PCI to SpaceWire and 1553 Bridge GR701A Preliminary Data Sheet Features Description • PCI bus Initiator and Target, 32-bit, 33 MHz • EDAC protected interface to multiple 8-bit SRAM memory, 16-bit I/O interface • 16 kbyte EDAC protected On-chip Memory • UARTs, Timers & Watchdog, GPIO port, Interrupt controller, Status registers • Multiple SpaceWire links with CRC, one link with full RMAP support • Redundant Mil-Std-1553 BC / RT / MT interface • Redundant CAN 2.0 interface • Up to 33 MHz system frequency • 1.5V & 3.3V supply, 500 mW consumption GR701A is a PCI to SpaceWire and Mil-Std1553 bridge. Its fault tolerant design is implemented using the Actel RTAX FPGA technology to enable total immunity to radiatio effects. 1553 A/B Specification • CQ352 baseline package • Total Ionizing Dose up to 300 krad (Si, functional) • Single-Event Latch-Up Immunity (SEL) to LETTH > 104 MeV-cm2/mg • Immune to Single-Event Upsets (SEU) to LETTH > 37 MeV-cm2/mg LVDS CAN RTAX2000S FPGA 32-bit PCI bus Mil-Std-1553 BC/RT/MT Interface PCI Initiator/ Target CAN 2.0 Controller On-chip Memory with EDAC 32-bit AMBA AHB 32-bit AMBA APB Memory Controller with EDAC AHB Controller SpaceWire Link Interface AHB/APB Bridge UART Timers RS232 WDOG IrqCtrl I/O Port 16-bit SRAM I/O 32-bit I/O port Applications The GR701A has been developed as a companion chip for space processors and systems with PCI interfaces. This chip is available in an Actel RTAX2000S FPGA, which makes it ideally suited for space and other high-rel applications. The chip is also available in an AX2000 FPGA for evaluation and prototyping purposes. Copyright Gaisler Research AB June 2007, Version 1.0.0 2 1 Introduction 1.1 Overview GR701A The architecture of GR701A PCI to SpaceWire and 1553 bridge is based on the AMBA Advanced High-performance Bus (AHB), to which the high-bandwidth units are connected. Low-bandwidth units are connected to the AMBA Advanced Peripheral Bus (APB) which is accessed through an AHB to APB bridge. The architecture is shown in figure 1. 1553 A/B LVDS CAN RTAX2000S FPGA 32-bit PCI bus Mil-Std-1553 BC/RT/MT Interface PCI Initiator/ Target CAN 2.0 Controller On-Chip Memory with EDAC 32-bit AMBA AHB 32-bit AMBA APB Memory Controller with EDAC AHB Controller SpaceWire Link Interface AHB/APB Bridge UART Timers RS232 WDOG IrqCtrl I/O Port 16-bit SRAM I/O 32-bit I/O port Figure 1. Architectural block diagram The GR701A architecture includes the following modules: • • • • • • • • • • • PCI bus Initiator and Target based on the Actel CorePCIF IP, 32-bit, 33 MHz 16 kbyte On-Chip Memory with EDAC 8-bit Memory Controller with EDAC for external SRAM and interface for 16-bit I/O Timer unit with two 32-bit timers and a watchdog Interrupt controller for 15 interrupts at two priority levels, forwarded to the PCI bus Two UARTs with FIFO and separate baud rate generators 32-bit general purpose I/O port (GPIO). Can also generate interrupts from external devices AMBA AHB status register Three SpaceWire links with CRC support, one link includes full RMAP support CAN-2.0 controller with redundant interfaces Mil-Std-1553 BC/RT/MT based on the Actel Core1553 IP Copyright Gaisler Research AB June 2007, Version 1.0.0 3 1.2 GR701A Signal overview resetn Reset wdogn Watchdog rxd[1] ctsn[1] txd[1] UART 1 rxd[2] ctsn[2] txd[2] UART 2 GPIO rtsn[2] gpio[31:0] address[23:0] ramsn[1:0] data[15:0] brdyn rtsn[1] Memory interface iosn oen bexcn read writen pci_clk pci_int pci_rst pci_gnt pci_ad[31:0] pci_cbe[3:0] pci_idsel pci_frame pci_host pci_66 PCI interface pci_irdy pci_trdy pci_req pci_stop pci_perr pci_par pci_serr pci_devsel spw_clk spw_rxd[2:0] spw_rxdn[2:0] spw_txd[2:0] SpaceWire Links spw_txdn[2:0] spw_rxs[2:0] spw_txs[2:0] spw_rxsn[2:0] spw_txsn[2:0] canrx[1:0] CAN interfaces cantx[1:0] clk_1553 busaoutin busainen busaoutp, busaoutn busainp, busainn busbinen 1553 interfaces busboutin busboutp, busboutn busbinp, busbinn Figure 2. Signal overview Copyright Gaisler Research AB June 2007, Version 1.0.0 4 2 Architecture 2.1 Cores GR701A The architecture of the GR701A is based on cores from the GRLIB IP library. The vendor and device identifiers for each core can be extracted from the plug & play information, as described in the user’s manual. The used IP cores are listed in table 1. Table 1. Used IP cores 2.2 Core Function Vendor Device AHBCTRL AHB Arbiter & Decoder 0x01 - APBCTRL AHB/APB Bridge 0x01 0x006 PCIF 32-bit PCI interface 0x01 0x075 FTSRCTRL8 8-bit SRAM/16-bit IO Controller 0x01 0x056 FTAHBRAM On-chip SRAM with EDAC 0x01 0x050 AHBSTAT AHB failing address register 0x01 0x052 APBUART 8-bit UART with FIFO 0x01 0x00C GPTIMER Modular timer unit with watchdog 0x01 0x011 GRGPIO General purpose I/O port 0x01 0x01A GRSPW SpaceWire link 0x01 0x01F CAN_OC CAN-2.0 interface 0x01 0x019 B1553BRM MIL-STD-1553 BC/RT/BM 0x01 0x072 Interrupts The GR701A uses the interrupt assignment listed in table 2. See the user’s manual for how and when the interrupts are raised. All interrupts are handled by the interrupt controller and forwarded to the PCI bus. Table 2. Interrupt assignment Core Interrupt AHBSTAT 1 APBUART 1 2 APBUART 2 3 CAN_OC 13 GPTIMER 8 GRSPW 0, 1, 2 10, 11, 12 B1553BRM 4 GRGPIO 1-15 Copyright Gaisler Research AB Comment Generated from external GPIO signals 1 to 15 June 2007, Version 1.0.0 5 2.3 GR701A Memory map The memory map shown in table 3 is based on the AMBA AHB address space. Access to addresses outside the ranges will return an AHB error response. The detailed register layout is defined in the user manual. Table 3. AMBA AHB address range Core Address range Area PCIF 0xE0000000 - 0xF0000000 PCI bus area APBCTRL 0xFC000000 - 0xFC100000 APB bridge FTSRCTRL8 0xFD000000 - 0xFE000000 SRAM area 0xFE000000 - 0xFF000000 I/O area 0xFFA00000 - 0xFFB00000 On-chip RAM CAN_OC 0xFFFC0000 - 0xFFFC1000 Registers B1553BRM 0xFFF00000 - 0xFFF01000 Registers AHB plug&play 0xFFFFF000 - 0xFFFFFFFF Registers FTAHBRAM The control registers of most on-chip peripherals are accessible via the AHB/APB bridge, which is mapped at address 0xFC000000. The memory map shown in table 4 is based on the AMBA AHB address space. Table 4. APB address range Core Address range FTSRCTRL8 0xFC000000 - 0xFC000100 APBUART1 0xFC000100 - 0xFC000200 AHBSTAT 0xFC000200 - 0xFC000300 GPTIMER 0xFC000300 - 0xFC000400 PCIF 0xFC000400 - 0xFC000500 FTAHBRAM 0xFC000500 - 0xFC000600 APBUART2 0xFC000700 - 0xFC000800 GRGPIO 0xFC000800 - 0xFC000900 GRSPW 0 0xFC000A00 - 0xFC000B00 GRSPW 1 0xFC000B00 - 0xFC000C00 GRSPW 2 0xFC000C00 - 0xFC000D00 APB plug&play 0xFC0FF000 - 0xFC100000 Copyright Gaisler Research AB Comment June 2007, Version 1.0.0 6 2.4 GR701A Signals The architecture has the external signals shown in table 5. Table 5. External signals Name Usage Direction Polarity resetn System reset In Low dsutck JTAG Clock In - dsutms JTAG Mode In High dsutdi JTAG Input In High dsutdo JTAG Output Out High address[23:0] Memory word address Out High data[15:0] Memory data bus BiDir High ramsn[1:0] SRAM chip select Out Low oen Output enable Out Low writen Write strobe Out Low read Read cycle indicator Out High iosn I/O area chip select Out Low brdyn Bus ready In Low bexcn Bus exception In Low pci_clk PCI clock In - pci_rst PCI reset In Low pci_ad[31:0] PCI data and address BiDir High pci_cbe[3:0] PCI bus command and byte enable BiDir Low pci_frame PCI cycle frame BiDir Low pci_irdy PCI initiator ready BiDir Low pci_trdy PCI target ready BiDir Low pci_stop PCI stop BiDir Low pci_par PCI parity BiDir Low pci_perr PCI parity error BiDir Low pci_serr PCI system error BiDir Low pci_idsel PCI initialization device select In Low pci_devsel PCI device select BiDir Low pci_req PCI request BiDir Low pci_gnt PCI grant In Low pci_int PCI interrupt Out Low Copyright Gaisler Research AB June 2007, Version 1.0.0 7 GR701A Table 5. External signals Name Usage Direction Polarity txd[2:1] UART 2/1 transmit data Out Low rxd[2:1] UART 2/1 receive data In Low rtsn[2:1] UART 2/1 ready to send Out Low ctsn2:[1] UART 2/1 clear to send In Low wdogn Watchdog output Out Low gpio[31:0] General purpose I/O port (also used for SpaceWire interface configuration at reset) BiDir High spw_clk Transmitter default run-state clock In - spw_rxd[2:0] Data input, positive In, LVDS High spw_rxdn[2:0] Data input, negative In, LVDS Low spw_rxs[2:0] Strobe input, positive In, LVDS High spw_rxsn[2:0] Strobe input, negative In, LVDS Low spw_txd[2:0] Data output, positive Out, LVDS High spw_txdn[2:0] Data output, negative Out, LVDS Low spw_txs[2:0] Strobe output, positive Out, LVDS High spw_txsn[2:0] Strobe output, negative Out, LVDS Low gpio[3:0] Configuring SpaceWire start-up and default transmit rate at reset. “0000” corresponds to spw_clk frequency divided by 1. “0001” corresponds to the spw_clk frequency divided by 2, etc. In - cantx[1:0] CAN transmit data Out Low canrx[1:0] CAN receive data In Low clk_1553 Clock for MIL-STD-1553 BC/RT/BM In - busainen Enable for the A receiver Out High busainp Positive data input from the A receiver In High busainn Negative data input from the A receiver In Low busbinen Enable for the B receiver Out High busbinp Positive data to the B receiver In High busbinn Negative data to the B receiver In Low busaoutin Inhibit for the A transmitter Out High busaoutp Positive data to the A transmitter Out High busaoutn Negative data to the A transmitter Out Low busboutin Inhibit for the B transmitter Out High busboutp Positive output to the B transmitter Out High busboutn Negative output to the B transmitter Out Low Copyright Gaisler Research AB June 2007, Version 1.0.0 8 3 PCI Initiator/Target 3.1 Overview GR701A This core provides a complete interface to an external PCI bus, with both initiator and target functions. The interface is based on the Actel CorePCIF IP and provides an AMBA bus backend. It also provides a interrupt controller that forwards all interrupts generated on the AMBA bus to the PCI bus. 3.2 Signal definitions and reset values The signals and their reset values are described in table 6. Table 6. Signal definitions and reset values Signal name Type Function Active Reset value pci_clk Input PCI clock - - pci_rst Input Reset Low - pci_gnt Input Grant signal Low - pci_idsel Input Device select during configuration High - pci_ad[31:0] Input/Output Address and Data bus High Tri.state pci_cbe[3:0] Input/Output Bus command and byte enable Low Tri-state pci_par Input/Output Parity signal High Tri-state pci_frame Input/Output Cycle frame Low Tri-state pci_devsel Input/Output Device select Low Tri-state pci_irdy Input/Output Initiator ready Low Tri-state pci_trdy Input/Output Target ready Low Tri-state pci_stop Input/Output Stop Low Tri-state pci_perr Input/Output Parity error Low Tri-state pci_serr Input/Output System error Low Tri-state pci_req Output Request signal Low Logical 1 pci_int Output Interrupt signal Low Logical 1 Copyright Gaisler Research AB June 2007, Version 1.0.0 9 3.3 GR701A Timing The timing waveforms and timing parameters are shown in figure 3 and are defined in table 7. tPCIFT0 pci_clk pci_ad[], pci_cbe[], pci_frame, pci_irdy, pci_trdy, pci_stop, pci_idsel, pci_devsel, pci_perr, pci_serr, pci_par, pci_int tPCIFT1 pci_ad[], pci_cbe[], pci_frame, pci_irdy, pci_trdy, pci_stop, pci_idsel, pci_devsel, pci_perr, pci_serr, pci_par tPCIFT1 tPCIFT2 tPCIFT3 pci_gnt,pci_req tPCIFT4 tPCIFT4 tPCIFT5 tPCIFT6 pci_gnt,pci_req Figure 3. Timing waveforms Table 7. Timing parameters Name Parameter Reference edge Min Max Unit tPCIFT0 pci clock period - 301) - ns tPCIFT1 clock to output delay rising pci_clk edge 2 11 ns tPCIFT2 input to clock hold rising pci_clk edge 0 - ns tPCIFT3 input to clock setup rising pci_clk edge 7 - ns tPCIFT4 clock to output delay rising pci_clk edge 2 12 ns tPCIFT5 input to clock hold rising pci_clk edge 0 - ns tPCIFT6 input to clock setup rising pci_clk edge 10, 12 - ns Note 1: The minimum clock period, and the resulting maximum clock frequency, is dependent on the manufacturing lot for the Actel RTAX2000S parts and expected radiation levels. The degradation criterion for Propagation Delays for the RTAX2000S parts is according to Actel Total Ionizing Does Test Report 10% at 300 krad (Si). The above specified timing values are guaranteed up to 50 krad (Si). If a higher total ionizing does is expected than 50 krad (Si), the corresponding post-annealing propagation delays that can be found in the Actel Total Ionizing Does Test Report can be used to degrade the timing more accurately (typical degradation is within 1% after 300 krad (Si)). The functional behavior of the part is guaranteed up to 300 krad (Si). Copyright Gaisler Research AB June 2007, Version 1.0.0 10 4 Memory Interface with EDAC 4.1 Overview GR701A The fault tolerant 8-bit SRAM/16-bit I/O memory interface uses a common 16-bit data bus to interface 8-bit SRAM and 16-bit I/O devices. It provides an Error Detection And Correction unit (EDAC), correcting up to two errors and detecting up to four errors in a data byte. The EDAC eight checkbits are stored in parallel with the 8-bit data in SRAM memory. Configuration of the memory controller functions is performed through the APB bus interface. 4.2 Signal definitions and reset values The signals and their reset values are described in table 8. Table 8. Signal definitions and reset values Signal name Type Function Active Reset value address[23:0] Output Memory address High Undefined data[15:0] Input/Output Memory data High Tri-state ramsn[1:0] Output SRAM chip select Low Logical 1 ramoen[1:0] Output SRAM output enable Low Logical 1 oen Output Output enable Low Logical 1 writen Output Write strobe Low Logical 1 read Output Read strobe High Logical 1 iosn Output IO area chip select Low Logical 1 brdyn Input Bus ready. Extends accesses to the IO area. Low - bexcn Input Bus exception. Low - Copyright Gaisler Research AB June 2007, Version 1.0.0 11 4.3 GR701A Timing The timing waveforms and timing parameters are shown in figure 4 and are defined in table 9. clk tFTSRCTRL0 address[] tFTSRCTRL1 ramsn[], romsn[] iosn tFTSRCTRL1 tFTSRCTRL2 tFTSRCTRL2 rwen[], writen tFTSRCTRL3 data[], cb[] (output) tFTSRCTRL5 tFTSRCTRL4 clk address[] ramsn[], romsn[] iosn tFTSRCTRL6 ramoen[] ramben[], oen, read tFTSRCTRL6 tFTSRCTRL7 tFTSRCTRL8 data[], cb[] (input) tFTSRCTRL10 tFTSRCTRL9 brdyn, bexcn Figure 4. Timing waveforms Table 9. Timing parameters Name Parameter Reference edge Min Max Unit tFTSRCTRL0 address clock to output delay rising clk edge 0 10 ns tFTSRCTRL1 clock to output delay rising clk edge 0 10 ns tFTSRCTRL2 clock to data output delay rising clk edge 0 10 ns tFTSRCTRL3 clock to output delay falling clk edge 0 10 ns tFTSRCTRL4 clock to data non-tri-state delay rising clk edge 0 15 ns tFTSRCTRL5 clock to data tri-state delay rising clk edge 0 15 ns tFTSRCTRL6 clock to output delay rising clk edge 0 15 ns tFTSRCTRL7 data input to clock setup rising clk edge 7 - ns tFTSRCTRL8 data input from clock hold rising clk edge 1 - ns tFTSRCTRL9 input to clock setup rising clk edge 7 - ns tFTSRCTRL10 input from clock hold rising clk edge 1 - ns Copyright Gaisler Research AB June 2007, Version 1.0.0 12 Copyright Gaisler Research AB GR701A June 2007, Version 1.0.0 13 5 On-chip Memory with EDAC Protection 5.1 Overview GR701A The on-chip memory is accessed via an AMBA AHB slave interface. The memory implements 16 kbytes of data. Registers are accessed via an AMB APB interface. The on-chip memory implements volatile memory that is protected by means of Error Detection And Correction (EDAC). One error can be corrected and two errors can be detected, which is performed by using a (32, 7) BCH code. Some of the optional features available are single error counter, diagnostic reads and writes. Configuration is performed via a configuration register. Copyright Gaisler Research AB June 2007, Version 1.0.0 14 6 SpaceWire Interface 6.1 Overview GR701A The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It implements the SpaceWire standard (ECSS-E-50-12A) with the protocol identification extension (ECSS-E50-11). 6.2 Signal definitions and reset values The signals and their reset values are described in table 10. Table 10. Signal definitions and reset values 6.3 Signal name Type Function Active Reset value spw_clk Input Transmitter default run-state clock Rising edge - spw_rxd Input, LVDS Data input, positive High - spw_rxdn Input, LVDS Data input, negative Low - spw_rxs Input, LVDS Strobe input, positive High - spw_rxsn Input, LVDS Strobe input, negative Low - spw_txd Output, LVDS Data output, positive High Logical 0 spw_txdn Output, LVDS Data output, negative Low Logical 1 spw_txs Output, LVDS Strobe output, positive High Logical 0 spw_txsn Output, LVDS Strobe output, negative Low Logical 1 Timing The timing waveforms and timing parameters are shown in figure 5 and are defined in table 11. The SpaceWire jitter and skew timing waveforms and timing parameters are shown in figure 6 and are defined in table 12. Copyright Gaisler Research AB June 2007, Version 1.0.0 15 GR701A tSPW0 spw_clk spw_txd, spw_txdn spw_txs, spw_txsn tSPW1 spw_rxd, spw_rxdn spw_rxs, spw_rxsn tSPW2 tSPW4 tSPW1 tSPW3 tSPW4 spw_txd, spw_txdn spw_txs, spw_txsn tSPW4 tSPW5 tSPW5 tSPW6 spw_rxd, spw_rxdn tSPW5 spw_rxs, spw_rxsn tSPW6 tSPW7 spw_txd, spw_txdn spw_txs, spw_txsn Figure 5. Timing waveforms Table 11. Timing parameters Name Parameter Reference edge Min Max Unit tSPW0 transmit clock period - - 20 ns tSPW1 clock to output delay rising spw_clk edge 0 20 ns tSPW2 input to clock hold - - - not applicable tSPW3 input to clock setup - - - not applicable tSPW4 output data bit period - - - tSPW0 -5 tSPW0 +5 ns clk periods tSPW5 input data bit period - 20 - ns tSPW6 data & strobe edge separation - 10 - ns tSPW7 data & strobe output skew - - 5 ns Copyright Gaisler Research AB June 2007, Version 1.0.0 16 GR701A d ideal s ideal d s receive clock tskew tjitter tjitter tdclk thold tds tui Figure 6. Skew and jitter timing waveforms Table 12. Skew and jitter timing parameters Name Parameter Reference edge Min Max Unit tskew skew between data and strobe - - TBD ns tjitter jitter on data or strobe - - TBD ns tds minimum separation between data and strobe edges - TBD - ns tdclk delay from edge of data or strobe to the receiver flip-flop - - TBD ns thold hold timer on receiver flip-flop - TBD - ns tui unit interval (bit period) - TBD - ns Copyright Gaisler Research AB June 2007, Version 1.0.0 17 Copyright Gaisler Research AB GR701A June 2007, Version 1.0.0 18 GR701A 7 MIL-STD-1553B Bus Controller / Remote Terminal / Monitor Terminal 7.1 Overview The interface provides a complete Mil-Std-1553B Bus Controller (BC), Remote Terminal (RT) or Monitor Terminal (MT). The interface connects to the MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the Actel Core1553BRM core. 7.2 Signal definitions and reset values The signals and their reset values are described in table 13. Table 13. Signal definitions and reset values Signal name Type clk_1553 Input 1553 clock signal - - busainen Output Enable for the A receiver High Logical 0 busainp Input Positive data input from the A receiver High - busainn Input Negative data input from the A receiver Low - busbinen Output Enable for the B receiver High Logical 0 busbinp Input Positive data to the B receiver High - busbinn Input Negative data to the B receiver Low - busaoutin Output Inhibit for the A transmitter High Logical 0 busaoutp Output Positive data to the A transmitter High Logical 0 busaoutn Output Negative data to the A transmitter Low Logical 1 busboutin Output Inhibit for the B transmitter High Logical 0 busboutp Output Positive output to the B transmitter High Logical 0 busboutn Output Negative output to the B transmitter Low Logical 1 Copyright Gaisler Research AB Function Active Reset value June 2007, Version 1.0.0 19 7.3 GR701A Timing The timing waveforms and timing parameters are shown in figure 7 and are defined in table 14. t1553BRM0 clk_1553 t1553BRM1 outputs t1553BRM3 inputs t1553BRM2 Figure 7. Timing waveforms Table 14. Timing parameters Name Parameter Reference edge Min Max Unit t1553BRM0 clock period1) - 41.66 41.66 ns t1553BRM1 clock to data output delay rising clk_1553 edge - 20 ns t1553BRM2 data input to clock setup rising clk_1553 edge 7 - ns t1553BRM3 data input from clock hold rising clk_1553 edge 1 - ns Note 1: The minimum clock period, and the resulting maximum clock frequency, is dependent on the manufacturing lot for the Actel RTAX2000S parts and expected radiation levels. The degradation criterion for Propagation Delays for the RTAX2000S parts is according to Actel Total Ionizing Does Test Report 10% at 300 krad (Si). The above specified timing values are guaranteed up to 50 krad (Si). If a higher total ionizing does is expected than 50 krad (Si), the corresponding post-annealing propagation delays that can be found in the Actel Total Ionizing Does Test Report can be used to degrade the timing more accurately (typical degradation is within 1% after 300 krad (Si)). The functional behavior of the part is guaranteed up to 300 krad (Si). Copyright Gaisler Research AB June 2007, Version 1.0.0 20 8 CAN 2.0 Interface 8.1 Overview GR701A This CAN interface implements the CAN 20.A and 2.0B protocolos. It is based on the Philips SJA1000 and has a compatible register map with a few exceptions. 8.2 Signal definitions and reset values The signals and their reset values are described in table 15. Table 15. Signal definitions and reset values 8.3 Signal name Type Function Active Reset value cantx[] Output CAN transmit data Low Logical 1 canen[] Output CAN transmit enabel - Logical 0 canrx[] Input CAN receive data Low - Timing The timing waveforms and timing parameters are shown in figure 8 and are defined in table 16. clk tCAN_OC0 cantx[], canen[] tCAN_OC2 canrx[] tCAN_OC1 Figure 8. Timing waveforms Table 16. Timing parameters Name Parameter Reference edge Min Max Unit tCAN_OC0 clock to data output delay rising clk edge 0 20 ns tCAN_OC1 data input to clock setup rising clk edge - - ns tCAN_OC2 data input from clock hold rising clk edge - - ns Note: The canrx[] input is re-synchronized internally. The signal does not have to meet any setup or hold requirements. Copyright Gaisler Research AB June 2007, Version 1.0.0 21 9 UART Serial Interface 9.1 Overview GR701A The interface is provided for serial communications. The UART supports data frames with 8 data bits, one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12bit clock divider. 9.2 Signal definitions and reset values The signals and their reset values are described in table 17. Table 17. Signal definitions and reset values 9.3 Signal name Type Function Active Reset value txd[] Output UART transmit data line - Logical 1 rtsn[] Output Ready To Send Low Logical 1 rxd[] Input UART receive data line - - ctsn[] Input Clear To Send Low - Timing The timing waveforms and timing parameters are shown in figure 9 and are defined in table 18. clk txd[], rtsn[] tAPBUART0 rxd[], ctsn[] tAPBUART1 tAPBUART0 tAPBUART2 Figure 9. Timing waveforms Table 18. Timing parameters Name Parameter Reference edge Min Max Unit tAPBUART0 clock to output delay rising clk edge 0 20 ns tAPBUART1 input to clock hold rising clk edge - - ns tAPBUART2 input to clock setup rising clk edge - - ns Note: The ctsn[] and rxd[] inputs are re-synchronized internally. These signals do not have to meet any setup or hold requirements. Copyright Gaisler Research AB June 2007, Version 1.0.0 22 10 General Purpose Timer Unit 10.1 Overview GR701A The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). The unit implements one 8 bit prescaler and 2 decrementing 32 bit timer(s). The unit is capable of asserting interrupt on timer(s) underflow. 10.2 Signal definitions and reset values The signals and their reset values are described in table 19. Table 19. Signal definitions and reset values 10.3 Signal name Type Function Active Reset value wdogn Tri-state output Watchdog output. Equivalent to interrupt pending bit of last timer. Low Tri-state Timing The timing waveforms and timing parameters are shown in figure 10 and are defined in table 20. clk tGPTIMER0 tGPTIMER1 wdogn Figure 10. Timing waveforms Table 20. Timing parameters Name Parameter Reference edge Min Max Unit tGPTIMER0 clock to output delay rising clk edge 0 20 ns tGPTIMER1 clock to output tri-state rising clk edge 0 25 ns Copyright Gaisler Research AB June 2007, Version 1.0.0 23 11 General Purpose I/O Port 11.1 Overview GR701A Each bit in the general purpose input output port can be individually set to input or output, and can optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and level/edge detection. 11.2 Signal definitions and reset values The signals and their reset values are described in table 21. Table 21. Signal definitions and reset values 11.3 Signal name Type Function Active Reset value gpio[] Input/Output General purpose input output - Tri-state Timing The timing waveforms and timing parameters are shown in figure 11 and are defined in table 22. clk gpio[ ] (output) tGRGPIO0 tGRGPIO0 tGRGPIO1 tGRGPIO2 gpio[ ] (output) gpio[ ] (input) tGRGPIO3 tGRGPIO4 Figure 11. Timing waveforms Table 22. Timing parameters Name Parameter Reference edge Min Max Unit tGRGPIO0 clock to output delay rising clk edge 0 20 ns tGRGPIO1 clock to non-tri-state delay rising clk edge 0 20 ns tGRGPIO2 clock to tri-state delay rising clk edge 0 25 ns tGRGPIO3 input to clock hold rising clk edge - - ns tGRGPIO4 input to clock setup rising clk edge - - ns Note: The gpio inputs are re-synchronized internally. The signals do not have to meet any setup or hold requirements. Copyright Gaisler Research AB June 2007, Version 1.0.0 24 12 Status Registers 12.1 Overview GR701A The status registers store information about AMBA AHB accesses triggering an error response. There is a status register and a failing address register capturing the control and address signal values of a failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tolerant core. Copyright Gaisler Research AB June 2007, Version 1.0.0 25 Copyright Gaisler Research AB GR701A June 2007, Version 1.0.0 26 13 AMBA AHB controller with plug&play support 13.1 Overview GR701A The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according to the AMBA 2.0 standard. In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the bus, the last owner will be granted (bus parking). Copyright Gaisler Research AB June 2007, Version 1.0.0 27 Copyright Gaisler Research AB GR701A June 2007, Version 1.0.0 28 14 AMBA AHB/APB bridge with plug&play support 14.1 Overview GR701A The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard. Copyright Gaisler Research AB June 2007, Version 1.0.0 29 Copyright Gaisler Research AB GR701A June 2007, Version 1.0.0 30 15 Reset generation 15.1 Overview GR701A The reset generator implements input reset signal synchronization with glitch filtering and generates the internal reset signal. The input reset signal can be asynchronous. 15.2 Signal definitions and reset values The signals and their reset values are described in table 23. Table 23. Signal definitions and reset values 15.3 Signal name Type Function Active resetn Input Reset Low Reset value Timing The timing waveforms and timing parameters are shown in figure 12 and are defined in table 24. clk resetn tRSTGEN0 Figure 12. Timing waveforms Table 24. Timing parameters Name Parameter Reference edge Min Max Unit tRSTGEN0 asserted period - 100 - ns Note: The resetn input is re-synchronized internally. The signals does not have to meet any setup or hold requirements. Copyright Gaisler Research AB June 2007, Version 1.0.0 31 16 Electrical description 16.1 Absolute maximum ratings GR701A According to Actel data sheet [RTAX]. 16.2 Operating conditions According to Actel data sheet [RTAX]. 16.3 Input voltages, leakage currents and capacitances According to Actel data sheet [RTAX]. 16.4 Output voltages, leakage currents and capacitances According to Actel data sheet [RTAX]. 16.5 Clock Input voltages, leakage currents and capacitances According to Actel data sheet [RTAX]. 16.6 Power supplies According to Actel data sheet [RTAX]. Copyright Gaisler Research AB June 2007, Version 1.0.0 32 17 Mechanical description 17.1 Component and package GR701A The GR701A is implemented in the ACTEL RTAX2000S FPGA with the CQ352 package, as per Actel data sheet [RTAX] and [PACK]. 17.2 Pin assignment Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. Slew Drive Pull resetn in 306 D24 LVTTL 3.3 - - None low Reset dsutx out - F23 LVTTL 3.3 Low 12 None low DSU data transmit {reserved} dsurx in - E23 LVTTL 3.3 - - None low DSU data receive {reserved} dsutck in - V6 LVTTL 3.3 - - None - DSU JTAG clock {reserved} dsutms in - W3 LVTTL 3.3 - - None high DSU JTAG mode {reserved} dsutdi in - AB2 LVTTL 3.3 - - None high DSU JTAG input {reserved} dsutdo out - AA2 LVTTL 3.3 Low 12 None high DSU JTAG output {reserved} dsutck in 4 - LVCMOS 2.5 - - None - DSU JTAG clock {reserved} dsutms in 5 - LVCMOS 2.5 - - None high DSU JTAG mode {reserved} dsutdi in 6 - LVCMOS 2.5 - - None high DSU JTAG input {reserved} dsutdo out 7 - LVCMOS 2.5 Low 12 None high DSU JTAG output {reserved} address[0] out 247 P9 LVTTL 3.3 High 24 None high Address, LSB address[1] out 248 N6 LVTTL 3.3 High 24 None high address[2] out 249 M6 LVTTL 3.3 High 24 None high address[3] out 250 N8 LVTTL 3.3 High 24 None high address[4] out 253 N7 LVTTL 3.3 High 24 None high address[5] out 254 M4 LVTTL 3.3 High 24 None high address[6] out 255 L3 LVTTL 3.3 High 24 None high address[7] out 256 M3 LVTTL 3.3 High 24 None high address[8] out 259 N10 LVTTL 3.3 High 24 None high address[9] out 260 N9 LVTTL 3.3 High 24 None high address[10] out 261 K1 LVTTL 3.3 High 24 None high address[11] out 262 L1 LVTTL 3.3 High 24 None high address[12] out 269 M5 LVTTL 3.3 High 24 None high address[13] out 270 L6 LVTTL 3.3 High 24 None high address[14] out 271 L5 LVTTL 3.3 High 24 None high address[15] out 272 K2 LVTTL 3.3 High 24 None high address[16] out 275 L2 LVTTL 3.3 High 24 None high address[17] out 276 K4 LVTTL 3.3 High 24 None high address[18] out 277 L4 LVTTL 3.3 High 24 None high address[19] out 278 J3 LVTTL 3.3 High 24 None high address[20] out 281 J2 LVTTL 3.3 High 24 None high Copyright Gaisler Research AB Polarity Note June 2007, Version 1.0.0 33 GR701A Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. Slew Drive Pull Polarity address[21] out 282 J1 LVTTL 3.3 High 24 None high address[22] out 283 L7 LVTTL 3.3 High 24 None high Note address[23] out 284 M7 LVTTL 3.3 High 24 None high Address, MSB data[0] inout 223 H2 LVTTL 3.3 High 24 None high Data, LSB data[1] inout 224 E2 LVTTL 3.3 High 24 None high data[2] inout 225 F2 LVTTL 3.3 High 24 None high data[3] inout 226 H4 LVTTL 3.3 High 24 None high data[4] inout 229 J4 LVTTL 3.3 High 24 None high data[5] inout 230 H5 LVTTL 3.3 High 24 None high data[6] inout 231 H6 LVTTL 3.3 High 24 None high data[7] inout 232 D2 LVTTL 3.3 High 24 None high data[8] inout 235 J6 LVTTL 3.3 High 24 None high data[9] inout 236 J5 LVTTL 3.3 High 24 None high data[10] inout 237 F3 LVTTL 3.3 High 24 None high data[11] inout 238 E3 LVTTL 3.3 High 24 None high data[12] inout 241 G4 LVTTL 3.3 High 24 None high data[13] inout 242 G3 LVTTL 3.3 High 24 None high data[14] inout 243 K8 LVTTL 3.3 High 24 None high data[15] inout 244 L8 LVTTL 3.3 High 24 None high Data, MSB ramsn[0] out 287 M2 LVTTL 3.3 High 24 None low SRAM chip select ramsn[1] out 288 P4 LVTTL 3.3 High 24 None low ramsn[2] out - P1 LVTTL 3.3 High 24 None low {reserved} ramsn[3] out - P6 LVTTL 3.3 High 24 None low {reserved} ramsn[4] out - P5 LVTTL 3.3 High 24 None low {reserved} ramoen[0] out - P3 LVTTL 3.3 High 24 None low {reserved} ramoen[1] out - N4 LVTTL 3.3 High 24 None low {reserved} ramoen[2] out - U1 LVTTL 3.3 High 24 None low {reserved} ramoen[3] out - T1 LVTTL 3.3 High 24 None low {reserved} ramoen[4] out - R2 LVTTL 3.3 High 24 None low {reserved} rwen[0] out - H3 LVTTL 3.3 High 24 None low {reserved} rwen[1] out - G2 LVTTL 3.3 High 24 None low {reserved} rwen[2] out - E1 LVTTL 3.3 High 24 None low {reserved} rwen[3] out - D1 LVTTL 3.3 High 24 None low {reserved} ramben[0] out - Y1 LVTTL 3.3 High 24 None low {reserved} ramben[1] out - P2 LVTTL 3.3 High 24 None low {reserved} ramben[2] out - K7 LVTTL 3.3 High 24 None low {reserved} ramben[3] out - K6 LVTTL 3.3 High 24 None low {reserved} oen out 296 N1 LVTTL 3.3 High 24 None low Output enable writen out 290 P7 LVTTL 3.3 High 24 None low Write strobe read out 295 R7 LVTTL 3.3 High 24 None high Read strobe Copyright Gaisler Research AB June 2007, Version 1.0.0 34 GR701A Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. Slew Drive Pull Polarity iosn out 289 M1 LVTTL 3.3 High 24 None low IO area chip select romsn[0] out - N2 LVTTL 3.3 High 24 None low {reserved} romsn[1] out - R1 LVTTL 3.3 High 24 None low {reserved} romsn[2] out - AA3 LVTTL 3.3 High 24 None low {reserved} romsn[3] out - V3 LVTTL 3.3 High 24 None low {reserved} brdyn in 299 N3 LVTTL 3.3 - - Up low Bus ready bexcn in 305 P8 LVTTL 3.3 - - Up low Bus exception pci_clk in 300 G14 PCI 3.3 PCI clock pci_rst in 137 AB8 PCI 3.3 PCI reset pci_frame inout 180 AC9 PCI 3.3 pci_irdy inout 181 AA9 PCI 3.3 pci_trdy inout 182 AD6 PCI 3.3 pci_stop inout 184 AD5 PCI 3.3 pci_idsel in 161 U8 PCI 3.3 Note pci_devsel inout 183 AB9 PCI 3.3 pci_par inout 189 V10 PCI 3.3 pci_perr inout 187 V9 PCI 3.3 pci_serr inout 188 AD8 PCI 3.3 pci_req inout 143 EA11 PCI 3.3 pci_gnt in 142 EA10 PCI 3.3 pci_int out 136 W4 PCI 3.3 PCI interrupt pci_cbe[0] inout 205 W8 PCI 3.3 PCI byte enable, LSB pci_cbe[1] inout 190 W9 PCI 3.3 pci_cbe[2] inout 179 AE4 PCI 3.3 pci_cbe[3] inout 160 AE5 PCI 3.3 PCI byte enable, MSB pci_ad[0] inout 217 W11 PCI 3.3 PCI address/data, LSB pci_ad[1] inout 214 W12 PCI 3.3 pci_ad[2] inout 213 AA11 PCI 3.3 pci_ad[3] inout 212 Y11 PCI 3.3 pci_ad[4] inout 211 AE9 PCI 3.3 pci_ad[5] inout 208 AE6 PCI 3.3 pci_ad[6] inout 207 AE7 PCI 3.3 pci_ad[7] inout 206 Y10 PCI 3.3 pci_ad[8] inout 202 W10 PCI 3.3 pci_ad[9] inout 201 T13 PCI 3.3 pci_ad[10] inout 200 AB10 PCI 3.3 pci_ad[11] inout 199 AB11 PCI 3.3 pci_ad[12] inout 196 AD9 PCI 3.3 pci_ad[13] inout 195 AD10 PCI 3.3 pci_ad[14] inout 194 V11 PCI 3.3 Copyright Gaisler Research AB June 2007, Version 1.0.0 35 GR701A Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. pci_ad[15] inout 193 AD7 PCI 3.3 pci_ad[16] inout 173 AC8 PCI 3.3 pci_ad[17] inout 172 AB7 PCI 3.3 pci_ad[18] inout 171 AC7 PCI 3.3 pci_ad[19] inout 170 AA8 PCI 3.3 pci_ad[20] inout 167 Y8 PCI 3.3 pci_ad[21] inout 166 V8 PCI 3.3 pci_ad[22] inout 165 V7 PCI 3.3 pci_ad[23] inout 164 Y7 PCI 3.3 pci_ad[24] inout 159 W7 PCI 3.3 pci_ad[25] inout 158 AC5 PCI 3.3 pci_ad[26] inout 155 AC6 PCI 3.3 pci_ad[27] inout 154 Y6 PCI 3.3 pci_ad[28] inout 153 W6 PCI 3.3 pci_ad[29] inout 152 AB6 PCI 3.3 pci_ad[30] inout 147 AA6 PCI 3.3 pci_ad[31] inout 146 Y3 PCI 3.3 txd[1] out 342 L19 LVTTL 3.3 Low rxd[1] in 343 J23 LVTTL 3.3 - - None low UART data receive rtsn[1] out 338 J20 LVTTL 3.3 Low 12 None low Ready to Send ctsn[1] in 341 J21 LVTTL 3.3 - - None low Clear to Send txd[2] out 336 K20 LVTTL 3.3 Low 12 None low UART data transmit rxd[2] in 337 D25 LVTTL 3.3 - - None low UART data receive rtsn[2] out 332 E25 LVTTL 3.3 Low 12 None low Ready to Send ctsn[2] in 335 K19 LVTTL 3.3 - - None low Clear to Send wdogn out 319 D20 LVTTL 3.3 Low 12 None low Watchdog timeout gpio[0] inout 113 F24 LVTTL 3.3 Low 12 None high General purpose I/O gpio[1] inout 112 G24 LVTTL 3.3 Low 12 None high {interrupt # 1} gpio[2] inout 111 K18 LVTTL 3.3 Low 12 None high {interrupt # 2} gpio[3] inout 110 L18 LVTTL 3.3 Low 12 None high {interrupt # 3} gpio[4] inout 107 H22 LVTTL 3.3 Low 12 None high {interrupt # 4} gpio[5] inout 106 J22 LVTTL 3.3 Low 12 None high {interrupt # 5} gpio[6] inout 105 G22 LVTTL 3.3 Low 12 None high {interrupt # 6} gpio[7] inout 104 M17 LVTTL 3.3 Low 12 None high {interrupt # 7} gpio[8] inout 101 H20 LVTTL 3.3 Low 12 None high {interrupt # 8} gpio[9] inout 100 H19 LVTTL 3.3 Low 12 None high {interrupt # 9} gpio[10] inout 99 E18 LVTTL 3.3 Low 12 None high {interrupt # 10} gpio[11] inout 98 F18 LVTTL 3.3 Low 12 None high {interrupt # 11} gpio[12] inout 95 G21 LVTTL 3.3 Low 12 None high {interrupt # 12} gpio[13] inout 94 G20 LVTTL 3.3 Low 12 None high {interrupt # 13} Copyright Gaisler Research AB Slew Drive Pull Polarity Note PCI address/data, MSB 12 None low UART data transmit June 2007, Version 1.0.0 36 GR701A Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. Slew Drive Pull gpio[14] inout 93 F20 LVTTL 3.3 Low 12 None high {interrupt # 14} gpio[15] inout 92 F19 LVTTL 3.3 Low 12 None high {non-maskable interrupt # 15} gpio[16] inout 86 N19 LVTTL 3.3 Low 12 None high gpio[17] inout 85 M21 LVTTL 3.3 Low 12 None high gpio[18] inout 84 M20 LVTTL 3.3 Low 12 None high gpio[19] inout 83 N17 LVTTL 3.3 Low 12 None high gpio[20] inout 82 K24 LVTTL 3.3 Low 12 None high gpio[21] inout 79 L24 LVTTL 3.3 Low 12 None high gpio[22] inout 78 L20 LVTTL 3.3 Low 12 None high gpio[23] inout 77 L21 LVTTL 3.3 Low 12 None high gpio[24] inout 76 F25 LVTTL 3.3 Low 12 None high gpio[25] inout 73 G25 LVTTL 3.3 Low 12 None high gpio[26] inout 72 K22 LVTTL 3.3 Low 12 None high gpio[27] inout 71 L22 LVTTL 3.3 Low 12 None high gpio[28] inout 70 M18 LVTTL 3.3 Low 12 None high gpio[29] inout 67 M19 LVTTL 3.3 Low 12 None high gpio[30] inout 66 H23 LVTTL 3.3 Low 12 None high gpio[31] inout 65 E24 LVTTL 3.3 Low 12 None high Copyright Gaisler Research AB Polarity Note June 2007, Version 1.0.0 37 GR701A Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. Slew Drive Pull Polarity Note spw_clk in 314 G14 LVTTL 3.3 - - - - SpaceWire clock spw_rxd[0] in 43 P19 LVDS 2.5 - - - high SpaceWire data spw_rxdn[0] in 42 P20 LVDS 2.5 - - - low spw_rxs[0] in 41 P23 LVDS 2.5 - - - high spw_rxsn[0] in 40 R23 LVDS 2.5 - - - low spw_txd[0] out 37 P25 LVDS 2.5 - - - high spw_txdn[0] out 36 R25 LVDS 2.5 - - - low spw_txs[0] out 35 P22 LVDS 2.5 - - - high spw_txsn[0] out 34 R22 LVDS 2.5 - - - low spw_rxd[1] in 31 R18 LVDS 2.5 - - - high spw_rxdn[1] in 30 T18 LVDS 2.5 - - - low spw_rxs[1] in 29 R24 LVDS 2.5 - - - high spw_rxsn[1] in 28 T24 LVDS 2.5 - - - low spw_txd[1] out 25 T25 LVDS 2.5 - - - high spw_txdn[1] out 24 U25 LVDS 2.5 - - - low spw_txs[1] out 23 R20 LVDS 2.5 - - - high spw_txsn[1] out 22 T20 LVDS 2.5 - - - low spw_rxd[2] in 19 T19 LVDS 2.5 - - - high spw_rxdn[2] in 18 U19 LVDS 2.5 - - - low spw_rxs[2] in 17 W25 LVDS 2.5 - - - high spw_rxsn[2] in 16 Y25 LVDS 2.5 - - - low spw_txd[2] out 13 AA25 LVDS 2.5 - - - high spw_txdn[2] out 12 AB25 LVDS 2.5 - - - low spw_txs[2] out 11 U20 LVDS 2.5 - - - high spw_txsn[2] out 10 V20 LVDS 2.5 - - - low cantx[0] out 326 M25 LVTTL 3.3 Low 12 None low canrx[0] in 325 N25 LVTTL 3.3 - - None low CAN 0 rx data canen[0] out - H24 LVTTL 3.3 Low 12 None - {reserved} cantx[1] out 324 L23 LVTTL 3.3 Low 12 None low CAN 1 tx data canrx[1] in 323 N16 LVTTL 3.3 - - None low CAN 1 rx data canen[1] out - J24 LVTTL 3.3 Low 12 None - {reserved} Copyright Gaisler Research AB SpaceWire strobe SpaceWire data SpaceWire strobe SpaceWire data SpaceWire strobe SpaceWire data SpaceWire strobe SpaceWire data SpaceWire strobe SpaceWire data SpaceWire strobe CAN 0 tx data June 2007, Version 1.0.0 38 GR701A Table 25. Pin assignment Name I/O Pin Pin CQ352 CG624 Level Volt. Slew Drive Pull Polarity busainen out 58 N23 LVTTL 3.3 Low 12 None high Mil-Std-1553 busainn in 54 N22 LVTTL 3.3 - - None low busainp in 55 M22 LVTTL 3.3 - - None high bus 0 nominal busaoutin out 61 P17 LVTTL 3.3 Low 12 None high busaoutn out 59 M23 LVTTL 3.3 Low 12 None low busaoutp out 60 P18 LVTTL 3.3 Low 12 None high busbinen out 48 N24 LVTTL 3.3 Low 12 None high Mil-Std-1553 busbinn in 46 N18 LVTTL 3.3 - - None low busbinp in 47 J25 LVTTL 3.3 - - None high bus 0 redundant busboutin out 53 K25 LVTTL 3.3 Low 12 None high busboutn out 49 M24 LVTTL 3.3 Low 12 None low busboutp out 52 L25 LVTTL 3.3 Low 12 None high Note Pins not used should be left unconnected (or tied to ground), including the pins marked as {reserved}. The only exception is if the unused pin is mapped on a hardwired clock input or a routed clock input, which should then be tied to ground: CQ352 package: 122, 123, 128, 129, 136, 137, 142, 143, 299, 300, 305, 306, 313, 314, 319, 320 CG624 package: AC12, AC13, AD12, AD13, W14, W15, W13, Y13, B13, B14, C12, C13, G12, G13, G14, G15 For the usage of all other pins, please refer to the specific pins of the selected package, as described in the next sections and the Actel data sheet [RTAX]. Copyright Gaisler Research AB June 2007, Version 1.0.0 39 17.3 GR701A RTAX2000S specific pins - CQ352 package The Actel RTAX2000S FPGA device has special pins that need to be correctly connected on the printed circuit board, as shown in table 26. Please refer to the Actel data sheet [RTAX] for details. Table 26. RTAX2000S special pins - CQ352 package Name Pin CQ352 GND 1, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 88, 89, 97, 103, Low supply voltage, ground 109, 115, 121, 133, 145, 151, 157, 163, 169, 176, 177, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 265, 274, 280, 286, 292, 298, 310, 322, 330, 334, 340, 345, 352 VCCA 3, 14, 32, 56, 74, 87, 102, 114, 150, 162, 175, 191, 209, 233, 251, 1.5 V supply voltage for array 263, 279, 291, 329, 339 VCCDA 2, 44, 90, 91, 116, 117, 130, 131, 132, 148, 149, 174, 178, 221, 266, 268, 293, 294, 307, 308, 309, 327, 328, 346 3.3 V supply voltage for I/O differential amplifier and JTAG and probe interfaces. VCCIB0 321, 333, 344 3.3 V supply voltage for I/O VCCIB1 273, 285, 297 3.3 V supply voltage for I/O VCCIB2 227, 239, 245, 257 3.3 V supply voltage for I/O VCCIB3 185, 197, 203, 215 3.3 V supply voltage for I/O VCCIB4 144, 156, 168 3.3 V supply voltage for I/O VCCIB5 96, 108, 120 3.3 V supply voltage for I/O VCCIB6 50, 62, 68, 80 3.3 V supply voltage for I/O VCCIB7 8, 20, 26, 38 2.5 V supply voltage for I/O VPUMP 267 Voltage External Pump. In normal operation, using the internal charge pump, should be tied to ground. TRST 351 JTAG Test Clock. Actel recommends this pin be hardwired to ground for flight. TCK 349 JTAG Test Clock. Actel recommends this pin be hardwired to ground. Must not be left unconnected. TDI 348 JTAG Test Data Input. Actel recommends this pin be hardwired to VCCDA, or left unconnected. TDO 347 JTAG Test Data Output. Must be left unconnected. TMS 350 JTAG Test Mode Select. Actel recommends that this pin be hardwired to VCCDA, or left unconnected. PRA 312 PRB 311 Test Probe. The pins’ probe capabilities are disabled to protect programmed design confidentiality. These pins must be left unconnected. PRC 135 PRD 134 NC 124, 125, 126, 127, 138, 139, 140, 141, 301, 302, 303, 304, 315, No Connection. Pins are not connected to circuitry within the device. 316, 317, 318 These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. CLK* 122, 123, 128, 129, 136, 137, 142, 143 Global clocks. When pins are unused, Actel recommends they are tied to known state, preferably ground. HCLK* 299, 300, 305, 306, 313, 314, 319, 320 Hardwired clocks. When pins are unused, it is recommended that they are tied to ground. Copyright Gaisler Research AB Note June 2007, Version 1.0.0 40 17.4 GR701A RTAX2000S specific pins - CG624 package The Actel RTAX2000S FPGA device has special pins that need to be correctly connected on the printed circuit board, as shown in table 26. Please refer to the Actel data sheet [RTAX] for details. Table 27. RTAX2000S special pins - CG624 package Name Pin CG624 GND A18, A24, A25, A2, A8, AA10, AA16, AA18, AA21, AA5, Low supply voltage, ground AB22, AB4, AC10, AC16, AC23, AC3, AD1, AD2, AD24, AD25, AE1, AE18, AE24, AE2, AE25, AE8, B1, B2, B25, B24, C10, C16, C23, C3, D22, D4, E10, E16, E21, E5, E8, H1, H21, H25, K21, K23, K3, K5, L11, L12, L13, L14, L15, M11, M12, M13, M14, M15, N11, N12, N13, N14, N15, P11, P12, P13, P14, P15, R11, R12, R13, R14, R15, T21, T23, T3, T5, V1, V25, V5 VCCA AB20, F22, F4, J17, J9, K10, K11, K15, K16, L10, L16, R10, R16, T10, T11, T15, T16, U17, U9, Y4 VCCDA A12, A14, AA13, AA15, AA20, AA7, AB13, AC11, AD11, 3.3 V supply voltage for I/O differential amplifier and JTAG and AD4, AE12, AE17, B15, C15, C6, D13, E13, E19, F21, G10, G5, probe interfaces. N21, N5, W21 VCCIB0 A3, B3, C4, D5, E13, J10, J11, K12 3.3 V supply voltage for I/O VCCIB1 A23, B23, C22, D21, J15, J16, K14 3.3 V supply voltage for I/O VCCIB2 C24, C25, D23, E22, K17, L17, M16 3.3 V supply voltage for I/O VCCIB3 AA22, AB23, AC24, AC25, P16, R17, T17 2.5 V supply voltage for I/O VCCIB4 AB21, AC22, AD23, AE23, T14, U15, U16 3.3 V supply voltage for I/O VCCIB5 AB5, AC4, AD3, AE3, T12, U10, U11 3.3 V supply voltage for I/O VCCIB6 AA4, AB3, AC1, AC2, P10, R9,T9 3.3 V supply voltage for I/O VCCIB7 C1, C2, D3, E4, K9, L9, M10 3.3 V supply voltage for I/O VPUMP E20 Voltage External Pump. In normal operation, using the internal charge pump, should be tied to ground. TRST E6 JTAG Test Clock. Actel recommends this pin be hardwired to ground for flight. TCK F5 JTAG Test Clock. Actel recommends this pin be hardwired to ground. Must not be left unconnected. TDI C5 JTAG Test Data Input. Actel recommends that this pin be hardwired to VCCDA, or left unconnected. TDO F6 JTAG Test Data Output. Must be left unconnected. TMS D6 JTAG Test Mode Select. Actel recommends this pin be hardwired to VCCDA, or left unconnected. PRA F13 PRB A13 Test Probe. The pins’ probe capabilities are disabled to protect programmed design confidentiality. These pins must be left unconnected. PRC AB12 PRD AE13 NC AA12, AA14, E12, E14, F12, F14, H12, H14, J12, J14, U12, U14, V12, V14, Y12, Y14 No Connection. Pins are not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. CLK* AC12, AC13, AD12, AD13, W14, W15, W13, Y13 Global clocks. When pins are unused, Actel recommends they are tied to known state, preferably ground. CLKH* B13, B14, C12, C13, G12, G13, G14, G15 Hardwired clocks. When pins are unused, it is recommended that they are tied to ground. Copyright Gaisler Research AB Note 1.5 V supply voltage for array June 2007, Version 1.0.0 41 18 GR701A Reference documents [AMBA] AMBATM Specification, Rev 2.0, ARM IHI 0011A, 13 May 1999, Issue A, first release, ARM Limited [GRLIB] GRLIB IP Library www.gaisler.com [GRIP] GRLIB IP Core User's Manual, Version 1.0.15, Gaisler Research, www.gaisler.com [SPW] ECSS - Space Engineering, SpaceWire - Links, Nodes, Routers and Networks, ECSS-E-50-12A, 24 January 2003 [RMAPID] Space Engineering, Protocol Identification, Draft ECSS-E50-11, Draft B February 2005 [RMAP] Space Engineering, Remote Memory Access Protocol, Draft ECSS-E50-11, Draft F December 2006 1 [RTAX] RTAX-S RadTolerant FPGAs, 5172169-8/5.07, v4.0, May 2007, Actel Corporation [PACK] Package Mechanical Drawings, 5193068-19/5.07, v9.5, May 2007, Actel Corporation Note 1: The ECSS-E50-11 Draft F document of the draft standard contains an informative VHDL description of the CRC implementation used in the RMAP protocol which is considered as incorrect with respect to the normative part of the draft standard. The VHDL descriptions in the ECSS-E50-11 Draft F document should therefore be ignored. Copyright Gaisler Research AB User's Manual, Version 1.0.15, Gaisler Research, June 2007, Version 1.0.0 42 19 GR701A Ordering information Ordering information is provided in table 28 and a legend is provided in table 29. Table 28. Ordering information Product Device GR701A RTAX2000S Speed Grade Std Package Type Package Lead Count E B CQ 352 E B -1 -1 Application Table 29. Ordering legend Designator Option Description Product GR701A PCI to SpaceWire and 1553 bridge Device RTAX2000S 2,000,000 Equivalent System Gates Speed Grade STD Standard Speed -1 Approximately 15% Faster than Standard Package Type CQ Ceramic Quad Flat Pack CG Ceramic Column Grid Array LG Land Grid Array FG Fine Pitch Plastic Ball Grid Array B MIL-STD 883 Class B E E-Flow (Actel Space-Level Flow) Application Copyright Gaisler Research AB June 2007, Version 1.0.0 43 GR701A Table of contents 1 Introduction.............................................................................................................................. 2 1.1 1.2 2 Architecture.............................................................................................................................. 4 2.1 2.2 2.3 2.4 3 Overview ............................................................................................................................................... 21 Signal definitions and reset values ........................................................................................................ 21 Timing ................................................................................................................................................... 21 General Purpose Timer Unit .................................................................................................. 22 10.1 10.2 10.3 11 Overview ............................................................................................................................................... 20 Signal definitions and reset values ........................................................................................................ 20 Timing ................................................................................................................................................... 20 UART Serial Interface............................................................................................................ 21 9.1 9.2 9.3 10 Overview ............................................................................................................................................... 18 Signal definitions and reset values ........................................................................................................ 18 Timing ................................................................................................................................................... 19 CAN 2.0 Interface .................................................................................................................. 20 8.1 8.2 8.3 9 Overview ............................................................................................................................................... 14 Signal definitions and reset values ........................................................................................................ 14 Timing ................................................................................................................................................... 14 MIL-STD-1553B Bus Controller / Remote Terminal / Monitor Terminal ............................ 18 7.1 7.2 7.3 8 Overview ............................................................................................................................................... 13 SpaceWire Interface .............................................................................................................. 14 6.1 6.2 6.3 7 Overview ............................................................................................................................................... 10 Signal definitions and reset values ........................................................................................................ 10 Timing ................................................................................................................................................... 11 On-chip Memory with EDAC Protection............................................................................... 13 5.1 6 Overview ................................................................................................................................................. 8 Signal definitions and reset values .......................................................................................................... 8 Timing ..................................................................................................................................................... 9 Memory Interface with EDAC ............................................................................................... 10 4.1 4.2 4.3 5 Cores........................................................................................................................................................ 4 Interrupts ................................................................................................................................................. 4 Memory map ........................................................................................................................................... 5 Signals ..................................................................................................................................................... 6 PCI Initiator/Target .................................................................................................................. 8 3.1 3.2 3.3 4 Overview ................................................................................................................................................. 2 Signal overview ....................................................................................................................................... 3 Overview ............................................................................................................................................... 22 Signal definitions and reset values ........................................................................................................ 22 Timing ................................................................................................................................................... 22 General Purpose I/O Port ....................................................................................................... 23 11.1 Overview ............................................................................................................................................... 23 Copyright Gaisler Research AB June 2007, Version 1.0.0 44 11.2 11.3 12 Overview ............................................................................................................................................... 30 Signal definitions and reset values ........................................................................................................ 30 Timing ................................................................................................................................................... 30 Electrical description ............................................................................................................. 31 16.1 16.2 16.3 16.4 16.5 16.6 17 Overview ............................................................................................................................................... 28 Reset generation..................................................................................................................... 30 15.1 15.2 15.3 16 Overview ............................................................................................................................................... 26 AMBA AHB/APB bridge with plug&play support ............................................................... 28 14.1 15 Overview ............................................................................................................................................... 24 AMBA AHB controller with plug&play support................................................................... 26 13.1 14 Signal definitions and reset values ........................................................................................................ 23 Timing ................................................................................................................................................... 23 Status Registers ...................................................................................................................... 24 12.1 13 GR701A Absolute maximum ratings ................................................................................................................... 31 Operating conditions ............................................................................................................................. 31 Input voltages, leakage currents and capacitances ................................................................................ 31 Output voltages, leakage currents and capacitances.............................................................................. 31 Clock Input voltages, leakage currents and capacitances...................................................................... 31 Power supplies....................................................................................................................................... 31 Mechanical description .......................................................................................................... 32 17.1 17.2 17.3 17.4 Component and package ....................................................................................................................... 32 Pin assignment....................................................................................................................................... 32 RTAX2000S specific pins - CQ352 package......................................................................................... 39 RTAX2000S specific pins - CG624 package......................................................................................... 40 18 Reference documents ............................................................................................................. 41 19 Ordering information ............................................................................................................. 42 Copyright Gaisler Research AB June 2007, Version 1.0.0 45 GR701A Information furnished by Gaisler Research is believed to be accurate and reliable. However, no responsibility is assumed by Gaisler Research for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Gaisler Research. Gaisler Research AB tel +46 31 7758650 Första Långgatan 19 fax +46 31 421407 413 27 Göteborg [email protected] Sweden www.gaisler.com Copyright © 2007 Gaisler Research AB. All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit. Copyright Gaisler Research AB June 2007, Version 1.0.0
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
advertisement