650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters / ADP1612

650 kHz /1.3 MHz Step-Up PWM DC-to-DC Switching Converters / ADP1612

ADP1612/ADP1613

TYPICAL APPLICATION CIRCUITS

Both the ADP1612 and ADP1613 can be used in the application circuits in this section.

The ADP1612 is geared toward applications requiring input voltages as low as 1.8 V, where the ADP1613 is more suited for applications needing the output power capabilities of a 2.0 A

switch. The primary differences are shown in Table 6.

Table 6. ADP1612/ADP1613 Differences

Parameter ADP1612

Current Limit

Input Voltage Range

1.4 A

1.8 V to 5.5 V

ADP1613

2.0 A

2.5 V to 5.5 V

The Step-Up Regulator Circuit Examples section recommends

component values for several common input, output, and load

conditions. The equations in the Applications Information

section can be used to select components for alternate configurations.

STEP-UP REGULATOR

The circuit in Figure 36 shows the ADP1612/ADP1613 in a

basic step-up configuration.

L1

V

IN

C

IN

6

VIN

ADP1612/

ADP1613

SW

5

ON

OFF 3 EN

650kHz

(DEFAULT)

1.3MHz

7 FREQ

8

SS

C

SS

GND

4

FB 2

COMP

1

D1

R1

R2

V

OUT

R

COMP

C

COMP

C

OUT

Figure 36. Step-Up Regulator

The modified step-up circuit in Figure 37 incorporates true

shutdown capability advantageous for battery-powered applications requiring low standby current. Driving the EN pin below

0.3 V shuts down the ADP1612/ADP1613 and completely disconnects the input from the output.

L1

V

IN

NTGD1100L

Q1

A

R3

10kΩ

6

ADP1612/

ADP1613

VIN SW

5

Q1

B

OFF

ON

3

C

IN

1.3MHz

650kHz

(DEFAULT)

7

8

EN

FREQ

C

SS

FB

SS COMP

GND

4

2

1

D1

R1

R2

R

COMP

C

COMP

V

OUT

C

OUT

Figure 37. Step-Up Regulator with True Shutdown

Rev. D | Page 16 of 28

STEP-UP REGULATOR CIRCUIT EXAMPLES

ADP1612 Step-Up Regulator

L1

4.7µH

D1

3A, 40V

V

OUT

= 5V V

IN

= 1.8V TO 4.2V

C

IN

10µF

OFF

ON

6

3

VIN SW

EN

ADP1612

FB

7

FREQ

5

2

COMP

1

8 SS

C

SS

33nF

GND

4

R1

30kΩ

R2

10kΩ

R

COMP

6.8kΩ

C

COMP

3300pF

C

OUT

10µF

L1: DO3316P-472ML

D1: MBRA340T3G

R1: RC0805FR-0730KL

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-076K8L

C

COMP

: ECJ-2VB1H332K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 38. ADP1612 Step-Up Regulator Configuration

V

OUT

= 5 V, f

SW

= 650 kHz

100

90 f

V

OUT

= 5V

SW

= 650kHz

T

A

= 25°C

80

70

ADP1612

60

50

40

30

1

V

IN

= 1.8V

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

10 100

LOAD CURRENT (mA)

1k

Figure 39. ADP1612 Efficiency vs. Load Current

V

OUT

= 5 V, f

SW

= 650 kHz

10k

T

OUTPUT VOLTAGE (50mV/DIV)

AC-COUPLED f

V

OUT

= 5V

SW

= 650kHz

LOAD CURRENT (50mA/DIV)

Data Sheet

TIME (100µs/DIV)

Figure 40. ADP1612 50 mA to 150 mA Load Transient (V

IN

= 3.3 V)

V

OUT

= 5 V, f

SW

= 650 kHz

Data Sheet

L1

4.7µH

V

IN

= 1.8V TO 4.2V

C

IN

10µF

OFF

ON

6

3

VIN SW

ADP1612

EN

FB

7

FREQ

5

2

COMP

1

8

SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 5V

R1

30kΩ

R2

10kΩ

R

COMP

12kΩ

C

COMP

1200pF

C

OUT

10µF

L1: DO3316P-472ML

D1: MBRA340T3G

R1: RC0805FR-0730KL

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0712KL

C

COMP

: ECJ-2VB1H122K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 41. ADP1612 Step-Up Regulator Configuration

V

OUT

= 5 V, f

SW

= 1.3 MHz

100

90

V

OUT

= 5V f

SW

= 1.3MHz

T

A

= 25°C

80

ADP1612

70

60

50

40

30

1

V

IN

= 1.8V

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

10 100

LOAD CURRENT (mA)

1k

Figure 42. ADP1612 Efficiency vs. Load Current

V

OUT

= 5 V, f

SW

= 1.3 MHz

10k

T

OUTPUT VOLTAGE (50mV/DIV)

AC-COUPLED f

V

OUT

= 5V

SW

= 1.3MHz

LOAD CURRENT (50mA/DIV)

ADP1612/ADP1613

L1

10µH

V

IN

= 2.7V TO 5V

C

IN

10µF

OFF

ON

6

3

VIN SW

EN

ADP1612

FB

7

FREQ

5

2

COMP

1

8

SS

C

SS

33nF

GND

4

D1

2A, 20V

V

OUT

= 12V

R1

86.6kΩ

R2

10kΩ

R

COMP

22kΩ

C

COMP

1800pF

C

OUT

10µF

L1: DO3316P-103ML

D1: DFLS220L-7

R1: ERJ-6ENF8662V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0722KL

C

COMP

: ECJ-2VB1H182K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 44. ADP1612 Step-Up Regulator Configuration

V

OUT

= 12 V, f

SW

= 650 kHz

100

90

V

OUT

= 12V f

SW

= 650kHz

T

A

= 25°C

ADP1612

80

70

60

50

40

1

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

10 100

LOAD CURRENT (mA)

Figure 45. ADP1612 Efficiency vs. Load Current

V

OUT

= 12 V, f

SW

= 650 kHz

1k

T

OUTPUT VOLTAGE (100mV/DIV)

AC-COUPLED f

V

OUT

= 12V

SW

= 650kHz

LOAD CURRENT (50mA/DIV)

TIME (100µs/DIV)

Figure 43. ADP1612 50 mA to 150 mA Load Transient (V

IN

= 3.3 V)

V

OUT

= 5 V, f

SW

= 1.3 MHz

TIME (100µs/DIV)

Figure 46. ADP1612 50 mA to 150 mA Load Transient (V

IN

= 3.3 V)

V

OUT

= 12 V, f

SW

= 650 kHz

Rev. D | Page 17 of 28

ADP1612/ADP1613

L1

6.8µH

V

IN

= 2.7V TO 5V

C

IN

10µF

OFF

ON

6

3

VIN SW

ADP1612

EN

5

FB 2

7

FREQ

COMP

1

8

SS

C

SS

33nF

GND

4

D1

2A, 20V

V

OUT

= 12V

R1

86.6kΩ

C

OUT

10µF

R2

10kΩ

R

COMP

18kΩ

C

COMP

680pF

L1: DO3316P-682ML

D1: DFLS220L-7

R1: ERJ-6ENF8662V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0718KL

C

COMP

: CC0805KRX7R9BB681

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 47. ADP1612 Step-Up Regulator Configuration

V

OUT

= 12 V, f

SW

= 1.3 MHz

100

90 f

V

OUT

= 12V

SW

= 1.3MHz

T

A

= 25°C

80

ADP1612

70

60

50

40

30

1

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

10 100

LOAD CURRENT (mA)

Figure 48. ADP1612 Efficiency vs. Load Current

V

OUT

= 12 V, f

SW

= 1.3 MHz

1k

T

OUTPUT VOLTAGE (100mV/DIV)

AC-COUPLED

V

OUT

= 12V f

SW

= 1.3MHz

LOAD CURRENT (50mA/DIV)

TIME (100µs/DIV)

Figure 49. ADP1612 50 mA to 150 mA Load Transient (V

IN

= 3.3 V)

V

OUT

= 12 V, f

SW

= 1.3 MHz

Data Sheet

L1

15µH

V

IN

= 2.7V TO 5V

C

IN

10µF

OFF

ON

6

3

VIN SW

EN

ADP1612

FB

7

FREQ

5

2

COMP

1

8

SS

C

SS

33nF

GND

4

D1

2A, 20V

V

OUT

= 15V

R1

1

10kΩ

R2

10kΩ

R

COMP

22kΩ

C

COMP

1800pF

C

OUT

10µF

L1: DO3316P-153ML

D1: DFLS220L-7

R1: ERJ-6ENF1103V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0722KL

C

COMP

: ECJ-2VB1H182K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 50. ADP1612 Step-Up Regulator Configuration

V

OUT

= 15 V, f

SW

= 650 kHz

100

90

V

OUT

= 15V f

SW

= 650kHz

T

A

= 25°C

ADP1612

80

70

60

50

40

1

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

10 100

LOAD CURRENT (mA)

Figure 51. ADP1612 Efficiency vs. Load Current

V

OUT

= 15 V, f

SW

= 650 kHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 15V

SW

= 650kHz

LOAD CURRENT (50mA/DIV)

TIME (100µs/DIV)

Figure 52. ADP1612 50 mA to 150 mA Load Transient (V

IN

= 3.3 V)

V

OUT

= 15 V, f

SW

= 650 kHz

Rev. D | Page 18 of 28

Data Sheet

L1

10µH

V

IN

= 2.7V TO 5V

C

IN

10µF

OFF

ON

6

3

VIN

SW

ADP1612

EN

FB

5

2

7 FREQ

COMP 1

8 SS

C

SS

33nF

GND

4

D1

2A, 20V

V

OUT

= 15V

R1

1

10kΩ

R2

10kΩ

R

COMP

10kΩ

C

COMP

1800pF

C

OUT

10µF

L1: DO3316P-103ML

D1: DFLS220L-7

R1: ERJ-6ENF1103V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0710KL

C

COMP

: ECJ-2VB1H182K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 53. ADP1612 Step-Up Regulator Configuration

V

OUT

=15 V, f

SW

= 1.3 MHz

100

90

V

OUT

= 15V f

SW

= 1.3MHz

T

A

= 25°C

80

70

ADP1612

60

50

40

30

1

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

10 100

LOAD CURRENT (mA)

Figure 54. ADP1612 Efficiency vs. Load Current

V

OUT

=15 V, f

SW

= 1.3 MHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 15V

SW

= 1.3MHz

LOAD CURRENT (50mA/DIV)

ADP1612/ADP1613

ADP1613 Step-Up Regulator

L1

10µH

V

IN

= 2.7V TO 5V

C

IN

10µF

OFF

ON

6

3

VIN SW

EN

ADP1613

FB

7

FREQ

5

2

COMP

1

8

SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 12V

R1

86.6kΩ

R2

10kΩ

R

COMP

12kΩ

C

COMP

2200pF

C

OUT

10µF

L1: DO3316P-103ML

D1: MBRA340T3G

R1: ERJ-6ENF8662V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0712KL

C

COMP

: ECJ-2VB1H222K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 56. ADP1613 Step-Up Regulator Configuration

V

OUT

= 12 V, f

SW

= 650 kHz

100

90

V

OUT

= 12V f

SW

= 650kHz

T

A

= 25°C

80

ADP1613

70

60

50

40

30

1

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

10 100

LOAD CURRENT (mA)

Figure 57. ADP1613 Efficiency vs. Load Current

V

OUT

= 12 V, f

SW

= 650 kHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 12V

SW

= 650kHz

LOAD CURRENT (50mA/DIV)

TIME (100µs/DIV)

Figure 55. ADP1612 50 mA to 150 mA Load Transient (V

IN

= 3.3 V)

V

OUT

=15 V, f

SW

= 1.3 MHz

Rev. D | Page 19 of 28

TIME (100µs/DIV)

Figure 58. ADP1613 50 mA to 150 mA Load Transient (V

IN

= 5 V)

V

OUT

= 12 V, f

SW

= 650 kHz

ADP1612/ADP1613

L1

6.8µH

V

IN

= 2.7V TO 5V

C

IN

10µF

OFF

ON

6

3

VIN

SW

ADP1613

EN

FB

5

2

7 FREQ

COMP 1

8 SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 12V

R1

86.6kΩ

R2

10kΩ

R

COMP

10kΩ

C

COMP

1000pF

C

OUT

10µF

L1: DO3316P-682ML

D1: MBRA340T3G

R1: ERJ-6ENF8662V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0710KL

C

COMP

: ECJ-2VB1H102K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 59. ADP1613 Step-Up Regulator Configuration

V

OUT

= 12 V, f

SW

= 1.3 MHz

100

90 f

V

OUT

= 12V

SW

= 1.3MHz

T

A

= 25°C

80

ADP1613

70

60

50

40

30

1

V

IN

= 2.7V

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

10 100

LOAD CURRENT (mA)

Figure 60. ADP1613 Efficiency vs. Load Current

V

OUT

= 12 V, f

SW

= 1.3 MHz

1k

T

OUTPUT VOLTAGE (100mV/DIV)

AC-COUPLED f

V

OUT

= 12V

SW

= 1.3MHz

LOAD CURRENT (50mA/DIV)

Data Sheet

L1

15µH

V

IN

= 3.3V TO 5.5V

C

IN

10µF

OFF

ON

6

3

VIN

SW

EN

ADP1613

FB

5

2

7 FREQ

COMP 1

8 SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 15V

R1

1

10kΩ

R2

10kΩ

R

COMP

10kΩ

C

COMP

1800pF

C

OUT

10µF

L1: DO3316P-153ML

D1: MBRA340T3G

R1: ERJ-6ENF1103V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0710KL

C

COMP

: ECJ-2VB1H182K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 62. ADP1613 Step-Up Regulator Configuration

V

OUT

= 15 V, f

SW

= 650 kHz

100

90

V

OUT

= 15V f

SW

= 650kHz

T

A

= 25°C

80

ADP1613

70

60

50

40

30

1

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

V

IN

= 5.5V

10 100

LOAD CURRENT (mA)

Figure 63. ADP1613 Efficiency vs. Load Current

V

OUT

= 15 V, f

SW

= 650 kHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 15V

SW

= 650kHz

LOAD CURRENT (50mA/DIV)

TIME (100µs/DIV)

Figure 61. ADP1613 50 mA to 150 mA Load Transient (V

IN

= 5 V)

V

OUT

= 12 V, f

SW

= 1.3 MHz

TIME (100µs/DIV)

Figure 64. ADP1613 50 mA to 150 mA Load Transient (V

IN

= 5 V)

V

OUT

= 15 V, f

SW

= 650 kHz

Rev. D | Page 20 of 28

Data Sheet

L1

10µH

V

IN

= 3.3V TO 5.5V

C

IN

10µF

OFF

ON

6

3

VIN SW

ADP1613

EN

5

FB 2

7

FREQ

COMP

1

8

SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 15V

R1

1

10kΩ

C

OUT

10µF

R2

10kΩ

R

COMP

8.2kΩ

C

COMP

1200pF

L1: DO3316P-103ML

D1: MBRA340T3G

R1: ERJ-6ENF1103V

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-078K2L

C

COMP

: ECJ-2VB1H122K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 65. ADP1613 Step-Up Regulator Configuration

V

OUT

= 15 V, f

SW

= 1.3 MHz

70

60

50

100

90 f

V

OUT

= 15V

SW

= 1.3MHz

T

A

= 25°C

80

ADP1613

40

30

20

1

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

V

IN

= 5.5V

10 100

LOAD CURRENT (mA)

Figure 66. ADP1613 Efficiency vs. Load Current

V

OUT

= 15 V, f

SW

= 1.3 MHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 15V

SW

= 1.3MHz

LOAD CURRENT (50mA/DIV)

ADP1612/ADP1613

L1

15µH

V

IN

= 3.3V TO 5.5V

C

IN

10µF

OFF

ON

6

3

VIN SW

EN

ADP1613

FB

7

FREQ

5

2

COMP

1

8

SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 20V

R1

150kΩ

R2

10kΩ

R

COMP

18kΩ

C

COMP

820pF

C

OUT

10µF

L1: DO3316P-153ML

D1: MBRA340T3G

R1: RC0805JR-07150KL

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-0718KL

C

COMP

: CC0805KRX7R9BB821

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 68. ADP1613 Step-Up Regulator Configuration

V

OUT

= 20 V, f

SW

= 650 kHz

100

90

V

OUT

= 20V f

SW

= 650kHz

T

A

= 25°C

80

ADP1613

70

60

50

40

30

1

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

V

IN

= 5.5V

10 100

LOAD CURRENT (mA)

Figure 69. ADP1613 Efficiency vs. Load Current

V

OUT

= 20 V, f

SW

= 650 kHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 20V

SW

= 650kHz

LOAD CURRENT (50mA/DIV)

TIME (100µs/DIV)

Figure 67. ADP1613 50 mA to 150 mA Load Transient (V

IN

= 5 V)

V

OUT

= 15 V, f

SW

= 1.3 MHz

TIME (100µs/DIV)

Figure 70. ADP1613 50 mA to 150 mA Load Transient (V

IN

= 5 V)

V

OUT

= 20 V, f

SW

= 650 kHz

Rev. D | Page 21 of 28

ADP1612/ADP1613

L1

10µH

V

IN

= 3.3V TO 5.5V

C

IN

10µF

OFF

ON

6

3

VIN SW

ADP1613

EN

5

FB 2

7

FREQ

COMP

1

8

SS

C

SS

33nF

GND

4

D1

3A, 40V

V

OUT

= 20V

R1

150kΩ

C

OUT

10µF

R2

10kΩ

R

COMP

8.2kΩ

C

COMP

1200pF

70

60

50

L1: DO3316P-103ML

D1: MBRA340T3G

R1: RC0805JR-07150KL

R2: CRCW080510K0FKEA

R

COMP

: RC0805JR-078K2L

C

COMP

: ECL-2VB1H122K

C

IN

: GRM21BR61C106KE15L

C

OUT

: GRM32DR71E106KA12L

C

SS

: ECJ-2VB1H333K

Figure 71. ADP1613 Step-Up Regulator Configuration

V

OUT

= 20 V, f

SW

= 1.3 MHz

100

90 f

V

OUT

= 20V

SW

= 1.3MHz

T

A

= 25°C

80

ADP1613

40

30

20

1

V

IN

= 3.3V

V

IN

= 4.2V

V

IN

= 5.0V

V

IN

= 5.5V

10 100

LOAD CURRENT (mA)

Figure 72. ADP1613 Efficiency vs. Load Current

V

OUT

= 20 V, f

SW

= 1.3 MHz

1k

T

OUTPUT VOLTAGE (200mV/DIV)

AC-COUPLED f

V

OUT

= 20V

SW

= 1.3MHz

LOAD CURRENT (50mA/DIV)

Data Sheet

SEPIC CONVERTER

The circuit in Figure 74 shows the ADP1612/ADP1613 in a

single-ended primary inductance converter (SEPIC) topology.

This topology is useful for an unregulated input voltage, such as a battery-powered application in which the input voltage can vary between 2.7 V to 5 V and the regulated output voltage falls within the input voltage range.

The input and the output are dc isolated by a coupling capacitor

(C1). In steady state, the average voltage of C1 is the input voltage.

When the ADP1612/ADP1613 switch turns on and the diode turns off, the input voltage provides energy to L1 and C1 provides energy to L2. When the ADP1612/ADP1613 switch turns off and the diode turns on, the energy in L1 and L2 is released to charge the output capacitor (C

OUT

) and the coupling capacitor

(C1) and to supply current to the load.

L1

DO3316P

4.7µH

V

IN

= 2.0V TO 5.5V

6 VIN

ADP1612/

ADP1613

SW 5

OFF

ON

3

EN

C

IN

10µF

7 FREQ

FB 2

C1

10µF

MBRA210LT

2A, 10V

L2

DO3316P

4.7µH

R1

16.9kΩ

V

OUT

= 3.3V

C

SS

8

SS

GND

4

COMP

1

R

COMP

82kΩ

C

COMP

220pF

R2

10kΩ

C

OUT

10µF

Figure 74. SEPIC Converter

TFT LCD BIAS SUPPLY

Figure 75 shows a power supply circuit for TFT LCD module

applications. This circuit has +10 V, −5 V, and +22 V outputs.

The +10 V is generated in the step-up configuration. The −5 V and +22 V are generated by the charge-pump circuit. During the step-up operation, the SW node switches between +10 V and ground (neglecting the forward drop of the diode and on resistance of the switch). When the SW node is high, C5 charges up to +10 V. When the SW node is low, C5 holds its charge and forward-biases D8 to charge C6 to −10 V. The Zener diode (D9) clamps and regulates the output to −5 V.

The VGH output is generated in a similar manner by the chargepump capacitors, C1, C2, and C4. The output voltage is tripled and regulated down to 22 V by the Zener diode, D5.

TIME (100µs/DIV)

Figure 73. ADP1613 50 mA to 150 mA Load Transient (V

IN

= 5 V)

V

OUT

= 20 V, f

SW

= 1.3 MHz

Rev. D | Page 22 of 28

Data Sheet ADP1612/ADP1613

VGL

–5V

D9

BZT52C5VIS

R4

200Ω

C6

10µF

BAV99

D8

D7

DO3316P

4.7µH

V

IN

= 3.3V

C

IN

10µF

6 VIN

ADP1612/

ADP1613

SW 5

ON

OFF 3 EN

650kHz

(DEFAULT)

1.3MHz

7

FREQ

8 SS

C

SS

GND

4

FB 2

COMP 1

C5

10nF

C4

10nF

BAV99

D5

C1

10nF

D4

BAV99

D3

C3

10µF

C2

1µF

D2

R3

200Ω

D1

R

COMP

27kΩ

C

COMP

1200pF

R1

71.5kΩ

R2

10kΩ

V

OUT

= 10V

C

OUT

10µF

D5

BZT52C22

VGH

+22V

Figure 75. TFT LCD Bias Supply

Rev. D | Page 23 of 28

Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project