- Industrial & lab equipment
- Electrical equipment & supplies
- Osram
- HQI-E 150 W/NDL CL
- Datasheet
- 56 Pages
4.6 Cable capacitance. Osram HQI-E 150 W/NDL CL
advertisement
Assistant Bot
Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.
4.6 Cable capacitance 4.7 Start-up behavior of metal halide lamps
The capacitance of the supply cables between lamp and ignition unit depends on various general conditions. These include the size and structure of the cable (diameter, distances and insulation together with number of individual cables, dielectric coefficients of the materials). The capacitance also depends on the grounding and shielding of the cable and where it is fastened, e.g. close to grounded surfaces. Commonly used power cables are not suitable for this purpose, because of their relatively thin PVC-isolation, where the wires lie comparably close together. The capacitance here is about 100 pF/m. Because of the high ignition voltage for discharge lamps the lead wires have thicker insulations and they are normally not placed close to each other. The capacitance of the lead wires will therefore be lower than for the power cable.Capacitances only form limited resistance to high-frequency voltage components of the ignition pulse. The capacitance attenuates the ignition pulse, with resulting ignition pulses possibly not reaching the amplitudes required to ignite the lamp. Certain load capacitances must therefore not be exceeded, depending on the specifications of the ignition unit.
After igniting the lamp and heating the discharge, the discharge runs initially only in the start gas. The mercury and the metal halides are still in liquid or solid form on the arc tube wall. The voltage across the discharge is initially still very low. The start gas argon radiates a little in the visible range (weak violet light), which is why the luminous flux in the initial phase is still very low.
Through power consumption in the lamp, first the mercury and then also the metal halides begin to evaporate. The individual filling particles evaporate at different rates, resulting in differing ratios of the particles during runup. The dominance of individual particles in the start-up phase results in the colour phenomena during this period shown in Fig. 22. Only after a few minutes, having reached the steady state, is the required composition achieved, producing the full luminous flux and the required light colour.
after 20s after 40s after 60s after 80s
CRI=66 after 100s
CRI=29 after 120s
CRI=36
CRI=92 CRI=70 CRI=85
Fig. 22: Course of light parameters of a HCI ® -T 150 W/NDL during start-up
21
22
The new round ceramic arc tube (POWERBALL ® ) has a uniform wall thickness without thick ceramic plugs as in the cylindrical ceramic type. The mass is therefore only about half that of the cylindrical version. This means less energy and therefore less time is needed to bring the POWERBALL ceramic arc tube up to operating temperature. The times required to achieve the lit-up status are therefore clearly shorter than in the cylindrical version, as shown in Fig. 23.
The time it takes to reach a steady state depends on the start-up current and the associated wattage input.
If the current is too high, the electrodes will be damaged, causing the walls to blacken. The standard for metal halide lamps (IEC 61667) therefore limits the start-up current to twice the nominal lamp current.
With OSRAM POWERTRONIC ® , the start-up is faster than with a conventional ballast, as shown in the following Fig. 24.
cylindrical HCI-T 150 W
HQI-T 150 W at OSRAM PTU
HQI-T 150 W at CCG
Time in s
Fig. 23: Start-up behavior of luminous flux in various metal halide lamps operating with an OSRAM electronic ballast
Time in s
Fig. 24: Start-up behavior of luminous flux of a HQI ® -T at various ballasts
advertisement
Related manuals
advertisement
Table of contents
- 4 Introduction
- 5 How a metal halide lamp works
- 6 2.1 Quartz discharge tube
- 6 2.2 Ceramic discharge tube (PCA = polycrystalline alumina)
- 6 2.2.1 1st generation: cylindrical form
- 8 Ballasts for discharge lamps
- 8 3.1 Inductive ballasts (chokes)
- 9 3.1.1 American circuits for ballasts
- 10 3.1.2 Variation in supply voltage for adapted inductance
- 11 3.1.3 Influence of deviations in supply voltage
- 11 3.1.4 Capacitor for power factor correction
- 12 3.2 Electronic control gear (ECG)
- 12 3.2.1 Structure and functioning of an electronic ballast
- 13 3.2.2 Service life and temperature
- 13 3.2.3 Advantages of operation with electronic ballast POWERTRONIC PTi
- 15 3.3 Influence of harmonic waves and corresponding filters
- 16 3.4 Brief voltage interruptions
- 17 3.5 Stroboscopic effect and flicker
- 19 Igniting and starting discharge lamps
- 19 4.1 External ignition units
- 19 4.1.1 Parallel ignition unit
- 19 4.1.2 Semi-parallel ignition unit
- 20 4.1.3 Superimposed ignitor
- 20 4.2 Warm re-ignition
- 20 4.3 Hot re-ignition
- 20 4.4 Ignition at low ignition voltage (Penning effect)
- 20 4.5 Ignition at low ambient temperatures
- 21 4.6 Cable capacitance
- 21 4.7 Start-up behavior of metal halide lamps
- 23 Reducing the wattage of high intensity discharge lamps
- 23 5.1 Introduction
- 23 5.2 Wattage reduction techniques
- 23 5.2.1 Reducing the supply voltage
- 24 5.2.2 Phase control: leading edge, trailing edge
- 24 5.2.3 Increasing choke impedance or decreasing lamp current
- 24 5.2.4 Change in frequency for high-frequency mode
- 25 5.3 Recommendations for reducing the wattage in discharge lamps
- 25 5.3.1 Metal halide lamps
- 25 5.3.2 Dimming for other discharge lamps
- 26 6 Lamp service life, aging and failure behavior
- 26 6.1 Lamp service life and aging behavior
- 26 6.2 Storage of metal halide lamps
- 26 6.3 Failure mechanisms of metal halide lamps
- 27 6.3.1 Leaking arc tube
- 27 6.3.2 Increase in re-ignition peak
- 28 6.3.3 Broken lead or broken weld
- 28 6.3.4 Leaking outer bulb
- 28 6.3.5 Lamps that do not ignite
- 29 6.3.6 Breakage or differing wear of the electrodes
- 29 6.3.7 Scaling of the base / socket
- 29 6.3.8 Bursting of the lamp
- 29 6.3.9 Rectifying effect
- 31 6.3.10 Conclusions
- 32 Luminaire design and planning of lighting systems
- 32 7.1 Measuring temperatures, ambient temperature
- 32 and pinches in metal halide lamps
- 32 7.1.2 2 Measurement with thermocouple
- 33 7.1.3 Measuring points for thermocouples in different lamp types
- 36 7.2 Influence of ambient temperature on ballasts and luminaires
- 36 7.3 Lamp holder
- 37 7.4 Leads to luminaires
- 37 7.5 Maintenance of lighting systems with metal halide lamps
- 39 7.6 Standards and directives for discharge lamps
- 39 7.6.1 Standards
- 41 7.6.2 Directives
- 41 7.6.3 Certificates
- 42 7.7 Radio interference
- 42 7.8 RoHS conformity
- 42 7.9 Optical design of reflectors
- 42 7.9.1 Condensation on the lamp
- 42 7.9.2 Projection of the condensate
- 43 7.9.3 Back reflection on the lamp
- 43 Light and colour
- 44 8.1 Night vision
- 46 8.2 Colour rendering
- 47 8.2.1 Test colours from standard DIN
- 48 8.3 Light and quality of life
- 49 8.4 UV radiation
- 50 8.4.1 Fading effect
- 50 8.4.2 Protective measures to reduce fading
- 51 Disposal of discharge lamps
- 51 9.1 Statutory requirements
- 51 9.2 Collection, transport and disposal of discharge lamps at end-of-life
- 51 9.3 Ordinance on Hazardous Substances
- 52 10 List of abbreviations
- 53 11 Literature