- Industrial & lab equipment
- Electrical equipment & supplies
- Osram
- HQI-E 150 W/NDL CL
- Datasheet
- 56 Pages
8.4.1 Fading effect. Osram HQI-E 150 W/NDL CL
advertisement
Assistant Bot
Need help? Our chatbot has already read the manual and is ready to assist you. Feel free to ask any questions about the device, but providing details will make the conversation more productive.
has become possible due to additional adaptation of the HCI ® Shoplight, which achieves the best colour rendering properties of all metal halide lamps. Figure 49 shows the values of the colour rendering indices 1 to
14 for four different lamp types with the correlated colour temperature of 3000 K. The advantages can best be seen for colour rendering index R9 for saturated red, but the superiority of POWERBALL ® technology is also apparent for the other colour rendering indices.
reducing the level of melatonin in the bloodstream.
This is called melatonin suppression. (see Fig. 53).
Scientific studies on how light forms or suppresses the sleeping hormone melatonin have shown that together with the visual path which is responsible for vision, there is also a non-visual path which, independent of the visual system, controls melatonin production and therefore the circadian rhythm (daylight rhythm).
8.3 Light and quality of life
It has been a known fact for many years that as well as its known visual effects, light also has other biological effects on the human body. The most acknowledged effect is the way light influences the day-and-night cycle. This influence is also perceived by the eyes, not however via the vision center in the brain but via other nerve cells that affect the pineal gland and hence the forming of the sleep hormone melatonin. Bright light in the night suppresses the formation of melatonin,
While the visual path leads directly from the eye to the vision center of the brain via the optic nerve, the nonvisual path is coupled via the suprachiasmatic nucleus
(SCN) to the pineal gland and controls melatonin production. This process is relatively slow, in time constants of several minutes, while the process of vision takes place within a few 10 ms.
The SCN is a collection of several thousand nerve cells, located above the intersection of the optic nerves (chiasma). This is deemed today to be the main regulator of the inner clock (master clock).
Suprachiasmatic
Nucleus (SCN)
Visual center
Pineal gland
pineal gland
release of
melatonin
50
Ganglion cell in upper cervical vertebra
Spinal cord
Fig. 53: How light affects on the human brain
Retinohypothalamic tract (RHT)
Light
advertisement
Related manuals
advertisement
Table of contents
- 4 Introduction
- 5 How a metal halide lamp works
- 6 2.1 Quartz discharge tube
- 6 2.2 Ceramic discharge tube (PCA = polycrystalline alumina)
- 6 2.2.1 1st generation: cylindrical form
- 8 Ballasts for discharge lamps
- 8 3.1 Inductive ballasts (chokes)
- 9 3.1.1 American circuits for ballasts
- 10 3.1.2 Variation in supply voltage for adapted inductance
- 11 3.1.3 Influence of deviations in supply voltage
- 11 3.1.4 Capacitor for power factor correction
- 12 3.2 Electronic control gear (ECG)
- 12 3.2.1 Structure and functioning of an electronic ballast
- 13 3.2.2 Service life and temperature
- 13 3.2.3 Advantages of operation with electronic ballast POWERTRONIC PTi
- 15 3.3 Influence of harmonic waves and corresponding filters
- 16 3.4 Brief voltage interruptions
- 17 3.5 Stroboscopic effect and flicker
- 19 Igniting and starting discharge lamps
- 19 4.1 External ignition units
- 19 4.1.1 Parallel ignition unit
- 19 4.1.2 Semi-parallel ignition unit
- 20 4.1.3 Superimposed ignitor
- 20 4.2 Warm re-ignition
- 20 4.3 Hot re-ignition
- 20 4.4 Ignition at low ignition voltage (Penning effect)
- 20 4.5 Ignition at low ambient temperatures
- 21 4.6 Cable capacitance
- 21 4.7 Start-up behavior of metal halide lamps
- 23 Reducing the wattage of high intensity discharge lamps
- 23 5.1 Introduction
- 23 5.2 Wattage reduction techniques
- 23 5.2.1 Reducing the supply voltage
- 24 5.2.2 Phase control: leading edge, trailing edge
- 24 5.2.3 Increasing choke impedance or decreasing lamp current
- 24 5.2.4 Change in frequency for high-frequency mode
- 25 5.3 Recommendations for reducing the wattage in discharge lamps
- 25 5.3.1 Metal halide lamps
- 25 5.3.2 Dimming for other discharge lamps
- 26 6 Lamp service life, aging and failure behavior
- 26 6.1 Lamp service life and aging behavior
- 26 6.2 Storage of metal halide lamps
- 26 6.3 Failure mechanisms of metal halide lamps
- 27 6.3.1 Leaking arc tube
- 27 6.3.2 Increase in re-ignition peak
- 28 6.3.3 Broken lead or broken weld
- 28 6.3.4 Leaking outer bulb
- 28 6.3.5 Lamps that do not ignite
- 29 6.3.6 Breakage or differing wear of the electrodes
- 29 6.3.7 Scaling of the base / socket
- 29 6.3.8 Bursting of the lamp
- 29 6.3.9 Rectifying effect
- 31 6.3.10 Conclusions
- 32 Luminaire design and planning of lighting systems
- 32 7.1 Measuring temperatures, ambient temperature
- 32 and pinches in metal halide lamps
- 32 7.1.2 2 Measurement with thermocouple
- 33 7.1.3 Measuring points for thermocouples in different lamp types
- 36 7.2 Influence of ambient temperature on ballasts and luminaires
- 36 7.3 Lamp holder
- 37 7.4 Leads to luminaires
- 37 7.5 Maintenance of lighting systems with metal halide lamps
- 39 7.6 Standards and directives for discharge lamps
- 39 7.6.1 Standards
- 41 7.6.2 Directives
- 41 7.6.3 Certificates
- 42 7.7 Radio interference
- 42 7.8 RoHS conformity
- 42 7.9 Optical design of reflectors
- 42 7.9.1 Condensation on the lamp
- 42 7.9.2 Projection of the condensate
- 43 7.9.3 Back reflection on the lamp
- 43 Light and colour
- 44 8.1 Night vision
- 46 8.2 Colour rendering
- 47 8.2.1 Test colours from standard DIN
- 48 8.3 Light and quality of life
- 49 8.4 UV radiation
- 50 8.4.1 Fading effect
- 50 8.4.2 Protective measures to reduce fading
- 51 Disposal of discharge lamps
- 51 9.1 Statutory requirements
- 51 9.2 Collection, transport and disposal of discharge lamps at end-of-life
- 51 9.3 Ordinance on Hazardous Substances
- 52 10 List of abbreviations
- 53 11 Literature