TAS5518 8 Channel Digital Audio PWM Processor Data Manual Literature Number: SLES115


Add to my manuals
105 Pages

advertisement

TAS5518 8 Channel Digital Audio PWM Processor Data Manual Literature Number: SLES115 | Manualzz

TAS5518 8 Channel Digital Audio

PWM Processor

Data Manual

Literature Number: SLES115

August 2004

TM

TAS5518

8 Channel Digital Audio PWM Processor

Data Manual

2004 DAV−Digital Audio/Speaker

SLES115

Contents

Section

1 Introduction

1.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TAS5518 System Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2

1.3

TAS5518 Features

1.2.1

1.2.2

1.2.3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Audio Input/Output

Audio Processing

PWM Processing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.4

General Features

Physical Characteristics

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4

1.3.1

1.3.2

Terminal Assignments

Ordering Information

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3.3

Terminal Descriptions

TAS5518 Functional Description

1.4.1

1.4.2

1.4.3

1.4.4

I

Power Supply

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clock, PLL, and Serial Data Interface

2

C Serial Control Interface

Device Control

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.6

1.7

1.8

1.9

1.5

1.4.5

Digital Audio Processor (DAP)

TAS5518 DAP Architecture

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5.1

1.5.2

I

TAS5518 DAP Architecture Diagrams

2

C Coefficient Number Formats

Input Crossbar Mixer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biquad Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bass and Treble Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Volume, Auto Mute, and Mute

1.9.1

Auto Mute and Mute

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.10

Loudness Compensation

1.10.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Loudness Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.11.2

Compression/Expansion Coefficient Computation Engine Parameters

1.12

Output Mixer

. . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.13

PWM

1.13.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC Blocking (High Pass Enable/ Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.13.2

1.13.3

De-Emphasis Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Supply Volume Control (PSVC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.13.4

AM Interference Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 TAS5518 Controls and Status

2.1

I

2

C Status Registers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2

2.1.1

2.1.2

General Status Register (0x01)

Error Status Register (0x02)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TAS5518 Pin Controls

2.2.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reset (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.2

2.2.3

2.2.4

2.2.5

Power Down (PDN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Backend Error (BKND_ERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Speaker / Headphone Selector (HP_SEL)

Mute (MUTE)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents

Page

30

30

31

33

33

26

29

29

30

20

21

21

23

14

18

19

19

35

35

36

36

33

33

33

33

9

11

11

5

8

8

8

9

9

1

2

3

3

3

4

4

5

5

5

July 2004 SLES115

iii

Contents

2.3

2.4

2.5

Device Configuration Controls

2.3.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Channel Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.2

2.3.3

Headphone Configuration Registers

Audio System Configurations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.4

2.3.5

2.3.6

Recovery from Clock Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power Supply Volume Control Enable

Volume and Mute Update Rate

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.7

2.3.8

Modulation Index Limit

Inter-channel Delay

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Master Clock and Serial Data Rate Controls

2.4.1

PLL Operation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bank Controls

2.5.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Manual Bank Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5.2

2.5.3

Automatic Bank Selection

Bank Set

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5.4

2.5.5

Bank Switch Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bank Switching Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5.6

Bank Switching Example 2

3 Electrical Specifications

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1

3.2

3.3

3.4

3.5

3.6

Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dynamic Performance (At Recommended Operating Conditions at 25°C)

Recommended Operating Conditions (over 0°C to 70°C)

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Electrical Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . .

PWM Operation at Recommended Operating Conditions Over 0°C to 70°C

Switching Characteristics

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6.1

3.6.2

3.6.3

3.6.4

3.6.5

3.6.6

I

Clock Signals Over Recommended Operating Conditions

Serial Audio Port

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C Serial Control Port Operation

Reset Timing (RESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power-Down (PDN) Timing

Backend Error (BKND_ERR)

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.7

3.6.7

3.6.8

MUTE Timing—MUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Headphone Select (HP_SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.6.9

Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Serial Audio Interface Control and Timing

3.7.1

I

2

S Timing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.7.2

Left Justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.7.3

Right Justified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 I

2

C Serial Control Interface (Slave Address 0x36)

4.1

General I

2

C Operation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2

4.3

4.4

Single and Multiple Byte Transfers

Single Byte Write

Multiple Byte Write

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5

4.6

Incremental Multiple Byte Write

Single Byte Read

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.7

Multiple Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Serial Control I

2

C Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

49

49

50

46

46

46

47

45

45

45

46

43

43

44

45

42

42

42

43

40

41

41

42

36

37

38

38

39

39

40

56

57

57

59

55

55

56

56

52

53

54

55

50

51

52

52 iv

SLES115 July 2004

6 Serial Control Interface Register Definitions

6.1

Clock Control Register (0x00)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2

6.3

6.4

General Status Register 0 (0x01)

Error Status Register (0x02)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

System Control Register 1 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.5

6.6

6.7

System Control Register 2 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Channel Configuration Control Register (0x05−X0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Headphone Configuration Control Register (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.8

6.9

Serial Data Interface Control Register (0x0E)

Soft Mute Register (0x0F)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.10

Automute Control Register(0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.11

Automute PWM Threshold and Backend Reset Period (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.12

Modulation Index Limit Register (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.13

Interchannel Channel Delay Registers (0x1B − 0x22) and Offset Register (0x23) . . . . . . . . . .

6.14

Bank Switching Command (0x40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.15

Input Mixer Registers (0x41 – 0x48, Channels 1 − 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.16

Bass Management Registers (0x49 – 0x50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.17

Biquad Filters Register (0x51 – 0x88) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.18

Bass and Treble Bypass Register (0x89 – 0x90, Channels 1 − 8) . . . . . . . . . . . . . . . . . . . . . . . .

6.19

Loudness Registers (0x91 – 0x95)

6.20

DRC1 Control (0x96, Channels 1−7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.21

DRC2 Control (0x97, Channel 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.22

DRC1 Data Registers (0x98 – 0x9C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.23

DRC2 Data Registers (0x9D – 0xA1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.24

DRC Bypass Registers (0xA2 – 0xA9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.25

8x2 Output Mixer Registers (0xAA – 0xAF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.26

8x3 Output Mixer Registers (0xB0 – 0xB1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.27

Volume Biquad Register (0xCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.28

Volume Treble and Bass Slew Rates (0xD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.29

Volume Registers (0xD1 − 0xD9)

6.30

Bass Filter Set Register (0xDA)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.31

Bass Filter Index Register (0xDB)

6.32

Treble Filter Set Register (0xDC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.33

Treble Filter Index (0xDD)

6.34

AM Mode Register (0xDE)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.35

PSVC Range Register (0xDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.36

General Control Register (0xE0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.37

Incremental Multiple Write Append Register (0xFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 TAS5518 Example Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contents

77

78

79

80

80

81

83

83

83

84

70

70

71

72

75

75

76

76

77

85

86

87

88

88

89

89

91

66

66

67

67

68

68

69

65

65

65

65

66

July 2004 SLES115

v

List of Illustrations

List of Illustrations

Figure Title

1−1. TAS5518 Functional Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−2. Typical TAS5518 Application (DVD Receiver) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−3. Recommended TAS5518 + TAS5121 Channel Configuration

1−4. TAS5518 DAP Architecture With I

2

C Registers (Fs 3 96 kHz)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−5. TAS5518 Architecture With I

2

C Registers (Fs = 176.4 kHz or Fs = 192 kHz) . . . . . . . . . . . . . . . . . . .

1−6. TAS5518 Detailed Channel Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−7. 5.23 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−8. Conversion Weighting Factors—5.23 Format to Floating Point

1−9. Alignment of 5.23 Coefficient in 32-Bit I

2

C Word

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−10. 25.23 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−11. Alignment of 5.23 Coefficient in 32-Bit I

2

C Word

1−12. Alignment of 25.23 Coefficient in Two 32-Bit I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

C Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−13. TAS5518 Digital Audio Processing

1−14. Input Crossbar Mixer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−15. Biquad Filter Structure

1−16. Auto Mute Threshold

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−17. Loudness Compensation Functional Block Diagram

1−18. Loudness Example Plots

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−19. DRC Positioning in TAS5518 Processing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−20. Dynamic Range Compression (DRC) Transfer Function Structure . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−21. Output Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−22. De-emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−23. Power Supply and Digital Gains (Log Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−24. Power Supply and Digital Gains (Linear Space) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−25. Block Diagrams of Typical Systems Requiring TAS5518 Automatic AM Interference

Avoidance Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−1. Slave Mode Serial Data Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−2. SCL and SDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−3. Start and Stop Conditions Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−4. Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−5. Power-Down Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−6. Error Recovery Timing

3−7. Mute Timing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−8. HP_SEL Timing

3−9. I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

S Format 64 Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−10. Left Justified 64 Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3−11. Right Justified 64 Fs Format

4−1. Typical I

2

C Sequence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4−2. Single Byte Write Transfer

4−3. Multiple Byte Write Transfer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4−4. Single Byte Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4−5. Multiple Byte Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page

15

16

16

17

17

18

19

21

22

23

25

25

29

30

31

31

13

14

15

15

1

2

2

12

51

52

53

54

55

56

56

57

49

49

50

50

32

47

48

48

57 vi

SLES115 July 2004

List of Tables

List of Tables

Table Title

1−1. Serial Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−2. TAS5518 Audio Processing Feature Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−3. Contents of One 20-Byte Biquad Filter Register (Default = All-Pass)

1−4. Bass and Treble Filter Selections

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−5. Linear Gain Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−6. Default Loudness Compensation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−7. Loudness Function Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1−8. DRC Recommended Changes From TAS5518 Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−1. Device Outputs During Reset

2−2. Values Set During Reset

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−3. Device Outputs During Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−4. Device Outputs During Backend Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−5. Description of the Channel Configuration Registers (0x05 to 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−6. Recommended TAS5518 Configurations for Texas Instruments Power Stages . . . . . . . . . . . . . . . . .

2−7. Audio System Configuration (General Control Register 0xE0)

2−8. Volume Ramp Rates in ms

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2−9. Inter-Channel Delay Default Values

6−1. Clock Control Register

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−2. General Status Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−3. Error Status Register (0X02)

6−4. System Control Register 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−5. System Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−6. Channel Configuration Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−7. Headphone Configuration Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−8. Serial Data Interface Control Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−9. Soft Mute Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−10. Automute Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−11. Automute PWM Threshold and Backend Reset Period

6−12. Modulation Index Limit Register

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−13. Interchannel Channel Delay Registers

6−14. Channel Offset Register

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−15. Bank Switching Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−16. Input Mixer Registers Format (0x41 – 0x48, Channels 1 − 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−17. Bass Management Registers Format (0x49 – 0x50)

6−18. Biquad Filters Registers Format (0x51 – 0x88)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−19. Contents of One 20-Byte Biquad Filter Register Format (Default = All-pass)

6−20. Bass and Treble Bypass Register Format (0x89−0x90)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−21. Loudness Registers Format (0x91 – 0x95)

6−22. DCR1 Control (0x96, Channels 1−7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−23. DRC2 Control (0x97, Channel 8)

6−24. DRC1 Data Registers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−25. DRC2 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−26. DRC Bypass Registers Format (0xA2−0xA9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−27. Output Mixer Control Register Format (Upper 4 Bytes)

6−28. Output Mixer Control (Lower 4 Bytes)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−29. Output Mixer Control (Upper 4 Bytes)

6−30. Output Mixer Control (Middle 4 Bytes)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page

71

72

75

75

69

70

70

70

76

76

67

67

68

68

65

66

66

66

79

80

80

81

76

77

77

78

81

82

37

38

38

40

33

34

35

36

41

65

65

20

22

23

24

9

11

19

20

July 2004 SLES115

vii

List of Tables

6−31. Output Mixer Control (Lower 4 Bytes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−32. Volume Biquad Register Format (Default = All-pass) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−33. Volume Gain Update Rate (Slew Rate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−34. Treble and Bass Gain Step Size (Slew Rate)

6−35. Volume Registers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−36. Master and Individual Volume Controls

6−37. Channel 8 Sub Woofer

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−38. Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration Right and

Left Surround in Eight Channel Configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−39. Channel 4 and 3 (Right and Left Rear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−40. Channel 7, 2, 1 (Center, Right Front, and Left Front) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−41. Bass Filter Index Register

6−42. Bass Filter Index

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−43. Channel 8 Sub Woofer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−44. Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration or Right and Left Surround in Eight Channel Configuration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−45. Channel 4 and 3 (Right and Left Rear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−46. Channel 7, 2, 1 (Center, Right Front, and Left Front)

6−47. Treble Filter Index Register

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−48. Treble Filter Index

6−49. AM Mode Register

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−50. AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE)

6−51. AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE)

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

6−52. PSVC Range Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6−53. General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

88

88

88

88

89

86

87

87

87

85

85

85

85

86

86

82

83

83

83

83

84

84 viii

SLES115 July 2004

MCLK

XTL_ OUT

XTL_ IN

PLL_FLTM

PLL_FLTP

OSC CAP

SCLK

LRCLK

SDIN1

SDIN2

SDIN3

SDIN4

SDA

SCL

RESET

PDN

MUTE

HP_SEL

BKND_ERR

Introduction

1 Introduction

The TAS5518 is an eight channel digital pulse width a modulator (PWM) that provides superior dynamic range performance and a high level of system integration. The typical dynamic range in a well-designed system is

110 dB and the power supply volume control (PSVC) feature provides up to 24 dB of additional dynamic range at normal listening levels.

The TAS5518 is designed to interface seamlessly with most audio digital signal processors. This device automatically adjusts control configurations in response to clock and data rate changes and idle conditions.

This enables the TAS5518 to provide an easy to use control interface with relaxed timing requirements.

The TAS5518 can drive eight channels of H-bridge power stages. Texas Instruments H-bridge devices

TAS5111, TAS5112, and TAS5182 + FETs are designed to work seamlessly with the TAS5518. The TAS5518 supports both single-ended or bridge-tied load configurations. It also provides a high-performance differential output to drive an external differential input analog headphone amplifier (such as the TPA112).

The TAS5518 uses an AD modulation operating at a 384-kHz switching rate for 48-, 96-, and 192-kHz data.

The 8x over sampling, combined with a 5 th

-order noise shaper, provides a broad flat noise floor and excellent dynamic range from 20 Hz to 20 kHz.

The TAS5518 is a clock slave-only device. It receives MCLK, SCLK, and LRCLK from other system components. It accepts master clock rates of 128, 192, 256, 384, 512, and 768 Fs and a 64-Fs bit clock.

Serial

Control

IF

VR_PLL AVDD_PLL AVSS_PLL AVDD_REF VBGAP VRA_PLL VRD_PLL DVDD DVSS AVDD AVSS

Power Supply

Control

8

Digital Audio Processor

0

Det

7

Biquads

Soft

Tone

Soft

Vol

Loud

Comp DRC

0

Det

7

Biquads

Soft

Tone

Soft

Vol

Loud

Comp DRC

0

Det

7

Biquads

Soft

Tone

Soft

Vol

0

Det

7

Biquads

Soft

Tone

Soft

Vol

0

Det

7

Biquads

Soft

Tone

Soft

Vol

0

Det

7

Biquads

Soft

Tone

Soft

Vol

Loud

Comp DRC

Loud

Comp DRC

Loud

Comp DRC

Loud

Comp DRC

0

Det

7

Biquads

Soft

Tone

Soft

Vol

Loud

Comp DRC

0

Det

7

Biquads

Soft

Tone

Soft

Vol

8 4 8

Loud

Comp DRC

2

2

9

Volume

Control

PWM Section

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

DC

Block

De

Emph

Interpo late

SRC NS PWM

8

8

PSVC

Figure 1−1. TAS5518 Functional Structure

PWM_HPP& MR

PWM_HPP & ML

PWM AP& AM1 L Front

PWM AP& AM2 R Front

PWM AP& AM3 L Rear

PWM AP& AM4 R Rear

PWM AP& Am7 Center

PWM AP& AM8 Sub woofer

PWM AP& AM5 L Surround

PWM L Line Out

PWM AP& AM6 R Surround

PWM R Line Out

VALID

PSVC

SLES115 — August 2004 TAS5518

1

Introduction

1.1

TAS5518 System Diagrams

Typical applications for the TAS5518 are 6- to 8-channel audio systems such as DVD receiver or AV receiver.

Figure 1−2 shows the basic system diagram of the DVD receiver.

Power Supply

AM

FM

Tuner

Texas Instruments

Digital Audio Amplifier

TAS5518

DVD Loader

MPEG Decoder

Micro

Front-Panel Controls

Figure 1−2. Typical TAS5518 Application (DVD Receiver)

Figure 1−3 shows the recommended channel configuration when using the TAS5518 with the TAS5121 power

stage. Note that each channel is normally dedicated to a particular function.

RIGHT BACK

SURROUND

+

LEFT BACK

SURROUND

+

SUBWOOFER

+

CENTER

+

RIGHT

LEFT

+

RIGHT

+

LEFT

TAS5121 TAS5121 TAS5121 TAS5121 TAS5121 TAS5121 TAS5121 TAS5121

Lineout Right

Lineout Left

PWM to Analog

(Line Level)

TAS5518

PWM to Analog

(Headphone Level)

Headphone

Out Right

Headphone

Out Left

SDIN1,2,3,4 (8 chan. PCM)

Figure 1−3. Recommended TAS5518 + TAS5121 Channel Configuration

2

TAS5518 SLES115 — August 2004

Introduction

1.2

TAS5518 Features

1.2.1 Audio Input / Output

• Automatic Master Clock Rate and Data Sample Rate Detection

• Eight Serial Audio Input Channels

• Eight PWM Audio Output Channels Configurable as Six Channels With Stereo Line Out or Eight Channels

• Line Output is a PWM Output to Drive an External Differential Input Operational Amplifier

• Headphone PWM Output to Drive an External Differential Amplifier Like the TPA112

• PWM Outputs Support Single Ended and Bridge Tied Loads

32-, 38-, 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz Sampling Rates

• Data Formats: 16-, 20-, or 24-bit input Data Left, Right and I

2

S,

• 64 x Fs Bit Clock Rate

• 128, 192, 256, 384, 512, and 768 x Fs Master Clock Rates (Up to a Maximum of 50 MHz)

1.2.2 Audio Processing

48-Bit Processing Architecture With 76 bits of Precision for Most Audio Processing Features

• Volume Control Range +36 dB to – 127 dB

− Master Volume Control Range of +18 dB to –100 dB

− Eight Individual Channel Volume Control Range of +18-dB to −127-dB

• Programmable Soft Volume and Mute Update Rates

Four Bass and Treble Tone Controls with ±18-dB Range, Selectable Corner Frequencies, and 2 nd

Slopes

Order

− L, R, and C

− LS, RS

− LR, RR

− Sub

• Configurable Loudness Compensation

• Two Dynamic Range Compressors With Two Thresholds, Two Offsets, and Three Slopes

Seven Bi-quads Per Channel

• Full 8x8 Input Crossbar Mixer. Each Signal Processing Channel Input Can Be Any Ratio of the Eight Input

Channels

• 8x2 Output Mixer – Channels 1−6. Each Output Can Be Any Ratio of Any Two Signal Processed Channels

• 8x3 Output mixer – Channels 7 and 8. Each Output can be Any Ratio of Any Three Signal Processed

Channels

• Three Coefficient Sets Stored on the Device Can be Selected Manually or Automatically (Based on

Specific Data Rates)

DC Blocking Filters

• Able to Support a Variety of Bass Management Algorithms

SLES115 — August 2004 TAS5518

3

Introduction

1.2.3 PWM Processing

• 32-Bit Processing PWM Architecture With 40 Bits of Precision

• 8x Oversampling With 5 th

Order Noise Shaping at 32 – 48 kHz, 4x Oversampling at 88.2 kHz, and 96 kHz and 2x Oversampling at 176.4 kHz and 192 kHz

• >110-dB Dynamic Range

• THD+N < 0.1%

• 20 – 20-kHz Flat Noise Floor for 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz Data Rates

• Digital De-emphasis for 32-, 44.1-, and 48-kHz Data Rates

• Flexible Automute Logic With Programmable Threshold and Duration for Noise Free Operation

Intelligent AM Interference Avoidance System Provides Clear AM Reception

Power Supply Volume Control (PSVC) Support for Enhanced Dynamic Range in High Performance

Applications

• Adjustable Modulation Limit

1.2.4 General Features

• Automated Operation With an Easy to Use Control Interface

• I

2

C Serial Control Slave Interface

• Integrated AM Interference Avoidance Circuitry

• Single 3.3-V Power Supply

• 64-Pin TQFP Package

• 5-V Tolerant Inputs

4

TAS5518 SLES115 — August 2004

1.3

Physical Characteristics

1.3.1 Terminal Assignments

TQFP PACKAGE

(TOP VIEW)

VRA_PLL

PLL_FLT_RET

PLL_FLTM

PLL_FLTP

AVSS

AVSS

VRD_PLL

AVSS_PLL

AVDD_PLL

VBGAP

RESET

HP_SEL

PDN

MUTE

DVDD

DVSS

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

17

38

37

36

35

34

42

41

40

39

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33

48

47

46

45

44

43

VR_PWM

PWM_P_4

PWM_M_4

PWM_P_3

PWM_M_3

PWM_P_2

PWM_M_2

PWM_P_1

PWM_M_1

VALID

DVSS

BKND_ERR

DVDD

DVSS

DVSS

VR_DIG

Introduction

1.3.2 Ordering Information

TA PLASTIC 64-PIN PQFP (PN)

0°C to 70°C TAS5518PAG

1.3.3 Terminal Descriptions

TERMINAL

NO.

NAME

TOLERANT

1 VRA_PLL

ATION

2 PLL_FLT_RET

3 PLL_FLTM

4 PLL_FLTP

5 AVSS

6 AVSS

AO

AO

AI

P

P

Voltage reference for PLL analog supply 1.8 V. A pin-out of the internally regulated

1.8-V power used by PLL logic. A 0.1-µF low ESR capacitor should be connected between this terminal and AVSS_PLL. This terminal must not be used to power external devices.

PLL external filter return

PLL negative input. Connected to PLL_FLT_RTN via an RC network

PLL positive input. Connected to PLL_FLT_RTN via an RC network

Analog ground

Analog ground

SLES115 — August 2004 TAS5518

5

Introduction

NO.

TERMINAL

NAME

7 VRD_PLL

6

8

9

10

11

12

13

14

15 DVDD

16 DVSS

17 VR_DPLL

18

19

20

AVSS_PLL

AVDD_PLL

VBGAP

RESET

HP_SEL

PDN

MUTE

OSC_CAP

XTL_OUT

XTL_IN

TAS5518

P

P

P

P

DI

DI

DI

DI

P

P

P

AO

AO

AI

21 RESERVED

22 RESERVED

23 RESERVED

24 SDA

25 SCL

26 LRCLK

27 SCLK

DIO

DI

DI

DI

5 V

5 V

5 V

5 V

5 V

5 V

5 V

5 V

Voltage reference for PLL digital supply 1.8 V. A pin-out of the internally regulated

1.8-V power used by PLL logic. A 0.1-µF low ESR capacitor should be connected between this terminal and AVSS_PLL. This terminal must not be used to power external devices.

Analog ground for PLL. This terminal should reference the same ground as power terminal DVSS, but to achieve low PLL jitter; ground noise at this terminal must be minimized. The availability of the AVSS terminal allows a designer to use optimizing techniques such as star ground connections, separate ground planes, or other quiet ground distribution techniques to achieve a quiet ground reference at this terminal.

3.3-V analog power supply for PLL This terminal can be connected to the same power source used to drive power terminal DVDD, but to achieve low PLL jitter, this terminal should be bypassed to AVSS_PLL with a 0.1-µF low-ESR capacitor.

Band gap voltage reference. A pin-out of the internally regulated 1.2-V reference.

Typically has a 1-nF low ESR capacitor between VBGAP and AVSS_PLL. This terminal must not be used to power external devices.

Pull up System reset input, active low. A system reset is generated by applying a logic low to this terminal. RESET is an asynchronous control signal that restores the

TAS5518 to its default conditions, sets the valid output low, and places the PWM in the hard mute (M) state. Master volume is immediately set to full attenuation.

Upon the release of RESET, if PDN is high, the system performs a 4−5 ms. device initialization and set the volume at mute.

Pull up Headphone in/out selector. When a logic low is applied, the headphone is selected

(speakers are off). When a logic high is applied, speakers are selected – headphone is off.

Pull up Power down, active low. PDN powers down all logic and stops all clocks whenever a logic low is applied. The internal parameters are preserved through a power down cycle, as long as a RESET is not active. The duration for system recovery from power down is 100 ms.

Pull up Soft mute of outputs, active low (Muted signal = a logic low, normal operation = a logic high) The mute control provides a noiseless volume ramp to silence.

Releasing mute provides a noiseless ramp to previous volume.

Digital power 3.3-V supply for digital core and most of I/O buffers

Digital ground for digital core and most of I/O buffers

Voltage reference for digital PLL supply 1.8 V. A pin-out of the internally regulated

1.8-V power used by digital PLL logic. A 0.1−µF low ESR capacitor should be connected between this terminal and DVSS_CORE. This terminal must not be used to power external devices.

Oscillator capacitor

XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They provide a reference clock for the TAS5518 via use of an external fundamental mode

crystal. XTL_OUT is the 1.8-V output drive to the crystal. See Note 4 for the

recommended crystal type.

XTL_OUT and XTL_IN are the only LVCMOS terminals on the device. They provide a reference clock for the TAS5518 via use of an external fundamental mode

crystal. XTL_IN is the 1.8-V input port for the oscillator circuit. See Note 4 for the

recommended crystal type.

Connect to digital ground

Connect to digital ground

Connect to digital ground

I

2

C serial control data interface input / output

I

2

C serial control clock input output

Serial audio data left / right clock (sampling rate clock)

Serial audio data clock (shift clock) SCLKIN is the serial audio port (SAP) input data bit clock that is supplied to the serial bit clock to other I

2

S bus.

SLES115 — August 2004

Introduction

NO.

TERMINAL

NAME

28 SDIN4

29

30

31

32 PSVC

33 VR_DIG

34

SDIN3

SDIN2

SDIN1

DVSS

35 DVSS

36 DVDD

37 BKND_ERR

38 DVSS

39 VALID

40 PWM_M_1

41 PWM_P_1

42 PWM_M_2

43 PWM_P_2

44 PWM_M_3

45 PWM_P_3

46 PWM_M_4

47 PWM_P_4

48 VR_PWM

DI

P

P

P

DI

P

DO

DO

DO

DO

DO

DO

DO

DO

DO

P

49 PWM_M_7

50 PWM_P_7

51 PWM_M_8

52 PWM_P_8

53 DVSS_PWM

54 DVDD_PWM

55 PWM_M_5

56 PWM_P_5

57 PWM_M_6

58 PWM_P_6

59 PWM_HPML

60 PWM_HPPL

61 PWM_HPMR

62 PWM_HPPR

P

P

DO

DO

DO

DO

DO

DO

DO

DO

DO

DO

DO

DO

DI

O

P

DI

DI

5 V

5 V

5 V

5 V

Pulldown Serial audio data 4 input is one of the serial data input ports. SDIN4 supports four discrete (stereo) data formats and is capable of inputting data at 64 Fs.

Pulldown Serial audio data 3 input is one of the serial data input ports. SDIN3 supports four discrete (stereo) data formats and is capable of inputting data at 64 Fs.

Pulldown Serial audio data 2 input is one of the serial data input ports. SDIN2 supports four discrete (stereo) data formats and is capable of inputting data at 64 Fs.

Pulldown Serial audio data 1 input is one of the serial data input ports. SDIN1 supports four discrete (stereo) data formats and is capable of inputting data at 64 Fs.

Power supply volume control PWM output

Voltage reference for digital core supply 1.8 V. A pin-out of the internally regulated

1.8-V power used by digital core logic. A 0.47-µF low ESR capacitor should be connected between this terminal and DVSS. This terminal must not be used to power external devices

Digital ground

Digital ground

3.3-V digital power supply

Pull up Active low. A backend error sequence is generated by applying logic low to this terminal. The BKND_ERR results in all system parameters unaffected, while all

H-bridge drive signals going to a hard mute (M) state.

Digital ground

Output indicating validity of PWM outputs active high

PWM 1 output (differential −)

PWM 1 output (differential +)

PWM 2 output (differential −)

PWM 2 output (differential +)

PWM 3 output (differential −)

PWM 3 output (differential +)

PWM 4 output (differential −)

PWM 4 output (differential +)

Voltage reference for digital PWM core supply 1.8 V. A pin-out of the internally regulated 1.8-V power used by digital PWM core logic. A 0.1-µF low ESR capacitor should be connected between this terminal and DVSS_PWM. This terminal must not be used to power external devices.

PWM 7 (Line out L) output (differential −)

PWM 7 (Line out L) output (differential +)

PWM 8 (Line out R) output (differential −)

PWM 8 (Line out R) output (differential +)

Digital ground for PWM

3.3-V digital power supply for PWM

PWM 5 output (differential −)

PWM 5 output (differential +)

PWM 6 output (differential −)

PWM 6 output (differential +)

PWM left channel headphone (differential −)

PWM left channel headphone (differential +)

PWM right channel headphone (differential −)

PWM right channel headphone (differential +)

SLES115 — August 2004 TAS5518

7

Introduction

NO.

TERMINAL

NAME

63 MCLK DI 5 V Pulldown MCLK is a 3.3-V clock master clock input. The input frequency of this clock can range from 4 MHz to 50 MHz.

64 RESERVED Connect to digital ground

NOTES: 1. Type: A = analog; D = 3.3-V digital; P = power / ground / decoupling; I = input; O = output

2. All pullups are 200-µA weak pullups and all pulldowns are 200-µA weak pull downs. The pullups and pulldowns are included to assure proper input logic levels if the terminals are left unconnected (pullups => logic 1 input; pulldowns => logic 0 input). Devices that drive inputs with pull ups must be able to sink 200 µA, while maintaining a logic 0 drive level. Devices that drive inputs with pulldowns must be able to source 200 µA, while maintaining a logic ‘1’ drive level.

3. If desired, low ESR capacitance values can be implemented by paralleling two or more ceramic capacitors of equal value. Paralleling capacitors of equal value provide an extended high frequency supply decoupling. This approach avoids the potential of producing parallel resonance circuits that have been observed when paralleling capacitors of different values.

4. 13.5-MHz crystal (HCM49)

1.4

TAS5518 Functional Description

Figure 1−4 shows the TAS5518 functional structure. The next sections describe the TAS5518 functional

blocks:

• Power Supply

• Clock, PLL, and Serial Data Interface

Serial Control Interface

Device Control

Digital Audio Processor (DAP)

• Pulse Width Modulation (PWM) Processor

1.4.1 Power Supply

The power supply section contains supply regulators that provide analog and digital regulated power for various sections of the TAS5518. The analog supply supports the analog PLL, while digital supplies support the digital PLL, the digital audio processor (DAP), the pulse width modulator (PWM), and the output control

(reclocker). The regulators can also be turned off when terminals RESET and PDN are both low.

1.4.2 Clock, PLL, and Serial Data Interface

The TAS5518 is a clock slave only device and it requires the use of an external 13.5 MHz crystal. It accepts

MCLK, SCLK, and LRCLK as inputs only.

The TAS5518 uses the external crystal to provide a time base for:

• Continuous data and clock error detection and management

• Automatic data rate detection and configuration

• Automatic MCLK rate detection and configuration (automatic bank switching)

• Supporting I

2

C operation/ communication while MCLK is absent

The TAS5518 automatically handles clock errors, data rate changes, and master clock frequency changes without requiring intervention from an external system controller. This feature significantly reduces system complexity and design.

8

TAS5518 SLES115 — August 2004

Introduction

1.4.2.1

Serial Audio Interface

The TAS5518 operates as a slave only / receive only serial data interface in all modes. The TAS5518 has four

PCM serial data interfaces to permit eight channels of digital data to be received though the SDIN1, SDIN2,

SDIN3, and SDIN4 inputs. The serial audio data is in MSB first, two’s complement format.

The serial data input interface of the TAS5518 can be configured in right justified, I

2

The serial data interface format is specified using the I

2

and word lengths are shown in Table 1−1.

S, or left-justified modes.

C data interface control register. The supported formats

Table 1−1. Serial Data Formats

RECEIVE SERIAL DATA

INTERFACE FORMAT

WORD LENGTHS

Right justified

Right justified

Right justified

I2S

I2S

I2S

Left Justified

Left Justified

Left Justified

16

20

24

16

20

24

16

20

24

Serial data is input on SDIN1, SDIN2, SDIN3, and SDIN4. The TAS5518 accepts 32-, 38-, 44.1-, 48-, 88.2-,

96-, 176.4-, and 192-kHz serial data in 16-, 20-, or 24-bit data in left, right, and I

2

S serial data formats using a 64-Fs SCLK clock and a 128, 192, 256, 384, 512, or 768 x Fs MCLK rates (up to a maximum of 50 MHz).

The parameters of this clock and serial data interface are I

2

C configurable.

1.4.3 I

2

C Serial Control Interface

The TAS5518 has an I

2

C serial control slave interface (address 0x36) to receive commands from a system controller. The serial control interface supports both normal-speed (100 kHz) and high-speed (400 kHz) operations without wait states. Since the TAS5518 has a crystal time base, this interface operates even when

MCLK is absent.

The serial control interface supports both single byte and multi-byte read / write operations for status registers and the general control registers associated with the PWM. However, for the DAP data processing registers, the serial control interface also supports multiple byte (4 byte) write operations.

The I

2

C supports a special mode which permits I

2

C write operations to be broken up into multiple data write operations that are multiples of 4 data bytes. These are 6 byte, 10 byte, 14 byte, 18 byte ... etc write operations that are composed of a device address, read/write bit, and subaddress and any multiple of 4 bytes of data.

This permits the system to incrementally write large register values without blocking other I

2

C transactions.

In order to use this feature, the first chunk of data is written to the target I

2

C address and each subsequent chunk of data is written to a special append register (0xFE) until all the data is written and a stop bit is sent.

An incremental read operation is not supported.

1.4.4 Device Control

The TAS5518 control section provides the control and sequencing for the TAS5518. The device control provides both high and low level control for the serial control interface, clock and serial data interfaces, digital audio processor, and pulse width modulator sections.

1.4.5 Digital Audio Processor (DAP)

The DAP arithmetic unit is used to implement all audio processing functions – soft volume, loudness compensation, bass and treble processing, dynamic range control, channel filtering, input and output mixing.

Figure 1−6 shows the TAS5518 DAP architecture.

SLES115 — August 2004 TAS5518

9

Introduction

The DAP accepts 24-bit data signal from the serial data interface and outputs 32-bit data to the PWM section.

The DAP supports two configurations, one for 32-kHz – 96-kHz data and one for 176.4-kHz to 192-kHz data.

1.4.5.1

TAS5518 Audio Processing Configurations

The 32 − 96 kHz configuration supports eight channels of data processing that can be configured as eight channels or six channels with two channels for separate stereo line outputs.

The 176.4 − 192 kHz configuration supports three channels of signal processing with five channels passed though (or derived from the three processed channels).

To efficiently support the processing requirements of both multi-channel 32 – 96-kHz data and the two channel

176.4 and 192-kHz data, the TAS5518 supports separate audio processing features for 32 –96-kHz data rates and for 176.4 and 192 kHz. See Table 2 for a summary of TAS5518 processing feature sets.

1.4.5.2

TAS5518 Audio Signal Processing Functions

The DAP provides 10 primary signal processing functions.

1. The data processing input has a full 8x8 input crossbar mixer. This enables each input to be any ratio of the eight input channels.

2. Two I

2

C programmable threshold detectors in each channel support auto mute.

3. Seven biquads per channel

4. Four soft bass and treble tone controls with ±18 dB range, programmable corner frequencies, and 2nd order slopes. In 8-channel mode, bass and treble controls are normally configured as follows:

− Bass and Treble 1: Channel 1 (Left), Channel 2 (Right), and Channel 7 (Center)

− Bass and Treble 2: Channel 3 (Left Surround) and Channel 4 (Right Surround)

− Bass and Treble 3: Channel 5 (Left Back Surround) and Channel 6 (Right Back Surround)

− Bass and Treble 4: Channel 8 (Subwoofer)

5. Individual channel and master volume controls. Each control provides an adjustment range of +18 dB to

–127 dB. This permits a total volume device control range of +36 dB to –127 dB plus mute. The master volume control can be configured to control six or eight channels. The DAP soft volume and mute update interval is I

2

C programmable. The update is performed at a fixed rate regardless of the sample rate.

6. Programmable loudness compensation that is controlled via the combination of the master and individual volume settings.

7. Two dual-threshold dual-rate dynamic range compressors (DRCs). The volume gain values are provided used as input parameters using the maximum RMS (master volume x individual channel volume).

8. 8x2 output mixer (channels 1−6). Each output can be any ratio of any two signal processed channels.

9. 8x3 output mixer (channels 7 and 8). Each output can be any ratio of any three signal processed channels.

10. The DAP maintains three sets of coefficient banks that are used to maintain separate sets of sample rate dependent parameters for the biquad, tone controls, loudness, and DRC in RAM. These can be set to be automatically selected for one or more data sample rates or can be manually selected under I

2

C program control. This feature enables coefficients for different sample rates to be stored in the TAS5518 and then select when needed.

10

TAS5518 SLES115 — August 2004

Introduction

FEATURE

Table 1−2. TAS5518 Audio Processing Feature Sets

32 − 96 kHz

8 CHANNEL FEATURE SET

32 − 96 kHz

6 + 2 LINE OUT FEATURE SET

176.4- AND 192-kHz

FEATURE SET

Signal processing channels

Pass through channels

Master volume

Individual channel volume controls

8

1 for eight channels

N/A

8

6 + 2

1 for six channels

3

5

1 for three channels

3

Bass and treble tone controls

Four Bass and Treble tone controls with ±18 dB range, programmable corner frequencies, and 2nd order slopes

L, R and C (Ch 1, 2, and 7)

LS, RS (Ch 3 and 4)

LBS, RBS (Ch 5 and 6)

Sub (Ch 8)

Four Bass and Treble tone controls with ±18 dB range, programmable corner frequencies, and 2nd order slopes

L, R and C (Ch 1, 2, and 7)

LS, RS (Ch 3 and 4)

Sub, (Ch 8)

Line L and R (Ch 5 and 6)

DRC1 for seven satellites and DRC2 for sub

56

DRC1 for five satellites and DRC2 for sub (Ch 5 and 6 Uncompressed)

Two Bass and Treble tone controls with ±18 dB range, programmable corner frequencies, and 2nd order slopes

L and R (Ch 1 and 2)

Sub (Ch 8)

Biquads

Dynamic range compressors

Input output mapping/mixing

Each of the eight signal-processing channels input can be any ratio of the eight input channels.

Each of the eight outputs can be any ratio of any two processed channels.

21

DRC1 for two satellites and DRC2 for sub

Each of the three signal-processing channels or the five pass-though channels inputs can be any ratio of the eight input channels.

Each of the eight outputs can be any ratio of any of the three processed or five bypass channels.

DC blocking filters

(Implemented in PWM

Section)

Digital de-emphasis

(Implemented in PWM

Section)

Loudness

Number of Coefficient sets Stored

Eight channels for 32 kHz, 44.1 kHz, and 48 kHz

Eight channels

Six channels for 32 kHz, 44.1 kHz, and 48 kHz

Three additional coefficient sets can be stored in memory

1.5

TAS5518 DAP Architecture

1.5.1 TAS5518 DAP Architecture Diagrams

Eight channels

Six channels

N/A

Three channels

Figure 1−4 shows the TAS5518 DAP architecture for Fs = 96 kHz. Note the TAS5518 bass management

architecture shown in channels 1, 2, 7, and 8. Note that the I configure the TAS5518.

2

C registers are shown to help the designer

Figure 1−5 shows the TAS5518 architecture for Fs = 176.4 kHz or Fs = 192 kHz. Note that only channels 1,

2, and 8 contain all the features. Channels 3−7 are pass-through except for master volume control.

Figure 1−6 shows TAS5518 detailed channel processing. The output mixer is 8X2 for channels 1−6 and *X3

for channels 7 and 8.

SLES115 — August 2004 TAS5518

11

Introduction

Default input is BOLD

SDIN1−L(L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

A

B

E

F

G

H

A

B

C

D

G

H

E

F

C

D

IP Mixer 1

(I2C 0x41)

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 2

(I2C 0x42)

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L(LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 3

(I2C 0x43)

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L(LS)

SDIN2−R(RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 4

(I2C 0x44)

7 DAP1

BQ

(0x51−

0x57)

Bass &

Treble 1

(0xDA−

0xDD)

7 DAP2

BQ

(0x58−

0x5E)

Master Vol

(0xD9)

Max Vol

DAP1

Volume

(0xD1)

Master Vol

(0xD9)

Loud− ness

(0x91−

0x95)

Max Vol

Bass &

Treble 1

(0xDA−

0xDD)

DAP2

Volume

(0xD2)

Master Vol

(0xD9)

Loud− ness

(0x91−

0x95)

Max Vol

7 DAP3

BQ

(0x5F−

0x65)

Bass &

Treble 2

(0xDA−

0xDD)

DAP3

Volume

(0xD3)

Loud− ness

(0x91−

0x95)

Master Vol

(0xD9)

Max Vol

7 DAP4

BQ

(0x66−

0x6C)

Bass &

Treble 2

(0xDA−

0xDD)

DAP4

Volume

(0xD4)

Loud− ness

(0x91−

0x95)

Master Vol

(0xD9)

Max Vol

7 DAP5

BQ

(0x6D−

0x73)

Bass &

Treble 3

(0xDA−

0xDD)

7 DAP6

BQ

(0x74−

0x7A)

Bass &

Treble 3

(0xDA−

0xDD)

DAP5

Volume

(0xD5)

Loud− ness

(0x91−

0x95)

Master Vol

(0xD9)

Max Vol

DAP6

Volume

(0xD6)

Loud− ness

(0x91−

0x95)

DRC1

(0x96−

0x9C)

OP Mixer 1

(I2C 0xAA)

8X2 Output

Mixer

L to

PWM1

DRC1

(0x96−

0x9C)

OP Mixer 2

(I2C 0xAB)

8X2 Output

Mixer

R to

PWM2

DRC1

(0x96−

0x9C)

OP Mixer 3

(I2C 0xAC)

8X2 Output

Mixer

LS to

PWM3

DRC1

(0x96−

0x9C)

OP Mixer 4

(I2C 0xAD)

8X2 Output

Mixer

RS to

PWM4

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L(LS)

SDIN2−R (RS)

SDIN3−L(LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L(LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R(RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 5

(I2C 0x45)

A

B

E

F

G

H

A

B

C

D

G

H

E

F

C

D

IP Mixer 6

(I2C 0x46)

Coeff = 0 (lin)

(I2C 0x4E)

DRC1

(0x96−

0x9C)

OP Mixer 5

(I2C 0xAE)

8X2 Output

Mixer

LBS to

PWM5

DRC1

(0x96−

0x9C)

OP Mixer 6

(I2C 0xAF)

8X2 Output

Mixer

RBS to

PWM6

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L(LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R(RBS)

SDIN4−L(C)

SDIN4−R (LFE)

A

B

E

F

G

H

A

B

C

D

G

H

E

F

C

D

IP Mixer 7

(I2C 0x47)

2 DAP7

BQ

(0x7B−

0x7C)

Coeff = 0 (lin)

(I2C 0x4B)

Coeff = 1 (lin)

(I2C 0x4D)

5 DAP7

BQ

(0x7D−

0x81)

Bass &

Treble 1

(0xDA−

0xDD)

Master Vol

(0xD9)

Max Vol

DAP7

Volume

(0xD7)

Loud− ness

(0x91−

0x95)

DRC1

(0x96−

0x9C)

OP Mixer 7

(I2C 0xB0)

8X3 Output

Mixer

C to

PWM7

Coeff = 0 (lin)

(I2C 0x4C)

SDIN1−L(L)

SDIN1−R(R)

SDIN2−L(LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R(RBS)

SDIN4−L (C)

SDIN4−R(LFE)

Coeff = 0 (lin)

(I2C 0x49)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 8

(I2C 0x48)

2 DAP8

BQ

(0x82−

0x83)

(I2C 0x50)

Coeff = 1 (lin)

Coeff = 0 (lin)

(I2C 0x4A)

5 DAP8

BQ

(0x84−

0x88)

Bass &

Treble 4

(0xDA−

0xDD)

Master Vol

(0xD9)

Max Vol

DAP8

Volume

(0xD8)

Loud− ness

(0x91−

0x95)

DRC2

(0x9D−

0xA1)

OP Mixer 8

(I2C 0xB1)

8X3 Output

Mixer

Sub to

PWM8

Coeff = 0 (lin)

(I2C 0x4F)

Figure 1−4. TAS5518 DAP Architecture With I

2

C Registers (Fs 96 kHz)

12

TAS5518 SLES115 — August 2004

Introduction

Default input is BOLD

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

A

B

E

F

G

H

C

D

A

B

G

H

E

F

C

D

IP Mixer 1

(I2C 0x41)

8 X 8

Crossbar

Input Mixer

G

H

A

B

E

F

G

H

C

D

A

B

C

D

E

F

IP Mixer 2

(I2C 0x42)

8 X 8

Crossbar

Input Mixer

7 DAP1

BQ

(0x51−

0x57)

7 DAP2

BQ

(0x58−

0x5E)

Bass &

Treble 1

(0xDA−

0xDD)

Bass &

Treble 1

(0xDA−

0xDD)

Master Vol

(0xD9)

DAP1

Volume

(0xD1)

Master Vol

(0xD9)

DAP2

Volume

(0xD2)

Max Vol

Loud− ness

(0x91−

0x95)

Max Vol

Loud− ness

(0x91−

0x95)

DRC1

(0x96−

0x9C)

DRC1

(0x96−

0x9C)

OP Mixer 1

(I2C 0xAA)

8X2 Output

Mixer

OP Mixer 2

(I2C 0xAB)

8X2 Output

Mixer

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 3

(I2C 0x43)

8 X 8

Crossbar

Input Mixer

Master Vol

(0xD9)

OP Mixer 3

(I2C 0xAC)

8X2 Output

Mixer

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 4

(I2C 0x44)

8 X 8

Crossbar

Input Mixer

Master Vol

(0xD9)

OP Mixer 4

(I2C 0xAD)

8X2 Output

Mixer

Master Vol

(0xD9)

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 5

(I2C 0x45)

8 X 8

Crossbar

Input Mixer

OP Mixer 5

(I2C 0xAE)

8X2 Output

Mixer

Master Vol

(0xD9)

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS

SDIN4−L (C)

SDIN4−R (LFE)

)

G

H

A

B

E

F

G

H

A

B

C

D

E

F

C

D

IP Mixer 6

(I2C 0x46)

8 X 8

Crossbar

Input Mixer

OP Mixer 6

(I2C 0xAF)

8X2 Output

Mixer

Master Vol

(0xD9)

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

SDIN1−L (L)

SDIN1−R (R)

SDIN2−L (LS)

SDIN2−R (RS)

SDIN3−L (LBS)

SDIN3−R (RBS)

SDIN4−L (C)

SDIN4−R (LFE)

A

B

E

F

G

H

A

B

C

D

G

H

E

F

C

D

IP Mixer 7

(I2C 0x47)

8 X 8

Crossbar

Input Mixer

G

H

A

B

E

F

G

H

A

B

C

D

C

D

E

F

IP Mixer 8

(I2C 0x48)

8 X 8

Crossbar

Input Mixer

2 DAP8

BQ

(0x82−

0x83)

5 DAP8

BQ

(0x84−

0x88)

Bass &

Treble 4

(0xDA−

0xDD)

Master Vol

(0xD9)

DAP8

Volume

(0xD8)

Max Vol

Loud− ness

(0x91−

0x95)

DRC2

(0x9D−

0xA1)

OP Mixer 7

(I2C 0xB0)

8X3 Output

Mixer

OP Mixer 8

(I2C 0xB1)

8X3 Output

Mixer

Figure 1−5. TAS5518 Architecture With I

2

C Registers (Fs = 176.4 kHz or Fs = 192 kHz)

L to

PWM1

R to

PWM2

LS to

PWM3

RS to

PWM4

LBS to

PWM5

RBS to

PWM6

C to

PWM7

Sub to

PWM8

SLES115 — August 2004 TAS5518

13

Introduction

Left

SDIN1

Right

A

B

A_to_ipmix

Left

SDIN2

Right

C

D

D_to_ipmix

E_to_ipmix

Left

SDIN3

E

F

Right

F_to_ipmix

G_to_ipmix

Left

SDIN4

G

H

Right

H_to_ipmix

Input Mixer

7 Biquads in Series

Master

Volume

Channel

Volume

Bass and Treble

Bypass

Bass and

Treble

Bass and Treble

In-Line

Pre-

Volume

DRC

Max

Volume

Loudness

Post-

Volume

DRC

Bypass

Output

Gain

Output Mixer Sums

Any Two Channels

DRC

In-Line

1 Other

Channel Output

From 7 Available

32−Bit

Trunc

PWM

Proc

Volume

PWM

Output

Figure 1−6. TAS5518 Detailed Channel Processing

1.5.2 I

2

C Coefficient Number Formats

The architecture of the TAS5518 is contained in ROM resources within the TAS5518 and cannot be altered.

However, mixer gain, level offset, and filter tap coefficients, which can be entered via the I

2

C bus interface, provide a user with the flexibility to set the TAS5518 to a configuration that achieves the system level goals.

The firmware is executed in a 48-bit signed fixed-point arithmetic machine. The most significant bit of the 48-bit data path is a sign bit, and the 47 lower bits are data bits. Mixer gain operations are implemented by multiplying a 48-bit signed data value by a 28-bit signed gain coefficient. The 76-bit signed output product is then truncated to a signed 48-bit number. Level offset operations are implemented by adding a 48-bit signed offset coefficient to a 48-bit signed data value. In most cases, if the addition results in overflowing the 48-bit signed number format, saturation logic is used. This means that if the summation results in a positive number that is greater than 0x7FFF_FFFF_FFFF (the spaces are used to ease the reading of the hexadecimal number), the number is set to 0x7FFF_FFFF_FFFF. If the summation results in a negative number that is less than

0x8000_0000_0000 0000, the number is set to 0x8000_0000_0000 0000.

14

TAS5518 SLES115 — August 2004

Introduction

1.5.2.1

28-Bit 5.23 Number Format

All mixer gain coefficients are 28-bit coefficients using a 5.23 number format. Numbers formatted as 5.23

numbers means that there are 5 bits to the left of the decimal point and 23 bits to the right of the decimal point.

This is shown in the Figure 1−7.

2

−23

Bit

2

−4

Bit

2

−1

Bit

2

0

Bit

2

3

Bit

Sign Bit

S_xxxx.xxxx_xxxx_xxxx_xxxx_xxx

Figure 1−7. 5.23 Format

The decimal value of a 5.23 format number can be found by following the weighting shown in Figure 1−8. If

the most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must

be inverted, a 1 added to the result, and then the weighting shown in Figure 1−8 applied to obtain the

magnitude of the negative number.

2

3

Bit 2

2

Bit 2

0

Bit 2

−1

Bit 2

−4

Bit 2

−23

Bit

(1 or 0) x 2

3

+ (1 or 0) x 2

2

+ + (1 or 0) x 2

0

+ (1 or 0) x 2

−1

+ + (1 or 0) x 2

−4

+ + (1 or 0) x 2

−23

Figure 1−8. Conversion Weighting Factors—5.23 Format to Floating Point

Gain coefficients, entered via the I

2

C bus, must be entered as 32-bit binary numbers. The format of the 32-bit

number (4-byte or 8-digit hexadecimal number) is shown in Figure 1−9.

Sign

Bit

Fraction

Digit 6

Integer

Digit 1

Fraction

Digit 1

Fraction

Digit 2

Fraction

Digit 3

Fraction

Digit 4

Fraction

Digit 5

0 u u u u S x x x x. x x x x x x x x x x x x x x x x x x x x x x x

Coefficient

Digit 8

Coefficient

Digit 7

Coefficient

Digit 6

Coefficient

Digit 5

Coefficient

Digit 4

Coefficient

Digit 3

Coefficient

Digit 2

Coefficient

Digit 1 u = unused or don’t care bits

Digit = hexadecimal digit

Figure 1−9. Alignment of 5.23 Coefficient in 32-Bit I

2

C Word

As Figure 1−9 shows, the hex value of the integer part of the gain coefficient cannot be concatenated with the

hex value of the fractional part of the gain coefficient to form the 32-bit I

2

C coefficient. The reason is that the

28-bit coefficient contains 5 bits of integer, and thus the integer part of the coefficient occupies all of one hex digit and the most significant bit of the second hex digit. In the same way, the fractional part occupies the lower

3 bits of the second hex digit, and then occupies the other five hex digits (with the eighth digit being the zero-valued most significant hex digit).

SLES115 — August 2004 TAS5518

15

Introduction

1.5.2.2

48-Bit 25.23 Number Format

All level adjustment and threshold coefficients are 48-bit coefficients using a 25.23 number format. Numbers formatted as 25.23 numbers means that there are 25 bits to the left of the decimal point and 23 bits to the right

of the decimal point. This is shown in Figure 1−10.

2

−23

Bit

2

−10

Bit

2

−1

Bit

2

0

Bit

2

16

Bit

2

22

Bit

2

23

Bit

Sign Bit

S_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx

Figure 1−10. 25.23 Format

Figure 1−11 shows the derivation of the decimal value of a 48-bit 25.23 format number.

2

23

Bit 2

22

Bit 2

0

Bit 2

−1

Bit 2

−23

Bit

(1 or 0) x 2

23

+ (1 or 0) x 2

22

+ + (1 or 0) x 2

0

+ (1 or 0) x 2

−1

+ + (1 or 0) x 2

−23

Figure 1−11. Alignment of 5.23 Coefficient in 32-Bit I

2

C Word

Two 32-bit words must be sent over the I

The alignment of the 48-bit, 25.23 formatted coefficient in the 8-byte (two 32-bit words) I

Figure 1−12.

2

C bus to download a level or threshold coefficient into the TAS5518.

2

C word is shown in

16

TAS5518 SLES115 — August 2004

Introduction

u u u u u u u u u u u u

Sign

Bit

Integer

Digit 4

(Bits 2

3

− 2

1

) u u u u

Integer

Digit 1

S x x x

Integer

Digit 2 x x x x

Integer

Digit 3 x x x x x x x x

Word 1

(Most

Significant

Word)

Coefficient

Digit 16

Coefficient

Digit 15

Coefficient

Digit 14

Coefficient

Digit 13

Coefficient

Digit 12

Coefficient

Digit 11

Coefficient

Digit 10

Coefficient

Digit 9

Integer

Digit 4

(Bit 2

0

)

Fraction

Digit 6 x

Integer

Digit 5 x x x

Integer

Digit 6 x x x x

Fraction

Digit 1 x. x x x

Fraction

Digit 2 x x x x

Fraction

Digit 3 x x x x

Fraction

Digit 4 x x x x

Fraction

Digit 5 x x x x

0 x x x x

Word 2

(Least

Significant

Word)

Coefficient

Digit 8

Coefficient

Digit 7

Coefficient

Digit 6

Coefficient

Digit 5

Coefficient

Digit 4

Coefficient

Digit 3

Coefficient

Digit 2

Coefficient

Digit 1 u = unused or don’t care bits

Digit = hexadecimal digit

Figure 1−12. Alignment of 25.23 Coefficient in Two 32-Bit I

2

C Words

1.5.2.3

TAS5518 Audio Processing

The TAS5518 digital audio processing is designed such that noise produced by filter operations is maintained

below the smallest signal amplitude of interest, as shown in Figure 1−13. The TAS5518 achieves this by

increasing the precision of the signal representation substantially above the number of bits that are absolutely necessary to represent the input signal.

Ideal Input Possible Outputs Desired Output

Maximum Signal

Amplitude

Overflow

Values retained by overflow bits

Signal bits input

Filter

Operation

Reduced

SNR signal output

Signal bits output

Noise Floor with no additional precision

Figure 1−13. TAS5518 Digital Audio Processing

Noise Floor as a result of additional precision

SLES115 — August 2004 TAS5518

17

Introduction

Similarly, the TAS5518 carries additional precision in the form of overflow bits to permit the value of intermediate calculations to exceed the input precision without clipping. The TAS5518 advanced digital audio processor achieves both of these important performance capabilities by using a high performance digital audio processing architecture with a 48-bit data path, 28-bit filter coefficients, and a 76-bit accumulator.

1.6

Input Crossbar Mixer

The TAS5518 has a full 8x8 input crossbar mixer. This mixer permits each signal processing channel input to be any ratio of any of the eight input channels. The control parameters for the input crossbar mixer are programmable via the I

2

C interface. See the Input Mixer Register (0x41−0x48, channels 1−8) section.

Gain Coefficient

28

Input 1

48

Gain Coefficient

28

48

Input 2

SUM

48 48

Gain Coefficient

28

48

Input 8

48

Figure 1−14. Input Crossbar Mixer

18

TAS5518 SLES115 — August 2004

Introduction

1.7

Biquad Filters

For 32-kHz to 96-kHz data, the TAS5518 provides 56 biquads across the eight channels (seven per channel)

For 176.4-kHz and 192-kHz data, the TAS5518 has 21 biquads across the three channels (seven per channel). All of the biquad filters are second order direct form I structure.

The direct form I structure provides a separate delay element and mixer (gain coefficient) for each node in the biquad filter. Each mixer output is a signed 76-bit product of a signed 48-bit data sample (25.23 format number) and a signed 28-bit coefficient (5.23 format number). The 76-bit ALU in the TAS5518 allows the 76-bit resolution to be retained when summing the mixer outputs (filter products).

The five 28-bit coefficients for the each of the 56 biquads are programmable via the I

2

C interface. See

Table 1−3.

Magnitude

Truncation

Z −1

Z −1

Figure 1−15. Biquad Filter Structure

All five coefficients for one biquad filter structure are written to one I

2

C register containing 20 bytes (or five

32-bit words). The structure is the same for all biquads in the TAS5518. Registers 0x51 – 0x88 show all the biquads in the TAS5518. Note that u(31:28) bits are unused and default to 0x0.

Table 1−3. Contents of One 20-Byte Biquad Filter Register (Default = All-Pass)

DESCRIPTION REGISTER FIELD CONTENTS

b o

Coefficient b

1

Coefficient b

2

Coefficient a

1

Coefficient a

2

Coefficient u(31:28), b0(27:24), b0(23:16), b0(15:8), b0(7:0) u(31:28), b1(27:24), b1(23:16), b1(15:8), b1(7:0) u(31:28), b2(27:24), b2(23:16), b2(15:8), b2(7:0) u(31:28), a1(27:24), a1(23:16), a1(15:8), a1(7:0) u(31:28), a2(27:24), a2(23:16), a2(15:8), a2(7:0)

1.8

Bass and Treble Controls

INITIALIZATION GAIN COEFFICIENT VALUE

DECIMAL HEX

1.0

0.0

0.0

0.0

0.0

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

From 32-kHz to 96-kHz data, the TAS5518 has four Bass and Treble tone controls. Each control has a ±18-dB control range with selectable corner frequencies and 2nd order slopes. These controls operate four channel groups:

L, R & C (Channels 1, 2, and 7)

• LS, RS (Channels 3 and 4)

• LBS, RBS (or alternately called L and R Lineout.) (Channels 5 and 6)

• Sub (Channel 8)

SLES115 — August 2004 TAS5518

19

Introduction

For 176.4 kHz and 192 kHz data, the TAS5518 has two Bass and Treble tone controls. Each control has a

±18-dB I

2

C control range with selectable corner frequencies and 2nd order slopes. These controls operate two channel groups:

• L & R

Sub

The bass and treble filters utilize a soft update rate that does not produce artifacts during adjustment.

Table 1−4. Bass and Treble Filter Selections

FS

(kHz)

3-dB CORNER FREQUENCIES

32

38

44.1

48

88.2

96

176.4

192

FILTER

SET 1

BASS

63

115

125

42

49

57

230

250

FILTER

SET 1

TREBLE

917

1088

1263

1375

2527

2750

5053

5500

FILTER

SET 2

BASS

83

99

115

125

230

250

459

500

FILTER

SET 2

TREBLE

1833

2177

2527

2750

5053

5500

10106

11000

FILTER

SET 3

BASS

125

148

172

188

345

375

689

750

FILTER

SET 3

TREBLE

3000

3562

4134

4500

8269

9000

16538

18000

The I

2

C registers that control Bass and Treble are:

• Bass and Treble By-Pass Register (0x89 – 0x90, channels 1−8)

• Bass and Treble Slew Rates (0xD0)

• Bass Filter Sets 1−5 (0xDA)

• Bass Filter Index (0xDB)

• Treble Filter Sets 1−5 (0xDC)

• Treble Filter Index (0xDD)

FILTER

SET 4

BASS

146

173

201

219

402

438

804

875

FILTER

SET 4

TREBLE

3667

4354

5053

5500

10106

11000

20213

22000

FILTER

SET 5

BASS

167

198

230

250

459

500

919

1000

FILTER

SET 5

TREBLE

4333

5146

5972

6500

11944

13000

23888

26000

1.9

Volume, Auto Mute, and Mute

The TAS5518 provides individual channel and master volume controls. Each control provides an adjustment range of +18.0618 dB to –100 dB in 0.25 dB increments. This permits a total volume device control range of

+36 dB to –100 dB plus mute. The master volume control can be configured to control six or eight channels.

The TAS5518 has a master soft mute control that can be enabled by a terminal or I

2 also has individual channel soft mute controls that can are enabled via I

2

C.

C command. The device

The soft volume and mute update rates are programmable. The soft adjustments are performed using a soft gain linear update with an I

2

C programmable linear step size at a fixed temporal rate. The linear soft gain step size can be varied from 0.5 to 0.003906.

Table 1−5. Linear Gain Step Size

STEP SIZE (GAIN)

Time to go from 36.124 db to −127 dB in ms

Time to go from 18.062 db to −127 dB in ms

Time to go from 0 db to −127 dB in ms

0.5

0.25

10.67

21.33

1.33

0.17

2.67

0.33

0.125

42.67

5.33

0.67

0.0625

85.34

10.67

1.33

0.03125

0.015625

0.007813

0.003906

170.67

341.35

682.70

1365.4

21.33

2.67

42.67

5.33

85.33

10.67

170.67

21.33

20

TAS5518 SLES115 — August 2004

Introduction

1.9.1 Auto Mute and Mute

The TAS5518 has individual channel automute controls that are enabled via the I

2 separate detectors used to trigger the automute:

C interface. There are two

• Input Auto Mute: All channels are muted when all 8 inputs to the TAS5518 are less in magnitude than the input threshold value for a programmable amount of time.

• Output Auto Mute: A single channel is muted when the output of the DAP section is less in magnitude than the input threshold value for a programmable amount of time.

The detection period and thresholds for these two detectors are the same.

This time interval is selectable via I value is mask programmable.

2

C to be from 1 ms. to 110 ms. The increments of time are 1, 2, 3, 4, 5, 10,

20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 ms. This interval is independent of the sample rate. The default

The input threshold value is an unsigned magnitude that is expressed as a bit position. This value is adjustable via I

2

C. The range of the input threshold adjustment is from below the LSB (bit position 0) to below bit position

12 in a 24 bit input data word (bit positions 8 to 20 in the DSPE). This provides an input threshold that can be adjusted for 12 to 24 bits of data. The default value is mask programmable.

DVD Data Range

CD Data Range

24-Bit Input

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32-Bit in DSPE

Representation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Threshold Range

Figure 1−16. Auto Mute Threshold

The auto mute state is exited when the TAS5518 receives one sample that is greater that the output threshold.

The output threshold can be one of two values:

• Equal to the input threshold

• 6 dB (one bit position) greater than the input threshold

The value for the output threshold is selectable via I

2

C. The default value is mask programmable.

The system latency enables the data value that is above the threshold to be preserved and output.

A mute command initiated by automute, master mute, individual I

2

C mute, the AM interference mute sequence, or the bank switch mute sequence overrides an unmute command or a volume command. While a mute command is activated, the commanded channels transition to the mute state. When a channel is unmuted, it goes to the last commanded volume setting that has been received for that channel.

1.10 Loudness Compensation

The loudness compensation function compensates for the Fletcher-Munson loudness curves. The TAS5518 loudness implementation tracks the volume control setting to provide spectral compensation for weak low or high frequency response at low volume levels. For the volume tracking function both linear and log control laws can be implemented. Any biquad filter response can be used to provide the desired loudness curve. The control parameters for the loudness control are programmable via the I

2

C interface.

SLES115 — August 2004 TAS5518

21

Introduction

The TAS5518 has a single set of loudness controls for the eight channels. In 6-channel mode loudness is available to the six speaker outputs and also the line outputs. The loudness control input uses the Maximum individual master volume (V) to control the loudness that is applied to all channels. In 192-kHz and 176.4-kHz modes, the loudness function is active only for channels 1, 2, and 8.

V

Audio In

+ x

Audio Out

Loudness

Biquad

H(Z)

x x

Loudness Function = f (V)

V

Figure 1−17. Loudness Compensation Functional Block Diagram

Loudness Function = f (V) = G x [2

[(Log V) x LG + LO]

] + O or alternatively,

Loudness Function = f (V) = G x [V

LG

x 2

LO

] + O

For example, for the default values LG = −0.5, LO = 0.0, G = 1.0, and O = 0.0 then:

Loudness Function = 1 / SQRT (V) which is the recommended transfer function for loudness. So,

Audio Out = (Audio In) x V + H (Z) x SQRT (V). Other transfer functions are possible.

Table 1−6. Default Loudness Compensation Parameters

I

2

C

DEFAULT

TERM FORMAT

V

Log V

H (Z)

LG

LO

G

O

Max volume

Log

2

(max volume)

Loudness biquad

Gain (log space)

Offset (log space)

Gain

Offset

Gains audio

Loudness function

Controls shape of

Loudness curves

Loudness function

Loudness function

Switch to enable

Loudness (ON = 1,

OFF = 0)

Provides offset

5.23

5.23

5.23

5.23

25.23

5.23

25.23

RESS

NA

NA

0x95

0x91

0x92

0x93

0x94

HEX

NA

00000000 b0 = 0000D513 b1 = 00000000 b2 = 0FFF2AED a1 = 00FE5045 a2 = 0F81AA27

FFC00000

00000000

00000000

00000000

FLOAT

NA

0.0

b0 = 0.006503

b1 = 0 b2 = −0.006503

a1 = 1.986825

a2 = −0.986995

−0.5

0

0

0

22

TAS5518 SLES115 — August 2004

Introduction

1.10.1

Loudness Example

Problem: Due to the Fletcher-Munson phenomena, we want to compensate for low frequency attenuation near

60 Hz. The TAS5518 provides a loudness transfer function with EQ gain = 6, EQ center frequency = 60 Hz, and EQ bandwidth = 60 Hz.

TERM

H (Z)

LG

LO

G

O

Solution: Using Texas Instruments ALE TAS5518 DSP tool, Matlab, or other signal-processing tool, develop a loudness function with following parameters:

Table 1−7. Loudness Function Parameters

Loudness Biquad

Loudness Gain

Loudness Offset

Gain

Offset

Controls shape of loudness curves

Loudness function

Loudness function

Switch to Enable

Loudness (ON = 1,

OFF = 0)

Offset

FORMAT

5.23

5.23

25.23

5.23

25.23

I

2

C

SUBADDRESS

0x95

0x91

0x92

0x93

0x94

EXAMPLE VALUES

HEX FLOAT

b0 = 00008ACE b1 = 00000000 b2 = FFFF7532 a1 = FF011951 a2 = 007EE914

FFC00000

00000000

00800000 b0 = 0.004236

b1 = 0 b2 = −0.004236

a1 = −1.991415

a2 = 0.991488

−0.5

0

1

00000000 0

See Figure 1−18 for the resulting loudness function at different gains.

SLES115 — August 2004

Figure 1−18. Loudness Example Plots

TAS5518

23

Introduction

1.11 Dynamic Range Control (DRC)

The DRC provides both compression and expansion capabilities over three separate and definable regions of audio signal levels. Programmable threshold levels set the boundaries of the three regions. Within each of the three regions a distinct compression or expansion transfer function can be established and the slope of each transfer function is determined by programmable parameters. The offset (boost or cut) at the two boundaries defining the three regions can also be set by programmable offset coefficients. The DRC implements the composite transfer function by computing a 5.23 format gain coefficient from each sample output from the rms estimator. This gain coefficient is then applied to a mixer element, whose other input is the audio data stream. The mixer output is the DRC-adjusted audio data.

There are two distinct DRC blocks in the TAS5518. DRC1 services channels 1−7 in the 8-channel mode and channels 1−4, and 7 in the 6-channel mode. This DRC computes rms estimates of the audio data streams on all channels that it controls. The estimates are then compared on a sample-by-sample basis and the larger of the estimates is used to compute the compression/expansion gain coefficient. The gain coefficient is then applied to appropriate channels audio stream. DRC2 services only channel 8. This DRC also computes an rms estimate of the signal level on channel 8 and this estimate is used to compute the compression/expansion gain coefficient applied to the channel 8 audio stream.

All of the TAS5518 default values for DRC can be used except for the DRC1 decay and DRC2 decay. Table 1−8

shows the recommended time constants and their HEX values. If the user wants to implement other DRC functions, Texas Instruments recommends using the automatic loudspeaker equalization (ALE) tool available from Texas Instruments. The ALE tool allows the user to select the DRC transfer function graphically. It will then output the TAS5518 hex coefficients for download to the TAS5518.

I

2

C

SUBADDRESS

0x98

0x9C

0x9D

0xA1

Table 1−8. DRC Recommended Changes From TAS5518 Defaults

REGISTER FIELDS

DRC1 energy

DRC1 (1 – energy)

DRC1 attack

DRC1 (1 – attack)

DRC1 decay

DRC1 (1 – decay)

DRC2 energy

DRC2 (1 – energy)

DRC2 attack

DRC2 (1 – attack)

DRC2 decay

DRC2 (1 – decay)

RECOMMENDED TIME

CONSTANT (MS)

5

5

2

5

5

2

RECOMMENDED

HEX VALUE

0000883F

007F77C0

0000883F

007F77C0

0001538F

007EAC70

0000883F

007F77C0

0000883F

007F77C0

0001538F

007EAC70

DEFAULT HEX

0000883F

007F77C0

0000883F

007F77C0

000000AE

007FFF51

0000883F

007F77C0

0000883F

007F77C0

000000AE

007FFF51

Recommended DRC set-up flow if the defaults are used:

• After power up, load the recommended hex value for DRC1 and DRC2 decay and (1 – decay). See

Table 1−8.

• Enable either the pre-volume or post-volume DRC

Recommended DRC set-up flow if the DRC design uses values different from the defaults:

• After power up, load all DRC coefficients per the DRC design.

Enable either the pre-volume or post-volume DRC

Figure 1−19 shows the positioning of the DRC block in the TAS5518 processing flow. As seen, the DRC input

can come from either before or after soft volume control and loudness processing.

24

TAS5518 SLES115 — August 2004

Introduction

Master

Volume

Channel

Volume

Bass & Treble

By-Pass

Max

Volume

DRC

By-Pass

From Input Mixer

7 Biquads in Series

Bass and

Treble

Bass & Treble

In-Line

Pre-

Volume

Post-

Volume

DRC

In-Line

DRC

Figure 1−19. DRC Positioning in TAS5518 Processing Flow

Figure 1−20 illustrates a typical DRC transfer function.

Region

0

Region

1

Region

2 k2 k1

Loudness

To Output

Mixer

1:1 Transfer Function

Implemented Transfer Fucntion k0

O2

O1

T1 T2

DRC Input Level

Figure 1−20. Dynamic Range Compression (DRC) Transfer Function Structure

The three regions shown in Figure 1−20 are defined by three sets of programmable coefficients:

Thresholds T1 and T2—define region boundaries.

• Offsets O1 and O2—define the DRC gain coefficient settings at thresholds T1 and T2 respectively.

• Slopes k0, k1, and k2—define whether compression or expansion is to be performed within a given region.

The magnitudes of the slopes define the degree of compression or expansion to be performed.

The three sets of parameters are all defined in logarithmic space and adhere to the following rules:

The maximum input sample into the DRC is referenced at 0 dB. All values below this maximum value then have negative values in logarithmic (dB) space.

• The samples input into the DRC are 32-bit words and consist of the upper 32 bits of the 48-bit word format used by the digital audio processor (DAP). The 48-bit DAP word is derived from the 32-bit serial data received at the serial audio receive port by adding 8 bits of headroom above the 32-bit word and 8 bits of computational precision below the 32-bit word. If the audio processing steps between the SAP input and the DRC input result in no accumulative boost or cut, the DRC would operate on the 8 bits of headroom and the 24 MSBs of the audio sample. Under these conditions, a 0-dB (maximum value) audio sample

(0x7FFFFFFF) is seen at the DRC input as a –48-dB sample (8 bits x −6.02 dB/bit = −48 dB).

SLES115 — August 2004 TAS5518

25

Introduction

Thresholds T1 and T2 define, in dB, the boundaries of the three regions of the DRC, as referenced to the rms value of the data into the DRC. Zero valued threshold settings reference the maximum valued rms input into the DRC and negative valued thresholds reference all other rms input levels. Positive valued thresholds have no physical meaning and are not allowed. In addition, zero valued threshold settings are not allowed.

Although the DRC input is limited to 32-bit words, the DRC itself operates using the 48-bit word format of the

DAP. The 32-bit samples input into the DRC are placed in the upper 32 bits of this 48-bit word space. This means that the threshold settings must be programmed as 48-bit (25.23 format) numbers.

CAUTION: Zero valued and positive valued threshold settings are not allowed and cause unpredictable behavior if used.

• Offsets O1 and O2 define, in dB, the attenuation (cut) or gain (boost) applied by the DRC-derived gain coefficient at the threshold points T1 and T2 respectively. Positive offsets are defined as cuts, and thus boost or gain selections are negative numbers. Offsets must be programmed as 48-bit (25.23 format) numbers.

• Slopes k0, k1, and k2 define whether compression or expansion is to be performed within a given region, and the degree of compression or expansion to be applied. Slopes are programmed as 28-bit (5.23 format) numbers.

1.11.1 DRC Implementation

The three elements comprising the DRC: (1) an rms estimator, (2) a compression/expansion coefficient computation engine, and (3) an attack/decay controller.

• RMS estimator—This DRC element derives an estimate of the rms value of the audio data stream into the DRC. For the DRC block shared by CH1 and CH2, two estimates are computed—an estimate of the

CH1 audio data stream into the DRC, and an estimate of the CH2 audio data stream into the DRC. The outputs of the two estimators are then compared, sample-by-sample, and the larger valued sample is forwarded to the compression/expansion coefficient computation engine.

Two programmable parameters, ae and (1 – ae), set the effective time window over which the rms estimate is made. For the DRC block shared by CH1 and CH2, the programmable parameters apply to both rms estimators. The time window over which the rms estimation is computed can be determined by: twindow +

* 1

FS ȏn(1 * ae)

• Compression/expansion coefficient computation—This DRC element converts the output of the rms estimator to a logarithmic number, determines the region that the input resides, and then computes and outputs the appropriate coefficient to the attack/decay element. Seven programmable parameters—T1,

T2, O1, O2, k0, k1, and k2—define the three compression/expansion regions implemented by this element.

• Attack/decay control—This DRC element controls the transition time of changes in the coefficient computed in the compression/expansion coefficient computation element. Four programmable parameters define the operation of this element. Parameters ad and 1 − ad set the decay or release time constant to be used for volume boost (expansion). Parameters aa and 1 − aa set the attack time constant to be used for volume cuts. The transition time constants can be determined by: ta +

* 1

FS ȏn(1 * aa) td +

* 1

FS ȏn(1 * ad)

1.11.2

Compression/Expansion Coefficient Computation Engine Parameters

There are seven programmable parameters assigned to each DRC block: two threshold parameters - T1 and

T2, two offset parameters - O1 and O2, and three slope parameters - k0, k1, and k2. The threshold parameters establish the three regions of the DRC transfer curve, the offsets anchor the transfer curve by establishing known gain settings at the threshold levels, and the slope parameters define whether a given region is a compression or an expansion region.

26

TAS5518 SLES115 — August 2004

Introduction

The audio input stream into the DRC must pass through DRC-dedicated programmable input mixers. These mixers are provided to scale the 32-bit input into the DRC to account for the positioning of the audio data in the 48-bit DAP word and the net gain or attenuation in signal level between the SAP input and the DRC. The selection of threshold values must take the gain (attenuation) of these mixers into account. The DRC implementation examples that follow illustrate the effect these mixers have on establishing the threshold settings.

T2 establishes the boundary between the high-volume region and the mid-volume region. T1 establishes the boundary between the mid-volume region and the low-volume region. Both thresholds are set in logarithmic space, and which region is active for any given rms estimator output sample is determined by the logarithmic value of the sample.

Threshold T2 serves as the fulcrum or pivot point in the DRC transfer function. O2 defines the boost (> 0 dB) or cut (< 0 dB) implemented by the DRC-derived gain coefficient for an rms input level of T2. If O2 = 0 dB, the value of the derived gain coefficient is 1.0 (0x00, 80, 00, 00 in 5.23 format). k2 is the slope of the DRC transfer function for rms input levels above T2 and k1 is the slope of the DRC transfer function for rms input levels below

T2 (and above T1). The labeling of T2 as the fulcrum stems from the fact that there cannot be a discontinuity in the transfer function at T2. The user can, however, set the DRC parameters to realize a discontinuity in the transfer function at the boundary defined by T1. If no discontinuity is desired at T1, the value for the offset term

O1 must obey the following equation.

O1No Discontinuity + |T1 * T2| k1 ) O2 For ( |T1| w |T2| )

T1 and T2 are the threshold settings in dB, k1 is the slope for region 1, and O2 is the offset in dB at T2. If the user chooses to select a value of O1 that does not obey the above equation, a discontinuity at T1 is realized.

Going down in volume from T2, the slope k1 remains in effect until the input level T1 is reached. If, at this input level, the offset of the transfer function curve from the 1:1 transfer curve does not equal O1, there is a discontinuity at this input level as the transfer function is snapped to the offset called for by O1. If no discontinuity is wanted, O1 and/or k1 must be adjusted so that the value of the transfer curve at the input level

T1 is offset from the 1:1 transfer curve by the value O1. The examples that follow illustrate both continuous and discontinuous transfer curves at T1.

Going down in volume from T1, starting at the offset level O1, the slope k0 defines the compression/expansion activity in the lower region of the DRC transfer curve.

1.11.2.1 Threshold Parameter Computation

For thresholds,

T dB

= −6.0206T

INPUT

= −6.0206T

SUB_ADDRESS_ENTRY

If, for example, it is desired to set T1 = -64 dB, then the subaddressaddress entry required to set T1 to -64 dB is:

T1SUB_ADDRESS_ENTRY +

*64

*6.0206 +

10.63

T1 is entered as a 48-bit number in 25.23 format. Therefore:

T1 = 10.63 = 0_1010.1010_0001_0100_0111_1010_111

= 0x00000550A3D7 in 25.23 format

SLES115 — August 2004 TAS5518

27

Introduction

1.11.2.2 Offset Parameter Computation

The offsets set the boost or cut applied by the DRC-derived gain coefficient at the threshold point. An equivalent statement is that offsets represent the departure of the actual transfer function from a 1:1 transfer at the threshold point. Offsets are 25.23 formatted 48-bit logarithmic numbers. They are computed by the following equation.

OINPUT +

ODESIRED ) 24.0824 dB

6.0206

Gains or boosts are represented as negative numbers; cuts or attenuation are represented as positive numbers. For example, to achieve a boost of 21 dB at threshold T1, the I must be:

2

C coefficient value entered for O1

O1INPUT +

–21 dB ) 24.0824 dB

6.0206

+ 0.51197555

+ 0.1000_0011_0001_1101_0100

+ 0x00000041886A in 25.23 format

More examples of offset computations are included in the following examples.

1.11.2.3 Slope Parameter Computation

In developing the equations used to determine the subaddress of the input value required to realize a given compression or expansion within a given region of the DRC, the following convention is adopted.

DRC Transfer = Input Increase : Output Increase

If the DRC realizes an output increase of n dB for every dB increase in the rms value of the audio into the DRC, a 1:n expansion is being performed. If the DRC realizes a 1 dB increase in output level for every n dB increase in the rms value of the audio into the DRC, a n:1 compression is being performed.

For 1:n expansion, the slope k can be found by: k = n − 1

For n:1 compression, the slope k can be found by: k + 1n–1

In both expansion (1:n) and compression (n:1), n is implied to be greater than 1. Thus, for expansion: k = n −1 means k > 0 for n > 1. Likewise, for compression, k + 1n–1 means −1 < k < 0 for n > 1. Thus, it appears that k must always lie in the range k > −1.

The DRC imposes no such restriction and k can be programmed to values as negative as −15.999. To determine what results when such values of k are entered, it is first helpful to note that the compression and expansion equations for k are actually the same equation. For example, a 1:2 expansion is also a 0.5:1 compression.

–1 + 1

1 : 2 Expansion å k + 2–1 + 1

As can be seen, the same value for k is obtained either way. The ability to choose values of k less than −1 allows the DRC to implement negative slope transfer curves within a given region. Negative slope transfer curves are usually not associated with compression and expansion operations, but the definition of these operations can be expanded to include negative slope transfer functions. For example, if k = −4

Compression Equation : k + *4 + 1n *1 å n + –

1

3 å *

0.3333 : 1 compression

Expansion Equation : k + *4 + n–1 å n + –3 å 1 : *3 expansion

With k = −4, the output decreases 3 dB for every 1 dB increase in the rms value of the audio into the DRC.

As the input increases in volume, the output decreases in volume.

28

TAS5518 SLES115 — August 2004

Introduction

1.12 Output Mixer

The TAS5518 provides an 8x2 output mixer for channels 1, 2, 3, 4, 5, and 6. For channels 7 and 8 the TAS5518 provides an 8x3 output mixer. These mixers allow each output to be any ratio of any two (three) signal processed channels. The control parameters for the output crossbar mixer are programmable via the I

2 interface.

C

Gain Coefficient

28

Select

Output

N

48

Gain Coefficient

28

48

Select

Output

N

48 48

Output

1, 2, 3, 4, 7 or 8

Gain Coefficient

28

Select

Output

N

48

Gain Coefficient

28

48

Select

Output

N

Output

5 or 6

48 48

Gain Coefficient

28

48

Select

Output

N

48

Figure 1−21. Output Mixers

1.13 PWM

The TAS5518 has eight channels of high performance digital PWM Modulators that are designed to drive switching output stages (backends) in both single-ended (SE) and H-bridge (bridge tied load) configuration.

The TAS5518 device uses noise-shaping and sophisticated error correction algorithms to achieve high power efficiency and high-performance digital audio reproduction. The TAS5518 uses an AD1 PWM modulation combined with a 5 th

order noise shaper to provide a 110-dB SNR from 20 to 20 kHz.

The PWM section accepts 32-bit PCM data from the DAP and outputs eight PWM audio output channels configurable as either:

• Six channels to drive power stages + two channels to drive a differential input active filter to provide a separately controllable stereo line out

• Eight channels to drive power stages

The TAS5518 PWM section output supports both single-ended and bridge-tied loads.

The PWM section provides a headphone PWM output to drive an external differential amplifier like the

TPA112. The headphone circuit uses the PWM modulator for channels 1 and 2. The headphone will not operate while the six or eight backend drive channels are operating. The headphone will be enabled via a headphone select terminal or I

2

C command.

The PWM section has individual channel dc blocking filters that can be enabled and disabled. The filter cutoff frequency is less than 1 Hz.

The PWM section has individual channel de-emphasis filters for 32, 44.1, and 48 kHz that can be enabled and disabled.

The PWM section also contains the power supply volume control (PSVC) PWM.

SLES115 — August 2004 TAS5518

29

Introduction

The interpolator, noise shaper, and PWM sections provide a PWM output with the following features:

• Up to 8x over sampling.

− 8x at F

S

= 44.1 kHz, 48 kHz, 32 kHz, 38 kHz

− 4x at F

S

= 88.2 kHz, 96 kHz

− 2x at F

S

= 176.4 kHz, 192 kHz

• 5 th

order noise shaping

• 110-dB dynamic range 0 – 20 kHz (TAS5518 + TAS5182 system measured at speaker terminals)

• THD < 0.01%

• Adjustable maximum modulation limit of 93.8% to 99.2%

3.3-V digital signal

1.13.1

DC Blocking (High Pass Enable/ Disable)

Each input channel incorporates a first order digital high-pass filter to block potential dc components. The filter

–3 dB point is approximately 0.89-Hz at 44.1-kHz sampling rate. The high-pass filter can be enabled and disabled via the I

2

C interface.

1.13.2

De-Emphasis Filter

For audio sources that have been pre-emphasized, a precision 50 µs/15 µs de-emphasis filter is provided to

support the sampling rates of 32 kHz, 44.1 kHz, and 48 kHz. Figure 1−22 shows a graph of the de-emphasis

filtering characteristics. De-emphasis is set using two bits in the system control register.

0

−10

3.18 (50 µs)

Frequency − kHz

10.6 (15 µs)

Figure 1−22. De-emphasis Filter Characteristics

1.13.3

Power Supply Volume Control (PSVC)

The TAS5518 supports volume control by both conventional digital gain / attenuation and by a combination of digital and analog gain / attenuation. Varying the H-bridge power supply voltage performs the analog volume control function. The benefits of using powers supply volume control (PSVC) are reduced idle channel noise, improved signal resolution at low volumes, increased dynamic range, and reduced radio frequency emissions at reduced power levels. The power supply volume control (PSVC) is enabled via I

2

C. When enabled the

PSCV provides a PWM output that is filtered to provide a reference voltage for the power supply. The power supply adjustment range can be set for −12.04, −18.06, or −24.08 dB, to accommodate a range of variable power supply designs.

Figure 1−23 and Figure 1−24 show how power supply and digital gains can be used together.

The volume biquad (0xCF) can be used to implement a low-pass filter in the digital volume control to match the PSVC volume transfer function.

30

TAS5518 SLES115 — August 2004

Introduction

Power Supply Volume Control

0

−10

−20

−30

−40

−50

−60

30

20

10

Digital Gain

Power Supply Gain

Desired Gain − dB

Figure 1−23. Power Supply and Digital Gains (Log Space)

Power Supply Volume Control

100

0.1

0.01

10

1

Digital Gain

Power Supply Gain

0.001

0.0001

0.00001

0.0001

0.001

0.01

0.1

Desired Gain (Linear)

1 10

Figure 1−24. Power Supply and Digital Gains (Linear Space)

100

1.13.4

AM Interference Avoidance

Digital amplifiers can degrade AM reception as a result of their RF emissions. Texas Instruments patented AM interference avoidance circuit provides a flexible system solution for a wide variety of digital audio architectures. During AM reception, the TAS5518 adjusts the radiated emissions to provide an emission clear zone for the tuned AM frequency. The inputs to the TAS5518 for this operation are the tuned AM frequency, the IF frequency, and the sample rate. The sample rate is automatically detected.

SLES115 — August 2004 TAS5518

31

Introduction

Analog

Receiver

ADC

PCM1802

Audio

DSP

TAS5518

Audio DSP provides the master and bit clocks

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

Digital

Receiver

Audio

DSP

TAS5518

The Digital Receiver or the Audio

DSP provides the Master and Bit clocks

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

TAS5111

Figure 1−25. Block Diagrams of Typical Systems Requiring TAS5518 Automatic AM Interference

Avoidance Circuit

32

TAS5518 SLES115 — August 2004

TAS5518 Controls and Status

2 TAS5518 Controls and Status

The TAS5518 provides control and status information from both the I

2

C registers and device pins.

This section describes some of these controls and status functions. The I

2 descriptions are contained in sections at the end of this document.

C summary and detailed register

2.1

I

2

C Status Registers

The TAS5518 has two status registers that provide general device information. These are the General Status

Register 0 (0x01) and the Error Status Register (0x02).

2.1.1 General Status Register (0x01)

• Device identification code

• Clip indicator – The TAS5518 has a clipping indicator. Writing to the register clears the indicator.

Bank switching is busy

2.1.2 Error Status Register (0x02)

• No internal errors (the valid signal is high)

• A clock error has occurred – These are sticky bits that are cleared by writing to the register.

− LRCLK error – When the number of MCLKs per LRCLK is incorrect

− SCLK error – When the number of SCLKS per LRCLK is incorrect

− Frame slip – When the number of MCLKs per LRCLK changes by more than 10 MCLK cycles

− PLL phase-lock error

This error status register is normally used for system development only.

2.2

TAS5518 Pin Controls

The TAS5518 provide a number of terminal controls to manage the device operation. These controls are:

• RESET

• PDN

• BKND_ERR

HP_SEL

• MUTE

2.2.1 Reset (RESET)

The TAS5518 is placed in the reset mode by setting the RESET terminal low or by the power up reset circuitry when power is applied.

I

RESET is an asynchronous control signal that restores the TAS5518 to the hard mute state (M). Master volume is immediately set to full attenuation (there is no ramp down). Reset initiates the device reset without an MCLK input. As long as the RESET terminal is held low, the device is in the reset state. During reset, all

2

C and serial data bus operations are ignored.

Table 2−1 shows the device output signals while RESET is active.

Table 2−1. Device Outputs During Reset

SIGNAL

Valid

PWM P-outputs

PWM M-outputs

SDA

SIGNAL STATE

Low

Low (M-State)

Low (M-State)

Signal Input (not driven)

SLES115 — August 2004 TAS5518

33

TAS5518 Controls and Status

Because RESET is an asynchronous signal, clicks and pops produced during the application (the leading edge) of RESET cannot be avoided. However, the transition from the hard mute state (M) to the operational state is performed using a quiet start up sequence to minimize noise. This control uses the PWM reset and unmute sequence to shut down and start up the PWM. A detailed description of these sequences is contained in the PWM section. If a completely quiet reset or power down sequence is desired, MUTE should be applied before applying RESET.

The rising edge of the reset pulse begins device initialization before the transition to the operational mode.

During device initialization, all controls are reset to their initial states. Table 2−2 shows the default control

settings following a reset.

Table 2−2. Values Set During Reset

CONTROL

Clock register

High pass

Unmute from clock error

PSVC high Z

Post DAP detection automute

Eight Ch PreDAP detection automute

De−emphasis

Channel configuration control

Headphone configuration control

Serial data interface format

Individual channel mute

Automute delay

Automute threshold 1

Automute threshold 2

Modulation limit

Six (or eight – low) channel configuration

Slew rate limit

Interchannel delay

Shutdown PWM on error

Volume and mute update rate

Treble and bass slew rate

Bank switching

Auto bank switching map

Biquad coefficients (5508)

Input mixer coefficients

Output mixer coefficients

Subwoofer sum into Ch1 and 2 (5508)

Ch1 and 2 sum in subwoofer (5508)

Bass and treble bypass

Bass and treble Inline

DRC bypass (5508)

DRC inline (5508)

DRC (5508)

Master volume

Individual channel volumes

All bass and treble Indexes

Treble filter sets

SETTING

Not valid

Disabled

Hard unmute

Disabled

Enabled

Enabled

De-emphasis disabled

Configured for the default setting

Configured for the default setting

I

2

S 24 bit

No channels are muted

5 ms

< 8 bits

Same as automute threshold 1

Maximum modulation limit of 97.7%

Eight channels

Disengaged for all channels

−32, 0, –16, 16, –24, 8, –8, −24

Enabled

Volume ramp 85 ms

Update every 1.31 ms

Manual bank selection is enabled

All channels use Bank 1

Set to All pass

Input N −> Channel N, no attenuation

Channel N −> Output N, no attenuation

Gain of 0

Gain of 0

Gain of 1

Gain of 0

Gain of 1

Gain of 0

DRC disabled, default values

Mute

0 dB

0x12 neutral

Filter Set 3

34

TAS5518 SLES115 — August 2004

TAS5518 Controls and Status

CONTROL

Bass filter sets

Loudness (5508)

AM interference enable

AM interference IF

AM interference select sequence

Tuned freq and mode

Subwoofer PSVC control

PSVC and PSVC range

SETTING

Filter Set 3

Loudness disabled, default values

Disabled

455

1

0000 , BCD

Enabled

Disabled / 0 dB

After the initialization time, the TAS5518 starts the transition to the operational state with the Master volume set at mute.

Since the TAS5518 has an external crystal time base, following the release of RESET, the TAS5518 sets the

MCLK and data rates and perform the initialization sequences. The PWM outputs are held at a mute state until the master volume is set to a value other than mute via I

2

C.

2.2.2 Power Down (PDN)

TheTAS5518 can be placed into the power down mode by holding the PDN terminal low. When power down mode is entered, both the PLL and the oscillator are shut down. Volume is immediately set to full attenuation

(there is no ramp down). This control uses the PWM mute sequence that provides a low click and pop transition to the hard mute state (M). A detailed description of the PWM mute sequence is contained in the PWM section.

Power down is an asynchronous operation that does not require MCLK to go into the power down state. To initiate the power-up sequence requires MCLK to be operational and the TAS5518 to receive 5 MCLKs prior to the release of PDN.

As long as the PDN terminal is held low the device is in the power down state with the PWM outputs in a hard mute (M) state. During power down, all I

2

C and serial data bus operations are ignored. Table 2−3 shows the

device output signals while PDN is active.

Table 2−3. Device Outputs During Power Down

SIGNAL

Valid

PWM P-outputs

PWM M-outputs

SDA

PSVC

SIGNAL STATE

Low

M-state = low

M-state = low

Signal input

M-state = low

Following the application of PDN, the TAS5518 does not perform a quiet shutdown to prevent clicks and pops produced during the application (the leading edge) of this command. The application of PDN immediately performs a PWM stop. A quiet stop sequence can be performed by first applying MUTE before PDN.

When PDN is released, the system goes to the end state specified by MUTE and BKND_ERR pins and the

I

2

C register settings.

The crystal time base allows the TAS5518 to determine the CLK rates. Once these rates are determined, the

TAS5518 unmutes the audio.

2.2.3 Backend Error (BKND_ERR)

Backend error is used to provide error management for backend error conditions. Backend error is a level sensitive signal. Backend error can be initiated by bringing the BKND_ERR terminal low for a minimum 5

MCLK cycles. When BKND_ERR is brought low, the PWM sets either six or eight channels into the PWM backend error state. This state is described in the PWM section. Once the backend error sequence is initiated, a delay of 5 ms is performed before the system starts the output re−initialization sequence. After the initialization time, the TAS5518 begins normal operation. Backend error does not affect other PWM modulator operations

SLES115 — August 2004 TAS5518

35

TAS5518 Controls and Status

The number of channels that are affected by the BKND_ERR signal is dependent upon the 6-channel configuration signal. If the I

2

C setting 6-channel configuration is false, the TAS5518 places all eight PWM outputs in the PWM backend error state, while not affecting any other internal settings or operations. If the

I

2

C setting six configuration is true, the TAS5518 brings the PWM outputs 1−6 to a backend error state, while

not affecting any other internal settings or operations. Table 2−4 shows the device output signal states during

backend error.

Table 2−4. Device Outputs During Backend Error

SIGNAL

Valid

PWM P-outputs

PWM M-outputs

HPPWM P-outputs

HPPWM M-outputs

SDA

2.2.4 Speaker / Headphone Selector (HP_SEL)

SIGNAL STATE

Low

M-State − low

M-State − low

M-State − low

M-State − low

Signal Input (not driven)

The HP_SEL terminal enables the headphone output or the speaker outputs. The headphone output receives the processed data output from DAP and PWM channels 1 and 2.

In 6-channel configuration this feature does not affect the two lineout channels.

When low, the headphone output is enabled. In this mode the speaker outputs are disabled. When high, the speaker outputs are enabled and the headphone is disabled.

Changes in the pin logic level results in a state change sequence using soft mute to the hard mute (M) state for both speaker and headphone followed by a soft unmute.

When HP_SEL is low, the configuration of channels 1 and 2 are defined by the headphone configuration register. When HP_SEL is high, the channel 1 and 2 configuration registers define the configuration of channels 1 and 2.

2.2.5 Mute (MUTE)

The mute control provides a noiseless volume ramp to silence. Releasing mute provides a noiseless ramp to previous volume. The TAS55508 has both a master and individual channel mute commands. A terminal is also provided for the master MUTE. The low active master Mute I

2

C register and the MUTE terminal are logically Or’ed together. If either is set to low, a mute on all channels is performed. The master mute command operates on all channels regardless on whether the system is in six or eight channel configuration.

When MUTE is invoked, the PWM output stops switching and then goes to an idle state.

The master Mute terminal is used to support a variety of other operations in the TAS5518, such as setting the inter-channel delay, the biquad coefficients, the serial interface format, and the clock rates. A mute command by the master mute terminal, individual I

2

C mute, the AM interference mute sequence, the bank switch mute sequence, or automute overrides an unmute command or a volume command. While a mute is active, the commanded channels will be placed in a mute state. When a channel is unmuted, it goes to the last commanded volume setting that has been received for that channel.

2.3

Device Configuration Controls

The TAS5518 provides a number of system configuration controls that are set at initialization and following a reset.

• Channel Configuration

• Headphone Configuration

• Audio System Configurations

36

TAS5518 SLES115 — August 2004

TAS5518 Controls and Status

Recovery from Clock Error

• Power Supply Volume Control Enable

• Volume and Mute Update Rate

• Modulation Index Limit

• Inter-channel Delay

• Master Clock and Data Rate Controls

• Bank Controls

2.3.1 Channel Configuration Registers

In order for the TAS5518 to have full control of the power stages, registers 0x05 to 0x0C must be programmed to reflect the proper power stage and how each one should be controlled. Channel configuration registers consist of eight registers, one for each channel.

BIT

D7

D6

D5

D4

D3

D2

D1

D0

The primary reason for using these registers is that different power stages require different handling during start up, mute/unmute, shutdown, and error recovery. The TAS5518 must select the sequence that gives the best click and pop performance and insure that the bootstrap capacitor is charged correctly during start up.

This sequence depends on which power stage is present at the TAS5518 output.

Table 2−5. Description of the Channel Configuration Registers (0x05 to 0x0C)

DESCRIPTION

Enable/disable error recovery sequence. In case the BKND_RECOVERY pin is pulled low, this register determines if this channel is to follow the error recovery sequence or to continue with no interruption.

Determines if the power stage needs the TAS5518 VALID pin to go low to reset the power stage. Some power stages can be reset by a combination of PWM signals. For these devices, it is recommended to set this bit low, since the VALID pin is shared for power stages. This provides better control of each power stage.

Determines if the power stage needs the TAS5518 VALID pin to go low to mute the power stage. Some power stages can be muted by a combination of PWM signals. For these devices, it is recommended to set this bit low, since the VALID pin is shared for power stages. This provides better control of each power stage.

Inverts the PWM output. Inverting the PWM output can be an advantage if the power stage input pin are opposite the TAS5518 PWM pinout. This makes routing on the PCB easier. To keep the phase of the output the speaker terminals must also be inverted.

The power stage TAS5182 has a special PWM input. To ensure that the TAS5518 has full control in all occasions, the PWM output must be remapped.

Can be used to handle click and pop for some applications.

This bit is normally used together with D2. For some power stages, both PWM signals must be high to get the desired operation of both speaker outputs to be low. This bit sets the PWM outputs high-high during mute.

Not used

SLES115 — August 2004 TAS5518

37

TAS5518 Controls and Status

Table 2−6 lists the optimal setting for each output stage configuration. Note that the default value is applicable

in all configurations except the TAS5182 SE/BTL configuration.

Table 2−6. Recommended TAS5518 Configurations for Texas Instruments Power Stages

DEVICE

Default

ERROR RECOVERY

RES

CONFIGURATION

BTL

SE

BTL

SE

BTL

SE

BTL

SE

BTL

SE

BTL

AUT: The power stage can auto recover from a shutdown.

BTL: Bridge tied load configuration

SE: Single-ended configuration

D7

1

0

1

1

0

1

0

0

1

1

1

D5

1

0

1

0

0

1

1

1

1

1

0

D6

1

1

1

1

1

1

1

1

1

1

1

D4

0

0

0

0

0

0

0

0

0

0

0

RES: The output stage requires VALID to go low to recover from a shutdown.

D3

0

0

1

0

0

1

0

0

0

0

0

D2

0

0

0

0

0

0

0

0

0

0

0

D1

0

0

0

0

0

0

0

0

0

0

0

D0

0

0

0

0

0

0

0

0

0

0

0

2.3.2 Headphone Configuration Registers

The headphone configuration controls are identical to the speaker configuration controls. The headphone configuration control settings are used in place of the speaker configuration control settings for channels 1 and 2 when the headphones are selected. In reality however, there is only one used configuration setting for headphones and that is the default setting.

2.3.3 Audio System Configurations

The TAS5518 can be configured to comply with various audio systems: 5.1-channel system, 6-channel system, 7.1-channel system and 8-channel system.

The audio system configuration is set in the General Control Register (0xE0). Bits D31 – D4 must be zero and

D0 is don’t care.

D3

D2

D1

Determines if SUB is to be controlled by PSVC (D3 is a write-only bit)

Enable/Disable power supply volume control

Sets number of speakers in the system, including possible line outputs

D3−D1 must be configured as the following according to the audio system in the application:

Table 2−7. Audio System Configuration (General Control Register 0xE0)

AUDIO SYSTEM

DEFAULT

6 channel or 5.1 NOT using PSVC

6 channel using PSVC

5.1 system using PSVC

8 channel or 7.1 NOT using PSVC

8 channel using PSVC

7.1 system using PSVC

D31−D4

0

0

0

0

0

0

0

D3

0

0

0

1

0

0

1

D2

0

0

1

1

0

1

1

D1

0

1

1

1

0

0

0

D0

X

X

X

X

X

X

X

38

TAS5518 SLES115 — August 2004

TAS5518 Controls and Status

2.3.3.1

Using Line Outputs in 6-Channel Configurations

The audio system can be configured for a 6-channel configuration (with 2 line outs) by writing a 1 to bit D1 of register 0xE0 (General Control Register). In this configuration, channel 5 and 6 processing are exactly the same as the other channels, except that Master Volume has no effect.

Note that in 6-channel configuration, channels 5 and 6 are unaffected by backend error (BKND_ERR goes low).

To use channels 5 and 6 as dry unprocessed line outs, the following setup should be done:

Channel 5 volume and channel 6 volume should be set for a constant output such as 0 dB.

Bass and Treble for channels 5 and 6 can be used if desired.

• DRC1 should be by-passed for channels 5 and 6.

• If enabled, the loudness function shapes the response of channels 5 and 6. However, the amplitude of

5 and 6 are not used in determining the loudness response.

• If a down mix is desired on the channel 5 and 6 as line out, the down mixing can be performed using the channel 5 and channel 6 input mixers.

• The operation of the channel 5 and 6 biquads is unaffected by the 6/8 channel configuration setting.

2.3.4 Recovery from Clock Error

The TAS5518 can be set to either perform a volume ramp up during the recovery sequence of a clock error or to simply come up in the last state (or desired state if a volume or tone update was in progress). This feature is enabled via I

2

C system control register 0x03.

2.3.5 Power Supply Volume Control Enable

The power supply volume control (PSVC) can be enabled and disabled via I

2

C register 0xE0. The subwoofer

PWM output can configured to be controlled by the PSVC or digitally attenuated when PSVC is enabled (for powered subwoofer configurations). Note that PSVC cannot be simultaneously enabled along with unmute outputs after clock error feature.

SLES115 — August 2004 TAS5518

39

TAS5518 Controls and Status

2.3.6 Volume and Mute Update Rate

The TAS5518 has fixed soft volume and mute ramp durations. The ramps are linear. The soft volume and mute ramp rates are adjustable by programming the I

2

C register 0xD0 for the appropriate number of steps to be

512, 1024, or 2048. The update is performed at a fixed rate regardless of the sample rate.

• In normal speed, the update rate is 1 step every 4 / Fs seconds.

• In double speed, the update is 1 step every 8 / Fs seconds.

• In quad speed, the update is 1 step every 16 / Fs seconds.

Because of processor loading, the update rate can increase for some increments by +1/Fs to +3/Fs. However, the variance of the total time to go from +18 dB to mute is less than 25%.

Table 2−8. Volume Ramp Rates in ms

512

1024

2048

SAMPLE RATE (KHZ)

44.1, 88.2, 176.4

32, 48, 96, 192

46.44 ms

92.88 ms

185.76 ms

42.67 ms

85.33 ms

170.67 ms

2.3.7 Modulation Index Limit

PWM modulation is a linear function of the audio signal. When the audio signal is 0, the PWM modulation is

50%. When the audio signal increases towards full scale, the PWM modulation increases towards 100%. For negative signals, the PWM modulations fall below 50% towards 0%.

However, there is a limit to the maximum modulation possible. During the off-time period, the power stage connected to the TAS5518 output needs to get ready for he next on-time period. The maximum possible modulation is then set by the power stage requirements. All Texas Instruments power stages needs maximum modulation to be 97.7%. This is also the default setting of the TAS5518. Default settings can be changed in the Modulation Index Register (0x16).

Note that no change should be made to this register when using Texas Instruments power stages.

40

TAS5518 SLES115 — August 2004

TAS5518 Controls and Status

2.3.8 Inter-channel Delay

An 8-bit value can be programmed to each of the eight PWM inter-channel delay registers to add a delay per channel from 0 to 255 clock cycles. The delays correspond to cycles of the high-speed internal clock, DCLK.

The default values are shown in Table 2−9.

Table 2−9. Inter-Channel Delay Default Values

I

2

C SUB-ADDRESS

0x1B

0x1C

0x1D

0x1E

0x1F

0x20

0x21

0x22

CHANNEL

1

5

6

7

2

3

4

8

INTER-CHANNEL DELAY DEFAULT (DCLK PERIODS)

−24

0

−16

+16

−24

+8

−8

+24

This delay is generated in the PWM and can be changed at any time through the serial control interface I

2

C registers 0x1B – 0x22. The absolute offset for channel 1 is set in I

2

C sub-address 0x23.

NOTE:If used correctly, setting the PWM channel delay can optimize the performance of a pure path digital amplifier system. The setting is based upon the type of backend power device that is used and the layout. These values are set during initialization using the I 2 C serial

interface. Unless otherwise noted, use the default values given in Table 2−9.

2.4

Master Clock and Serial Data Rate Controls

The TAS5518 function only as a receiver of the MCLK (master clock), SCLK (shift clock), and LRCLK (left/right clock) signals that controls the flow of data on the four serial data interfaces. The 13.5-MHz external crystal allows the TAS5518 to automatically detect MCLK and the data rate.

The MCLK frequency can be 64 x Fs, 128 x Fs, 196 x Fs, 256 x Fs, 384 x Fs, 512 x Fs, or 768 x Fs.

The TAS5518 operates with the serial data interface signals LRCLK and SCLK synchronized to MCLK.

However, there is no constraint as to the phase relationship of these signals. The TAS5518 accepts a 64 x

Fs SCLK rate and a 1 x Fs LRCLK.

If the phase of SCLK or LRCLK drifts more than ±10 MCLK cycles since the last RESET, the TAS5518 performs a clock error and resynchronize the clock timing.

The clock and serial data interface have several control parameters:

• MCLK Ratio 64 Fs, 128 Fs, 196 Fs, 256 Fs, 384 Fs, 512 Fs, or 768 Fs) − I

2

C parameter

• Data Rate 32, 38, 44.1,48, 88.2, 96, 176.4, 192 kHz − I

2

C parameter

• AM Mode Enable / Disable − I

2

C parameter

During AM interference avoidance, the clock control circuitry utilizes three other configuration inputs:

Tuned AM Frequency (for AM interference avoidance) (550 − 1750 kHz) − I

2

C parameter

• Frequency Set Select (1−4) − I

2

C parameter

• Sample Rate − I

2

C parameter or auto detected

SLES115 — August 2004 TAS5518

41

TAS5518 Controls and Status

2.4.1 PLL Operation

The TAS5518 uses two internal clocks generated by two internal phase-locked loops (PLLs), the digital PLL

(DPLL) and the analog PLL (APLL). The analog PLL provides the reference clock for the PWM. The digital

PLL provides the reference clock for the digital audio processor and the control logic.

The master clock MCLK input provides the input reference clock for the APLL. The external 13.5-MHz crystal provides the input reference clock for the digital PLL. The crystal provides a time base to support a number of operations, including the detection of the MCLK ratio, the data rate, and clock error conditions. The crystal time base provides a constant rate for all controls and signal timing.

Even if MCLK is not present, the TAS5518 can receive and store I

2

C commands and provide status.

2.5

Bank Controls

The TAS5518 permits the user to specify and assign sample rate dependent parameters for Biquad,

Loudness, DRC, and Tone in one of three banks that can be manually selected or selected automatically based upon the data sample rate. Each bank can be enabled for one or more specific sample rates via I

2

C bank control register 0x40. Each bank set holds the following values:

• Coefficients for Seven Biquads (7X5 = 35 coefficients) for Each of the Eight Channels (Registers 0X51

– 0x88)

• Coefficients for One Loudness Biquad (Register 0x95)

DRC1 Energy and (1 – Energy) Values (Register 0x98)

• DRC1 Attack, (1 − Attack), Decay, (1 – Decay) Values (Register 0x9C)

• DRC2 Energy and (1 – Energy) Values (Register 0x9D)

DRC2 Attack, (1 − Attack), Decay, (1 – Decay) Values (Register 0xA1)

• Five Bass Filter-Set Selections (Register 0xDA)

• Five Treble Filter-Set Selections (Register 0xDC)

The default selection for bank control is manual bank with bank 1 selected. Note that if bank switching is used,

Bank 2 and Bank 3 must be programmed on power−up since the default values are all zeroes. If bank switching is used and Bank 2 and Bank 3 are not programmed correctly, then the output of the TAS5518 could be muted when switching to those banks.

2.5.1 Manual Bank Selection

The three bank selection bits of the bank control register allow the appropriate bank to be manually selected

(000 = Bank 1, 001 = Bank 2, 010 = Bank 3). In the manual mode, when a write occurs to the Biquad, DRC, or Loudness coefficients, the current selected bank is updated. If audio data is streaming to the TAS5518, during a manual bank selection, the TAS5518 first performs a mute sequence, then performs the bank switch, and finally restores the volume using an un−mute sequence.

A mute command initiated by the bank switch mute sequence overrides an un−mute command or a volume command. While a mute is active, the commanded channels are muted. When a channel is unmated, the volume level goes to the last commanded volume setting that has been received for that channel.

If MCLK or SCLK is stopped, the TAS5518 performs a bank switch operation. If the clocks should start up once the manual bank switch command has been received, the bank switch operation is performed during the 5−ms silent start sequence.

2.5.2 Automatic Bank Selection

To enable automatic bank selection, a value of 3 is written into in the bank selection bits of the bank control register. Banks are associated with one or more sample rates by writing values into the Bank 1 or Bank 2 data rate selection registers. The automatic base selection is performed when a frequency change is detected according to the following scheme:

42

TAS5518 SLES115 — August 2004

TAS5518 Controls and Status

1. The system scans Bank 1 data rate associations to see if the Bank 1 is assigned for that data rate.

2. If Bank 1 is assigned, then the Bank 1 coefficients will be loaded.

3. If it is not then, the system scans the bank 2 to see if Bank 1 is assigned for that data rate.

4. If Bank 2 is assigned, then the Bank 2 coefficients will be loaded.

5. If it is not then, the system loads the Bank 3 coefficients.

The default is that all frequencies are enabled for Bank 1. This default is expressed as a value of all 1s in the

Bank 1 auto-selection byte and all 0s in the bank 2 auto−section byte.

2.5.2.1

Coefficients Write Operations While Automatic Bank Switch Is Enabled

In automatic mode if a write occurs to the Tone, EQ, DRC, or Loudness coefficients, the bank that is written to is the current bank.

2.5.3 Bank Set

Bank set is used to provide a secure way to update the bank coefficients in both the manual and automatic switching modes without causing a bank switch to occur. Bank set mode does not alter the current bank register mapping. It simply enables any bank’s coefficients to be updated while inhibiting any bank switches from taking place. In manual mode, this enables the coefficients to be set without switching banks. In automatic mode this prevents a clock error or data rate change from corrupting a bank coefficient write.

To update the coefficients of a bank, a value of 4, 5, or 6 is written into in the bank selection bits of the bank control register. This enables the Tone, EQ, DRC, and Loudness coefficient values of bank 1, 2, or 3 to be respectively updated.

Once the coefficients of the bank have been updated, the bank selection bits are then returned to the desired manual or automatic bank selection mode.

2.5.4 Bank Switch Timeline

After a bank switch is initiated (manual or automatic), no I

2

C writes to the TAS5518 should occur before a minimum of 186 ms. This value is determined by the volume ramp rates for a particular sample rate.

2.5.5 Bank Switching Example 1

Problem: The audio unit containing a TAS5518 needs to handle different audio formats with different sample rates. Format #1 requires Fs = 32 kHz, Format #2 requires Fs = 44.1 kHz, and Format #3 requires Fs = 48 kHz. The sample-rate dependent parameters in the TAS5518 require different coefficients and data depending on the sample rate.

Strategy: Use the TAS5518 bank switching feature to allow for managing and switching three banks associated with the three sample rates, 32 kHz (Bank 1), 44.1 kHz (Bank 2), and 48 kHz (Bank 3).

One possible algorithm is to generate, load, and automatically manage bank switching for this problem:

• Generate bank-related coefficients (see above) for sample rates 32 kHz, 44.1 kHz, and 48 kHz and include the same in the micro-based TAS5518 I

2

C firmware.

On TAS5518 power up or reset, the micro runs the following TAS5518 Initialization code:

− Update Bank 1 (Write 0x00048040 to register 0x40).

− Write bank-related I

2

C registers with appropriate values for Bank 1.

− Write Bank 2 (Write 0x00058040 to register 0x40).

− Load bank-related I

2

C registers with appropriate values for Bank 2.

− Write Bank 3 (Write 0x00068040 to register 0x40).

− Load bank-related I

2

C registers with appropriate values for Bank 3.

− Select automatic bank switching (write 0x00038040 to register 0x40)

SLES115 — August 2004 TAS5518

43

TAS5518 Controls and Status

Now when the audio media changes, the TAS5518 automatically detects the incoming sample rate and automatically switches to the appropriate bank.

In this example any sample rates other then 32 kHz and 44.1 kHz will use Bank 3. If other sample rates are used, then the banks need to be set−up differently.

2.5.6 Bank Switching Example 2

Problem: The audio system uses all of the sample rates supported by the TAS5518. How can the automatic bank switching be set up to handle this situation?

Strategy: Use the TAS5518 bank switching feature to allow for managing and switching three banks associated with sample rates as follows:

• Bank 1: Coefficients for 32 kHz, 38 kHz, 44.1 kHz, and 48 kHz

• Bank 2: Coefficients for 88.2kHz and 96 kHz

• Bank 3: Coefficients for 176.4 kHz and 192 kHz

One possible algorithm is to generate, load, and automatically manage bank switching for this problem:

Generate bank-related coefficients for sample rates 48 kHz (Bank 1), 96 kHz (Bank 2), and 192 kHz (Bank

3) and include the same in the micro-based TAS5518 I

2

C firmware.

On TAS5518 power−up or reset, the micro runs the following TAS5518 Initialization code:

− Update Bank 1 (Write 0x0004F00C to register 0x40).

− Write bank-related I

2

C registers with appropriate values for Bank 1.

− Write Bank 2 (Write 0x0005F00C to register 0x40).

− Load bank-related I

2

C registers with appropriate values for Bank 2.

− Write Bank 3 (Write 0x0006F00C to register 0x40).

− Load bank-related I

2

C registers with appropriate values for Bank 3.

− Select automatic bank switching (Write 0x0003F00C to register 0x40)

• Now when the audio media changes, the TAS5518 automatically detects the incoming sample rate and automatically switches to the appropriate bank.

44

TAS5518 SLES115 — August 2004

PACKAGE

PAG

Electrical Specifications

3 Electrical Specifications

3.1

Absolute Maximum Ratings

{

Supply voltage, DVDD and DVD_PWM

Supply voltage, AVDD_PLL

3.3-V digital input

Input voltage

5 V tolerant

(2)

digital input

1.8 V LVCMOS

(3)

Input clamp current, I

IK

(V

I

< 0 or V

I

> 1.8 V

Output clamp current, I

OK

(V

O

< 0 or V

O

> 1.8 V)

Operating free air temperature

Storage temperature range, T stg

UNITS

−0.3 V to 3.6 V

−0.3 V to 3.6 V

−0.5 V to DVDD + 0.5 V

−0.5 V to 6 V

−0.5 V to VREF

(1)

+ 0.5 V

±20 mA

±20 mA

0°C to 70°C

−65°C to 150°C

Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. VREF is a 1.8-V supply derived from regulators internal to the TAS5518 chip. VREF is on terminals VRA_PLL, VRD_PLL, VR_DPLL,

VR_DIG, and VR_PWM. These terminals are provided to permit use of external filter capacitors, but should not be used to source power to external devices.

2. 5-V tolerant inputs are RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, SDIN4, SDA, and SCL.

3. VRA_PLL, VRD_PLL, VR_DPLL, VR_DIG, VR_PWM

DISSIPATION RATING TABLE (High-k Board, 1055C Junction)

T

A

255C

POWER RATING

1869 mW

DERATING FACTOR

ABOVE T

A

= 255C

23.36 mW/°C

T

A

= 705C

POWER RATING

818 mW

3.2

Dynamic Performance (At Recommended Operating Conditions at 255C)

PARAMETER TEST CONDITIONS MIN NOM MAX UNITS

Dynamic range dB TAS5518 + TAS5182 EVM A-weighted (F

S

= 48 kHz)

TAS5182 A at 1 W

TAS5518 ouput

32-kHz to 96-kHz sample rates

176.4, 192-kHz sample rates

110

0.1%

0.01%

±0.1

±0.2

3.3

Recommended Operating Conditions (over 05C to 705C)

Digital supply voltage, DVDD and DVDD_PWM

MIN NOM MAX UNITS

3 3.3

3.6

V

Analog supply voltage, AVDD_PLL

3.3 V

5-V tolerant

(4)

1.8-V LVCMOS (XTL_IN)

2

1.26

3

2

3.3

3.6

V

3.3 V

5-V tolerant

(4)

1.8-V (XTL_IN)

0.8

0.8

0.54

Operating ambient air temperature range, T

A

−20 25 70 °C

Operating junction temperature range, T

J

−20 105

NOTE 4: 5-V tolerant inputs are SDA, SCL, RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, and SDIN4.

°C

SLES115 — August 2004 TAS5518

45

Electrical Specifications

3.4

Electrical Characteristics Over Recommended Operating Conditions (Unless

Otherwise Noted)

V

OH

PARAMETER

3.3 V TTL and 5 V

(6)

tolerant

1.8-V LVCMOS (XTL_OUT)

3.3-V TTL and 5 V

(6)

tolerant

TEST CONDITIONS MIN TYP MAX UNITS

0.5

V

OL

I

OH

= −4 mA

I

OH

= − 0.55 mA

I

OL

= 4 mA

I

OL

= 0.75 mA

2.4

1.44

I I

I I

I

OZ

1.8-V LVCMOS (XTL_OUT)

High-impedance output current 3.3-V TTL

3.3-V TTL

1.8-V LVCMOS (XTL_IN)

5 V tolerant

(5)

3.3-V TTL

1.8-V LVCMOS (XTL_IN)

5 V tolerant

(5)

V

I

= V

IL

V

I

= V

IL

V

I

= 0 V DVDD = 3 V

V

I

= V

IH

V

I

= V

IH

V

I

= 5.5 V DVDD = 3 V

Fs = 48 kHz

Fs = 96 kHz

Fs = 192kHz

0.5

±20

±1

±1

±1

±1

±1

±1

µA

I I

DD

140

150

155

Power down

Normal

Power down

8

6

1

NOTES: 5. 5-V tolerant inputs are SDA, SCL, RESET, PDN, MUTE, HP_SEL, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDIN3, and SDIN4.

6. 5-V tolerant outputs are SCL and SDA

3.5

PWM Operation at Recommended Operating Conditions Over 05C to 705C

PARAMETER TEST CONDITIONS MODE VALUE UNITS

32-kHz data rate ±4%

44.1-, 88.2-, 176.4-kHz data rate ±4%

48, 96, 192 kHz data rate ±4%

12 x sample rate

8, 4, and 2 x sample rate

8, 4, and 2 x sample rate

384

352.8

384 kHz kHz kHz

3.6

Switching Characteristics

3.6.1 Clock Signals Over Recommended Operating Conditions (Unless Otherwise

Noted)

3.6.1.1

PLL Input Parameters and External Filter Components

{

PARAMETER TEST CONDITIONS

f

XTALI f

MCLKI

Frequency, XTAL IN

Frequency, MCLK (1 / t cyc2

)

MCLK duty cycle duty cycle

Only use 13.5-MHz crystal ≤1000 ppm

MCLK minimum high time

MCLK minimum low time

≥2-V MCLK = 49.152 MHz, Within the min and max duty cycle constraints

≤0.8-V MCLK = 49.152 MHz,

Within the min and max duty cycle constraints

LRCLK allowable drift before LRCLK reset

External PLL filter cap C1

External PLL filter cap C2

External PLL filter resistor R

External VRA_PLL decoupling

SMD 0603 Y5V

SMD 0603 Y5V

SMD 0603, metal film

SMD, Y5V

See the TAS5518 Example Application Schematic section.

MIN TYP

13.5

2

40% 50%

5

5

100

10

200

100

MAX UNITS

MHz

50 MHz

60% ns ns

10 MCLKs nF nF

Ω nF

46

TAS5518 SLES115 — August 2004

Electrical Specifications

3.6.2 Serial Audio Port

3.6.2.1

Serial Audio Ports Slave Mode Over Recommended Operating Conditions (Unless

Otherwise Noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITS

f

SCLKIN t su1 t h1 t su2 t h2

Frequency, SCLK 64 x fs

Setup time, LRCLK to SCLK rising edge

Hold time, LRCLK from SCLK rising edge

Setup time, SDIN to SCLK rising edge

Hold time, SDIN from SCLK rising edge

LRCLK frequency

SCLK duty cycle

LRCLK duty cycle

SCLK rising edges between LRCLK rising edges

LRCLK clock edge with respect to the falling edge of SCLK

C

L

= 30 pF 2.048

10

10

10

10

32 48

40% 50%

40% 50%

64

−1/4

12.288

MHz ns ns ns ns kHz 192

60%

60%

64

SCLK edges

1/4

SCLK period

SCLK

(Input) t h1 t su1

LRCLK

(Input) t su2 t h2

SDIN1

SDIN2

SDIN3

Figure 3−1. Slave Mode Serial Data Interface Timing

SLES115 — August 2004 TAS5518

47

Electrical Specifications

3.6.3 I

2

C Serial Control Port Operation

3.6.3.1

Timing Characteristics for I

2

C Interface Signals Over Recommended Operating

Conditions (Unless Otherwise Noted)

PARAMETER TEST CONDITIONS MIN MAX UNITS

t

(buf) t su2 t h2 t su3

C

L f

SCL t w(H) t w(L) t r t f t su1 t h1

Frequency, SCL

Pulse duration, SCL high

Pulse duration, SCL low

Rise time, SCL and SDA

Fall time, SCL and SDA

Setup time, SDA to SCL

Hold time, SCL to SDA

Bus free time between stop and start condition

Setup time, SCL to start condition

Hold time, start condition to SCL

Setup time, SCL to stop condition

Load capacitance for each bus line

No wait states

0.6

1.3

100

0

1.3

0.6

0.6

0.6

400 kHz

µs

300

300

µs ns ns ns

400 ns

µs

µs

µs

µs pF

t w(H) t w(L) t r t f

SCL

SDA t su1

Figure 3−2. SCL and SDA Timing t h1

SCL t su2 t h2 t

(buf) t su3

SDA

Start Condition

Stop Condition

Figure 3−3. Start and Stop Conditions Timing

48

TAS5518 SLES115 — August 2004

Electrical Specifications

3.6.4 Reset Timing (RESET)

3.6.4.1

Control Signal Parameters Over Recommended Operating Conditions (Unless

Otherwise Noted)

PARAMETER MIN TYP

t r(DMSTATE) t w(RESET) t r(I2C_ready) t r(run)

Time to M-STATE low

Pulse duration, RESET active

Time to enable I

2

C

Device startup time

400

10

3

MAX UNITS

370 ns

None ns ms ms

RESET

Earliest time that M-State could be exited t w(RESET)

M-State t r(DMSTATE)

= ~ < 300 ns t r(I2C_ready)

Determine SCLK rate and MCLK ratio Enable I

2

C t r(run)

Start system

Figure 3−4. Reset Timing

Since a crystal time base is used, the system determines the CLK rates. Once the data rate and master clock ratio is determined, the system outputs audio if a master volume command is issued.

3.6.5 Power-Down (PDN) Timing

3.6.5.1

Control Signal Parameters Over Recommended Operating Conditions (Unless Otherwise

Noted)

t p(DMSTATE) t su

PARAMETER

Time to M-STATE low

Number of MCLKs preceding the release of PDN

Device startup time

MIN TYP

5

120

MAX UNITS

300 µs ms

PDN

M-State t p(DMSTATE)

= ~ < 300 µs

t su

Figure 3−5. Power-Down Timing

SLES115 — August 2004 TAS5518

49

Electrical Specifications

3.6.6 Backend Error (BKND_ERR)

3.6.6.1

Control Signal Parameters Over Recommended Operating Conditions (Unless

Otherwise Noted)

PARAMETER MIN TYP MAX

t w(ER) t p(valid_low) t p(valid_high)

Pulse duration, BKND_ERR active

I

2

C programmable to be between 1 to 10 ms

350

−25

None

UNITS

ns

<100 µs

25 % of interval

t w(ER)

ERR_RCVRY

M-State

Normal

Operation t p(valid_high) t p(valid_low)

Figure 3−6. Error Recovery Timing

Normal

Operation

3.6.7 MUTE Timing—MUTE

3.6.7.1

Control Signal Parameters Over Recommended Operating Conditions (Unless

Otherwise Noted)

PARAMETER

t d(VOL

Volume ramp time

NOTE 1: See the Volume Treble and Base Slew Rate Register (0xD0) section.

MIN TYP MAX UNITS

Defined by rate setting

(1)

ms

MUTE

VOLUME

M-State

Normal

Operation

Normal

Operation t d(VOL)

Figure 3−7. Mute Timing t d(VOL)

50

TAS5518 SLES115 — August 2004

Electrical Specifications

3.6.8 Headphone Select (HP_SEL)

3.6.8.1

Control Signal Parameters Over Recommended Operating Conditions (Unless

Otherwise Noted)

PARAMETER

t w(HP_SEL) t d(VOL)

Pulse duration, HP_SEL active

Soft volume update time t

(SW)

Switch-over time

NOTE 2: See the Volume Treble and Base Slew Rate Register (0xD0) section.

MIN

350 None

Defined by rate setting

(2)

0.2

MAX UNITS

1 ms ns ms ms

HP_SEL

Spkr Volume

HP Volume t d(VOL) t d(VOL) t

(SW)

M-State

(Internal Device State)

HP_SEL

HP Volume

Spkr Volume t d(VOL) t d(VOL) t

(SW)

M-State

Figure 3−8. HP_SEL Timing

SLES115 — August 2004 TAS5518

51

Serial Audio Interface Control and Timing

3.6.9 Volume Control

3.6.9.1

Control Signal Parameters Over Recommended Operating Conditions (Unless

Otherwise Noted)

PARAMETER TEST CONDITIONS MIN MAX

Maximum attenuation before mute

Maximum gain

Maximum volume before the onset of clipping

PSVC range

PSVC rate

PSVC modulation

PSVC quantization

PSVC PWM modulation limits

Individual volume, master volume or a combination of both

Individual volume, master volume

0-dB input, any modulation limit

PSVC enabled

PSVC Rangel = 24 dB

12, 18, or 24

Fs

Single Sided

2048

6% (120 :

2048)

−127

18

0

95% 1944 :

2048

UNITS

dB dB dB dB

Steps dB

3.7

Serial Audio Interface Control and Timing

3.7.1 I

2

S Timing

I

2

S timing uses an LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. The LRCLK is low for the left channel and high for the right channel. A bit clock running at

64 × Fs is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5518 masks unused trailing data bit positions.

2-Channel I

2

S (Philips Format) Stereo Input

32 Clks 32 Clks

LRCLK (Note Reversed Phase) Left Channel

Right Channel

SCLK SCLK

MSB

24-Bit Mode

23 22 9 8

20-Bit Mode

19 18 5 4

16-Bit Mode

15 14 1 0

5 4

1 0

1 0

LSB MSB

23 22

19 18

9 8

5 4

15 14 1 0

NOTE: All data presented in 2s complement form with MSB first.

Figure 3−9. I

2

S Format 64 Fs Format

5 4 1 0

1 0

LSB

52

TAS5518 SLES115 — August 2004

Serial Audio Interface Control and Timing

3.7.2 Left Justified

Left justified (LJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock running at 64 × Fs is used to clock in the data. The first bit of data appears on the data lines at the same time the LRCLK toggles. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5518 masks unused trailing data bit positions.

2-Channel Left-Justified Stereo Input

32 Clks 32 Clks

LRCLK LRCLK

Left Channel

Right Channel

SCLK

LSB MSB

24-Bit Mode

23 22 9 8

20-Bit Mode

19 18 5 4

16-Bit Mode

15 14 1 0

5 4

1 0

1 0

LSB MSB

23 22 9 8

19 18 5 4

15 14 1 0

NOTE: All data presented in 2s complement form with MSB first.

Figure 3−10. Left Justified 64 Fs Format

5 4

1 0

1 0

SLES115 — August 2004 TAS5518

53

Serial Audio Interface Control and Timing

3.7.3 Right Justified

Right justified (RJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock running at 64 × Fs is used to clock in the data. The first bit of data appears on the data 8-bit clock periods (for

24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before

L/RCLK transitions. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5518 masks unused leading data bit positions.

2-Channel Right-Justified (Sony Format) Stereo Input

32 Clks 32 Clks

LRCLK

Left Channel

Right Channel

SCLK

MSB

24-Bit Mode

23 22 19 18 15 14

LSB MSB

1 0 23 22 19 18 15 14

20-Bit Mode

19 18 15 14 1 0

16-Bit Mode

15 14 1 0

NOTE: All data presented in 2s complement form with MSB first.

Figure 3−11. Right Justified 64 Fs Format

19 18 15 14

15 14

LSB

1 0

1 0

1 0

54

TAS5518 SLES115 — August 2004

I

2

C Serial Control Interface (Slave Address 0x36)

4 I

2

C Serial Control Interface (Slave Address 0x36)

The TAS5518 has a bidirectional I

2

C interface that compatible with the I

2

C (Inter IC) bus protocol and supports both 100 Kbps and 400 Kbps data transfer rates for single and multiple byte write and read operations. This is a slave only device that does not support a multi-master bus environment or wait state insertion. The control interface is used to program the registers of the device and to read device status.

The TAS5518 supports the standard-mode I

2

C bus operation (100 kHz maximum) and the fast I

2

C bus operation (400 kHz maximum). The TAS5518 performs all I

2

C operations without I

2

C wait cycles.

4.1

General I

2

C Operation

The I

2

C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially one bit at a time. The address and data can be transferred in byte (8-bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the clock is high to indicate a start and stop conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop.

Normal data bit transitions must occur within the low time of the clock period. These conditions are shown in

Figure 4−1. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication

with another device and then wait for an acknowledge condition. The TAS5518 holds SDA low during acknowledge clock period to indicate an acknowledgement. When this occurs, the master transmits the next byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the SDA and SCL signals to set the high level for the bus.

SDA

7 Bit Slave Address

R/

W

A 8 Bit Register Address (N) A

8 Bit Register Data For

Address (N)

A

8 Bit Register Data For

Address (N)

A

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

SCL

Start Stop

Figure 4−1. Typical I

2

C Sequence

There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence

is shown in Figure 4−1.

The 7-bit address for the TAS5518 is 0011011.

4.2

Single and Multiple Byte Transfers

The serial control interface supports both single-byte and multiple-byte read / write operations for status registers and the general control registers associated with the PWM. However, for the DAP data processing registers, the serial control interface supports only multiple byte (4 byte) read / write operations.

During multiple byte read operations, the TAS5518 responds with data, a byte at a time, starting at the subaddress assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does not contain 32 bits, the unused bits are read as logic 0.

During multiple byte write operations, the TAS5518 compares the number of bytes transmitted to the number of bytes that are required for each specific sub address. If a write command is received for a biquad subaddress, the TAS5518 expects to receive five 32-bit words. If fewer than five 32-bit data words have been received when a stop command (or another start command) is received, the data received is discarded.

Similarly, if a write command is received for a mixer coefficient, the TAS5518 expects to receive one 32-bit word.

SLES115 — August 2004 TAS5518

55

I

2

C Serial Control Interface (Slave Address 0x36)

Supplying a subaddress for each subaddress transaction is referred to as random I

2

C addressing. The

TAS5518 also supports sequential I

2

C addressing. For write transactions, if a subaddress is issued followed by data for that subaddress and the fifteen subaddresses that follow, a sequential I

2

C write transaction has taken place, and the data for all 16 subaddresses is successfully received by the TAS5518. For I

2

C sequential write transactions, the subaddress then serves as the start address and the amount of data subsequently transmitted, before a stop or start is transmitted, determines how many subaddresses are written. As was true for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; just the incomplete data is discarded.

4.3

Single Byte Write

As shown in Figure 4−2, a single byte data write transfer begins with the master device transmitting a start

condition followed by the I

2

C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit will be a 0. After receiving the correct I

2

C device address and the read/write bit, the TAS5518 device responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to the TAS5518 internal memory address being accessed.

After receiving the address byte, the TAS5518 again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5518 again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single byte data write transfer.

Start

Condition Acknowledge Acknowledge Acknowledge

A6 A5 A4 A3 A2 A1 A0 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK

I

2

C Device Address and

Read/Write Bit

Sub-Address

Figure 4−2. Single Byte Write Transfer

Data Byte

Stop

Condition

4.4

Multiple Byte Write

A multiple byte data write transfer is identical to a single byte data write transfer except that multiple data bytes

are transmitted by the master device to TAS5518 as shown in Figure 4−3. After receiving each data byte, the

TAS5518 responds with an acknowledge bit.

Start

Condition

Acknowledge Acknowledge Acknowledge Acknowledge Acknowledge

A6 A5 A1 A0 R/W ACK A7 A6 A5 A4 A3 A1 A0 ACK D7 D0 ACK D7 D0 ACK D7 D0 ACK

I

2

C Device Address and

Read/Write Bit

Sub-Address First Data Byte

Figure 4−3. Multiple Byte Write Transfer

Other Data Bytes

Last Data Byte

Stop

Condition

4.5

Incremental Multiple Byte Write

The I

2

C supports a special mode which permits I

2 operations that are composed of a device address, read/write bit, and subaddress and any multiple of 4 bytes of data. This permits the system to incrementally write large register values without blocking other I

2

C transactions.

C write operations to be broken up into multiple data write operations that are multiples of 4 data bytes. These are 6 byte, 10 byte, 14 byte, 18 byte, ... etc., write

This feature is enabled by the append subaddress function in the TAS5518. This function enables the

TAS5518 to append 4 bytes of data to a register that was opened by a previous I

2

C register write operation but has not received its complete number of data bytes. Since the length of the long registers is a multiple of

4 bytes, using 4-byte transfers will have only an integer number of append operations.

56

TAS5518 SLES115 — August 2004

I

2

C Serial Control Interface (Slave Address 0x36)

When the correct number of bytes has been received, the TAS5518 starts processing the data.

The procedure to perform an incremental multi-byte write operation is as follows:

1. Start a normal I

2

C write operation by sending the device address, write bit, register subaddress, and the first four bytes of the data to be written. At the end of that sequence, send a stop condition. At this point, the register has been opened and accepts the remaining data that is sent by writing 4-byte blocks of data to the append subaddress (0xFE).

2. At a later time, one or more append data transfers are performed to incrementally transfer the remaining number of bytes in sequential order to complete the register write operation. Each of these append operations will be composed of the device address, write bit, append subaddress (0xFE), and four bytes of data followed by a stop condition.

3. The operation will be terminated due to an error condition and the data will be flushed: a. If a new subaddress is written to the TAS5518 before the correct number of bytes have been written.

b. If more or less than 4 bytes are data written at the beginning or during any of the append operations.

c. If a read bit is sent.

4.6

Single Byte Read

As shown in Figure 4−4, a single byte data read transfer begins with the master device transmitting a start

condition followed by the I

2

C device address and the read/write bit. For the data read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the read/write bit will be a 0. After receiving the TAS5518 address and the read/write bit, the TAS5518 responds with an acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the TAS5518 address and the read/write bit again. This time the read/write bit will be a 1, indicating a read transfer. After receiving the TAS5518 and the read/write bit the TAS5518 again responds with an acknowledge bit. Next, the

TAS5518 transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not acknowledge followed by a stop condition to complete the single byte data read transfer.

Start

Condition Acknowledge

Repeat Start

Condition

Acknowledge Acknowledge

Not

Acknowledge

A6 A5 A1 A0 R/W ACK A7 A6 A5 A4 A0 ACK A6 A5 A1 A0 R/W ACK D7 D6 D1 D0 ACK

I

2

C Device Address and

Read/Write Bit

Sub-Address I

2

C Device Address and

Read/Write Bit

Figure 4−4. Single Byte Read Transfer

Data Byte

Stop

Condition

4.7

Multiple Byte Read

A multiple byte data read transfer is identical to a single byte data read transfer except that multiple data bytes

are transmitted by the TAS5518 to the master device as shown in Figure 4−5. Except for the last data byte,

the master device responds with an acknowledge bit after receiving each data byte.

Start

Condition Acknowledge

Repeat Start

Condition

Acknowledge Acknowledge Acknowledge Acknowledge

Not

Acknowledge

A6 A0 R/W ACK

A7 A6 A5

A0 ACK A6 A0 R/W ACK D7 D0 ACK D7 D0 ACK D7 D0 ACK

I

2

C Device Address and

Read/Write Bit

Sub-Address I

2

C Device Address and

Read/Write Bit

First Data Byte

Figure 4−5. Multiple Byte Read Transfer

Other Data Bytes Last Data Byte

Stop

Condition

SLES115 — August 2004 TAS5518

57

I

2

C Serial Control Interface (Slave Address 0x36)

58

TAS5518 SLES115 — August 2004

Serial Control I

2

C Register Summary

5 Serial Control I

2

C Register Summary

The TAS5518 slave address is 0x36. See the Serial Control I

2

bit definitions.

C Register Bit Definitions chapter for complete

Note that u indicates unused bits.

I

2

C

SUBADDRESS

0x00

0x01

0x02

0x03

0x04

0x05 – 0x0C

0x0D

0x0E

0x0F

0x10 – 0x13

0x14

0x15

0x16

TOTAL

BYTES

1

1

1

1

1

1

1

1

1

1

1

1

REGISTER FIELDS

Clock control register

DESCRIPTION OF CONTENTS

Set data rate and MCLK frequency

DEFAULT STATE

1. Fs = 48 kHz

2. MCLK = 256 Fs = 12.288 MHz

0x01 General status register

Error status register

Clip indicator and ID code for the

TAS5518

PLL, SCLK, LRCLK, and frame slip errors

No errors

System control register 1

System control register 2

Channel configuration registers

Headphone configuration register

Serial data interface register

Soft mute register

Automute control

Automute PWM threshold and backend reset period

Modulation limit register

PWM high pass, clock set, un-mute select, PSVC select

Automute and de-emphasis control

Configure channels 1, 2, 3, 4, 5, 6, 7, and 8

Configure headphone output

1. PWM high pass disabled

2. Auto clock set

3. Hard un-mute on clock error recovery

4. PSVC HIZ disable

1. Automute timeout disable

2. Post-DAP detection automute enabled

3. 8-Ch device input detection automute enabled

4. Un-mute threshold 6 dB over input

5. No de-emphasis

1. Enable backend reset

2. Valid low for reset

3. Valid low for mute

4. Normal BEPolarity

5. Don’t remap the output for the

TAS5182

6. Don’t go low-low in mute

7. Don’t remap Hi-Z state to low-low state

1. Disable backend reset sequence

2 Valid does not have to be low for reset

3. Valid does not have to be low for mute

4. Normal BEPolarity

5. Don’t remap output to comply with 5182

6. Don’t go low-low in mute

7. Don’t remap Hi−Z state to low-low state

24-bit I2S Set serial data interface to right justified, I2S, or left justified

Soft mute for channels 1, 2, 3, 4, 5, 6,

7, and 8

RESERVED

Set auto-mute delay and threshold

Set PWM auto-mute threshold, set backend reset period

Set modulation index

Un-mute all channels

1. Set auto-mute delay = 5 ms

2. Set auto-mute threshold less than bit 8

1. Set the PWM threshold the same as the TAS5518 input threshold

2. Set backend reset period = 5 ms

97.7%

SLES115 — August 2004 TAS5518

59

Serial Control I

2

C Register Summary

I

2

C

SUBADDRESS

0x17−0x1A

0x1B–0x22

0x23

0x24−0x3F

0x40

0x41–0x48

0x49

0x4A

0x4B

0x4C

0x4D

0x4E

0x4F

0x50

0x51–0x88

0x89–0x90

0x91

0x92

0x93

0x94

0x96

0x97

TOTAL

BYTES

1/Reg.

1

4

32/Reg

4

4

4

4

4

4

4

4

REGISTER FIELDS

Inter-channel delay registers

Inter-channel offset

Bank switching command register

See the Input Mixer Registers

(0x41 – 0x48, Channels 1 – 8)

section

20/Reg. See the next section

8

4

8

4

8

4

4 ipmix_1_to_ch8 ipmix_2_to_ch8 ipmix_7_to_ch2

Ch7_bp_bq2

Ch7_bq2 ipmix_8_to_ch12

Ch8_bp_bq2

Ch8_bq2

Bass and Treble Bypass

Ch 1 − 8

Loudness Log2 LG

Loudness Log2 LO

Loudness G

Loudness O

DRC1 control channels 1, 2, 3,

4, 5, 6, and 7

DRC2 Ch 8 Control

DESCRIPTION OF CONTENTS DEFAULT STATE

RESERVED

Set inter-channel delay

Channel 1 delay = −23 DCLK periods

Channel 2 delay = 0 DCLK periods

Channel 3 delay = −16 DCLK periods

Channel 4 delay = +16 DCLK periods

Channel 5 delay = −24 DCLK periods

Channel 6 delay = 8 DCLK periods

Channel 7 delay = −8 DCLK periods

Channel 8 delay = 24 DCLK periods

Minimum absolute default = 0

DCLK periods

Absolute delay offset for channel 1

(0 – 255)

RESERVED

Set up DAP coefficients bank switching for banks 1, 2, and 3

Manual selection – Bank 1

8X8 input crossbar mixer setup

SDIN1−Left to input mixer 1

SDIN1−Right to input mixer 2

SDIN2−Left to input mixer 3

SDIN2−Right to input mixer 4

SDIN3−Left to input mixer 5

SDIN3−Right to input mixer 6

SDIN4−Left to input mixer 7

SDIN4−Right to input mixer 8

Input mixer 1 to Ch 8 mixer coefficient 0.0

Input mixer 1 to Ch 8 mixer coefficient 0.0

Input mixer 7 to Ch 2 mixer coefficient 0.0

Bypass Ch 7 biquad 2 coefficient 0.0

Ch 7 biquad 2 coefficient

Ch 8 biquad 2 output to Ch1 mixer and Ch2 mixer coefficient

1.0

0.0

Bypass Ch 8 biquad 2 coefficient 0

Ch 8 biquad 2 coefficient

Channels 1, 2, 3, 4, 5, 6, 7, and 8 biquad filter coefficients

Bypass bass and treble for channels 1−8

Loudness Log2 LG

Loudness Log2 LO

Loudness G

Loudness O

Loudness biquad coefficient b0

Loudness biquad coefficient b1

Loudness biquad coefficient b2

Loudness biquad coefficient a0

Loudness biquad coefficient a1

DRC1 control channels 1, 2, 3, 4, 5, 6, and 7

DRC1 control channel 8

0.0

1.0

All biquads = All pass for all channels

Bass and treble bypassed for all channels

0.5

0.0

0.0

0.0

0x00, 0x00, 0xD5, 0x13

0x00, 0x00, 0x00, 0x00

0x0F, 0xFF, 0x2A, 0xED

0x00, 0xFE, 0x50, 0x45

0x0F, 0x81, 0xAA, 0x27

DRC1 disabled in channels 1, 2, 3,

4, 5, 6, and 7

DRC2 disabled (channel 8)

60

TAS5518 SLES115 — August 2004

Serial Control I

2

C Register Summary

I

2

C

SUBADDRESS

TOTAL

BYTES

0x9A 12

REGISTER FIELDS DESCRIPTION OF CONTENTS DEFAULT STATE

Channels 1, 2, 3, 4, 5, 6, and 7,

DRC1 energy

Channels 1, 2, 3, 4, 5, 6, and 7,

DRC1 (1− energy)

DRC1 energy

DRC1 (1 energy)

0.0041579

0.9958421

Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 threshold (T1) – upper 4 bytes 0x00, 0x00, 0x00, 0x00

DRC1 threshold T1

DRC1 threshold (T1) – lower 4 bytes 0x0B, 0x20, 0xE2, 0xB2

Channels 1, 2, 3, 4, 5, 6, and 7 DRC1 threshold (T2) – upper 4 bytes 0x00, 0x00, 0x00, 0x00

DRC1 thresholdT2

DRC1 threshold (T2) – lower 4 bytes 0x06, 0xF9, 0xDE, 0x58

DRC1 slope (k0) 0x0F, 0xC0, 0x00, 0x00 Channels 1, 2, 3, 4, 5, 6, and 7

, DRC1 slope k0

Channels 1, 2, 3, 4, 5, 6, and 7,

DRC1 slope k1

Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 slope k2

DRC1 slope (k1)

DRC1 slope (k2)

0x0F, 0xC0, 0x00, 0x00

0x0F, 0x90, 0x00, 0x00

Channels 1, 2, 3, 4, 5, 6, and 7 DRC1 offset 1 (O1) – upper 4 bytes

DRC1 offset 1

DRC1 offset 1 (O1) – lower 4 bytes

Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 offset 2 (O2) – upper 4 bytes

DRC1 offset 2

DRC1 offset 2 (O2) – lower 4 bytes

DRC1 attack Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 attack

Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 (1− Attack)

Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 Delay

Channels 1, 2, 3, 4, 5, 6, and 7

DRC1 (1− Delay)

DRC1 (1 – Attack)

DRC1 delay

DRC1 (1 – Delay)

0x00, 0x00, 0xFF, 0xFF

0xFF, 0x82, 0x30, 0x98

0x00, 0x00, 0x00, 0x00

0x01, 0x95, 0xB2, 0xC0

0x00, 0x00, 0x88, 0x3F

0x00, 0x7F, 0x77, 0xC0

0x00, 0x00, 0x00, 0xAE

0x00, 0x7F, 0xFF, 0x51

Ch 8 DRC2 energy

Ch 8 DRC2 (1− Energy)

Ch 8 DRC2 slope k0

Ch 8 DRC2 slope k1

Ch 8 DRC2 slope k2

Ch 8 DRC2 attack

Ch 8 DRC2 (1− Attack)

Ch 8 DRC2 Delay

Ch 8 DRC2 (1− Delay)

DRC bypass 1

DRC inline 1

DRC bypass 2

DRC inline 2

DRC2 energy

DRC2 (1 – Energy)

0x00, 0x00, 0x88, 0x3F

0x00, 0x7F, 0x77, 0xC0

DRC2 threshold (T1) – upper 4 bytes 0x00, 0x00, 0x00, 0x00

DRC2 threshold (T1) – lower 4 bytes 0x0B, 0x20, 0xE2, 0xB2

DRC2 threshold (T2) – upper 4 bytes 0x00, 0x00, 0x00, 0x00

DRC2 threshold (T2) – lower 4 bytes 0x06, 0xF9, 0xDE, 0x58

DRC2 slope (k0)

DRC2 slope (k1)

DRC2 slope (k2)

DRC2 offset (O1) – upper 4 bytes

DRC2 offset (O1) – lower 4 bytes

DRC2 offset (O2) – upper 4 bytes

DRC2 offset (O2) – lower 4 bytes

0x00, 0x40, 0x00, 0x00

0x0F, 0xC0, 0x00, 0x00

0x0F, 0x90, 0x00, 0x00

0x00, 0x00, 0xFF, 0xFF

0xFF, 0x82, 0x30, 0x98

0x00, 0x00, 0x00, 0x00

0x01, 0x95, 0xB2, 0xC0

DRC 2 attack

DRC2 (1 – Attack)

DRC2 delay

DRC2 (1 – Delay)

Channel 1 DRC1 bypass coefficient

Channel 1 DRC1 inline coefficient

Channel 2 DRC1 bypass coefficient

Channel 2 DRC1 inline coefficient

0x00, 0x00, 0x88, 0x3F

0x00, 0x7F, 0x77, 0xC0

0x00, 0x00, 0x00, 0xAE

0x00, 0x7F, 0xFF, 0x51

1.0

0.0

1.0

0.0

SLES115 — August 2004 TAS5518

61

Serial Control I

2

C Register Summary

I

2

C

SUBADDRESS

TOTAL

BYTES

0xAA

0xAB

0xAC

0xAD

0xAE

0xAF

0xB0

0xB1

0xB2–0xCE

0xCF

0xD0

0xD7

0xD8

0xD9

OXDA

0xDB

0xDC

0xDD

0xDE

0xD1

0xD2

0xD3

0xD4

0xD5

0xD6

8

8

8

8

8

8

12

12

20

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

REGISTER FIELDS

DRC bypass 3

DRC inline 3

DRC bypass 4

DRC inline 4

DRC bypass 5

DRC inline 5

DRC bypass 6

DRC inline 6

DRC bypass 7

DRC inline 7

DRC bypass 8

DRC inline 8 sel op1−8 and mix to S sel op1−8 and mix to T sel op1−8 and mix to U sel op1−8 and mix to V sel op1−8 and mix to W sel op1−8 and mix to X sel op1−8 and mix to Y sel op1−8 and mix to Z

Volume biquad

Vol, T and B slew rates

Ch1 volume

Ch2 volume

Ch3 volume

Ch4 volume

Ch5 volume

Ch6 volume

Ch7 volume

Ch8 volume

Master volume

Bass filter set (1−5)

Bass filter index

Treble filter set (1−5)

Treble filter index

AM mode and tuned frequency register

DESCRIPTION OF CONTENTS

Channel 3 DRC1 bypass coefficient

Channel 3 DRC1 inline coefficient

Channel 4 DRC1 bypass coefficient

Channel 4 DRC1 inline coefficient

Channel 5 DRC1 bypass coefficient

Channel 5 DRC1 inline coefficient

Channel 6 DRC1 bypass coefficient

Channel 6 DRC1 inline coefficient

Channel 7 DRC1 bypass coefficient

Channel 7 DRC1 inline coefficient

Channel 8 DRC2 bypass coefficient

Channel 8 DRC2 inline coefficient

Select 0 to 2 of eight channels to output mixer S

Select 0 to 2 of eight channels to output mixer T

Select 0 to 2 of eight channels to output mixer U

Select 0 to 2 of eight channels to output mixer V

Select 0 to 2 of eight channels to output mixer W

Select 0 to 2 of eight channels to output mixer X

Select 0 to 3 of eight channels to output mixer Y

Select 0 to 3 of eight channels to output mixer Z

RESERVED

Volume biquad

U (31:24), U (23:16), U (15:12)

VSR(11:8), TBSR(7:0)

Channel 1 volume

Channel 2 volume

Channel 3 volume

Channel 4 volume

Channel 5 volume

Channel 6 volume

Channel 7 volume

Channel 8 volume

Master volume

Bass filter set (all channels)

Bass filter level (all channels)

Treble filter set (all channels)

Treble filter level (all channels)

Set-up AM mode for AM-interference reduction

DEFAULT STATE

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

Select channel 1 to PWM 1

Select channel 2 to PWM 2

Select channel 3 to PWM 3

Select channel 4 to PWM 4

Select channel 5 to PWM 5

Select channel 6 to PWM 6

Select channel 7 to PWM 7

Select channel 8 to PWM 8

All pass

0x00, 0x00, 0x01, 0x3F

0 dB

0 dB

0 dB

0 dB

0 dB

0 dB

0 dB

0 dB

Mute

Filter set 3

0 dB

Filter set 3

0 dB

AM mode disabled

Select sequence 1

IF frequency = 455 kHz

Use BCD-tuned frequency

62

TAS5518 SLES115 — August 2004

I

2

C

SUBADDRESS

0xDF

0xE0

TOTAL

BYTES

4

4

REGISTER FIELDS

PSVC control range

General control register

0xE1–0xFD

0xFE

0xFF

4 (min) Multiple byte write append register

Serial Control I

2

C Register Summary

DESCRIPTION OF CONTENTS

Set PSVC control range

Six or eight channel configuration,

PSVC enable

RESERVED

Special register

RESERVED

DEFAULT STATE

12-dB control range

Eight channel configuration Power supply volume control disabled

N/A

SLES115 — August 2004 TAS5518

63

Serial Control I

2

C Register Summary

64

TAS5518 SLES115 — August 2004

1

1

1

1

D7

0

0

0

0

Serial Control Interface Register Definitions

6 Serial Control Interface Register Definitions

Unless otherwise noted, the I

2

C register default values are in bold font.

Note that u indicates unused bits.

6.1

Clock Control Register (0x00)

Bit D1 is Don’t Care.

1

0

1

0

0

1

0

1

D2

1

0

0

1

0

0

1

1

D3

1

1

1

1

0

0

0

0

D4

1

1

0

0

D6

0

0

1

1

0

1

0

1

D5

0

1

0

1

Table 6−1. Clock Control Register

D1 D0

32-kHz data rate

38-kHz data rate

44.1-kHz data rate

48-kHz data rate

1

0

FUNCTION

88.2-kHz data rate

96-kHz data rate

176.4-kHz data rate

192-kHz data rate

MCLK frequency = 64

MCLK frequency = 128

MCLK frequency = 192

MCLK frequency = 256

MCLK frequency = 384

MCLK frequency = 512

MCLK frequency = 768

Reserved

Clock register is valid (read only)

Clock register is not valid (read only)

6.2

General Status Register 0 (0x01)

D7

1

D6

1

D5

0

D4

0

D3

0

D2

0

Table 6−2. General Status Register (0x01)

D1

0

D0

1

Clip indicator

Bank switching busy

Identification code for TAS5518

FUNCTION

D7

1

0

6.3

Error Status Register (0x02)

Note that the error bits are sticky bits that are not cleared by the hardware. This means that the software must clear the register (write zeroes) and than read them to determine if there are any persistent errors.

D6

1

0

D5

1

0

D4

1

0

D3

1

0

D2

0

Table 6−3. Error Status Register (0X02)

D1 D0 FUNCTION

0

0

PLL phase lock error

PLL auto lock error

SCLK error

LRCLK error

Frame slip

No errors

SLES115 — August 2004 TAS5518

65

Serial Control Interface Register Definitions

D7

0

1

6.4

System Control Register 1 (0x03)

Bit D5, D2, D1, and D0 are Don’t Care.

D6

D5 D4

0

1

D3

1

0

D2

Table 6−4. System Control Register 1

D1 D0 FUNCTION

PWM high pass disabled

PWM high pass enabled

Soft unmute on recovery from clock error

Hard unmute on recovery from clock error

PSVC Hi-Z enable

PSVC Hi-Z disable

6.5

System Control Register 2 (0x04)

D7

0

Bit D3 and D2 are Don’t Care.

D6

0

1

D5

0

1

D4

0

1

D3 D2

Table 6−5. System Control Register 2

D1

0

1

0

1

D0

− Reserved

FUNCTION

− PWM automute detection enabled

− PWM automute detection disabled

− 8 Ch device input detection automute enabled

− 8 Ch device input detection automute disabled

− Unmute threshold 6 dB over input threshold

− Unmute threshold equal to input threshold

0 No de-emphasis

1 De-emphasis for Fs = 32 kHz

0 De-emphasis for Fs = 44.1 kHz

1 De-emphasis for Fs = 48 kHz

D7

0

1

6.6

Channel Configuration Control Register (0x05−X0C)

Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into x05, x06, x07, x08, x09, x0A, x0B, and x0C.

Bit D0 is Don’t Care.

D6

0

1

0

1

D5

0

1

D4

Table 6−6. Channel Configuration Control Registers

0

1

D3

0

1

D1

0

1

D2

D0 FUNCTION

Disable backend reset sequence for a channel − BEErrorRecEn

Enable backend reset sequence for a channel

Valid does not have to be low for this channel to be reset BEValidRst

Valid must be low for this channel to be reset

Valid does not have to be low for this channel to be muted BEValidMute

Valid must be low for this channel to be muted

Normal BEPolarity

Switches PWM+ and PWM− and invert audio signal

Do not remap output to comply with 5182 interface

Remap output to comply with 5182 interface

Do not go to low low in mute − BELowMute

Go to low-low in Mute

Do not remap Hi-Z state to low-low state − BE5111BsMute

Remap Hi-Z state to low-low state

66

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

D7

0

1

6.7

Headphone Configuration Control Register (0x0D)

Bit D0 is Don’t Care.

D6

1

0

D5

0

1

1

D4

0

1

0

D3

Table 6−7. Headphone Configuration Control Register

0

1

D1

0

1

D2

D0 FUNCTION

Disable backend reset sequence for a channel − BEErrorRecEn

Enable backend reset sequence for a channel

Valid does not have to be low for this channel to be reset BEValidRst

Valid must be low for this channel to be reset

Valid does not have to be low for this channel to be muted BEValidMute

Valid must be low for this channel to be muted

Normal BEPolarity

Switches PWM+ and PWM− and invert audio signal

Do not remap output to comply with 5182 interface

Remap output to comply with 5182 interface

Do not go to low low in mute − BELowMute

Go to low-low in Mute

Do not remap Hi-Z state to low-low state − BE5111BsMute

Remap Hi-Z state to low-low state

6.8

Serial Data Interface Control Register (0x0E)

Nine serial modes can be programmed I

2

C.

Table 6−8. Serial Data Interface Control Register Format

RECEIVE SERIAL DATA

INTERFACE FORMAT

Right justified

Right justified

Right justified

I

2

S

I

2

S

I

2

S

Left justified

Left justified

Left justified

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

WORD LENGTHS

16

20

24

16

20

24

16

20

24

D7−D4

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

D3 D2 D1

1

1

1

1

1

0

0

1

1

1

0

0

0

0

0

0

1

1

0

1

1

1

1

0

0

0

1

1

0

0

0

0

0

1

1

0

1

1

1

0

0

1

0

0

1

1

0

0

D0

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

SLES115 — August 2004 TAS5518

67

Serial Control Interface Register Definitions

6.9

Soft Mute Register (0x0F)

0

1

D5

1

0

D6

1

0

D7

0

1

D4

Table 6−9. Soft Mute Register

0

D0

1

0

D1

1

0

1

D2

0

1

D3

Function

Soft Mute Channel 1

Soft Mute Channel 2

Soft Mute Channel 3

Soft Mute Channel 4

Soft Mute Channel 5

Soft Mute Channel 6

Soft Mute Channel 7

Soft Mute Channel 8

Unmute All Channels

6.10 Automute Control Register(0x14)

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

D7

1

1

1

0

0

1

0

0

0

0

1

1

1

1

0

0

D6

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0

D5

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

D4

1

1

1

1

1

1

1

1

0

0

0

D3

0

0

0

0

0

1

1

0

1

1

0

0

0

1

1

1

D2

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

1

D1

0

0

1

1

0

Table 6−10. Automute Control Register

D0 FUNCTION

0 Set input automute and PWM automute delay to 1 ms

1 Set input automute and PWM automute delay to 2 ms

0 Set input automute and PWM automute delay to 3 ms

1 Set input automute and PWM automute delay to 4 ms

0 Set input automute and PWM automute delay to 5 ms

1 Set input automute and PWM automute delay to 10 ms

0 Set input automute and PWM automute delay to 20 ms

1 Set input automute and PWM automute delay to 30 ms

0 Set input automute and PWM automute delay to 40 ms

1 Set input automute and PWM automute delay to 50 ms

0 Set input automute and PWM automute delay to 60 ms

1 Set input automute and PWM automute delay to 70ms

0 Set input automute and PWM automute delay to 80 ms

1 Set input automute and PWM automute delay to 90 ms

0 Set input automute and PWM automute delay to 100 ms

1 Set input automute and PWM automute delay to 110 ms

Set input automute threshold less than Bit 1 (zero input signal), lowest automute threshold.

− Set input automute threshold less than Bit 2

− Set input automute threshold less than Bit 3

− Set input automute threshold less than Bit 4

− Set input automute threshold less than Bit 5

− Set input automute threshold less than Bit 6

− Set input automute threshold less than Bit 7

− Set input automute threshold less than Bit 8

− Set input automute threshold less than Bit 9

− Set input automute threshold less than Bit 10

− Set input automute threshold less than Bit 11

− Set input automute threshold less than Bit 12

− Set input automute threshold less than Bit 13

− Set input automute threshold less than Bit 14

− Set input automute threshold less than Bit 15

68

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

D7

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

D6

1

1

0

0

0

1

1

1

1

0

0

1

1

0

0

0

D5

1

1

0

1

1

0

0

1

1

0

1

0

0

0

0

1

6.11 Automute PWM Threshold and Backend Reset Period (0x15)

D4

Table 6−11. Automute PWM Threshold and Backend Reset Period

D3 D2 D1 D0 FUNCTION

0

0

0

0

0

0

0

1

1

0

1

1

1

1

1

0

0

0

0

1

0

1

1

0

1

X

0

0

1

0

0

1

1

0

0

1

0

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

− Set PWM automute threshold equals input automute threshold

− Set PWM automute threshold 1 bit more than input automute threshold

− Set PWM automute threshold 2 bits more than input automute threshold

− Set PWM automute threshold 3 bits more than input automute threshold

− Set PWM automute threshold 4 bits more than input automute threshold

− Set PWM automute threshold 5 bits more than input automute threshold

− Set PWM automute threshold 6 bits more than input automute threshold

− Set PWM automute threshold 7 bits more than input automute threshold

− Set PWM automute threshold equals input automute threshold

− Set PWM automute threshold 1 bit less than input automute threshold

− Set PWM automute threshold 2 bits less than input automute threshold

− Set PWM automute threshold 3 bits less than input automute threshold

− Set PWM automute threshold 4 bits less than input automute threshold

Set PWM automute threshold 5 bits less than input automute threshold

Set PWM automute threshold 6 bits less than input automute threshold

Set PWM automute threshold 7 bits less than input automute threshold

0 Set backend reset period < 1 ms

1 Set backend reset period 1 ms

0 Set backend reset period 2 ms

1 Set backend reset period 3 ms

0 Set backend reset period 4 ms

1 Set backend reset period 5 ms

0 Set backend reset period 6 ms

1 Set backend reset period 7 ms

0 Set backend reset period 8 ms

1 Set backend reset period 9 ms

0 Set backend reset period 10 ms

1 Set backend reset period 10 ms

X Set backend reset period 10 ms

SLES115 — August 2004 TAS5518

69

Serial Control Interface Register Definitions

6.12 Modulation Index Limit Register (0x16)

D7 D6 D5 D4

Table 6−12. Modulation Index Limit Register

D3 D2 D1 D0

LIMIT

[DCLKS]

MIN WIDTH

[DCLKS]

0

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

4

5

6

7

8

1

2

3

8

10

12

14

16

2

4

6

MODULATION INDEX

99.2%

98.4%

97.7%

96.9%

96.1%

95.3%

94.5%

93.8%

D7

1

0

1

0

0

1

0

1

0

1

0

6.13 Interchannel Channel Delay Registers (0x1B − 0x22) and Offset Register (0x23)

Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into (0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, and 0x22).

Bits D1 and D0 are Don’t Care.

D6

0

0

1

0

1

0

1

0

0

1

1

D5

0

0

0

0

1

0

0

1

1

1

1

D3

0

0

0

0

1

0

0

0

0

0

0

D4

0

0

0

0

1

0

0

0

0

0

0

Table 6−13. Interchannel Channel Delay Registers

D2 D1 D0 FUNCTION

0

0

0

0

0

0

0

0

0

1

0

Minimum absolute delay, 0 DCLK cycles, default for channel 1

Maximum positive delay, 31 x 4 DCLK cycles

Maximum negative delay, −32 x 4 DCLK cycles

Default value for Channel 1 −32

Default value for Channel 2 0

Default value for Channel 3 −16

Default value for Channel 4 16

Default value for Channel 5 −24

Default value for Channel 6 8

Default value for Channel 7 −8

Default value for Channel 8 24

D7

0

1

The offset register is mapped into 0x23.

D6

0

1

D5

0

1

D4

0

1

D3

0

1

D2

0

1

Table 6−14. Channel Offset Register

D1 D0 FUNCTION

0

1

0

1

Minimum absolute offset, 0 DCLK cycles default for channel 1

Maximum absolute delay, 255 DCLK cycles

70

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

6.14 Bank Switching Command (0x40)

Bits D31−D24, D22−D19 are Don’t Care.

Table 6−15. Bank Switching Command

D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION

Unused bits

D23 D22 D21 D20 D19 D18 D17 D16

− 0 0 0

FUNCTION

Manual selection Bank 1

0

0

0

0

0

1

1

1

1 x

0

1

1

0

0

1

1 x

1 Manual selection Bank 2

0 Manual selection Bank 3

1 Automatic bank selection

0 Update the values in Bank 1

1

0

1 x

Update the values in Bank 2

Update the values in Bank 3

Update only the bank map

Update the bank map using values in

D15−D0

1 x x x Do not update the bank map using values in D15−D0

1

D15 D14 D13 D12 D11 D10 D9

1

1

1

1

1

1

1

1

1

1

1

1

1

D8 FUNCTION

− 32-kHz data rate – Use Bank 1

− 38-kHz data rate – Use Bank 1

− 44.1-kHz data rate – Use Bank 1

− 48-kHz data rate – Use Bank 1

− 88.2-kHz data rate – Use Bank 1

− 96-kHz data rate – Use Bank 1

− 176.4-kHz data rate – Use Bank 1

1 192-kHz data rate – Use Bank 1

1 Default

D7

1

1

D6

1

1

D5

1

1

D4

1

1

D3

1

1

D2

1

1

D1

1

1

D0 FUNCTION

− 32-kHz data rate – Use Bank 2

− 38-kHz data rate – Use Bank 2

− 44.1-kHz data rate – Use Bank 2

− 48-kHz data rate – Use Bank 2

− 88.2-kHz data rate – Use Bank 2

− 96-kHz data rate – Use Bank 2

− 176.4-kHz data rate – Use Bank 2

1 192-kHz data rate – Use Bank 2

1 Default

SLES115 — August 2004 TAS5518

71

Serial Control Interface Register Definitions

6.15 Input Mixer Registers (0x41 – 0x48, Channels 1 − 8)

Input mixers 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into registers 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, and

0x48.

Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper 4 bits not used. For 8-gain coefficients, the total is 32 bytes.

Bold indicates the one channel that is passed through the mixer.

I

2

C

SUBADDRESS

Table 6−16. Input Mixer Registers Format (0x41 – 0x48, Channels 1 − 8)

TOTAL

BYTES

REGISTER

FIELDS

DESCRIPTION OF CONTENTS DEFAULT STATE

A_to_ipmix[1]

B_to_ipmix[1]

C_to_ipmix[1]

D_to_ipmix[1]

E_to_ipmix[1]

F_to_ipmix[1]

G_to_ipmix[1]

H_to_ipmix[1]

A_to_ipmix[2]

B_to_ipmix[2]

C_to_ipmix[2]

D_to_ipmix[2]

E_to_ipmix[2]

F_to_ipmix[2]

G_to_ipmix[2]

H_to_ipmix[2]

SDIN1−Left (Ch 1) A to Input Mixer 1 coefficient (default = 1)

U (31:28), A_1 (27:24), A_1 (23:16), A_1 (15:8), A_1 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 1 coefficient (default = 0)

U (31:28), B_1 (27:24), B_1 (23:16), B_1 (15:8), B_1 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 1 coefficient (default = 0)

U (31:28), C_1 (27:24), C_1 (23:16), C_1 (15:8), C_1 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 1 coefficient (default = 0)

U (31:28), D_1 (27:24), D_1 (23:16), D_1 (15:8), D_1 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 1 coefficient (default = 0)

U (31:28), E_1 (27:24), E_1 (23:16), E_1 (15:8), E_1 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 1 coefficient (default = 0)

U (31:28), F_1 (27:24), F_1 (23:16), F_1 (15:8), F_1 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 1 coefficient (default = 0)

U (31:28), G_1 (27:24), G_1 (23:16), G_1 (15:8), G_1 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 1 coefficient (default = 0)

U (31:28), H_1 (27:24), H_1 (23:16), H_1 (15:8), H_1 (7:0)

SDIN1−Left (Ch 1) A to Input Mixer 2 coefficient (default = 0)

U (31:28), A_2 (27:24), A_2 (23:16), A_2 (15:8), A_2 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 2 coefficient (default = 1)

U (31:28), B_2 (27:24), B_2 (23:16), B_2 (15:8), B_2 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 2 coefficient (default = 0)

U (31:28), C_2(27:24), C_2(23:16), C_2(15:8), C_2(7:0)

SDIN2−Right (Ch 4) D to Input Mixer 2 coefficient (default = 0)

U (31:28), D_2 (27:24), D_2 (23:16), D_2 (15:8), D_2 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 2 coefficient (default = 0)

U (31:28), E_2 (27:24), E_2 (23:16), E_2 (15:8), E_2 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 2 coefficient (default = 0)

U (31:28), F_2 (27:24), F_2 (23:16), F_2 (15:8), F_2 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 2 coefficient (default = 0)

U (31:28), G_2 (27:24), G_2 (23:16), G_2 (15:8), G_2 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 2 coefficient (default = 0)

U (31:28), H_2 (27:24), H_2 (23:16), H_2 (15:8), H_2 (7:0)

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

72

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

I

2

C

SUBADDRESS

TOTAL

BYTES

REGISTER

FIELDS

A_to_ipmix[3]

B_to_ipmix[3]

C_to_ipmix[3]

D_to_ipmix[3]

E_to_ipmix[3]

F_to_ipmix[3]

G_to_ipmix[3]

H_to_ipmix[3]

A_to_ipmix[4]

B_to_ipmix[4]

C_to_ipmix[4]

D_to_ipmix[4]

E_to_ipmix[4]

F_to_ipmix[4]

G_to_ipmix[4]

H_to_ipmix[4]

A_to_ipmix[5]

B_to_ipmix[5]

C_to_ipmix[5]

D_to_ipmix[5]

E_to_ipmix[5]

F_to_ipmix[5]

G_to_ipmix[5]

H_to_ipmix[5]

DESCRIPTION OF CONTENTS

SDIN1−Left (Ch 1) A to Input Mixer 3 coefficient (default = 0)

U (31:28), A_3 (27:24), A_3 (23:16), A_3 (15:8), A_3 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 3 coefficient (default = 0)

U (31:28), B_3 (27:24), B_3 (23:16), B_3 (15:8), B_3 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 3 coefficient (default = 1)

U (31:28), C_3 (27:24), C_3 (23:16), C_3 (15:8), C_3 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 3 coefficient (default = 0)

U (31:28), D_3 (27:24), D_3 (23:16), D_3 (15:8), D_3 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 3 coefficient (default = 0)

U (31:28), E_3 (27:24), E_3 (23:16), E_3 (15:8), E_3 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 3 coefficient (default = 0)

U (31:28), F_3 (27:24), F_3 (23:16), F_3 (15:8), F_3 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 3 coefficient (default = 0)

U (31:28), G_3 (27:24), G_3 (23:16), G_3 (15:8), G_3 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 3 coefficient (default = 0)

U (31:28), H_3 (27:24), H_3 (23:16), H_3 (15:8), H_3 (7:0)

SDIN1−Left (Ch 1) A to Input Mixer 4 coefficient (default = 0)

U (31:28), A_4 (27:24), A_4 (23:16), A_4 (15:8), A_4 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 4 coefficient (default = 0)

U (31:28), B_4 (27:24), B_4 (23:16), B_4 (15:8), B_4 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 4 coefficient (default = 0)

U (31:28), C_4 (27:24), C_4 (23:16), C_4 (15:8), C_4 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 4 coefficient (default = 1)

U (31:28), D_4 (27:24), D_4 (23:16), D_4 (15:8), D_4 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 4 coefficient (default = 0)

U (31:28), E_4 (27:24), E_4 (23:16), E_4 (15:8), E_4 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 4 coefficient (default = 0)

U (31:28), F_4 (27:24), F_4 (23:16), F_4 (15:8), F_4 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 4 coefficient (default = 0)

U (31:28), G_4 (27:24), G_4 (23:16), G_4 (15:8), G_4 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 4 coefficient (default = 0)

U (31:28), H_4 (27:24), H_4 (23:16), H_4 (15:8), H_4 (7:0)

SDIN1−Left (Ch 1) A to Input Mixer 5 coefficient (default = 0)

U (31:28), A_5 (27:24), A_5 (23:16), A_5 (15:8), A_5 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 5 coefficient (default = 0)

U (31:28), B_5 (27:24), B_5 (23:16), B_5 (15:8), B_5 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 5 coefficient (default = 0)

U (31:28), C_5 (27:24), C_5 (23:16), C_5 (15:8), C_5 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 5 coefficient (default = 0)

U (31:28), D_5 (27:24), D_5 (23:16), D_5 (15:8), D_5 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 5 coefficient (default = 1)

U (31:28), E_5 (27:24), E_5 (23:16), E_5 (15:8), E_5 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 5 coefficient (default = 0)

U (31:28), F_5 (27:24), F_5 (23:16), F_5 (15:8), F_5 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 5 coefficient (default = 0)

U (31:28), G_5 (27:24), G_5 (23:16), G_5 (15:8), G_5 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 5 coefficient (default = 0)

U (31:28), H_5 (27:24), H_5 (23:16), H_5 (15:8), H_5 (7:0)

DEFAULT STATE

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

SLES115 — August 2004 TAS5518

73

Serial Control Interface Register Definitions

I

2

C

SUBADDRESS

TOTAL

BYTES

REGISTER

FIELDS

DESCRIPTION OF CONTENTS

A_to_ipmix[6]

B_to_ipmix[6]

C_to_ipmix[6]

D_to_ipmix[6]

E_to_ipmix[6]

F_to_ipmix[6]

G_to_ipmix[6]

H_to_ipmix[6]

A_to_ipmix[7]

B_to_ipmix[7]

C_to_ipmix[7]

D_to_ipmix[7]

E_to_ipmix[7]

F_to_ipmix[7]

G_to_ipmix[7]

H_to_ipmix[7]

A_to_ipmix[8]

B_to_ipmix[8]

C_to_ipmix[8]

D_to_ipmix[8]

E_to_ipmix[8]

F_to_ipmix[8]

G_to_ipmix[8]

H_to_ipmix[8]

SDIN1−Left (Ch 1) A to Input Mixer 6 coefficient (default = 0)

U (31:28), A_6 (27:24), A_6 (23:16), A_6 (15:8), A_6 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 6 coefficient (default = 0)

U (31:28), B_6 (27:24), B_6 (23:16), B_6 (15:8), B_6 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 6 coefficient (default = 0)

U (31:28), C_6 (27:24), C_6 (23:16), C_6 (15:8), C_6 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 6 coefficient (default = 0)

U (31:28), D_6 (27:24), D_6 (23:16), D_6 (15:8), D_6 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 6 coefficient (default = 0)

U (31:28), E_6 (27:24), E_6 (23:16), E_6 (15:8), E_6 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 6 coefficient (default = 1)

U (31:28), F_6 (27:24), F_6 (23:16), F_6 (15:8), F_6 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 6 coefficient (default = 0)

U (31:28), G_6 (27:24), G_6 (23:16), G_6 (15:8), G_6 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 6 coefficient (default = 0)

U (31:28), H_6 (27:24), H_6 (23:16), H_6 (15:8), H_6 (7:0)

SDIN1−Left (Ch 1) A to Input Mixer 7 coefficient (default = 0)

U (31:28), A_7 (27:24), A_7 (23:16), A_7 (15:8), A_7 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 7 coefficient (default = 0)

U (31:28), B_7 (27:24), B_7 (23:16), B_7 (15:8), B_7 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 7 coefficient (default = 0)

U (31:28), C_7 (27:24), C_7 (23:16), C_7 (15:8), C_7 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 7 coefficient (default = 0)

U (31:28), D_7 (27:24), D_7 (23:16), D_7 (15:8), D_7 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 7 coefficient (default = 0)

U (31:28), E_7 (27:24), E_7 (23:16), E_7 (15:8), E_7 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 7 coefficient (default = 0)

U (31:28), F_7 (27:24), F_7 (23:16), F_7 (15:8), F_7 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 7 coefficient (default = 1)

U (31:28), G_7 (27:24), G_7 (23:16), G_7 (15:8), G_7 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 7 coefficient (default = 0)

U (31:28), H_7 (27:24), H_7 (23:16), H_7 (15:8), H_7 (7:0)

SDIN1−Left (Ch 1) A to Input Mixer 8 coefficient (default = 0)

U (31:28), A_8 (27:24), A_8 (23:16), A_8 (15:8), A_8 (7:0)

SDIN1−Right (Ch 2) B to Input Mixer 8 coefficient (default = 0)

U (31:28), B_8 (27:24), B_8 (23:16), B_8 (15:8), B_8 (7:0)

SDIN2−Left (Ch 3) C to Input Mixer 8 coefficient (default = 0)

U (31:28), C_8 (27:24), C_8 (23:16), C_8 (15:8), C_8 (7:0)

SDIN2−Right (Ch 4) D to Input Mixer 8 coefficient (default = 0)

U (31:28), D_8 (27:24), D_8 (23:16), D_8 (15:8), D_8 (7:0)

SDIN3−Left (Ch 5) E to Input Mixer 8 coefficient (default = 0)

U (31:28), E_8 (27:24), E_8 (23:16), E_8 (15:8), E_8 (7:0)

SDIN3−Right (Ch 6) F to Input Mixer 8 coefficient (default = 0)

U (31:28), F_8 (27:24), F_8 (23:16), F_8 (15:8), F_8 (7:0)

SDIN4−Left (Ch 7) G to Input Mixer 8 coefficient (default = 0)

U (31:28), G_8 (27:24), G_8 (23:16), G_8 (15:8), G_8 (7:0)

SDIN4−Right (Ch 8) H to Input Mixer 8 coefficient (default = 1)

U (31:28), H_8 (27:24), H_8 (23:16), H_8 (15:8), H_8 (7:0)

DEFAULT STATE

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

74

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

6.16 Bass Management Registers (0x49 – 0x50)

Registers 0x49 – 0x50 provide configuration control for bass mangement.

Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper four bits not used.

SUBADDRESS

0x49

0x4A

0x4B

0x4C

0x4D

0x4E

0x4F

0x50

TOTAL

BYTES

4

4

4

4

4

4

4

4

Table 6−17. Bass Management Registers Format (0x49 – 0x50)

REGISTER

NAME

DESCRIPTION OF CONTENTS

ipmix_1_to_ch8 Input Mixer 1 to Ch 8 Mixer coefficient (default = 0)

U (31:28), ipmix18 (27:24), ipmix18 (23:16), ipmix18 (15:8), ipmix18 (7:0) ipmix_2_to_ch8 Input Mixer 1 to Ch 8 Mixer coefficient (default = 0)

U (31:28), ipmix28 (27:24), ipmix28 (23:16), ipmix28 (15:8), ipmix28 (7:0) ipmix_7_to_ch12 Input Mixer 7 to Ch 1 and Ch 2 Mixer coefficient (default = 0)

U (31:28), ipmix72 (27:24), ipmix72 (23:16), ipmix72 (15:8), ipmix72 (7:0)

Ch7_bp_bq2 Ch 7 Biquad-2 By-pass coefficient (default = 0)

U (31:28), ch7_bp_bq2 (27:24), ch7_bp_bq2 (23:16), ch7_bp_bq2 (15:8), ch7_bp_bq2 (7:0)

Ch7_bq2 Ch 7 Biquad-2 Inline coefficient (default = 1)

U (31:28), ch6_bq2 (27:24), ch6_bq2 (23:16), ch6_bq2 (15:8), ch6_bq2 (7:0) ipmix_8_to_ch12 Ch 8 Biquad-2 Output to Ch1 Mixer and Ch2 Mixer coefficient

(default = 0)

U (31:28), ipmix8_12 (27:24), ipmix8_12 (23:16), ipmix8_12

(15:8), ipmix8_12 (7:0)

Ch8_bp_bq2 Ch 8 Biquad-2 By-pass coefficient (default = 0)

0U (31:28), ch8_bp_bq2 (27:24), ch8_bp_bq2 (23:16), ch8_bp_bq2 (15:8), ch8_bp_bq2 (7:0)

Ch8_bq2 Ch 8 Biquad-2 Inline coefficient (default = 1)

U (31:28), ch7_bq2 (27:24), ch7_bq2 (23:16), ch7_bq2 (15:8), ch7_bq2 (7:0)

DEFAULT STATE

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x80, 0x00, 0x00

6.17 Biquad Filters Register (0x51 – 0x88)

Table 6−18. Biquad Filters Registers Format (0x51 – 0x88)

I

2

C

SUBADDRESS

0x51 – 0x57

0x58 – 0x5E

0x5F – 0x65

0x66 – 0x6C

0x6D – 0x73

0x74 – 0x7A

0x7B – 0x81

0x82 – 0x88

TOTAL

BYTES

20/Reg.

20/Reg.

20/Reg.

20/Reg.

20/Reg.

20/Reg.

20/Reg.

20/Reg.

REGISTER NAME

Ch1_bq[1] – [7]

Ch2_bq[1] – [7]

Ch3_bq[1] – [7]

Ch4_bq[1] − [7]

Ch5_bq[1] − [7]

Ch6_bq[1] − [7]

Ch7_bq[1] − [7]

Ch8_bq[1] − [7]

DESCRIPTION OF CONTENTS

Ch 1 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 2 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 3 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 4 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 5 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 6 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 7 Biquads 1 – 7. See Table 6−19 for bit definition.

Ch 8 Biquads 1 – 7. See Table 6−19 for bit definition.

DEFAULT

STATE

See Table 6−19

See Table 6−19

See Table 6−19

See Table 6−19

See Table 6−19

See Table 6−19

See Table 6−19

See Table 6−19

SLES115 — August 2004 TAS5518

75

Serial Control Interface Register Definitions

Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper four bits not used.

Table 6−19. Contents of One 20-Byte Biquad Filter Register Format (Default = All-pass)

b

0

Coefficient b

1

Coefficient b

2

Coefficient a

1

Coefficient a

2

Coefficient

U (31:28), b0 (27:24), b0 (23:16), b0 (15:8), b0 (7:0)

U (31:28), b1 (27:24), b1 (23:16), b1 (15:8), b1 (7:0)

U (31:28), b2 (27:24), b2 (23:16), b2 (15:8), b2 (7:0)

U (31:28), a1 (27:24), a1 (23:16), a1 (15:8), a1 (7:0)

U (31:28), a2 (27:24), a2 (23:16), a2 (15:8), a2 (7:0)

DEFAULT GAIN COEFFICIENT VALUES

DECIMAL HEX

1.0

0.0

0.0

0.0

0.0

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

6.18 Bass and Treble Bypass Register (0x89 – 0x90, Channels 1 − 8)

Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into registers 0x89, 0x8A, 0x8B, 0x8C,0x8D, 0x8E, 0x8F, and

0x90. Eight bytes are written for each channel. Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper four bits not used.

Table 6−20. Bass and Treble Bypass Register Format (0x89−0x90)

REGISTER NAME TOTAL BYTES

Channel bass and treble bypass

Channel bass and treble inline

CONTENTS INITIALIZATION VALUE

U 31:28), Bypass (27:24), Bypass (23:16), Bypass (15:8), Bypass (7:0) 0x00, 0x80, 0x00, 0x00

U (31:28), Inline (27:24), Inline (23:16), Inline (15:8), Inline (7:0) 0x00, 0x00, 0x00, 0x00

6.19 Loudness Registers (0x91 – 0x95)

Table 6−21. Loudness Registers Format (0x91 – 0x95)

I

2

C

SUBADDRESS

0x91

0x93

TOTAL

BYTES

4

4

REGISTER NAME DESCRIPTION OF CONTENTS DEFAULT STATE

Loudness Log2 Gain (LG) U (31:28), LG (27:24), LG (23:16), LG (15:8), LG

(7:0)

Loudness Log2 Offset

(LO)

U (31:24), U (23:16), LO (15:8), LO (7:0)

Loudness Log2 LO

Loudness Gain (G)

LO (31:24), LO (23:16), LO (15:8), LO (7:0)

U (31:28), G (27:24), G (23:16), G (15:8), G (7:0)

U (31:24), U (23:16), O (15:8), O (7:0) Loudness Offset Upper 16 bits (O)

Loudness O Offset Lower

32 bits (O)

O (31:24), O (23:16), O (15:8), O (7:0)

Loudness Biquad (b0)

Loudness Biquad (b1)

Loudness Biquad (b2)

Loudness Biquad (a1)

Loudness Biquad (a2)

0xFF, 0xC0, 0x00, 0x00

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

U (31:28), b0 (27:24), b0 (23:16), b0 (15:8), b0 (7:0) 0x00, 0x00, 0xD5, 0x13,

U (31:28), b1 (27:24), b1 (23:16), b1 (15:8), b1 (7:0) 0x00, 0x00, 0x00, 0x00,

U (31:28), b2 (27:24), b2 (23:16), b2 (15:8), b2 (7:0) 0x0F, 0xFF, 0x2A, 0xED,

U (31:28), a1 (27:24), a1 (23:16), a1 (15:8), a1 (7:0) 0x00, 0xFE, 0x50, 0x45,

U (31:28), a2 (27:24), a2 (23:16), a2 (15:8), a2 (7:0) 0x0F, 0x81, 0xAA, 0x27

76

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

6.20 DRC1 Control (0x96, Channels 1−7)

Bits D31 – D14 are Don’t Care.

Table 6−22. DCR1 Control (0x96, Channels 1−7)

D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION

Unused bits

D23 D22 D21 D20 D19 D18 D17 D16

Unused bits

D15 D14 D13

1

0

0

1

D12

0

1

0

1

D11

0

0

1

1

D10

0

1

0

1

D9

0

0

1

1

FUNCTION

D8

0

1

0

1

FUNCTION

Channel 1 (node j): No DRC

Channel 1 (node j): Pre-volume DRC

Channel 1 (node j): Post-volume DRC

Channel 1 (node j): No DRC

Channel 2 (node I): No DRC

Channel 2 (node I): Pre-volume DRC

Channel 2 (node I): Post-volume DRC

Channel 2 (node i): No DRC

Channel 3 (node m): No DRC

Channel 3 (node m): Pre-volume DRC

Channel 3 (node m): Post-volume DRC

Channel 3 (node m): No DRC

D7

0

0

1

1

D6

0

1

0

1

D5

1

0

0

1

D4

1

0

1

0

D3

0

0

1

1

D2

0

1

0

1

D1

0

0

1

1

D0

0

1

0

1

FUNCTION

Channel 4 (node n): No DRC

Channel 4 (node n): Pre-volume DRC

Channel 4 (node n): Post-volume DRC

Channel 4 (node n): No DRC

Channel 5 (node o): No DRC

Channel 5 (node o): Pre-volume DRC

Channel 5 (node o): Post-volume DRC

Channel 5 (node o): No DRC

Channel 6 (node p): No DRC

Channel 6 (node p): Pre-volume DRC

Channel 6 (node p): Post-volume DRC

Channel 6 (node p): No DRC

Channel 7 (node q): No DRC

Channel 7 (node q): Pre-volume DRC

Channel 7 (node q): Post-volume DRC

Channel 7 (node q): No DRC

6.21 DRC2 Control (0x97, Channel 8)

0

0

0

0

D31 – D2

0

0

0

0

D1

0

0

1

1

D0

0

1

0

1

Table 6−23. DRC2 Control (0x97, Channel 8)

FUNCTION

Channel 8 (node r): No DRC

Channel 8 (node r): Pre-volume DRC

Channel 8 (node r): Post-volume DRC

Channel 8 (node r): No DRC

SLES115 — August 2004 TAS5518

77

Serial Control Interface Register Definitions

6.22 DRC1 Data Registers (0x98 – 0x9C)

DRC1 applies to channels 1, 2, 3, 4, 5, 6, and 7.

Table 6−24. DRC1 Data Registers

I

2

C

SUBADDRESS

0x9A

TOTAL

BYTES

12

REGISTER NAME

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Energy

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 (1− Energy)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Threshold Upper 16 bits

(T1)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Threshold Lower 32 bits

(T1)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Threshold

Upper 16 bits (T2)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Threshold

Lower 32 bits (T2)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 slope (k0)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 slope (k1)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 slope (k2)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Offset 1 Upper 16 bits

(O1)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Offset 1 Lower 32 bits

(O1)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Offset 2 Upper 16 bits

(O2)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Offset 2 Lower 32 bits

(O2)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Attack

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 (1− Attack)

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 Decay

Channel 1, 2, 3, 4, 5, 6, and 7

DRC1 (1− Decay)

DESCRIPTION OF CONTENTS DEFAULT STATE

U (31:28), E (27:24), E (23:16), E (15:8), E (7:0) 0x00, 0x00, 0x88, 0x3F

U (31:28), 1−E (27:24), 1−E (23:16), 1−E (15:8),

1−E (7:0)

U (31:24), U (23:16), T1 (15:8), T1 (7:0)

T1 (31:24), T1 (23:16), T1 (15:8), T1 (7:0)

U (31:24), U (23:16), T2 (15:8), T2 (7:0)

T2 (31:24), T2 (23:16), T2 (15:8), T2 (7:0)

U (31:28), k0 (27:24), k0 (23:16), k0 (15:8), k0 (7:0)

U (31:28), k1 (27:24), k1 (23:16), k1 (15:8), k1 (7:0)

U (31:28), k2 (27:24), k2 (23:16), k2 (15:8), k2 (7:0)

U (31:24), U (23:16), O1 (15:8), O1 (7:0)

O1 (31:24), O1 (23:16), O1 (15:8), O1 (7:0)

U (31:24), U (23:16), O2 (15:8), O2 (7:0)

O2 (31:24), O2 (23:16), O2 (15:8), O2 (7:0)

U (31:28), A (27:24), A (23:16), A (15:8), A (7:0) 0x00, 0x00, 0x88, 0x3F

U (31:28), 1−A (27:24), 1−A (23:16), 1−A (15:8),

1−A (7:0)

0x00, 0x7F, 0x77, 0xC0

U (31:28), D (27:24), D (23:16), D (15:8), D (7:0) 0x00, 0x00, 0x00, 0xAE

U (31:28), 1−D (27:24), 1−D (23:16), 1−D (15:8),

1−D (7:0)

0x00, 0x7F, 0x77, 0xC0

0x00, 0x00, 0x00, 0x00

0x0B, 0x20, 0xE2, 0xB2

0x00, 0x00, 0x00, 0x00

0x06, 0xF9, 0xDE, 0x58

0x00, 0x40, 0x00, 0x00

0x0F, 0xC0, 0x00, 0x00

0x0F, 0x90, 0x00, 0x00

0x00, 0x00, 0xFF, 0xFF

0xFF, 0x82, 0x30, 0x98

0x00, 0x00, 0x00, 0x00

0x01, 0x95, 0xB2, 0xC0

0x00, 0x7F, 0xFF, 0x51

78

TAS5518 SLES115 — August 2004

6.23 DRC2 Data Registers (0x9D – 0xA1)

DRC2 applies to channel 8.

Table 6−25. DRC2 Data Registers

Serial Control Interface Register Definitions

I

2

C

SUBADDRESS

TOTAL

BYTES

0x9D 8

REGISTER NAME

Channel 8 DRC2 Energy

Channel 8 DRC2 (1− Energy)

Channel 8 DRC2 Threshold

Upper 16 bits (T1)

Channel 8 DRC2 Threshold

Lower 32 bits (T1)

Channel 8 DRC2 Threshold

Upper 16 bits (T2)

Channel 8 DRC2 Threshold

Lower 32 bits (T2)

Channel 8 DRC2 slope (k0)

0x9F 12

Channel 8 DRC2 slope (k1)

Channel 8 DRC2 slope (k2)

Channel 8 DRC2 Offset 1

Upper 16 bits (O1)

Channel 8 DRC2 Offset 1

Lower 32 bits (O1)

Channel 8 DRC2 Offset 2

Upper 16 bits (O2)

Channel 8 DRC2 Offset 2

Lower 32 bits (O2)

Channel 8 DRC2 Attack

Channel 8 DRC2 (1− Attack)

Channel 8 DRC2 Decay

Channel 8 DRC2 (1− Decay)

DESCRIPTION OF CONTENTS

U (31:28), E (27:24), E (23:16), E (15:8), E (7:0)

U (31:28), 1−E (27:24), 1−E (23:16), 1−E (15:8),

1−E (7:0)

U (31:24), U (23:16), T1 (15:8), T1 (7:0)

T1 (31:24), T1 (23:16), T1 (15:8), T1 (7:0)

U (31:24), U (23:16), T2 (15:8), T2 (7:0)

T2 (31:24), T2 (23:16), T2 (15:8), T2 (7:0)

U (31:28), k0 (27:24), k0 (23:16), k0 (15:8), k0 (7:0)

U (31:28), k1 (27:24), k1 (23:16), k1 (15:8), k1 (7:0)

U (31:28), k2 (27:24), k2 (23:16), k2 (15:8), k2 (7:0)

U (31:24), U (23:16), O1 (15:8), O1 (7:0)

O1 (31:24), O1 (23:16), O1 (15:8), O1 (7:0)

U (31:24), U (23:16), O2 (15:8), O2 (7:0)

DEFAULT STATE

0x00, 0x00, 0x88, 0x3F

0x00, 0x7F, 0x77, 0xC0

0x00, 0x00, 0x00, 0x00

0x0B, 0x20, 0xE2, 0xB2

0x00, 0x00, 0x00, 0x00

0x06, 0xF9, 0xDE, 0x58

0x00, 0x40, 0x00, 0x00

0x0F, 0xC0, 0x00, 0x00

0x0F, 0x90, 0x00, 0x00

0x00, 0x00, 0xFF, 0xFF,

0xFF, 0x82, 0x30, 0x98

0x00, 0x00, 0x00, 0x00

O2 (31:24), O2 (23:16), O2 (15:8), O2 (7:0) 0x01, 0x95, 0xB2, 0xC0

U (31:28), A (27:24), A (23:16), A (15:8), A (7:0)

U (31:28), 1−A (27:24), 1−A (23:16), 1−A (15:8),

1−A (7:0)

0x00, 0x00, 0x88, 0x3F

0x00, 0x7F, 0x77, 0xC0

U (31:28), D (27:24), D (23:16), D (15:8), D (7:0) 0x00, 0x00, 0x00, 0xAE

U (31:28), 1−D (27:24), 1−D (23:16), 1−D (15:8),

1−D (7:0)

0x00, 0x7F, 0xFF, 0x51

SLES115 — August 2004 TAS5518

79

Serial Control Interface Register Definitions

6.24 DRC Bypass Registers (0xA2 – 0xA9)

DRC bypass/inline for channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into registers 0xA2, 0xA3, 0xA4,

0xA5,0xA6, 0xA7, 0xA8, and 0xA9. 8−bytes are written for each channel. Each gain coefficient is in 28-bit

(5.23) format so 0x00800000 is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper 4 bits not used.

To enable DRC for a given channel (with unity gain), bypass = 0x00000000 and inline = 0x00800000.

To disable DRC for a given channel, bypass = 0x00800000 and inline = 0x00000000.

REGISTER NAME

Channel bass DRC bypass

Channel DRC inline

Table 6−26. DRC Bypass Registers Format (0xA2−0xA9)

TOTAL

BYTES

CONTENTS INITIALIZATION

VALUE

U (31:28), bypass (27:24), bypass (23:16), bypass (15:8), bypass (7:0) 0x00, 0x80, 0x00, 0x00

U (31:28), inline (27:24), inline (23:16), inline (15:8), inline (7:0) 0x00, 0x00, 0x00, 0x00

6.25 8x2 Output Mixer Registers (0xAA – 0xAF)

Output mixers for channels 1–6 map to registers 0xAA – 0xAF.

Total data per register is 8 bytes.

Table 6−27. Output Mixer Control Register Format (Upper 4 Bytes)

0

0

0

0

0

0

D31 D30 D29 D28 D27 D26 D25 D24

0

0

0

0

0

0

0

1

0

0

1

1

1

1

1

1

0

0

1

1

0

1

0

1

0

1

Select channel 1 to output mixer

Select channel 2 to output mixer

Select channel 3 to output mixer

Select channel 4 to output mixer

Select channel 5 to output mixer

Select channel 6 to output mixer

Select channel 7 to output mixer

Select channel 8 to output mixer

FUNCTION

G27 G26 G25 G24 Selected channel gain (upper 4 bits)

D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION

G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)

D15 D14 D13 D12 D11 D10 D9

G15 G14 G13 G12 G11 G10 G9

D7

G7

D6

G6

D5

G5

D4

G4

D3

G3

D2

G2

D1

G1

D8 FUNCTION

G8 Selected channel gain (continued)

D0 FUNCTION

G0 Selected channel gain (lower 8 bits)

80

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

Table 6−28. Output Mixer Control (Lower 4 Bytes)

D31 D30 D29 D28 D27 D26 D25 D24

0 0 0 0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

Select channel 1 to output mixer

Select channel 2 to output mixer

Select channel 3 to output mixer

Select channel 4 to output mixer

Select channel 5 to output mixer

Select channel 6 to output mixer

Select channel 7 to output mixer

FUNCTION

Select channel 8 to output mixer

G27 G26 G25 G24 Selected channel gain (upper 4 bits)

D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION

G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)

D15 D14 D13 D12 D11 D10 D9

G15 G14 G13 G12 G11 G10 G9

D8 FUNCTION

G8 Selected channel gain (continued)

D7

G7

D6

G6

D5

G5

D4

G4

D3

G3

D2

G2

D1

G1

D0 FUNCTION

G0 Selected channel gain (lower 8 bits)

6.26 8x3 Output Mixer Registers (0xB0 – 0xB1)

Output mixers for channels 7 and 8 map to registers 0xB0 and 0xB1.

Total data per register is 12 bytes.

Table 6−29. Output Mixer Control (Upper 4 Bytes)

D31 D30 D29 D28 D27 D26 D25 D24

0 0 0 0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

Select channel 1 to output mixer

Select channel 2 to output mixer

Select channel 3 to output mixer

Select channel 4 to output mixer

Select channel 5 to output mixer

Select channel 6 to output mixer

Select channel 7 to output mixer

FUNCTION

Select channel 8 to output mixer

G27 G26 G25 G24 Selected channel gain (upper 4 bits)

D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION

G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)

D15 D14 D13 D12 D11 D10 D9

G15 G14 G13 G12 G11 G10 G9

D8 FUNCTION

G8 Selected channel gain (continued)

D7

G7

D6

G6

D5

G5

D4

G4

D3

G3

D2

G2

D1

G1

D0 FUNCTION

G0 Selected channel gain (lower 8 bits)

SLES115 — August 2004 TAS5518

81

Serial Control Interface Register Definitions

Table 6−30. Output Mixer Control (Middle 4 Bytes)

D31 D30 D29 D28 D27 D26 D25 D24

0 0 0 0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

Select channel 1 to output mixer

Select channel 2 to output mixer

Select channel 3 to output mixer

Select channel 4 to output mixer

Select channel 5 to output mixer

Select channel 6 to output mixer

Select channel 7 to output mixer

FUNCTION

Select channel 8 to output mixer

G27 G26 G25 G24 Selected channel gain (upper 4 bits)

D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION

G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)

D15 D14 D13 D12 D11 D10 D9

G15 G14 G13 G12 G11 G10 G9

D8 FUNCTION

G8 Selected channel gain (continued)

D7

G7

D6

G6

D5

G5

D4

G4

D3

G3

D2

G2

D1

G1

D0 FUNCTION

G0 Selected channel gain (lower 8 bits)

Table 6−31. Output Mixer Control (Lower 4 Bytes)

D31 D30 D29 D28 D27 D26 D25 D24 FUNCTION

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

Select channel 1 to output mixer

Select channel 2 to output mixer

Select channel 3 to output mixer

Select channel 4 to output mixer

Select channel 5 to output mixer

Select channel 6 to output mixer

Select channel 7 to output mixer

Select channel 8 to output mixer

G27 G26 G25 G24 Selected channel gain (upper 4 bits)

D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION

G23 G22 G21 G20 G19 G18 G17 G16 Selected channel gain (continued)

D15 D14 D13 D12 D11 D10 D9

G15 G14 G13 G12 G11 G10 G9

D7

G7

D6

G6

D5

G5

D4

G4

D3

G3

D2

G2

D1

G1

D8

G8

D0

G0

FUNCTION

Selected channel gain (continued)

FUNCTION

Selected channel gain (lower 8 bits)

82

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

6.27 Volume Biquad Register (0xCF)

D7

0

0

0

0

0

Each gain coefficient is in 28-bit (5.23) format so 0x800000 is a gain of 1. Each gain coefficient is written as a 32-bit word with the upper four bits not used.

b o

Coefficient b

1

Coefficient b

2

Coefficient a

1

Coefficient a

2

Coefficient

Table 6−32. Volume Biquad Register Format (Default = All-pass)

DEFAULT GAIN COEFFICIENT VALUES

DECIMAL HEX

0U (31:28), b0 (27:24), b0 (23:16), b0 (15:8), b0 (7:0)

U (31:28), b1 (27:24), b1 (23:16), b1 (15:8), b1 (7:0)

U (31:28), b2 (27:24), b2 (23:16), b2 (15:8), b2 (7:0)

0U (31:28), a1 (27:24), a1 (23:16), a1 (15:8), a1 (7:0)

U (31:28), a2 (27:24), a2 (23:16), a2 (15:8), a2 (7:0)

1.0

0.0

0.0

0.0

0.0

0x00, 0x80, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

0x00, 0x00, 0x00, 0x00

6.28 Volume Treble and Bass Slew Rates (0xD0)

D31−D10

0

0

0

0

D9

0

0

1

1

D8

0

1

0

1

Table 6−33. Volume Gain Update Rate (Slew Rate)

FUNCTION

512 step update at 4 Fs, 42.6 ms at 48 kHz

1024 step update at 4 Fs, 85.3 ms at 48 kHz

2048 step update at 4 Fs, 170 ms at 48 kHz

2048 step update at 4 Fs, 170 ms at 48 kHz

1

D6

0

0

0

0

0

1

D5

0

0

0

1

1

1

D4

0

0

0

0

1

1

Table 6−34. Treble and Bass Gain Step Size (Slew Rate)

D3

0

0

0

0

1

D2

0

0

1

0

1

D1

0

1

0

0

1

D0

0

1

0

0

1

No operation

FUNCTION

Minimum rate – Updates every 0.083 ms (every LRCLK at 48 kHz)

Update ever 0.67 ms (32 LRCLKs at 48 kHz)

Default rate − Updates every 1.31 ms (63 LRCLKs at 48 kHz). This is the maximum constant time that can be set for all sample rates.

1 1 1 1 Minimum rate – Updates every 5.08 ms (every 255 LRCLKs at 48 kHz)

6.29 Volume Registers (0xD1 − 0xD9)

Channels 1, 2, 3, 4, 5, 6, 7, and 8 are mapped into registers 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, and

0xD8.

Master volume is mapped into register 0xD9.

Bits D31 − D12 are Don’t Care.

Table 6−35. Volume Registers

D31 D30 D29 D28 D27 D26 D25 D24

Unused bits

FUNCTION

D23 D22 D21 D20 D19 D18 D17 D16

D15 D14 D13 D12 D11

V11

D10

V10

D9

V9

Unused bits

D8

V8

Volume

D7

V7

D6

V6

D5

V5

D4

V4

D3

V3

D2

V2

D1

V1

D0

V0

Volume

FUNCTION

FUNCTION

FUNCTION

SLES115 — August 2004 TAS5518

83

Serial Control Interface Register Definitions

Table 6−36. Master and Individual Volume Controls

VOLUME INDEX (H)

001

002

003

004

005

006

007

00E

00F

010

044

045

046

008

009

00A

00B

00C

00D

240

241

242

243

244

245

047

048

049

04A

04B

04C

3FF

14.55

14.3

14.05

1

0.75

0.5

16.05

15.8

15.55

15.3

15.05

14.8

EXPECTED

17.81

17.56

17.31

17.06

16.81

16.56

16.31

0.25

0

−0.25

−0.5

−0.75

−1

−126.43

−126.68

−126.93

−127.19

−127.44

Mute

GAIN/INDEX

17.75

17.5

17.25

17

16.75

16.5

16.25

14.5

14.25

14

1

0.75

0.5

16

15.75

15.5

15.25

15

14.75

0.25

0

−0.25

−0.5

−0.75

−1

−126

−126.25

−126.5

−126.75

−127

Mute

TO

Mute Mute

14.55

14.3

14.05

1

0.75

0.5

16.05

15.8

15.55

15.3

15.05

14.8

ACTUAL

17.81

17.56

17.31

17.06

16.81

16.56

16.31

0.25

0

−0.25

−0.5

−0.75

−1

−126.43

−126.99

−126.99

−127.59

−127.59

Mute

Mute

6.30 Bass Filter Set Register (0xDA)

Bits D31−D27, D23−D19, D15−D11, and D7−D3 are Don’t Care.

Table 6−37. Channel 8 Sub Woofer

D31 D30 D29 D28 D27 D26 D25 D24

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

No change

Bass filter set 1

Bass filter set 2

Bass filter set 3

Bass filter set 4

Bass filter set 5

Illegal

Illegal

FUNCTION

84

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

Table 6−38. Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration Right and

Left Surround in Eight Channel Configuration)

FUNCTION

0

0

0

0

D23 D22 D21 D20 D19 D18 D17 D16

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

No change

Bass filter set 1

Bass filter set 2

Bass filter set 3

Bass filter set 4

Bass filter set 5

Illegal

Illegal

Table 6−39. Channel 4 and 3 (Right and Left Rear)

D15 D14 D13 D12 D11 D10 D9 D8 FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

No change

Bass filter set 1

Bass filter set 2

Bass filter set 3

Bass filter set 4

Bass filter set 5

Illegal

Illegal

D7

0

0

0

0

0

0

0

0

D6

0

0

0

0

0

0

0

0

D5

0

0

0

0

0

0

0

0

D4

0

0

0

0

0

0

0

0

Table 6−40. Channel 7, 2, 1 (Center, Right Front, and Left Front)

D3

0

0

0

0

0

0

0

0

D2

0

0

0

1

1

1

1

1

D1

0

0

1

1

0

0

1

1

D0

0

1

0

1

0

1

0

1

No change

Bass filter set 1

Bass filter set 2

Bass filter set 3

Bass filter set 4

Bass filter set 5

Illegal

Illegal

FUNCTION

6.31 Bass Filter Index Register (0xDB)

Index values above 0x24 are invalid.

Table 6−41. Bass Filter Index Register

I

2

C SUBADDRESS TOTAL BYTES REGISTER NAME DESCRIPTION OF CONTENTS

0xDB Bass filter index

(BFI)

4 Ch8_BFI (31:24), Ch65_BFI (23:16), Ch43_BFI

(15:8), Ch721_BFI (7:0)

DEFAULT STATE

0x12, 0x12, 0x12, 0x12,

SLES115 — August 2004 TAS5518

85

Serial Control Interface Register Definitions

TREBLE INDEX

VALUE

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

0x11

0x12

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

ADJUSTMENT

(DB)

+5

+4

+3

+8

+7

+6

+2

+1

0

+14

+13

+12

+11

+10

+9

+18

+17

+16

+15

Table 6−42. Bass Filter Index Table

TREBLE INDEX

VALUE

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1A

0x1B

0x1C

0x1D

0x1E

0x1F

0x20

0x21

0x22

0x23

0x24

ADJUSTMENT

(DB)

−5

−6

−7

−8

−9

−10

−1

−2

−3

−4

−11

−12

−13

−14

−15

−16

−17

−18

6.32 Treble Filter Set Register (0xDC)

Bits D31−D27 are Don’t Care.

Table 6−43. Channel 8 Sub Woofer

D31 D30 D29 D28 D27 D26 D25 D24

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

No change

Treble filter set 1

Treble filter set 2

Treble filter set 3

Treble filter set 4

Treble filter set 5

Illegal

Illegal

FUNCTION

0

0

0

0

0

0

0

0

Table 6−44. Channel 6 and 5 (Right and Left Lineout in Six Channel Configuration or Right and Left Surround in Eight Channel Configuration)

D23 D22 D21 D20 D19 D18 D17 D16 FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

No change

Treble filter set 1

Treble filter set 2

Treble filter set 3

Treble filter set 4

Treble filter set 5

Illegal

Illegal

86

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

D7

0

0

0

0

0

0

0

0

Table 6−45. Channel 4 and 3 (Right and Left Rear)

0

0

0

0

D15 D14 D13 D12 D11 D10

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

D9

0

0

1

1

0

0

1

1

D8

0

1

0

1

0

1

0

1

No change

Treble filter set 1

Treble filter set 2

Treble filter set 3

Treble filter set 4

Treble filter set 5

Illegal

Illegal

FUNCTION

D6

0

0

0

0

0

0

0

0

D5

0

0

0

0

0

0

0

0

0

0

0

0

D4

0

0

0

0

Table 6−46. Channel 7, 2, 1 (Center, Right Front, and Left Front)

D3

0

0

0

0

D2

0

0

0

1

D1

0

0

1

1

D0

0

1

0

1

No change

Treble filter set 1

Treble filter set 2

Treble filter set 3

FUNCTION

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

Treble filter set 4

Treble filter set 5

Illegal

Illegal

6.33 Treble Filter Index (0xDD)

Index values above 0x24 are invalid.

I

2

C

SUBADDRESS

0xDD

TOTAL BYTES

Treble filter index (TFI)

Table 6−47. Treble Filter Index Register

REGISTER

NAME

DESCRIPTION OF CONTENTS

4 Ch8_TFI (31:24), Ch65_TFI (23:16), Ch43_TFI (15:8),

Ch721_TFI (7:0)

TREBLE INDEX VALUE

0x00

0x01

0x02

0x03

0x04

0x05

0x\06

0x07

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

0x11

0x12

DEFAULT STATE

0x12,0x12,0x12,0x12

Table 6−48. Treble Filter Index

ADJUSTMENT (DB)

+18

+17

+16

+15

+14

+13

+12

+11

+10

+9

+5

+4

+3

+2

+8

+7

+6

+1

0

TREBLE INDEX VALUE ADJUSTMENT (DB)

0x13

0x14

0x15

−1

−2

−3

0x16

0x17

0x18

0x19

0x1A

0x1B

0x1C

−4

−5

−6

−7

−8

−9

−10

0x1D

0x1E

0x1F

0x20

0x21

0x22

0x23

0x24

−11

−12

−13

−14

−15

−16

−17

−18

SLES115 — August 2004 TAS5518

87

Serial Control Interface Register Definitions

6.34 AM Mode Register (0xDE)

Bits D31−D21 are Don’t Care.

Table 6−49. AM Mode Register

D31 D30 D29 D28 D27 D26 D25 D24

Unused bits

D23 D22 D21 D20 D19 D18 D17 D16

0 − − − −

1

0

0

1

1

0

1

0

1

0

1

0

1

AM mode disabled

AM mode enabled

Select sequence 1

Select sequence 2

Select sequence 3

Select sequence 4

IF frequency 455

IF frequency 262.5

Use BCD tuned frequency

Use binary tuned frequency

FUNCTION

FUNCTION

Table 6−50. AM Tuned Frequency Register in BCD Mode (Lower 2 Bytes of 0xDE)

D15 D14 D13 D12 D11 D10

0 0 0 B0 − −

0

0

0

0

B3

0

B2

0

D9

B1

0

D8

− BCD frequency (1000s kHz)

B0 BCD frequency (100s kHz)

0 Default value

FUNCTION

D7

B3

0

D6

B2

0

D5

B1

0

D4

B0

0

D3

B3

0

D2

B2

0

D1

B1

0

D0

− BCD frequency (10s kHz)

B0 BCD frequency (1s kHz)

0 Default value

FUNCTION

Table 6−51. AM Tuned Frequency Register in Binary Mode (Lower 2 Bytes of 0xDE)

D15 D14 D13 D12 D11 D10

0

0

0

0

0

0

0

0

0

0

B10

0

D9

B9

0

D8

B8 Binary frequency (upper 3 bits)

0 Default value

FUNCTION

D7

B7

0

D6

B6

0

D5

B5

0

D4

B4

0

D3

B3

0

D2

B2

0

D1

B1

0

D0

B0 Binary frequency (lower 8 bits)

0 Default value

FUNCTION

6.35 PSVC Range Register (0xDF)

Bits D31−D2 are zero.

D31 – D2 D1

0 0

0

0

0

0

1

1

D0

0

1

0

1

Table 6−52. PSVC Range Register

FUNCTION

12.04-dB control range for PSVC

18.06-dB control range for PSVC

24.08-dB control range for PSVC

Ignore − retain last value

88

TAS5518 SLES115 — August 2004

Serial Control Interface Register Definitions

6.36 General Control Register (0xE0)

Bits D31−D4 are zero. Bit D0 is Don’t Care.

D31 – D4 D3

0

0

0

0

0

0

0

1

D2

1

0

D1

0

1

D0

Table 6−53. General Control Register

FUNCTION

8 channel configuration

6 channel configuration

Power supply volume control disable

Power supply volume control enable

Subwoofer part of PSVC (D3 is a write-only bit)

Subwoofer separate from PSVC

6.37 Incremental Multiple Write Append Register (0xFE)

This is a special register used to append data to a previously opened register.

SLES115 — August 2004 TAS5518

89

Serial Control Interface Register Definitions

90

TAS5518 SLES115 — August 2004

TAS5518 Example Application Schematic

7 TAS5518 Example Application Schematic

The following page contains an example application schematic for the TAS5518.

SLES115 — August 2004 TAS5518

91

D

C

B

A

PSVC_MCPU

PSVC

CONF_SEL

/VALID

/VALID_CH5+CH6

/LINE_OUT_ENABLE

5 4

/LINE_OUT_ENABLE

LINE OUTPUT

Phono socket

J950

Phono socket

J951

4

3

2

1

4

3

2

1

GND

HEADPHONE OUTPUT

J900

4

3

2

1

Mini-Jack (3.5mm)

+3.3V

+5.0V

Left + Right Line Out

+5.0V

+3.3V

/OE

OUT_R

PWM_P_R

PWM_M_R

PWM_M_L

PWM_P_L

OUT_L

2 Channel Line Out (TLV272)

+5.0V

Left + Right Headphone

+5.0V

OUT_R

OUT_GND

OUT_L

PWM_HPM_L

PWM_HPP_L

PWM_HPM_R

PWM_HPP_R

2 Channel Headphone Design (TPA112)

MCLK

3

V-HBRIDGE GVDD +5.0V +3.3V

PSVC_MCPU

PSVC

CONF_SEL

/VALID

/VALID_CH5+CH6

/LINE_OUT_ENABLE

PSU and Interface Logic

5

/RESET

/RESET_5518

/BKND_ERR

/BKND_ERR

/SD1_TAS5121

/SD1

/SD2_TAS5121

/SD2

/OTW_TAS5121

/OTW

C10

10nF

R10

200R

C11

100nF

R11

200R

C13

10nF

C12

100nF

C14

100nF

GND

C15

100nF

C16

10uF

R13

3.30R

+3.3V

1

R12

2R

2

C17

100nF

C18

1nF

/RESET_5518

/HP_SEL

/PDN

/MUTE

R14

1R

C19

10uF

+3.3V

C20

100nF

3

4

1

2

VRA_PLL

PLL_FLT_RET

PLL_FLTM

PLL_FLTP

7

8

5

6

AVSS

AVSS

VRD_PLL

AVSS_PLL

9

10

11

12

AVDD_PLL

VBGAP

RESET

HP_SEL

13

14

PDN

MUTE

15

16

DVDD

DVSS

C21

100nF

GND

/RESET

/RESET_5518

/BKND_ERR

/BKND_ERR

/SD1_TAS5121

/SD1

/SD2_TAS5121

/SD2

/OTW_TAS5121

/OTW

X10

13.5MHz

2

C27

15pF

R21

1M

1

C28

15pF

GND

U1

TAS5518

4 3

C25

220nF

C26

10uF

1

R20

22.0R

+3.3V

2

GND

C29

100nF

VR_PWM

PWM_P_4

PWM_M_4

PWM_P_3

PWM_M_3

PWM_P_2

PWM_M_2

PWM_P_1

PWM_M_1

VAILD

DVSS

BKND_ERR

DVDD

DVSS

36

35

DVSS

VR_DIG

34

33

40

39

38

37

44

43

42

41

48

47

46

45

/VALID

/BKND_ERR

R18

1R

+3.3V

C22

470nF

C23

10uF

C24

100nF

PSVC

SDIN1

SDIN2

SDIN3

SDIN4

SCLK

LRCLK

SCL

SDA

GND

2

/SD2_TAS5121

/OTW_TAS5121

/VALID_CH5+CH6

/SD2_TAS5121

/OTW_TAS5121

/VALID_CH5+CH6

/SD2_TAS5121

/OTW_TAS5121

/VALID

/SD1_TAS5121

/OTW_TAS5121

/VALID

/SD2_TAS5121

/OTW_TAS5121

/VALID

/SD2_TAS5121

/OTW_TAS5121

/VALID

/SD1_TAS5121

/OTW_TAS5121

/VALID

/SD1_TAS5121

/OTW_TAS5121

/VALID

1

/SD1_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH6 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

V-HBRIDGE

GVDD

1

2

J600

RIGHT BACK

SURROUND

SPEAKER

OUTPUT

/SHUTDOWN_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH5 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

V-HBRIDGE

GVDD

1

2

J500

LEFT BACK

SURROUND

SPEAKER

OUTPUT

D

/SHUTDOWN_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH8 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

V-HBRIDGE

GVDD

1

2

J800

SUBWOOFER

SPEAKER

OUTPUT

/SHUTDOWN_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH7 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

V-HBRIDGE

GVDD

1

2

J700

CENTER

SPEAKER

OUTPUT

C

/SHUTDOWN_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH4 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

V-HBRIDGE

GVDD

1

2

J400

RIGHT

SURROUND

SPEAKER

OUTPUT

V-HBRIDGE

GVDD

/SHUTDOWN_TAS5121

/TEMP_WARNING

PWM_P

PWM_M

/VALID

V-HBRIDGE

GVDD

CH3 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

1

2

J300

LEFT

SURROUND

SPEAKER

OUTPUT

B

V-HBRIDGE

GVDD

/SHUTDOWN_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH2 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

1

2

J200

RIGHT

SPEAKER

OUTPUT

/SHUTDOWN_TAS5121

/TEMP_WARNING

V-HBRIDGE

GVDD

PWM_P

PWM_M

/VALID

CH1 TAS5121 H-Bridge Output Stage

OUT_1

OUT_2

V-HBRIDGE

GVDD

1

2

J100

LEFT

SPEAKER

OUTPUT

A

TAS5518 Example Application Schematic

(Circuit is Subject To Change Without Notice)

2 1

www.ti.com

PACKAGE OPTION ADDENDUM

6-Dec-2006

PACKAGING INFORMATION

Orderable Device

TAS5518PAG

TAS5518PAGG4

TAS5518PAGR

TAS5518PAGRG4

Status

(1)

ACTIVE

ACTIVE

ACTIVE

ACTIVE

Package

Type

TQFP

TQFP

TQFP

TQFP

Package

Drawing

PAG

PAG

PAG

PAG

Eco Plan

(2)

Pins Package

Qty

64 160 Green (RoHS & no Sb/Br)

Lead/Ball Finish MSL Peak Temp

(3)

CU NIPDAU Level-4-260C-72 HR

64 CU NIPDAU Level-4-260C-72 HR

64

160 Green (RoHS & no Sb/Br)

1500 Green (RoHS & no Sb/Br)

CU NIPDAU Level-4-260C-72 HR

64 1500 Green (RoHS & no Sb/Br)

CU NIPDAU Level-4-260C-72 HR

(1)

The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2)

Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3)

MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Addendum-Page 1

www.ti.com

TAPE AND REEL INFORMATION

PACKAGE MATERIALS INFORMATION

23-Mar-2011

*All dimensions are nominal

Device

TAS5518PAGR

Package

Type

Package

Drawing

TQFP PAG

Pins

64

SPQ

1500

Reel

Diameter

(mm)

Reel

Width

W1 (mm)

330.0

24.4

A0

(mm)

13.0

B0

(mm)

13.0

K0

(mm)

P1

(mm)

1.5

16.0

W

(mm)

Pin1

Quadrant

24.0

Q2

Pack Materials-Page 1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Mar-2011

*All dimensions are nominal

Device

TAS5518PAGR

Package Type Package Drawing Pins

TQFP PAG 64

SPQ

1500

Length (mm) Width (mm) Height (mm)

346.0

346.0

41.0

Pack Materials-Page 2

PAG (S-PQFP-G64)

0,50

48

49

33

0,27

0,17

0,08

M

32

MECHANICAL DATA

MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996

PLASTIC QUAD FLATPACK

64 17

1 16

7,50 TYP

10,20

9,80

SQ

12,20

11,80

SQ

0,05 MIN

1,05

0,95

1,20 MAX

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

Seating Plane

0,08

0,13 NOM

0,25

Gage Plane

0

°

– 7

°

0,75

0,45

4040282 / C 11/96

POST OFFICE BOX 655303

DALLAS, TEXAS 75265

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Audio

Amplifiers

Data Converters

DLP® Products

DSP

Clocks and Timers

Interface

Logic

Power Mgmt www.ti.com/audio amplifier.ti.com

dataconverter.ti.com

www.dlp.com

dsp.ti.com

www.ti.com/clocks interface.ti.com

logic.ti.com

power.ti.com

Microcontrollers

RFID microcontroller.ti.com

www.ti-rfid.com

RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications

Communications and Telecom www.ti.com/communications

Computers and Peripherals

Consumer Electronics

Energy and Lighting

Industrial www.ti.com/computers www.ti.com/consumer-apps

Medical

Transportation and

Automotive www.ti.com/medical

Security www.ti.com/security

Space, Avionics and Defense www.ti.com/space-avionics-defense www.ti.com/automotive

Video and Imaging

Wireless

TI E2E Community Home Page

www.ti.com/energy www.ti.com/industrial www.ti.com/video www.ti.com/wireless-apps e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2011, Texas Instruments Incorporated

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement