Cisco NM-1A-OC3-POM - Atm OC3 Module Specifications


Add to my manuals
18 Pages

advertisement

Cisco NM-1A-OC3-POM - Atm OC3 Module Specifications | Manualzz

Connecting Cisco ATM Network Modules to the

Network

Revised: May 1, 2008, OL-12815-01

This guide describes how to connect Cisco Asynchronous Transfer Mode (ATM) network modules to your network. It contains the following sections:

ATM-25 Network Module, page 1

ATM T3 and E3 Network Modules, page 3

ATM OC-3 Network Modules, page 5

Related Documents, page 17

Obtaining Documentation, Obtaining Support, and Security Guidelines, page 17

ATM-25 Network Module

The ATM-25 network module (see

Figure 1 ) provides ATM traffic shaping for use with asymmetric

digital subscriber line (ADSL) uplink speeds, and protocol support for permanent virtual circuit (PVC) environments. The network module provides full support for multiprotocol encapsulation over ATM

Adaptive Layer 5 (RFC 1483), classic IP over ATM encapsulation (RFC 1577), and Point-to-Point

Protocol (PPP) over ATM.

Americas Headquarters:

Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

Connecting Cisco ATM Network Modules to the Network

ATM-25 Network Module

ATM-25 Network Module Figure 1

ATM 25Mbps

ATM-25

ATM 0

TX

RX

EN

ATM traffic

LEDs

RJ-45 port

Enable LED

Connecting ATM-25 Ports to the Network

The ATM-25 port is a standard RJ-45 jack, color-coded light green. Use a straight-through modular

RJ-45 UTP Category 3, 4, or 5 cable or STP Category 1, 1A, 9, or 9A cable to connect the port to an

external ADSL modem. See Figure 2

.

Figure 2 Connecting the ATM-25 Module to an ADSL Modem

ATM-25 port

(RJ-45)

ATM

25MbPS

ATM 0

TX

RX EN

Straight-through

RJ-45-to-RJ-45 cable

ADSL modem

2

Connecting Cisco ATM Network Modules to the Network

Connecting Cisco ATM Network Modules to the Network

ATM-25 Network Module LEDs

Figure 3 shows ATM-25 network module LEDs.

Figure 3

ATM 25Mbps

ATM-25

ATM-25 Network Module LEDs

ATM T3 and E3 Network Modules

ATM 0

TX

RX

EN

ATM traffic

LEDs Enable LED

All network modules have an enable (EN) LED. The enable LED indicates that the module has passed its self-tests and is available to the router. The ATM-25 network module has the additional LEDs shown in

Table 1 .

Table 1 ATM-25 Network Module LEDs

LED Meaning

RX Module is receiving ATM traffic

TX Module is transmitting ATM traffic

ATM T3 and E3 Network Modules

ATM T3 and E3 network modules provide T3 and E3 ATM connectivity for high-bandwidth data applications. There are three versions of these network modules: the ATM T3 Network Module, the ATM

E3 Network Module, and the ATM T3/E3 Network Module. See Figure 4

,

Figure 5 and Figure 6

. These network modules offer full support for multiprotocol encapsulation over ATM Adaptive Layer 5

(RFC 1483), classic IP over ATM encapsulation (RFC 1577), Point-to-Point Protocol (PPP) over ATM, and LAN Emulation (LANE). Up to 1024 virtual circuits (VCs) are supported on the ATM T3/E3 network modules.

Figure 4

ATM

1A-T3

ATM Network Module with T3 Interface

SEE MANUAL BEFORE INSTALLING NETWORK MODULE

ATM 0

TX RX

FERF OOF AIS RCLK

EN

Connecting Cisco ATM Network Modules to the Network

3

Connecting Cisco ATM Network Modules to the Network

ATM T3 and E3 Network Modules

Figure 5

ATM

1A-E3

ATM Network Module with E3 Interface

SEE MANUAL BEFORE INSTALLING NETWORK MODULE

ATM 0

TX RX

FERF OOF AIS RCLK

EN

Figure 6

ATM

NM-1A-T3/E3

LP TXCL

TX

ATM Network Module with one T3/E3 Interface

ATM 0

RX SEE MANUAL BEFORE INSTALLING NETWORK MODULE

RXCL RXCR RXALM

EN

Note The ATM T3 network module has a sensitive receiver. If you use a short T3 cable, it is possible to saturate the receiver, leading to bit errors. If this occurs, we recommend one of the following:

• Reduce the transmit level of the device attached to the T3 network module. Many devices have a line build-out (LBO) configuration setting for this purpose.

• Insert a 4-dB attenuator on the receive side of the T3 network module.

Connecting ATM T3 and E3 Ports to the Network

Use a coaxial cable to connect the module BNC port to a T3 or E3 network.

ATM T3 Network Module and ATM E3 Network Module LEDs

The ATM T3 network module and the ATM E3 network module have the LEDs shown in

Table 2 .

Table 2 ATM T3 Network Module and ATM E3 Network module LEDs

LED

EN

Color

Green

Meaning

Module has passed its self-tests and is available to the router.

RCLK Green Receive clock has been detected.

FERF Yellow Far-end receive failure.

OOF Yellow Out of frame.

AIS Yellow Alarm indication signal.

4

Connecting Cisco ATM Network Modules to the Network

Connecting Cisco ATM Network Modules to the Network

ATM T3/E3 Network Module LEDs

Table 3

shows the LEDs for the combined ATM T3/E3 network module.

Table 3 ATM T3/E3 Network Module LEDs

LED

TXCL

RXCL

RXALM

Color

Green

Green

Yellow

RXCR Green

Loopback LED Green

Meaning

Cell transmitted.

Cell received.

Alarm indication signal.

Carrier present.

Loopback

ATM OC-3 Network Modules

ATM OC-3 Network Modules

ATM OC-3 network modules provide full 155-Mbps ATM connectivity, including STS-3c and STM-1 framing, for high-bandwidth data applications and voice-data integration applications. Characteristics and installation of these modules are described in the following sections.

OC-3 Network Modules for Cisco 3600 and Cisco 3700 Series Routers, page 5

ATM-OC3-POM Network Module for Cisco 3800 Series Routers, page 10

Laser Safety Guidelines, page 13

Fiber-Optic Transmission Specifications, page 14

OC-3 Network Modules for Cisco 3600 and Cisco 3700 Series Routers

This section describes the following OC-3 (Optical Carrier level 3) network modules for most

Cisco 3600 and Cisco 3700 series routers.

Note ATM OC-3 network modules are not supported by the Cisco 3631 router.

The following modules are supported on the Cisco 3600 series routers and the Cisco 3725 router:

NM-1A-OC3MM provides a multimode (MM) fiber uplink port. See

Figure 7 .

NM-1A-OC3SMI provides a single-mode intermediate-reach (SMI) fiber uplink port. See

Figure 8

.

• NM-1A-OC3SML provides a single-mode long-reach (SML) fiber uplink port. See

Figure 9 .

The following modules are supported on the Cisco 3745 router:

NM-1A-OC3MM-EP provides an MM fiber uplink port with enhanced performance. See

Figure 7

for a similar faceplate.

NM-1A-OC3SMI-EP provides an SMI fiber uplink port with enhanced performance. See

Figure 8

for a similar faceplate.

• NM-1A-OC3SML-EP provides an SML fiber uplink port with enhanced performance. See

Figure 9

for a similar faceplate.

The following modules are supported on the Cisco 3600 series routers:

Connecting Cisco ATM Network Modules to the Network

5

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

NM-1A-OC3MM-1V provides an MM fiber uplink port and circuit emulation service. See

Figure 10 .

NM-1A-OC3SMI-1V provides an SMI fiber uplink port and circuit emulation service. See

Figure 11 .

NM-1A-OC3SML-1V provides an SML fiber uplink port and circuit emulation service. See

Figure 12 .

Circuit emulation service allows the network module to carry voice traffic, such as telephone calls and faxes, over an ATM network simultaneously with data traffic.

If you are using the ATM OC-3/STM-1 circuit emulation service network module, you need both the network module and a 1- or 2-port T1 or E1 multiflex trunk interface card (VWIC-1MFT-T1,

VWIC-1MFT-E1, VWIC-2MFT-T1, VWIC-2MFT-E1, VWIC-2MFT-T1-DI, or VWIC-2MFT-E1-DI) for a voice connection. You can install one multiflex trunk interface card (providing up to two voice ports) in the ATM OC-3/STM-1 circuit emulation service network module. If a multiflex trunk interface card is not installed, the ATM OC-3/STM-1 circuit emulation service network module continues to perform data-routing functions.

Note 1- or 2-port T1 or E1 multiflex trunk interface cards that support G.703 (VWIC-1MFT-G703,

VWIC-2MFT-G703) are not supported in ATM OC-3/STM-1 circuit emulation service network modules.

Figure 7

ATM

1A-OC3MM

ATM OC-3 Multimode Fiber Network Module

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

ATM 0

RCLK FERF OOF AIS

EN

Figure 8

ATM

1A-OC3SMI

ATM OC-3 Single-Mode Intermediate-Reach Fiber Network Module

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

ATM 0

RCLK FERF OOF AIS

EN

Figure 9

ATM

1A-OC3SML

ATM OC-3 Single-Mode Long-Reach Fiber Network Module

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

ATM 0

RCLK FERF OOF AIS EN

6

Connecting Cisco ATM Network Modules to the Network

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

ATM OC-3/STM-1 Circuit Emulation Service Multimode Fiber Network Module Figure 10

ATM

1A-OC3

MM-1V

CES

ATM 0

VO

TX

FERF OOF AIS

RX

RCLK EN

Figure 11

ATM

1A-OC3

SMI-1V

CES

ATM OC-3/STM-1 Circuit Emulation Service Single-Mode Intermediate-Reach Fiber

Network Module

VO

CLASS 1 LASER PRODUCT

LASERPRODUKT DER KLASSE 1

PRODUIT LASER DE CLASSE 1

PRODUCTO LASER CLASE 1

ATM 0

FERF OOF AIS

TX

1

RX

RCLK EN

Figure 12

ATM

1A-OC3

SML-1V

CES

ATM OC-3/STM-1 Circuit Emulation Service Single-Mode Long-Reach Fiber

Network Module

V0

CLASS 1 LASER PRODUCT

LASERPRODUKT DER KLASSE 1

PRODUIT LASER DE CLASSE 1

PRODUCTO LASER CLASE 1

ATM 0

FERF OOF AIS

TX

1

RX

RCLK

EN

ATM OC-3 Network Module LEDs

Figure 13 and

Figure 14 show ATM OC-3 network module LEDs.

Figure 13

ATM

1A-OC3MM

ATM OC-3 Network Module LEDs

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

ATM 0

RCLK FERF OOF AIS

RCLK LED

FERF LED

OOF LED

AIS LED

EN

OC-3 Enable LED

Connecting Cisco ATM Network Modules to the Network

7

ATM OC-3 Network Modules

Connecting Cisco ATM Network Modules to the Network

ATM OC-3/STM-1 Circuit Emulation Service Network Module LEDs Figure 14

ATM

1A-OC3

MM-1V

CES

VO

FERF OOF AIS

TX

ATM 0

RX

RCLK EN

CES LED

FERF LED

OOF LED

AIS LED

RCLK LED

Enable LED

LED

EN

Color

Green

RCLK Green

FERF Yellow

OOF

AIS

CES

Yellow

Yellow

Green

Meaning

Module has passed its self-tests and is available to the router.

Receive clock has been detected.

Far-end receive failure.

Out of frame.

Alarm indication signal.

An active CES connection is established (ATM

OC-3/STM-1 circuit emulation service network module only).

Hardware Compatibility with Cisco 3620 Routers

Cisco 3620 routers require a minimum PCMCIA controller revision level to recognize ATM OC-3 network modules; otherwise, an error message appears. Cisco 3620 routers installed in the field before

April 1999 contain a Revision C PCMCIA controller, which is not compatible with these modules.

Starting in April 1999, all Cisco 3620 routers shipped from the factory include Revision E PCMCIA controllers, which are fully compatible with all three ATM OC-3 network modules.

You can identify the version of PCMCIA controller in your Cisco 3620 router by entering the show pci

hardware command in privileged EXEC mode, or by examining the part number on the motherboard.

Supported versions are shown in

Table 4

.

Table 4 Cisco 3620 Router Versions for ATM OC-3 Network Modules

Does Not Support ATM OC-3 Supports ATM OC-3

PCMCIA controller 0x22, 0xE2 0x20, 0xE0

Motherboard 73-1850-10 and older 73-1850-11 or newer

The output of the show pci hardware command looks similar to this:

Router# show pci hardware

CLPD6729 registers:

(0x00) Chip Revision = 0x82

(0x1E) Misc Control 2 = 0x08

(0x1F) Chip Information = 0xE2

Connecting Cisco ATM Network Modules to the Network

8

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

CES Cross-Connection on the Cisco 3660 Router

The Cisco 3660 router can deliver traditional PCM-encoded 64-kbps circuit-based voice over the ATM

OC-3 CES network module. To use this functionality, the multiservice interchange card (MIX) must be installed on the Cisco 3660 router. T1/E voice channels on NM-xFE2W and NM-HDV network modules can be transported across the MIX module to ATM OC-3 network modules (NM-1A-OC3XX-1V) over an ATM network. PVC-based (permanent virtual circuit) CES allows service providers to quickly deliver local or long distance voice, while SVC (switched virtual circuit) capabilities ensure that these services are optimized for maximum profitability.

To install the MIX card, see the Installing the Multiservice Interchange Card in Cisco 3660 Routers document. To configure CES, see the OC-3/STM-1 ATM Circuit Emulation Service Network Module document.

Connecting ATM OC-3 Ports to the Network

To connect an ATM OC-3 network module to the network, insert a fiber-optic cable with one duplex SC connector (see

Figure 15 ) or two simplex SC connectors (see Figure 16 ) into the ATM interface.

Note Some network modules are shipped with a dust plug to protect this interface. Pull to remove it.

Figure 15 Duplex SC Connector

Figure 16 Simplex SC Connector

Note Cisco does not sell these fiber-optic cables, but they are available from many cable vendors. Cables should perform to the specifications listed in

Table 5

.

Connecting Cisco ATM Network Modules to the Network

9

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

Table 5 Fiber-Optic Cable Specifications

Standard

ISO/IEC 9314-3

IEC 793-2

ANSI/TIA/EIA-492

CAAA

Maximum Path Length Cabling

1.24 miles (2 km) all cables in a connection, end to end

62.5-micron core with an optical loss of 0 to 9 dB, or

50-micron core with an optical loss of 7 dB

9-micron core 27.9 miles (45 km) for SML and 9.3 miles (15 km) for

SMI

27.9 miles (45 km) for SML and 9.3 miles (15 km) for

SMI

9-micron core

Note A single fiber link should not mix 62.5- and 50-micron cable.

ATM-OC3-POM Network Module for Cisco 3800 Series Routers

The NM-1A-OC3-POM network module provides a high-performance fiber uplink port for Cisco 3800

series integrated services routers. See Figure 17 . Supported platforms are:

• Cisco 3825 integrated services router

• Cisco 3845 integrated services router

Figure 17

ATM

NM-1A-OC3-POM

ATM OC3-POM Network Module

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

RXCR RXCL TXCL RXALM

ATM 0

EN

The ATM interface is the small form-factor pluggable (SFP) optical port labeled ATM 0. See

Figure 17 .

The optical interface is provided by an SFP module that is inserted into the SFP port. Fiber-optic cables to the network are attached to the SFP module.

The network module has three modes of operation. The mode of operation is determined by the SFP module that is used.

Caution Only SFP modules provided by Cisco should be used in the network module. SFP modules that are not provided by Cisco have not been evaluated for reliability or user safety.

The modes of operation and usable SFP modules are:

• Multimode (MM)

– POM-OC3-MM

Connecting Cisco ATM Network Modules to the Network

10

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

– SFP-OC3-MM

Single-mode intermediate reach (SMI)

– POM-OC3-SMIR

– SFP-OC3-IR1

Single-mode long reach (SML)

POM-OC3-SMLR

SFP-OC3-LR1

ATM-OC3-POM Network Module LEDs

Table 6

describes the functions of the LEDs on the ATM-OC3-POM network module shown in

Figure 17 .

Table 6 ATM-OC3-POM LED Functions

LED

RXCR

Color

Green

RXCL Green

TXCL Green

RXALM Yellow

EN Green

Meaning

Lit when carrier signal into the network module is present.

Blinks to indicate packet reception.

Blinks to indicate packet transmission.

Alarm indication signal.

Module has passed its self-tests and is available to the router.

Connecting ATM-OC3-POM Ports to the Network

The following sections describe how to remove and install SFP modules, and how to connect the ports on a module to the network.

Handling an SFP Module

Before handling an SFP module, observe the following guidelines:

• SFP modules are static-sensitive. To prevent electrostatic discharge (ESD) damage, follow your normal board- and component-handling procedures.

• SFP modules are dust-sensitive. When storing an SFP module or when a fiber-optics cable is not plugged into the connector, always keep plugs in SFP module optical bores.

Note The most common source of contaminants in the optical bores is debris picked up on the ferrules of the optical connectors. Use alcohol swabs or lint-free absorbent wipes to clean the ferrules of the optical connector.

Removing an SFP Module

The following procedure describes removing an SFP module from the network module.

Connecting Cisco ATM Network Modules to the Network

11

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

Warning Ultimate disposal of this product should be handled according to all national laws and regulations.

Statement 1040

Caution You can remove and install SFP modules with power on to the system; however, we strongly recommend that you do not remove or install an SFP module with optical fiber cables attached.

To remove an SFP module, perform the following steps:

Step 1

Step 2

Step 3

Attach an ESD wrist strap to your wrist and to the ESD connection socket on the chassis or to a bare metal surface on the chassis or frame.

Disconnect the network fiber cable from the SFP module connector.

Remove the SFP module from the slot.

a.

b.

Using your thumb and forefinger, grip the colored latching band on the front of the SFP module.

Gently push the latching band back toward the SFP port. You may hear a click or feel the SFP module disengage from the holding latch.

Note Not all SFP modules have the same kind of latching mechanism.

Step 4 c.

While still holding the latching band, pull the SFP module forward and out of the slot.

Set the SFP module aside on an antistatic surface.

Installing an SFP Module

Use the following procedure to install an SFP module:

Step 1

Step 2

Step 3

Step 4

Attach an ESD-preventive wrist strap to your wrist and between yourself and an unpainted chassis surface.

Verify that you have the correct SFP module for your installation.

Check the part number and distance information on the SFP module label.

Alternatively, if the distance information is not on the label, use the show contr pos x/y command to display the information after the SFP module is installed.

Align the SFP module with the slot so that the label is facing away from the handle.

Holding the module at the latching band (with your thumb and forefinger), insert the SFP module into

the slot on the SFP port. See Figure 18

.

12

Connecting Cisco ATM Network Modules to the Network

Connecting Cisco ATM Network Modules to the Network

Figure 18 Installing an SFP Module

ATM OC-3 Network Modules

ATM

NM-1A-OC3-POM

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

RXCR

RXCL

TXCL

RXALM

ATM 0

EN

Step 5

Step 6

Step 7

Push the module back into the slot until the latch engages. When fully inserted, only the band around the front of the SFP module should be visible.

Remove the plug from the SFP module optical bores and save the plug for future use.

Attach the network interface fiber-optic cable, as described in the “Connecting ATM OC-3 Ports to the

Network” section on page 9

.

Laser Safety Guidelines

ATM OC-3 network modules use a small laser to generate the fiber-optic signal. Keep the transmit port covered whenever a cable is not connected to it.

Warning Because invisible laser radiation may be emitted from the aperture of the port when no fiber cable is

connected, avoid exposure to laser radiation and do not stare into open apertures. Statement 240

The module faceplate carries a Class 1 laser warning label. See

Figure 19 .

Connecting Cisco ATM Network Modules to the Network

13

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

Figure 19 Class 1 Laser Warning Label

CLASS 1 LASER PRODUCT

LASERPRODUKT DER KLASSE 1

PRODUIT LASER DE CLASSE 1

PRODUCTO LASER CLASE 1

ATM

1A-OC3MM

CLASS 1 LASER PRODUCT

LASERPRODUCT DER KLASSE 1

PRODUCT LASER DE CLASSE1

PRODUCTO LASER CLASE 1

RCLK FERF OOF AIS

ATM 0

EN

Fiber-Optic Transmission Specifications

This section describes Synchronous Optical Network (SONET) specifications for fiber-optic transmissions, defines the power budget, and helps you estimate your power margin for multimode and single-mode transmissions. This section contains the following information:

SONET Distance Limitations

Power Budget and Power Margin

Link Loss

Estimating the Power Margin

Single-Mode Transmission

SONET Distance Limitations

The SONET specification for fiber-optic transmission defines two types of fiber, single-mode and multimode. Single-mode fiber allows only one bundle of light rays to propagate through the fiber, whereas multimode fiber allows multiple bundles entering at different angles. Because different bundles

(referred to as modes) travel different distances, depending on the entry angle, they arrive at the destination at different times (modal dispersion). Single-mode fiber is capable of higher bandwidth and greater cable run distances than multimode fiber.

Table 7 lists typical maximum distances for single-mode and multimode transmissions, as defined by

SONET. Use the calculations described in this section to determine the actual maximum for your network. If the distance between two connected stations exceeds this limit, transmission can become unreliable.

Table 7 Typical SONET Maximum Fiber-Optic Transmission Distances

Transceiver Type

MM

SMI

SML

Maximum Distance Between Stations

1.5 miles (2 km)

9 miles (15 km)

28 miles (40 km)

14

Connecting Cisco ATM Network Modules to the Network

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

Power Budget and Power Margin

Proper operation of an optical data link depends on modulated light reaching the receiver with enough power to be demodulated. The power budget (PB) is the difference between transmitter power (PT) and receiver sensitivity (PR). For instance, if transmitter power is –20 dB and receiver sensitivity is –30 dB, the power budget is 10 dB:

PB = PT – PR

PB = –20 dB – (–30 dB)

PB = 10 dB

The SONET specification requires that the signal meet the worst-case requirements listed in

Table 8

.

Table 8 SONET Signal Requirements

Transmitter power

MM SMI SML

–20 dBm –15 dBm –5 dBm

Receiver sensitivity –30 dBm –31 dBm –34 dBm

Power budget 10 dBm 16 dBm 29 dBm

The difference between the power budget and the link loss (LL) is called the power margin (PM). If the power margin is zero or positive, the link should work. If it is negative, the signal may not arrive with enough power to operate the receiver.

Link Loss

Power loss over a fiber-optic link arises from the following causes:

Passive components—Attenuation caused by cables, cable splices, and connectors is common to both multimode and single-mode transmission. Attenuation is significantly lower for optical fiber than for other media.

Chromatic dispersion—The signal spreads in time because of differing speeds of the different wavelengths of light.

Modal dispersion—In multimode fiber, the signal spreads in time because of the different propagation modes.

Higher-order mode loss (HOL)—This loss results from light radiated into the fiber cladding.

• Clock recovery at the receiver—This recovery consumes a small amount of power.

The power lost over the data link is the sum of all these losses.

Table 9

gives an estimate of the amount of loss attributable to each cause.

Table 9 Link Loss Causes and Amounts

Cause

Fiber attenuation

Amount of Loss

SM: 0.5 dB/km

MM: 1 dB/km

0.5 dB Splice

Connector 0.5 dB

Modal and chromatic dispersion Depends on fiber and wavelength

1

Connecting Cisco ATM Network Modules to the Network

15

Connecting Cisco ATM Network Modules to the Network

ATM OC-3 Network Modules

Table 9 Link Loss Causes and Amounts

Cause

Higher-order mode losses

Clock recovery

Amount of Loss

0.5 dB

1 dB

1.

Dispersion is usually negligible for single-mode fiber. For multimode fiber, the product of bandwidth and distance should be less than 500 MHz-km.

Estimating the Power Margin

The following example calculates a multimode power margin based on these values:

• Power budget 10 dB (SONET worst-case specification for multimode fiber)

Link length 3 km

Four connectors

Three splices

Higher-order loss (HOL)

• Clock recovery

The power margin is:

PM = PB – LL

= 10 dB – [3 km x (1.0 dB/km) + 4 x (0.5 dB) + 3 x (0.5 dB) + 0.5 dB + 1 dB] = 2 dB

The positive result means this link should have enough power for transmission. The product of bandwidth and distance is 155 MHz x 3 km = 465 MHz-km; this is within the dispersion limit of

500 MHz-km.

Single-Mode Transmission

Single-mode transmission is useful for longer distances, because there is a single transmission path within the fiber and modal dispersion does not occur.

The maximum receive power for SML is –10 dBm, and the maximum transmit power is 0 dBm. The

SML receiver can be overloaded when using short lengths of fiber. Overloading the receiver does not damage it, but can cause unreliable operation. To prevent overloading an SML receiver, insert a minimum 10-dB attenuator on the link between any SML transmitter and the receiver.

The SMI receiver cannot be overloaded by the SMI transmitter and does not require a minimum fiber cable length or loss.

The following example of a single-mode power margin assumes these values:

• Power budget 16 dB (SONET worst-case specification for SMI)

Two buildings 8 kilometers apart

Connections through a patch panel in an intervening building with a total of 12 connectors

PM = PB – LL

= 16 dB – 8 km x (0.5 dB/km) – 12 x (0.5 dB)

= 6 dB

The positive value means this link should have enough power for transmission.

16

Connecting Cisco ATM Network Modules to the Network

Connecting Cisco ATM Network Modules to the Network

Related Documents

For additional information, see the following documents and resources.

Related Documents

Related Topic

Regulatory compliance and safety information

Document Title

Cisco Network Modules and Interface Cards Regulatory Compliance and Safety

Information http://www.cisco.com/en/US/docs/routers/access/interfaces/rcsi/IOHrcsi.html

Cisco IOS software website and reference documentation

Cisco IOS Software http://www.cisco.com/web/psa/products/index.html?c=268438303

Obtaining Documentation, Obtaining Support, and Security

Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly

What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at: http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks;

Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You,

Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press,

Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event

Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQ Expertise, the iQ logo, iQ Net

Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MGX, Networkers, Networking

Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The

Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0804R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2008 Cisco Systems, Inc. All rights reserved.

Connecting Cisco ATM Network Modules to the Network

17

Obtaining Documentation, Obtaining Support, and Security Guidelines

Connecting Cisco ATM Network Modules to the Network

18

Connecting Cisco ATM Network Modules to the Network

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement