
88H
The second data
0FH
content
A0H
CRC Check Low
‘4D’
CRC Check High
‘D9’
Response message:
Address
01H
Function
10H
Starting data address
05H
00H
Number of data
00H
(count by word)
02H
CRC Check Low
41H
CRC Check High
04H
3.4 Check sum
ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, the values of
the bytes from address to data content then calculating the hexadecimal representation of the 2’scomplement negation of the sum.
For example, from above table, the calculation should be 01H+03H+21H+02H+00H+02H=29H.
The 2’s complement negation of 29H is D7H.
RTU mode:
CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the
16-bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0, shift the CRC register one bit to the right with MSB zero
filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right
with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat
step 3.
Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete
8-bit byte will have been processed.
Step 6: Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this
until all bytes have been processed. The final contents of the CRC register are the CRC value.
When transmitting the CRC value in the message, the upper and lower bytes of the CRC value
must be swapped, i.e. the lower order byte will be transmitted first.
5-90
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
The following is an example of CRC generation using C language. The function takes two
arguments:
Unsigned char* data Å a pointer to the message buffer
Unsigned char length Å the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length){
int j;
unsigned int reg_crc=0xFFFF;
while(length--){
reg_crc ^= *data++;
for(j=0;j<8;j++){
if(reg_crc & 0x01){ /* LSB(b0)=1 */
reg_crc=(reg_crc>>1) ^ 0xA001;
}else{
reg_crc=reg_crc >>1;
}
}
}
return reg_crc;
}
3.5 Address list
The contents of available addresses are shown as below:
Content
AC drive
Parameters
Command
Write only
Revision April 2009, SW V1.00
Address
Function
GG means parameter group, nn means parameter number,
GGnn for example, the address of Pr 4-01 is 0401H. Referencing to
chapter 5 for the function of each parameter. When reading
H
parameter by command code 03H, only one parameter can
be read at one time.
00B: No function
01B: Stop
Bit 0-1
10B: Run
2000H
11B: Jog + Run
Bit 2-3
Reserved
00B: No function
01B: FWD
Bit 4-5
10B: REV
11B: Change direction
5-91
Chapter 5 Parameters|VFD-B-P Series
Content
Address
2000H
Bit 6-7
Bit 8-11
Bit 12
2001H
2002H
Status
monitor
Read only
2100H
2101H
5-92
Function
00B: Comm. forced 1st accel/decel
01B: Comm. forced 2nd accel/decel
10B: Comm. forced 3rd accel/decel
11B: Comm. forced 4th accel/decel
Represented 16 step speeds.
0: No comm. multi step speed or accel/decel
time
1: Comm. multi step speed or accel/decel time
Bit 13-15 Reserved
Frequency command
Bit 0
1: EF (external fault) on
Bit 1
1: Reset
1: B.B. on
Bit 2
0: B.B. off
Error code:
00: No error occurred
01: Over-current (oc)
02: Over-voltage (ov)
03: Overheat (oH)
04: Overload (oL)
05: Overload1 (oL1)
06: External fault (EF)
07: IGBT short circuit protection (occ)
08: CPU failure (cF3)
09: Hardware protection failure (HPF)
10: Current exceeds 2 times rated current during accel (ocA)
11: Current exceeds 2 times rated current during decel (ocd)
12: Current exceeds 2 times rated current during steady state
operation (ocn)
13: Ground Fault (GFF)
14: Low voltage (Lv)
15: CPU failure 1 (cF1)
16: CPU failure 2 (cF2)
17: Base Block
18: Overload (oL2)
19: Auto accel/decel failure (cFA)
20: Software protection enabled (codE)
21: EF1 Emergency stop
22: PHL (Phase-Loss)
23: cEF (Preliminary count value attained, EF active)
24: Lc (Under-current)
25: AnLEr (Analog feedback signal error)
26: PGErr (PG feedback signal error)
Status of AC drive
LED: 0: light off, 1: light up
00: RUN LED
01: STOP LED
Bit 0-4
02: JOG LED
03: FWD LED
04: REV LED
Bit 5
0: F light off, 1: F light on
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Content
Status
monitor
Read only
Address
2102H
2103H
2104H
2105H
2106H
2107H
2108H
2109H
210AH
210BH
210CH
210DH
210EH
210FH
2110H
2200H
2201H
2202H
2203H
2204H
2205H
Function
Bit 6
0: H light off, 1: H light on
Bit 7
0: “u” light off, 1: “u” light on
1: Master frequency Controlled by communication
Bit 8
interface
Bit 9
1: Master frequency controlled by analog signal
1: Operation command controlled by
Bit 10
communication interface
Bit 11
1: Parameters have been locked
Bit 12
0: AC drive stops, 1: AC drive operates
Bit 13
1: Jog command
Bit 14-15 Reserved
Frequency command (F)
Output frequency (H)
Output current (AXXX.X)
DC-BUS Voltage (UXXX.X)
Output voltage (EXXX.X)
Step number of Multi-Step Speed Operation
Step number of PLC operation
Content of external TRIGGER
Power factor angle
Estimated torque ratio (XXX.X)
Motor speed (rpm)
PG pulse (low word) /unit time (Pr.10-15)
PG pulse (high word) /unit time (Pr.10-15)
Output power (KW)
Reserved
Feedback Signal (XXX.XX %)
User-defined (Low word)
User-defined (High word)
AVI analog input (XXX.XX %)
ACI analog input (XXX.XX %)
AUI analog input (XXX.XX %)
2206H
Display temperature of heatsink (°C)
3.6 Exception response:
The AC motor drive is expected to return a normal response after receiving command messages
from the master device. The following depicts the conditions when no normal response is replied to
the master device.
The AC motor drive does not receive the messages due to a communication error; thus, the AC
motor drive has no response. The master device will eventually process a timeout condition.
The AC motor drive receives the messages without a communication error, but cannot handle
them. An exception response will be returned to the master device and an error message “CExx”
will be displayed on the keypad of AC motor drive. The xx of “CExx” is a decimal code equal to the
exception code that is described below.
In the exception response, the most significant bit of the original command code is set to 1, and an
exception code which explains the condition that caused the exception is returned.
Example of an exception response of command code 06H and exception code 02H:
Revision April 2009, SW V1.00
5-93
Chapter 5 Parameters|VFD-B-P Series
ASCII mode:
STX
Address Low
Address High
Function Low
Function High
Exception code
LRC CHK Low
LRC CHK High
END 1
END 0
‘:’
‘0’
‘1’
‘8’
‘6’
‘0’
‘2’
‘7’
‘7’
CR
LF
RTU mode:
Address
Function
Exception code
CRC CHK Low
CRC CHK High
01H
86H
02H
C3H
A1H
The explanation of exception codes:
Exception
Explanation
code
Illegal function code:
01
The function code received in the command message is not
available for the AC motor drive.
Illegal data address:
02
The data address received in the command message is not
available for the AC motor drive.
Illegal data value:
03
The data value received in the command message is not available
for the AC drive.
Slave device failure:
04
The AC motor drive is unable to perform the requested action.
Communication time-out:
If Pr.09-03 is not equal to 0.0, Pr.09-02=00~02, and there is no
10
communication on the bus during the Time Out detection period (set
by Pr.09-03), “cE10” will be shown on the keypad.
3.7 Communication program of PC:
The following is a simple example of how to write a communication program for Modbus ASCII
mode on a PC by C language.
#include<stdio.h>
#include<dos.h>
#include<conio.h>
#include<process.h>
#define PORT 0x03F8 /* the address of COM1 */
/* the address offset value relative to COM1 */
#define THR 0x0000
#define RDR 0x0000
#define BRDL 0x0000
#define IER 0x0001
#define BRDH 0x0001
5-94
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
#define LCR 0x0003
#define MCR 0x0004
#define LSR 0x0005
#define MSR 0x0006
unsigned char rdat[60];
/* read 2 data from address 2102H of AC drive with address 1 */
unsigned char tdat[60]={':','0','1','0','3','2','1','0',’2', '0','0','0','2','D','7','\r','\n'};
void main(){
int i;
outportb(PORT+MCR,0x08);
/* interrupt enable */
outportb(PORT+IER,0x01);
/* interrupt as data in */
outportb(PORT+LCR,(inportb(PORT+LCR) | 0x80));
/* the BRDL/BRDH can be access as LCR.b7==1 */
outportb(PORT+BRDL,12);
/* set baudrate=9600, 12=115200/9600*/
outportb(PORT+BRDH,0x00);
outportb(PORT+LCR,0x06);
/* set protocol, <7,N,2>=06H, <7,E,1>=1AH, <7,O,1>=0AH,
<8,N,2>=07H, <8,E,1>=1BH, <8,O,1>=0BH */
for(i=0;i<=16;i++){
while(!(inportb(PORT+LSR) & 0x20)); /* wait until THR empty */
outportb(PORT+THR,tdat[i]);
/* send data to THR */
}
i=0;
while(!kbhit()){
if(inportb(PORT+LSR) & 0x01){ /* b0==1, read data ready */
rdat[i++]=inportb(PORT+RDR); /* read data form RDR */
}
}
}
09 - 05
09 - 06
HMI Register 1
HMI Register 2
Settings
Factory Setting: 00
It offers two registers for HMI or PLC.
09 - 07
Response Delay Time
Settings
00 ~ 65535
00 ~ 200 msec
Unit: 0.5
Factory Setting: 00
This parameter is the response delay time after AC drive receives communication command
as shown in the following.
Revision April 2009, SW V1.00
5-95
Chapter 5 Parameters|VFD-B-P Series
RS485 BUS
PC or PLC command
Response Message of AC Drive
Handling time
of AC drive
Max.: 6msec
Response Delay Time
Pr.09-07
* This parameter is only for firmware version 4.01 and higher.
5-96
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Group 10: PID Control
10 - 00 Input Terminal for PID Feedback
Factory Setting: 00
Settings
00
Inhibit PID operation: external terminals AVI, ACI may be used for
frequency command if required (Pr.02-00).
01
Negative PID feedback from external terminal AVI (0 ~ +10VDC).
02
Negative PID feedback from external terminal ACI (4 ~ 20mA).
03
Positive PID feedback from external terminal AVI (0 ~ +10VDC).
04
Positive PID feedback from external terminal ACI (4 ~ 20mA).
Note that the measured variable (feedback) controls the output frequency (Hz). Select input
terminal accordingly. Make sure this parameter setting does not conflict with the setting for
Pr.02-00 (Master Frequency).
When Pr.02-00 is set to 01 or 02, the set point (Master Frequency) for PID control is obtained
from the AVI/ACI external terminal (0 to +10V or 4-20mA) or from multi-step speed. When
Pr.02-00 is set to 00, the set point is obtained from the keypad.
Negative feedback means: +target value - feedback
Positive feedback means: -target value + feedback.
10 - 01 Gain Over the PID Detection Value
Settings
Unit: 0.01
Factory Setting: 1.00
This is the gain adjustment over the feedback detection value.
10 - 02
Proportional Gain (P)
Settings
0.00 to 10.00
0.0 to 10.0
Unit: 0.01
Factory Setting: 1.0
This parameter specifies proportional control and associated gain (P). If the other two gains (I
and D) are set to zero, proportional control is the only one effective.
10 - 03
Integral Gain ( I )
Settings
0.00
Unit: 0.01
0.00 to 100.00 sec
Factory Setting: 1.00
Disable
This parameter specifies integral control (continual sum of the deviation) and associated gain
(I). When the integral gain is set to 1 and the deviation is fixed, the output is equal to the input
(deviation) once the integral time setting is attained.
Revision April 2009, SW V1.00
5-97
Chapter 5 Parameters|VFD-B-P Series
10 - 04
Derivative Control (D)
Settings
Unit: 0.01
0.00 to 1.00 sec
Factory Setting: 0.00
This parameter specifies derivative control (rate of change of the input) and associated gain
(D). With this parameter set to 1, the PID output is equal to differential time x (present
deviation − previous deviation). It increases the response speed but it may cause overcompensation.
10 - 05 Upper Bound for Integral Control
Settings
Unit: 1
00 to 100 %
Factory Setting: 100
This parameter defines an upper bound or limit for the integral gain (I) and therefore limits the
Master Frequency.
The formula is: Integral upper bound = Maximum Output Frequency (Pr.01-00) x (Pr.10-05)%.
This parameter can limit the Maximum Output Frequency.
10 - 06 Primary Delay Filter Time
Settings
Unit: 0.1
0.0 to 2.5 sec
Factory Setting: 0.0
To avoid amplification of measurement noise in the controller output, a derivative digital filter is
inserted. This filter helps to dampen oscillations.
The complete PID diagram is shown on the following page:
Setpoint
+
-
P
I
10-02
10-03
Integral
gain
limit
+
+
10-05
+
Output
Freq.
Limit
10-07
Digital
filter
10-06
Freq.
Command
D
10-04
Input Freq.
Gain
PID
feedback
10-00
10-01
10 - 07 PID Output Frequency Limit
Settings
00 to 110 %
Unit: 1
Factory Setting: 100
This parameter defines the percentage of output frequency limit during the PID control. The
formula is Output Frequency Limit = Maximum Output Frequency (Pr.01-00) X Pr.10-07 %.
5-98
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
10 - 08 Feedback Signal Detection Time
Settings
0.0 to d 3600.0 sec
Unit: 0.1
Factory Setting: 60.0
This parameter defines the time during which the PID feedback must be abnormal before a
warning (see Pr.10-09) is given. It also can be modified according to the system feedback
signal time.
If this parameter is set to 0.0, the system would not detect any abnormality signal.
10 - 09
Treatment of the Erroneous Feedback Signals (for PID and PG feedback error)
Factory Setting: 00
Settings
00
Warning and keep operating
01
Warning and RAMP to stop
02
Warning and COAST to stop
AC motor drive action when the feedback signals (analog PID feedback or PG (encoder)
feedback) are abnormal according to Pr.10-16.
10 - 16 Deviation Range of PID Feedback Signal Error
Settings
0.00~100.00%
Unit: 0.01
Factory Setting: 100.00
The base is Pr.01-00. When in PID feedback control, if | Source of PID reference target feedback | > Pr.10-16 and exceeds Pr.10-08 detection time, the AC drive will operate
according to Pr.10-09.
10 - 10 PG Pulse Range
Settings
Unit: 1
1 ~ 40000 (Max=20000 for 2-pole motor)
Factory Setting: 600
A Pulse Generator (PG) or encoder is used as a sensor that provides a feedback signal of the
motor speed. This parameter defines the number of pulses for each cycle of the PG control.
For PG or encoder feedback an option PG-card is needed.
10 - 11 PG Input
Factory Setting: 00
Settings
00
Disable PG
01
Single phase
02
Forward / Counterclockwise rotation
03
Reverse / Clockwise rotation
The relationship between the motor rotation and PG input is illustrated below:
Revision April 2009, SW V1.00
5-99
Chapter 5 Parameters|VFD-B-P Series
A phase leads B phase
A phase
FWD
CCW
REV
CW
PULSE
GENERATOR
10 - 12
10-11=02
B phase leads A phase
A phase
B phase
10-11=03
A phase
CW
B phase
ASR (Auto Speed Regulation) control (with PG only) (P)
Settings
PG
B phase
0.0 to 10.0
Unit: 0.1
Factory Setting: 1.0
This parameter specifies Proportional control and associated gain (P), and is used for speed
control with PG (encoder) feedback.
10 - 13
ASR (Auto Speed Regulation) control (with PG only) (I)
Settings
0.00 to 100.00
Unit: 0.01
Factory Setting: 1.00
0.00 disable
This parameter specifies Integral control and associated gain (I), and is used for closed-loop
speed control with PG (encoder) feedback.
10 - 14 Speed Control Output Frequency Limit
Settings
0.00 to 10.00 Hz
Unit: 0.01
Factory Setting: 10.00
This parameter limits the amount of correction by the PI control on the output frequency when
controlling speed via PG (encoder) feedback. It can limit the maximum output frequency.
10 - 15 Sample time for refreshing the content of 210DH and 210EH
Settings
0.01~1.00 seconds
Factory Setting: 0.10
When the signal source of feedback control is PG (encoder) and it needs to read the pulse
numbers from communication, this parameter can be used to set the refresh time of two
communication addresses (210D and 210E).
5-100
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
Speed Control Diagram
Frequenc y
Command
Speed
Det ec ti on
-
+
P
10-12
+
+
Output
Frequenc y
Limit
10-14
+
Out put
Frequenc y
I
10-13
Speed Control Diagram
Revision April 2009, SW V1.00
5-101
Chapter 5 Parameters|VFD-B-P Series
Group 11: Fan and Pump Control Parameters
11 - 00 V/f Curve Selection
Factory Setting: 00
Settings
00
V/f curve determined by Pr.01-00 to Pr.01-06.
01
1.5 power curve
02
1.7 power curve
03
Square curve
04
Cube curve
Confirm the load curve and select the proper V/f curve before use.
The available V/f curves are shown below:
01-02
Vol tage100%
100
1.5 power c urve
90
1.7 power c urve
80
70
Square power cur ve
60
50 Cube power c urve
40
30
20
01-01
F req. %
10
60
100
0
20
40
80
V/f Curv e Diagram
11 - 01 Start-up Frequency of the Auxiliary Motor
Settings
0.00 to 400.00 Hz
Unit: 0.01
Factory Setting: 0.00
This parameter serves as a reference for the startup value of the auxiliary motor. If the setting
is 0.00, the auxiliary motor cannot be activated.
11 - 02 Stop Frequency of the Auxiliary Motor
Settings
0.00 to 400.00 Hz
Unit: 0.01
Factory Setting: 0.00
When the output frequency reaches this parameter value, the auxiliary motor will be stopped.
There must be a minimum of 5 Hz difference between the start frequency and stop frequency
of auxiliary motor. (Pr.11-01-Pr.11-02) > 5 Hz.
11 - 03 Time Delay before Starting the Auxiliary Motor
Settings
5-102
0.0 to 3600.0 sec
Unit: 0.1
Factory Setting: 0.0
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
11 - 04 Time Delay before Stopping the Auxiliary Motor
Settings
Unit: 0.1
0.0 to 3600.0 sec
Factory Setting: 0.0
The number of Multi-function Output terminals set to 16, 17, 18 decides the number of auxiliary
motors. The maximum is three.
The start/stop delay time can prevent the AC motor drive from overloaded during
starting/stopping.
These parameters determine the starting sequence of auxiliary motors.
The auxiliary motor started first will be stopped first.
Example: Start sequence: motor 1 -> motor 2 -> motor 3
Stop sequence: motor 1 -> motor 2 -> motor 3
The flowchart of auxiliary motor start/stop sequence:
Pr.11-01 Start-up frequency = 50 Hz, Pr.11-02 Stop frequency = 20 Hz
Pr.11-03 Time delay before start up = 10 sec, Pr.11-04 Time delay before stopping = 5 sec
Output frequency of
master motor
50
H
Output Freq.
YES
Start delay timer
of auxiliary
motor begins
Counter
10 sec
YES
Start the
auxiliary motor
in order
11 - 05 Sleep/Wake Up Detection Time
Settings
0.0 to 6550.0 sec
Revision April 2009, SW V1.00
H
20
Output Freq.
NO
YES
11-03
NO
NO
11-04
Stop delay timer
of auxiliary
motor begins
Counter
5 sec
NO
YES
Stop the
auxiliary motor
in order
Unit: 0.1
Factory Setting: 0.0
5-103
Chapter 5 Parameters|VFD-B-P Series
11 - 06 Sleep Frequency
Settings
Unit: 0.01
0.00 to Fmax Hz
Factory Setting: 0.00
11 - 07 Wakeup Frequency
Settings
Unit: 0.01
0.00 to Fmax Hz
Factory Setting: 0.00
When the actual output frequency < Pr.11-06 and the time exceeds the setting of Pr.11-05, the
AC motor drive will be in sleep mode.
When the actual frequency command > Pr.11-07, the AC motor drive will restart.
When the AC motor drive is in sleep mode, frequency command is still calculated by PID.
When frequency reaches wake up frequency, AC motor drive will accelerate from Pr.01-05 min.
frequency by V/f curve.
The wake up frequency must be higher than sleep frequency.
Frequency
frequency calculated by PID
11-07
The limit of
decel. time
output
frequency
11-06
01-08
The limit of
accel. time
01-05
Time
11-05
Fmin
Fcmd=0
lower bound
of frequency
Fsleep
Fmin<Fsleep< lower bound
of frequency
Fout = 0
When output frequency < sleep frequency and time > detection time, it will go into sleep mode.
When min. output frequency ≦lower bound of frequency, PID frequency ≧min. output
frequency and sleep function is enabled (output frequency < sleep frequency and time >
5-104
Revision April 2009, SW V1.00
Chapter 5 Parameters|VFD-B-P Series
detection time), frequency will be 0 (in sleep mode). If output frequency < sleep frequency and
time < detection time, the frequency command = lower bound frequency.
When PID frequency < min. output frequency and sleep function is enabled (output frequency
< sleep frequency and time > detection time), output frequency =0 (in sleep mode).
If output frequency < sleep frequency but time < detection time, frequency command = lower
frequency. If sleep function is disabled, output frequency =0.
Revision April 2009, SW V1.00
5-105
Chapter 5 Parameters|VFD-B-P Series
This page intentionally left blank.
5-106
Revision April 2009, SW V1.00
Chapter 6 Fault Code Information
The AC motor drive has a comprehensive fault diagnostic system that includes several different
alarms and fault messages. Once a fault is detected, the corresponding protective functions will be
activated. The following faults are displayed as shown on the AC motor drive digital keypad display.
The four most recent faults can be read from the digital keypad or communication.
NOTE
Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.
6.1 Common Problems and Solutions
Fault
Name
Fault Descriptions
Corrective Actions
1.
2.
3.
Over current
Abnormal increase in current.
4.
5.
6.
1.
Over voltage
The DC bus voltage has
exceeded its maximum
allowable value.
2.
3.
1.
Overheating
Heat sink temperature too high
Low voltage
The AC motor drive detects
that the DC bus voltage has
fallen below its minimum
value.
Revision April 2009, SW V1.00
2.
1.
2.
3.
Check if motor power corresponds with the
AC motor drive output power.
Check the wiring connections to U, V, W for
possible short circuits.
Check the wiring connections between the AC
motor drive and motor for possible short
circuits, also to ground.
Check for loose contacts between AC motor
drive and motor.
Increase the Acceleration Time.
Check for possible excessive loading
conditions at the motor.
Check if the input voltage falls within the
rated AC motor drive input voltage range.
Check for possible voltage transients.
DC-bus over-voltage may also be caused by
motor regeneration. Either increase the
Decel. Time or add an optional brake resistor
(and brake unit).
Ensure that the ambient temperature falls
within the specified temperature range.
Provide enough spacing for adequate
ventilation. (See chapter 2)
Check whether the input voltage falls within
the AC motor drive rated input voltage range.
Check for abnormal load in motor.
Check for correct wiring of input power to RS-T (for 3-phase models) without phase loss.
6-1
Chapter 6 Fault Code Information|VFD-B-P Series
Fault
Name
Fault Descriptions
Overload
The AC motor drive detects
excessive drive output current.
NOTE: The AC motor drive
can withstand up to 150% of
the rated current for a
maximum of 60 seconds.
Corrective Actions
1.
2.
3.
Check whether the motor is overloaded.
Reduce torque compensation setting in Pr.702.
Use the next higher power AC motor drive
model.
1.
2.
Overload 1
Internal electronic overload trip
Overload 2
Motor overload.
Check for possible motor overload.
Reduce the current level so that the drive
output current does not exceed the value set
by the Motor Rated Current Pr.7-00.
3. Check electronic thermal overload setting.
4. Use a higher power motor.
1. Reduce the motor load.
2. Adjust the over-torque detection setting to an
appropriate setting (Pr.06-03 to Pr.06-05).
GFF hardware error
CC (current clamp)
Return to the factory.
OC hardware error
OV hardware error
1.
External Base Block.
(Refer to Pr. 08-06)
2.
1.
2.
Over-current during
acceleration
3.
4.
5.
1.
Over-current during
deceleration
6-2
2.
3.
When the external input terminal (B.B) is
active, the AC motor drive output will be
turned off.
Deactivate the external input terminal (B.B) to
operate the AC motor drive again.
Check for loose contacts between the AC
motor drive and motor
Short-circuit at motor output: Check for
possible poor insulation at the output lines.
Acceleration Time too short: Increase the
Acceleration Time.
Torque boost too high: Decrease the torque
compensation setting in Pr.7-02.
AC motor drive output power is too small:
Replace the AC motor drive with the next
higher power model.
Short-circuit at motor output: Check for
possible poor insulation at the output line.
Deceleration Time too short: Increase the
Deceleration Time.
AC motor drive output power is too small:
Replace the AC motor drive with the next
higher power model.
Revision April 2009, SW V1.00
Chapter 6 Fault Code Information|VFD-B-P Series
Fault
Name
Fault Descriptions
Corrective Actions
1.
Over-current during
constant speed operation
2.
3.
1.
External Fault
2.
1.
Emergency stop
2.
Internal EEPROM can not be
programmed.
Internal EEPROM can not be
read.
U-phase error
V-phase error
W-phase error
OV or LV
Current sensor error
OH error
Ground fault
Auto accel/decel failure
Communication Error
Software protection failure
Revision April 2009, SW V1.00
Short-circuit at motor output: Check for
possible poor insulation at the output line.
Sudden increase in motor loading: Check for
possible motor stall.
AC motor drive output power is too small:
Replace the AC motor drive with the next
higher power model.
Input EF (N.O.) on external terminal is closed
to GND. Output U, V, W will be turned off.
Give RESET command after fault has been
cleared.
When the multi-function input terminals MI1 to
MI6 are set to emergency stop (setting 19 or
20), the AC motor drive stops output U, V, W
and the motor coasts to stop.
Press RESET after fault has been cleared.
Return to the factory.
1.
2.
Press RESET to reset all settings to the
factory setting
Return to the factory.
Return to the factory.
When (one of) the output terminal(s) is grounded,
short circuit current is more than 50% of AC motor
drive rated current, the AC motor drive power
module may be damaged.
NOTE: The short circuit protection is provided
for AC motor drive protection, not for
protection of the user.
1. Check whether the IGBT power module is
damaged.
2. Check for possible poor insulation at the
output line.
1. Check if the motor is suitable for operation by
AC motor drive.
2. Check if the regenerative energy is too large.
3. Load may have changed suddenly.
1.
Check the RS485 connection between the AC
motor drive and RS485 master for loose wires
and wiring to correct pins.
2.
Check if the communication protocol, address,
transmission speed, etc. are properly set.
3.
Use the correct checksum calculation.
4.
Please refer to group 9 in the chapter 5 for
detail information.
Return to the factory.
6-3
Chapter 6 Fault Code Information|VFD-B-P Series
Fault
Name
Fault Descriptions
Password is locked.
Analog feedback error or
ACI open circuit
PG feedback signal error
Phase Loss
EF when preliminary count
value attained
Auto Tuning Error
Under Current
Corrective Actions
Keypad will be locked. Turn the power ON after
power OFF to re-enter the correct password. See
Pr.00-07 and 00-08.
1. Check parameter settings and wiring of Analog
feedback (Pr.10-00).
2. Check for possible fault between system
response time and the feedback signal
detection time (Pr.10-08).
1.
Check parameter settings and signal type of
PG feedback (Pr.10-10 and Pr.10-11).
2.
Check if the wiring of PG card is correct.
Check input phase wiring for loose contacts.
1.
Check counter trigger signal
2.
Check Pr.03-09, Pr.03-11setting
1.
Check cabling between drive and motor
2.
Check Pr.07-05
1.
Check Load current
2.
Check Pr.06-12 to Pr.06-15 setting
6.2 Reset
There are three methods to reset the AC motor drive after solving the fault:
STOP
RESET
1.
Press
2.
Set external terminal to “RESET” (set one of Pr.04-04~Pr.04-09 to 05) and then set to be ON.
3.
Send “RESET” command by communication.
key on PU01.
NOTE
Make sure that RUN command or signal is OFF before executing RESET to prevent damage or
personal injury due to immediate operation.
6-4
Revision April 2009, SW V1.00
Chapter 7 Troubleshooting
7.1 Over Current (OC)
o cd
ocA
Ov er-cur re nt
dur ing ac c eleratio n
Yes
Remove short c ircuit
or groun d fault
Reduce the load or
increase the power
of AC motor drive
Reduce tor que
compen sation
Ove r curren t
Check if there is any short c irc uits and
groun ding between t he U, V, W and motor
No
No
OC
Over- c ur rent
dur ing decele ration
No
No
Yes
Check if load is too large
No
No
No
No Suitable tor que
compensation
Yes
Ye s
Red uce tor que
com pensa tion
No
Check if
Check if
acceler ation time No dec eleration time
is too short by
is too short by
loa d inertia.
load inertia.
Ye s
Maybe AC motor dri ve
has malfunction or error
due to noise. Pleas e
contact DELTA.
Yes
No Has l oad cha nged
suddenly?
Ye s
Yes
Yes Can dec elerati on
Can ac celerati on
time be made l onger?
time be made longer?
No
No
R educe load or increase
the pow er of AC motor
driv e
Inc re ase ac cel/dec el
time
Reduce lo ad or in crease
the power of AC motor
dri ve
Revision April 2009, SW V1.00
Check br ake
me thod. P lease
co ntact D ELTA
7-1
Chapter 7 Troubleshooting |VFD-B-P Series
7.2 Ground Fault
Is output circuit(cable or
motor) of AC motor drive
grounded?
GFF
Ground fault
Maybe AC motor drive has
malfunction or misoperation
due to noise. Please
contact DELTA.
No
Yes
Remove ground fault
7.3 Over Voltage (OV)
Over voltage
No
Reduce voltage to
be within spec.
Is voltage within
specification
Yes
Has over-voltage occurred without load
Maybe AC motor drive
has malfunction or
misoperation due to
noise. Please contact
DELTA.
Yes
No
No
When OV occurs, check if the
voltage of DC BUS is greater
than protection value
Yes
Yes
Increase
deceleration
time
No Dose OV occur when
sudden acceleration
stops
No
Yes
Increase
acceleration
time
Yes
Yes
Increase setting time
No
Reduce moment
of inertia
No
Reduce moment of load inertia
Need to consider using
brake unit or
DC brake
No
Use brake unit or DC brake
No
Yes
Need to check control method. Please contact DELTA.
7-2
Revision April 2009, SW V1.00
Chapter 7 Troubleshooting |VFD-B-P Series
7.4 Low Voltage (Lv)
Low voltage
Is input power cor rect? O r power cut, Yes
including momentary pow er loss
Restart after r eset
No
Check if there i s any malfunction Yes
component or disconnection i n
power s upply c ircuit
Change defec tiv e component
and chec k c onnection
No
Make nec essary cor rections,
such as change power supply
sy stem for requirement
No
C heck if voltage is
w ithin speci fic ati on
Yes
Check if there i s heavy load
with high s tar t cur rent in the
same power sy stem
No
No
Check if Lv occurs w hen
breaker and magnetic
contactor is O N
Yes
Suitable power
transformer capacity
No
Check if voltage betw een +1/+2
and - is greater than 400V DC
Yes
No
Maybe AC motor drive has m al function.
Please contact DELTA.
Yes
Contr ol c ircuit has malfunction or
misoper ation due to noise. P leas e
contact DELTA.
Revision April 2009, SW V1.00
7-3
Chapter 7 Troubleshooting |VFD-B-P Series
7.5 Over Heat (OH)
AC motor driv e overheats
Check if temperatur e of heat s ink
O
3-20HP: gr eater than 100 C
25 -60HP: greater than 90 OC
No
Temperature detection malfunc tions .
Please contact DELTA.
Yes
Check if the applying area and thic kness
of thermal grease between the A C driv e
and heatsink is wi thin specification. Refer
to chapter 2 for details .
Yes
Using Delta optional heatsink ?
No
Is load too large
Yes
Reduc e load
No
If cooling fan func tions normally
No
Change cooling fan
Yes
Check if sur rounding temperatur e
is withi n specific ation
Yes
Maybe AC motor drive has m al function or
misoper ation due to noise. P leas e contact
DELTA.
No
Adjust surr ounding temperature
to spec ifi cati on
7.6 Overload
OL
OL1/ OL2
Check for correct settings at
Pr. 06-06 and 06-07
No
Modify setting
Yes
Is load too large
No
Maybe AC motor drive has malfunction
or misoperation due to noise.
Yes
Reduce load or increase the power of AC motor drive
7-4
Revision April 2009, SW V1.00
Chapter 7 Troubleshooting |VFD-B-P Series
7.7 Display of PU01 is Abnormal
Abnormal display or no display
Yes
Cycle power to AC motor drive
Fix connector and eliminate noise
No
No
Display normal?
Check if all connectors are connect
correctly and no noise is present
Yes
Yes
AC motor drive works normally
AC motor drive has malfunction.
Please contact DELTA.
7.8 Phase Loss (PHL)
Phase loss
Check wiring at R, S and T terminals
No
Correct wiring
Yes
Check if the screws of terminals are tightened
No
Tighten all screws
Yes
Check if the input voltage of R, S, T is unbalanced
Yes
No
Please check the wiring
and power system for
abnormal power
Maybe AC motor drive has malfunction or misoperation
due to noise. Please contact DELTA.
Revision April 2009, SW V1.00
7-5
Chapter 7 Troubleshooting |VFD-B-P Series
7.9 Motor cannot Run
Check PU01
for normal
display
Motor cannot run
Check if non-fuse
No
breaker and magnetic
contactor are ON
No
Yes
Yes
Yes Check if there is any
fault code displayed
Reset after clearing
fault and then RUN
Check if input
voltage is normal
No
It can run when
no faults occur
Input "RUN"
command
by keypad
No
Yes
No
If jumper or DC
No
reactor is connected
between +1 and +2/B1
Check if any faults
occur, such as
Lv, PHL or
disconnection
Use jumper
or DC reactor
Yes
Yes
Press RUN key to
check if it can run
Set them to ON
Maybe AC motor drive has malfunction or misoperation
due to noise. Please contact DELTA.
Press UP key to
set frequency
Check if the wiring
Yes
No Check if input FWD No of terminal FWD
Change switch or relay
or REV command
and between
Press UP to
REV-DCM is correct
check if motor
Yes
can run
No
No
No
No
Set frequency or not
Correct connection
Yes
Modify frequency
setting
No
if upper bound freq.
Check if the parameter
and setting freq. is
setting and wiring of
Change defective
lower than the min.
Yes
analog signal and
potentiometer and
output freq.
multi-step speed
relay
No
are correct
Yes
Check if there is any
No
output voltage from
terminals U, V and W
Motor has malfunction
No
If load is too large
Yes
Maybe AC motor drive has malfunction.
Please contact DELTA.
Yes
Yes
Check if the setting
Yes
of torque
compensation
is correct
No
Check if motor
connection
is correct
No
Connect correctly
Motor is locked due to large load, please reduce load.
For example, if there is a brake, check if it is released.
Increase the setting of
torque compensation
7-6
Revision April 2009, SW V1.00
Chapter 7 Troubleshooting |VFD-B-P Series
7.10 Motor Speed cannot be Changed
Motor can run but
cannot change speed
Modify the setting
Check if the setting of the
max. frequency is too low
Yes
Yes
No
If the setting of
Pr.05-17toPr.05-31
Yes is too high
Check to see if frequency is
Yes
out of range (upper/lower)
boundaries
No
Yes
If finished with
executing
Pr.05-15
No
Yes
Is it in PLC mode
Press UP/DOWN key
Yes
to see if speed has
any change
No
No
Yes
If there is any change
of the signal that sets Yes
frequency (0-10V and
4-20mA)
If the setting of
Pr.05-00 to Pr.05-14
are the same
No
Modify the setting
Check if the wiring between
M1~M6 to DCM is correct
Yes
Check if frequency for
each step is different
No
No
No Check if the wiring of
external terminal is correct
Correct
wiring
No
Yes
Change defective
potentiometer
Yes
Change frequencysetting
No Check if accel./decel.
time is set correctly
Yes
Please set suitable
accel./decel. time by
load inertia
Maybe AC motor drive has malfunction or misoperation
due to noise. Please contact DELTA.
Revision April 2009, SW V1.00
7-7
Chapter 7 Troubleshooting |VFD-B-P Series
7.11 Motor Stalls during Acceleration
Check if acceleration Yes
time is too short
Motor stalls during
acceleration
Increase setting time
No
Yes
Check if the inertia
Yes
of the motor and load
is too high
No
Thicken or shorten the
wiring between the
motor or AC motor drive
Yes
Use special motor?
No
Reduce load or
increase the capacity
of AC motor drive
Check for low voltage
at input
No
Reduce load or
increase the capacity
of AC motor drive
Yes
Check if the load torque
is too high
No
Check if the torque
Yes
compensation is suitable
Maybe AC motor drive has
malfunction or misoperation
due to noise. Please contact
DELTA
No
Increase torque compensation
7.12 The Motor does not Run as Expected
Motor does not run
as expected
Check Pr. 01-01 thru Pr. 01-06
and torque compensation
settings
No
Adjust Pr.01-01 to Pr.01-06
and lower torque compensation
Yes
Run in low speed continuously
Yes
Please use specific motor
No
Is load too large
No
Yes
Reduce load or increase the
capacity of AC motor drive
Check if output voltage of U, V, W Yes
is balanced
Motor has malfunction
No
Maybe AC motor drive has malfunction or misoperation
due to noise. Please contact DELTA.
7-8
Revision April 2009, SW V1.00
Chapter 8 Maintenance and Inspections
Modern AC motor drives are based on solid state electronics technology. Preventive maintenance
is required to operate this AC motor drive in its optimal condition, and to ensure a long life. It is
recommended to have a check-up of the AC motor drive performed by a qualified technician.
Daily Inspection:
Basic check-up items to detect if there were any abnormalities during operation are:
1.
Whether the motors are operating as expected.
2.
Whether the installation environment is abnormal.
3.
Whether the cooling system is operating as expected.
4.
Whether any irregular vibration or sound occurred during operation.
5.
Whether the motors are overheating during operation.
6.
Always check the input voltage of the AC drive with a Voltmeter.
Periodic Inspection:
Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10
minutes after all display lamps have gone out, and then confirm that the capacitors have fully
discharged by measuring the voltage between +1/+2 and -. The voltage between +1/+2 and should be less than 25VDC.
DANGER!
1.
2.
Disconnect AC power before processing!
Only qualified personnel can install, wire and maintain AC motor drives. Please take off any
metal objects, such as watches and rings, before operation. And only insulated tools are
allowed.
3.
Never reassemble internal components or wiring.
4.
Prevent electric shocks.
Revision April 2009, SW V1.00
8-1
Chapter 8 Maintenance and Inspections|VFD-B-P Series
Periodical Maintenance
„
Ambient environment
Check Items
Maintenance
Period
Methods and Criterion
Daily
„
Check the ambient temperature,
humidity, vibration and see if
there is any dust, gas, oil or
water drops
Visual inspection and measurement
with equipment with standard
specification
{
Check for any dangerous
objects near drive and motor
Visual inspection
{
Half One
Year Year
Voltage
Maintenance
Period
Check Items
Methods and Criterion
Daily
Check if the voltage of main
circuit and control circuit is
correct
„
Measure with multimeter with standard
specification
{
Keypad
Check Items
Methods and Criterion
Maintenance
Period
Daily
„
Is the display clear for reading
Visual inspection
{
Any missing characters
Visual inspection
{
Half One
Year Year
Mechanical parts
Check Items
Methods and Criterion
Maintenance
Period
Daily
8-2
Half One
Year Year
Half One
Year Year
If there is any abnormal sound
or vibration
Visual and aural inspection
{
If there are any loose screws
Tighten the screws
{
Revision April 2009, SW V1.00
Chapter 8 Maintenance and Inspections|VFD-B-P Series
Check Items
Methods and Criterion
Maintenance
Period
Daily
„
Check parts for deformity or
damaged
Visual inspection
{
If there is any color change
caused by overheating
Visual inspection
{
Check for dust and dirt
Visual inspection
{
Main circuit
Check Items
Methods and Criterion
Maintenance
Period
Daily
„
Half One
Year Year
Half One
Year Year
If there are any loose or missing
screws
Tighten the screw
If machine or insulator is
deformed, cracked, damaged or
with color change due to
overheating or ageing
Visual inspection
NOTE: Please ignore the color
change of copper plate
{
Check for dust and dirt
Visual inspection
{
{
Terminals and wiring of main circuit
Check Items
Methods and Criterion
Maintenance
Period
Daily
Half One
Year Year
If the wiring is color change or
deformation due to overheat
Visual inspection
{
If the insulator of wiring is
damaged or color change
Visual inspection
{
If there is any damage
Visual inspection
{
Revision April 2009, SW V1.00
8-3
Chapter 8 Maintenance and Inspections|VFD-B-P Series
„
DC capacity of main circuit
Check Items
Maintenance
Period
Methods and Criterion
Daily
If there is any leak of liquid,
color change, crack or
deformation
{
Visual inspection
Measure static capacity when
required
„
Half One
Year Year
{
Resistor of main circuit
Maintenance
Period
Check Items
Methods and Criterion
Daily
„
If there is any peculiar smell or
insulator cracks due to overheat
Visual inspection, smell
{
If there is any disconnection
Visual inspection or measure with
multimeter after removing wiring
between +1/+2 ~ Resistor value should be within ± 10%
{
Half One
Year Year
Transformer and reactor of main circuit
Maintenance
Period
Check Items
Methods and Criterion
Daily
If there is any abnormal vibration
or peculiar smell
„
Visual, aural inspection and smell
Half One
Year Year
{
Magnetic contactor and relay of main circuit
Maintenance
Period
Check Items
Methods and Criterion
Daily
8-4
If there are any loose screws
Visual and aural inspection
{
Check to see if contacts work
correctly
Visual inspection
{
Half One
Year Year
Revision April 2009, SW V1.00
Chapter 8 Maintenance and Inspections|VFD-B-P Series
„
Printed circuit board and connector of main circuit
Maintenance
Period
Check Items
Methods and Criterion
Daily
„
Half One
Year Year
If there are any loose screws and
connectors
Tighten the screws and press the
connectors firmly in place.
{
If there is any peculiar smell and
color change
Visual inspection and smell
{
If there is any crack, damage,
deformation or corrosion
Visual inspection
{
If there is any liquid is leaked or
deformation in capacity
Visual inspection
{
Ventilation channel of cooling system
Maintenance
Period
Check Items
Methods and Criterion
Daily
If there is any obstruction in the
heat sink, air intake or air outlet
Revision April 2009, SW V1.00
Visual inspection
Half One
Year Year
{
8-5
Chapter 8 Maintenance and Inspections|VFD-B-P Series
This page intentionally left blank.
8-6
Revision April 2009, SW V1.00
Appendix A Specifications
Voltage Class
460V Class
022
037
055
075
110
150
185
220
300
370
450
Max. Applicable Motor Output (kW)
2.2
3.7
5.5
7.5
11
15
18.5
22
30
37
45
Max. Applicable Motor Output (hp)
3.0
5.0
7.5
10
15
20
25
30
40
50
60
Rated Output Capacity (kVA)
4.2
6.5
10
14
18
25
29
34
46
56
69
Rated Output Current (A)
5.5
8.5
13
18
24
32
38
45
60
73
91
Input Rating
Output for Vector
Control
Output for V/f
Control
Model Number VFD-XXXBXP
Maximum Output Voltage (V)
3-phase Proportional to Input Voltage
Output Frequency (Hz)
0.1~400 Hz
Carrier Frequency (kHz)
1-15
1-9
1-6
Rated Output Capacity (kVA)
4.2
6.5
10
14
18
25
29
34
46
56
69
Rated Output Current (A)
5.5
8.5
8.5
13
18
24
32
38
45
60
73
Maximum Output Voltage (V)
3-phase Proportional to Input Voltage
Output Frequency (Hz)
0.1~400 Hz
Carrier Frequency (kHz)
Rated Input
Current (A)
1-15
1-9
V/f control
5.9
11.2
14
19
25
32
39
49
60
73
90
Vector control
5.9
11.2
11.2
14
19
25
32
39
49
60
73
Rated Voltage
3-phase 380 to 480 V
Voltage Tolerance
Frequency Tolerance
± 10%(342~528 V)
± 5%(47~63 Hz)
General Specifications
SPWM(Sinusoidal Pulse Width Modulation) control (V/f or sensorless vector
control)
Control Characteristics
Control System
Output Frequency
Resolution
Torque Characteristics
Overload Endurance
Accel/Decel Time
Stall Prevention Level
Keypad
Frequenc
y Setting
External Signal
Keypad
Operation
Setting
External
Signal
Signal
Revision April 2009, SW V1.00
0.01Hz
Including the auto-torque, auto-slip compensation; starting torque can be 150%
at 1.0Hz
V/f control: 150% of rated current for 1 minute
Vector control: 150% of rated current for 1 minute
0.1 to 3600 seconds (4 Independent settings for Accel/Decel time)
20 to 150%, setting of rated current
Setting by
Potentiometer 5kΩ/0.5W, 0 to +10VDC(input impedance 47kΩ), 4 to 20mA(input
impedance 250kΩ), RS-485 interface, Multi-Function Inputs 1 to 6 (15 steps,
Jog, up/down)
Set by RUN, STOP and JOG
FWD, REV, JOG operation, Auto-run operation, RS-485 serial interface
(MODBUS)
EnviromentalConditions
Appendix A Specifications|VFD-B-P Series
General Specifications
A-2
Multi-Function Input Signal
Multi-step selection 0 to 15, accel/decel inhibit, first to forth accel/decel switches,
counter, JOG operation, PLC operation, external Base Block (NC, NO), auxiliary
motor control is invalid, ACI/AUI selections, driver reset, UP/DOWN key settings
and sink/source selection
Multi-Function Output
Indication
Driver is ready, overheat alarm, emergency stop and signal loss alarm
Analog Output Signal
Output frequency/current/voltage/frequency command/speed/factor
Installation Location
Altitude 1,000 m or lower, keep from corrosive gasses, liquid and dust
Ambient Temperature
-10oC to 40oC Non-Condensing and not frozen
Storage/ Transportation
Temperature
-20 oC to 60 oC
Ambient Humidity
Below 90% RH (non-condensing)
Vibration
Less than 20Hz: 9.80665m/s2 (1G), 20 to 50Hz: 5.88m/s2 (0.6G)
Protection Functions
Over voltage, over current, under voltage, overload, ground fault, overheating,
electronic thermal, IGBT short circuit
Operation Functions
AVR, 2 accel/decel S curves, over-voltage/over-current stall prevention, fault
records, reverse inhibition, momentary power loss restart, DC brake, auto
torque/slip compensation, auto tuning, adjustable carrier frequency, output
frequency limits, parameter lock/reset, vector control, speed feedback control,
PG feedback control, PID control, fan & pump control, external counter, PLC,
MODBUS communication, abnormal reset, abnormal re-start, power-saving,
sleep/revival function, digital frequency output, sleep/wake frequency,
master/auxiliary frequency, 1st/2nd frequency source selections
Revision April 2009, SW V1.00
Appendix B Accessories
B.1 Dimensions for Heatsinks
MKB-PHC
Applicable models: VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P
6.0
有效 牙長深
以上
8.0mm
Revision April 2009, SW V1.00
B-1
Appendix B Accessories|VFD-B-P Series
MKB-PHC1
Applicable models: VFD055B43P, VFD075B43P, VFD110B43P, VFD150B43P
B-2
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
MKB-PHD
Applicable models: VFD185B43P, VFD220B43P, VFD300B43P, VFD370B43W-P, VFD450B43W-P
6.0
有效牙長 深
以上
8.0mm
Revision April 2009, SW V1.00
B-3
Appendix B Accessories|VFD-B-P Series
MKB-PHD1
Applicable models: VFD185B43P, VFD220B43P, VFD300B43P
有效牙長深
8.0mm
以上
B-4
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.2 All Brake Resistors & Brake Units Used in AC Motor Drives
Note: Please only use DELTA resistors and recommended values. Other resistors and values will
void Delta’s warranty. Please contact your nearest Delta representative for use of special resistors.
For instance, in 460V series, 100hp/75kW, the AC motor drive needs 2 brake units with total of 16
brake resistors, so each brake unit uses 8 brake resistors. The brake unit should be at least 10 cm
away from AC motor drive to avoid possible interference. Refer to the “Brake Unit Module User
460V Series
Voltage
Manual” for further details.
Applicable Full
Resistor
Brake Unit
Motor
value spec
Load
Part No. and
Torque for each AC
Quantity
hp kW
Motor Drive
Nm
300W 250Ω
3
2.2 1.262
400W 150Ω
5
3.7 2.080
500W 100Ω
7.5 5.5 3.111
1000W 75Ω
10 7.5 4.148
1000W 50Ω
15 11
6.186
4030
1
1500W 40Ω
20 15
8.248
4030
1
25 18.5 10.281 4800W 32Ω
1
30 22 12.338 4800W 27.2Ω 4030
4030
1
40 30 16.497 6000W 20Ω
4045
1
9600W 16Ω
50 37
20.6
1
60 45 24.745 9600W 13.6Ω 4045
Min. Equivalent
Brake Resistors Brake
Resistor Value
Torque
Part No. and
for each AC
10%ED
Quantity
Motor Drive
160Ω
BR300W250 1
125
130Ω
BR400W150 1
125
91Ω
BR500W100 1
125
62Ω
BR1K0W075 1
125
125
39Ω
BR1K0W050 1
125
40Ω
BR1K5W040 1
125
32Ω
BR1K2W008 4
125
27.2Ω
BR1K2W6P8 4
125
20Ω
BR1K5W005 4
125
16Ω
BR1K2W008 8
125
13.6Ω
BR1K2W6P8 8
NOTE
1.
2.
Please select the factory setting resistance value (Watt) and the duty-cycle value (ED%).
If damage to the drive or other equipment are due to the fact that the brake resistors and the
brake modules in use are not provided by Delta, the warranty will be void.
3.
Take into consideration the safety of the environment when installing the brake resistors.
4.
When using more than 2 brake units, equivalent resistor value of parallel brake unit can’t be
less than the value in the column “Minimum Equivalent Resistor Value for Each AC Drive” (the
right-most column in the table).
5.
If the minimum resistance value is to be utilized, consult local dealers for the calculation of the
Watt figures.
6.
For those applications needed to use with brake resistor or brake unit, it should disable Pr.0600 and also recommend to disable Pr.08-16 function.
7.
Definition for Brake Usage ED%
Explanation: The definition of the barking usage ED(%) is for assurance of enough time for the
brake unit and brake resistor to dissipate away heat generated by braking. When the brake
Revision April 2009, SW V1.00
B-5
Appendix B Accessories|VFD-B-P Series
resistor heats up, the resistance would increase with temperature, and brake torque would
decrease accordingly. Suggest cycle time is one minute
100%
Brake Time
T1
ED% = T1/T0x100(%)
Cycle Time
8.
T0
For safety reasons, install a thermal overload relay between brake unit and brake resistor.
Together with the magnetic contactor (MC) in the mains supply circuit to the drive it offers
protection in case of any malfunctioning. The purpose of installing the thermal overload relay is
to protect the brake resistor against damage due to frequent brake or in case the brake unit is
continuously on due to unusual high input voltage. Under these circumstances the thermal
overload relay switches off the power to the drive. Never let the thermal overload relay switch
off only the brake resistor as this will cause serious damage to the AC Motor Drive.
NFB
MC
R/L1
R/L1
U/T1
S/L2
S/L2
V/T2
IM
T/L3
T/L3
W/T3
MOTOR
VFD Series
O.L.
Thermal
Overload
Relay or
temperature
switch
MC
SA
Surge
Absorber
+(P )
+(P )
- ( N)
-( N)
B1
Thermal Overload
Relay
O.L.
Brake
Brake
Unit
BR Resistor
B2
Temperature
Switch
Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive
user manual for the wiring of terminal +(P) of Brake unit.
Note2: Do NOT wire terminal -(N) to the neutral point of power system.
B-6
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.1.1 Dimensions and Weights for Brake Resistors
(Dimensions are in millimeter)
Order P/N: BR300W250, BR400W150
Model no.
L1
L2
H
D
W
Max. Weight (g)
BR300W250
215
200
30
5.3
60
750
BR400W150
265
250
30
5.3
60
930
Order P/N: BR500W100, BR1KW075
Model no.
L1
L2
H
D
W
Max. Weight (g)
BR500W100
335
320
30
5.3
60
1100
BR1KW075
400
385
50
5.3
100
2800
Revision April 2009, SW V1.00
B-7
Appendix B Accessories|VFD-B-P Series
Order P/N: BR1K0W050, BR1K2W008, BR1K2W6P8, BR1K5W005, BR1K5W040
B.1.2 Specifications for Brake Unit
Environment
Protection
Input
Rating
Output
Rating
460V Series
4030
4045
Max. Motor Power (kW)
30
45
Max. Peak Discharge Current (A)
10%ED
40
60
Continuous Discharge Current (A)
15
18
Brake Start-up Voltage (DC)
660/690/720/760/800/830±6V
DC Voltage
400~800VDC
Heat Sink Overheat
Alarm Output
Relay contact 5A 120VAC/28VDC (RA, RB, RC)
Power Charge Display
Blackout until bus (P-N) voltage is below 50VDC
Installation Location
Operating Temperature
Storage Temperature
Humidity
Indoor (no corrosive gases, metallic dust)
-10°C ∼ +50°C (14oF to 122oF)
-20°C ∼ +60°C (-4oF to 140oF)
90% Non-condensing
9.8m/s2 (1G) under 20Hz
2m/s2 (0.2G) at 20~50Hz
IP50
Vibration
Wall-mounted Enclosed Type
B-8
Temperature over +95°C (203 oF)
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.1.3 Dimensions for Brake Unit
(Dimensions are in millimeter[inch])
121.0 [4.76]
80.0 [3.15]
ERR.
RED
Revision April 2009, SW V1.00
200.0 [7.87]
ACT.
YELLOW
189.5 [7.46]
CHARGE
GREEN
130.0 [5.12]
R3.3 [R0.13]
B-9
Appendix B Accessories|VFD-B-P Series
B.2 AMD - EMI Filter Cross Reference
AC Drives
Model Number
FootPrint
VFD022B43P-A
08TDT1W4C4
N
VFD037B43P-B
RF037B43BA
N
VFD055B43P, VFD075B43P, VFD110B43P
RF110B43CA
N
VFD150B43P, VFD185B43P
50TDS4W4C
N
VFD220B43P, VFD300B43P, VFD370B43W-P
100TDS84C
N
VFD450B43W-P
150TDS84C
N
Installation
All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency
noise and will interfere with peripheral equipment by radiation or conduction when in operation. By
using an EMI filter with correct installation, much of the interference can be eliminated. It is
recommended to use DELTA EMI filter to have the best interference elimination performance.
We assure that it can comply with following rules when AC motor drive and EMI filter are installed
and wired according to user manual:
„
EN61000-6-4
„
EN61800-3: 1996
„
EN55011 (1991) Class A Group 1
General precaution
1.
EMI filter and AC motor drive should be installed on the same metal plate.
2.
Please install AC motor drive on same footprint with EMI filter or install EMI filter as close as
possible to the AC motor drive.
3.
All wiring should be as short as possible.
4.
Metal plate should be grounded.
5.
The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and
the contact area should be as large as possible.
Choose suitable motor cable and precautions
Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to
observe the following precautions when selecting motor cable.
B-10
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
1.
2.
Use the cable with shielding (double shielding is the best).
The shielding on both ends of the motor cable should be grounded with the minimum length
and maximum contact area.
3.
Remove any paint on metal saddle for good ground contact with the plate and shielding.
Remove any paint on metal saddle for good ground contact with
the plate and shielding.
saddle
the plate with grounding
Saddle on both ends
Saddle on one end
The length of motor cable
When motor is driven by an AC motor drive of PWM type, the motor terminals will experience
surge voltages easily due to components conversion of AC motor drive and cable capacitance.
When the motor cable is very long (especially for the 460V series), surge voltages may reduce
insulation quality. To prevent this situation, please follow the rules below:
Revision April 2009, SW V1.00
B-11
Appendix B Accessories|VFD-B-P Series
„ Use a motor with enhanced insulation.
„ Connect an output reactor (optional) to the output terminals of the AC motor drive
„ The length of the cable between AC motor drive and motor should be as short as possible
(10 to 20 m or less)
„ For models 7.5hp/5.5kW and above:
Insulation level of motor
1000V
1300V
1600V
460VAC input voltage
66 ft (20m)
328 ft (100m)
1312 ft (400m)
NOTE
When a thermal O/L relay protected by motor is used between AC motor drive and motor, it may
malfunction (especially for 460V series), even if the length of motor cable is only 165 ft (50m) or less.
To prevent it, please use AC reactor and/or lower the carrier frequency (Pr. 02-03 PWM carrier
frequency).
NOTE
Never connect phase lead capacitors or surge absorbers to the output terminals of the AC motor
drive.
„ If the length is too long, the stray capacitance between cables will increase and may cause
leakage current. It will activate the protection of over current, increase leakage current or not
insure the correction of current display. The worst case is that AC motor drive may be
damaged.
„ If more than one motor is connected to the AC motor drive, the total wiring length is the sum
of the wiring length from AC motor drive to each motor.
B-12
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.2.1 Dimensions
Dimensions are in millimeter and (inch)
Order P/N: RF037B43BA
60.0
(2.36)
302.0
(11.89)
30.0
(1.18)
15.0
(0.59)
Revision April 2009, SW V1.00
30.0
(1.18)
302.0
(11.89)
315.0
(12.4)
150.0
(5.9)
100.0
(4.33)
5.5
(0.22)
B-13
Appendix B Accessories|VFD-B-P Series
Order P/N: RF110B43CA
60
200
33
120
382
20
B-14
26
382
398
7.0
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
Order P/N: 08TDT1W4C4
Order P/N: 50TDS4W4C
Revision April 2009, SW V1.00
B-15
Appendix B Accessories|VFD-B-P Series
Order P/N: 100TDS84C
Order P/N: 150TDS84C
B-16
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.3 PG Card (for Encoder)
B.3.1 PG02 Installation
1. 3hp (2.2kW)
-0
PG
in sul ati on
spa cer
PG
ca
rd
te r
mi
2
na
ls
as
Pl
st a
t ic
nd
of
Co
f
n
tr o
lb
rd
oa
2. 5hp (3.7kW)
-0 2
PG
i nsu la tio n
sp ace r
PG
ca
rd
t
er m
in a P la st ic
l
Co n
Revision April 2009, SW V1.00
st a n
tr o l
d of
boa
f
rd
B-17
Appendix B Accessories|VFD-B-P Series
3. 7.5hp (5.5kW) and above
P G-
02
In sul ati on
sp ace r
P la s
t ic s
PG
ta n d
ca r
of f
d te
rm
in al
tr
Co n
o
ol B
a rd
B.3.1.1 PG Card and Pulse Generator (Encoder)
1. Basic Wiring Diagram
None fused br eak er
R/L1
NFB
R/L1
U/T1
Motor
S/L2
S/L2
V/T2
IM
3~
T /L3
T /L3
W/T 3
VFD-B -P
O C 1 2V
F ac tor y
Setting
TP 5 V
A
A
A
B
B
PG-02
A
B
PG
B
+12V
GND
VP
DCM
E
Pulse Generator
Output 12V DC
Main c irc ui t (power) terminals
Contr ol c ircuit ter minals
PG-02 and Pulse Generator Connections
B-18
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
2. Basic Wiring Diagram with RPM Meter Attached.
None fused br eak er
NFB
R/L1
U/T1
Mot or
S/L2
S/L2
V/T2
IM
3~
T /L3
T /L3
W/T 3
R/L1
VFD-B-P
A
A
A
B
B
PG-0 2
O C 1 2V
VP
TP 5 V
DCM
A
B
PG
B
+5V
GND
A/O
B/O
COM
Main c irc ui t (power) terminals
RPM meter
Contr ol c ircuit ter minals
PG -02 and P ulse G ener ator Connections
B.3.1.2 PG-02 Terminal Descriptions
1. Terminals
Terminal Symbols
VP
DCM
A- A ,B- B
Descriptions
Power source of PG-02 (FSW1 can be switched to 12V or 5V)
Output Voltage: (+12VDC ±5% 200mA) or (+5VDC ±2% 400mA)
Power source (VP) and input signal (A, B) common
Input signal from Pulse Generator. Input type is selected by FSW2. It
can be 1-phase or 2-phase input. Maximum 500kP/sec (z-phase
function is reserved). If the voltage exceeds 12V, it needs to use TP
type with connecting the external current limiting resistor(R). The
current should be within 5 to 15mA.
The formal of current limiting resistor is:
5mA ≤
Revision April 2009, SW V1.00
Vin − 2V
≤ 15mA
480Ω + R
B-19
Appendix B Accessories|VFD-B-P Series
Terminal Symbols
Descriptions
PG-02 output signal for use with RPM Meter. (Open Collector)
A/O, B/O
Maximum DC24V 300mA
COM
PG-02 output signal (A/O, B/O) common.
2. Wiring Notes
The control, power supply and motor leads must be laid separately. They must not be fed
through the same cable conduit / trunk.
a.
Please use a shielded cable to prevent interference. Do not run control wires
parallel to any high voltage AC power line (200 V and above).
b.
Connect shielded wire to DCM
c.
Recommended wire size 0.21 to 0.81mm2 (AWG24 to AWG18).
d.
Wire length:
only.
Types of Pulse
Generators
Maximum Wire Length
Output Voltage
50m
Open Collector
50m
Line Driver
300m
Complementary
70m
Wire Gauge
1.25mm2 (AWG16) or above
3. Control Terminals Block Designations.
Connect to VFD-B
series control board
Wiring Terminals
PG-02
FSW2 FSW1
Select the power
source and output
of Pulse Generator
OC 12V
TP 5V
A/O
B/O
COM
VP
DCM
A
A
B
B
4. Types of Pulse Generators (Encoders)
B-20
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
FSW1 and FSW2 Switch
Output Types of the Encoder
5V
12V
FSW2 FSW1
FSW2 FSW1
Output Voltage
VCC
OC 12V
OC 12V
O/P
TP 5V
TP 5V
FSW2 FSW1
FSW2 FSW1
TP 5V
TP 5V
Q
FSW2 FSW1
FSW2 FSW1
Q
TP 5V
TP 5V
FSW2 FSW1
FSW2 FSW1
TP 5V
TP 5V
0V
Open Collector
VCC
OC 12V
OC 12V
O/P
Line Driver
0V
OC 12V
OC 12V
Complimentary
VCC
OC 12V
OC 12V
O/P
0V
B.3.2 PG03
B.3.2.1 Installation
1. 3HP (2.2kW)
Revision April 2009, SW V1.00
B-21
Appendix B Accessories|VFD-B-P Series
-0
PG
in sul ati on
spa cer
PG
ca
rd
t er
mi
na
3
l
pl
ti
as
nd
ta
cs
C
of
t
on
f
ro
lb
rd
oa
2. 5HP (3.7kW)
-0 3
PG
insulation
spacer
PG
ca
rd
te r
m
in a
l
st ic
p la
Co n
B-22
nd
s ta
tr o l
off
boa
rd
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
3. 7.5HP (5.5kW) and above
P G-
03
insulat ion
spacer
p la st
ic s ta
PG
ca r
d te
nd o
rmi
ff
na l
t
co n
oar
ro l b
d
B.3.2.2 PG Card and Pulse Generator (Encoder)
1. Basic wiring diagram
Non-Fus e Br eak er
R/L1
NFB
R/L1
U/T1
Motor
S/L2
S/L2
V/T2
M
3~
T /L3
T /L3
W/T 3
VFD-B-P
A
A
PG-03
OC
Fac tory
Se tting
A
A
B
B
B
12V
0V
PG
B
+12V
GND
Shi el d
TP Te rmi na l
*S pe cifi cati on of th e E nco de r
is o f the 12 V/O C Ou tpu t
Main c ircuit (power) ter minals
C ontr ol ci rcuit ter minal s
Connection between PG-03 and the Encoder
Revision April 2009, SW V1.00
B-23
Appendix B Accessories|VFD-B-P Series
2. Connect Externally with the Encoder of 12V Power Supply and Output Signals to
Additional Tachometer
Non-Fus e Br eak er
R/L1
NFB
S/L2
T /L3
R/L1
U/T1
Motor
S/L2
V/T2
M
3~
T /L3
W/T 3
VFD-B-P
A
A
A
A
PG -03
B
B
OC
PG
DC power
5V
B
B
GND
12V
5V
0V
0V
TP
*S pe cifi cati on of th e
En cod er is o f 12 V/O C ou tpu t,
wh ich cou ld al so co nn ect
e xter na ll y with the RPM wi re
A/O
B/O
0V
S hi el d
Te rmi na l
Main c ircui t (power) terminals
RPM Meter
*P owe r o f the RPM me ter sho ul d
b e su pp li ed by th e cu stome rs
Contr ol c ircuit ter minals
Connection between PG-03 and the Encoder
B.3.2.3 PG-03 Terminal Descriptions
1. Terminals
Terminal Symbols
Descriptions
+12V
Power Supply of the Encoder: +12V
Output Voltage: +12V±5% 200mA
0V
Common point for the power supply and the signal
A- A ,B- B
Input signal from Pulse Generator. Input type is selected by FSW2. It
can be 1-phase or 2-phase input. Maximum 500kP/sec (z-phase
function is reserved). If the voltage exceeds 12V, it needs to use TP
type with connecting the external current limiting resistor(R). The
current should be within 5 to 15mA.
The formal of current limiting resistor is:
5mA ≤
A/O, B/O
Vin − 2V
≤ 15mA
600Ω + R
The Encoder signal output
Maximum: DC24V 300mA
Common point for signal grounding
2. Wiring Notes
B-24
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
a)
Please use a shield cable to prevent interference. Do not run control wire parallel to
any high voltage AC power line (200V and up).
b)
Connect shielded wire to
c)
Recommended wire size 0.21 to 0.81mm2 (AWG24 to AWG18).
d)
Wire length:
E only.
The Output Types of
Maximum Wire
the Encoder
Length
Output Voltage
50m
Open Collector
50m
Line Driver
300m
Complementary
70m
Wire Gauge
1.25mm2 (AWG16) or above
3. Control Terminals Block Designations.
Connect to the VFD
Series Control Board
PG-03
G
B
A
Revision April 2009, SW V1.00
FSW2
OC
Select the input
power and the
output type of the
Encoder
TP
B/O
A/O
0V
12V
0V
B
B
A
A
B-25
Appendix B Accessories|VFD-B-P Series
4. Encoder types
Output Voltage
VCC
Open Collector
Output Types of the Encoder
VCC
OC
O/P
TP
0V
OC
O/P
TP
0V
Line Driver
Complimentary
FSW2 Switch
Q
OC
Q
TP
VCC
OC
O/P
TP
0V
B-26
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.4 Remote Controller RC-01
Dimensions are in millimeter
RC-01
Terminal
block
(Wiring
connections)
VFD-B
I/O
AFM ACM AVI +10V DCM MI5 FWD REV JOG
Block
8
6
5
4 16 15 14 13 11
VFD-B-P Programming:
Pr.02-00 set to 1
Pr.02-01 set to 1 (external controls)
Pr.02-05 set to 1 (setting Run/Stop and Fwd/Rev controls)
Pr.04-08 (MI5) set to 05 (External reset)
NOTE: It needs to set the switch SW1 to SINK mode.
Revision April 2009, SW V1.00
B-27
Appendix B Accessories|VFD-B-P Series
B.5 Remote Panel Adapter (RPA 01)
Remote panel adapter for VFDPU01
Mounting hole dimensions (Dimensions are in millimeter)
Following is the mounting hole dimension of the plate for RPA01. Please choose the applicable
one from below, depending on the plate thickness (t).
B-28
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.6 AC Reactor
B.6.1 AC Input Reactor Recommended Value
460V, 50/60Hz, 3-Phase
kW
HP
Fundamental
Amps
Max.
continuous
Amps
3% impedance
5.5
7.5
12
18
2.5
4.2
7.5
10
18
27
1.5
2.5
11
15
25
37.5
1.2
2
15
18.5
20
25
35
35
52.5
52.5
0.8
0.8
1.2
1.2
Inductance (mH)
5% impedance
22
30
45
67.5
0.7
1.2
30
40
55
82.5
0.5
0.85
37
50
80
120
0.4
0.7
45
60
80
120
0.4
0.7
B.6.2 AC Output Reactor Recommended Value
460V, 50/60Hz, 3-Phase
kW
HP
Fundamental
Amps
Max.
continuous
Amps
3% impedance
5% impedance
5.5
7.5
18
27
1.5
2.5
7.5
10
18
27
1.5
2.5
11
15
25
37.5
1.2
2
Inductance (mH)
15
20
35
52.5
0.8
1.2
18.5
25
45
67.5
0.7
1.2
22
30
45
67.5
0.7
1.2
30
40
80
120
0.4
0.7
37
50
80
120
0.4
0.7
45
60
100
150
0.3
0.45
B.6.3 Applications for AC Reactor
Revision April 2009, SW V1.00
B-29
Appendix B Accessories|VFD-B-P Series
Connected in input circuit
Application 1
Question
When more than one AC motor drive are
connected to the same power, one of them is
ON during operation.
When applying to one of the AC motor drive,
the charge current of capacity may cause
voltage ripple. The AC motor drive may
damage when over current occurs during
operation.
Correct wiring
M1
reactor
AC motor drive
motor
AC motor drive
motor
AC motor drive
motor
M2
Mn
Application 2
Silicon rectifier and AC motor drive is
connected to the same power.
Question
Surges will be generated at the instant of
silicon rectifier switching on/off. These surges
may damage the mains circuit.
Correct wiring
silicon rectifier
power
reactor
DC
AC motor drive
reactor
motor
B-30
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
Application 3
Used to improve the input power factor, to
reduce harmonics and provide protection from
AC line disturbances. (surges, switching
spikes, short interruptions, etc.). AC line
reactor should be installed when the power
supply capacity is 500kVA or more and
exceeds 6 times the inverter capacity, or the
mains wiring distance ≤ 10m.
Question
When power capacity is too large, line
impedance will be small and the charge
current will be too large. That may damage
AC motor drive due to higher rectifier
temperature.
Correct wiring
large-capacity
power
reactor
small-capacity
AC motor drive
motor
Revision April 2009, SW V1.00
B-31
Appendix B Accessories|VFD-B-P Series
B.7 Zero Phase Reactor (RF220X00A)
Dimensions are in millimeter and (inch)
460 V Series
Motor
HP
kW
7.5
5.5
10
7.5
15
11
20
15
Qty.
Recommended
Wire Size
(mm2)
3.5 - 5.5
1
5.5
Wiring
Method
Diagram A
Zero Phase Reactor
Power
Supply
8 - 14
25 18.5
Diagram B
Please put all wires through 4 cores in
series without winding.
R/L1
S/L2
T/L3
U/T1
V/T2
W/T3
MOTOR
14
4
30
22
40
30
50
37
30
60
45
50
22
Diagram B
Diagram A
Please wind each wire 4 times around the
core. The reactor must be put at inverter
output as close as possible.
Zero Phase Reactor
Power
Supply
B-32
R/L1
U/T1
S/L2
V/T2
T/L3
W/T3
MOTOR
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.8 DC Choke Recommended Values
460V DC Choke
Input voltage
kW
HP
DC Amps
Inductance (mh)
MTE CAT. NO
5.5
7.5
18
3.75
18RB004
7.5
10
25
4.00
25RB005
11
15
32
2.68
32RB003
15
20
50
2.00
50RB004
50/60Hz
18.5
25
62
1.20
62RB004
3-Phase
22
30
80
1.25
80RB005
30
40
92
1.00
92RB003
37
50
92
1.00
92RB003
45
60
160
Built-in
-
460Vac
B.9 No-fuse Circuit Breaker Chart
For 1-phase/3-phase drives, the current rating of the breaker shall be within 2-4 times maximum input
current rating.
(Refer to Appendix A for rated input current)
3-phase
B-36
Model
Recommended no-fuse breaker (A)
VFD055B43P
30
VFD075B43P
40
VFD110B43P
50
VFD150B43P
60
VFD185B43P
75
VFD220B43P
100
VFD300B43P
125
VFD370B43W-P
150
VFD450B43W-P
200
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
B.10 Fuse Specification Chart
Smaller fuses than those shown in the table are permitted.
I (A)
I (A)
Model
Input
Output
VFD055B43P
14
13
VFD075B43P
19
18
VFD110B43P
25
24
VFD150B43P
32
32
VFD185B43P
39
38
VFD220B43P
49
45
VFD300B43P
60
60
VFD370B43W-P
63
73
VFD450B43W-P
90
91
Line Fuse
Bussmann P/N
JJS-30
JJS-40
JJS-50
JJS-60
JJS-70
JJS-100
JJS-125
JJS-150
JJS-200
I (A)
30
40
50
60
75
100
125
150
200
B.11 PU06
B.11.1 Description of the Digital keypad VFD-PU06
LED Display
Indicates frequency, voltage, current, user
defined units, read, and save, etc.
Frequency Command
Status indicator
Output Frequency
Status indicator
F
H
U
Model Number
VFD-PU06
User Defined Units
Status indicator
EXT PU
JOG
By pressing JOG key,
Jog frequency operation.
UP and DOWN Key
Set the parameter number
and changes the numerical
data, such as Master Frequency.
Status Display
Display the driver's current status.
MODE
JOG
PU
Left Key
Change between different display mode.
Right key
Move cursor to the left.
Move the cursor to the right
FWD/REV Key
Select FWD/REV operation.
RUN
STOP
RESET
STOP/RESET
Stops AC drive operation and reset the drive
after fault occurred.
RUN Key
Start AC drive operation.
B.11.2 Explanation of Display Message
Display Message
Descriptions
The AC motor drive Master Frequency Command.
The Actual Operation Frequency present at terminals U, V, and W.
Revision April 2009, SW V1.00
B-37
Appendix B Accessories|VFD-B-P Series
Display Message
Descriptions
The custom unit (u)
The output current present at terminals U, V, and W.
Press
to change the mode to READ. Press PROG/DATA for
about 2 sec or until it’s flashing, read the parameters of AC drive to the
digital keypad PU06. It can read 4 groups of parameters to PU06. (read
0 - read 3)
Press
to change the mode to SAVE. Press PROG/DATA for
about 2 sec or until it’s flashing, then write the parameters from the
digital keypad PU06 to AC drive. If it has saved, it will show the type of
AC motor drive.
The specified parameter setting.
The actual value stored in the specified parameter.
External Fault
“End” displays for approximately 1 second if the entered input data have
been accepted. After a parameter value has been set, the new value is
automatically stored in memory. To modify an entry, use the
or
keys.
“Err” displays if the input is invalid.
Communication Error. Please check the AC motor drive user manual
(Chapter 5, Group 9 Communication Parameter) for more details.
B.11.3 Operation Flow Chart
B-38
Revision April 2009, SW V1.00
Appendix B Accessories|VFD-B-P Series
VFD-PU06 Operation Flow Chart
Or
XX
Press UP key to select
SAVE or READ.
Press PROG/DATA for
about 2 seconds or until
it is flashing, then save
parameters from PU06 to
AC drive or read parameters
from AC drive to PU06.
XX-XX
XXXXX
-ERRProgram
Error
Revision April 2009, SW V1.00
-ENDProgram
Successful
B-39
Appendix B Accessories|VFD-B-P Series
This page intentionally left blank.
B-40
Revision April 2009, SW V1.00
Appendix C How to Select the Right AC Motor Drive
The choice of the right AC motor drive for the application is very important and has great influence
on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to
the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer
the required performance and the AC motor drive maybe damaged due to overloading.
But by simply selecting the AC motor drive of the same capacity as the motor, user application
requirements cannot be met completely. Therefore, a designer should consider all the conditions,
including load type, load speed, load characteristic, operation method, rated output, rated speed,
power and the change of load capacity. The following table lists the factors you need to consider,
depending on your requirements.
Related Specification
Item
Friction load and weight
load
Liquid (viscous) load
Load type
Inertia load
Load with power
transmission
Constant torque
Load speed and
Constant output
torque
Decreasing torque
characteristics
Decreasing output
Constant load
Shock load
Load
Repetitive load
characteristics
High starting torque
Low starting torque
Continuous operation, Short-time operation
Long-time operation at medium/low speeds
Maximum output current (instantaneous)
Constant output current (continuous)
Maximum frequency, Base frequency
Power supply transformer capacity or
percentage impedance
Voltage fluctuations and unbalance
Number of phases, single phase protection
Frequency
Mechanical friction, losses in wiring
Duty cycle modification
Revision April 2009, SW V1.00
Speed and
torque
characteristics
Time
ratings
Overload
capacity
●
Starting
torque
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
C-1
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
C.1 Capacity Formulas
1. When one AC motor drive operates one motor
The starting capacity should be less than 1.5x rated capacity of AC motor drive
The starting capacity=
⎛
k×N
GD 2 N ⎞
⎜ TL +
× ⎟ ≤ 1.5 × the _ capacity _ of _ AC _ motor _ drive ( kVA)
973 × η × cos ϕ ⎜⎝
375 t A ⎟⎠
2. When one AC motor drive operates more than one motor
2.1 The starting capacity should be less than the rated capacity of AC motor drive
Acceleration time ≦60 seconds
„
The starting capacity=
k×N
η × cos ϕ
[n
⎡
T
+ ns (ks − 1)] = PC1⎢⎢1 +
⎢⎣
⎤
ns
(ks − 1)⎥⎥ ≤ 1.5 × the _ capacity _ of _ AC _ motor _ drive(kVA)
⎥⎦
nT
Acceleration time ≧60 seconds
„
The starting capacity=
k×N
η × cos ϕ
[n
T
⎡
+ ns (ks − 1)] = PC1⎢⎢1 +
⎢⎣
⎤
ns
(ks − 1)⎥⎥ ≤ the _ capacity _ of _ AC _ motor _ drive(kVA)
⎥⎦
nT
2.2 The current should be less than the rated current of AC motor drive(A)
„
Acceleration time ≦60 seconds
nT + IM ⎡⎢⎣1+ nnTS ⎛⎜⎝ kS −1⎞⎟⎠ ⎤⎥⎦ ≤ 1.5 × the _ rated _ current _ of _ AC _ motor _ drive( A)
„
Acceleration time ≧60 seconds
nT + IM ⎡⎢⎣1+ nnTS ⎛⎜⎝ kS −1⎞⎟⎠ ⎤⎥⎦ ≤ the _ rated _ current _ of _ AC _ motor _ drive( A)
2.3 When it is running continuously
C-2
Revision April 2009, SW V1.00
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
„
The requirement of load capacity should be less than the capacity of AC
motor drive(kVA)
The requirement of load capacity=
k × PM
η × cosϕ
„
≤ the _ capacity _ of _ AC _ motor _ drive(kVA)
The motor capacity should be less than the capacity of AC motor drive
k × 3 × VM × IM × 10−3 ≤ the _ capacity _ of _ AC _ motor _ drive(kVA)
„
The current should be less than the rated current of AC motor drive(A)
k × IM ≤ the _ rated _ current _ of _ AC _ motor _ drive( A)
Symbol explanation
PM
: Motor shaft output for load (kW)
η
: Motor efficiency (normally, approx. 0.85)
cos ϕ
: Motor power factor (normally, approx. 0.75)
VM
: Motor rated voltage(V)
IM
: Motor rated current(A), for commercial power
k
: Correction factor calculated from current distortion factor (1.05 - 1.1, depending
on PWM method)
PC1
: Continuous motor capacity (kVA)
kS
: Starting current/rated current of motor
nT
nS
: Number of motors in parallel
GD
: Number of simultaneously started motors
2
: Total inertia (GD2) calculated back to motor shaft (kg m2)
TL
: Load torque
tA
: Motor acceleration time
N
: Motor speed
Revision April 2009, SW V1.00
C-3
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
C.2 General Precaution
Selection Note
1.
When the AC Motor Drive is connected directly to a large-capacity power transformer
(600kVA or above) or when a phase lead capacitor is switched, excess peak currents
may occur in the power input circuit and the converter section may be damaged. To avoid
this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the
current and improve the input power efficiency.
2.
When a special motor is used or more than one motor is driven in parallel with a single
AC Motor Drive, select the AC Motor Drive current ≥1.25x(Sum of the motor rated
currents).
3.
The starting and accel./decel. characteristics of a motor are limited by the rated current
and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L.
(Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If
higher starting torque is required (such as for elevators, mixers, tooling machines, etc.)
use an AC Motor Drive of higher capacity or increase the capacities for both the motor
and the AC Motor Drive.
4.
When an error occurs on the drive, a protective circuit will be activated and the AC Motor
Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an
external mechanical brake is needed to quickly stop the motor.
Parameter Settings Note
1.
The AC Motor Drive can be driven at an output frequency up to 400Hz (less for some
models) with the digital keypad. Setting errors may create a dangerous situation. For
safety, the use of the upper limit frequency function is strongly recommended.
2.
High DC brake operating voltages and long operation time (at low frequencies) may
cause overheating of the motor. In that case, forced external motor cooling is
recommended.
3.
C-4
Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
Revision April 2009, SW V1.00
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
4.
If the stall prevention function is activated, the accel./decel. time is automatically extended
to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a
certain time with high load inertia that can’t be handled by the AC Motor Drive in the
required time, either use an external brake resistor and/or brake unit, depending on the
model, (to shorten deceleration time only) or increase the capacity for both the motor and
the AC Motor Drive.
C.3 How to Choose a Suitable Motor
Standard motor
When using the AC Motor Drive to operate a standard 3-phase induction motor, take the
following precautions:
1.
The energy loss is greater than for an inverter duty motor.
2.
Avoid running motor at low speed for a long time. Under this condition, the motor
temperature may rise above the motor rating due to limited airflow produced by the
motor’s fan. Consider external forced motor cooling.
3.
When the standard motor operates at low speed for long time, the output load must be
decreased.
4.
The load tolerance of a standard motor is as follows:
Load duty-cycle
25%
100
40% 60%
torque(%)
82
70
60
50
0
5.
continuous
3 6
20
Frequency (Hz)
60
If 100% continuous torque is required at low speed, it may be necessary to use a special
inverter duty motor.
Revision April 2009, SW V1.00
C-5
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
6.
Motor dynamic balance and rotor endurance should be considered once the operating
speed exceeds the rated speed (60Hz) of a standard motor.
7.
Motor torque characteristics vary when an AC Motor Drive instead of commercial power
supply drives the motor. Check the load torque characteristics of the machine to be
connected.
8.
Because of the high carrier frequency PWM control of the VFD series, pay attention to the
following motor vibration problems:
„
Resonant mechanical vibration: anti-vibration (damping) rubbers should be
used to mount equipment that runs at varying speed.
„
Motor imbalance: special care is required for operation at 50 or 60 Hz and
higher frequency.
„
9.
To avoid resonances, use the Skip frequencies.
The motor fan will be very noisy when the motor speed exceeds 50 or 60Hz.
Special motors:
1.
Pole-changing (Dahlander) motor:
The rated current is differs from that of a standard motor. Please check before operation
and select the capacity of the AC motor drive carefully. When changing the pole number
the motor needs to be stopped first. If over current occurs during operation or
regenerative voltage is too high, please let the motor free run to stop (coast).
2.
Submersible motor:
The rated current is higher than that of a standard motor. Please check before operation
and choose the capacity of the AC motor drive carefully. With long motor cable between
AC motor drive and motor, available motor torque is reduced.
3.
Explosion-proof (Ex) motor:
Needs to be installed in a safe place and the wiring should comply with the (Ex)
requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special
precautions.
4.
Gear reduction motor:
The lubricating method of reduction gearbox and speed range for continuous operation
will be different and depending on brand. The lubricating function for operating long time
at low speed and for high-speed operation needs to be considered carefully.
C-6
Revision April 2009, SW V1.00
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
5.
Synchronous motor:
The rated current and starting current are higher than for standard motors. Please check
before operation and choose the capacity of the AC motor drive carefully. When the AC
motor drive operates more than one motor, please pay attention to starting and changing
the motor.
Power Transmission Mechanism
Pay attention to reduced lubrication when operating gear reduction motors, gearboxes, belts
and chains, etc. over longer periods at low speeds. At high speeds of 50/60Hz and above,
lifetime reducing noises and vibrations may occur.
Motor torque
The torque characteristics of a motor operated by an AC motor drive and commercial mains
power are different.
Below you’ll find the torque-speed characteristics of a standard motor (4-pole, 15kW):
Motor
180
155
60 seconds
torque (%)
torque (%)
AC motor drive
180
155
140
100
80
55
38
torque (%)
torque (%)
180
150
60 seconds
45
35
03 20
50
120
Frequency (Hz)
Base freq.: 50Hz
V/f for 220V/50Hz
Revision April 2009, SW V1.00
55
38
60
120
Frequency (Hz)
Base freq.: 60Hz
V/f for 220V/60Hz
60
120
Frequency (Hz)
Base freq.: 60Hz
V/f for 220V/60Hz
100
85
68
100
0 3 20
03 20
140
130
60 seconds
60 seconds
100
80
45
35
0 3 20 50
120
Frequency (Hz)
Base freq.: 50Hz
V/f for 220V/50Hz
C-7
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
C.4 Malfunction Reasons and Solutions for the AC Motor Drive
For the operation method, setting condition, environment factor or misoperation of the AC motor
drive, following are the solutions or Preventions for operation.
C.4.1 Solutions for Electromagnetic/Induction Noise
There are many noises surround the AC motor drives and invade it by radiation or power circuit. It
may cause the misoperation of control circuit and even damage the AC motor drive. Of course, that
is a solution to increase the noise tolerance of AC motor drive. But it is not the best one due to the
limit. Therefore, solve it from the outside as following will be the best.
1.
Add surge suppressor on the relay or contact to suppress switching surge between ON/OFF.
2.
Shorten the wiring length of the control circuit or serial circuit and separate from the main AC
circuit wiring.
3.
Comply with the wiring regulation for those shielded wire and use isolation amplifier for long
wire length.
4.
The grounding terminal should comply with the local regulation and ground independently, i.e.
not to have common ground with electric welding machine and power equipment.
5.
Connect a noise filter at the input terminal of the AC motor drive to prevent noise from power
circuit.
In a word, three-level solutions for electromagnetic noise are “no product”, “no spread” and “no
receive”.
C.4.2 Environmental Condition
Since the AC motor drive is an electronic device, you should comply with the environmental
condition stated in the Chapter 2.1. The following steps should also be followed.
1.
To prevent vibration, anti-vibration spacer is the last choice. The vibration tolerance must be
within the specification. The vibration effect is equal to the mechanical stress and it cannot
occur frequently, continuously or repeatedly to prevent damaging to the AC motor drive.
2.
Store in a clean and dry location free from corrosive fumes/dust to prevent corrosion and poor
contacts. It also may cause short by low insulation in a humid location. The solution is to use
both paint and dust-proof. For particular occasion, use the enclosure with whole-seal structure.
3.
The surrounding temperature should be within the specification. Too high or low temperature
will affect the lifetime and reliability. For semiconductor components, damage will occur once
any specification is out of range. Therefore, it is necessary to clean and periodical check for the
air cleaner and cooling fan besides having cooler and sunshade. In additional, the
microcomputer may not work in extreme low temperature and needs to have heater.
C-8
Revision April 2009, SW V1.00
Appendix C How to Select the Right AC Motor Drive|VFD-B-P Series
4.
Store within a relative humidity range of 0% to 90% and non-condensing environment. Do not
turn off the air conditioner and have exsiccator for it.
C.4.3 Affecting Other Machines
AC motor drive may affect the operation of other machine due to many reasons. The solutions are
as follows.
„ High Harmonic at Power Side
If there is high harmonic at power side during running, the improved methods are:
1.
2.
Separate power system: use transformer for AC motor drive.
Use reactor at the power input terminal of AC motor drive or decrease high harmonic by
multiple circuit.
3.
If phase lead capacitors are used (never on the AC motor drive output!!), use serial
reactors to prevent capacitors damage from high harmonics.
serial reactor
phase lead capacitor
„ Motor Temperature Rises
When the motor is induction motor with ventilation-cooling-type used in variety speed
operation, bad cooling will happen in the low speed. Therefore, it may overheat. Besides,
high harmonic is in output waveform to increase copper loss and iron loss. Following
measures should be used by load situation and operation range when necessary.
1.
Use the motor with independent power ventilation or increase the horsepower.
2.
Use inverter duty motor.
3.
Do NOT run at low speeds for long time.
Revision April 2009, SW V1.00
C-9
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement