GR701 Data sheet

GR701 Data sheet
PCI to SpaceWire and 1553 Bridge
GR701A
Preliminary Data Sheet
Features
Description
• PCI bus Initiator and Target, 32-bit, 33 MHz
• EDAC protected interface to multiple 8-bit
SRAM memory, 16-bit I/O interface
• 16 kbyte EDAC protected On-chip Memory
• UARTs, Timers & Watchdog, GPIO port,
Interrupt controller, Status registers
• Multiple SpaceWire links with CRC, one link
with full RMAP support
• Redundant Mil-Std-1553 BC / RT / MT
interface
• Redundant CAN 2.0 interface
• Up to 33 MHz system frequency
• 1.5V & 3.3V supply, 500 mW consumption
GR701A is a PCI to SpaceWire and Mil-Std1553 bridge. Its fault tolerant design is
implemented using the Actel RTAX FPGA
technology to enable total immunity to radiatio
effects.
1553 A/B
Specification
• CQ352 baseline package
• Total Ionizing Dose up to 300 krad (Si,
functional)
• Single-Event Latch-Up Immunity (SEL) to
LETTH > 104 MeV-cm2/mg
• Immune to Single-Event Upsets (SEU) to
LETTH > 37 MeV-cm2/mg
LVDS
CAN
RTAX2000S FPGA
32-bit
PCI bus
Mil-Std-1553
BC/RT/MT
Interface
PCI
Initiator/
Target
CAN
2.0
Controller
On-chip
Memory
with EDAC
32-bit AMBA AHB
32-bit AMBA APB
Memory
Controller
with EDAC
AHB
Controller
SpaceWire
Link
Interface
AHB/APB
Bridge
UART
Timers
RS232
WDOG
IrqCtrl
I/O Port
16-bit
SRAM
I/O
32-bit I/O port
Applications
The GR701A has been developed as a companion chip for space processors and systems with PCI
interfaces. This chip is available in an Actel RTAX2000S FPGA, which makes it ideally suited for
space and other high-rel applications. The chip is also available in an AX2000 FPGA for evaluation
and prototyping purposes.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
2
1
Introduction
1.1
Overview
GR701A
The architecture of GR701A PCI to SpaceWire and 1553 bridge is based on the AMBA Advanced
High-performance Bus (AHB), to which the high-bandwidth units are connected. Low-bandwidth
units are connected to the AMBA Advanced Peripheral Bus (APB) which is accessed through an
AHB to APB bridge. The architecture is shown in figure 1.
1553 A/B
LVDS
CAN
RTAX2000S FPGA
32-bit
PCI bus
Mil-Std-1553
BC/RT/MT
Interface
PCI
Initiator/
Target
CAN
2.0
Controller
On-Chip
Memory
with EDAC
32-bit AMBA AHB
32-bit AMBA APB
Memory
Controller
with EDAC
AHB
Controller
SpaceWire
Link
Interface
AHB/APB
Bridge
UART
Timers
RS232
WDOG
IrqCtrl
I/O Port
16-bit
SRAM
I/O
32-bit I/O port
Figure 1. Architectural block diagram
The GR701A architecture includes the following modules:
•
•
•
•
•
•
•
•
•
•
•
PCI bus Initiator and Target based on the Actel CorePCIF IP, 32-bit, 33 MHz
16 kbyte On-Chip Memory with EDAC
8-bit Memory Controller with EDAC for external SRAM and interface for 16-bit I/O
Timer unit with two 32-bit timers and a watchdog
Interrupt controller for 15 interrupts at two priority levels, forwarded to the PCI bus
Two UARTs with FIFO and separate baud rate generators
32-bit general purpose I/O port (GPIO). Can also generate interrupts from external devices
AMBA AHB status register
Three SpaceWire links with CRC support, one link includes full RMAP support
CAN-2.0 controller with redundant interfaces
Mil-Std-1553 BC/RT/MT based on the Actel Core1553 IP
Copyright Gaisler Research AB
June 2007, Version 1.0.0
3
1.2
GR701A
Signal overview
resetn
Reset
wdogn
Watchdog
rxd[1]
ctsn[1]
txd[1]
UART 1
rxd[2]
ctsn[2]
txd[2]
UART 2
GPIO
rtsn[2]
gpio[31:0]
address[23:0]
ramsn[1:0]
data[15:0]
brdyn
rtsn[1]
Memory interface
iosn
oen
bexcn
read
writen
pci_clk
pci_int
pci_rst
pci_gnt
pci_ad[31:0]
pci_cbe[3:0]
pci_idsel
pci_frame
pci_host
pci_66
PCI interface
pci_irdy
pci_trdy
pci_req
pci_stop
pci_perr
pci_par
pci_serr
pci_devsel
spw_clk
spw_rxd[2:0]
spw_rxdn[2:0]
spw_txd[2:0]
SpaceWire Links
spw_txdn[2:0]
spw_rxs[2:0]
spw_txs[2:0]
spw_rxsn[2:0]
spw_txsn[2:0]
canrx[1:0]
CAN interfaces
cantx[1:0]
clk_1553
busaoutin
busainen
busaoutp, busaoutn
busainp, busainn
busbinen
1553 interfaces
busboutin
busboutp, busboutn
busbinp, busbinn
Figure 2. Signal overview
Copyright Gaisler Research AB
June 2007, Version 1.0.0
4
2
Architecture
2.1
Cores
GR701A
The architecture of the GR701A is based on cores from the GRLIB IP library. The vendor and device
identifiers for each core can be extracted from the plug & play information, as described in the user’s
manual. The used IP cores are listed in table 1.
Table 1. Used IP cores
2.2
Core
Function
Vendor
Device
AHBCTRL
AHB Arbiter & Decoder
0x01
-
APBCTRL
AHB/APB Bridge
0x01
0x006
PCIF
32-bit PCI interface
0x01
0x075
FTSRCTRL8
8-bit SRAM/16-bit IO Controller
0x01
0x056
FTAHBRAM
On-chip SRAM with EDAC
0x01
0x050
AHBSTAT
AHB failing address register
0x01
0x052
APBUART
8-bit UART with FIFO
0x01
0x00C
GPTIMER
Modular timer unit with watchdog
0x01
0x011
GRGPIO
General purpose I/O port
0x01
0x01A
GRSPW
SpaceWire link
0x01
0x01F
CAN_OC
CAN-2.0 interface
0x01
0x019
B1553BRM
MIL-STD-1553 BC/RT/BM
0x01
0x072
Interrupts
The GR701A uses the interrupt assignment listed in table 2. See the user’s manual for how and when
the interrupts are raised. All interrupts are handled by the interrupt controller and forwarded to the
PCI bus.
Table 2. Interrupt assignment
Core
Interrupt
AHBSTAT
1
APBUART 1
2
APBUART 2
3
CAN_OC
13
GPTIMER
8
GRSPW 0, 1, 2
10, 11, 12
B1553BRM
4
GRGPIO
1-15
Copyright Gaisler Research AB
Comment
Generated from external GPIO signals 1 to 15
June 2007, Version 1.0.0
5
2.3
GR701A
Memory map
The memory map shown in table 3 is based on the AMBA AHB address space. Access to addresses
outside the ranges will return an AHB error response. The detailed register layout is defined in the
user manual.
Table 3. AMBA AHB address range
Core
Address range
Area
PCIF
0xE0000000 - 0xF0000000
PCI bus area
APBCTRL
0xFC000000 - 0xFC100000
APB bridge
FTSRCTRL8
0xFD000000 - 0xFE000000
SRAM area
0xFE000000 - 0xFF000000
I/O area
0xFFA00000 - 0xFFB00000
On-chip RAM
CAN_OC
0xFFFC0000 - 0xFFFC1000
Registers
B1553BRM
0xFFF00000 - 0xFFF01000
Registers
AHB plug&play
0xFFFFF000 - 0xFFFFFFFF
Registers
FTAHBRAM
The control registers of most on-chip peripherals are accessible via the AHB/APB bridge, which is
mapped at address 0xFC000000. The memory map shown in table 4 is based on the AMBA AHB
address space.
Table 4. APB address range
Core
Address range
FTSRCTRL8
0xFC000000 - 0xFC000100
APBUART1
0xFC000100 - 0xFC000200
AHBSTAT
0xFC000200 - 0xFC000300
GPTIMER
0xFC000300 - 0xFC000400
PCIF
0xFC000400 - 0xFC000500
FTAHBRAM
0xFC000500 - 0xFC000600
APBUART2
0xFC000700 - 0xFC000800
GRGPIO
0xFC000800 - 0xFC000900
GRSPW 0
0xFC000A00 - 0xFC000B00
GRSPW 1
0xFC000B00 - 0xFC000C00
GRSPW 2
0xFC000C00 - 0xFC000D00
APB plug&play
0xFC0FF000 - 0xFC100000
Copyright Gaisler Research AB
Comment
June 2007, Version 1.0.0
6
2.4
GR701A
Signals
The architecture has the external signals shown in table 5.
Table 5. External signals
Name
Usage
Direction
Polarity
resetn
System reset
In
Low
dsutck
JTAG Clock
In
-
dsutms
JTAG Mode
In
High
dsutdi
JTAG Input
In
High
dsutdo
JTAG Output
Out
High
address[23:0]
Memory word address
Out
High
data[15:0]
Memory data bus
BiDir
High
ramsn[1:0]
SRAM chip select
Out
Low
oen
Output enable
Out
Low
writen
Write strobe
Out
Low
read
Read cycle indicator
Out
High
iosn
I/O area chip select
Out
Low
brdyn
Bus ready
In
Low
bexcn
Bus exception
In
Low
pci_clk
PCI clock
In
-
pci_rst
PCI reset
In
Low
pci_ad[31:0]
PCI data and address
BiDir
High
pci_cbe[3:0]
PCI bus command and byte enable
BiDir
Low
pci_frame
PCI cycle frame
BiDir
Low
pci_irdy
PCI initiator ready
BiDir
Low
pci_trdy
PCI target ready
BiDir
Low
pci_stop
PCI stop
BiDir
Low
pci_par
PCI parity
BiDir
Low
pci_perr
PCI parity error
BiDir
Low
pci_serr
PCI system error
BiDir
Low
pci_idsel
PCI initialization device select
In
Low
pci_devsel
PCI device select
BiDir
Low
pci_req
PCI request
BiDir
Low
pci_gnt
PCI grant
In
Low
pci_int
PCI interrupt
Out
Low
Copyright Gaisler Research AB
June 2007, Version 1.0.0
7
GR701A
Table 5. External signals
Name
Usage
Direction
Polarity
txd[2:1]
UART 2/1 transmit data
Out
Low
rxd[2:1]
UART 2/1 receive data
In
Low
rtsn[2:1]
UART 2/1 ready to send
Out
Low
ctsn2:[1]
UART 2/1 clear to send
In
Low
wdogn
Watchdog output
Out
Low
gpio[31:0]
General purpose I/O port (also used for SpaceWire
interface configuration at reset)
BiDir
High
spw_clk
Transmitter default run-state clock
In
-
spw_rxd[2:0]
Data input, positive
In, LVDS
High
spw_rxdn[2:0]
Data input, negative
In, LVDS
Low
spw_rxs[2:0]
Strobe input, positive
In, LVDS
High
spw_rxsn[2:0]
Strobe input, negative
In, LVDS
Low
spw_txd[2:0]
Data output, positive
Out, LVDS
High
spw_txdn[2:0]
Data output, negative
Out, LVDS
Low
spw_txs[2:0]
Strobe output, positive
Out, LVDS
High
spw_txsn[2:0]
Strobe output, negative
Out, LVDS
Low
gpio[3:0]
Configuring SpaceWire start-up and default transmit
rate at reset. “0000” corresponds to spw_clk frequency divided by 1. “0001” corresponds to the
spw_clk frequency divided by 2, etc.
In
-
cantx[1:0]
CAN transmit data
Out
Low
canrx[1:0]
CAN receive data
In
Low
clk_1553
Clock for MIL-STD-1553 BC/RT/BM
In
-
busainen
Enable for the A receiver
Out
High
busainp
Positive data input from the A receiver
In
High
busainn
Negative data input from the A receiver
In
Low
busbinen
Enable for the B receiver
Out
High
busbinp
Positive data to the B receiver
In
High
busbinn
Negative data to the B receiver
In
Low
busaoutin
Inhibit for the A transmitter
Out
High
busaoutp
Positive data to the A transmitter
Out
High
busaoutn
Negative data to the A transmitter
Out
Low
busboutin
Inhibit for the B transmitter
Out
High
busboutp
Positive output to the B transmitter
Out
High
busboutn
Negative output to the B transmitter
Out
Low
Copyright Gaisler Research AB
June 2007, Version 1.0.0
8
3
PCI Initiator/Target
3.1
Overview
GR701A
This core provides a complete interface to an external PCI bus, with both initiator and target functions. The interface is based on the Actel CorePCIF IP and provides an AMBA bus backend. It also
provides a interrupt controller that forwards all interrupts generated on the AMBA bus to the PCI bus.
3.2
Signal definitions and reset values
The signals and their reset values are described in table 6.
Table 6. Signal definitions and reset values
Signal name
Type
Function
Active
Reset value
pci_clk
Input
PCI clock
-
-
pci_rst
Input
Reset
Low
-
pci_gnt
Input
Grant signal
Low
-
pci_idsel
Input
Device select during configuration
High
-
pci_ad[31:0]
Input/Output
Address and Data bus
High
Tri.state
pci_cbe[3:0]
Input/Output
Bus command and byte enable
Low
Tri-state
pci_par
Input/Output
Parity signal
High
Tri-state
pci_frame
Input/Output
Cycle frame
Low
Tri-state
pci_devsel
Input/Output
Device select
Low
Tri-state
pci_irdy
Input/Output
Initiator ready
Low
Tri-state
pci_trdy
Input/Output
Target ready
Low
Tri-state
pci_stop
Input/Output
Stop
Low
Tri-state
pci_perr
Input/Output
Parity error
Low
Tri-state
pci_serr
Input/Output
System error
Low
Tri-state
pci_req
Output
Request signal
Low
Logical 1
pci_int
Output
Interrupt signal
Low
Logical 1
Copyright Gaisler Research AB
June 2007, Version 1.0.0
9
3.3
GR701A
Timing
The timing waveforms and timing parameters are shown in figure 3 and are defined in table 7.
tPCIFT0
pci_clk
pci_ad[], pci_cbe[],
pci_frame, pci_irdy,
pci_trdy, pci_stop,
pci_idsel, pci_devsel,
pci_perr, pci_serr,
pci_par, pci_int
tPCIFT1
pci_ad[], pci_cbe[],
pci_frame, pci_irdy,
pci_trdy, pci_stop,
pci_idsel, pci_devsel,
pci_perr, pci_serr,
pci_par
tPCIFT1
tPCIFT2
tPCIFT3
pci_gnt,pci_req
tPCIFT4
tPCIFT4
tPCIFT5
tPCIFT6
pci_gnt,pci_req
Figure 3. Timing waveforms
Table 7. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tPCIFT0
pci clock period
-
301)
-
ns
tPCIFT1
clock to output delay
rising pci_clk edge
2
11
ns
tPCIFT2
input to clock hold
rising pci_clk edge
0
-
ns
tPCIFT3
input to clock setup
rising pci_clk edge
7
-
ns
tPCIFT4
clock to output delay
rising pci_clk edge
2
12
ns
tPCIFT5
input to clock hold
rising pci_clk edge
0
-
ns
tPCIFT6
input to clock setup
rising pci_clk edge
10, 12
-
ns
Note 1:
The minimum clock period, and the resulting maximum clock frequency, is dependent on
the manufacturing lot for the Actel RTAX2000S parts and expected radiation levels.
The degradation criterion for Propagation Delays for the RTAX2000S parts is according to
Actel Total Ionizing Does Test Report 10% at 300 krad (Si). The above specified timing
values are guaranteed up to 50 krad (Si). If a higher total ionizing does is expected than 50
krad (Si), the corresponding post-annealing propagation delays that can be found in the
Actel Total Ionizing Does Test Report can be used to degrade the timing more accurately
(typical degradation is within 1% after 300 krad (Si)).
The functional behavior of the part is guaranteed up to 300 krad (Si).
Copyright Gaisler Research AB
June 2007, Version 1.0.0
10
4
Memory Interface with EDAC
4.1
Overview
GR701A
The fault tolerant 8-bit SRAM/16-bit I/O memory interface uses a common 16-bit data bus to interface 8-bit SRAM and 16-bit I/O devices. It provides an Error Detection And Correction unit (EDAC),
correcting up to two errors and detecting up to four errors in a data byte. The EDAC eight checkbits
are stored in parallel with the 8-bit data in SRAM memory. Configuration of the memory controller
functions is performed through the APB bus interface.
4.2
Signal definitions and reset values
The signals and their reset values are described in table 8.
Table 8. Signal definitions and reset values
Signal name
Type
Function
Active
Reset value
address[23:0]
Output
Memory address
High
Undefined
data[15:0]
Input/Output
Memory data
High
Tri-state
ramsn[1:0]
Output
SRAM chip select
Low
Logical 1
ramoen[1:0]
Output
SRAM output enable
Low
Logical 1
oen
Output
Output enable
Low
Logical 1
writen
Output
Write strobe
Low
Logical 1
read
Output
Read strobe
High
Logical 1
iosn
Output
IO area chip select
Low
Logical 1
brdyn
Input
Bus ready. Extends accesses to the IO area.
Low
-
bexcn
Input
Bus exception.
Low
-
Copyright Gaisler Research AB
June 2007, Version 1.0.0
11
4.3
GR701A
Timing
The timing waveforms and timing parameters are shown in figure 4 and are defined in table 9.
clk
tFTSRCTRL0
address[]
tFTSRCTRL1
ramsn[], romsn[]
iosn
tFTSRCTRL1
tFTSRCTRL2
tFTSRCTRL2
rwen[], writen
tFTSRCTRL3
data[], cb[]
(output)
tFTSRCTRL5
tFTSRCTRL4
clk
address[]
ramsn[], romsn[]
iosn
tFTSRCTRL6
ramoen[]
ramben[], oen, read
tFTSRCTRL6
tFTSRCTRL7
tFTSRCTRL8
data[], cb[]
(input)
tFTSRCTRL10
tFTSRCTRL9
brdyn, bexcn
Figure 4. Timing waveforms
Table 9. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tFTSRCTRL0
address clock to output delay
rising clk edge
0
10
ns
tFTSRCTRL1
clock to output delay
rising clk edge
0
10
ns
tFTSRCTRL2
clock to data output delay
rising clk edge
0
10
ns
tFTSRCTRL3
clock to output delay
falling clk edge
0
10
ns
tFTSRCTRL4
clock to data non-tri-state delay
rising clk edge
0
15
ns
tFTSRCTRL5
clock to data tri-state delay
rising clk edge
0
15
ns
tFTSRCTRL6
clock to output delay
rising clk edge
0
15
ns
tFTSRCTRL7
data input to clock setup
rising clk edge
7
-
ns
tFTSRCTRL8
data input from clock hold
rising clk edge
1
-
ns
tFTSRCTRL9
input to clock setup
rising clk edge
7
-
ns
tFTSRCTRL10
input from clock hold
rising clk edge
1
-
ns
Copyright Gaisler Research AB
June 2007, Version 1.0.0
12
Copyright Gaisler Research AB
GR701A
June 2007, Version 1.0.0
13
5
On-chip Memory with EDAC Protection
5.1
Overview
GR701A
The on-chip memory is accessed via an AMBA AHB slave interface. The memory implements
16 kbytes of data. Registers are accessed via an AMB APB interface.
The on-chip memory implements volatile memory that is protected by means of Error Detection And
Correction (EDAC). One error can be corrected and two errors can be detected, which is performed by
using a (32, 7) BCH code. Some of the optional features available are single error counter, diagnostic
reads and writes. Configuration is performed via a configuration register.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
14
6
SpaceWire Interface
6.1
Overview
GR701A
The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It implements the SpaceWire standard (ECSS-E-50-12A) with the protocol identification extension (ECSS-E50-11).
6.2
Signal definitions and reset values
The signals and their reset values are described in table 10.
Table 10. Signal definitions and reset values
6.3
Signal name
Type
Function
Active
Reset value
spw_clk
Input
Transmitter default run-state clock
Rising edge
-
spw_rxd
Input, LVDS
Data input, positive
High
-
spw_rxdn
Input, LVDS
Data input, negative
Low
-
spw_rxs
Input, LVDS
Strobe input, positive
High
-
spw_rxsn
Input, LVDS
Strobe input, negative
Low
-
spw_txd
Output, LVDS
Data output, positive
High
Logical 0
spw_txdn
Output, LVDS
Data output, negative
Low
Logical 1
spw_txs
Output, LVDS
Strobe output, positive
High
Logical 0
spw_txsn
Output, LVDS
Strobe output, negative
Low
Logical 1
Timing
The timing waveforms and timing parameters are shown in figure 5 and are defined in table 11.
The SpaceWire jitter and skew timing waveforms and timing parameters are shown in figure 6 and are
defined in table 12.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
15
GR701A
tSPW0
spw_clk
spw_txd, spw_txdn
spw_txs, spw_txsn
tSPW1
spw_rxd, spw_rxdn
spw_rxs, spw_rxsn
tSPW2
tSPW4
tSPW1
tSPW3
tSPW4
spw_txd, spw_txdn
spw_txs, spw_txsn
tSPW4
tSPW5
tSPW5
tSPW6
spw_rxd, spw_rxdn
tSPW5
spw_rxs, spw_rxsn
tSPW6
tSPW7
spw_txd, spw_txdn
spw_txs, spw_txsn
Figure 5. Timing waveforms
Table 11. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tSPW0
transmit clock period
-
-
20
ns
tSPW1
clock to output delay
rising spw_clk edge
0
20
ns
tSPW2
input to clock hold
-
-
-
not applicable
tSPW3
input to clock setup
-
-
-
not applicable
tSPW4
output data bit period
-
-
-
tSPW0 -5
tSPW0
+5
ns
clk periods
tSPW5
input data bit period
-
20
-
ns
tSPW6
data & strobe edge separation
-
10
-
ns
tSPW7
data & strobe output skew
-
-
5
ns
Copyright Gaisler Research AB
June 2007, Version 1.0.0
16
GR701A
d ideal
s ideal
d
s
receive clock
tskew
tjitter
tjitter
tdclk
thold
tds
tui
Figure 6. Skew and jitter timing waveforms
Table 12. Skew and jitter timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tskew
skew between data and strobe
-
-
TBD
ns
tjitter
jitter on data or strobe
-
-
TBD
ns
tds
minimum separation between
data and strobe edges
-
TBD
-
ns
tdclk
delay from edge of data or strobe
to the receiver flip-flop
-
-
TBD
ns
thold
hold timer on receiver flip-flop
-
TBD
-
ns
tui
unit interval (bit period)
-
TBD
-
ns
Copyright Gaisler Research AB
June 2007, Version 1.0.0
17
Copyright Gaisler Research AB
GR701A
June 2007, Version 1.0.0
18
GR701A
7
MIL-STD-1553B Bus Controller / Remote Terminal / Monitor Terminal
7.1
Overview
The interface provides a complete Mil-Std-1553B Bus Controller (BC), Remote Terminal (RT) or
Monitor Terminal (MT). The interface connects to the MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the Actel Core1553BRM core.
7.2
Signal definitions and reset values
The signals and their reset values are described in table 13.
Table 13. Signal definitions and reset values
Signal name
Type
clk_1553
Input
1553 clock signal
-
-
busainen
Output
Enable for the A receiver
High
Logical 0
busainp
Input
Positive data input from the A receiver
High
-
busainn
Input
Negative data input from the A receiver
Low
-
busbinen
Output
Enable for the B receiver
High
Logical 0
busbinp
Input
Positive data to the B receiver
High
-
busbinn
Input
Negative data to the B receiver
Low
-
busaoutin
Output
Inhibit for the A transmitter
High
Logical 0
busaoutp
Output
Positive data to the A transmitter
High
Logical 0
busaoutn
Output
Negative data to the A transmitter
Low
Logical 1
busboutin
Output
Inhibit for the B transmitter
High
Logical 0
busboutp
Output
Positive output to the B transmitter
High
Logical 0
busboutn
Output
Negative output to the B transmitter
Low
Logical 1
Copyright Gaisler Research AB
Function
Active
Reset value
June 2007, Version 1.0.0
19
7.3
GR701A
Timing
The timing waveforms and timing parameters are shown in figure 7 and are defined in table 14.
t1553BRM0
clk_1553
t1553BRM1
outputs
t1553BRM3
inputs
t1553BRM2
Figure 7. Timing waveforms
Table 14. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
t1553BRM0
clock period1)
-
41.66
41.66
ns
t1553BRM1
clock to data output delay
rising clk_1553 edge
-
20
ns
t1553BRM2
data input to clock setup
rising clk_1553 edge
7
-
ns
t1553BRM3
data input from clock hold
rising clk_1553 edge
1
-
ns
Note 1:
The minimum clock period, and the resulting maximum clock frequency, is dependent on
the manufacturing lot for the Actel RTAX2000S parts and expected radiation levels.
The degradation criterion for Propagation Delays for the RTAX2000S parts is according to
Actel Total Ionizing Does Test Report 10% at 300 krad (Si). The above specified timing
values are guaranteed up to 50 krad (Si). If a higher total ionizing does is expected than 50
krad (Si), the corresponding post-annealing propagation delays that can be found in the
Actel Total Ionizing Does Test Report can be used to degrade the timing more accurately
(typical degradation is within 1% after 300 krad (Si)).
The functional behavior of the part is guaranteed up to 300 krad (Si).
Copyright Gaisler Research AB
June 2007, Version 1.0.0
20
8
CAN 2.0 Interface
8.1
Overview
GR701A
This CAN interface implements the CAN 20.A and 2.0B protocolos. It is based on the Philips
SJA1000 and has a compatible register map with a few exceptions.
8.2
Signal definitions and reset values
The signals and their reset values are described in table 15.
Table 15. Signal definitions and reset values
8.3
Signal name
Type
Function
Active
Reset value
cantx[]
Output
CAN transmit data
Low
Logical 1
canen[]
Output
CAN transmit enabel
-
Logical 0
canrx[]
Input
CAN receive data
Low
-
Timing
The timing waveforms and timing parameters are shown in figure 8 and are defined in table 16.
clk
tCAN_OC0
cantx[], canen[]
tCAN_OC2
canrx[]
tCAN_OC1
Figure 8. Timing waveforms
Table 16. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tCAN_OC0
clock to data output delay
rising clk edge
0
20
ns
tCAN_OC1
data input to clock setup
rising clk edge
-
-
ns
tCAN_OC2
data input from clock hold
rising clk edge
-
-
ns
Note: The canrx[] input is re-synchronized internally. The signal does not have to meet any setup or
hold requirements.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
21
9
UART Serial Interface
9.1
Overview
GR701A
The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12bit clock divider.
9.2
Signal definitions and reset values
The signals and their reset values are described in table 17.
Table 17. Signal definitions and reset values
9.3
Signal name
Type
Function
Active
Reset value
txd[]
Output
UART transmit data line
-
Logical 1
rtsn[]
Output
Ready To Send
Low
Logical 1
rxd[]
Input
UART receive data line
-
-
ctsn[]
Input
Clear To Send
Low
-
Timing
The timing waveforms and timing parameters are shown in figure 9 and are defined in table 18.
clk
txd[], rtsn[]
tAPBUART0
rxd[], ctsn[]
tAPBUART1
tAPBUART0
tAPBUART2
Figure 9. Timing waveforms
Table 18. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tAPBUART0
clock to output delay
rising clk edge
0
20
ns
tAPBUART1
input to clock hold
rising clk edge
-
-
ns
tAPBUART2
input to clock setup
rising clk edge
-
-
ns
Note: The ctsn[] and rxd[] inputs are re-synchronized internally. These signals do not have to meet
any setup or hold requirements.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
22
10
General Purpose Timer Unit
10.1
Overview
GR701A
The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). The unit
implements one 8 bit prescaler and 2 decrementing 32 bit timer(s). The unit is capable of asserting
interrupt on timer(s) underflow.
10.2
Signal definitions and reset values
The signals and their reset values are described in table 19.
Table 19. Signal definitions and reset values
10.3
Signal name
Type
Function
Active
Reset value
wdogn
Tri-state output
Watchdog output. Equivalent to interrupt
pending bit of last timer.
Low
Tri-state
Timing
The timing waveforms and timing parameters are shown in figure 10 and are defined in table 20.
clk
tGPTIMER0
tGPTIMER1
wdogn
Figure 10. Timing waveforms
Table 20. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tGPTIMER0
clock to output delay
rising clk edge
0
20
ns
tGPTIMER1
clock to output tri-state
rising clk edge
0
25
ns
Copyright Gaisler Research AB
June 2007, Version 1.0.0
23
11
General Purpose I/O Port
11.1
Overview
GR701A
Each bit in the general purpose input output port can be individually set to input or output, and can
optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection.
11.2
Signal definitions and reset values
The signals and their reset values are described in table 21.
Table 21. Signal definitions and reset values
11.3
Signal name
Type
Function
Active
Reset value
gpio[]
Input/Output
General purpose input output
-
Tri-state
Timing
The timing waveforms and timing parameters are shown in figure 11 and are defined in table 22.
clk
gpio[ ]
(output)
tGRGPIO0
tGRGPIO0
tGRGPIO1
tGRGPIO2
gpio[ ]
(output)
gpio[ ]
(input)
tGRGPIO3
tGRGPIO4
Figure 11. Timing waveforms
Table 22. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tGRGPIO0
clock to output delay
rising clk edge
0
20
ns
tGRGPIO1
clock to non-tri-state delay
rising clk edge
0
20
ns
tGRGPIO2
clock to tri-state delay
rising clk edge
0
25
ns
tGRGPIO3
input to clock hold
rising clk edge
-
-
ns
tGRGPIO4
input to clock setup
rising clk edge
-
-
ns
Note: The gpio inputs are re-synchronized internally. The signals do not have to meet any setup or
hold requirements.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
24
12
Status Registers
12.1
Overview
GR701A
The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tolerant core.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
25
Copyright Gaisler Research AB
GR701A
June 2007, Version 1.0.0
26
13
AMBA AHB controller with plug&play support
13.1
Overview
GR701A
The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard.
In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking).
Copyright Gaisler Research AB
June 2007, Version 1.0.0
27
Copyright Gaisler Research AB
GR701A
June 2007, Version 1.0.0
28
14
AMBA AHB/APB bridge with plug&play support
14.1
Overview
GR701A
The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
29
Copyright Gaisler Research AB
GR701A
June 2007, Version 1.0.0
30
15
Reset generation
15.1
Overview
GR701A
The reset generator implements input reset signal synchronization with glitch filtering and generates
the internal reset signal. The input reset signal can be asynchronous.
15.2
Signal definitions and reset values
The signals and their reset values are described in table 23.
Table 23. Signal definitions and reset values
15.3
Signal name
Type
Function
Active
resetn
Input
Reset
Low
Reset value
Timing
The timing waveforms and timing parameters are shown in figure 12 and are defined in table 24.
clk
resetn
tRSTGEN0
Figure 12. Timing waveforms
Table 24. Timing parameters
Name
Parameter
Reference edge
Min
Max
Unit
tRSTGEN0
asserted period
-
100
-
ns
Note: The resetn input is re-synchronized internally. The signals does not have to meet any setup or
hold requirements.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
31
16
Electrical description
16.1
Absolute maximum ratings
GR701A
According to Actel data sheet [RTAX].
16.2
Operating conditions
According to Actel data sheet [RTAX].
16.3
Input voltages, leakage currents and capacitances
According to Actel data sheet [RTAX].
16.4
Output voltages, leakage currents and capacitances
According to Actel data sheet [RTAX].
16.5
Clock Input voltages, leakage currents and capacitances
According to Actel data sheet [RTAX].
16.6
Power supplies
According to Actel data sheet [RTAX].
Copyright Gaisler Research AB
June 2007, Version 1.0.0
32
17
Mechanical description
17.1
Component and package
GR701A
The GR701A is implemented in the ACTEL RTAX2000S FPGA with the CQ352 package, as per
Actel data sheet [RTAX] and [PACK].
17.2
Pin assignment
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
Slew
Drive Pull
resetn
in
306
D24
LVTTL
3.3
-
-
None low
Reset
dsutx
out
-
F23
LVTTL
3.3
Low
12
None low
DSU data transmit {reserved}
dsurx
in
-
E23
LVTTL
3.3
-
-
None low
DSU data receive {reserved}
dsutck
in
-
V6
LVTTL
3.3
-
-
None -
DSU JTAG clock {reserved}
dsutms
in
-
W3
LVTTL
3.3
-
-
None high
DSU JTAG mode {reserved}
dsutdi
in
-
AB2
LVTTL
3.3
-
-
None high
DSU JTAG input {reserved}
dsutdo
out
-
AA2
LVTTL
3.3
Low
12
None high
DSU JTAG output {reserved}
dsutck
in
4
-
LVCMOS 2.5
-
-
None -
DSU JTAG clock {reserved}
dsutms
in
5
-
LVCMOS 2.5
-
-
None high
DSU JTAG mode {reserved}
dsutdi
in
6
-
LVCMOS 2.5
-
-
None high
DSU JTAG input {reserved}
dsutdo
out
7
-
LVCMOS 2.5
Low
12
None high
DSU JTAG output {reserved}
address[0]
out
247
P9
LVTTL
3.3
High
24
None high
Address, LSB
address[1]
out
248
N6
LVTTL
3.3
High
24
None high
address[2]
out
249
M6
LVTTL
3.3
High
24
None high
address[3]
out
250
N8
LVTTL
3.3
High
24
None high
address[4]
out
253
N7
LVTTL
3.3
High
24
None high
address[5]
out
254
M4
LVTTL
3.3
High
24
None high
address[6]
out
255
L3
LVTTL
3.3
High
24
None high
address[7]
out
256
M3
LVTTL
3.3
High
24
None high
address[8]
out
259
N10
LVTTL
3.3
High
24
None high
address[9]
out
260
N9
LVTTL
3.3
High
24
None high
address[10]
out
261
K1
LVTTL
3.3
High
24
None high
address[11]
out
262
L1
LVTTL
3.3
High
24
None high
address[12]
out
269
M5
LVTTL
3.3
High
24
None high
address[13]
out
270
L6
LVTTL
3.3
High
24
None high
address[14]
out
271
L5
LVTTL
3.3
High
24
None high
address[15]
out
272
K2
LVTTL
3.3
High
24
None high
address[16]
out
275
L2
LVTTL
3.3
High
24
None high
address[17]
out
276
K4
LVTTL
3.3
High
24
None high
address[18]
out
277
L4
LVTTL
3.3
High
24
None high
address[19]
out
278
J3
LVTTL
3.3
High
24
None high
address[20]
out
281
J2
LVTTL
3.3
High
24
None high
Copyright Gaisler Research AB
Polarity
Note
June 2007, Version 1.0.0
33
GR701A
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
Slew
Drive Pull
Polarity
address[21]
out
282
J1
LVTTL
3.3
High
24
None high
address[22]
out
283
L7
LVTTL
3.3
High
24
None high
Note
address[23]
out
284
M7
LVTTL
3.3
High
24
None high
Address, MSB
data[0]
inout
223
H2
LVTTL
3.3
High
24
None high
Data, LSB
data[1]
inout
224
E2
LVTTL
3.3
High
24
None high
data[2]
inout
225
F2
LVTTL
3.3
High
24
None high
data[3]
inout
226
H4
LVTTL
3.3
High
24
None high
data[4]
inout
229
J4
LVTTL
3.3
High
24
None high
data[5]
inout
230
H5
LVTTL
3.3
High
24
None high
data[6]
inout
231
H6
LVTTL
3.3
High
24
None high
data[7]
inout
232
D2
LVTTL
3.3
High
24
None high
data[8]
inout
235
J6
LVTTL
3.3
High
24
None high
data[9]
inout
236
J5
LVTTL
3.3
High
24
None high
data[10]
inout
237
F3
LVTTL
3.3
High
24
None high
data[11]
inout
238
E3
LVTTL
3.3
High
24
None high
data[12]
inout
241
G4
LVTTL
3.3
High
24
None high
data[13]
inout
242
G3
LVTTL
3.3
High
24
None high
data[14]
inout
243
K8
LVTTL
3.3
High
24
None high
data[15]
inout
244
L8
LVTTL
3.3
High
24
None high
Data, MSB
ramsn[0]
out
287
M2
LVTTL
3.3
High
24
None low
SRAM chip select
ramsn[1]
out
288
P4
LVTTL
3.3
High
24
None low
ramsn[2]
out
-
P1
LVTTL
3.3
High
24
None low
{reserved}
ramsn[3]
out
-
P6
LVTTL
3.3
High
24
None low
{reserved}
ramsn[4]
out
-
P5
LVTTL
3.3
High
24
None low
{reserved}
ramoen[0]
out
-
P3
LVTTL
3.3
High
24
None low
{reserved}
ramoen[1]
out
-
N4
LVTTL
3.3
High
24
None low
{reserved}
ramoen[2]
out
-
U1
LVTTL
3.3
High
24
None low
{reserved}
ramoen[3]
out
-
T1
LVTTL
3.3
High
24
None low
{reserved}
ramoen[4]
out
-
R2
LVTTL
3.3
High
24
None low
{reserved}
rwen[0]
out
-
H3
LVTTL
3.3
High
24
None low
{reserved}
rwen[1]
out
-
G2
LVTTL
3.3
High
24
None low
{reserved}
rwen[2]
out
-
E1
LVTTL
3.3
High
24
None low
{reserved}
rwen[3]
out
-
D1
LVTTL
3.3
High
24
None low
{reserved}
ramben[0]
out
-
Y1
LVTTL
3.3
High
24
None low
{reserved}
ramben[1]
out
-
P2
LVTTL
3.3
High
24
None low
{reserved}
ramben[2]
out
-
K7
LVTTL
3.3
High
24
None low
{reserved}
ramben[3]
out
-
K6
LVTTL
3.3
High
24
None low
{reserved}
oen
out
296
N1
LVTTL
3.3
High
24
None low
Output enable
writen
out
290
P7
LVTTL
3.3
High
24
None low
Write strobe
read
out
295
R7
LVTTL
3.3
High
24
None high
Read strobe
Copyright Gaisler Research AB
June 2007, Version 1.0.0
34
GR701A
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
Slew
Drive Pull
Polarity
iosn
out
289
M1
LVTTL
3.3
High
24
None low
IO area chip select
romsn[0]
out
-
N2
LVTTL
3.3
High
24
None low
{reserved}
romsn[1]
out
-
R1
LVTTL
3.3
High
24
None low
{reserved}
romsn[2]
out
-
AA3
LVTTL
3.3
High
24
None low
{reserved}
romsn[3]
out
-
V3
LVTTL
3.3
High
24
None low
{reserved}
brdyn
in
299
N3
LVTTL
3.3
-
-
Up
low
Bus ready
bexcn
in
305
P8
LVTTL
3.3
-
-
Up
low
Bus exception
pci_clk
in
300
G14
PCI
3.3
PCI clock
pci_rst
in
137
AB8
PCI
3.3
PCI reset
pci_frame
inout
180
AC9
PCI
3.3
pci_irdy
inout
181
AA9
PCI
3.3
pci_trdy
inout
182
AD6
PCI
3.3
pci_stop
inout
184
AD5
PCI
3.3
pci_idsel
in
161
U8
PCI
3.3
Note
pci_devsel
inout
183
AB9
PCI
3.3
pci_par
inout
189
V10
PCI
3.3
pci_perr
inout
187
V9
PCI
3.3
pci_serr
inout
188
AD8
PCI
3.3
pci_req
inout
143
EA11
PCI
3.3
pci_gnt
in
142
EA10
PCI
3.3
pci_int
out
136
W4
PCI
3.3
PCI interrupt
pci_cbe[0]
inout
205
W8
PCI
3.3
PCI byte enable, LSB
pci_cbe[1]
inout
190
W9
PCI
3.3
pci_cbe[2]
inout
179
AE4
PCI
3.3
pci_cbe[3]
inout
160
AE5
PCI
3.3
PCI byte enable, MSB
pci_ad[0]
inout
217
W11
PCI
3.3
PCI address/data, LSB
pci_ad[1]
inout
214
W12
PCI
3.3
pci_ad[2]
inout
213
AA11
PCI
3.3
pci_ad[3]
inout
212
Y11
PCI
3.3
pci_ad[4]
inout
211
AE9
PCI
3.3
pci_ad[5]
inout
208
AE6
PCI
3.3
pci_ad[6]
inout
207
AE7
PCI
3.3
pci_ad[7]
inout
206
Y10
PCI
3.3
pci_ad[8]
inout
202
W10
PCI
3.3
pci_ad[9]
inout
201
T13
PCI
3.3
pci_ad[10]
inout
200
AB10
PCI
3.3
pci_ad[11]
inout
199
AB11
PCI
3.3
pci_ad[12]
inout
196
AD9
PCI
3.3
pci_ad[13]
inout
195
AD10
PCI
3.3
pci_ad[14]
inout
194
V11
PCI
3.3
Copyright Gaisler Research AB
June 2007, Version 1.0.0
35
GR701A
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
pci_ad[15]
inout
193
AD7
PCI
3.3
pci_ad[16]
inout
173
AC8
PCI
3.3
pci_ad[17]
inout
172
AB7
PCI
3.3
pci_ad[18]
inout
171
AC7
PCI
3.3
pci_ad[19]
inout
170
AA8
PCI
3.3
pci_ad[20]
inout
167
Y8
PCI
3.3
pci_ad[21]
inout
166
V8
PCI
3.3
pci_ad[22]
inout
165
V7
PCI
3.3
pci_ad[23]
inout
164
Y7
PCI
3.3
pci_ad[24]
inout
159
W7
PCI
3.3
pci_ad[25]
inout
158
AC5
PCI
3.3
pci_ad[26]
inout
155
AC6
PCI
3.3
pci_ad[27]
inout
154
Y6
PCI
3.3
pci_ad[28]
inout
153
W6
PCI
3.3
pci_ad[29]
inout
152
AB6
PCI
3.3
pci_ad[30]
inout
147
AA6
PCI
3.3
pci_ad[31]
inout
146
Y3
PCI
3.3
txd[1]
out
342
L19
LVTTL
3.3
Low
rxd[1]
in
343
J23
LVTTL
3.3
-
-
None low
UART data receive
rtsn[1]
out
338
J20
LVTTL
3.3
Low
12
None low
Ready to Send
ctsn[1]
in
341
J21
LVTTL
3.3
-
-
None low
Clear to Send
txd[2]
out
336
K20
LVTTL
3.3
Low
12
None low
UART data transmit
rxd[2]
in
337
D25
LVTTL
3.3
-
-
None low
UART data receive
rtsn[2]
out
332
E25
LVTTL
3.3
Low
12
None low
Ready to Send
ctsn[2]
in
335
K19
LVTTL
3.3
-
-
None low
Clear to Send
wdogn
out
319
D20
LVTTL
3.3
Low
12
None low
Watchdog timeout
gpio[0]
inout
113
F24
LVTTL
3.3
Low
12
None high
General purpose I/O
gpio[1]
inout
112
G24
LVTTL
3.3
Low
12
None high
{interrupt # 1}
gpio[2]
inout
111
K18
LVTTL
3.3
Low
12
None high
{interrupt # 2}
gpio[3]
inout
110
L18
LVTTL
3.3
Low
12
None high
{interrupt # 3}
gpio[4]
inout
107
H22
LVTTL
3.3
Low
12
None high
{interrupt # 4}
gpio[5]
inout
106
J22
LVTTL
3.3
Low
12
None high
{interrupt # 5}
gpio[6]
inout
105
G22
LVTTL
3.3
Low
12
None high
{interrupt # 6}
gpio[7]
inout
104
M17
LVTTL
3.3
Low
12
None high
{interrupt # 7}
gpio[8]
inout
101
H20
LVTTL
3.3
Low
12
None high
{interrupt # 8}
gpio[9]
inout
100
H19
LVTTL
3.3
Low
12
None high
{interrupt # 9}
gpio[10]
inout
99
E18
LVTTL
3.3
Low
12
None high
{interrupt # 10}
gpio[11]
inout
98
F18
LVTTL
3.3
Low
12
None high
{interrupt # 11}
gpio[12]
inout
95
G21
LVTTL
3.3
Low
12
None high
{interrupt # 12}
gpio[13]
inout
94
G20
LVTTL
3.3
Low
12
None high
{interrupt # 13}
Copyright Gaisler Research AB
Slew
Drive Pull
Polarity
Note
PCI address/data, MSB
12
None low
UART data transmit
June 2007, Version 1.0.0
36
GR701A
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
Slew
Drive Pull
gpio[14]
inout
93
F20
LVTTL
3.3
Low
12
None high
{interrupt # 14}
gpio[15]
inout
92
F19
LVTTL
3.3
Low
12
None high
{non-maskable
interrupt # 15}
gpio[16]
inout
86
N19
LVTTL
3.3
Low
12
None high
gpio[17]
inout
85
M21
LVTTL
3.3
Low
12
None high
gpio[18]
inout
84
M20
LVTTL
3.3
Low
12
None high
gpio[19]
inout
83
N17
LVTTL
3.3
Low
12
None high
gpio[20]
inout
82
K24
LVTTL
3.3
Low
12
None high
gpio[21]
inout
79
L24
LVTTL
3.3
Low
12
None high
gpio[22]
inout
78
L20
LVTTL
3.3
Low
12
None high
gpio[23]
inout
77
L21
LVTTL
3.3
Low
12
None high
gpio[24]
inout
76
F25
LVTTL
3.3
Low
12
None high
gpio[25]
inout
73
G25
LVTTL
3.3
Low
12
None high
gpio[26]
inout
72
K22
LVTTL
3.3
Low
12
None high
gpio[27]
inout
71
L22
LVTTL
3.3
Low
12
None high
gpio[28]
inout
70
M18
LVTTL
3.3
Low
12
None high
gpio[29]
inout
67
M19
LVTTL
3.3
Low
12
None high
gpio[30]
inout
66
H23
LVTTL
3.3
Low
12
None high
gpio[31]
inout
65
E24
LVTTL
3.3
Low
12
None high
Copyright Gaisler Research AB
Polarity
Note
June 2007, Version 1.0.0
37
GR701A
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
Slew
Drive Pull
Polarity
Note
spw_clk
in
314
G14
LVTTL
3.3
-
-
-
-
SpaceWire clock
spw_rxd[0]
in
43
P19
LVDS
2.5
-
-
-
high
SpaceWire data
spw_rxdn[0]
in
42
P20
LVDS
2.5
-
-
-
low
spw_rxs[0]
in
41
P23
LVDS
2.5
-
-
-
high
spw_rxsn[0]
in
40
R23
LVDS
2.5
-
-
-
low
spw_txd[0]
out
37
P25
LVDS
2.5
-
-
-
high
spw_txdn[0]
out
36
R25
LVDS
2.5
-
-
-
low
spw_txs[0]
out
35
P22
LVDS
2.5
-
-
-
high
spw_txsn[0]
out
34
R22
LVDS
2.5
-
-
-
low
spw_rxd[1]
in
31
R18
LVDS
2.5
-
-
-
high
spw_rxdn[1]
in
30
T18
LVDS
2.5
-
-
-
low
spw_rxs[1]
in
29
R24
LVDS
2.5
-
-
-
high
spw_rxsn[1]
in
28
T24
LVDS
2.5
-
-
-
low
spw_txd[1]
out
25
T25
LVDS
2.5
-
-
-
high
spw_txdn[1]
out
24
U25
LVDS
2.5
-
-
-
low
spw_txs[1]
out
23
R20
LVDS
2.5
-
-
-
high
spw_txsn[1]
out
22
T20
LVDS
2.5
-
-
-
low
spw_rxd[2]
in
19
T19
LVDS
2.5
-
-
-
high
spw_rxdn[2]
in
18
U19
LVDS
2.5
-
-
-
low
spw_rxs[2]
in
17
W25
LVDS
2.5
-
-
-
high
spw_rxsn[2]
in
16
Y25
LVDS
2.5
-
-
-
low
spw_txd[2]
out
13
AA25
LVDS
2.5
-
-
-
high
spw_txdn[2]
out
12
AB25
LVDS
2.5
-
-
-
low
spw_txs[2]
out
11
U20
LVDS
2.5
-
-
-
high
spw_txsn[2]
out
10
V20
LVDS
2.5
-
-
-
low
cantx[0]
out
326
M25
LVTTL
3.3
Low
12
None low
canrx[0]
in
325
N25
LVTTL
3.3
-
-
None low
CAN 0 rx data
canen[0]
out
-
H24
LVTTL
3.3
Low
12
None -
{reserved}
cantx[1]
out
324
L23
LVTTL
3.3
Low
12
None low
CAN 1 tx data
canrx[1]
in
323
N16
LVTTL
3.3
-
-
None low
CAN 1 rx data
canen[1]
out
-
J24
LVTTL
3.3
Low
12
None -
{reserved}
Copyright Gaisler Research AB
SpaceWire strobe
SpaceWire data
SpaceWire strobe
SpaceWire data
SpaceWire strobe
SpaceWire data
SpaceWire strobe
SpaceWire data
SpaceWire strobe
SpaceWire data
SpaceWire strobe
CAN 0 tx data
June 2007, Version 1.0.0
38
GR701A
Table 25. Pin assignment
Name
I/O
Pin
Pin
CQ352 CG624 Level
Volt.
Slew
Drive Pull
Polarity
busainen
out
58
N23
LVTTL
3.3
Low
12
None high
Mil-Std-1553
busainn
in
54
N22
LVTTL
3.3
-
-
None low
busainp
in
55
M22
LVTTL
3.3
-
-
None high
bus 0
nominal
busaoutin
out
61
P17
LVTTL
3.3
Low
12
None high
busaoutn
out
59
M23
LVTTL
3.3
Low
12
None low
busaoutp
out
60
P18
LVTTL
3.3
Low
12
None high
busbinen
out
48
N24
LVTTL
3.3
Low
12
None high
Mil-Std-1553
busbinn
in
46
N18
LVTTL
3.3
-
-
None low
busbinp
in
47
J25
LVTTL
3.3
-
-
None high
bus 0
redundant
busboutin
out
53
K25
LVTTL
3.3
Low
12
None high
busboutn
out
49
M24
LVTTL
3.3
Low
12
None low
busboutp
out
52
L25
LVTTL
3.3
Low
12
None high
Note
Pins not used should be left unconnected (or tied to ground), including the pins marked as {reserved}.
The only exception is if the unused pin is mapped on a hardwired clock input or a routed clock input,
which should then be tied to ground:
CQ352 package: 122, 123, 128, 129, 136, 137, 142, 143, 299, 300, 305, 306, 313, 314, 319, 320
CG624 package: AC12, AC13, AD12, AD13, W14, W15, W13, Y13, B13, B14, C12, C13, G12,
G13, G14, G15
For the usage of all other pins, please refer to the specific pins of the selected package, as described in
the next sections and the Actel data sheet [RTAX].
Copyright Gaisler Research AB
June 2007, Version 1.0.0
39
17.3
GR701A
RTAX2000S specific pins - CQ352 package
The Actel RTAX2000S FPGA device has special pins that need to be correctly connected on the
printed circuit board, as shown in table 26. Please refer to the Actel data sheet [RTAX] for details.
Table 26. RTAX2000S special pins - CQ352 package
Name
Pin CQ352
GND
1, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 88, 89, 97, 103, Low supply voltage, ground
109, 115, 121, 133, 145, 151, 157, 163, 169, 176, 177, 186, 192,
198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 265,
274, 280, 286, 292, 298, 310, 322, 330, 334, 340, 345, 352
VCCA
3, 14, 32, 56, 74, 87, 102, 114, 150, 162, 175, 191, 209, 233, 251, 1.5 V supply voltage for array
263, 279, 291, 329, 339
VCCDA
2, 44, 90, 91, 116, 117, 130, 131, 132, 148, 149, 174, 178, 221,
266, 268, 293, 294, 307, 308, 309, 327, 328, 346
3.3 V supply voltage for I/O differential amplifier and JTAG and
probe interfaces.
VCCIB0
321, 333, 344
3.3 V supply voltage for I/O
VCCIB1
273, 285, 297
3.3 V supply voltage for I/O
VCCIB2
227, 239, 245, 257
3.3 V supply voltage for I/O
VCCIB3
185, 197, 203, 215
3.3 V supply voltage for I/O
VCCIB4
144, 156, 168
3.3 V supply voltage for I/O
VCCIB5
96, 108, 120
3.3 V supply voltage for I/O
VCCIB6
50, 62, 68, 80
3.3 V supply voltage for I/O
VCCIB7
8, 20, 26, 38
2.5 V supply voltage for I/O
VPUMP
267
Voltage External Pump. In normal operation, using the internal charge
pump, should be tied to ground.
TRST
351
JTAG Test Clock. Actel recommends this pin be hardwired to ground
for flight.
TCK
349
JTAG Test Clock. Actel recommends this pin be hardwired to ground.
Must not be left unconnected.
TDI
348
JTAG Test Data Input. Actel recommends this pin be hardwired to
VCCDA, or left unconnected.
TDO
347
JTAG Test Data Output. Must be left unconnected.
TMS
350
JTAG Test Mode Select. Actel recommends that this pin be hardwired
to VCCDA, or left unconnected.
PRA
312
PRB
311
Test Probe. The pins’ probe capabilities are disabled to protect programmed design confidentiality. These pins must be left unconnected.
PRC
135
PRD
134
NC
124, 125, 126, 127, 138, 139, 140, 141, 301, 302, 303, 304, 315, No Connection. Pins are not connected to circuitry within the device.
316, 317, 318
These pins can be driven to any voltage or can be left floating with no
effect on the operation of the device.
CLK*
122, 123, 128, 129, 136, 137, 142, 143
Global clocks. When pins are unused, Actel recommends they are tied
to known state, preferably ground.
HCLK*
299, 300, 305, 306, 313, 314, 319, 320
Hardwired clocks. When pins are unused, it is recommended that they
are tied to ground.
Copyright Gaisler Research AB
Note
June 2007, Version 1.0.0
40
17.4
GR701A
RTAX2000S specific pins - CG624 package
The Actel RTAX2000S FPGA device has special pins that need to be correctly connected on the
printed circuit board, as shown in table 26. Please refer to the Actel data sheet [RTAX] for details.
Table 27. RTAX2000S special pins - CG624 package
Name
Pin CG624
GND
A18, A24, A25, A2, A8, AA10, AA16, AA18, AA21, AA5,
Low supply voltage, ground
AB22, AB4, AC10, AC16, AC23, AC3, AD1, AD2, AD24,
AD25, AE1, AE18, AE24, AE2, AE25, AE8, B1, B2, B25, B24,
C10, C16, C23, C3, D22, D4, E10, E16, E21, E5, E8, H1, H21,
H25, K21, K23, K3, K5, L11, L12, L13, L14, L15, M11, M12,
M13, M14, M15, N11, N12, N13, N14, N15, P11, P12, P13, P14,
P15, R11, R12, R13, R14, R15, T21, T23, T3, T5, V1, V25, V5
VCCA
AB20, F22, F4, J17, J9, K10, K11, K15, K16, L10, L16, R10,
R16, T10, T11, T15, T16, U17, U9, Y4
VCCDA
A12, A14, AA13, AA15, AA20, AA7, AB13, AC11, AD11,
3.3 V supply voltage for I/O differential amplifier and JTAG and
AD4, AE12, AE17, B15, C15, C6, D13, E13, E19, F21, G10, G5, probe interfaces.
N21, N5, W21
VCCIB0
A3, B3, C4, D5, E13, J10, J11, K12
3.3 V supply voltage for I/O
VCCIB1
A23, B23, C22, D21, J15, J16, K14
3.3 V supply voltage for I/O
VCCIB2
C24, C25, D23, E22, K17, L17, M16
3.3 V supply voltage for I/O
VCCIB3
AA22, AB23, AC24, AC25, P16, R17, T17
2.5 V supply voltage for I/O
VCCIB4
AB21, AC22, AD23, AE23, T14, U15, U16
3.3 V supply voltage for I/O
VCCIB5
AB5, AC4, AD3, AE3, T12, U10, U11
3.3 V supply voltage for I/O
VCCIB6
AA4, AB3, AC1, AC2, P10, R9,T9
3.3 V supply voltage for I/O
VCCIB7
C1, C2, D3, E4, K9, L9, M10
3.3 V supply voltage for I/O
VPUMP
E20
Voltage External Pump. In normal operation, using the internal charge
pump, should be tied to ground.
TRST
E6
JTAG Test Clock. Actel recommends this pin be hardwired to ground
for flight.
TCK
F5
JTAG Test Clock. Actel recommends this pin be hardwired to ground.
Must not be left unconnected.
TDI
C5
JTAG Test Data Input. Actel recommends that this pin be hardwired
to VCCDA, or left unconnected.
TDO
F6
JTAG Test Data Output. Must be left unconnected.
TMS
D6
JTAG Test Mode Select. Actel recommends this pin be hardwired to
VCCDA, or left unconnected.
PRA
F13
PRB
A13
Test Probe. The pins’ probe capabilities are disabled to protect programmed design confidentiality. These pins must be left unconnected.
PRC
AB12
PRD
AE13
NC
AA12, AA14, E12, E14, F12, F14, H12, H14, J12, J14, U12,
U14, V12, V14, Y12, Y14
No Connection. Pins are not connected to circuitry within the device.
These pins can be driven to any voltage or can be left floating with no
effect on the operation of the device.
CLK*
AC12, AC13, AD12, AD13, W14, W15, W13, Y13
Global clocks. When pins are unused, Actel recommends they are tied
to known state, preferably ground.
CLKH*
B13, B14, C12, C13, G12, G13, G14, G15
Hardwired clocks. When pins are unused, it is recommended that they
are tied to ground.
Copyright Gaisler Research AB
Note
1.5 V supply voltage for array
June 2007, Version 1.0.0
41
18
GR701A
Reference documents
[AMBA]
AMBATM Specification, Rev 2.0, ARM IHI 0011A, 13 May 1999, Issue A, first
release, ARM Limited
[GRLIB]
GRLIB IP Library
www.gaisler.com
[GRIP]
GRLIB IP Core User's Manual, Version 1.0.15, Gaisler Research, www.gaisler.com
[SPW]
ECSS - Space Engineering, SpaceWire - Links, Nodes, Routers and Networks,
ECSS-E-50-12A, 24 January 2003
[RMAPID]
Space Engineering, Protocol Identification, Draft ECSS-E50-11, Draft B February
2005
[RMAP]
Space Engineering, Remote Memory Access Protocol, Draft ECSS-E50-11, Draft F
December 2006 1
[RTAX]
RTAX-S RadTolerant FPGAs, 5172169-8/5.07, v4.0, May 2007, Actel Corporation
[PACK]
Package Mechanical Drawings, 5193068-19/5.07, v9.5, May 2007, Actel Corporation
Note 1:
The ECSS-E50-11 Draft F document of the draft standard contains an informative
VHDL description of the CRC implementation used in the RMAP protocol which is
considered as incorrect with respect to the normative part of the draft standard. The
VHDL descriptions in the ECSS-E50-11 Draft F document should therefore be
ignored.
Copyright Gaisler Research AB
User's
Manual,
Version
1.0.15,
Gaisler
Research,
June 2007, Version 1.0.0
42
19
GR701A
Ordering information
Ordering information is provided in table 28 and a legend is provided in table 29.
Table 28. Ordering information
Product
Device
GR701A
RTAX2000S
Speed Grade
Std
Package
Type
Package
Lead
Count
E
B
CQ
352
E
B
-1
-1
Application
Table 29. Ordering legend
Designator
Option
Description
Product
GR701A
PCI to SpaceWire and 1553 bridge
Device
RTAX2000S
2,000,000 Equivalent System Gates
Speed Grade
STD
Standard Speed
-1
Approximately 15% Faster than Standard
Package Type
CQ
Ceramic Quad Flat Pack
CG
Ceramic Column Grid Array
LG
Land Grid Array
FG
Fine Pitch Plastic Ball Grid Array
B
MIL-STD 883 Class B
E
E-Flow (Actel Space-Level Flow)
Application
Copyright Gaisler Research AB
June 2007, Version 1.0.0
43
GR701A
Table of contents
1
Introduction.............................................................................................................................. 2
1.1
1.2
2
Architecture.............................................................................................................................. 4
2.1
2.2
2.3
2.4
3
Overview ............................................................................................................................................... 21
Signal definitions and reset values ........................................................................................................ 21
Timing ................................................................................................................................................... 21
General Purpose Timer Unit .................................................................................................. 22
10.1
10.2
10.3
11
Overview ............................................................................................................................................... 20
Signal definitions and reset values ........................................................................................................ 20
Timing ................................................................................................................................................... 20
UART Serial Interface............................................................................................................ 21
9.1
9.2
9.3
10
Overview ............................................................................................................................................... 18
Signal definitions and reset values ........................................................................................................ 18
Timing ................................................................................................................................................... 19
CAN 2.0 Interface .................................................................................................................. 20
8.1
8.2
8.3
9
Overview ............................................................................................................................................... 14
Signal definitions and reset values ........................................................................................................ 14
Timing ................................................................................................................................................... 14
MIL-STD-1553B Bus Controller / Remote Terminal / Monitor Terminal ............................ 18
7.1
7.2
7.3
8
Overview ............................................................................................................................................... 13
SpaceWire Interface .............................................................................................................. 14
6.1
6.2
6.3
7
Overview ............................................................................................................................................... 10
Signal definitions and reset values ........................................................................................................ 10
Timing ................................................................................................................................................... 11
On-chip Memory with EDAC Protection............................................................................... 13
5.1
6
Overview ................................................................................................................................................. 8
Signal definitions and reset values .......................................................................................................... 8
Timing ..................................................................................................................................................... 9
Memory Interface with EDAC ............................................................................................... 10
4.1
4.2
4.3
5
Cores........................................................................................................................................................ 4
Interrupts ................................................................................................................................................. 4
Memory map ........................................................................................................................................... 5
Signals ..................................................................................................................................................... 6
PCI Initiator/Target .................................................................................................................. 8
3.1
3.2
3.3
4
Overview ................................................................................................................................................. 2
Signal overview ....................................................................................................................................... 3
Overview ............................................................................................................................................... 22
Signal definitions and reset values ........................................................................................................ 22
Timing ................................................................................................................................................... 22
General Purpose I/O Port ....................................................................................................... 23
11.1
Overview ............................................................................................................................................... 23
Copyright Gaisler Research AB
June 2007, Version 1.0.0
44
11.2
11.3
12
Overview ............................................................................................................................................... 30
Signal definitions and reset values ........................................................................................................ 30
Timing ................................................................................................................................................... 30
Electrical description ............................................................................................................. 31
16.1
16.2
16.3
16.4
16.5
16.6
17
Overview ............................................................................................................................................... 28
Reset generation..................................................................................................................... 30
15.1
15.2
15.3
16
Overview ............................................................................................................................................... 26
AMBA AHB/APB bridge with plug&play support ............................................................... 28
14.1
15
Overview ............................................................................................................................................... 24
AMBA AHB controller with plug&play support................................................................... 26
13.1
14
Signal definitions and reset values ........................................................................................................ 23
Timing ................................................................................................................................................... 23
Status Registers ...................................................................................................................... 24
12.1
13
GR701A
Absolute maximum ratings ................................................................................................................... 31
Operating conditions ............................................................................................................................. 31
Input voltages, leakage currents and capacitances ................................................................................ 31
Output voltages, leakage currents and capacitances.............................................................................. 31
Clock Input voltages, leakage currents and capacitances...................................................................... 31
Power supplies....................................................................................................................................... 31
Mechanical description .......................................................................................................... 32
17.1
17.2
17.3
17.4
Component and package ....................................................................................................................... 32
Pin assignment....................................................................................................................................... 32
RTAX2000S specific pins - CQ352 package......................................................................................... 39
RTAX2000S specific pins - CG624 package......................................................................................... 40
18
Reference documents ............................................................................................................. 41
19
Ordering information ............................................................................................................. 42
Copyright Gaisler Research AB
June 2007, Version 1.0.0
45
GR701A
Information furnished by Gaisler Research is believed to be accurate and reliable.
However, no responsibility is assumed by Gaisler Research for its use, nor for any infringements of patents or
other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of Gaisler Research.
Gaisler Research AB
tel +46 31 7758650
Första Långgatan 19
fax +46 31 421407
413 27 Göteborg
[email protected]
Sweden
www.gaisler.com
Copyright © 2007 Gaisler Research AB.
All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither
implicit nor explicit.
Copyright Gaisler Research AB
June 2007, Version 1.0.0
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement