AK4497EQ

Add to my manuals
98 Pages

advertisement

AK4497EQ | Manualzz

[AK4497]

=

Preliminary

=

AK4497

Quality Oriented 32-Bit 2ch DAC

1.

General Description

The AK4497 is a new generation Premium 32-bit 2ch DAC with VELVET SOUND

TM

technology, achieving industry’s leading level low distortion characteristics and wide dynamic range. The AK4497 integrates a newly developed switched capacitor filter “OSR Doubler”, making it capable of supporting wide range signals and achieving low out-of-band noise while realizing low power consumption.

Moreover, the AK4497 has six types of 32-bit digital filters, realizing simple and flexible sound tuning in wide range of applications. The AK4497 accepts up to 768kHz PCM data and 22.4MHz DSD data, ideal for a high-resolution audio source playback that are becoming widespread in network audios,

USB-DACs and Car Audio Systems.

Application: AV Receivers, CD/SACD player, Network Audios, USB DACs, USB Headphones, Sound

Plates/Bars, Measurement Equipment, Control Systems, Public Audios (PA), IC-Recorders,

Bluetooth Headphones, HD Audio/Voice Conference Systems

2.

Features

THD+N: -115dB

DR, S/N: 127dB (Mono Mode, 130dB)

256 Times Over Sampling

Sampling Rate: 8kHz

768kHz

32-bit 8x Digital Filter

- Short Delay Sharp Roll-off, GD=6.0/fs,

Ripple:

0.005dB, Attenuation: 100dB

- Short Delay Slow Roll-off, GD=5.0/fs

- Sharp Roll-off

- Slow Roll-off

- Low-dispersion Short Delay Filter

- Super Slow Roll-off

2.8MHz, 5.6MHz, 11.2MHz, 22.4MHz DSD Input Support

- Filter1 (fc=39kHz, 2.8MHz mode), Filter2 (fc=76kHz, 2.8MHz mode)

Digital De-emphasis for 32, 44.1, 48kHz sampling

Soft Mute

Digital Attenuator (255 levels and 0.5dB step)

Mono Mode

External Digital Filter Interface

Audio I/F Format: 24/32 bit MSB justified, 16/20/24/32 bit LSB justified, I

2

Master Clock

S, DSD

8kHz ~ 32kHz: 1152fs

8kHz ~ 54kHz: 512fs or 768fs

8kHz ~ 108kHz: 256fs or 384fs

108kHz ~ 216kHz: 128fs or 192fs

~ 384kHz: 64fs or 128fs

~ 768kHz: 64fs

Power Supply:

TVDD=AVDD= 3.3

3.6V (by Internal LDO),

TVDD=AVDD= 1.7

3.6V, DVDD=1.7

1.98V (by external supply),

VDDL/R= 4.75

5.25V

Digital Input Level: CMOS

Package: 64-pin TQFP

Rev. 0.1

- 1 -

2015/11

[AK4497]

3.

Table of Contents

1.

2.

3.

4.

General Description ........................................................................................................................ 1

Features .......................................................................................................................................... 1

Table of Contents ............................................................................................................................ 2

Block Diagram ................................................................................................................................. 4

5. Pin Configurations and Functions ................................................................................................... 5

■ Pin Configurations .............................................................................................................................. 5

■ Pin Functions ..................................................................................................................................... 6

■ Handling of Unused Pin ..................................................................................................................... 8

6.

7.

Absolute Maximum Ratings ............................................................................................................ 9

Recommended Operating Conditions ............................................................................................ 9

8. Electrical Characteristics .............................................................................................................. 10

■ Analog Characteristics ..................................................................................................................... 10

■ DSD mode ........................................................................................................................................ 11

■ Sharp Roll-Off Filter Characteristics (fs = 44.1kHz) ........................................................................ 12

■ Short Delay Sharp Roll-Off Filter Characteristics (fs = 44.1kHz) .................................................... 14

■ Slow Roll-Off Filter Characteristics (fs = 44.1kHz) .......................................................................... 16

■ Short Delay Slow Roll-Off Filter Characteristics (fs = 44.1kHz) ...................................................... 18

■ Low-dispersion Short Delay Filter Characteristics (fs = 44.1kHz) ................................................... 20

■ DSD Filter Characteristics ................................................................................................................ 21

■ DC Characteristics ........................................................................................................................... 22

■ Switching Characteristics ................................................................................................................. 23

■ Timing Diagram ................................................................................................................................ 28

9. Functional Descriptions................................................................................................................. 33

■ D/A Conversion Mode ...................................................................................................................... 35

■ D/A Conversion Mode Switching Timing ......................................................................................... 35

■ System Clock ................................................................................................................................... 37

■ Power ON/OFF Sequence in FS Auto Detect Mode (L DOE pin = “H”) ........................................... 42

■ Audio Interface Format .................................................................................................................... 45

■ Digital Filter ...................................................................................................................................... 57

■ De-emphasis Filter (PCM) ............................................................................................................... 58

■ Output Volume (PCM, DSD, EXDF) ................................................................................................ 58

■ Gain Adjustment Function (PCM, DSD, EXDF) ............................................................................... 59

■ Zero Detection (PCM, DSD, EXDF) ................................................................................................. 60

■ L/R Channel Output Signal Select, Phase Inversion Function (PCM, DSD, EXDF) ....................... 61

■ Sound Quality (PCM, DSD, EXDF) .................................................................................................. 62

■ DSD Signal Full Scale (FS) Detection ............................................................................................. 63

■ Soft Mute Operation (PCM, DSD, EXDF) ........................................................................................ 64

■ LDO .................................................................................................................................................. 65

■ Shutdown Switch .............................................................................................................................. 65

■ Over Current Protection for Analog Output Pins ............................................................................. 65

■ Power Up/Down Function ................................................................................................................ 66

■ Synchronize Function (PCM, EXDF) ............................................................................................... 73

■ Register Control Interface ................................................................................................................ 75

■ Register Map .................................................................................................................................... 79

■ Register Definitions .......................................................................................................................... 81

10. Recommended External Circuits .................................................................................................. 91

11. Package ........................................................................................................................................ 95

■Outline Dimensions ........................................................................................................................... 95

■ Material & Lead Finish ..................................................................................................................... 96

■ Marking ............................................................................................................................................. 96

12. Ordering Guide ............................................................................................................................. 97

Rev. 0.1

- 2 -

2015/11

[AK4497]

■ Ordering Guide ................................................................................................................................. 97

IMPORTANT NOTICE ............................................................................................................................. 98

Rev. 0.1

- 3 -

2015/11

[AK4497]

4.

Block Diagram

PDN

BICK/BCK/DCLK

SDATA/DINL/DSDL

LRCK/DINR/DSDR

TDMO

LDOE

LDO

PCM

Data

Interface

TVDD DVDD DVSS AVDD

SSLOW/WCK

TDM0/DCLK

DEM0/DSDL

GAIN/DSDR

External

DF

Interface

DSD

Data

Interface

Normal path

DSDD bit

“0”

DSD

Filter

DATT

Soft Mute

AVSS

De-emphasis

&

Interpolator

Volume bypass

DSDD bit

“1”



Modulator

SMUTE/CSN

SD/ CCLK/SCL

SLOW/CDTI/SDA

Control

Register

SCF

Vref

SCF

Clock

Divider

MCLK停止検出

Oscillator

IREF

VSSL

VDDL

AOUTLN

AOUTLP

VCML

VREFHL

VREFLL

VREFLR

VREFHR

VCMR

AOUTRP

AOUTRN

VDDR

VSSR

PSN DIF0/

DIF1/

DZFL DZFR

DIF2/

CAD0

TDM1 DCHAIN

INVR ACKS/

CAD1

TESTE HLOAD

/I2C

Block Diagram

MCLK EXTR

Rev. 0.1

- 4 -

2015/11

Pin Configurations

5.

Pin Configurations and Functions

[AK4497]

Rev. 0.1

- 5 -

2015/11

[AK4497]

Pin Functions

No. Pin Name I/O

1 LDOE

Function

I

Internal LDO Enable Pin.

“L”: Disable, “H”: Enable

2 PDN I

Power-Down Mode Pin

When at “L”, the AK4497 is in power-down mode and is held in reset. The

AK4497 must always be reset upon power-up.

BICK I Audio Serial Data Clock Pin in PCM Mode

3

BCK

DCLK

I Audio Serial Data Clock Pin

I DSD Clock Pin in DSD Mode (DSDPATH bit =

“1”)

SDATA

4

DINL

DSDL

LRCK

DINR 5

DSDR

SSLOW

6

WCK

7 TDMO

8

9

10

11

12

13

14 PSN

15

16

17

18

SMUTE

CSN

SD

CCLK

SCL

SLOW

CDTI

SDA

DIF0

DZFL

DIF1

DZFR

DIF2

CAD0

HLOAD

I2C

DEM0

DSDL

GAIN

DSDR

ACKS

CAD1

I Audio Serial Data Input Pin in PCM Mode

I Lch Audio Serial Data Input Pin

I DSD Lch Data Input Pin in DSD Mode(DSDPATH bit =

“1”)

I L/R Clock Pin in PCM Mode

I Rch Audio Serial Data Input Pin

I

DSD Rch Data Input Pin in DSD Mode(DSDPATH bit =

“1”)

I Digital Filter Select Pin in Parallel Control Mode

I Word Clock input pin

O Audio Serial Data Onput in Daisy Chain mode (Internal pull-down pin)

I

When this pin is changed to “H”, soft mute cycle is initiated.

When returning “L”, the output mute releases.

I Chip Select Pin in Serial Control Mode

I Digital Filter Select Pin in Parallel Control Mode

I Control Data Clock Pin in Serial Control Mode

I

I2C=”H”: Control Data Clock Input Pin

I Digital Filter Select Pin in Parallel Control Mode

I Control Data Input Pin in Serial Control Mode

I/O

I2C=”H”: Control Data Input Pin

I Digital Input Format 0 Pin in Parallel Control Mode

O Lch Zero Input Detect Pin in Serial Control Mode (Internal pull-down pin)

I Digital Input Format 1 Pin in Parallel Control Mode

O Rch Zero Input Detect Pin in Serial Control Mode (Internal pull-down pin)

I Digital Input Format 2 Pin in Parallel Control Mode

I Chip Address 0 Pin in Serial Control Mode

I

Parallel or Serial Select Pin (Internal pull-up pin)

“L”: Serial Control Mode, “H”: Parallel Control Mode

I Heavy Load Mode Enable Pin in Parallel Control Mode.

Resister Control Interface Pin in Serial Control Mode.

I De-emphasis Enable 0 Pin in Parallel Control Mode

I DSD Lch Data Input Pin in DSD Mode

(DSDPATH bit =”0”)

I Output Gain Control Pin in Parallel control mode (+2.5dB)

I DSD Rch Input Pin in DSD Mode

(DSDPATH bit =”0”)

I

Auto Setting Mode Select Pin in Parallel control mode

“L”: Manual Setting Mode, “H”: Auto Setting Mode

I Chip Address 1 Pin in Serial Control Mode

Rev. 0.1

- 6 -

2015/11

[AK4497]

No. Pin Name I/O

19

TDM0

DCLK

Function

I

TDM Mode select pin in Parallel control mode.

I

DSD clock Pin in DSD Mode (DSDPATH bit =

“0”)

I

TDM Mode select pin in Parallel control mode.

20 TDM1

21 DCHAIN

22 INVR

23 TESTE

I

I

I

Daisy Chain Mode select pin in Parallel control mode.

Rch output data invert enable pin in Parallel control mode.

Testmode Enable pin. (Internal pull-down pin)

24-26 VREFHR I Rch High Level Voltage Reference Input Pin

27-29 VREFLR I Rch Low Level Voltage Reference Input Pin

30 VCMR I

Right channel Common Voltage Pin,

Normally connected to VREFLR with a 10uF electrolytic cap.

31,32 AOUTRN O Rch Negative Analog Output Pin

33,34 AOUTRP O Rch Positive Analog Output Pin

35-37 VDDR

38-40 VSSR

41-43 VSSL

44-46 VDDL

62

DVDD

- Rch Analog Power Supply Pin

- Analog Ground Pin

- Analog Ground Pin

-

Lch Analog Power Supply Pin .

47,48 AOUTLP O Lch Positive Analog Output Pin

49,50 AOUTLN O Lch Negative Analog Output Pin

51 VCML -

Left channel Common Voltage Pin

Normally connected to VREFLL with a 10uF electrolytic cap.

52-54 VREFLL

55-57 VREFHL

58

59

EXTR

AVDD

I

I

I

-

-

Lch Low Level Voltage Reference Input Pin

Lch High Level Voltage Reference Input Pin

External Resistor Connect Pin

Rext=33kΩ(±1%) toAVSS

(LDOE pin = “H”)

Analog Power Supply Pin, 3.0

3.6V

(LDOE pin = “L”)

Analog Power Supply Pin, 1.7

3.6V

60 AVSS

61 MCLK

- Analog Ground Pin

I Master Clock Input Pin

(LDOE p in = “H”)

O LDO Output Pin,

-

This pin should be connected to DVSS with 1.0µF.

(LDOE pin = “L”)

Digital Power Supply Pin, 1.7

1.98V

63

DVSS - Digital Ground Pin

64 TVDD

-

-

(LDOE pin = “H”)

Digital Power Supply Pin, 3.0

3.6V

(LDOE pin = “L”)

Digital Power Supply Pin, 1.7

3.6V

Note 1. All input pins except internal pull-up/down pins must not be left floating.

Note 2. The AK4497 must be reset by PDN pin after changing Parallel/Serial mode by the PSN pin.

Note 3. PCM mode, DSD mode and EXDF mode are controlled by register settings.

Rev. 0.1

- 7 -

2015/11

Handling of Unused Pin

Unused I/O pins must be connected appropriately.

(1) Parallel Mode (PCM mode only)

Classification Pin Name

Analog

Digital

Setting

AOUTLP, AOUTLN Open

AOUTRP, AOUTRN Open

I2C, TESTE Connect to DVSS

(2) Serial Mode

1. PCM Mode

Classification Pin Name

Analog

Digital

Setting

AOUTLP, AOUTLN Open

AOUTRP, AOUTRN Open

TESTE Connect to DVSS

2. DSD Mode

Classification Pin Name

Analog

AOUTLP, AOUTLN

AOUTRP, AOUTRN

Digital

BICK, SDATA, LRCK, WCK, TDM1,

DCHAIN, INVR, TESTE

Setting

Open

Open

Connect to DVSS

Pull-up and Pull-down pins List

Classification Pin Name Setting pull-up pin (typ=100k

Ω)

PSN Connect to TVDD pull-down pin (typ=100k

Ω)

TDMO, DZFL, DZFR, TESTE Connect to DVSS

[AK4497]

Rev. 0.1

- 8 -

2015/11

[AK4497]

6.

Absolute Maximum Ratings

(AVSS=DVSS=VSSL=VSSR=VREFLL=VREFLR=0V; Note 4 )

Parameter Symbol

Power

Supplies:

Digital I/O

Digital Core

Analog

Analog

|AVSS

DVSS| ( Note 5 )

TVDD

DVDD

AVDD

VDDL/R

GND

Min.

0.3

0.3

0.3

0.3

-

Max.

4.0

2.5

4.0

6.0

Input Current, Any Pin Except Supplies

Digital Input Voltage

Ambient Temperature (Power applied)

Storage Temperature

IIN

VIND

Ta

Tstg

-

0.3

40

65

0.3

10

TVDD+0.3

85

150

Note 4. All voltages with respect to ground.

Note 5. AVSS, DVSS, VSSL and VSSR must be connected to the same analog ground plane.

WARNING: Operation at or beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

Unit

mA

V

C

C

V

V

V

V

V

7.

Recommended Operating Conditions

(AVSS=DVSS=VSSL=VSSR=VREFLL=VREFLR=0V; Note 4 )

Parameter Symbol

■ LDOE pin= “L”

Power Supplies

Voltage Reference

( Note

7

)

Digital I/O

Analog

Digital Core

Analog

■ LDOE pin= “H”

Digital I/O

Analog

Analog

“H” voltage reference

“L” voltage reference

TVDD

AVDD

DVDD

VDDL/R

TVDD

AVDD

VDDL/R

VREFHL/R

VREFLL/R

Min.

DVDD

DVDD

1.7

4.75

3.0

3.0

4.75

VDDL/R-0.5

-

Typ.

1.8

1.8

1.8

5.0

3.3

Max.

3.6

3.6

1.98

5.25

3.6

Unit

V

V

V

V

V

3.3

5.0

-

VSSL/R

3.6

5.25

VDDL/R

-

V

V

V

V

Note 4. All voltages with respect to ground.

Note 6. The power-up sequence between AVDD, VDDL/R and DVDD is not critical.

Note 7. The analog output voltage scales with the voltage of (VREFH

VREFL).

AOUT (typ.@0dB) = (AOUT+)

(AOUT

) =

2.8Vpp

(VREFHL/R

VREFLL/R)/5.

* TVDD must be powered up befor or at the same time of DVDD when the LDOE pin =

“L”.

* The internal LDO outputs DVDD (1.8V) when the LDOE pin =

“H”. The power-up sequence between

VDDL/R and TVDD or VDDL/R and AVDD is not critical.

* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.

Rev. 0.1

- 9 -

2015/11

[AK4497]

8.

Electrical Characteristics

Analog Characteristics

(Ta=25

C; LDOE=L, AVDD=TVDD=DVDD=3.3V; AVSS=DVSS=VSSL/R=0V;

VREFHL/R=VDDL/R=5.0V, VREFLL/R= 0V; Input data = 24bit; R

L

1k

; BICK=64fs; Signal Frequency =

1kHz; Sampling Frequency = 44.1kHz; Measurement bandwidth = 20Hz ~ 20kHz; External Circuit: Figure

72 ; unless otherwise specified.)

Parameter Min. Typ. Max. Unit

Resolution

Dynamic Characteristics (Note 8)

THD+N fs=44.1kHz

BW=20kHz fs=96kHz

BW=40kHz

0dBFS

60dBFS

0dBFS

60dBFS fs=192kHz

BW=40kHz

BW=80kHz

0dBFS

60dBFS

60dBFS

Dynamic Range (

60dBFS with A-weighted)( Note 9 , Note 11 )

S/N (A-weighted) ( Note 10 , Note 11 )

S/N (Mono mode, A-weighted) ( Note 11 )

Interchannel Isolation (1kHz)

-

-

-

-

-

122

122

125

110

-

-115

-64

-113

-61

-110

-61

-58

127

127

130

120

32

TBD

TBD

TBD

TBD

TBD

TBD

TBD

-

-

-

-

Bits

DC Accuracy

Interchannel Gain Mismatch

Gain Drift (

Output Voltage (

Output Voltage (GC[2:0]=000)

Load Resistance (HLOAD=L) (

Load Resistance (HLOAD=H)

Load Capacitance (

Note 12

Note 13

Note 14

Note 14

)

)

)

)

-

-

2.65

3.55

-

120

-

0.15

2.8

3.75

-

-

0.3

20

2.95

3.95

-

25 dB ppm/

C

Vpp k

 pF

Note 8. Measured by Audio Precision System Two. Averaging mode.

Note 9. Figure 72 External LPF Circuit Example. 101dB at 16bit data and 118dB at 20bit data.

Note 10. Figure 72

External LPF Circuit Example. S/N does not depend on the input data size.

Note 11. SC[1:0] bits =

“00” or “01”

Note 12. The voltage on (VREFH

VREFL) is held +5V externally.

Note 13. Full scale voltage(0dB). Output voltage scales with the voltage of (VREFHL/R

VREFLL/R).

AOUT (typ.@0dB) = (AOUT+)

(AOUT

) =

2.8Vpp

(VREFHL/R

VREFLL/R)/5.

Note 14. Regarding Load Resistance, AC load is 1k

(min) with a DC cut capacitor. DC load is 1.5k ohm

(min) without a DC cut capacitor . The load resistance value is with respect to ground. Analog characteristics are sensitive to capacitive load that is connected to the output pin. Therefore the capacitive load must be minimized.

dB dB dB dB dB dB dB dB dB dB dB

Rev. 0.1

- 10 -

2015/11

[AK4497]

(Ta=25

C; AVDD=TVDD=3.3V, DVDD=1.8V(@LDOE=

“L”), AVSS=DVSS=VSSL/R=0V;

VREFHL/R=VDDL/R=5.0V, VREFLL/R= 0V; Input data = 24bit; BICK=64fs; Signal Frequency = 1kHz;

Sampling Frequency = 44.1kHz; Internal OPAMP GBW=30MHz (SC[1:0] bit=”00”); 2Vrms output mode

(GC[2:0] bit=

“000” or GAIN= “L”); Heavy load drive mode=off(HLOAD bit= “0” or HLOAD= “L”); unless otherwise specified.)

Power Supplies

Parameter

Power Supply Current

Normal operation (PDN pin = “H”)

VDDL/R(total)

VREFHL/R

AVDD

TVDD

LDOE=

“H”

LDOE=

“L” fs= 44.1kHz fs= 96kHz fs = 192kHz

DVDD

LDOE=

“L” fs= 44.1kHz fs= 96kHz fs = 192kHz

Total Idd per channel (HLOAD=

“H”)

・fs=44.1kHz

Power down (PDN pin = “L”) (

Note 15 )

TVDD+AVDD+VDDL/R+DVDD

Min.

-

-

-

-

Typ.

64

1

1

8

13

20

1

8

13

20

45

10

Max.

mA/ch

A

Unit

mA mA mA mA mA mA mA mA mA mA

Note 15. In the power down mode. The PSN, DEM0 pin = DVDD, and all other digital input pins including clock pins (MCLK, BICK and LRCK) are held to DVSS.

Note 16. The DVDD pin becomes an output pin when the LDOE pin =

“H”.

DSD mode

(Ta=25

C; LDOE=L, AVDD=TVDD=3.3V, DVDD=1.8V; AVSS=DVSS=VSSL/R=0V;

VREFHL/R=VDDL/R=5.0V, VREFLL/R= 0V; Signal Frequency = 1kHz; Measurement bandwidth = 20Hz

~ 20kHz; External Circuit; unless otherwise specified.)

Parameter

Resolution

Dynamic Characteristics

Min.

-

Typ.

-

Max.

32

Unit

Bits

THD+N DSD dataStream: 2.8224MHz 0dBFS

( Note 17 )

DSD dataStream: 5.6448MHz 0dBFS

DSD dataStream: 11.2896MHz 0dBFS

(

S/N

(A-weighted,

DSD dataStream: 2.8224MHz Digital

“0”

DSD dataStream: 5.6448MHz Digital

“0”

Normal path)

Note 17 )

DSD dataStream: 11.2896MHz

Digital

“0”

-

-

-

-

-

-

-115

-115

-115

127

127

127

-

-

-

-

-

- dB dB dB dB dB dB

DC Accuracy

Output Voltage (Normal path) (

Output Voltage (Volume Bypass) (

Note 13

Note 13

)

)

2.65

2.6

2.8

2.5

2.95 Vpp

2.63 Vpp

Note 17. Analog characteristics are not guaranteed when the DSD dataStream is 22.5782MHz.

Rev. 0.1

- 11 -

2015/11

[AK4497]

Sharp Roll-Off Filter Characteristics (fs = 44.1kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Normal Speed

Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”)

Symbol Min. Typ. Max. Unit Parameter

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 19 )

Stopband ( Note 19 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

PB

-

PB

SB

PR

SA

GD

0

-

0

24.1

100

-

22.05

29.2

20.0

-

20.0

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

20.0kHz - +0.1/-0.2 - dB

Sharp Roll-Off Filter Characteristics (fs=96kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Double Speed

Mode; DEM=OFF; SD bit=“0”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 19 )

Stopband ( Note 19 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

PB

PB

SB

PR

SA

GD

0

-

0

52.5

100

-

48.0

29.2

43.5

-

43.5

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

40.0kHz - +0.1/-0.6 - dB

Sharp Roll-Off Filter Characteristics (fs=192kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Quad Speed Mode;

DEM=OFF; SD bit=“0”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 19 )

Stopband ( Note 19 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

105

100

-

96.0

29.2

87.0

-

87.0

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

80.0kHz - +0.1/-2.0 - dB

Note 18. Frequency response refers to the output level (0dB) of a 1kHz, 0dB sine wave input.

Note 19. The passband and stopband frequencies scale with fs. For example, PB=0.4535×fs (@

0.01dB),

SB=0.546×fs.

Note 20. The first step of the Interpolator. This is a passband gain amplitude of the 4 times oversampling filter.

Note 21. The calculating delay time which occurred by digital filtering. This time is from setting the

16/20/24/32 bit data of both channels to the output of analog signal.

Rev. 0.1

- 12 -

2015/11

[AK4497]

Figure 1. Sharp Roll-off Filter Frequency Response

Rev. 0.1

Figure 2. Sharp Roll-off Filter Passband Ripple

- 13 -

2015/11

[AK4497]

Short Delay Sharp Roll-Off Filter Characteristics (fs = 44.1kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Normal Speed

Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”)

Symbol Min. Typ. Max. Unit Parameter

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 22 )

Stopband ( Note 22 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

24.1

100

-

22.05

6.25

20.0

-

20.0

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

20.0kHz - +0.1/ TBD - dB

Short Delay Sharp Roll-Off Filter Characteristics (fs = 96kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Double Speed

Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 22 )

Stopband ( Note 22 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

52.5

100

-

48.0

6.25

43.5

-

43.5

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

40.0kHz - +0.1/ TBD - dB

Short Delay Sharp Roll-Off Filter Characteristics (fs = 192kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Quad Speed Mode;

DEM=OFF; SD bit=“1”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

(

Digital Filter

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 22 )

Stopband (

Group Delay

Note 22

Passband Ripple (

Stopband Attenuation (

)

Note 20

Note 19

)

)

-

-

PB

SB

PR

SA

GD

0

-

0

105

100

-

96.0

6.25

87.0

-

87.0

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

80.0kHz - +0.1/ TBD - dB

Note 22. The passband and stopband frequencies scale with fs. For example, PB=0.4535×fs (@

0.01dB),

SB=0.546×fs.

Rev. 0.1

- 14 -

2015/11

[AK4497]

Figure 3. Short delay Sharp Roll-off Filter Frequency Response

Rev. 0.1

Figure 4. Short delay Sharp Roll-off Filter Passband Ripple

- 15 -

2015/11

[AK4497]

Slow Roll-Off Filter Characteristics (fs = 44.1kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Normal Speed

Mode; DEM=OFF; SD bit=“0”, SLOW bit=“1”)

Symbol Min. Typ. Max. Unit Parameter

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 23 )

Stopband ( Note 23 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

PB

-

PB

SB

PR

SA

GD

0

-

0

39.1

94

-

18.2

6.63

4.4

-

4.4

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

20.0kHz - +0.1/TBD - dB

Slow Roll-Off Filter Characteristics (fs = 96kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Double Speed

Mode; DEM=OFF; SD bit=“0”, SLOW bit=“1”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 23 )

Stopband ( Note 23 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

PB

PB

SB

PR

SA

GD

0

-

0

85.0

94

-

39.6

6.63

9.5

-

9.5

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

40.0kHz - +0.1/ TBD - dB

Slow Roll-Off Filter Characteristics (fs = 192kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Quad Speed Mode;

DEM=OFF; SD bit=“0”, SLOW bit=“1”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 23 )

Stopband ( Note 23 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

171

94

-

79.2

6.63

19.1

-

19.1

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

80.0kHz - +0.1/ TBD -

Note 23. The passband and stopband frequencies scale with fs. For example, PB = 0.1836 × fs

(@

0.01dB), SB = 0.8889 × fs. dB

Rev. 0.1

- 16 -

2015/11

[AK4497]

Figure 5. Slow Roll-off Filter Frequency Response

Rev. 0.1

Figure 6. Slow Roll-off Filter Passband Ripple

- 17 -

2015/11

[AK4497]

Short Delay Slow Roll-Off Filter Characteristics (fs = 44.1kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Normal Speed

Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”)

Symbol Min. Typ. Max. Unit Parameter

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 22 )

Stopband ( Note 22 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

24.1

100

-

22.05

6.25

20.0

-

20.0

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

20.0kHz - +0.1/ TBD - dB

Short Delay Slow Roll-Off Filter Characteristics (fs = 96kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Double Speed

Mode; DEM=OFF; SD bit=“1”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 22 )

Stopband ( Note 22 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

52.5

100

-

48.0

6.25

43.5

-

43.5

0.005

- kHz kHz kHz kHz dB dB

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

40.0kHz - +0.1/ TBD - dB

Short Delay Slow Roll-Off Filter Characteristics (fs = 192kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD= TVDD=3.0

3.6V, DVDD=1.7~1.98V; Quad Speed Mode;

DEM=OFF; SD bit=“1”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

Digital Filter

(

Frequency Response

Note 18 )

0.01dB

6.0dB

Passband ( Note 22 )

Stopband ( Note 22 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

-

-

PB

SB

PR

SA

GD

0

-

0

105

100

-

96.0

6.25

87.0

-

87.0

0.005

-

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

80.0kHz - +0.1/ TBD -

Note 24. The passband and stopband frequencies scale with fs. For example, PB = 0.4535 × fs

(@

0.01dB), SB = 0.546 × fs. kHz kHz kHz kHz dB dB

1/fs dB

Rev. 0.1

- 18 -

2015/11

[AK4497]

Figure 7. Short Delay Slow Roll-off Filter Frequency Response

Figure 8. Short Delay Slow Roll-off Filter Passband Ripple

Rev. 0.1

- 19 -

2015/11

[AK4497]

Low-dispersion Short Delay Filter Characteristics (fs = 44.1kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD=TVDD=3.0

3.6V, DVDD=1.7~1.98V; Normal Speed Mode

DEM=OFF; SD bit pr SD pin

=“1”, SLOW bit or SLOW pin=“0”, SSLOW bit or SSLOW pin =”0”)

Parameter

Digital Filter

Frequency Response

( Note 18 )

0.05dB

6.0dB

Passband ( Note 19 )

Stopband ( Note 19 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

Group Delay Distortion

Symbol

PB

-

PB

SB

PR

SA

GD

ΔGD

Min.

0

-

0

25.7

80

-

Typ.

22.5

10.0

±0.035

Max.

18.4

-

18.4

0.05

-

Unit

kHz kHz kHz kHz dB dB

1/fs

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

20.0kHz - +0.1/-0.2 - dB

Low-dispersion Short Delay Filter Characteristics (fs = 96kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD=TVDD=3.0

3.6V, DVDD=1.7~1.98V; Double Speed Mode;

DEM=OFF; SD bit=“0”, SLOW bit=“0”)

(

Parameter

Digital Filter

Frequency Response

Note 18 )

Passband ( Note 19 )

Stopband ( Note 19 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

Group Delay Distortion

0.05dB

6.0dB

Symbol

PB

PB

SB

PR

SA

GD

ΔGD

Min.

0

-

0

55.9

80

-

Typ.

49.0

10.0

±0.035

Max.

40.1

-

40.1

0.05

-

Unit

kHz kHz kHz kHz dB dB

1/fs

1/fs

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

40.0kHz - +0.1/ -0.6 - dB

Low-dispersion Short Delay Filter Characteristics (fs = 192kHz)

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD=TVDD=3.0

3.6V, DVDD=1.7~1.98V; Quad Speed Mode;

DEM=OFF; SD bit=“0”, SLOW bit=“0”)

Parameter Symbol Min. Typ. Max. Unit

(

Digital Filter

Frequency Response

Note 18 )

0.05dB

6.0dB

Passband ( Note 19 )

Stopband ( Note 19 )

Passband Ripple ( Note 20 )

Stopband Attenuation ( Note 19 )

Group Delay

Group Delay Distortion

Digital Filter + SCF ( Note 18 )

Frequency Response: 0

80.0kHz

-

-

PB

SB

PR

SA

GD

ΔGD

0

-

0

112

80

-

-

98.0

10.0

±0.035

+0.1/ -2.0

80.2

-

87.0

0.05

-

- kHz kHz kHz kHz dB dB

1/fs

1/fs dB

Rev. 0.1

- 20 -

2015/11

[AK4497]

DSD Filter Characteristics

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD=TVDD=3.0

3.6V, DVDD=1.7~1.98V; fs=44.1kHz; D/P

bit=“1”, DSDF bit = “0”, DSDSEL[1:0] bits = “00” (

Note 26 ))

Parameter Min. Typ. Max. Unit

Digital Filter Response

Frequency Response

( Note 27 )

20kHz

50kHz

100kHz

-0.77

-5.25

-18.80 dB dB dB

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD=TVDD=3.0

3.6V, DVDD=1.7~1.98V; fs=44.1kHz; D/P

bit=“1”, DSDF bit=“1” DSDD bit=“1”, DSDSEL[1:0]= “00” (

Note 26 ))

Parameter

Digital Filter Response

Min. Typ. Max. Unit

(

Frequency Response

Note 27 )

20kHz

100kHz

150kHz

-0.19

-5.29

-18.91 dB dB dB

Note 25. The peak level of DSD signal should be in the range of 25% ~ 75% duty according to the SACD format book (Scarlet Book).

Note 26. The frequency response refers to the output level of 0dB when a 1kHz 25%~75% duty sine wave is input.

Note 27. The frequency (20k, 100k and 200kHz) will be doubled when the sampling speed is 128fs

(DSDSEL[1:0] bits =

“01”) and it will be quadrupled when the sampling speed is 256fs

(DSDSEL[1:0] bits =

“10”).

Rev. 0.1

- 21 -

2015/11

[AK4497]

DC Characteristics

(Ta=-40~85

C; VDDL/R=4.75

5.25V, AVDD=TVDD=3.0

3.6V, DVDD=1.7~1.98V)

Symbol Min. Typ. Parameter

TVDD=1.7

3.0V

High-Level Input Voltage

Low-Level Input Voltage

TVDD=3.0V

3.6V

High-Level Input Voltage

Low-Level Input Voltage

VIH

VIL

VIH

VIL

80%TVDD

-

70%TVDD

-

-

-

-

-

Max.

-

20%TVDD

-

30%TVDD

Unit

High-Level Output Voltage

(TDMO, DZFL, DZFR pins: Iout=-100µA)

Low-Level Output Voltage

(except SDA pin: Iout= 100µA)

(SDA pin, 2.0V

TVDD

3.6V: Iout= 3mA)

(SDA pin, 1.7V

TVDD

2.0V: Iout= 3mA)

VOH

VOL

TVDD

-

0.5 -

-

-

0.5

V

V

Input Leakage Current

VOL

VOL

Iin

-

-

-

-

-

0.4

20%TVDD

10

V

V

A

Note 28. The TESTE pin has internal pull-down and the PSN pin has internal pull-up devices. Therefore the TESTE and PSN pins are not included in this specification.

V

V

V

V

Rev. 0.1

- 22 -

2015/11

[AK4497]

Switching Characteristics

(Ta=-40~85

C; VDDL/R=4.75

5.25V, TVDD=AVDD=1.7

3.6V, DVDD=1.7~1.98V, C

L

=20pF)

Parameter Symbol Min. Typ. Max.

Master Clock Timing

Unit

Frequency

Duty Cycle

Minimum Pulse Width fCLK dCLK

tCLKH

tCLKL

2.048

40

9.155

9.155

49.152

60

MHz

% nsec nsec

LRCK Clock Timing ( Note 29 )

Normal Mode (TDM[1:0] bits = “00”)

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

Oct speed mode

Hex speed mode

Duty Cycle

TDM128 mode (TDM[1:0] bits = “01”)

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

High time

Low time

TDM256 mode (TDM[1:0] bits = “10”)

Normal Speed Mode High time

Double Speed Mode

High time

Low time

TDM512 mode (TDM[1:0] bits = “11”)

Normal Speed Mode

High time

Low time fsn fsd fsq fso fsh

Duty fsn fsd fsq tLRH tLRL fsn fsd tLRH tLRL fsn tLRH tLRL

8

54

108

45

8

54

108

1/128fs

1/128fs

8

54

1/256fs

1/256fs

8

1/512fs

1/512fs

384

768

54

108

216

55

54

108

216

54

108

54 kHz kHz kHz kHz kHz

% kHz kHz kHz nsec nsec kHz kHz nsec nsec kHz nsec nsec

Note 29. The MCLK frequency must be changed while the AK4497 is in reset state by setting the PDN pin

=

“L” or RSTN bit = “0”.

Rev. 0.1

- 23 -

2015/11

[AK4497]

(Ta=-40~85

C; VDDL/R=4.75

5.25V, TVDD=AVDD=1.7

3.6V, DVDD=1.7~1.98V, C

L

=20pF, PSNpin=L,

AFSDbit= "1")

Parameter

Master Clock Timing (FS Auto Detect Mode)

Symbol Min. Typ. Max. Unit

Frequency

Duty Cycle

Minimum Pulse Width fCLK dCLK

tCLKH

tCLKL

7.68

40

9.155

9.155

49.152

60

MHz

% nsec nsec

LRCK Clock Timing (FS Auto Detect Mode) ( Note 30 )

Normal Mode (TDM[1:0] bits = “00”)

Normal Speed Mode

Double Speed Mode fsn fsd

Quad Speed Mode

Oct speed mode

Hex speed mode

Duty Cycle fsq fso fsh

Duty

TDM128 mode (TDM[1:0] bits = “01”)

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

High time

Low time

TDM256 mode (TDM[1:0] bits = “10”)

Normal Speed Mode High time

Double Speed Mode

High time

Low time

TDM512 mode (TDM[1:0] bits = “11”)

Normal Speed Mode

High time

Low time fsn fsd fsq tLRH tLRL fsn fsd tLRH tLRL fsn tLRH tLRL

30

88.2

176.4

45

30

88.2

176.4

1/128fs

1/128fs

30

1/256fs

1/256fs

30

1/512fs

1/512fs

384

768

54

108

216

55

54

108

216

54

108

54 kHz kHz kHz kHz kHz

% kHz kHz kHz nsec ns kHz kHz nsec nsec kHz nsec nsec

Note 30. Normal operation is not guaranteed if a frequency not shown above is input to the LRCK when the AK4497 is in Sampling Frequency Auto Detect Mode.

Rev. 0.1

- 24 -

2015/11

Parameter

PCM Audio Interface Timing

Normal Mode (TDM[1:0] bits = “00”)

BICK Period

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

Oct speed mode

Hex speed mode

BICK Pulse Width Low

BICK Pulse Width High

BICK “

” to LRCK Edge (

Note 31 )

LRCK Edge to BICK “

” (

Note 31 )

SDATA Hold Time

SDATA Setup Time

TDM128 mode (TDM[1:0] bits = “01”)

BICK Period

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

BICK Pulse Width Low

BICK Pulse Width High

BICK “

” to LRCK Edge (

Note 31 )

LRCK Edge to BICK “

” (

Note 31 )

SDATA Hold Time

SDATA Setup Time

TDM256 mode (TDM[1:0] bits = “10”)

BICK Period

Normal Speed Mode

Double Speed Mode ( Note 32 )

BICK Pulse Width Low

BICK Pulse Width High

BICK “

” to LRCK Edge (

Note 31 )

LRCK Edge to BICK “

” (

Note 31 )

TDMO Setup time BICK “

TDMO Hold time BICK “

” (

Note 34 )

SDATA Hold Time

SDATA Setup Time

TDM512 mode (TDM[1:0] bits = “11”)

BICK Period

Normal Speed Mode ( Note 33 )

BICK Pulse Width Low

BICK Pulse Width High

BICK “

” to LRCK Edge (

Note 31 )

LRCK Edge to BICK “

” (

Note 31 )

TDMO Setup time BICK “

TDMO Hold time BICK “

” (

Note 34 )

SDATA Hold Time

SDATA Setup Time

Symbol

tBCK tBCK tBCK tBCK tBCK tBCKL tBCKH tBLR tLRB tSDH tSDS tBCK tBCK tBCK tBCKL tBCKH tBLR tLRB tSDH tSDS tBCK tBCK tBCKL tBCKH tBLR tLRB tBSS tBSH tSDH tSDS tBCK tBCKL tBCKH tBLR tLRB tBSS tBSH tSDH tSDS

Min.

1/256fsn

1/128fsd

1/64fsq

1/64fso

1/64fsh

9

9

5

5

5

5

1/128fsn

1/128fsd

1/128fsq

14

14

14

14

5

5

1/256fsn

1/256fsd

14

14

14

14

5

5

5

5

1/512fsn

14

14

14

14

5

5

5

5

Note 31. BICK rising edge must not occur at the same time as LRCK edge.

Note 32. Daisy Chain Mode, fsd (max) = 96 kHz if

“TVDD < 3.0V”.

Note 33. Daisy Chain Mode, fsn (max) = 48 kHz if

“TVDD < 3.0V”.

Note 34

. LDOE pin = “L”, tBSH (min) = 4 nsec if “TVDD > 2.6V”.

Typ. Max.

[AK4497]

Unit

nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec nsec

Rev. 0.1

- 25 -

2015/11

[AK4497]

Parameter

PCM Audio Interface Timing

External Digital Filter Mode

BCK Period

BCK Pulse Width Low

BCK Pulse Width High

BCK “

” to WCK Edge

WCK Period

WCK Edge to BCK “

WCK Pulse Width Low

WCK Pulse Width High

DINL/R Hold Time

DINL/R Setup Time

DSD Audio Interface Timing

Symbol

tB tBL tBH tBW tWCK tWB tWCKL tWCKH tDH tDS

Min.

27

10

10

5

1.3

5

54

54

5

5

Typ. Max.

Sampling Frequency

fs 30 48 kHz

(64fs mode, DSDSEL [1:0] bits = “00”)

DCLK Period

DCLK Pulse Width Low

DCLK Pulse Width High

DCLK Edge to DSDL/R ( Note 35 )

(128fs mode, DSDSEL [1:0] bits = “01”)

DCLK Period

DCLK Pulse Width Low

DCLK Pulse Width High

DCLK Edge to DSDL/R ( Note 35 )

tDCK tDCKL tDCKH tDDD tDCK tDCKL tDCKH tDDD

144

144

20

72

72

10

1/64fs

1/128fs

20

10 nsec nsec nsec nsec nsec nsec nsec nsec

(256fs mode, DSDSEL [1:0] bits = “10”)

DCLK Period

DCLK Pulse Width Low

DCLK Pulse Width High tDCK tDCKL tDCKH tDDD

36

36

5

1/256fs

5 nsec nsec nsec nsec

DCLK Edge to DSDL/R ( Note 35 )

(512fs mode, DSDSEL [1:0] bit = “11”)

DCLK Period

DCLK Pulse Width Low tDCK tDCKL 18

1/512fs nsec nsec

DCLK Pulse Width High

DSDL/R Setup Time tDCKH tDDS

18

5 nsec nsec

DSDL/R Hold Time tDDH 5 nsec

Note 35. DSD data transmitting device must meet this time

. “tDDD” is defined from DCLK “↓” until

DSDL/R edge when DCKB bit =

“0” (default), “tDDD” is defined from DCLK “↑” until DSDL/R edge when DCKB bit =

“1”. If the audio data format is in phase modulation mode, “tDDD” is defined from DCLK edge

“↓” or “↑” until DSDL/R edge regardless of DCKB bit setting.

Note 36. The AK4497 does not support Phase Modulation Mode in DSD512fs Mode.

Unit

nsec nsec nsec nsec usec nsec nsec nsec nsec nsec

Rev. 0.1

- 26 -

2015/11

[AK4497]

Parameter

Control Interface Timing (3-wire IF mode):

CCLK Period

CCLK Pulse Width Low

Pulse Width High

CDTI Setup Time

CDTI Hold Time

CSN

“H” Time

CSN

” to CCLK “

CCLK “

” to CSN “

Control Interface Timing (I

2

C Bus mode):

SCL Clock Frequency

Bus Free Time Between Transmissions

Start Condition Hold Time (prior to first clock pulse)

Clock Low Time

Clock High Time

Setup Time for Repeated Start Condition

SDA Hold Time from SCL Falling ( Note 37 )

SDA Setup Time from SCL Rising

Rise Time of Both SDA and SCL Lines

Fall Time of Both SDA and SCL Lines

Setup Time for Stop Condition

Pulse Width of Spike Noise Suppressed by Input Filter

Capacitive load on bus

Power-down & Reset Timing ( Note 38 )

PDN Accept Pulse Width

PDN Reject Pulse Width

Symbol

tCCK tCCKL tCCKH tCDS tCDH tCSW tCSS tCSH fSCL tBUF tHD:STA tLOW tHIGH tSU:STA tHD:DAT tSU:DAT tR tF tSU:STO tSP

Cb tAPD tRPD

Min.

200

80

80

40

40

150

50

50

-

1.3

0.6

1.3

0.6

0.6

0

0.1

-

-

0.6

0

-

150

Typ.

Note 37. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.

Note 38. The AK4497 can be reset by bringing the PDN pin “L” to “H” upon power-up.

Note 39. I

2

C -bus is a trademark of NXP B.V.

Max. Unit

nsec nsec nsec nsec nsec nsec nsec nsec

400

-

-

-

1.0

-

-

-

-

0.3

-

50

400

30 kHz usec usec usec usec usec usec usec usec usec usec nsec pF nsec nsec

Rev. 0.1

- 27 -

2015/11

Timing Diagram

MCLK

LRCK

BICK

WCK

BCK

[AK4497]

1/fCLK tCLKH tLRH tBCKH tWCKH

1/fs tBCK tCLKL tLRL tWCK tBCKL tB tWCKL tBH tBL

Figure 9. Clock Timing

VIH

VIL dCLK=tCLKH x fCLK, tCLKL x fCLK

VIH

VIL

VIH

VIL

VIH

VIL

VIH

VIL

Rev. 0.1

- 28 -

2015/11

[AK4497]

LRCK

VIH

VIL tBLR tLRB

BICK

VIH

VIL tBSS tBSH

TDMO 50%TVDD tSDS tSDH

SDATA

VIH

VIL

Figure 10. Audio Interface Timing (PCM Mode)

WCK

BCK

DINL

DINR

VIH

VIL tBW tWB

VIH

VIL tDS tDH

Figure 11. Audio Interface Timing (External Digital Filter I/F Mode)

VIH

VIL

Rev. 0.1

- 29 -

2015/11

[AK4497]

Rev. 0.1 tDCKL tDCK tDCKH

DCLK

VIH

VIL tDDD

DSDL

DSDR

VIH

VIL tDDD

DSDL

DSDR

VIH

VIL

DSD Audio Interface Timing (DSD64fs, 128fs, 256fs Mode) tDCKL tDCK tDCKH

DCLK

VIH

VIL tDDS tDDH

DSDL

DSDR

VIH

VIL

DCLK

DSD Audio Interface Timing (DSD512fs Mode)

Figure 12

. Audio Interface Timing (DSD Normal Mode, DCKB bit = “0”) tDCKL tDCK tDCKH

VIH

VIL tDDD tDDD

DSDL

DSDR

VIH

VIL tDDD tDDD

DSDL

DSDR

VIH

VIL

Figure 13

. Audio Interface Timing (DSD Phase Modulation Mode, DCKB bit = “0”)

- 30 -

2015/11

CSN

CCLK

CDTI

CSN

CCLK

CDTI D3

[AK4497]

VIH

VIL tCSS tCCKL tCCKH tCCK

VIH

VIL

C1 tCDS tCDH

C0 R/W

Figure 14. WRITE Command Input Timing

A4 tCSW

VIH

VIL

VIH

VIL tCSH

VIH

VIL

D2 D1 D0

Figure 15. WRITE Data Input Timing

VIH

VIL

Rev. 0.1

- 31 -

2015/11

SDA tBUF tLOW tR

SCL tHD:STA

Stop Start tHIGH tF tHD:DAT tSU:DAT tSU:STA

Start

Figure 16. I

2

C Bus Mode Timing tAPD tRPD

PDN

Figure 17. Power Down & Reset Timing

[AK4497]

VIH

VIL tSP tSU:STO

Stop

VIH

VIL

VIL

Rev. 0.1

- 32 -

2015/11

[AK4497]

9.

Functional Descriptions

Each function of the AK4497 is controlled by Pins (pin control mode) and Registers (register control

mode) ( Table 1 ). Select the control mode by setting the PSN pin. The AK4497 must be powered down

when changing the PSN pin setting. There is a possibility of malfunction if the device is not powered down when changing the control mode since the previous setting is not initialized. Register settings are invalid in pin control mode, and pin settings are invalid in register control mode.

Table 2

shows available functions of each control mode and Table 3

shows available functions in

PCM/DSD/EXDF mode.

Table 1. Pin/Register Control Mode Select

PSN pin Control Mode

L

H

Register Control Mode

Pin Control Mode

Function

Table 2. Function List @Pin/Register Control Mode

DSD/EXDF Mode Select

System Clock Setting Select

Audio Format Select

TDM Mode

Digital Filter Select

De-emphasis Filter Select

Digital Attenuator

Zero Detection

Mono Mode

Output signal select

(Monaural, Channel select)

Output signal polarity select

(Invert)

Sound Color Select

DSD Full Scale Detect

Soft Mute

Register Reset

Clock Synchronization Function

Resistor Control

Gain Control

Heavy Load Mode

(Y: Available, -: Not available)

Pin Control Mode

-

Y

Y

Y

Y

Y

-

-

-

-

Y

-

-

Y

Y

-

Y

-

-

Register Control

Mode

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Rev. 0.1

- 33 -

2015/11

[AK4497]

Function

Table 3. Function List of PCM/EXDF/DSD mode @Register Control Mode

Default Add Bit PCM EXDF DSD

PCM/DSD/EXDF Mode Select

System clock setting @DSD mode

System clock setting @EXDF mode

PCM mode

512fs

16fs(fs=44.1kHz)

00H

02H

02H

00H

EXDF

DP

DCKS

ECS

Y

-

-

Y

-

Y

Y

Y

-

Digital Filter select @DSD mode

39kHz filter 09H DSDF - - Y

Digital Filter select @PCM mode

Short delay sharp roll off filter

OFF

Normal Path

32bit MSB

01-02-05H

01H

06H

00H

SD

SLOW

SSLOW

Y

DEM[1:0] Y

DSDD

-

DIF[2:0] Y

-

-

-

-

-

-

Y

-

De-emphasis Response

Path select @ DSD mode

Audio Data Interface Format

@ PCM Mode

Audio Data Interface Format

@ EXDF Mode

TDM Interface Format

Daisy Chain

Attenuation Level

Data Zero Detect Enable

Inverting Enable of DZF

Mono/Stereo mode select

Data Invert mode select

The data selection of L channel and

R channel

Sound Color Select

DSD Mute Function @ Full scale

Detected

Soft Mute Enable

RSTN

Clock Synchronization Function

(Y: Available, N/A: Not available)

32bit LSB

Normal Mode

Normal Mode

0dB

Disable

“H” active

Stereo

OFF

R channel

Off

Disable

Normal

Operation

RST

Enable

00H

0AH

0BH

03-04H

01H

02H

02H

05H

02H

08H

06H

01H

00H

07H

DIF[2:0] -

TDM[1:0] Y

DCHAIN

ATT[7:0]

DZFE

DZFB

MONO

INVL/R

Y

Y

SELLR

SC[2:0]

DDM

SMUTE

RSTN

SYNCE

Y

Y

Y

Y

Y

Y

-

Y

Y

Y

Y

-

-

Y

Y

Y

Y

Y

Y

Y

-

Y

Y

Y

Y

Y

Y

-

-

-

Y

Y

Y

Y

Y

Y

Y

-

Rev. 0.1

- 34 -

2015/11

[AK4497]

D/A Conversion Mode

The AK4497 can perform D/A conversion for either PCM data or DSD data. The DP bit controls

PCM/DSD mode. When DSD mode, DSD data can be input from the #16, #17 and #19 pins if DSDPATH bit =

“0” and DSD data can be input from the #3, #4, and #5 pins if DSDPATH bit = “1”. The AK4497 must be reset by setting RSTN bit =

“0” when PSM/DSD mode is changed by DP bit or when DSD signal input pins are changed by DSDPATH bit. It takes about 2 ~ 3/fs to change the mode. Wait 4/fs or more to change DP or DSDPATH bit setting after setting RSTN bit =

“0”.

When the AK4497 is in pin control mode, PCM mode is only available. External digital filter I/F can be selected by setting DP bit =

“0” and EXDF bit = “1”. When using an external digital filter (EXDF I/F mode), data is input to each MCLK, BCK, WCK, DINL and DINR pin. EXDF bit controls the modes. When switching internal and external digital filters by EXDF bit, the AK4497 must be reset by RSTN bit. A Digital filter switching takes 2~3k/fs. The AK4497 is in DSD mode when DP bit =

“1” and EXDF bit “1”.

Table 4. PCM/DSD/EXDF Mode Control

Pin Assignment

DP bit EXDF bit

DSDPATH bit

D/A Conv.

Mode

#3 pin #4 pin #5 pin #16 pin #17 pin #19 pin

0

(default)

0

(default)

* PCM BICK SDATA LRCK

Not Use Not Use Not Use

1

1

0

*

*

1

0

(default)

1

*

DSD

Not Use Not Use Not Use

DCLK DSDL DSDR

DSD

EXDF

DCLK DSDL DSDR

Not Use Not Use Not Use

BCK DINL DINR

Not Use Not Use Not Use

(*: Do not care)

D/A Conversion Mode Switching Timing

Figure 18

and Figure 19 show switching timing of PCM/EXDF and DSD modes. To prevent noise caused

by excessive input, DSD signal should be input 4/fs after setting RSTN bit =

“0” until the device is completely reset internally when the conversion mode is changed to DSD mode from PCM/ESDF mode.

DSD signal should be stopped 4/fs after setting RSTN bit =

“0”until the device is completely reset internally when the conversion mode is changed to PCM/EXDE from DSD mode.

RSTN bit

4/fs

D/A Mode

PCM or EXDF Mode DSD Mode

0

D/A Data

PCM or EXDF Data DSD Data

Figure 18. D/A Mode Switching Timing (PCM or EXDF to DSD)

Rev. 0.1

- 35 -

2015/11

[AK4497]

RSTN bit

0

D/A Mode

DSD Mode

4/fs

PCM or EXDF Mode

D/A Data

DSD Data

PCM Data

Figure 19. D/A Mode Switching Timing (DSD to PCM or EXDF)

Figure 20 shows switching timing of PCM and EXDF modes. Set EXDF bit 4/fs after setting RSTN bit =

“0” until the device is completely reset internally when changing the conversion mode.

RSTN bit

4/fs

0

D/A Mode

PCM or EXDF Mode PCM or EXDF Mode

D/A Data

PCM or EXDF Data

PCM or EXDF Data

Figure 20. D/A Mode Switching Timing (PCM ⇔ EXDF)

Rev. 0.1

- 36 -

2015/11

[AK4497]

System Clock

[1] PCM Mode

The external clocks, which are required to operate the AK4497, are MCLK, BICK and LRCK. MCLK should be synchronized with LRCK but the phase is not critical. The MCLK is used to operate the digital interpolation filter, the delta-sigma modulator and SCF.

There are Manual Setting Mode, Auto Setting Mode and Fs Auto Detection mode for MCLK frequency setting. In manual setting mode, MCLK frequency is set automatically but the sampling speed (LRCK

frequency) is set by DFS[2:0] bits ( Table 6 ). Sampling frequency is fixed to normal speed mode in pin

control mode (PSN pin =

“H”), and it is set by DFS[2:0] bits in register control mode (PSN pin = “L”). In register control mode, the AK4497 is in manual setting mode when power-down is released (PDN pin =

”).

In auto setting mode

(ACKS pin = “H” or ACKS bit=“1”), sampling speed and MCLK frequency are

detected automatically ( Table 7 ,

Table 10 ) and then the initial master clock is set to the appropriate

frequency ( Table 8 ,

Table 14 , Table 15 ).

In FS auto detect mode (AFSD bit=

“1”), sampling speed is automatically detected (

Table 7 ,

Table 10 )

and the initial master clock is set to the appropriate frequency. In this mode, ACKS bit and DFS[2:0] bits settings are invalid. Fs auto detect mode is not supported by pin control mode.

The AK4497 is automatically placed in power-down state when MCLK is stopped for more than 1us during a normal operation (PDN pin =

“H”), and the analog output becomes Hi-z state. When MCLK is input again, the AK4497 exits power-down state and starts operation. The AK4497 is in power-down mode until MCLK BICK and LRCK are supplied and the analog output is floating state.

Table 5. System Clock Setting Mode @Register Control Mode

AFSD bit ACKS bit

0

0

1

0

1

-

Mode

Manual setting Mode

Auto setting Mode

FS Auto Detect Mode

(default)

Rev. 0.1

- 37 -

2015/11

[AK4497]

(1) Pin Control Mode

(PSN pin = “H”)

1-

1. Manual Setting Mode (ACKS pin = “L”)

The MCLK frequency corresponding to each sampling speed should be provided externally ( Table 6 ).

DFS1-0 bit is fixed to

“00”. In this mode, quad speed and double speed modes are not available.

Table 6. System Clock Example (Manual Setting Mode @Pin Control Mode)(N/A: Not available)

LRCK fs 128fs 192fs 256fs

MCLK (MHz)

384fs 512fs 768fs 1152fs

BICK

64fs

32.0kHz

44.1kHz

48.0kHz

N/A

N/A

N/A

N/A

N/A

N/A

8.1920 12.2880 16.3840 24.5760 36.8640 2.0480MHz

11.2896 16.9344 22.5792 33.8688 N/A 2.8224MHz

12.2880 18.4320 24.5760 36.8640 N/A 3.0720MHz

1-

2. Auto Setting Mode (ACKS pin = “H”)

In auto setting mode, MCLK frequency and sampling frequency are detected automatically ( Table 7 ).

MCLK of corresponded frequency to each sampling speed mode should be input externally ( Table 8 ).

Table 7. Sampling Speed (Auto Setting Mode @Pin Control Mode)

MCLK

256fs

128fs

64fs

32fs

1152fs

512fs/256fs 768fs/384fs

384fs

192fs

96fs

48fs

Sampling Speed

Normal (fs

32kHz)

Normal

Double

Quad

Oct

Hex

Table 8. System Clock Example (Auto Setting Mode @Pin Control Mode) (N/A: Not available)

LRCK fs 32fs 48fs 64fs 96fs 128fs

MCLK(MHz)

192fs 256fs

32.0kHz

44.1kHz

48.0kHz

N/A

N/A

N/A

88.2kHz

96.0kHz

N/A

N/A

176.4kHz N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A 22.5792 33.8688

192.0kHz N/A

384kHz N/A

N/A N/A

768kHz 24.576 36.864 N/A

N/A 24.5760 36.8640

N/A 24.576 36.864

N/A

N/A

N/A

N/A

N/A

8.1920 16.3840 24.5760

11.2896 16.9344 22.5792 33.8688

12.2880 18.4320 24.5760 36.8640

22.5792 33.8688

24.5760 36.8640

N/A

N/A

N/A

N/A

384fs

12.2880

N/A

N/A

N/A

N/A

512fs

N/A

N/A

N/A

N/A

N/A

N/A

768fs

N/A

N/A

N/A

N/A

N/A

N/A

1024fs

32.7680

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

1152fs

36.8640

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Sampling

Speed

Normal

Double

When MCLK= 256fs/384fs, auto setting mode supports sampling rate of 8kHz~96kHz ( Table 9 ).

However, the DR and S/N performances will degrade approximately 3dB as compared to when MCLK =

256fs/384fs for DR and MCLK= 512fs/768fs for S/N, respectively if the sampling rate is under 54kHz.

Table 9. DR and S/N Relationship with MCLK Frequency (fs = 44.1kHz)

ACKS pin MCLK DR,S/N

Quad

Quad

Oct

Hex

L

H

H

256fs/384fs/512fs/768fs

256fs/384fs

512fs/768fs

127dB

124dB

127dB

Rev. 0.1

- 38 -

2015/11

[AK4497]

(2) Register Control Mode

(PSN pin = “L”)

1-

1. Manual Setting Mode (AFSD bit=”0”, ACKS bit = “0”)

MCLK frequency is detected automatically and the sampling speed is set by DFS[2:0] bits ( Table 10 ). The

MCLK frequency corresponding to each sampling speed that should be provided externally ( Table 11 ).

The AK4497 is set to Manual Setting Mode at power-up

(PDN pin = “L” →“H”). When DFS2-0 bits are changed, the AK4497 should be reset by RSTN bit.

Table 10. Sampling Speed (Manual Setting Mode @Register Control Mode)

DFS2 DFS1 DFS0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Sampling Rate (fs)

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

Quad Speed Mode

8kHz

54kHz

54kHz

108kHz

(default)

120kHz

216kHz

120kHz

216kHz

Oct Speed Mode 384kHz

Hex Speed Mode

Oct Speed Mode

Hex Speed Mode

768kHz

384kHz

768kHz

Table 11. System Clock Example (Manual Setting Mode @Register Control Mode)

LRCK

Fs 16fs 32fs

MCLK(MHz)

48fs 64fs 96fs 128fs

Sampling

Speed

32.0kHz

N/A

44.1kHz

N/A

48.0kHz

N/A

88.2kHz

N/A

96.0kHz

N/A

176.4kHz

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

192.0kHz

N/A

384kHz

N/A

N/A N/A N/A N/A

12.288 18.432 24.576 36.864

768kHz 12.288 24.576 36.864 49.152 N/A

N/A

N/A

N/A

N/A

N/A

22.5792

24.5760

N/A

N/A

Normal

Double

Quad

Quad

Oct

Hex

Table 12. System Clock Example (Manual Setting Mode @Register Control Mode)

LRCK fs 192fs 256fs 384fs

MCLK(MHz)

512fs 768fs 1024fs 1152fs

Sampling

Speed

32.0kHz

44.1kHz

48.0kHz

88.2kHz

N/A

N/A

N/A

N/A

8.1920 12.2880 16.3840

11.2896 16.9344 22.5792

12.2880 18.4320 24.5760

22.5792 33.8688 45.1584

96.0kHz

N/A 24.5760 36.8640 49.152

176.4kHz

33.8688 45.1584

192.0kHz

36.8640 49.152

N/A

N/A

N/A

N/A

384kHz

768kHz

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

24.5760 32.7680 36.8640

33.8688

36.8640

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Normal

Double

Quad

Quad

Oct

Hex

Rev. 0.1

- 39 -

2015/11

[AK4497]

1-2. Auto Setting Mode (

AFSD bit=

“0”,

ACKS bit = “1”)

MCLK frequency and the sampling speed are detected automatically ( Table 13 ) and DFS[2:0] bits are

ignored. The MCLK frequency corresponding to each sampling speed should be provided externally

( Table 14 , Table 15 ).

Table 13. Sampling Speed (Auto Setting Mode)

MCLK

1152fs

512fs/256fs 768fs/384fs

256fs 384fs

128fs

64fs

32fs

192fs

96fs

48fs

Sampling Speed

Normal (fs

32kHz)

Normal

Double

Quad

Oct

Hex

Table 14. System Clock Example (Auto Setting Mode)

LRCK fs 32fs 48fs

MCLK(MHz)

64fs 96fs 128fs

Sampling

Speed

32.0kHz

44.1kHz

48.0kHz

88.2kHz

N/A

N/A

N/A

N/A

96.0kHz N/A

176.4kHz N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

192.0kHz N/A

384kHz N/A

N/A

N/A

N/A

768kHz 24.576 36.864 N/A

N/A

24.576 36.864

N/A

N/A

N/A

N/A

N/A

N/A

22.5792

24.5760

N/A

N/A

Normal

Double

Quad

Quad

Oct

Hex

Table 15. System Clock Example (Auto Setting Mode)

LRCK

MCLK(MHz) fs 192fs 256fs 384fs 512fs 768fs 1152fs

32.0kHz

44.1kHz

48.0kHz

88.2kHz

N/A

N/A

N/A

N/A

8.1920 12.2880 16.3840 24.5760 36.8640

11.2896 16.9344 22.5792 33.8688

12.2880 18.4320 24.5760 36.8640

22.5792 33.8688

96.0kHz

N/A 24.5760 36.8640

176.4kHz

33.8688 N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

192.0kHz

36.8640 N/A

384kHz N/A

N/A

768kHz

N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Sampling

Speed

Normal

Double

Quad

Quad

Oct

Hex

When MCLK= 256fs/384fs, auto setting mode supports sampling rate from 8kHz to 96kHz ( Table 13 ).

However, the DR and S/N performances will degrade approximately 3dB as compared to when MCLK =

256fs/384fs for DR and MCLK= 512fs/768fs for S/N, respectively if the sampling rate is under 54kHz.

Table 16. DR and S/N Relationship with MCLK Frequency (fs = 44.1kHz)

ACKS bit MCLK DR,S/N

0

1

1

256fs/384fs/512fs/768fs

256fs/384fs

512fs/768fs

127dB

124dB

127dB

Rev. 0.1

- 40 -

2015/11

[AK4497]

1-3. Sampling Frequency

(FS) Auto Detect Mode (AFSD bit=”1”)

MCLK frequency and the sampling rate is detected automatically ( Table 13 ). In this mode, DFS[2:0] bits

and ACKS bit settings are invalid. The MCLK frequency corresponding to each sampling speed should

be provided externally ( Table 17 , Table 18 ).

Internal operation sequence in FS auto detect mode is shown in

Figure 21 .

Table 17. System Clock Example @PCM Mode

LRCK

Fs 16fs 32fs

MCLK(MHz)

48fs 64fs 96fs 128fs

Sampling

Speed

32.0kHz

44.1kHz

48.0kHz

N/A

N/A

N/A

88.2kHz

96.0kHz

N/A

N/A

176.4kHz

N/A

192.0kHz

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

384kHz

N/A

12.288 18.432 24.576 36.864

768kHz 12.288 24.576 36.864 49.152 N/A

N/A

N/A

N/A

N/A

N/A

22.5792

24.5760

N/A

N/A

Normal

Double

Quad

Quad

Oct

Hex

LRCK

Table 18. System Clock Example @PCM Mode

MCLK(MHz)

Sampling

Speed fs 192fs 256fs 384fs 512fs 768fs 1024fs 1152fs

32.0kHz

44.1kHz

48.0kHz

88.2kHz

N/A

N/A

N/A

N/A

8.1920 12.2880 16.3840 24.5760 32.768 36.8640

11.2896 16.9344 22.5792 33.8688

12.2880 18.4320 24.5760 36.8640

22.5792 33.8688 45.1584

96.0kHz

N/A 24.5760 36.8640 49.152

176.4kHz

33.8688 45.1584 N/A N/A

192.0kHz

36.8640 49.152

384kHz

N/A N/A

768kHz

N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Normal

Double

Quad

Quad

Oct

Hex

Rev. 0.1

- 41 -

2015/11

Power ON/OFF Sequence in FS Auto Detect Mode (LDOE pin =

“H”)

Power

PDN pin

DVDD pin

Internal PDN

Internal

State

(1)

(2)

Normal Operation (Register Write and DAC Operation are Available)

AFSD bit

AFSD bit =

“0”

AFSD bit =

“0”

AFSD bit =

“1”

(3)

Power up

Internal OSC

Clock In

LRCK

Don

’t care

Internal FS Auto Detect Circuit

(4)

FS Auto Detect mode Enable

[AK4497]

Note:

(1) Power-up AVDD and TVDD and the PDN pin should be

“L” for more than 150ns.

(2) The internal LOD is powered up upon power-up of the AK4497 if the LDOE pin=

“H”. The internal circuit will be powered up in 2ms (max.) after the shutdown switch is ON following internal oscillator count up. When LDOE pin =

“L”, shutdown switch is ON after the AK4497 is powered up. The internal circuit will be powered up in 1us (max.)

(3) The internal oscillator starts operation by setting AFSD bit=

“1”. It takes 10us (max.) until the internal oscillator is stabilized.

(4) FS auto detect mode starts in 8/fs ~ 9/fs after setting AFSD bit=

“1”.

(5) FS auto detect mode ends by setting AFSD bit =

“0” and the internal oscillator will stop operation.

Figure 21. Power-down/up Sequence in FS AutoDetect Mode

Rev. 0.1

- 42 -

2015/11

[AK4497]

[1] DSD Mode

The AK4497 has a DSD playback function. The external clocks that are required in DSD mode are MCLK and DCLK. MCLK should be synchronized with DCLK but the phase is not critical. The frequency of

MCLK is set by DCKS bit ( Table 19 ).

The AK4497 is automatically placed in power-down state when MCLK is stopped during a normal operation (PDN pin =

“H”), and the analog output becomes Hi-z state. When the reset is released (PDN pin =

“L” → “H”), the AK4497 is in power-down state until MCLK and DCLK are input.

Table 19. System Clock (DSD Mode, fs=32kHz, 44.1kHz, 48kHz)

DCKS bit MCLK Frequency DCLK Frequency

0

1

512fs

768fs

64fs/128fs/256fs (default)

64fs/128fs/256fs

The AK4497 supports DSD data stream of 2.8224MHz (64fs), 5.6448MHz (128fs) and 11.2896MHz

(256fs). The data sampling speed is selected by DSDSEL[1:0] bits ( Table 20 ).

Table 20. DSD data stream select

DSDSEL1 DSDSEL0 fs=32kHz

DSD data stream fs=44.1kHz fs=48kHz

0

0

1

1

0

1

0

1

2.048MHz

4.096MHz

8.192MHz

16.284MHz

2.8224MHz

5.6448MHz

11.2896MHz

22.5792MHz

3.072MHz

6.144MHz

12.288MHz

24.576MHz

(default)

The AK4497 has a Volume bypass function for play backing DSD signal. Two modes are selectable by

DSDD bit ( Table 21 ). When setting DSDD bit =

“1”, the output volume control and zero detect functions are not available.

Table 21. DSD Play Back Path Select

DSDD

0

1

Mode

Normal Path

Volume Bypass

(default)

Rev. 0.1

- 43 -

2015/11

[AK4497]

[2] External Digital Filter Mode (EXDF mode)

The external clocks that are required in EXDF mode are MCLK, BCK and WCK. The BCK and MCLK clocks must be the same frequency and must not burst. BCK and MCLK frequencies for each sampling

speed are shown in Table 22 . ECS bit selects WCK frequency from 384kHz and 768kHz. DW indicates

the number of BCK in one WCK cycle.

All circuits except the internal LDO are automatically placed in power-down state when MCLK edge is not detected for more than 1us during a normal operation (PDN pin =

“H”), and the analog output becomes

Hi-Z state. The power-down state is released and the AK4497 starts operation by inputting MCLK again.

In this case, register settings are not initialized.

When the reset is released (PDN pin =

“L” → “H”), the AK4497 is in power-down state until MCLK, BCK and WCK are input.

Table 22. System Clock Example (EXDF mode)

Sampling

Speed[kHz]

MCLK&BCK [MHz]

128fs 192fs 256fs 384fs

WCK

ECS

44.1(30~48)

44.1(30~48)

96(54~96)

96(54~96)

N/A

N/A

N/A

12.28

8

32

N/A

N/A

18.432

48

N/A

32

24.576

32

N/A

N/A

N/A 11.2896

16.9344

48

36.864

48

36.864

96

512fs 768fs

22.5792 33.8688

16fs

32 48 DW

N/A

33.8688

8fs

N/A

N/A

96

N/A

N/A

DW

8fs

DW

4fs

DW

0

1

0

1

(default)

24.576

36.864

192(108~192)

192(108~192)

32

N/A

48

36.864

96

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

4fs

DW

2fs

DW

0

1

Rev. 0.1

- 44 -

2015/11

[AK4497]

Audio Interface Format

[1] PCM mode

(i) Input Data Format

Data is shifted in via the SDATA pin using BICK and LRCK inputs. Eight data formats are supported and

selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table

23 . In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of

BICK. Mode 2 can be used for 20-bit and 16-bit MSB justified formats by zeroing the unused LSBs.

Normal Mode (TDM[1:0] bits =

“00” or TDM1-0 pins = “LL”)

2ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Eight data formats are supported and selected by the DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in

Table 23 . In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge

of BICK. Mode 6 can be used for 24-bit, 20-bit and 16-bit MSB justified formats by zeroing the unused

LSBs.

TDM128 Mode (TDM[1:0] bits =

“01” or TDM1-0 pins = “LH”)

4ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Data slot can be selected by

SDS[2:0] bits ( Table 24 ). BICK is fixed to 128fs. Six data formats are supported and selected by the

DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23 . In all

formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK.

TDM256 Mode (TDM[1:0] bits

=“10” or TDM1-0 pins =“HL”)

8ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Data slot can be selected by

SDS[2:0] bits ( Table 24 ). BICK is fixed to 256fs. Six data formats are supported and selected by the

DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23 . In all

formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK.

TDM512 Mode (TDM[1:0] bits =

“11” or TDM1-0 pins = “HH”)

16ch Data is shifted in via the SDATA pin using BICK and LRCK inputs. Data slot can be selected by

SDS[2:0] bits ( Table 24 ). BICK is fixed to 512fs. Six data formats are supported and selected by the

DIF2-0 pins (Pin control mode) or DIF[2:0] bits (Register control mode) as shown in Table 23 . In all

formats the serial data is MSB first, 2's compliment format and is latched on the rising edge of BICK.

Rev. 0.1

- 45 -

2015/11

[AK4497]

Mode

Normal

(Note 45)

TDM128

0

1

2

3

4

5

6

7

8

9

10

Table 23. Audio Interface Format

TDM1 TDM0 DIF2 DIF1 DIF0 SDATA Format

0 0

0

0

0

0

0

0

1

1

0 16-bit LSB justified

1

0 24-bit MSB justified

1

20-bit LSB justified

LRCK BICK

H/L

32fs

H/L

40fs

16-bit I

2

S Compatible L/H 32fs

24-bit I

2

S Compatible

H/L

L/H

48fs

48fs

1

1

1

1

0

0

1

1

0 24-bit LSB justified H/L

48fs

1

0

32-bit LSB justified

32-bit MSB justified

H/L

64fs

H/L

64fs

1 32-bit I

2

S Compatible L/H

64fs

0 0 0 (16-bit LSB justified) H/L 128fs

0 1

0

0

0

1

0

1

1

0

1 (20-bit LSB justified) H/L 128fs

0 24-bit MSB justified H/L 128fs

1 24-bit I

2

S Compatible L/H 128fs

0 24-bit LSB justified H/L 128fs

11

12

1

1

0

1

1 32-bit LSB justified H/L 128fs

0 32-bit MSB justified H/L 128fs

1 32-bit I

2

S Compatible L/H 128fs

TDM256

TDM512

13

14

15

16

17

18

19

20

21

22

23

1

1

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0 (16-bit LSB justified) H/L 256fs

1

1

1

0 24-bit MSB justified

1 24-bit I

2

1

(20-bit LSB justified)

0 24-bit MSB justified

1 24-bit I

2

1 32-bit I

2

S Compatible

0 24-bit LSB justified

32-bit LSB justified

0 32-bit MSB justified

S Compatible

(20-bit LSB justified)

S Compatible

0 24-bit LSB justified

32-bit LSB justified

H/L

L/H

H/L

L/H

256fs

H/L 256fs

L/H

H/L

H/L

H/L 256fs

0 (16-bit LSB justified) H/L 512fs

H/L 512fs

H/L

H/L

256fs

256fs

256fs

256fs

512fs

512fs

512fs

512fs

24

25

1

1

1

1

0 32-bit MSB justified

1 32-bit I

2

S Compatible

H/L 512fs

L/H 512fs

Note 40. BICK more than setting bit must be input to each channel. In the LRCK column,

“H/L” indicates that L channel data can be input when LRCK is

“H” and R channel data can be input when

LRCK is

“L”. “L/H” indicates L channel data can be input when LRCK is “L” and R channel data can be input when LRCK is

“H”.

Rev. 0.1

- 46 -

2015/11

[AK4497]

LRCK

BICK

(32fs)

SDATA

Mode 0

BICK

(64fs)

SDATA

Mode 0

0 1

15 14

0 1

Don

’t care

15:MSB, 0:LSB

10 11 12 13 14 15 0 1

6 5 4 3 2 1 0 15 14

14 15 16 17 31 0 1

15 14 0 Don

’t care

10 11 12 13 14 15 0 1

6 5 4 3 2 1 0 15 14

14 15 16 17 31 0 1

Lch Data

Figure 22. Mode 0 Timing

Rch Data

15 14 0

LRCK

BICK

(64fs)

SDATA

Mode 1

0 1

SDATA

Mode 4

8 9 10 11 12 31 0 1 8 9 10 11 12

Don

’t care

19:MSB, 0:LSB

19 0 Don

’t care

19

Don

’t care

23:MSB, 0:LSB

23 22 21 20 19 0 Don

’t care

23 22 21 20 19

Lch Data

Figure 23. Mode 1, 4 Timing

Rch Data

31 0 1

0

0

LRCK

0 1 2 22 23 24 30 31 0 1 2 22 23 24 30 31 0 1

BICK

(64fs)

SDATA

23 22 23 22

23:MSB, 0:LSB

1 0 Don

’t care

23 22 1 0 Don

’t care

Lch Data

Figure 24. Mode 2 Timing

Rch Data

Rev. 0.1

- 47 -

2015/11

[AK4497]

LRCK

0 1 2 3 23 24 25 31 0 1 2 3 23 24 25 31 0 1

BICK

(64fs)

SDATA

23 22

23:MSB, 0:LSB

1 0

Don

’t care

23 22

Lch Data

Figure 25. Mode 3 Timing

LRCK

BICK(128fs)

0 1 2

SDATA

0 1 2

BICK(64fs)

SDATA

31 30

20 21 22

12 13 14

20 19 18

32 33

31

23 24

1 0

31 0 1 2

9 8

63 0 1 2

1 0 31 30

1 0 Don

’t care

Rch Data

20 21 22

12 13 14

20 19 18

32 33

9 8

23

63 0 1

31

23 24

1 0

31 0 1

1 0 31

Lch Data Rch Data

31: MSB, 0:LSB

Figure 26. Mode 5 Timing

LRCK

BICK(128fs)

0 1 2

SDATA

20 21 22 32 33

31 30

0 1 2

12 11 10

12 13 14

0

23 24

63 0 1 2 20 21 22 32 33

31 30

31 0 1 2

12 11 10

12 13 14

0

23 24

BICK(64fs)

SDATA

31 30 20 19 18 9 8 1 0 31 30 20 19 18 9 8

63 0 1

31

31 0 1

1 0 31

31: MSB, 0:LSB

Lch Data

Figure 27. Mode 6 Timing

Rch Data

Rev. 0.1

- 48 -

2015/11

LRCK

BICK(128fs)

0 1 2

SDATA

20 21 22 33 34

31

0 1 2

13 12 11

12 13 14

0

24 25

BICK(64fs)

SDATA

63 0 1 2 20 21 22 33 34

31

31 0 1 2

13 12 11

12 13 14

0

24 25

0 31 21 20 19 9 8

31: MSB, 0:LSB

Lch Data

2 1 0 31

Figure 28. Mode 7 Timing

128 BICK

21 20 19 9 8

Rch Data

LRCK

[AK4497]

63 0 1

31 0 1

2 1 0

BICK(128fs)

SDATA

Mode8

23

22

SDATA

Mode11,12

31 30

0 23 22

0

31 30

0

0

23 22

31 30

L1

32 BICK

R1

32 BICK 32 BICK 32 BICK

LRCK

BICK(128fs)

SDATA

Mode9

SDATA

Mode13

23 22

31 30

L1

32 BICK

0

Figure 29. Mode 8/11/12 Timing

128 BICK

23 22

0

31 30

R1

32 BICK

0

0

32 BICK 32 BICK

23

31 30

Figure 30. Mode 9/13 Timing

Rev. 0.1

- 49 -

2015/11

[AK4497]

LRCK

BICK(128fs)

SDATA

128 BICK

23

22

L1

32 BICK

0

23

22 0

R1

32 BICK 32 BICK

Figure 31. Mode 10 Timing

32 BICK

23

LRCK

BICK (256fs)

SDATA

Mode14

SDATA

Mode17,18

23 22 0 23 22 0

256 BICK

23 22

LRCK

BICK (256fs)

SDATA

Mode15

SDATA

Mode19

31 30

L1

32 BICK

0 31 30 0

R1

32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK

Figure 32. Mode 14/17/18 Timing

31 30

256 BICK

23 0 23 0 23

31 30

L1

32 BICK

0 31 30 0

R1

32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK

Figure 33. Mode 15/19 Timing

256 BICK

31

LRCK

BICK(256fs)

SDATA

23 22

L1

32 BICK

0 23 22 0

R1

32 BICK 32 BICK 32 BICK 32 BICK

Figure 34. Mode 16 Timing

32 BICK

32 BICK 32 BICK

23

Rev. 0.1

- 50 -

2015/11

[AK4497]

LRCK

512BICK

BICK(512fs)

SDATA

Mode8

SDATA

Mode11,12

23 22 0 23 22

2

0 23

31 22 0 31 22 0

L1 R1

32 BICK

32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK

31

Figure 35. Mode 20/23/24 Timing

512BICK

LRCK

BICK(512fs)

SDATA

Mode21

SDATA

Mode25

23 22 0 23 22

2

0 23

31 22 0 31 22 0

L1 R1

32 BICK

32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK

31

Figure 36. Mode 21/25 Timing

512BICK

LRCK

BICK(512fs)

SDATA

Mode22

23 22 0 23 22 0

L1

32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK

23

Figure 37. Mode 22 Timing

Rev. 0.1

- 51 -

2015/11

[AK4497]

(ii) Data Slot Selection Function

Data slot of 1cycle LRCK for each audio data format is defined as Figure 38 ~ Figure 41 . DAC output data

can be selected by SDS[2:0] bits as shown in Table 24 .

LRCK

SDATA L1 R1

LRCK

SDATA L1

Figure 38. Data Slot in Normal Mode

128 BICK

R1 L2 R2

Figure 39. Data Slot in TDM128 Mode

LRCK

SDATA

256 BICK

L1 R1 L2 R2 L3 R3 L4 R4

Figure 40. Data Slot in TDM256 Mode

LRCK

SDATA

512 BICK

L1 R1 L2 R2

L3 R3 L4 R4 L5

R5 L6 R6 L7 R7 L8 R8

Figure 41. Data Slot in TDM512 Mode

Rev. 0.1

- 52 -

2015/11

Normal

TDM128

TDM256

TDM512

1

1

(*: Do not care)

0

1

1

0

0

0

*

*

*

*

SDS2 SDS1

Table 24. Data Select

SDS0

Lch

DAC

Rch

* * * L1 R1

*

*

*

*

0

1

L1

L2

R1

R2

1

0

0

0

0

1

1

1

0

0

1

1

1

0

1

0

1

0

0

1

0

1

0

1

L1

L2

L3

L4

L5

L6

L7

L8

L1

L2

L3

L4

R1

R2

R3

R4

R5

R6

R7

R8

R1

R2

R3

R4

[AK4497]

Rev. 0.1

- 53 -

2015/11

[AK4497]

(iii) Daisy Chain

The AK4497 supports cascading of multiple devices by daisy chain connection in TDM512/256 mode

(TDM[1:0] bits =

“10”, “11”). DCHAIN bit or DCHAIN pin controls Daisy Chain mode (

Table 25 ). SDS[2:0]

bits setting will be invalid in Daisy Chain mode.

Table 25 Daisy Chain Control

DCHAIN bit

DCHAIN pin

Mode TDMO

0

1

Normal

Daisy Chain

“L”

Data output

(default)

(1) TDM512 Mode

Figure 42 shows daisy chain connection in TDM512 mode (TDM[1:0] bits =

“11”). 16ch data is input to the

SDATA pin of the second AK4497 and the TDMO pin of the second AK4497 is connected to the SDATA pin of the first AK4497.

Figure 43

shows data input/output example of daisy chain in TDM512 mode. The second AK4497 receives L8 and R8 data as DAC inputs and outputs the data by shifting 2ch from the TDMO pin. The first

AK4497 receives L7 and R7 data as DAC input. Settings of DIF[2:0] bits of the first and second AK4497

’s must be the same.

TDMO

First

AK4497

SDATA

TDMO

Second

AK4497

SDATA

DSP

Figure 42. Daisy Chain (TDM512 Mode)

LRCK

SDATA

TDMO

512 BICK

L1 R1 L2 R2 L3 R3 L4 R4

L5

R5 L6 R6 L7 R7 L8 R8

Second AK4497

L8 R8 L1

R1 L2

R2 L3 R3 L4 R4 L5 R5 L6 R6

L7 R7

First AK4497

Figure 43. Daisy Chain (TDM512 Mode)

Rev. 0.1

- 54 -

2015/11

[AK4497]

(2) TDM256 Mode

Figure 42 shows daisy chain connection in TDM256 mode (TDM[1:0] bits =

“10”). 8ch data is input to the

SDATA pin of the second AK4497 and the TDMO pin of the second AK4497 is connected to the SDATA pin of the first AK4497.

Figure 44

shows data input/output example of daisy chain in TDM256 mode. The second AK4497 receives L4 and R4 data as DAC inputs and outputs the data from the TDMO pin by shifting 2ch. The first

AK4497 receives L3 and R3 data as DAC input. Settings of DIF[2:0] bits of the first and second AK4497

’s must be the same.

256 BICK

LRCK

SDATA L1 R1 L2 R2 L3 R3 L4 R4

Second AK4497

TDMO

L4 R4 L1 R1 L2 R2 L3 R3

First AK4497

Figure 44. Daisy Chain (TDM256 Mode)

[2] DSD Mode

In DSD mode, L channel data and R channel data must be input to the DSDL pin and the DSDR pin, respectively by synchronizing to DCLK. Input pins can be selected by DSDPATH bit. When DSDPATH bit

=

“0”, the TDM0 pin, the DEM pin and the GAIN pin become DCLK, DSDL and DSDR input pins, respectively. When DSDPATH bit =

“1”, the BICK pin, the SDATA pin and the LRCK pin become DCLK,

DSDL and DSDR input pins, respectively.

In case of DSD mode, the settings of DIF2-0 pins and DIF[2:0] bits are ignored. The frequency of DCLK is selected between 64fs, 128fs and 256fs by DSDSEL[1:0] bits. Phase modulation function is not available in 512fs mode (DSDSEL[1:0] bits =

“11”).

DCLK

(64fs,128fs,256fs,512fs)

DCKB bit=

”1”

DCLK

(64fs,128fs,256fs,512fs)

DCKB bit=

”0”

DSDL,DSDR

Normal

D0

DSDL,DSDR

Phase Modulation

D0

D1

D1

D1

D2

D2

D2

D3

D3

Figure 45. DSD Mode Timing

Rev. 0.1

- 55 -

2015/11

[AK4497]

[3] External Digital Filter Mode (EXDF mode)

The audio data is input by BCK and WCK from the DINL and DINR pins. Three formats are available

( Table 26 ) by DIF2-0 bits setting. The data is latched on the rising edge of BCK. The BCK and MCLK

clocks must not burst.

Table 26. Audio Interface Format (EXDF mode) (N/A: Not available)

Mode DIF2 DIF1 DIF0 Input Format

3

4

5

6

7

0

1

2

0

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

16-bit LSB justified

N/A

16-bit LSB justified

N/A

24-bit LSB justified

32-bit LSB justified

24-bit LSB justified (default)

32-bit LSB justified

1/16fs or 1/8fs or 1/4fs or 1/2fs

WCK

0 1

BCK

DINL or

DINR

31 30

0 1

BCK

DINL or

DINR

Don

’t care

0 1

BCK

DINL or

DINR

Don

’t care

8 9 10 11

24

23 22 21 20 17 16 15 14

5 6 7 8

Don

’t care

13 14 15 16

Don

’t care

31

16 17

47 48 49

Don

’t care

23 24 25

6 5 4 3 2 1 0

65 92 93 94

95 0 1

31

26 27 28 29 30 31 0 1

Figure 46. EXDF Mode Timing

3

2 1

0 Don

’t care

44 45 46

47 0 1

3

2 1

0

Don

’t care

Rev. 0.1

- 56 -

2015/11

[AK4497]

Digital Filter

Six types of digital filter in PCM mode and two types of digital filter in DSD mode are available in the

AK4497 for sound color selection of music playback.

In PCM mode, digital filter can be selected by the SD, SLOW and SSLOW pins if the AK4497 is in pin control mode, and digital filter can be selected by SD, SLOW and SSLOW bits in register control mode

( Table 27 ).

In register control mode, programmable digital filter can be available by setting SSLOW bit =

“1” and SD bit =

“1”. In this case, Low dispersion short delay filter is available if SLOW bit = “0” and the coefficient can be changed if SLOW bit =

“1”.

Table 27. Digital Filter Setting

SSLOW

0

0

0

0

1

1

SD

0

0

1

1

0

0

SLOW

0

1

0

1

0

1

Mode

Sharp roll-off filter

Slow roll-off filter

Short delay sharp roll off filter

Short delay slow roll off filter

Super Slow roll Off filter

Super Slow roll Off filter

(default)

1 1 X

Low dispersion Shot delay filter /

Programmable FIR filter

( Note 41 )

Note 41. SSLOW=1, SD=1, SLOW=0: Low dispersion Short delay filter

SSLOW=1, SD=1, SLOW=1: Programmable FIR filter (only for register control mode)

In DSD mode, the cutoff frequency of digital filter can be switched by DSDF bit.

Table 28

shows the cutoff frequency of fs = 44.1kHz. The cutoff frequency tracks the sampling frequency (fs). Do not set GS[2:0] bits to

“100” when DSDD bit = “0” and DSDF bit = “1”. Otherwise a pop noise may occur.

Table 28. DSD Filter Select

Cut Off Frequency @fs=44.1kHz

DSDF bit

0

1

DSD64fs DSD128fs DSD256fs DSD512fs

39kHz

76kHz

78kHz

152kHz

156kHz

304kHz

312kHz

608kHz

(default)

Rev. 0.1

- 57 -

2015/11

[AK4497]

De-emphasis Filter (PCM)

A digital de-emphasis filter is available for 32kHz, 44.1kHz or 48kHz sampling rates (tc = 50/15µs) and is enabled or disabled by DEM1-0 pins or DEM1-0 bits. When DSD mode or EXDF mode, DEM1-0 bits are ignored. The setting value is held even if PCM, DSD and EXDF mode is switched.

Table 29. De-emphasis Control

DEM1 DEM0 Mode

0

0

1

1

0

1

0

1

44.1kHz

OFF (default)

48kHz

32kHz

Output Volume (PCM, DSD, EXDF)

The AK4497 includes channel independent digital output volumes (ATTL/R) with 256 levels at 0.5dB step including MUTE. When changing output levels, it is executed in soft transition thus no switching noise occurs during these transitions. It can attenuate the input data from 0dB to -127dB and mute when assuming the output signal level is 0dB when ATTL/R[7:0] bits = FFH.

Table 30. Attenuation level of Digital Attenuator

ATTL/R[7:0]bits

(register 03-04H)

Attenuation Level

FFH

FEH

FDH

:

:

02H

01H

00H

+0dB

-0.5dB

-1.0dB

:

:

-126.5dB

-127.0dB

MUTE (-

∞)

(default)

The transition time of digital output volume is set by ATS[1:0] bits ( Table 31 ). When changing output

levels between Mode0-3, it is executed in soft transition thus no switching noise occurs during these transitions. Register setting values will be kept even switching the PCM and DSD modes.

Table 31. Transition Time between Set Values of ATT[7:0] bits

Mode ATS1 ATS0

EXDF bit=”0”,

DP bit=”0”

ATT speed

EXDF bit=”1”

DP bit=”0”

DP bi t=”1”

0

1

2

3

0

0

1

1

0

1

0

1

4080/fs

2040/fs

510/fs

255/fs

4080*WCK Cycle

2040*WCK Cycle

510*WCK Cycle

255*WCK Cycle

4080/(2*fs)

2040/(2*fs)

510/(2*fs)

255/(2*fs)

(default)

It takes 4080/fs (92.5ms@fs=44.1kHz) from FFH (0dB) to 00H (MUTE) in Mode 0. The attenuation level is initialized to FFH (0dB) by setting the PDN pin =

“L”.

If the volume is changed during reset period, the output volume will become a setting value after releasing the reset. It will change to a setting value immediately if the volume is changed within 5/fs after releasing reset.

Rev. 0.1

- 58 -

2015/11

[AK4497]

Gain Adjustment Function (PCM, DSD, EXDF)

The AK4497 has the gain adjustment function. The analog output amplitude can be adjusted by GC[2:0] bits or the GAIN pin.

Table 32. Output Level between Set Values of GC[2:0] bits

GC[2] GC[1] GC[0]

AOUTLP/LN/RP/RN Output Level

PCM

DSD:

Normal Path

DSD:

Volume

Bypass

1

1

1

1

0

0

0

0

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

2.8Vpp

2.8Vpp

2.5Vpp

2.5Vpp

3.75Vpp

3.75Vpp

2.5Vpp

2.5Vpp

2.8Vpp

2.5Vpp

2.5Vpp

2.5Vpp

3.75Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

(default)

Table 33. Output Level between Set Values of GAIN pin

GAIN

AOUTLP/LN/RP/RN

Output Level

0

1

2.8Vpp

3.75Vpp

Note 42. DSDF bit must be set to

“0” if GC[2:0] bits are set to “100” when using DSD Normal Path. Click noise may occur if DSDF bit is set to

“0”.

Rev. 0.1

- 59 -

2015/11

[AK4497]

Zero Detection (PCM, DSD, EXDF)

The AK4497 has a channel-independent zeros detect function. When the input data at each channel is continuously zeros for 8192 LRCK cycles, the DZF pin of each channel outputs zero detection flag independently. The DZFL/R pin outputs zero detection flag if the input data is continuously zeros for

16384 LRCK cycles in DSD 512fs mode (DP bit =

“1” and DSDSEL[1:0] bits = “11”). Polarity of the detection flag of the DZFL/R pin can be selected by DZFB bit. The DZFL/R pin goes

“H” for zero detection when DZFB bit =

“0”, the DZFL/R pin goes “L” when DZFB bit = “1”.

When DZFB bit =

“0”, the DZFL/R pin immediately returns to “L” if the input data of each channel is not zero after going to

“H”. If the RSTN bit is “0”, the DZF pins of both L and R channels go to “H”. The DZFL/R pin returns to “L” in 4 ~ 5/fs after the input data of each channel becomes “1” when RSTN bit is set to “1”.

If

DZFM bit is set to “1” while DZFB bit = “0”, the DZF pins of both L and R channels go to “H” only when the input data for both channels are continuously zeros for 8192 LRCK cycles (16384 LRCK cycles in

DSD 512fs mode). The zero detect function can be disabled by setting the DZFE bit. In this case, DZF pins of both channels are always “L”. The zero detect function is also disabled when Volume Bypass is selected in DSD mode (refer to p42).

Table 34. Zero Detect Select.

DZFE DZFB RSTN Data DZF-pin

0

1

0

1

0

1

-

-

0

1

0

1

-

-

- not zero zero detect

- not zero zero detect

L

H

H

L

H

L

H

L

Rev. 0.1

- 60 -

2015/11

[AK4497]

L/R Channel Output Signal Select, Phase Inversion Function (PCM, DSD, EXDF)

In register control mode, input and output combination of the AK4497 can be changed by MONO bit and

SELLR bit. In addition, the output signal phase can be inverted by INVL bit and INVR bit. These functions are available on all audio formats. In pin control mode, the phase of R channel output can be inverted by setting the INVR pin.

Table 35. Output Select (Register Control)

MONO bit SELLR bit INVL bit INVR bit Lch Out Rch Out

0

0

1

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Lch In

Lch In

Rch In

Rch In Invert

Lch In Invert Rch In

Lch In Invert Rch In Invert

Rch In

Rch In

Lch In

Lch In Invert

Rch In Invert Lch In

Rch In Invert Lch In Invert

Lch In

Lch In

Lch In

Lch In Invert

Lch In Invert Lch In

Lch In Invert Lch In Invert

Rch In

Rch In

Rch In

Rch In Invert

Rch In Invert Rch In

Rch In Invert Rch In Invert

Table 36. Output Select (Pin Control)

INVR pin Lch Out Rch Out

0

1

Lch In Rch In

Lch In Rch In Invert

Rev. 0.1

- 61 -

2015/11

Sound Quality (PCM, DSD, EXDF)

Sound quality of the AK4497 can be selected by SC[2:0] bits.

Table 37. Sound Quality Select Mode

SC1 SC0 Sound

0

0

1

1

0

1

0

1

Sound Setting 1

Sound Setting 2

Sound Setting 3

Sound Setting 2

SC2

0

1

Table 38. Sound Quality Select Mode

Sound

Sound Setting 4

Sound Setting 5

(default)

(default)

[AK4497]

Rev. 0.1

- 62 -

2015/11

[AK4497]

DSD Signal Full Scale (FS) Detection

The AK4497 has independent full scale detection function for each channel for DSD mode.

The AK4497 detects full scale signal when the DSDL/R input data is continuously

“0” (-FS) or “1” (+FS) for

2048 cycles and the detection flag for corresponding channel (DML or DMR bit) becomes

“1”. DML and

DMR bits can be read out at the register address 06H.

When the AK4497 detects full scale signal while DDM bit =

“1”, the analog output is muted in ATT transition period set by ATS[2:0] bits. This transition is executed by soft transition when DSDD bit =

“0”.

The analog output is muted immediately when DSDD bit =

“1”. These settings (ATS[2:0] bits and DSDD bits) are also valid when the AK4497 returns to normal status from full scale detection status.

The recovery timing from full scale detection status is controlled by DMC bit when DDM bit =

“1”. When

DMC bit =

“0”, the AK4497 is automatically recovered and transitions to normal operation by a normal signal input. When DMC bit =

“1”, the AK4497 transitions to normal operation by setting DMRE bit = “1” while normal signal is input. DMRE bit automatically returns to

“0” when the transition is finished. When

DDM bit =

“1”, full scale signal can be detected but the AK4497 does not change to mute status. RSTN bit must be set to

“0” when changing DDM bit setting.

Table 39. DSD Mode and Device Status after Full-Scale Detection (DDM bit=

“1”)

DSDD Mode Full Scale Detection Status Analog Output

0

1

Normal Path

Volume Bypass

DSD Mute

Digital Reset

VCML/R

VCM/L/R

(default)

DSD Data

DSD Data DSD Data (FS or -FS )

DSD Data

DSD Error

(DML or DMRbit)

2048fs

ATT Transition Period

ATT Transition Period

AOUT

(DSDD bit=

“0”)

AOUT

(DSDD bit=

“1”)

Figure 47. Analog Output Waveform in DSD FS Detection (DMC bit=

“0”)

DSD Data

DSD Error

(DML or DMRbit)

DSD Data

2048fs

DSD Data (FS or -FS ) DSD Data

DMRE bit

ATT Transition Period

AOUT

(DSDD bit=

“0”)

ATT Transition Period

Rev. 0.1

AOUT

(DSDD bit=

“1”)

Figure 48. Analog Output Waveform in DSD FS Detection (DMC bit=

“1”)

- 63 -

2015/11

[AK4497]

Soft Mute Operation (PCM, DSD, EXDF)

The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H” or the SMUTE bit set to

“1”, the output signal is attenuated by



during ATT_DATA

ATT transition time from the current ATT level. When the SMUTE pin is returned to “L” or the SMUTE bit is returned to “0”, the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATA

ATT transition time. If the soft mute is cancelled before attenuating



after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.

SMUTE pin or

SMUTE bit

(1) (1)

ATT_Level

Attenuation

(3)

-

(2) GD (2) GD

AOUTL/R

(4)

8192/fs

DZFL/R pin

Notes:

(1) ATT_DATA

ATT transition time. For example, this time is 4080LRCK cycles (1020/fs) at

ATT_DATA=255 in PCM Normal Speed Mode.

(2) The analog output corresponding to the digital input has group delay (GD).

(3) If the soft mute is cancelled before attenuating



after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle.

(4) When the input data for each channel is continuously zeros for 8192 LRCK cycles (16384 LRCK cycles in DSD 512fs mode), the DZF pin for each channel goes to “H”. The DZF pin immediately returns to “L” if input data are not zero.

Figure 49. Soft Mute Function

Rev. 0.1

- 64 -

2015/11

[AK4497]

LDO

When TVDD = 3.0 ~3.6V, the power for digital core circuit (DVDD) is supplied by the internal LDO by setting the LDOE pin to

“H”.

Table 40 shows the DVDD pin statuses with the PDN and LDOE pins setting.

The internal LDO is powered up by setting the PDN pin from

“L” to “H” (power-down release) and it starts supping 1.8V DVDD. It takes 0.1ms (max.) to power-up the internal LDO.

Table 40. LDO Select Mode

PDN LDOE TVDD DVDD

L L

1.7~3.6V

Hi-z

L H 3.0~3.6V 500ohm Pull Down

H

H

L

H

1.7~3.6V LDO OFF: Supply 1.7 ~ 1.98V to the DVDD pin externally

3.0~3.6V LDO ON: LDO outputs 1.8V.

The AK4497 has error detect function as shown in Table 41 for LDO operation (LDOE pin =

“H”). The internal LDO will be powered down and stop supplying the power to the digital core when an error is detected. In this case, the analog signal output becomes Hi-z state. The AK4497 must be reset by setting the PDN pin =

“L” → “H” to recover from the error detection status.

Table 41. Error Detection

No Error Error Detection Condition

1 Internal Reference Voltage Error Internal reference voltage does not rise.

2 LDO Over Voltage Detection

3 LDO Over Current Detection

LDO voltage exceeds 2.2V.

LDO current is 40mA or less, or 110mA or more.

Shutdown Switch

A shutdown switch is placed between the DVSS pin and VSS for the digital core to prevent SIDD leak of

DVDD digital power supply. The on-resistance is maximum 1

Ω and the DVDD leak current will be 2uA at the maximum.

When using LDO (LDOE pin =

“H”), the shutdown switch is ON after counting by internal oscillator following a power-down release (PDN pin

“L” → “H”). It takes 2ms (max.) for the shutdown switch power-up.

When not using LDO (LDOE pin =

“L”), the shutdown switch is ON immediately after a power-down release (PDN pin

“L” → “H”). It takes 1us (max.) for the shutdown switch power-up.

Over Current Protection for Analog Output Pins

The AK4497 has channel independent over current detection function for analog output pins

(AOUTLP/LN and AOUTRP/RN pins). This function limits the current not to exceed 120mA when an excessive current over 120mA (min) is detected. It is valid when the AK4497 is in power-on state.

Rev. 0.1

- 65 -

2015/11

[AK4497]

Power Up/Down Function

The AK4497 is powered down by setting the PDN pin to

“L”. In power-down state, all circuits stop operation and initialized, and the analog output becomes floating (Hi-z) state.

The PDN pin must held “L” for more than 150ns for a certain reset. There is a possibility of malfunctions with the “L” pulse less than

150ns. Power-down is released by setting the PDN pin to

“H” from “L”. In this time IREF and LDO (if

LDOE pin =

“H”) are powered up and the analog output becomes floating (Hi-z) state.

(a) Pin Control Mode (PSN pin =

“H”)

All circuits will be powered up by inputting MCLK, LRCK and BICK clocks after the PDN pin =

“H”. The analog circuit starts operation just after supplying all necessary clocks (MCLK, LRCK and BICK) and the

digital circuit starts operation about 4/fs after the clock supply. Figure 50 shows system timing example of

power down/up when using the internal LDO (LDOE pin

“H”). When power up the AK4497 with the LDOE pin =

“H”, 3.3V power supplies (AVDD and TVDD) should be powered up before or at the same time of 5V power supplies (VDDL/R and VREFHL/R).

Power

(TVDD,AVDD)

Power

(VDDL/R,VREFHL/R)

PDN pin

(1)

DVDD pin

Internal PDN

Internal

State

DAC In

(Digital)

(2)

Normal Operation (DAC Input Available)

Reset

“0”data

GD

(3)

“0”data

GD

(5) DAC Out

(Analog)

(4)

Clock In

MCLK,LRCK,BICK

Don

’t care

External

Mute

(5)

(6)

Don

’t care

(4)

Mute ON

Mute ON

Figure 50. Power-down/up Sequence Example (Pin Control Mode, LDOE pin=

“H”)

Notes:

(1) The PDN pin must be held

“L” for more than 150ns after supplying AVDD, TVDD and VDDL/R.

(2) Internal LDO is powered up after the PDN pin =

“H” when the LDOE pin= “H”. The internal circuit will starts operation after the shutdown switch is ON (max. 2ms) following the internal oscillator count up.

(3) The analog output corresponding to the digital input has group delay (GD).

(4) Analog outputs are floating (Hi-Z) in power down mode.

(5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input.

(6) Mute the analog output externally if click noise (5) adversely affect system performance. The timing example when not using LDO (LODE pin =

“L”) is shown in

Figure 51 . When the LDOE

pin=

“L”, 1.8V (DVDD), 3.3V (AVDD, TVDD) and 5V (VDDL, VDDR, VREFHL, VREFHR) power supplies should be powered up at the same time, otherwise power up the 3.3V power supplies

Rev. 0.1

- 66 -

2015/11

[AK4497]

(AVDD, TVDD) first, 1.8V power supply (DVDD) next and 5V power supplies (VDDL/R,

VREFHL/R) last.

Power

(TVDD,AVDD)

Power

(DVDD)

Power

(VDDL/R,VREFHL/R)

PDN pin

Internal PDN

Internal

State

DAC In

(Digital)

(1)

(2)

Normal Operation (DAC Input Available) Reset

“0”data

GD

(3)

“0”data

GD

(5) DAC Out

(Analog)

(4)

Clock In

MCLK,LRCK,BICK

Don

’t care

External

Mute

(5)

(6)

Don

’t care

(4)

Mute ON

Mute ON

Figure 51. Power-down/up Sequence Example (Pin Control Mode, LDOE pin=

“L”)

Notes:

(1) The PDN pin must be held

“L” for more than 150ns after supplying AVDD, TVDD, DVDD and

VDDL/R.

(2) Internal shutdown switch is powered up after the PDN pin =

“H” when the LDOE pin= “L”. The internal circuit will start operation after the shutdown switch is ON (max. 1us).

(3) The analog output corresponding to the digital input has group delay (GD).

(4) Analog outputs are floating (Hi-Z) in power down mode.

(5) Click noise occurs at the edge of PDN signal.

This noise is output even if “0” data is input.

(6) Mute the analog output externally if click noise (5) adversely affect system performance.

Rev. 0.1

- 67 -

2015/11

[AK4497]

(b) Register Control Mode (PSN pin=

“L”)

A register access becomes available after the PDN pin =

“H”. The analog circuit starts operation by supplying necessary clocks (MCLK, LRCK and BICK for PCM mode, MCLK and DCLK for DSD mode,

MCLK, BCK and WCK for EXDF mode) and the clock divider is powered up about after 4/fs. The analog output pins output analog common voltages (VCML, VCMR) in this time. Then the AK4497 transitions to normal operation by setting RSTN bit =

“1”. When power up the AK4497 with the LDOE pin =

“H”, 3.3V power supplies (AVDD and TVDD) should be powered up before or at the same time of

5V power supplies (VDDL/R and VREFHL/R).

Power

(TVDD,AVDD)

Power

(VDDL/R,VREFHL/R)

PDN pin

(1)

DVDD pin

Internal PDN

(2)

RSTN bit

(8)

Internal State

(Resister

(Clock devider)

Power Off

Normal Operation Power Off

(9)

(9)

Internal State

(Digital Core)

DAC In

(Digital)

Power Off Normal Operation

“0”data

GD

(3)

“0”data

GD

Power Off

(5)

DAC Out

(Analog)

(4)

Clock In

MCLK,LRCK,BICK

Don

’t care

(5)

Don

’t care

(4)

DZFL/R

(7)

Figure 52. Power-down/up Sequence Example (Resister Control Mode, LDOE pin=

“H”)

Notes:

(1) The PDN pin must be held

“L” for more than 150ns after supplying AVDD, TVDD and VDDL/R.

(2) Internal LDO is powered up after the PDN pin =

“H” when the LDOE pin= “H”. The internal circuit will starts operation after the shutdown switch is ON (max. 2ms) following the internal oscillator count up.

(3) The analog output corresponding to the digital input has group delay (GD).

(4) Analog outputs are floating (Hi-Z) in power down mode.

(5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input.

(6) Mute the analog output externally if click noise (5) adversely affect system performance.

(7) The DZFL/R pins are “L” in power-down mode (PDN pin = “L”).

(8) The clock divider is powered up in about 4/fs after the internal PDN is released.

Rev. 0.1

- 68 -

2015/11

[AK4497]

(9) It takes 3~4/fs until the internal RSTN is changed when changing RSTN bit to

“0” and it takes

2~3/fs when changing RSTN bit to

“1”. The system timing example of power up/down when not using LDO (LODE pin =

“L”) is shown in

Figure 53 . When the LDOE pin=

“L”, 1.8V (DVDD), 3.3V

(AVDD, TVDD) and 5V (VDDL, VDDR, VREFHL, VREFHR) power supplies should be powered up at the same time, otherwise power up the 3.3V power supplies (AVDD, TVDD) first, 1.8V power supply (DVDD) next and 5V power supplies (VDDL/R, VREFHL/R) last.

Power

(TVDD,AVDD)

Power

(DVDD)

Power

(VDDL/R,VREFHL/R)

PDN pin

Internal PDN

(1)

RSTN bit

(8)

Internal State

(Resister

(Clock devider)

Power Off

Normal Operation

Power Off

(9) (9)

Internal State

(Digital Core)

DAC In

(Digital)

Power Off

Normal Operation

“0”data

GD

“0”data

GD

Power Off

(5)

DAC Out

(Analog)

(4)

Clock In

MCLK,LRCK,BICK

Don

’t care

(5)

Don

’t care

(4)

DZFL/R

(7)

Figure 53. Power-down/up Sequence Example (Resister Control Mode, LDOE pin=

“H”)

Notes:

(1) The PDN pin must be held

“L” for more than 150ns after supplying AVDD, TVDD and VDDL/R.

(2) Internal shutdown switch is powered up after the PDN pin =

“H” when the LDOE pin= “L”. The internal circuit will start operation after the shutdown switch is ON (max. 1us).

(3) The analog output corresponding to the digital input has group delay (GD).

(4) Analog outputs are floating (Hi-Z) in power down mode.

(5) Click noise occurs at the edge of PDN s ignal. This noise is output even if “0” data is input.

(6) Mute the analog output externally if click noise (5) adversely affect system performance.

(7) The DZFL/R pins are “L” in power-down mode (PDN pin = “L”).

(8) The clock divider is powered up in about 4/fs after the internal PDN is released.

(9) It takes 3~4/fs until the internal RSTN is changed when changing RSTN bit to

“0” and it takes

2~3/fs when changing RSTN bit to

“1”.

Rev. 0.1

- 69 -

2015/11

[AK4497]

Power-OFF/Reset Function

Power-off and Reset function of the AK4497 are controlled by PW bit, RSTN bit and MCLK ( Table 42 ).

Table 42. Power Off, Reset Function

Mode

PDN

Pin

MCLK

Supply

PW bit

RSTN bit

DIGITAL

Block

ANALOG

Block

LDO

Register

Analog Output

Power Down

L

- - -

OFF OFF OFF Hi-Z

MCLK Stop

H

Power OFF

H

Reset H

Normal Operation H

No

Yes

Yes

Yes

0

1

1

0

1

OFF

OFF

OFF

ON

OFF

OFF

ON

ON

ON

ON

ON

ON

Hi-Z

Hi-Z

VCML/R

Signal Output

(1) Power ON/OFF by MCLK Clock

The AK4497 detects a clock stop and all circuits including MCLK stop detection circuit, control register and IREF (except LDO when the LDOE pin =

“H”) stop operation if MCLK is not input for 1us (min.) during operation (PDN pin =

“H”). In this case, the analog output goes floating state (Hi-Z). The AK4497 returns to normal operation if PW bit and RSTN bit are

“1” after starting to supply MCLK again. The zero detect function is disabled when MCLK is stopped.

PDN pin

(4)

Internal

State

Normal Operation Power-off Normal Operation

Clock In

MCLK,

MCLK Stop

D/A In

(Digital)

(3)

(1)

(1)

D/A Out

(Analog)

(2) Hi-z

Notes:

(1) The AK4497 detects MCLK stop and becomes power off state when MCLK edge is not detected for

1us (min.) during operation.

(2) The analog output goes to floating state (Hi-Z).

(3) Click noise can be reduced by inputting

“0” data when stopping and resuming MCLK supply.

(4) Resume MCLK input to release the power-off state by MCLK. In this case, power-up sequence by the PDN pin or power-on sequence by PW bit are not necessary.

Figure 54. Power ON/OFF by MCLK Clock

Rev. 0.1

- 70 -

2015/11

[AK4497]

(2) Power ON/OFF by PW bit

All circuits including control register and IREF (except LDO when the LDOE pin =

“H”) stop operation by setting PW bit to

“0”. In this case, control register access is available. The analog output goes to floating

state (Hi-Z). Figure 55 shows power ON/OFF sequence by PW bit.

PW bit

RSTN bit

Internal

State

DAC In

(Digital)

DAC Out

(Analog)

DZFL/DZFR

Normal Operation

(1)

GD

Power-off

“0” data

(3) (2) Hi-z (3)

Normal Operation

GD

(1)

(4)

(5)

Mute ON

Notes:

(1) The analog output corresponding to the digital input has group delay (GD).

(2) The analog output is floating (Hi-Z) state when PW bit

= “0”.

(3) Click noise occurs at the edge of PW bit

. This noise is output even if “0” data is input.

(4) The zero detect function is enable when the AK4497 is power off (PW bit=

“0”). This figure shows the seuqnece when DZFE bit=

“1”, DZFB bit = “0” and DZFM bit= “0”.

(5) Mute the analog output externally if click noise (3) or Hi-z output (2) adversely affect system performance.

External

MUTE

Figure 55. Power ON/OFF Timing Example

Rev. 0.1

- 71 -

2015/11

[AK4497]

(3) Reset by RSTN bit

Digital circuits except control registers and clock divider are reset by setting RSTN bit to

“0”. In this case, control register settings are held and the analog output becomes VCML/R voltage.

Figure 56 shows

power ON/OFF sequence by RSTN bit.

RSTN bit

3~4/fs (5) 2~3/fs (5)

Internal

RSTN signal

Internal

State

Normal Operation

Digital Block Power-off

Normal Operation

DAC In

(Digital)

“0” data

(1)

GD GD

(1)

(3) (2) (3)

DAC Out

(Analog)

2/fs(4)

DZFL/R

(6)

Notes:

(1) The analog output corresponding to the digital input has group delay (GD).

(2) The analog output is VCOM voltage when RSTN bit

= “0”.

(3) Click noise occurs at the edge of PW bit. This noise is output even if

“0” data is input.

(4) This figure shows the seuqnece when DZFE bit=

“1”, DZFB bit = “0” and DZFM bit= “0”. The

DZFL/R pin goes

“H” on a falling edge of RSTN bit and goes “L” 2/fs after a rising edge of internal

RSTN bit.

(5) It takes 3~4/fs until the internal RSTN is changed when changing RSTN bit to

“0” and it takes

2~3/fs when changing RSTN bit to

“1”.

(6) Mute the analog output externally if click noise (3) adversely affect system performance.

Figure 56. Reset Timing Example

Rev. 0.1

- 72 -

2015/11

[AK4497]

Synchronize Function

(PCM

, EXDF

)

The AK4497 has a function that resets the internal counter to keep the timing of falling edge of the internal clock CLK1 and the external clock edge in a certain range. With this synchronize function, group delays between each device can be kept within 4/256fs when using multiple AK4497

’s.

Clock synchronize function becomes valid when input data of both L and R channels are

“0” for 8192 times continuously in PCM mode or EXDF mode, when both L and R channels become

“0” and kept for

8192 times continuously by attenuation or when RSTN bit =

“0”. In PCM mode, the internal counter is synchronized with a rising edged of LRCK (falling edge of LRCK in I2C mode), and it is synchronized with a rising edge of WCK in EXDF mode. In this case, the analog output has the same voltage as VCML/R.

This function is disabled by setting SYNCE bit =

“0” in register control mode.

Figure 57 shows a

synchronizing sequence when the input data is

“0” for 8192 times continuously.

Figure 58 shows a

synchronizing sequence by RSTN bit.

D/A In

(Digital)

SMUTE

(1) (1)

Attenuation

ATT_Level

GD

-

GD GD

(4)

AOUT

(2)

8192/fs

(2)

8192/fs

Both DZFL/R pin

SYNC

Operation (2)

SYNC

Operation (2)

Internal Counter

Reset

(5)

Internal

Data

2~3/fs (3)

Notes:

(1) Regarding ATT Transition time, refer to

“ ■ Output Volume (PCM, DSD, EXDF) ”.

(2) When both L and R channels data are

“0” for 8192 times continuously, the DZFL and DZFR pins become

“H” and the synchronize function is valid.

(3) Internal data is fixed to

“0” forcibly for 2 to 3/fs when internal counter is reset.

(4) A click noise may occur when the internal counter is reset. This noise is output even if a

“0” data is input. Mute the analog output externally if this click noise affects the system performance.

(5) When the internal clock and external clock are in synchronization, the internal counter is not reset even if the synchronize function is valid.

Figure 57. Synchronizing Sequenc by Continuous

“0” Data Input for 8192 Times

Rev. 0.1

- 73 -

2015/11

[AK4497]

If RSTN bit is set to

“0”, the output signal of the DZFL/DZFR pin becomes “H”. Then, the DAC is reset 3 to

4/fs after the DZFL and the DZFR pins =

“H” and the analog output becomes the same voltage as

VCML/R. The synchronize function becomes valid when both of the DZFL and the DZFR pins output

“H”.

RSTN bit

3~4/fs (4) 2~3/fs (4)

Internal

RSTN bit

Internal

State

Normal Operation

Digital Block Power-down

Normal Operation

D/A In

(Digital) force

”0”

(2)

(3)

GD GD

(3)

(5) (5)

D/A Out

(Analog)

2/fs(4)

Both DZFL/R pin

SYNC Operation (1)

Internal Counter

Reset

Internal

Data

2~3/fs (2)

Note:

(1) The DZFL and the DZFR pins become

“H” by a falling edge of RSTN bit, and becomes “L” 2/fs after a rising edge of internal signal of RSTN bit. The synchronize function is valid During the DZFL/R pin =

“H”.

(2) Internal data is fixed to

“0” forcibly for 2 to 3/fs when the internal counter is reset.

(3) Since the analog output corresponding to digital input has group delay (GD), it is recommended to have a no-input period longer than the group delay before writing

“0” to RSTN bit.

(4) It takes 3 to 4/fs when falling to change the internal RSTN signal of the LSI after writing to RSTN bit. It also takes 2 to 3/fs when rising to change the internal RSTN signal of the LSI. The synchronize function becomes valid immediately when

“0” is written to RSTN bit. Therefore, there is a case that the internal counter is reset before internal RSTN signal of the LSI is changed.

(5) A click noise occurs on the rising or falling edge of the internal RSTN signal and when the internal counter is reset. This noise is output even if a

“0” data is input. Mute the analog output externally if this click noise affects the system performance.

Figure 58. Synchronizing Sequence by RSTN Bit

Rev. 0.1

- 74 -

2015/11

[AK4497]

Register Control Interface

(1) 3-wire Serial Control Mode

(I2C pin = “L”)

Pins (pin control mode) or registers (register control mode) can control the functions of the AK4497. In pin control mode, the register setting is ignored, and in register control mode the pin settings are ignored.

When the state of the PSN pin is changed, the AK4497 should be powered down by the PDN pin.

Otherwise, malfunctions may occur since previous settings are not initialized. The register control interface is enabled by the

PSN pin = “L”. Internal registers may be written to through 3-wire µP interface pins: CSN, CCLK and CDTI. The data on this interface consists of Chip address (2-bits, C1/0),

Read/Write (1bit; fixed to “1”, write only), Register address (MSB first, 5-bits) and Control data (MSB first,

8-bits). The data is output on a falling edge of CCLK and the data is received on a rising edge of CCLK.

The writing of data is valid when CSN “

”. The clock speed of CCLK is 5MHz (max).

Setting the PDN pin to “L” resets the registers to their default values. In register control mode, the digital block except control registers and clock divider is reset by setting RSTN bit to

“0”. In this case, the register values are not initialized.

CSN

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

CCLK

CDTI

C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

C1-C0: Chip Address (C1 bit =CAD1 pin, C0 bit =CAD0 pin)

R/W:

READ/WRITE (Fixed to “1”, Write only)

A4-A0: Register Address

D7-D0: Control Data

Figure 59. Control I/F Timing

* The AK4497 does not support read commands in 3-wire serial control mode.

* When the AK4497 is in power down mode (PDN pin = “L”), writing into control registers is prohibited.

* The control data cannot be written when the CCLK rising edge is 15 times or less, or 17 times or more during CSN is “L”.

Rev. 0.1

- 75 -

2015/11

[AK4497]

(2) I

2

C-bus Control Mode

(I2C pin = “H”)

The AK4497 supports the fast-mode I

2

C-bus (max: 400kHz, Ver 1.0).

(2)-1. WRITE Operations

Figure 60 shows the data transfer sequence for the I

2

C-bus mode. All commands are preceded by a

START condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START

condition ( Figure 66 ). After the START condition, a slave address is sent. This address is 7 bits long

followed by the eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as “00100”. The next bits are CAD1 and CAD0 (device address bits). This bit identifies the specific device on the bus. The hard-wired input pin (CAD1pins, CAD0 pin) sets these device address

bits ( Figure 61 ). If the slave address matches that of the AK4497, the AK4497 generates an acknowledge

and the operation is executed. The master must generate the acknowledge-related clock pulse and

release the SDA line (HIGH) during the acknowledge clock pulse ( Figure 67

). A R/W bit value of “1”

indicates that the read operation is to be executed, and “0” indicates that the write operation is to be executed.

The second byte consists of the control register address of the AK4497 and the format is MSB first.

( Figure 62 ). The data after the second byte contains control data. The format is MSB first, 8bits ( Figure

63 ). The AK4497 generates an acknowledge after each byte is received. Data transfer is always

terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line

while SCL is HIGH defines a STOP condition ( Figure 66 ).

The AK4497 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4497 generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds

“15H” prior to generating a stop condition, the address counter will “roll over” to “00H” and the previous data will be overwritten.

The data on the SDA line must remain stable during the HIGH period of the clock. HIGH or LOW state of

the data line can only be changed when the clock signal on the SCL line is LOW ( Figure 68 ) except for the

START and STOP conditions.

S

T

A

R

T

R/W=

“0”

S

T

O

P

SDA

S

Slave

Address

Sub

Address(n)

Data(n) Data(n+1)

A

C

K

A

C

K

A

C

K

A

C

K

Figure 60. Data Transfer Sequence at I

2

C Bus Mode

A

C

K

Data(n+x)

A

C

K

P

0 0 1 0 0 CAD1 CAD0 R/W

(CAD0 is set by the pin)

Figure 61. The First Byte

0 0 A1 A0 0 A4 A3 A2

Figure 62. The Second Byte

D7 D6 D5 D4 D3 D2 D1

Figure 63. The Third Byte and After The Third Byte

D0

Rev. 0.1

- 76 -

2015/11

[AK4497]

(2)-2. READ Operation

Set the R/W bit = “1” for the READ operation of the AK4497. After transmission of data, the master can read the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word. After receiving each data packet the internal address counter is incremented by one, and the next data is automatically taken into the next address. If the address exceeds

“15H” prior to generating stop condition, the address counter will “roll over” to “00H” and the data of “00H” will be read out.

The AK4497 supports two basic read operations: Current Address Read and Random Address Read.

(2)-2-1. Current Address Read

The AK4497 has an internal address counter that maintains the address of the last accessed word incremented by one. Therefore, if the last access (either a read or write) were to address “n”, the next

CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4497 generates an acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4497 ceases the transmission.

S

T

A

R

T

R/W=

“1”

S

T

O

P

SDA

S

Slave

Address

Data(n) Data(n+1) Data(n+2) Data(n+x) P

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Figure 64. Current Address Read

(2)-2-2. Random Address Read

The random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit

“1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave address (R/W b it = “0”) and then the register address to read. After the register address is acknowledged, the master immediately reissues the start request and the slave address with the R/W bit

“1”. The AK4497 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4497 ceases the transmission.

S

T

A

R

T

R/W=

“0”

S

T

A

R

T

R/W=

“1”

S

T

O

P

SDA

S

Slave

Address

Sub

Address(n)

S

Slave

Address

Data(n) Data(n+1) Data(n+x) P

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Figure 65. Random Address Read

Rev. 0.1

- 77 -

2015/11

[AK4497]

SDA

SCL

S start condition

P stop condition

Figure 66. Start Condition and Stop Condition

DATA

OUTPUT BY

TRANSMITTER

DATA

OUTPUT BY

RECEIVER

SCL FROM

MASTER

S

START

CONDITION

SDA

1

2

Figure 67. Acknowledge (I

2

C Bus) not acknowledge

8 acknowledge

9 clock pulse for acknowledgement

SCL data line stable; data valid change of data allowed

Figure 68. Bit Transfer (I

2

C Bus)

Rev. 0.1

- 78 -

2015/11

[AK4497]

Register Map

Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0

00H Control 1

01H Control 2

02H Control 3

03H Lch ATT

04H Rch ATT

05H Control4

06H DSD1

07H Control5

08H Sound Control

09H DSD2

0AH Control 7

0BH Control 8

0CH Control 9

0DH Reserved

0EH Reserved

0FH Reserved

10H Reserved

11H Reserved

12H Reserved

ACKS

DZFE

DP

ATT7

ATT7

INVL

DDM

0

0

0

TDM1

ATS1

0

0

0

0

0

0

0

EXDF

DZFM

0

ATT6

ATT6

INVR

DML

0

0

0

TDM0

ATS0

0

0

0

0

0

0

0

ECS

SD

DCKS

ATT5

ATT5

0

DMR

0

0

0

SDS1

0

0

0

0

0

0

0

0

AFSD

DFS1

DCKB

ATT4

ATT4

0

DMC

0

0

0

SDS2

SDS0

0

0

0

0

0

0

0

DIF2

DFS0

MONO

ATT3

ATT3

0

DMRE

GC2

HLOAD

0

0

0

0

0

0

0

0

0

0

DIF1

DEM1

DZFB

ATT2

ATT2

RSTPG

0

GC1

SC2

DIF0

DEM0

SELLR

ATT1

ATT1

DFS2

DSDD

GC0

SC1

DSDPATH DSDF

PW 0

0

0

0

DCHAIN

0

0

0

0

0

0

0

0

0

0

0

0

13H Reserved

14H Reserved

15H DFS read

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 ADFS2 ADFS1 ADFS0

Notes:

• In 3-wire serial control mode, the AK4497 does not support read commands.

• The AK4497 supports read command in I

2

C-bus control mode.

• If the address exceeds “15H”, the address counter will “roll over” to “00H” and the next write/read address will be

“00H” by automatic increment function in I2C-Bus mode.

• Data must not be written into 0 bits, TEST bit in “0BH” and registers from “16H” to “1FH”. Malfunctions may occur if data is written to these bits.

• When the PDN pin goes to “L”, the registers are initialized to their default values.

• When RSTN bit is set to “0”, the digital block except control registers and clock divider is reset, and the registers are not initialized to their default values.

• When the state of the PSN pin is changed, the AK4497 should be reset by the PDN pin.

(Note) The AK4497 is register compatible with the AK4490 and the AK4495.

RSTN

SMUTE

SLOW

ATT0

ATT0

SSLOW

DSDSEL0

SYNCE

SC0

DSDSEL1

0

TEST

0

0

0

0

0

0

0

Rev. 0.1

- 79 -

2015/11

(Reference) AK4490 Register Map

Addr Register Name

00H Control 1

01H Control 2

02H Control 3

03H Lch ATT

04H Rch ATT

05H Control4

06H DSD1

07H Control5

08H Sound Control

09H DSD2

D7

ACKS

DZFE

DP

ATT7

ATT7

INVL

DDM

0

0

0

(Reference) AK4495 Register Map

Addr Register Name D7

00H Control 1

01H Control 2

02H Control 3

03H Lch ATT

04H Rch ATT

05H Control4

06H Control5

07H Control6

08H Sound Control

09H Reserved

ACKS

DZFE

DP

ATT7

ATT7

INVL

DDM

0

0

0

D6

EXDF

DZFM

0

ATT6

ATT6

INVR

DML

0

0

0

D6

EXDF

DZFM

0

ATT6

ATT6

INVR

DML

0

0

0

D5

ECS

SD

DCKS

ATT5

ATT5

0

DMR

0

0

0

D5

ECS

SD

DCKS

ATT5

ATT5

0

DMR

0

0

0

[AK4497]

D4

0

D3

DIF2

D2

DIF1

D1

DIF0

D0

RSTN

DFS1 DFS0 DEM1 DEM0 SMUTE

DCKB MONO DZFB SELLR SLOW

ATT4

ATT4

ATT3

ATT3

ATT2

ATT2

ATT1

ATT1

ATT0

ATT0

0

DMC

0

0

0

0

DMRE

0

0

0

0

0

0

0

0

DFS2

0

SC1

DSDF

DFTHR

DSDD DSDSEL0

SYNCE

SC0

DSDSEL1

D4 D3 D2 D1 D0

0

DFS1

DIF2

DFS0

DCKB MONO

ATT4

ATT4

0

DMC

ATT3

ATT3

DIF1

DEM1

DZFB

ATT2

ATT2

DIF0

DEM0

SELLR

ATT1

ATT1

RSTN

SMUTE

SLOW

ATT0

ATT0

0 0 DFS2 DFTHR

DMRE DSDD1 DSDD0 DSDSEL

0

0

0

0

0

0

0

SC2

0

0

SC1

0

SYNCE

SC0

0

Rev. 0.1

- 80 -

2015/11

[AK4497]

Register Definitions

Addr Register Name

00H Control 1

R/W

Default

D7

ACKS

R/W

0

D6

EXDF

R/W

0

D5

ECS

R/W

0

D4

AFSD

R/W

0

D3

DIF2

R/W

1

D2

DIF1

R/W

1

D1

DIF0

R/W

0

D0

RSTN

R/W

0

RSTN: Internal Timing Reset

0: Reset. All registers are not initialized. (default)

1: Normal Operation

Writing

“0” to this bit resets the internal timing circuit but register values are not initialized.

DIF[2:0]: Audio Data Interface Modes ( Table 23 )

Initial value is

“110” (Mode 6: 32-bit MSB justified)

AFSD: Sampling Frequency Auto Detect Mode Enable (PCM & EXDF mode only). ( Table 5 )

0: Disable: Manual or Auto Setting Mode (default)

1: Enable: Auto Detect Mode

When AFSD bit =

“1”, DFS[2:0] bits are ignored.

ECS: EXDF mode clock setting ( Table 22 )

0: WCK=768kHz mode (default)

1: WCK=384kHz mode

EXDF: External Digital Filter I/F Mode (Register Control mode only)

0: Disable: Internal Digital Filter mode (default)

1: Enable: External Digital Filter mode

ACKS: Master Clock Frequency Auto Setting Mode Enable (PCM & EXDF mode only). ( Table 13

, Table 5 )

0: Disable: Manual Setting Mode (default)

1: Enable: Auto Setting Mode

Rev. 0.1

- 81 -

2015/11

[AK4497]

Addr Register Name

01H Control 2

R/W

Default

D7

DZFE

R/W

0

D6

DZFM

R/W

0

D5

SD

R/W

1

D4

DFS1

R/W

0

D3

DFS0

R/W

0

D2

DEM1

R/W

0

D1 D0

DEM0 SMUTE

R/W

1

R/W

0

SMUTE: Soft Mute Enable

0: Normal Operation (default)

1: DAC outputs soft-muted.

DEM[1:0]: De-emphasis Filter Control ( Table 29 )

Initial value is

“01” (OFF).

DFS[1:0]: Sampling Speed Control. ( Table 7

, Table 10 )

Initial value is

“000” (Normal Speed). Click noise occurs when DFS1-0 bits are changed.

SD: Minimum delay Filter Enable. ( Table 27 )

0: Traditional filter

1: Short delay filter (default)

DZFM: Data Zero Detect Mode

0: Channel Separated Mode (default)

1: Channel ANDed Mode

If the DZFM bit is set to “1”, the DZF pins of both L and R channels go to “H” only when the input data at both channels are continuously zeros for 8192 LRCK cycles.

DZFE: Data Zero Detect Enable

0: Disable (default)

1: Enable

Zero detect function can be disabled by DZFE bit “0”. In this case, the DZF pins of both channels are always “L”.

Rev. 0.1

- 82 -

2015/11

[AK4497]

Addr Register Name

02H Control 3

R/W

Default

D7

DP

R/W

0

D6

0

R/W

0

D5

DCKS

R/W

0

D4 D3

DCKB MONO

R/W

0

R/W

0

D2

DZFB

R/W

0

SLOW: Slow Roll-off Filter Enable. ( Table 27 )

0: Slow roll-off filter disable (default)

1: Slow roll-off filter

SELLR: The data selection of L channel and R channel, when MONO mode

0: All channel output L channel data, when MONO mode. (default)

L channel output L channel data, Rchannel data output Rchannel data(default)

1: All channel output R channel data, when MONO mode.

L channel output R channel data, Rchannel data output Lchannel data

DZFB: Inverting Enable of DZF. ( Table 34 )

0: DZF pin goes “H” at Zero Detection (default)

1: DZF pin goes “L” at Zero Detection

MONO: MONO mode Stereo mode select

0: Stereo mode (default)

1: MONO mode

DCKB: Polarity of DCLK (DSD Only)

0: DSD data is output from DCLK falling edge. (default)

1: DSD data is output from DCLK rising edge.

DCKS: Master Clock Frequency Select at DSD mode (DSD only)

0: 512fs (default)

1: 768fs

DP: DSD/PCM Mode Select

0: PCM Mode (default)

1: DSD Mode

When DP bit is changed, the AK4497 should be reset by RSTN bit.

D1 D0

SELLR SLOW

R/W

0

R/W

0

Rev. 0.1

- 83 -

2015/11

Addr Register Name

03H Lch ATT

04H Rch ATT

R/W

Default

D7

ATT7

ATT7

R/W

1

ATT[7:0]: Attenuation Level

255 levels 0.5dB step + mute

Data Attenuation

FFH 0dB (default)

FEH -0.5dB

FDH -1.0dB

: :

: :

02H -126.5dB

01H -127.0dB

00H MUTE (-

)

D6

ATT6

ATT6

R/W

1

D5

ATT5

ATT5

R/W

1

D4

ATT4

ATT4

R/W

1

D3

ATT3

ATT3

R/W

1

Addr Register Name

05H Control 4

R/W

Default

D7

INVL

R/W

0

D6

INVR

R/W

0

D5

0

R/W

0

D4

0

R/W

0

D3

0

R/W

0

SSLOW: Super Slow Roll Off (Digital Filter bypass mode) Enable. ( Table 27 )

0: Disable (default)

1: Enable

DFS2: Sampling Speed Control. ( Table 10 )

RSTPG: Programmable Filter Coefficient Reset

0: Disable (default)

1: Reset Coefficient

INVR: AOUTR Output Phase Inverting

0: Disable (default)

1: Enable

INVL: AOUTL Output Phase Inverting

0: Disable (default)

1: Enable

D2

ATT2

ATT2

R/W

1

[AK4497]

D1

ATT1

ATT1

R/W

1

D0

ATT0

ATT0

R/W

1

D2 D1 D0

RSTPG DFS2 SSLOW

R/W

0

R/W

0

R/W

0

Rev. 0.1

- 84 -

2015/11

[AK4497]

Addr Register Name

06H Control 4

R/W

Default

D7

DDM

R/W

0

D6

DML

R

0

D5

DMR

R

0

D4

DMC

R/W

0

D3

DMRE

R/W

0

D2

0

R/W

0

D1 D0

DSDD DSDSEL0

R/W

0

R/W

0

DSDSEL[1:0]: DSD sampling speed control

00: 2.8224MHz

01: 5.6448MHz

10: 11.2896MHz

11: 22.5792MHz

DSDD: DSD play back path control

0: Normal Path (default)

1: Volume Bypass

DMRE: DSD Mute Release

This register is only valid when DDM bit =

“1” and DMC bit = “1”. When the AK4497 mutes

DSD data by DDM and DMC bits settings, the mute is released by setting DMRE bit to

“1”.

0: Hold (default)

1: Mute Release

DMC: DSD Mute Control

This register is only valid when DDM bit =

“1”. It selects the mute releasing mode of when the

DSD data level becomes under full-scale after the AK4497 mutes DSD data by DDM bit setting.

0: Auto Return (default)

1: Mute Hold

DMR/DML

This register outputs detection flag when a full scale signal is detected at DSDR/L channel.

(only in I2C mode)

DDM: DSD Data Mute

The AK4497 has an internal mute function that mutes the output when DSD audio data becomes all

“1” or all “0” for 2048 Samples (1/fs). DDM bit controls this function.

0: Disable (default)

1: Enable

Rev. 0.1

- 85 -

2015/11

[AK4497]

Addr Register Name

07H Control 5

R/W

Default

D7

0

R/W

0

D6

0

R/W

0

D5

0

R/W

0

D4

0

R/W

0

D3

GC2

R/W

0

SYNCE: SYNC Mode Enable

0: SYNC Mode Disable

1: SYNC Mode Enable (default)

GC[2:0]: PCM, DSD mode Gain Control

Table 32. Output Level between Set Values of GC[2:0] bit

GC[2] GC[1] GC[0]

AOUTLP/LN/RP/RN Ouput Level

PCM

DSD:

Normal Path

DSD:

Volume

Bypass

0

0

0

0

1

1

1

1

Addr Register Name

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

2.8Vpp

2.8Vpp

2.5Vpp

2.5Vpp

3.75Vpp

3.75Vpp

2.5Vpp

2.5Vpp

08H Sound Control

R/W

Default

D7

0

R/W

0

D6

0

R/W

0

SC[2:0]: Sound Control. ( Table 37 , Table 38 )

HLOAD: Heavy Load Mode Enable

0: Heavy Load Mode Disable (default)

1: Heavy Load Mode Enable

D5

0

R/W

0

2.8Vpp

2.5Vpp

2.5Vpp

2.5Vpp

3.75Vpp

2.5Vpp

2.5Vpp

2.5Vpp

D4

0

R/W

0

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

2.5Vpp

D3

HLOAD

R/W

0

D2

GC1

R/W

0

D2

SC2

R/W

0

D1

GC0

R/W

0

(default)

D1

SC1

R/W

0

D0

SYNCE

R/W

1

D0

SC0

R/W

0

Rev. 0.1

- 86 -

2015/11

[AK4497]

Addr Register Name

09H DSD2

R/W

Default

D7

0

R

0

D6

0

R

0

DSDSEL1: DSD Sampling Speed Control.

DSDF: Cut-off frequency of DSD Filter Control

DSDPATH: DSD Data Input Pin Select

0: #16, 17, 19 (default)

1: #3, 4, 5

DP bit EXDF bit

DSDPATH bit

D/A Conv.

Mode

0

(default)

1

0

(default)

*

1

0

(*: Do not care)

*

1

*

0

(default)

1

*

PCM

DSD

DSD

EXDF

D5

0

R

0

D4

0

R

0

#3 pin #4 pin

D3

0

R

0

D2

0

D1

0

D0

DSDPATH DSDF DSDSEL1

R/W R/W R/W

0

Pin Assignment

#5 pin #16 pin #17 pin #19 pin

BICK SDATA LRCK Not Use Not Use Not Use

Not Use Not Use Not Use DCLK

DCLK

BCK

DSDL

DINL

DSDR

DINR

Not Use

Not Use

DSDL

Not Use

Not Use

DSDR

Not Use

Not Use

Rev. 0.1

- 87 -

2015/11

Addr Register Name

0AH Control 7

R/W

Default

D7

TDM1

R/W

0

D6

TDM0

R/W

0

D5

SDS1

R/W

0

PW: Power ON/OFF Control

0: Power Off

1: Power On (default)

SDS[2:0]: Output Data Slot Selection of Each Channel

0: Normal Operation

1: Changing Data Slot ( Table 24 )

Default value is

“000”

TDM[1:0]: TDM Mode Select

00: Normal (default)

01: TDM128

10: TDM256

11: TDM512

D4

SDS2

R/W

0

D3

0

R/W

0

[AK4497]

D2

PW

R/W

1

D1

0

R/W

0

D0

0

R/W

0

Rev. 0.1

- 88 -

2015/11

Addr Register Name

0BH Control 8

R/W

Default

D7

ATS1

R/W

0

D6

ATS0

R/W

0

D5

0

R/W

0

D4

SDS0

R/W

0

D3

0

R/W

0

TEST:

“0” data must be written to Test bit. Otherwise malfunctions may occur.

DCHAIN: Daisy Chain Mode Enable

0: Daisy Chain Mode Disable (default)

1: Daisy Chain Mode Enable

SDS[2:0]: Output Data Slot Selection of Each Channel

0: Normal Operation

1: Changing Data Slot ( Table 24 )

Default value is

“000”.

ATS[1:0]: Transition Time between Set Values of ATT[7:0] bits ( Table 31 )

Default value is

“00”.

Addr Register Name D7 D6 D5 D4 D3

0CH Reserved

0DH Reserved

R/W

Default

0CH: Reserved

0DH: Reserved

0

0

R/W

0

0

0

R/W

0

0

0

R/W

0

0

0

R/W

0

0

0

R/W

0

D2

0

R/W

0

D2

0

0

R/W

0

D1 D0

DCHAIN TEST

R/W

0

R/W

0

D1

0

0

R/W

0

[AK4497]

D0

0

0

R/W

0

Rev. 0.1

- 89 -

2015/11

[AK4497]

Addr Register Name

0EH Reserved

0FH Reserved

10H Reserved

11H Reserved

R/W

Default

0EH: Reserved

0FH: Reserved

10H: Reserved

11H: Reserved

Addr Register Name

D7

0

0

0

0

R/W

0

D6

0

0

0

0

R/W

0

D5

0

0

0

0

R/W

0

D4

0

0

0

0

R/W

0

D3

0

0

0

0

R/W

0

12H Reserved

13H Reserved

14H Reserved

R/W

Default

12H: Reserved

13H: Reserved

14H: Reserved

Addr Register Name

15H ADFS read

R/W

Default

D7

0

0

0

R

0

D6

0

0

0

R

0

D5

0

0

0

R

0

D4

0

0

0

R

0

D3

0

0

0

R

0

D7

0

R

0

D6

0

R

0

D5

0

R

0

D4

0

R

0

D3

0

R

0

D2

ADFS2

R

0

ADFS[2:0]: Mode Detection Result in FS Auto Detect Mode

ADFS2 ADFS1 ADFS0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

Mode

Normal Speed Mode

Double Speed Mode

Quad Speed Mode

Quad Speed Mode

Oct Speed Mode

Hex Speed Mode

Oct Speed Mode

Hex Speed Mode

D2

0

0

0

R

0

D2

0

0

0

0

R/W

0

D1

ADFS1

R

0

D1

0

0

0

0

R/W

0

D1

0

0

0

R

0

D0

ADFS0

R

0

D0

0

0

0

0

R/W

0

D0

0

0

0

R

0

Rev. 0.1

- 90 -

2015/11

[AK4497]

DSP

Micro-

Controller

10.

Recommended External Circuits

Digital 3.3V Digital 1.8V

AVDD 3.3V

10u +

0.1u

+ 1u

10u

+

0.1u

33k 470u

+

0.1u

10u

+

1

LDOE

2

PDN

3

BICK/BCK

4

5

6

SDATA/DINL

LRCK/DINR

SSLOW/WCK

TDMO 7

8

SMUTE/CSN

9

SD/CCLK/SCL

10

SLOW/CDTI/SDA

11 DIF0/DZFL

12

DIF1/DZFR

13

DIF2/CAD0

14

PSN

15 HLOAD/I2C

16

DEM0/DSDL

Analog 5.0V

Lch

LPF

Lch

Mute

Lch Out

AOUTLP

48

0.1u 10u

+

AOUTLP

47

VDDL

46

VDDL

45

VDDL

44

VSSL 43

0.1u

VSSL

42

VSSL

41

+

10u

VSSR

N

VSSR

N

40

39

VSSR 38

0.1u

VDDR 37

VDDR

36

VDDR

35

AOUTRP

34

AOUTRP

33

+

10u

+

Electrolytic Capacitor

Ceramic Capacitor

Resistor

Rch

LPF

Rch

Mute

Rch Out

0.1u

+

470u

+

10u

Notes:

-

Chip Address = “00”. BICK = 64fs, LRCK = fs

- Power lines of AVDD, TVDD, VDDL and VDDR should be distributed separately from the point with low impedance of regulator etc.

- AVSS, DVSS, VSSL and VSSR must be connected to the same analog ground plane. (Analog ground should has low impedance as a solid pattern. THD+N characteristics will degrade if there are impedances between each VSS.)

- THD+N characteristics will degrade by high frequency noise of MCLK. Connect a 51

Ω damping resistor to the MCLK pin.

- When AOUT drives a capacitive load, some resistance should be connected in series between

AOUT and the capacitive load.

- All input pins except pull-down/pull-up pins should not be allowed to float.

Figure 69. Typical Connection Diagram

(AVDD=TVDD=3.3V, VDDL/R=5.0V, LDOE=

“L”, Register Control Mode)

Rev. 0.1

- 91 -

2015/11

[AK4497]

1.

Grounding and Power Supply Decoupling

To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD, TVDD, DVDD,

VDDL and VDDR. AVDD and VDDL/R are supplied from analog supply in system, and TVDD and DVDD are supplied from digital supply in system. Power lines of VDDL/R should be distributed separately from the point with low impedance of regulator etc. When not using LDO (LDOE pin =

“L”), AVDD and TVDD should be powered up before or at the same time of DVDD. When using LDO (LDOE pin =

“H”), power up sequence between AVDD/TVDD and VDDL/R are not critical. AVSS, DVSS, VSSL and VSSR must be

connected to the same analog ground plane. Decoupling capacitors for high frequency should be placed as near as possible to the supply pin.

2.

Voltage Reference

The differential voltage between VREFHL/R and VREFLL/R sets the full scale of the analog output range.

The VREFHL/R pin is normally connected to VDD, and the VREFLL/R pin is normally connected to VSS.

VREFHL/R and VREFLL/R should be connected with a 0.1µF ceramic capacitor and a 2200uF electrolytic capacitor as near as possible to the pin to eliminate the effects of high frequency noise.

The VREFH and VREFL pins should be treated to not have noises from other supply pins. If the analog characteristics cannot satisfy the specification by this noise, connect the VREFH to analog 5.0V via a 10

Ω resistor and connect the VREFL pin to the analog ground via a 10

Ω resistor. (A low-pass filter of fc=500Hz will be composed by a 2200uF capacitor and a 10

Ω resistor. This low-pass filter removes signal frequency noise from other power supply pins.)

VCML/R is a common voltage of this chip. No load current may be drawn from the VCML/R pin. All signals, especially clocks, should be kept away from the VREFHL/R and VREFLL/R pins in order to avoid unwanted noise coupling into the AK4497.

3. Analog Outputs

The analog outputs are full differential outputs. The differential outputs are summed externally, V

AOUT

=

(AOUT+)

(AOUT

) between AOUT+ and AOUT

. If the summing gain is 1, the output range of the setting the GAIN pin =

“L” or GC[2] bit = “0” is 2.8Vpp (typ, VREFHL/R

VREFLL/R = 5V) centered around VCML and VCMR voltages. In this case, the output range after summing will be 5.6V (typ.). The output range of the setting the GAIN pin =

“H” or GC[2] bit = “1” is 3.75Vpp (typ.) centered around VCML and VCMR voltages. In this case, the output range after summing will be 7.5Vpp (typ.). The bias voltage of the external summing circuit is supplied externally.

The input data format is 2's complement. The output voltage (V

AOUT

) is a positive full scale for 7FFFFFFFH

(@32bit) and a negative full scale for 80000000H (@32bit). The ideal V

AOUT

is 0V for 00000000H (@32bit).

The internal switched-capacitor filters attenuate the noise generated by the delta-sigma modulator beyond

the audio passband. Figure 70

and Figure 71 show examples of external LPF circuit summing the differential outputs by a single op-amp. Figure 72 shows an example of differential output circuit and

external LPF circuit with two op-amps. Figure 73 shows an example of external LPF circuit with two

op-amps when MONO bit =

“1”. A resistor that has 0.1% or less absolute error must be used for external

LPFs.

AK4497

300 300

AOUT-

30 6.8n

43n

AOUT+

100

+Vop

10

20n

2

7

6

3

4

-Vop

OPA1611

Analog

Out

130n 100

Figure 70. External LPF Circuit Example 1 (fc = 98kHz(typ), Q=0.667(typ))

Rev. 0.1

- 92 -

2015/11

Rev. 0.1

Table 43. Frequency Response of External LPF Circuit Example 1

Gain(1kHz,typ) 0 dB

Frequency

Response

(ref:1kHz,typ)

20kHz

40kHz

80kHz

-0.07 dB

-0.32 dB

-2.13 dB

AK4497

AOUT-

AOUT+

215

39.2n

33.2

255n

90.9

590

33 3.09n

+Vop

5.1

20n

2

7

6

3

4

-Vop

OPA1611

Analog

Out

Figure 71. External LPF Circuit Example 2 (fc = 104kHz(typ), Q=0.693(typ))

Table 44. Frequency Response of External LPF Circuit Example 2

Gain(1kHz,typ) +8.78 dB

Frequency

Response

(ref:1kHz,typ)

20kHz

40kHz

80kHz

-0.02 dB

-0.15 dB

-1.46 dB

[AK4497]

+15

-15

AK4497

AOUT-

+

100u

22

22

56n

27n

3

2

8

+

-

*

4

1

OPA1612

400

+

10u

0.1u

+

0.1u

10u

Lch

AOUT+

100u

+

22

22

56n

27n

+

10u

0.1u

5

6

8

+

-

4

7

OPA1612

LME49710

400

+

0.1u

10u

Figure 72. External LPF Circuit Example 3 (fc = 186kHz(typ), Q=0.67(typ))

Table 45. Frequency Response of External LPF Circuit Example 3

Gain(1kHz,typ) +9.54 dB

Frequency

Response

(ref:1kHz,typ)

20kHz

40kHz

80kHz

-0.01 dB

-0.06 dB

-0.32 dB

- 93 -

2015/11

[AK4497]

AK4497

AOUTLP

+

100u

44

22

56n

27n

3

2

8

+

-

*

4

1

OPA1612

400

+

10u

0.1u

+

0.1u

10u

+15

-15

AOUTLN

+

100u

44

AOUTRP

100u

+

44

22

56n

27n

+

10u

0.1u

5

6

8

+

-

4

7

OPA1612

LME49710

400

+

0.1u

10u

AOUTRN

100u

+

44

Figure 73. External LPF Circuit Example for mono mode (fc = 186kHz(typ), Q=0.67(typ))

Rev. 0.1

- 94 -

2015/11

Outline Dimensions

(HTQFP10×10-64)

64

11.

Package

12.0 ± 0.20

49

1

48

A

[AK4497]

S

16

17

0.50

0.22 ± 0.05

32

0.10

M S A C

10.0 ± 0.20

33

0.10

S

0.60 ± 0.15

Rev. 0.1

(5.95)

- 95 -

2015/11

Material & Lead Finish

Package molding compound: Epoxy, Halogen (bromine and chlorine) free

Lead frame material: EFTEC64

Lead frame surface treatment: Solder (Pb free) plate

Marking

[AK4497]

64

1

AK4497EQ

XXXXXXX

AKM

1) Pin #1 indication

2) AKM Logo

3) Date Code: XXXXXXX (7 digits)

4) Marking Code: AK4497EQ

5) Audio 4 pro Logo

Rev. 0.1

- 96 -

2015/11

[AK4497]

12.

Ordering Guide

Ordering Guide

AK4497

40

+85

C (Assuming the exposed pad is connected to the printing board)

64-pin TQFP (0.5mm pitch)

AKD4497 Evaluation Board for AK4497

Rev. 0.1

- 97 -

2015/11

[AK4497]

IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation

(“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (

“Product”), please make inquiries the sales office of

AKM or authorized distributors as to current status of the Products.

1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO

LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE

USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.

2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.

3. Though AKM works continually to improve the

Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.

4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

5. Please contact AKM sales representative for details as to environmental matters such as the

RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.

7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

Rev. 0.1

- 98 -

2015/11

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement