ESAB m2™ Plasma Smart Plasmarc™ 200 Cutting System Service manual


Add to my manuals
138 Pages

advertisement

ESAB m2™ Plasma Smart Plasmarc™ 200 Cutting System Service manual | Manualzz

Service Manual

0558012614 03/2015

2

Smart Plasmarc 200

TM

Smart Plasmarc 200

TM

Be sure this information reaches the operator.

You can get extra copies through Your supplier.

caution

these instructions are for experienced operators. if you are not fully familiar with the principles of operation and safe practices for arc welding and cutting equipment, we urge you to read our booklet, “precautions and safe practices for arc Welding, cutting, and gouging,” form 52-529. Do not permit untrained persons to install, operate, or maintain this equipment. Do not attempt to install or operate this equipment until you have read and fully understand these instructions. if you do not fully understand these instructions, contact your supplier for further information. Be sure to read the safety precautions before installing or operating this equipment.

user responsiBilitY

This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone or written request for service advice be made to the

Authorized Distributor from whom it was purchased.

This equipment or any of its parts should not be altered without the prior written approval of the manufacturer. The user of this equipment shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a service facility designated by the manufacturer.

reaD anD unDerstanD the instruction manual Before installing or operating.

protect Yourself anD others!

3

4

Smart Plasmarc 200

TM

Smart Plasmarc 200

TM contents

safetY

safety - english . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Safety - Spanish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Safety - French . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

introDuction

introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Service Manual Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Sequence of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Machine Operation Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

schematic laYout

schematic layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Component Locator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Schematic Section Map - 0558012575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Schematic Section Map - 0558012575, sheet 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Description of operation

Description of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Relay Contactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Main Contactor K1 (952251). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

K1 Relay (Main Contactor Relay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

K2 Relay (Soft Start Relay) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

K4, K5 Relay (PS Enable Relay) 0558007736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

K4, K5 Relay (PS Enable Relay) 0558007736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Main Transformer T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Fan Cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Control Transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Control Transformer Winding Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

Rectifier D1-D6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Input Rectifiers (0558003657_Forward - 0558003658_Reverse). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

5

6

Smart Plasmarc 200

TM

IGBT Q1-Q2 (0558006183). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

0558006183 IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

IGBT Driver Board PCB2 (0558038416) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Hall Sensors HS1, HS2 (0558006886) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Output Inductor L1 (0558007254). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Pilot Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Arc On Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Filter and Start-Up Board PCB3 (0558038423). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

Filter Board PCB3 (0558038423). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Filter Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Temparature Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Coolant Circulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Turbine Flow Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Level Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Coolant Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Test Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

PCB1 Control Board (0558038416). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

PCB1 Schematics - (0558038416) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

PCB1 Voltage Monitoring Circuits (0558038416) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

PCB1 PWM (0558038416). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

PCB1 Output Circuits (0558038416). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

PCB1 Input Circuits (0558038416). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

PCB1 Bias Supply (0558038416). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Positive and Negative 15 VDC Bias Supply: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Positive 24 VDC Low Power Bias Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Positive 24 HVDC High Power Bias Supply: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

PCB1 Test Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

PCB1 Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

PCB1 BOM (0558038416) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

PCB2 Driver Board (0558038382) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

PCB2 Bias Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

PCB2 PWM Pulse Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

PCB2 Test Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

PCB2 Layout (0558038381) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

PCB2 BOM (0558038382) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Interface Control (PCB4): 0558038419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

CNC Direct Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Interface Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Display Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Operation Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Interface Wiring Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

DB37 Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Digital Output Wiring Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

DC Power Supply (PCB5):0558012288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Smart Plasmarc 200

TM

trouBleshooting

troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Troubleshooting Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Fault Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ic maintenance/troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Error Messages on the IC Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Module Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Process Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

CAN PS Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

replacement parts

replacement parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

general information

general information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Electrostatic Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Ohm’s and Watt’s Laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Glossary (General Definitions and Symbols Used in this Manual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Glossary (General Definitions and Symbols Used in this Manual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Glossary (General Definitions and Symbols Used in this Manual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Meter Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Ohm Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Diode Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

IGBT Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IGBT Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

IGBT Assembly Testing (0558006183) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

IGBT Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7

8

Smart Plasmarc 200

TM

safetY

10

SAFETY

SAFETY safety - english

Warning: these safety precautions are for your protection. they summarize precautionary information from the references listed in additional safety information section. Before performing any installation or operating procedures, be sure to read and follow the safety precautions listed below as well as all other manuals, material safety data sheets, labels, etc. failure to observe safety precautions can result in injury or death.

protect Yourself anD others -- some welding, cutting, and gouging processes are noisy and require ear protection. the arc, like the sun, emits ultraviolet (uV) and other radiation and can injure skin and eyes. hot metal can cause burns. training in the proper use of the processes and equipment is essential to prevent accidents. therefore:

1. always wear safety glasses with side shields in any work area, even if welding helmets, face shields, and goggles are also required.

2. use a face shield fitted with the correct filter and cover plates to protect your eyes, face, neck, and ears from sparks and rays of the arc when operating or observing operations. Warn bystanders not to watch the arc and not to expose themselves to the rays of the electric-arc or hot metal.

3. Wear flameproof gauntlet type gloves, heavy long-sleeve shirt, cuffless trousers, high-topped shoes, and a welding helmet or cap for hair protection, to protect against arc rays and hot sparks or hot metal. a flameproof apron may also be desirable as protection against radiated heat and sparks.

4. hot sparks or metal can lodge in rolled up sleeves, trouser cuffs, or pockets. sleeves and collars should be kept buttoned, and open pockets eliminated from the front of clothing.

5. protect other personnel from arc rays and hot sparks with a suitable non-flammable partition or curtains.

6. use goggles over safety glasses when chipping slag or grinding. chipped slag may be hot and can fly far. Bystanders should also wear goggles over safety glasses.

fires anD explosions -- heat from flames and arcs can start fires. hot slag or sparks can also cause fires and explosions. therefore:

1. remove all combustible materials well away from the work area or cover the materials with a protective non-flammable covering. combustible materials include wood, cloth, sawdust, liquid and gas fuels, solvents, paints and coatings, paper, etc.

2. hot sparks or hot metal can fall through cracks or crevices in floors or wall openings and cause a hidden smoldering fire or fires on the floor below. make certain that such openings are protected from hot sparks and metal.“

3. Do not weld, cut or perform other hot work until the work piece has been completely cleaned so that there are no substances on the work piece which might produce flammable or toxic vapors.

Do not do hot work on closed containers. they may explode.

4. have fire extinguishing equipment handy for instant use, such as a garden hose, water pail, sand bucket, or portable fire extinguisher. Be sure you are trained in its use.

5. Do not use equipment beyond its ratings. for example, overloaded welding cable can overheat and create a fire hazard.

6. after completing operations, inspect the work area to make certain there are no hot sparks or hot metal which could cause a later fire. use fire watchers when necessary.

7. for additional information, refer to nfpa standard 51B, "fire prevention in use of cutting and

Welding processes", available from the national fire protection association, Battery march park,

Quincy, ma 02269.

electrical shocK -- contact with live electrical parts and ground can cause severe injury or death. Do not use ac welding current in damp areas, if movement is confined, or if there is danger of falling.

11

SAFETY

1. Be sure the power source frame (chassis) is connected to the ground system of the input power.

2. Connect the work piece to a good electrical ground.

3. Connect the work cable to the work piece. A poor or missing connection can expose you or others to a fatal shock.

4. Use well-maintained equipment. Replace worn or damaged cables.

5. Keep everything dry, including clothing, work area, cables, torch/electrode holder, and power source.

6. Make sure that all parts of your body are insulated from work and from ground.

7. Do not stand directly on metal or the earth while working in tight quarters or a damp area; stand on dry boards or an insulating platform and wear rubber-soled shoes.

8. Put on dry, hole-free gloves before turning on the power.

9. Turn off the power before removing your gloves.

10. Refer to ANSI/ASC Standard Z49.1 (listed on next page) for specific grounding recommendations. Do not mistake the work lead for a ground cable.

electric anD magnetic fielDs — may be dangerous. electric current flowing through any conductor causes localized electric and magnetic fields (emf). Welding and cutting current creates emf around welding cables and welding machines. therefore:

1. Welders having pacemakers should consult their physician before welding. EMF may interfere with some pacemakers.

2. Exposure to EMF may have other health effects which are unknown.

3. Welders should use the following procedures to minimize exposure to EMF:

A. Route the electrode and work cables together.

Secure them with tape when possible.

B. Never coil the torch or work cable around your body.

C. Do not place your body between the torch and work cables. Route cables on the same side of your body.

D. Connect the work cable to the work piece as close as possible to the area being welded.

E. Keep welding power source and cables as far away from your body as possible.

fumes anD gases -- fumes and gases, can cause discomfort or harm, particularly in confined spaces. Do not breathe fumes and gases. shielding gases can cause asphyxiation. therefore:

1. Always provide adequate ventilation in the work area by natural or mechanical means. Do not weld, cut, or gouge on materials such as galvanized steel, stainless steel, copper, zinc, lead, beryllium, or cadmium unless positive mechanical ventilation is provided.

Do not breathe fumes from these materials.

2. Do not operate near degreasing and spraying operations. The heat or arc rays can react with chlorinated hydrocarbon vapors to form phosgene, a highly toxic gas, and other irritant gases.

3. If you develop momentary eye, nose, or throat irritation while operating, this is an indication that ventilation is not adequate. Stop work and take necessary steps to improve ventilation in the work area. Do not continue to operate if physical discomfort persists.

4. Refer to ANSI/ASC Standard Z49.1 (see listing below) for specific ventilation recommendations.

12

5. Warning: this product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the state of california to cause birth defects and, in some cases, cancer. (california health & safety code §25249.5 et seq.) cYlinDer hanDling -- cylinders, if mishandled, can rupture and violently release gas. sudden rupture of cylinder, valve, or relief device can injure or kill. therefore:

1. Use the proper gas for the process and use the proper pressure reducing regulator designed to operate from the compressed gas cylinder. Do not use adaptors. Maintain hoses and fittings in good condition. Follow manufacturer's operating instructions for mounting regulator to a compressed gas cylinder.

2. Always secure cylinders in an upright position by chain or strap to suitable hand trucks, undercarriages, benches, walls, post, or racks. Never secure cylinders to work tables or fixtures where they may become part of an electrical circuit.

3. When not in use, keep cylinder valves closed. Have valve protection cap in place if regulator is not connected. Secure and move cylinders by using suitable hand trucks. Avoid rough handling of cylinders.

4. Locate cylinders away from heat, sparks, and flames.

Never strike an arc on a cylinder.

5. For additional information, refer to CGA Standard P-1,

"Precautions for Safe Handling of Compressed Gases in Cylinders", which is available from Compressed

Gas Association, 1235 Jefferson Davis Highway,

Arlington, VA 22202.

eQuipment maintenance -- faulty or improperly maintained equipment can cause injury or death. therefore:

1. Always have qualified personnel perform the installation, troubleshooting, and maintenance work.

Do not perform any electrical work unless you are qualified to perform such work.

SAFETY

2. Before performing any maintenance work inside a power source, disconnect the power source from the incoming electrical power.

3. Maintain cables, grounding wire, connections, power cord, and power supply in safe working order. Do not operate any equipment in faulty condition.

4. Do not abuse any equipment or accessories. Keep equipment away from heat sources such as furnaces, wet conditions such as water puddles, oil or grease, corrosive atmospheres and inclement weather.

5. Keep all safety devices and cabinet covers in position and in good repair.

6. Use equipment only for its intended purpose. Do not modify it in any manner.

aDDitional safetY information -- for more information on safe practices for electric arc welding and cutting equipment, ask your supplier for a copy of "precautions and safe practices for arc Welding, cutting and gouging", form 52-529.

The following publications, which are available from the American Welding Society, 550 N.W. LeJuene Road,

Miami, FL 33126, are recommended to you:

1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.

2. AWS C5.1 - “Recommended Practices for Plasma Arc

Welding”.

3. AWS C5.2 - “Recommended Practices for Plasma Arc

Cutting”.

4. AWS C5.3 - “Recommended Practices for Air Carbon

Arc Gouging and Cutting”.

5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.

6. AWS C5.6 - “Recommended Practices for Gas Metal

Arc Welding”.

7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.

8. ANSI/AWS F4.1, “Recommended Safe Practices for

Welding and Cutting of Containers That Have Held

Hazardous Substances.”

9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.

13

SAFETY meaning of sYmBols - as used throughout this manual: means attention! Be alert! Your safety is involved.

Danger

caution

Warning means immediate hazards which, if not avoided, will result in immediate, serious personal injury or loss of life.

means potential hazards which could result in personal injury or loss of life.

means hazards which could result in minor personal injury.

enclosure class

The ip code indicates the enclosure class, i.e. the degree of protection against penetration by solid objects or water. Protection is provided against touch with a finger, penetration of solid objects greater than 12mm and against spraying water up to 60 degrees from vertical. Equipment marked ip21s may be stored, but is not intended to be used outside during precipitation unless sheltered.

caution this product is solely intended for plasma cutting. any other use may result in personal injury and / or equipment damage.

if equipment is placed on a surface that slopes more than 15°, toppling over may occur. personal injury and

/ or significant damage to equipment is possible.

15°

14 to avoid personal injury and/or equipment damage, lift using method and attachment points shown here.

safety - spanish

aDVertencia: estas precauciones de seguridad son para su protección. ellas hacen resumen de información proveniente de las referencias listadas en la sección

"información adicional sobre la seguridad". antes de hacer cualquier instalación o procedimiento de operación , asegúrese de leer y seguir las precauciones de seguridad listadas a continuación así como también todo manual, hoja de datos de seguridad del material, calcomanias, etc. el no observar las precauciones de seguridad puede resultar en daño a la persona o muerte.

SAFETY proteJase usteD Y a los Demas-- algunos procesos de soldadura, corte y ranurado son ruidosos y requiren protección para los oídos. el arco, como el sol , emite rayos ultravioleta (uV) y otras radiaciones que pueden dañar la piel y los ojos. el metal caliente causa quemaduras. el entrenamiento en el uso propio de los equipos y sus procesos es esencial para prevenir accidentes. por lo tanto:

1. Utilice gafas de seguridad con protección a los lados siempre que esté en el área de trabajo, aún cuando esté usando careta de soldar, protector para su cara u otro tipo de protección.

2. Use una careta que tenga el filtro correcto y lente para proteger sus ojos, cara, cuello, y oídos de las chispas y rayos del arco cuando se esté operando y observando las operaciones. Alerte a todas las personas cercanas de no mirar el arco y no exponerse a los rayos del arco eléctrico o el metal fundido.

3. Use guantes de cuero a prueba de fuego, camisa pesada de mangas largas, pantalón de ruedo liso, zapato alto al tobillo, y careta de soldar con capucha para el pelo, para proteger el cuerpo de los rayos y chispas calientes provenientes del metal fundido. En ocaciones un delantal a prueba de fuego es necesario para protegerse del calor radiado y las chispas.

4. Chispas y partículas de metal caliente puede alojarse en las mangas enrolladas de la camisa , el ruedo del pantalón o los bolsillos. Mangas y cuellos deberán mantenerse abotonados, bolsillos al frente de la camisa deberán ser cerrados o eliminados.

5. Proteja a otras personas de los rayos del arco y chispas calientes con una cortina adecuada no-flamable como división.

6. Use careta protectora además de sus gafas de seguridad cuando esté removiendo escoria o puliendo.

la escoria puede estar caliente y desprenderse con velocidad. personas cercanas deberán usar gafas de seguridad y careta protectora.

fuego Y explosiones -- el calor de las flamas y el arco pueden ocacionar fuegos. escoria caliente y las chispas pueden causar fuegos y explosiones. por lo tanto:

1

. Remueva todo material combustible lejos del área de trabajo o cubra los materiales con una cobija a prueba de fuego. Materiales combustibles incluyen madera, ropa, líquidos y gases flamables, solventes, pinturas, papel, etc.

2. Chispas y partículas de metal pueden introducirse en las grietas y agujeros de pisos y paredes causando fuegos escondidos en otros niveles o espacios. Asegúrese de que toda grieta y agujero esté cubierto para proteger lugares adyacentes contra fuegos.

3. No corte, suelde o haga cualquier otro trabajo relacionado hasta que la pieza de trabajo esté totalmente limpia y libre de substancias que puedan producir gases inflamables o vapores tóxicos. No trabaje dentro o fuera de contenedores o tanques cerrados. Estos pueden explotar si contienen vapores inflamables.

4. Tenga siempre a la mano equipo extintor de fuego para uso instantáneo, como por ejemplo una manguera con agua, cubeta con agua, cubeta con arena, o extintor portátil. Asegúrese que usted esta entrenado para su uso.

5. No use el equipo fuera de su rango de operación. Por ejemplo, el calor causado por cable sobrecarga en los cables de soldar pueden ocasionar un fuego.

6. Después de termirar la operación del equipo, inspeccione el área de trabajo para cerciorarse de que las chispas o metal caliente ocasionen un fuego más tarde. Tenga personal asignado para vigilar si es necesario.

7. Para información adicional , haga referencia a la publicación NFPA Standard 51B, "Fire Prevention in Use of

Cutting and Welding Processes", disponible a través de la

National Fire Protection Association, Batterymarch Park,

Quincy, MA 02269.

choQue electrico -- el contacto con las partes eléctricas energizadas y tierra puede causar daño severo o muerte. no use soldadura de corriente alterna (ac) en áreas húmedas, de movimiento confinado en lugares estrechos o si hay posibilidad de caer al suelo.

15

SAFETY

1. Asegúrese de que el chasis de la fuente de poder esté conectado a tierra através del sistema de electricidad primario.

2. Conecte la pieza de trabajo a un buen sistema de tierra física.

3. Conecte el cable de retorno a la pieza de trabajo.

Cables y conductores expuestos o con malas conexiones pueden exponer al operador u otras personas a un choque eléctrico fatal.

4. Use el equipo solamente si está en buenas condiciones. Reemplaze cables rotos, dañados o con conductores expuestos.

5. Mantenga todo seco, incluyendo su ropa, el área de trabajo, los cables, antorchas, pinza del electrodo, y la fuente de poder.

6. Asegúrese que todas las partes de su cuerpo están insuladas de ambos, la pieza de trabajo y tierra.

7. No se pare directamente sobre metal o tierra mientras trabaja en lugares estrechos o áreas húmedas; trabaje sobre un pedazo de madera seco o una plataforma insulada y use zapatos con suela de goma.

8. Use guantes secos y sin agujeros antes de energizar el equipo.

9. Apage el equipo antes de quitarse sus guantes.

10. Use como referencia la publicación ANSI/ASC

Standard Z49.1 (listado en la próxima página) para recomendaciones específicas de como conectar el equipo a tierra. No confunda el cable de soldar a la pieza de trabajo con el cable a tierra.

campos electricos Y magneticos - son peligrosos. la corriente eléctrica fluye através de cualquier conductor causando a nivel local campos eléctricos y magnéticos

(emf). las corrientes en el área de corte y soldadura, crean emf alrrededor de los cables de soldar y las maquinas. por lo tanto:

1. Soldadores u Operadores que use marca-pasos para el corazón deberán consultar a su médico antes de soldar. El Campo Electromagnético (EMF) puede interferir con algunos marca-pasos.

2. Exponerse a campos electromagnéticos (EMF) puede causar otros efectos de salud aún desconocidos.

3. Los soldadores deberán usar los siguientes procedimientos para minimizar exponerse al EMF:

A. Mantenga el electrodo y el cable a la pieza de trabajo juntos, hasta llegar a la pieza que usted quiere soldar. Asegúrelos uno junto al otro con cinta adhesiva cuando sea posible.

B. Nunca envuelva los cables de soldar alrededor de su cuerpo.

C. Nunca ubique su cuerpo entre la antorcha y el cable, a la pieza de trabajo. Mantega los cables a un sólo lado de su cuerpo.

D. Conecte el cable de trabajo a la pieza de trabajo lo más cercano posible al área de la soldadura.

E. Mantenga la fuente de poder y los cables de soldar lo más lejos posible de su cuerpo.

por lo tanto: humo Y gases -- el humo y los gases, pueden causar malestar o daño, particularmente en espacios sin ventilación. no inhale el humo o gases. el gas de protección puede causar falta de oxígeno.

1. Siempre provea ventilación adecuada en el área de trabajo por medio natural o mecánico. No solde, corte, o ranure materiales con hierro galvanizado, acero inoxidable, cobre, zinc, plomo, berílio, o cadmio a menos que provea ventilación mecánica positiva . No respire los gases producidos por estos materiales.

2. No opere cerca de lugares donde se aplique substancias químicas en aerosol. El calor de los rayos del arco pueden reaccionar con los vapores de hidrocarburo clorinado para formar un fosfógeno, o gas tóxico, y otros irritant es.

3. Si momentáneamente desarrolla inrritación de ojos, nariz o garganta mientras est á operando, es indicación de que la ventilación no es apropiada.

Pare de trabajar y tome las medidas necesarias para mejorar la ventilación en el área de trabajo.

No continúe operando si el malestar físico persiste.

4. Haga referencia a la publicación ANSI/ASC Standard

Z49.1 (Vea la lista a continuación) para recomendaciones específicas en la ventilación.

16

5. aDVertencia-- este producto cuando se utiliza para soldaduras o cortes, produce humos o gases, los cuales contienen químicos conocidos por el estado de california de causar defectos en el nacimiento, o en algunos casos, cancer. (california health & safety code

§25249.5 et seq.) maneJo De cilinDros-- los cilindros, si no son manejados correctamente, pueden romperse y liberar violentamente gases. rotura repentina del cilindro, válvula, o válvula de escape puede causar daño o muerte. por lo tanto:

1. Utilize el gas apropiado para el proceso y utilize un regulador diseñado para operar y reducir la presión del cilindro de gas . No utilice adaptadores. Mantenga las mangueras y las conexiones en buenas condiciones. Observe las instrucciones de operación del manufacturero para montar el regulador en el cilindro de gas comprimido.

2. Asegure siempre los cilindros en posición vertical y amárrelos con una correa o cadena adecuada para asegurar el cilindro al carro, transportes, tablilleros, paredes, postes, o armazón. Nunca asegure los cilindros a la mesa de trabajo o las piezas que son parte del circuito de soldadura . Este puede ser parte del circuito elélectrico.

SAFETY

2. Antes de dar mantenimiento en el interior de la fuente de poder, desconecte la fuente de poder del suministro de electricidad primaria.

3. Mantenga los cables, cable a tierra, conexciones, cable primario, y cualquier otra fuente de poder en buen estado operacional. No opere ningún equipo en malas condiciones.

4. No abuse del equipo y sus accesorios. Mantenga el equipo lejos de cosas que generen calor como hornos, también lugares húmedos como charcos de agua , aceite o grasa, atmósferas corrosivas y las inclemencias del tiempo.

5. Mantenga todos los artículos de seguridad y coverturas del equipo en su posición y en buenas condiciones.

6. Use el equipo sólo para el propósito que fue diseñado. No modifique el equipo en ninguna manera.

informacion aDicional De seguriDaD -- para más información sobre las prácticas de seguridad de los equipos de arco eléctrico para soldar y cortar, pregunte a su suplidor por una copia de "precautions and safe practices for arc Welding, cutting and gouging-form

52-529.

Las siguientes publicaciones, disponibles através de la American Welding Society, 550 N.W. LeJuene Road,

Miami, FL 33126, son recomendadas para usted:

3. Cuando el cilindro no está en uso, mantenga la válvula del cilindro cerrada. Ponga el capote de protección sobre la válvula si el regulador no está conectado. Asegure y mueva los cilindros utilizando un carro o transporte adecuado. Evite el manejo brusco de los

mantenimiento Del eQuipo -- equipo defectuoso o mal mantenido puede causar daño o muerte. por lo tanto:

1. Siempre tenga personal cualificado para efectuar l a instalación, diagnóstico, y mantenimiento del equipo. No ejecute ningún trabajo eléctrico a menos que usted esté cualificado para hacer el trabajo.

1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.

2. AWS C5.1 - “Recommended Practices for Plasma Arc

Welding”.

3. AWS C5.2 - “Recommended Practices for Plasma Arc

Cutting”.

4. AWS C5.3 - “Recommended Practices for Air Carbon

Arc Gouging and Cutting”.

5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.

6. AWS C5.6 - “Recommended Practices for Gas Metal

Arc Welding”.

7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.

8. ANSI/AWS F4.1, “Recommended Safe Practices for

Welding and Cutting of Containers That Have Held

Hazardous Substances.”

9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.

17

SAFETY significaDo De los simBolos -- según usted avanza en la lectura de este folleto: los símbolos significan ¡atención! ¡esté alerta! se trata de su seguridad.

peligro

significa riesgo inmediato que, de no ser evadido, puede resultar inmediatamente en serio daño personal o la muerte.

aDVertencia cuiDaDo

significa el riesgo de un peligro potencial que puede resultar en serio daño personal o la muerte.

significa el posible riesgo que puede resultar en menores daños a la persona.

clase de envolvente

El código IP indica la clase de envolvente, es decir, el grado de protección contra la penetración de objetos sólidos o agua. Se provee protección contra el toque con un dedo, penetración de objetos sólidos de un tamaño superior a 12 mm y contra rocío de agua de hasta 60 grados de la vertical. El equipo marcado IP21S se puede almacenar, pero no se debe usar en el exterior durante periodos de precipitaciones a menos que esté protegido.

aDVertencia

este producto sólo se debe usar para corte por plasma cualquier otro uso puede causar lesiones físicas y/o daños en los equipos.

aDVertencia

si el equipo se coloca sobre una superficie con una inclinación superior a 15°, se puede producir un volcamiento. es posible que se produzcan lesiones físicas y/o daños importantes en los equipos.

Inclinación máxima permitida

15°

aDVertencia

para evitar lesiones físicas y/o daños en los equipos, levante mediante el método y los puntos de sujeción que se indican en esta ilustración.

18

safety - french

aVertissement : ces règles de sécurité ont pour but d'assurer votre protection. ils récapitulent les informations de précaution provenant des références dans la section des informations de sécurité supplémentaires. avant de procéder à l'installation ou d'utiliser l'unité, assurez-vous de lire et de suivre les précautions de sécurité ci-dessous, dans les manuels, les fiches d'information sur la sécurité du matériel et sur les étiquettes, etc. tout défaut d'observer ces précautions de sécurité peut entraîner des blessures graves ou mortelles. protÉgeZ-Vous -- les processus de soudage, de coupage et de gougeage produisent un niveau de bruit élevé et exige l'emploi d'une protection auditive. l'arc, tout comme le soleil, émet des rayons ultraviolets en plus d'autre rayons qui peuvent causer des blessures

à la peau et les yeux. le métal incandescent peut causer des brûlures. une formation reliée à l'usage des processus et de l'équipement est essentielle pour prévenir les accidents. par conséquent:

1. Portez des lunettes protectrices munies d'écrans latéraux lorsque vous êtes dans l'aire de travail, même si vous devez porter un casque de soudeur, un écran facial ou des lunettes étanches.

2. Portez un écran facial muni de verres filtrants et de plaques protectrices appropriées afin de protéger vos yeux, votre visage, votre cou et vos oreilles des étincelles et des rayons de l'arc lors d'une opération ou lorsque vous observez une opération. Avertissez les personnes se trouvant à proximité de ne pas regarder l'arc et de ne pas s'exposer aux rayons de l'arc électrique ou le métal incandescent.

3. Portez des gants ignifugiés à crispin, une chemise épaisse

à manches longues, des pantalons sans rebord et des chaussures montantes afin de vous protéger des rayons de l'arc, des étincelles et du métal incandescent, en plus d'un casque de soudeur ou casquette pour protéger vos cheveux. Il est également recommandé de porter un tablier ininflammable afin de vous protéger des étincelles et de la chaleur par rayonnement.

4. Les étincelles et les projections de métal incandescent risquent de se loger dans les manches retroussées, les rebords de pantalons ou les poches. Il est recommandé de garder boutonnés le col et les manches et de porter des vêtements sans poches en avant.

5. Protégez toute personne se trouvant à proximité des étincelles et des rayons de l'arc à l'aide d'un rideau ou d'une cloison ininflammable.

6. Portez des lunettes étanches par dessus vos lunettes de sécurité lors des opérations d'écaillage ou de meulage du laitier. Les écailles de laitier incandescent peuvent être projetées à des distances considérables. Les personnes se trouvant à proximité doivent également porter des lunettes

étanches par dessus leur lunettes de sécurité.

SAFETY incenDies et explosions -- la chaleur provenant des flammes ou de l'arc peut provoquer un incendie. le laitier incandescent ou les étincelles peuvent également provoquer un incendie ou une explosion. par conséquent :

1. Éloignez suffisamment tous les matériaux combustibles de l'aire de travail et recouvrez les matériaux avec un revêtement protecteur ininflammable. Les matériaux combustibles incluent le bois, les vêtements, la sciure, le gaz et les liquides combustibles, les solvants, les peintures et les revêtements, le papier, etc.

2. Les étincelles et les projections de métal incandescent peuvent tomber dans les fissures dans les planchers ou dans les ouvertures des murs et déclencher un incendie couvant à l'étage inférieur Assurez-vous que ces ouvertures sont bien protégées des étincelles et du métal incandescent.

3. N'exécutez pas de soudure, de coupe ou autre travail à chaud avant d'avoir complètement nettoyé la surface de la pièce à traiter de façon à ce qu'il n'ait aucune substance présente qui pourrait produire des vapeurs inflammables ou toxiques. N'exécutez pas de travail à chaud sur des contenants fermés car ces derniers pourraient exploser.

4. Assurez-vous qu'un équipement d'extinction d'incendie est disponible et prêt à servir, tel qu'un tuyau d'arrosage, un seau d'eau, un seau de sable ou un extincteur portatif.

Assurez-vous d'être bien instruit par rapport à l'usage de cet équipement.

5. Assurez-vous de ne pas excéder la capacité de l'équipement. Par exemple, un câble de soudage surchargé peut surchauffer et provoquer un incendie.

6. Une fois les opérations terminées, inspectez l'aire de travail pour assurer qu'aucune étincelle ou projection de métal incandescent ne risque de provoquer un incendie ultérieurement. Employez des guetteurs d'incendie au besoin.

7. Pour obtenir des informations supplémentaires, consultez le NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", disponible au National Fire

Protection Association, Batterymarch Park, Quincy, MA

02269.

choc ÉlectriQue -- le contact avec des pièces électriques ou les pièces de mise à la terre sous tension peut causer des blessures graves ou mortelles. ne pas utiliser un courant de soudage c.a. dans un endroit humide, en espace restreint ou si un danger de chute se pose.

19

SAFETY

1. Assurez-vous que le châssis de la source d'alimentation est branché au système de mise à la terre de l'alimentation d'entrée.

2. Branchez la pièce à traiter à une bonne mise de terre électrique.

3. Branchez le câble de masse à la pièce à traiter et assurez une bonne connexion afin d'éviter le risque de choc électrique mortel.

4. Utilisez toujours un équipement correctement entretenu. Remplacez les câbles usés ou endommagés.

5. Veillez à garder votre environnement sec, incluant les vêtements, l'aire de travail, les câbles, le porte-

électrode/torche et la source d'alimentation.

6. Assurez-vous que tout votre corps est bien isolé de la pièce à traiter et des pièces de la mise à la terre.

7. Si vous devez effectuer votre travail dans un espace restreint ou humide, ne tenez vous pas directement sur le métal ou sur la terre; tenez-vous sur des planches sèches ou une plate-forme isolée et portez des chaussures à semelles de caoutchouc.

8. Avant de mettre l'équipement sous tension, isolez vos mains avec des gants secs et sans trous.

9. Mettez l'équipement hors tension avant d'enlever vos gants.

10. Consultez ANSI/ASC Standard Z49.1 (listé à la page suivante) pour des recommandations spécifiques concernant les procédures de mise à la terre. Ne pas confondre le câble de masse avec le câble de mise à la terre.

champs ÉlectriQues et magnÉtiQues — comportent un risque de danger. le courant électrique qui passe dans n'importe quel conducteur produit des champs électriques et magnétiques localisés. le soudage et le courant de coupage créent des champs électriques et magnétiques autour des câbles de soudage et l'équipement. par conséquent :

1. Un soudeur ayant un stimulateur cardiaque doit consulter son médecin avant d'entreprendre une opération de soudage. Les champs électriques et magnétiques peuvent causer des ennuis pour certains stimulateurs cardiaques.

2. L'exposition à des champs électriques et magnétiques peut avoir des effets néfastes inconnus pour la santé.

3. Les soudeurs doivent suivre les procédures suivantes pour minimiser l'exposition aux champs électriques et magnétiques :

A. Acheminez l'électrode et les câbles de masse ensemble. Fixez-les à l'aide d'une bande adhésive lorsque possible.

B. Ne jamais enrouler la torche ou le câble de masse autour de votre corps.

C. Ne jamais vous placer entre la torche et les câbles de masse. Acheminez tous les câbles sur le même côté de votre corps.

D. Branchez le câble de masse à la pièce à traiter le plus près possible de la section à souder.

E. Veillez à garder la source d'alimentation pour le soudage et les câbles à une distance appropriée de votre corps.

les Vapeurs et les gaZ -- peuvent causer un malaise ou des dommages corporels, plus particulièrement dans les espaces restreints. ne respirez pas les vapeurs et les gaz. le gaz de protection risque de causer l'asphyxie. par conséquent :

1. Assurez en permanence une ventilation adéquate dans l'aire de travail en maintenant une ventilation naturelle ou à l'aide de moyens mécanique.

N'effectuez jamais de travaux de soudage, de coupage ou de gougeage sur des matériaux tels que l'acier galvanisé, l'acier inoxydable, le cuivre, le zinc, le plomb, le berylliym ou le cadmium en l'absence de moyens mécaniques de ventilation efficaces. Ne respirez pas les vapeurs de ces matériaux.

2. N'effectuez jamais de travaux à proximité d'une opération de dégraissage ou de pulvérisation.

Lorsque la chaleur

ou le rayonnement de l'arc entre en contact avec les vapeurs d'hydrocarbure chloré, ceci peut déclencher la formation de phosgène ou d'autres gaz irritants, tous extrêmement toxiques.

3. Une irritation momentanée des yeux, du nez ou de la gorge au cours d'une opération indique que la ventilation n'est pas adéquate. Cessez votre travail afin de prendre les mesures nécessaires pour améliorer la ventilation dans l'aire de travail. Ne poursuivez pas l'opération si le malaise persiste.

4. Consultez ANSI/ASC Standard Z49.1 (à la page suivante) pour des recommandations spécifiques concernant la ventilation.

20

SAFETY

5. aVertissement : ce produit, lorsqu'il est utilisé dans une opération de soudage ou de coupage, dégage des vapeurs ou des gaz contenant des chimiques considéres par l'état de la californie comme étant une cause des malformations congénitales et dans certains cas, du cancer.

(california health & safety code §25249.5 et seq.) manipulation Des cYlinDres -- la manipulation d'un cylindre, sans observer les précautions nécessaires, peut produire des fissures et un

échappement dangereux des gaz. une brisure soudaine du cylindre, de la soupape ou du dispositif de surpression peut causer des blessures graves ou mortelles. par conséquent :

1. Utilisez toujours le gaz prévu pour une opération et le détendeur approprié conçu pour utilisation sur les cylindres de gaz comprimé. N'utilisez jamais d'adaptateur.

Maintenez en bon état les tuyaux et les raccords. Observez les instructions d'opération du fabricant pour assembler le détendeur sur un cylindre de gaz comprimé.

2. Fixez les cylindres dans une position verticale, à l'aide d'une chaîne ou une sangle, sur un chariot manuel, un châssis de roulement, un banc, un mur, une colonne ou un support convenable. Ne fixez jamais un cylindre à un poste de travail ou toute autre dispositif faisant partie d'un circuit électrique.

3. Lorsque les cylindres ne servent pas, gardez les soupapes fermées. Si le détendeur n'est pas branché, assurez-vous que le bouchon de protection de la soupape est bien en place. Fixez et déplacez les cylindres à l'aide d'un chariot manuel approprié. Toujours manipuler les cylindres avec soin.

4. Placez les cylindres à une distance appropriée de toute source de chaleur, des étincelles et des flammes. Ne jamais amorcer l'arc sur un cylindre.

5. Pour de l'information supplémentaire, consultez CGA

Standard P-1, "Precautions for Safe Handling of Compressed Gases in Cylinders", mis à votre disposition par le Compressed Gas Association, 1235 Jefferson Davis

Highway, Arlington, VA 22202.

entretien De l'ÉQuipement -- un équipement entretenu de façon défectueuse ou inadéquate peut causer des blessures graves ou mortelles. par conséquent :

1. Efforcez-vous de toujours confier les tâches d'installation, de dépannage et d'entretien à un personnel qualifié.

N'effectuez aucune réparation électrique à moins d'être qualifié à cet effet.

2. Avant de procéder à une tâche d'entretien à l'intérieur de la source d'alimentation, débranchez l'alimentation

électrique.

3. Maintenez les câbles, les fils de mise à la terre, les branchements, le cordon d'alimentation et la source d'alimentation en bon état. N'utilisez jamais un équipement s'il présente une défectuosité quelconque.

4. N'utilisez pas l'équipement de façon abusive. Gardez l'équipement à l'écart de toute source de chaleur, notamment des fours, de l'humidité, des flaques d'eau, de l'huile ou de la graisse, des atmosphères corrosives et des intempéries.

5. Laissez en place tous les dispositifs de sécurité et tous les panneaux de la console et maintenez-les en bon état.

6. Utilisez l'équipement conformément à son usage prévu et n'effectuez aucune modification.

informations supplÉmentaires relatiVes À la sÉcuritÉ -- pour obtenir de l'information supplémentaire sur les règles de sécurité à observer pour l'équipement de soudage à l'arc électrique et le coupage, demandez un exemplaire du livret "precautions and safe practices for arc Welding, cutting and gouging", form 52-529.

Les publications suivantes sont également recommandées et mises à votre disposition par l'American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126 :

1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.

2. AWS C5.1 - “Recommended Practices for Plasma Arc

Welding”.

3. AWS C5.2 - “Recommended Practices for Plasma Arc

Cutting”.

4. AWS C5.3 - “Recommended Practices for Air Carbon

Arc Gouging and Cutting”.

5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.

6. AWS C5.6 - “Recommended Practices for Gas Metal

Arc Welding”.

7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.

8. ANSI/AWS F4.1, “Recommended Safe Practices for

Welding and Cutting of Containers That Have Held

Hazardous Substances.”

9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.

21

SAFETY signification Des sYmBoles ce symbole, utilisé partout dans ce manuel, signifie "attention" ! soyez vigilant ! Votre sécurité est en jeu.

Danger

aVertissement

signifie un danger immédiat. la situation peut entraîner des blessures graves ou mortelles. signifie un danger potentiel qui peut entraîner des blessures graves ou mortelles.

attention

signifie un danger qui peut entraîner des blessures corporelles mineures.

classe de protection de l’enveloppe

L’indice de protection (codification ip) indique la classe de protection de l’enveloppe, c’est-à-dire, le degré de protection contre les corps solides étrangers ou l’eau. L’enveloppe protège contre le toucher, la pénétration d’objets solides dont le diamètre dépasse 12 mm et contre l’eau pulvérisée à un angle de jusqu’à 60 degrés de la verticale. Les équipements portant la marque ip21s peuvent être entreposés à l’extérieur, mais ne sont pas conçus pour être utilisés à l’extérieur pendant une précipitation à moins d’être à l’abri.

aVertissement

ce produit a été conçu pour la découpe au plasma seulement. toute autre utilisation pourrait causer des blessures et/ou endommager l’appareil.

aVertissement

l’équipement pourrait basculer s’il est placé sur une surface dont la pente dépasse 15°. Vous pourriez vous blesser ou endommager l’équipement de façon importante.

Angle d’inclinaison maximal

15°

22

aVertissement

soulevez à l’aide de la méthode et des points d’attache illustrés afin d’éviter de vous blesser ou d’endommager l’équipement.

SAFETY

When plasma cutting stainless steel, you must comply with the OSHA standard to protect your employees from Hexavalent Chromium exposure.

Engineering control must be used to reduce exposures to safe levels (in compliance with the new PEL). The specific details of the standard are complex and may require the assistance of an occupational health professional to reach full compliance

For additional information about Hexavalent Chromium contact your occupational health professional and read the OSHA web page at http://www.osha.gov/SLTC/hexavalentchromium/

23

24

SAFETY

CANCER HAZARD; CAN DAMAGE

SKIN, EYES, NASAL PASSAGES, AND

LUNGS; AUTHORIZED PERSONNEL

ONLY; RESPIRATORS MAY BE

REQUIRED.

CHROMIUM (VI)

Cr(VI)

HEXAVALENT CHROMIUM)

Hexavalent Chromium Cr(VI) is a toxic chemical component within fume and dust particles created in a variety of processes, including plasma cutting of stainless steel.

On February 28, 2006, the Occupational

Safety and Health Agency (OSHA) published a revised standard to protect workers from the potential hazards of hexavalent chromium.

• Occupational exposure to hexavalent chromium (Cr(VI)) must be below the

Permissible Exposure Limit (PEL) of 5 μg/m3 for an eight hour time weighted average.

• Workplace or job-specific monitoring must be done to establish areas of potential exposure and to quantify the potential exposure.

• Employees who may be exposed to levels of Cr(VI) at or above the new PEL must be informed and corrective measures implemented.

• Protective clothing and respiratory protection must be given to employees who have potential exposure.

• Medical surveillance of employees with potential exposure to Cr(VI) must be conducted.

• Areas of potential exposure to Cr(VI) must be indicated with warning signs containing the text shown at left.

• Engineering control must be used to reduce exposures to safe levels (in compliance with the new PEL). The specific details of the standard are complex and may require the assistance of an occupational health professional to reach full compliance

For additional information about Hexavalent Chromium contact your occupational health professional and read the OSHA web page at http://www.osha.gov/SLTC/hexavalentchromium/

introDuction

26

INTRODUCTION

INTRODUCTION introduction

The purpose of this manual is to provide qualified repair personnel with technical information which will assist in troubleshooting and repairing malfunctions.

general

The m2 Smart Plasmarc

TM

200 Cutting System can be assembled as shown on the interconnect diagram (see System

Manual) and is ready to cut after being connected to input power and a source of compressed air. The system uses the heavy duty PT-36 torch to deliver cutting power for severing materials up to 2.00” (50 mm) thick. Refer to the System

Manual for descriptions of the packages available as well as performance specifications. The interconnect diagram shows configurations available on the m2 Smart Plasmarc

TM

200 Cutting System. A variety of configurations are available to meet customer’s requirements.

The m2 Plasma Console is designed for mechanized plasma cutting applications. It is used with other ESAB products such as the PT-36 torch,

RAS-2 and CGC-2 to provide a complete cutting package.

features

• Controls RAS-2 and CGC-2

• Easy-to-use LCD operator interface

• 25 to 200 amperes cutting current range

• Forced air-cooled

• Liquid-Cooled IGBTs

• Internal Coolant Circulator

• Solid-state DC power

• Thermally protected

• 100% duty cycle

specifications

part number m2 plasma console, 200a,

230/460V,

60hz,

0558012390 m2 plasma console, 200a,

380 ccc,

50hz,

0558012391 m2 plasma console, 200a,

400V ce,

50hz,

0558012392

160 VDC

30A to 200A

output

(100 % duty cycle) input

Voltage

Current range DC (cutting)

Power

Open Circuit Voltage (OCV)

Voltage (3-phase)

Current (3- phase)

Frequency

KVA

Power

Power Factor

360 VDC

200/230/460 V

60 Hz

39.5 KVA

35.5 KW

90%

Input Fuse (recommended)

150/125/70 A

342/360 VDC

380/400 V

115/96/50 A RMS 60/57 A RMS

50 Hz

39.5 KVA

35.5 KW

90%

80/75 A

32KW

Weight - lbs (kg)

941 (427) 939 (426)

360 VDC

400 V

57 A RMS

50 Hz

39.5 KVA

35.5 KW

90%

75 A

957 (434)

m2 plasma console, 200a,

575V,

60hz,

0558012393

366 VDC

575 V

43 A RMS

60 Hz

39.5 KVA

35.5 KW

90%

60 A

1085 (492)

27

INTRODUCTION

service manual format

The “machine operation” flow diagram shows the breakdown of the functionality of the m2 200. Each of the major components is divided into sections, which are described in the pages that follow. Each section in the flow chart has a matching section on the main schematic and is applied to the description pages. Each section starts with the schematic view with description, if the section includes a printed circuit PC board, it is followed by a PC board schematic, the layout of the board and then the component list for the board. Some PC boards will also have “mini descriptions” of selected circuits. This information is for troubleshooting purposes only, PC board repair is not recommended.

circuit Description

The power circuit utilized in the m2 200 is commonly referred to as a Chopper. High speed electronic switches turn on and off several thousand times per second providing pulses of power to the output. A filter circuit, consisting primarily of an inductor (sometimes called a choke), converts the pulses to a relatively constant DC (Direct Current) output.

The m2 200 Block Diagram shows the main functional elements of the power source. T1, the Main Transformer, provides isolation from the primary power line as well as the proper voltage for the 360V DC Bus. The Bus Rectifiers convert the three phase output of T1 to the 360V DC bus voltage. A capaci tor bank provides filtering and energy storage that supplies power to the high speed electronic switches. These switches are known as IGBTs (Insulated Gate Bipolar Transistors). The IGBTs are the electronic switches that, in the m2 200, turn on and off at a frequency ranging from 15 KHZ - 25 KHZ. They provide the pulses of power filtered by the inductor. The Free Wheeling Diodes provide the path for reverse current to flow when the

IGBTs are off. The Hall Sensors are current transducers that monitor the output currents and provide the feedback signals for the control circuit.

sequence of events

The m2 200 has no power switch installed in the unit. The wall breaker is the power disconnect for this power supply. Once the wall breaker is closed, the following events occur:

1. Power is applied to the control transformer T2. This supplies power to the circuit boards - PCB1 the Control board, PCB2 the Driver board, PCB5 the DC Power Supply board which in-turn provides 24VDC power to PCB4 the Interface Control

Board and CGC-2. Main micro on the control board (PCB1) establishes the communication with IC (PCB5) through CAN communication and IC establishes communication with CGC-2 through CAN as well. The interface between customer controller and m2 200 is via DB-37 connector on the front panel. The display (user interface) on the front panel with encoder wheel will let the customer to navigate through different options available (See Interface Control PCB4 section for more details).

2. Pump Motor (M2) turns ON and coolant pumps out to torch and comes back into the tank through radiators, filter, flow sensor, and IGBTs cold plate respectively.

3. The Control board performs a fault/error check. If there are no errors/faults the power up sequence will continue.

4. Power Light (PL) on the front panel will be ON all time indicating there is input power available and Fault Light (FL) will be OFF indicating there are no faults/errors.

5. The power supply enable relay K4 will close if there are no errors/faults in the power source and there is no interruption in PS Enable chain on the customer interface machine.

6. If above steps are satisfied then the Bus Pre-Charge contactor (K2) closes and charges the Bus Filter Capacitor (C1) through a 2-Ohm resistor in each phase.

7. Once bus is pre-charged to a threshold of 200 VDC then control board issues the command to close the Main contactor

(K1), Main Fan Motor (M1) and open K2. This will allow the bus filter capacitor to charge up to the full bus voltage of 360

VDC.

28

machine operation flow Diagram

INTRODUCTION

COOLANT

CIRCULATOR

24V DC

POWER SUPPLY

INTERFACE

CONTROL

CAN

DB-37

CGC-2

8. The bus will be high as soon as the wall breaker closed and there are no faults in the power supply. K1 and M1 will stay

ON for 5 minutes of Idle operation and then they will turn OFF, hence bus filter capacitor voltage bleed through R8 (1.5

KOhm, 100W) resistor.

When the m2 200 is commanded to start the plasma cut process, the following events occur:

1. The IC receives the start signal and plasma hold signal from customer controller which will purge the gases, assuming the operator has selected the appropriate cutting file and has input gas supply to CGC-2, for a default time or operator set time (See Interface Control PCB4 section for more details). Once the plasma hold signal goes away, IC issues the plasma start signal to PCB1 if there are no errors/faults.

2. Once a start signal is sent, if bus is not high, a soft start sequence begins. The main control board (PCB1) issues the command to close the bus pre-charger relay K2. This signal is sent to the Relay Block Module (RB1) through ribbon cable connector J6. On the relay block module relay one (RB1-1) is energized. This passes 24 VAC to the coil of K2, the soft start relay. This puts main line power to the Main Transformer (T1) through a 2 ohm resistor in series (on each phase) to initially limit the amount of current. This is done for two reasons: a. Due to the large input filter capacitors, a very large current would be seen on the output of the main transformer. b. To limit current in case there is a short on the rectifier, the capacitors, or the transformer.

29

INTRODUCTION

3. After K2 is closed, PCB1 monitors the bus voltage across C1. The main-micro on PCB1 looks for bus filter capacitor voltage to reach +200 VDC or 500 ms time out. If +200 VDC is present, the micro initiates commands to pull in the main contactor K1, turn ON main fan (M1) and then open K2. After K1 is pulled in, the power supply waits few milliseconds for the bus to reach its full voltage of 360VDC. If bus filter capacitor voltage does not reach +200 VDC before 500 ms timer time out then power supply will send Error 15 to IC (PCB4) via CAN and toggle the Fault Light (FL) on front panel with 50% duty cycle.

4. Once bus is fully charged and main-micro read all the respective currents and ramping times from IC (PCB5) through

CAN communication, main-micro will issue the PWM start signal to servo-micro which then will provide 25 KHZ frequency pulses to IGBTs. At this point main-micro monitors the Open Circuit Voltage (OCV) on the output, which should be at least 280 VDC for a period of 200 ms, failed to achieve this will result in output shut down and open K1 contactor, toggles the fault light and send Error 13 to the IC (PCB4).

5. If proper OCV is read main-micro sends command to close HF relay which will provide 115 VAC to HF circuit in the RAS box and sends pilot arc enable signal to servo-micro which then will provide PWM signal to pilot arc IGBT (Q5). If HF is present at the torch, Pilot Arc is established.

6. Once the Pilot Arc is established, if the torch is close enough to the work, and the work piece is grounded, main arc will transfer to work. Once main arc is established, which will be verified by sensing the work current through HS2 (work current greater than 5A/10A for low amperage/high amperage respectively), power supply will send the Arc ON signal to IC (PCB4) via CAN and begins to ramp up current in accordance with the SDP file. After the Arc ON signal received by

IC, it will turn ON the digital output (Motion Enable) signal to customer controller to allow the machine movement.

7. After a cut is finished or stop signal is sent from the Customer Controller to IC (PCB4), it will send out Plasma Stop signal to power supply which ramps down the current according to TDF/SDP file and once the arc is extinguished PCB1 will send out Arc OFF signal via CAN to IC (PCB4) which will set the Motion Enable digital output signal to LOW via DB-37 connector, the fan stays ON and the K1 contactor remains closed for 5 minutes. If another start signal is sent prior to the 5 minutes time out, as the bus filter capacitor voltage is already at 360 VDC, power supply will not go through the soft start sequence.

8. After the 5 minutes timer timed out, main fan turns off and K1 opens. Now, if a start signal is sent, the m2 200 will perform the sequence of operations - steps 1 through 7.

30

timing Diagram

INTRODUCTION

31

32

INTRODUCTION

schematic laYout

34 schematic layout

schematic layout

component locator

schematic layout

Q5

T1

T2

TS1

TS2

M1

PCB1

PCB2

PCB3

Q1,2

K1

K2

K4

K5

L1

CB1

F1

F2

F3

HS1-2

PCB4

PCB5

CB2

TB1

TB2

TB3

TB4

TB5

TB6

R1, R2, R3

R4,R5,R6,R7

D1,3,5

D2,4,6

sYmBol

FL1

PL1

FS

C3

M2

R10

C1

R8

R9

m2 200 components

Description

LARGE AMBER 12V PNL MT

LAMP WHITE 14V PNL MT

SENSOR FLOW

CERAMIC, 0.001 MF, 1000V

MOTOR COOLANT PUMP 1/2 HP

RES, 20 OHM, 25 W, 5%

CAPC ELECT ALUM 6000 MF, 450V

RES, 1.5 K OHM, 100 W, 5%

RES, 3K OHM, 100W, 5%

TERMINAL BLOCK 3 POS

TERM BLOCK 12 POS

TERMINAL BLOCK 18-POS

TERM BLOCK 7 POS 25A

TERMINAL BLOCK 9-POS

TERMINAL BLOCK 5-POS

RES, 2 OHM, 300W, 10%

RES, 8 OHM, 300W, 10%

DIODE REVERSE 300A 1200V

DIODE FORWARD 300A 1200V

CIR BRKR 3 AMP

FUSE, SLOW BLOW, 15 AMP

FUSE, SLOW BLOW, 15 AMP

FUSE 15A SLOW BLOW

SENSOR CURRENT

CONTACTOR 3 POLE 150A

CONTACTOR 3 POLE 40 AMP *24VAC

RELAY ENCLOSE 3PDT *24VAC

RELAY ENCLOSE 3PDT *24VAC

INDUCTOR

MOTOR 1/3 HP KO55NAL449

PCB CONTROL/PGM’D

PCB DRIVER BOARD

PCB BOARD

IGBT 400A 1200V W/PLUG

IGBT 50A, 1200V

FMR MAIN 400/460V

FMR ASSY CONTROL

SW THML D/T 176 15A 120V

SWITCH THERMAL 194°F

INTERFACE CONTROL (IC)

24V DC POWER SUPPLY

CIR BRKR 2 AMP

3

7

5

2

4

9

8

1

11

7

14

14

3

1

14

1

1

9

1

3

3

1

8

5

4

3

1

4

3

3

1

1

2

6

6

3

5

8

section

3

3

12

5

35

36 schematic layout

schematic section map - 0558012575

Refer to the back section of this manual for complete schematics.

1

1

4

5

6

9

7

8

match line

2

0558012575-OR

9

match line

2

schematic layout

3

4

38 schematic layout

schematic section map - 0558012575, sheet 2

Refer to the back section of this manual for complete schematics.

match line

11

10

12

0558012575-OR

match line

11

schematic layout

13

14

39

0558012575-OR

40 schematic layout

Description of operation

42

DESCRIPTION OF OPERATION

DESCRIPTION OF OPERATION

Description of operation

relay contactors

There are 4 contact relays installed in this power supply for proper operation. They are:

K1 Main Contactor – Connects the Line voltage directly to the main transformer.

K2 Soft Start – Connects the line voltage to the main transformer thru 2 ohm resistors for initial power up functions.

K4, K5 E-stop/PS enable and safety functions.

main contactor K1 (952251)

K1 is a 3 pole unit with 115 VAC coil. Two different power rating contactors are used in the family of m2 200 power supplies.

These are:

1. 3-pole, 150A, 115 VAC with P/N: 0558010712 used in 0558012390 machine.

2. 3-pole, 75A, 115 VAC with P/N: 0558010751 used in 0558012391, 0558012392, and 0558012393 machines.

43

DESCRIPTION OF OPERATION

K1 relay (main contactor relay)

It is used as the main contactor relay for the m2 200. Once the bus has reached 200 volts, the control board initiates turning on the main contactor and full bus voltage is developed at the filter caps. This connects main power to the main transformer after the main bus voltage has reached 200 VDC. See “Sequence of Events” in Introduction section for more information on this event.

K1 relay power path

The main contactor (K1) is energized by the Control Board (PCB1) when the filter bus reaches 200 VDC. The micro-controller monitors the bus voltage and during a start cycle when the bus reaches 200 VDC (in 500 ms or less) the control board issues a Main Contactor Relay ON signal to the relay terminal block through J6 pin 2 to close RB1-2 relay. The contacts of RB1-2 close which, in turn, provides 115 VAC to the K1 relay coil to close the contacts in order to connect the input power to main transformer. The 115 VAC signal originates from the main transformer (T1) coil “A” auxiliary winding X7 and is sent through a pair of PS Enable relay contacts K4, pins 7 and 4 and through RB1-2 relay contacts to K1B, and K1A is connected to X4 on

TB2 to complete the 115 VAC circuit. See the diagram below:

44

PS ENABLE

14

RB1-2

11

3

PS ENABLE

14

RB1-2

11

DESCRIPTION OF OPERATION

K2 relay (soft start relay)

K2 relay (soft start relay)

K2 is a 3 pole, 40 amp relay with a 24 VAC coil that has a resistance of 7.5 Ohms. It is used as the excitation or soft start relay for the power supply. When K2 closes, the bus is precharged through three 2 ohm resistors. This takes less than 500 ms and allows the bus to come up slowly. This prevents a surge of current through the rectifier diodes and the filter capacitors that would otherwise damage them.

soft start circuit

The m2 200 uses a Soft Start Circuit in order to precharge the bus before allowing the full current to be delivered to the input bridge and filter bus. In this way, initial current to the input rectifier and bus filter caps are limited so as to prevent an initial overload condition and damage these circuit components. The soft start circuit is composed of a pair of input fuses, three 2 Ohm resistors and the soft start contactor K2. When power source is powered up or a start command is issued if the machine is in idle state and if there are no errors in the power supply, the main control board closes the K2 relay. This allows the bus filter capacitors to charge at slower rate due to the 2 Ohm resistors restricting the initial current flow. When the bus filter capacitors reach 200 volts DC, the main control board sends the signal to close the main contactor K1 to allow the full current to be delivered to the input rectifier. If the bus filter does not reach 200 Volts DC in 500 milliseconds or less, the main control board halts the process and sends an error to the CNC.

K2 relaY poWer path

The K2 bus charger or soft start contactor is energized when input breaker is closed or a start signal is issued from the CNC

PS ENABLE if the machine is in idle state and there are no errors/faults in the power source. The Control Board sends the Bus Charger

Relay ON signal to the relay terminal block through J6 pin1 to close RB1-1 relay. The contacts of RB1-1 close which provide

24 VAC to K2 relay coil, which closes its contacts to charge the bus filter capacitor to 200 VDC. See diagram below:

14

RB1-2

11

TB3-9

24 VAC

10

11

RB1-1

14

147.2 VAC

2

PS ENABLE

14

RB1-2

11

45

DESCRIPTION OF OPERATION

K4, K5 relay (ps enable relay) 0558007736

K4, K5 are enclosed double pole double throw 10 amp relays. K4 and K5 are connected in parallel to provide extra set of contacts. The coil is operated by 24 VAC and has a resistance of 75 ohms. This is the PS Enable relay, wired into the E-Stop circuit of the cutting machine. This relay opens for an E-stop event or interruption in controller enable signal.

K4, K5 relaY poWer path

These relays are energized when there is no emergency stop issues on the system. The K4, K5 relay coils are in series with the E-Stop circuits of the cutting machine. A break in the E-Stop chain removes power from the K4 and K5 coils. If the cutting machine E-Stop chain is broken the power supply will halt power output.

When K4 is de-energized it opens the three sets of contacts. These contacts provide power to the coil of K2, the soft start contactor, the second set of contacts is in the K1 power path, and third set of contacts provide 120 VAC to HF circuit in the

RAS box when HF relay close command is issued from PCB1. With K4 open, no power reaches the main transformer T1.

When K5 is de-energized, which happens simultaneously with K4, it opens one set of contacts which interupts PS Enables to PCB1. Should you attempt to start the m2 200; the Control board will issue an error 23 indicating a fault.

The power path for the K4, K5 relay starts with 24 VAC from the control transformer T2 connected to TB3 pins 6 and 8. TB3 pin 6 is connected to K4 B. This then passes through the K4 coil and out terminal K4 A. From here, K4 A is connected to the chassis connector J1 pin E and routed out of the power supply to a set of E-Stop relay contacts of the cutting machine. This signal is then returned to the power supply on chassis connector J1 pin F, where is routed to TB3 pin 8 to complete the 24

VAC circuit. See the diagram below.

46

DESCRIPTION OF OPERATION

K4, K5 relay (ps enable relay) 0558007736

Description:

COIL DATA: 50/60 HZ

VOLTAGE: 24 VAC

TEMP RANGE: -45°C TO +55°C(ENCLOSED)

TERMINATION: .187” QUICK CONNECT TABS

CONSTRUCTION: ENCLOSED BRACKET-MOUNTED

CONTACTS: 3PDT

CONTACT DATA: 10A @ 240 VAC

47

DESCRIPTION OF OPERATION

main transformer t1

The Main Transformer T1 is a 3 phase transformer with a multi-tapped secondary. These come in 3 input voltage specifications: one is 200-460 VAC model, p/n 0558010746, second one is 380/400 VAC model, p/n 0558012046, and the third is 575

VAC model, p/n 0558011717. There are three identical coils (A, B, and C). These Coils are configured using a Delta primary and a Wye secondary. The transformer is the source of high induction current, and it is the isolated secondary power distribution to the 360V bus. Due to it’s size and weight, the transformer is mounted near the unit’s center of gravity.

The secondary windings are connected in a Wye, which not only provides isolation from the primary power line, it also supplies the proper voltage for the 360 VDC bus. Additional windings are configured to produce step-down voltages for different load requirements.

48

DESCRIPTION OF OPERATION

fan cooling

Fan Cooling of the m2 200 is accomplished with one fan.

This fan, M1 (2062334) is a 230 VAC, 50/60 HZ, 1/3 horsepower motor rated at 2.8 (230 VAC) Amps. This unit is connected on one side to the X7 tap and the other side is connected to the RB1-3 for fan control. The X5 tap is the common return and is routed to PB1-3 for fan control. This fan provides air cooling for the m2 200 across the lower end of the unit. The control board sends the main fan relay ON signal to the relay terminal block through J6 pin 3 which closes RB1-3 relay. See figure below.

TB3

1 M1

14

RB1-3

11

TB3

7

.6

in. H O

.5

0

.4

.3

.2

.1

0

0

100 200 300 400

500 m3/hr

150

Pa

60 Hz

50 Hz

100

50

50 100 150 200 250

300 CFM

0

6.375

2.1875

5.875 OD

6.75

49

DESCRIPTION OF OPERATION

control transformer

The control transformer (T2) provides control voltages to various control relays on the chassis and PC boards of the m2 200.

This unit is instrumental in the power-up sequence providing the initial 120 VAC startup voltages and enabling the control relays to control the power supply.

T2 is designed to incorporate both auto-transformer and regular primary-secondary isolation transformer features. The auto-transformer operation of T2 is used to power the coolant pump motor. Half of the pump motor input current is drawn from T2 and half from the source/input wall supply. T2 has a multi tapped single phase primary that is connected to the line voltage supplied to the m2 200. The primary can accept a variety of voltage inputs to accommodate the voltages in use by the customer. T2 has multiple secondary windings to supply various voltages to PCBs and relays. Reference the diagrams below.

50

note:

TB6 is available only in

0558012390 machine.

DESCRIPTION OF OPERATION

control transformer Winding outputs

• Secondary coil A1-A2 is 120 VAC, it provides signal to the HF circuit and Mark mode VDR selection inside the RAS box through relay block RB1, protected by a 3A circuit breaker “CB1”. Refer “Schematic Layout” section for detail schematics.

• Secondary coil X1-X2 is 24 VAC, provides power to Bus Charger Relay (K2) and Control board. On the control board this AC voltage connected to J2 pins 1 and 3 (PCB1) is rectified through diode bridge rectifier (D4, D18, D31, D34) to create 24 HVDC for isolated digital input signals connected to

J1 (PCB1). Refer “Schematic Layout” section for detail schematics.

• Secondary coil X3-X4 is 24 VAC, provides power to PS Enable Relays (K4, K5). Refer “Schematic Layout” section for detail schematics.

• Secondary coil X5-X6 is 24 VAC, provides power to control board (PCB1) at J3 pins 4 and 5, which then rectified through diode bridge rectifier (D5, D6, D9, D10). Refer “Schematic Layout” section for detail schematics.

• Secondary coil X7-X8 is 24 VAC, provides power to driver board (PCB2) at J5 pins 1 and 3, which then rectified through diode bridge rectifier (D2, D3, D5, D6). Refer “Schematic Layout” section for detail schematics.

• Secondary coil Y1-Y2 is 13 VAC, provides power to power light (PL) and fault light (FL) which indicate the status of the power supply. Refer “Schematic Layout” section for detail schematics.

• Secondary coil Z1-Z2-Z3 is a center tapped 34 VAC, provides power to control board (PCB1) at J3 pins 1, 2 and 3 which then rectified through diode bridge rectifier (D7, D8, D11, D12). Refer “Schematic Layout” section for detail schematics.

51

DESCRIPTION OF OPERATION

rectifier D1-D6

Input Rectifier

The input rectifier consists of six high current diodes configured to rectify the three phase input power delivered from the main transformer. Each phase has two diodes associated with it, one for the positive half cycle and one for the negative half cycle

The input rectifiers convert the three phase output of T1 to the DC bus voltage. D1 thru D6 is a full wave rectifier with filter capacitor C1 used to reduce ripple.

D1, 3, and 5 0558003658 (Reverse)

D2, 4, and 6 0558003657 (Forward)

The input rectifier consists of 6 stud mount diode rectifiers. The output of this assembly is connected to the filter capacitor

(C1) which supplies 360 VDC to the IGBTs.

Testing:

D1, 3, and 5 0558003657

Forward Resistance 780 K Ohms

Reverse Resistance 5.5 M ohms

D2, 4, and 6 0558003658

Forward Resistance 660 K Ohms

Reverse Resistance 6 M Ohms

note:

When replacing these diodes, new parts must be mounted to flat surfaces and torqued at 275 - 325 in-lbs. a conductive heat sink compound is required –recommended: “heat sink” compound---Dow#340, esaB part number 73585976

52

DESCRIPTION OF OPERATION

input rectifiers (0558003657_forward - 0558003658_reverse)

53

DESCRIPTION OF OPERATION

igBt Q1-Q2 (0558006183)

The IGBTs are the devices used as an electronic switch to turn the output of the power supply on and off. During operation, these transistors are switched on and off 15000 - 25000 times a second to produce the output current of the m2 200. These transistors are part of the IGBT block and are key components allowing a variable output of the power supply. These transistors produce heat during normal operation, which must be removed. A cold plate (water-cooled) mechanism is used to remove the heat from the IGBTs. Failure to remove this heat will result in the destruction of transistors. The IGBTs installed in the m2 200 are rated for 400 amps of continuous current output and up to 1200 Volts DC of input.

Testing: see “IGBT Testing” in the General Information section.

54

E2 _ 7

G2 _ 6

0558006183 igBt

0558012575-OR

DESCRIPTION OF OPERATION

igBt Driver Board pcB2 (0558038416)

Bias Supply

The Driver board has a bias supply built onboard to power its’ own circuitry. The board receives 24 VAC input from the control transformer T2 onto PCB2-J5 header. The voltage is rectified, filtered regulated and then sent to the various circuits on the board.

24 VAC input on J5 pins 1 and 3 is rectified by the full wave bridge (D2, D3, D5, D6) and filtered by capacitor bank (C5, C6,

C25, C48, C62). The voltage from capacitor bank is provided to U12 and U2 which will then provide regulated 24 HVDC and

9 HVDC output voltages.

55

0558012575-OR

DESCRIPTION OF OPERATION

hall sensors hs1, hs2 (0558006886)

The Current sensors HS1 and HS2 (Hall Sensors or Hall Effect Sensors) provide current feedback to the Control Board PCB1.

These two sensors detect the amount of current flowing through them and provide a signal back to the Control Board for output current regulation and passing to controller through CAN communications. These two hall sensors are closed loop sensors and as such do not need to be referenced to common.

Functions:

The two hall sensors perform different functions on the m2 200. HS1 detects the Pilot Arc and current to the electrode, while HS2 is used to detect current through the work lead. The only function that HS2 performs is Arc On detection.

The two hall sensors HS1 and HS2 are supplied with a positive and negative 15 VDC. The feedback signal is taken from pin

2 of the hall sensors and sent back to the Control Board PCB1, J8 connector.

Testing

Using an Ohm meter, the hall sensors may be checked. See the table below for resistance values.

8

56

PINS

Pin 1 - 3

Pin 1 - 2

Pin 2 - 3

Pin 3 - 1 pin 2 - 1 pin 2 - 3

Positive

1

1

2

3

2

2

Negative

3

2

3

1

1

3 h h h h h h h

0558012575-OR

DESCRIPTION OF OPERATION

output inductor l1 (0558007254)

The output inductor L1 is in place to filter the output of the power supply and reduce output ripple.

8

0558012575-OR

57

58

DESCRIPTION OF OPERATION

pilot arc

In the power supply sequence of events, the pilot arc “ON” must be detected before the main arc “ON” or Motion Enable signal can be issued to customer CNC. When power supply receives a start signal from the CNC, it will go through the startup sequence (refer to “Sequence Eventa” in the Introduction section). Once the bus filter capacitor is fully charged, main micro on the control board (PCB1) closes the HF_Ignitor Relay (RB1-6) which will provide 115 VAC to High Frequency starting circuit in the RAS box, issues PWM ON and PA IGBT ON signals to servo micro. Servo micro on PCB1 then issues PWM signals to pilot arc IGBT and main IGBTs. Since the Interface Control (IC) board which controls the process has already started the gas flow, due to availability of High Frequency (HF) signal from RAS box and open circuit voltage (OCV) from power supply an arc is established inside the torch body between electrode and nozzle which is called PILOT ARC. When pilot arc is established, power supply regulates this pilot arc at a specified current (usually 20-40 amps) for short period of time only, this regulated current is sensed by using hall sensor (HS1) to open the

HF_Ignitor relay (RB1-6) which in turn removes 115 VAC to HF circuit inside RAS box. When cutting material (work) is close enough to torch (electrode), the arc will transfer to the work material forming the current path between electrode and work through cutting material detected by using hall sensor (HS2) which will help servo micro to regulate the PWM signals for requested cutting currents.

The following schematics shows the pilot arc circuit used in m2-

200A power supply.

5

arc on Block Diagram

0558012575-OR

DESCRIPTION OF OPERATION

filter and start-up Board pcB3 (0558038423)

The board is in place to prevent high frequency noise from entering the power supply and either damaging the power supply or inducing transient fields in the Hall sensor that may send an inaccurate current signal to the CNC. The filter networks are constructed so as to shunt high frequency AC signals to ground.

This PC board also has a Start-up circuit which connects between nozzle and electrode. The Start-up circuit helps in establishing the pilot arc between nozzle and electrode. The below schematic shows Filter and Start-up circuit in which C1-R1-R2 forms the Start-up circuit and remainder of the circuit forms the filter network.

D

C

B

A

8

1 5 4 3 2

5

D

1

2

1

2

2 1

1

2

1 2

1

2

1

2

1

2

1

2

1

2

1

2

ELECTRODE

1

2

1

P.A

2

1

2

1

2

4 3 2

C

1

B

59

A

0558012575-OR

DESCRIPTION OF OPERATION

filter Board pcB3 (0558038423)

item Quantity reference

3

4

1

2

5

6

9

10

7

8

1

3

1

4

4

1

1

1

1

1

C1

C2,C3,C4

C5

C6,C7,C8,C9

J1,J2,J3,J4

MH1

RV1

R1

R2

R3

part

56uF, 450V

0.22uF, 1kV

0.1uF, 1kV

0.02uF, 400V

FASTON 1/4" TERMINAL

HOLE_0v330-0v156_PLATED

VARISTOR

25

2k

10k

Description

CAPACITOR, ALUMINUM ELECTROLYTIC, 56uF, 450 VDC, TOL: +/- 20%

CAPACITOR, METALIZED FILM, 0.22uF, 1000VDC, TOL: +/- 20%

CAPACITOR, METALIZED FILM, 0.1uF, 630VDC, TOL: +/-10%

CAPACITOR, CERAMIC, 0.02uF, 400VAC, TOL: +/-20%

FASTON, 1/4" Faston Blade

Mounting Hole

Littlefuse Radial Lead Varistor, 275VAC and 370VDC

RESISTOR, 25 OHMS, 20W, 5%

RESISTOR, 2K OHMS, 20W, 5%

RESISTOR, 10K OHMS, 8W, 5%

60

DESCRIPTION OF OPERATION

filter Bus

The Filter Bus consists of a 6000 microfarad capacitor used to smooth out the rectified input power. This capacitor C1 is connected between the input bridge and the IGBTs. The filter cap provides 360 VDC to the IGBTs to supply the output of the power supply. Connected in parallel with the filter capacitor is R8, a 1.5 K Ohm 100 watt resistor used as a bleeder resistor. This is used to drain the left over charge on the capacitor once the power supply is turned off. The time required to dissipate the charge is as follows:

9 seconds = 63.21% of the charge reduced or 132 VDC remaining.

27 seconds = 94.81 % of the charge reduced or 18 VDC remaining.

Capacitor Information

caution serious shock possible!

Bus cap warning

serious shock possible

The “bus capacitor” in the m2 200 will maintain a voltage charge for approximately 2 minutes after power is removed from the input of the machine.

The arcing caused by discharging a capacitor into a short-circuit can cause injury and component damage

To eliminate the voltage from the capacitor, connect the “bleeder resistor” across the poles of a charged capacitor and the stored energy will discharge harmlessly through the resistor. The approximate discharge time is 30 seconds.

When discharged, the cap can be partially tested by using a multimeter set to the ohms scale. When checking a capacitor…Connect the + meter lead to the + pole of the capacitor, and the – lead to the – pole. The meter display will show a number that will change while the leads are connected, if the meter leads are reversed, the display will change polarity and the value will change in the opposite direction from the first test, if the capacitor is good.

61

DESCRIPTION OF OPERATION

temparature monitoring

Two thermal switches connected in series monitor the internal temperature of the m2 200. TS1 mounted on the IGBTs cold plate rated to open at temperature 176 °F and TS2 mounted on the bridge rectifier is rated to open at 194 °F.

Surface mount Thermistor (RT1) on the control board (PCB1) monitors the ambient temperature in the control box. Thermistor sends an analog voltage signal proportional to the ambient temperature.

Main micro U19 on PCB1 read these temperature sensors information for fault monitoring.

62

DESCRIPTION OF OPERATION

coolant circulator

m2 200 Power Source has inbuilt coolant circulator which circulates coolant to torch and IGBTs cold plate. Circulator consists of Pump, Motor, Radiators, Regulator, Flow Sensor, and Level Switch.

specifications

pump type: Positive displacement, rotary vane type with adjustable by-pass valve (225 psi / 15.5 bars max.),

CW rotation as viewed from nameplate.

radiator type: Copper tubing, aluminum finned air-to-water type with galvanized steel frame.

ac input Voltages

ac input amperage

50hz, 1 phase input power 60hz, 1 phase input power

230 V, + / - 10%

8 Amperes

pump capacity

1.60 gpm at 175 psi

(6.0 l/min at 12 bars)

1.60 gpm at 175 psi

(6.0 l/min at 12 bars)

cooling capacity @ 1.60 gpm (6.0 l/min)

16,830 BTU / hr. (4900 watts) 20,200 BTU / hr. (5900 watts)

at 45° f (25° c) temperature difference between high coolant temperature and ambient air tempera-

ture using esaB coolant (25% propylene glycol / 75% distilled water).

max. Delivery pressure

175 psig (12 bars)

reservoir capacity

4 gallons (15.2 liters)

63

DESCRIPTION OF OPERATION

operation

As soon as the power source is supplied input power, the coolant pump motor turns ON and pumps the coolant. Coolant pumps out to the torch and returns back to the coolant tank through radiators, filter, flow sensor, and IGBTs cold plate respectively. The pump has an internal adjustable bypass valve set to 225 psi (15.5 bar). There is also an external adjustable regulator, set to 175 psi (12 bar), to bypass the coolant flow if pressure exceeds 175 psi (12 bar). The coolant flow diagram is as shown in the figure below.

GAUGE

IGBT COLD PLATE

FLOW SENSOR (FS1)

LEVEL SENSOR

(LS1)

Coolant Flow Diagram

Please refer to Replacement Parts section in the back of this manual for more details.

64

DESCRIPTION OF OPERATION

turbine flow sensor

features :

Small and compact dimension

Easy connection, 1/2” BSP thread

High reliability and durability

Installation flexibility : vertical or horizontal

Wide rated voltage : 2.4 to 26 VDC

Hall effect sensor, digital output

electrical :

Supply voltage : 2.4 – 26 V DC

Supply current : typical 3.0 mA, maximum 6.0 mA.

Output mode : open collector

Output rise time : typical 1.0μsecond. maximum 10μsecond.

Output falling time : typical 0. 3μsecond. maximum 1.5μsecond.

Wire connection : Termianl 1 (Red) : Vdd Terminal 2 (Brown) : Vout Terminal 3 (Black) : Gnd

application :

Mounting Method : Horizontal to Vertical

Range of Flow Rate : 1.5 – 25 L/min.

Maximum working pressure : 1MPa

Fluid : Cold / Warm Water

Fluid temperature : 0 ~ 80 o

C

Environment temperature : -20 ~ 80 o

C

Body Materials : PPS with 40% glass fiber

Inside turbine holder : Acetal copolymer (POM)

Turbine : plastic magnet

Turbine stick : ceramic

65

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY

OF ESAB WELDING & CUTTING. ANY REPRODUCTION IN PART OR AS A

WHOLE WITHOUT THE WRITTEN PERMISSION OF ESAB WELDING & CUTTING

IS PROHIBITED.

VENDOR: MADISON COMPANY

VENDOR P/N:

M8790

(8)0558011991

411 S. Ebenezer Rd

Florence, SC 29501

DESCRIPTION:

PLASTIC SIDE-MOUNTED SWITCH

STEM: POLYPROPYLENE

FLOAT: POLYPROPYLENE

MAX TEMP: 105C

NOM CURRENT: 30VA SPST SWITCH

FLOAT SG: 0.60

MAX PRESSURE: 100PSIG

LEADS: 22GA, 24INCHES

DESCRIPTION OF OPERATION

level switch

Level switch is used to tell if the level of coolant in the tank drops below certain level. When the level of the coolant drops below level switch position in the tank, control board reads the switch open signal, an error signal is sent to CNC/Process controller by the power supply through CAN communication.

OF ESAB WELDING & CUTTING. ANY REPRODUCTION IN PART OR AS A

WHOLE WITHOUT THE WRITTEN PERMISSION OF ESAB WELDING & CUTTING

IS PROHIBITED.

(8)0558011991

411 S. Ebenezer Rd

Florence, SC 29501

VENDOR:

MADISON COMPANY



VENDOR P/N:















DESCRIPTION:

PLASTIC SIDE-MOUNTED SWITCH



STEM: POLYPROPYLENE

FLOAT: POLYPROPYLENE

MAX TEMP: 105C

NOM CURRENT: 30VA SPST SWITCH

FLOAT SG: 0.60

MAX PRESSURE: 100PSIG coolant filter

A filter is used to prevent the foreign particles entering the power source through coolant and damaging the equipment.

REVISIONS

DESCRIPTION



DIMENSIONS ARE IN INCHES

TOLERANCES:

FRACTIONAL .03

ANGULAR: MACH .1 BEND .5

TWO PLACE DECIMAL .015

THREE PLACE DECIMAL .005

MATERIAL

COMMENTS:

NAME

MEA

PMD

MEA

DATE

11/14/12

11/14/12

11/15/12

PA6900-11-16

DO NOT SCALE DRAWING

SIZE

A

SCALE:1:5

10/20/11

(8)0558011991

SHEET 1 OF 1





66

REVISIONS

DESCRIPTION

  

 

 











  





DRAWN

CHECKED

ENG APPR.

NAME

MEA

PMD

MEA

DATE

11/14/12

11/14/12

11/15/12

PA6900-11-16 10/20/11

DIMENSIONS ARE IN INCHES

TOLERANCES:

FRACTIONAL .03

ANGULAR: MACH .1 BEND .5

TWO PLACE DECIMAL .015

THREE PLACE DECIMAL .005

SWITCH LEVEL

BULKHEAD

MATERIAL

COMMENTS:

FINISH

 





DO NOT SCALE DRAWING









A

DWG. NO.

(8)0558011991

SCALE:1:5 WEIGHT: SHEET 1 OF 1













 









 

  

 

 













  





















 













 





DESCRIPTION OF OPERATION

test procedure

test flowmeter test pressure gauge supply m2 200 return throttle Valve

field test procedure

test procedure:

1. Connect as shown above using 0.38” (9.5 mm) ID hose.

2. Open throttle valve completely.

3. Fill tank with Plasmarc torch coolant.

4. Power ON the m2 200 power source.

5. Adjust throttle valve until test flowmeter reads 1.5 gpm (5.7 l/min)

6. Read pressure on test pressure gauge. It should be between 160 - 185 psig (11.0 - 12.8 bar).

7. Check interior of m2 200 power source for leaks.

67

DESCRIPTION OF OPERATION

pcB1 control Board (0558038416)

introduction

The Control board on the m2 200 governs the operation of the power supply. The board consists of circuits that control the following: generation

Fault monitoring

Initiation of the bus supply

Arc Detection

(HF) High Frequency Circuit

Initiation of Pilot Arc

Current output regulation

Arc On signal generation

Mark Mode VDR Circuit

The use of a microcontroller on this board co-ordinates these functions and interfaces directly to the CNC through CAN communication. The Control Board connects directly to a pair of Hall Sensors for current detection and regulation, supplies pulses to the IGBTs through the Driver Board PCB2.

Control board (PCB1) consists of two micro-controllers, one called Main micro which controls the process sequence, communication with controller, digital and analog IO signals, fault monitoring, coolant flow and level monitoring etc., other called Servo micro which is used to generate the PWM signals for switching IGBTs, monitoring the currents and voltages.

pcB1 schematics - (0558038416)

Refer to the back section of this manual for complete schematics.

68

DESCRIPTION OF OPERATION

current monitoring

Control board monitors the output current all the time for proper operation. Servo micro-controller section of the control board reads the current signals from the Hall Sensors (HS1 and HS2) connected to J9 pins 4 and 8. Since micro controller requires voltage signal, the current signal from the hall sensor is fed through a small resistor of 6.6 Ohms. The voltage across this resistor is fed through OPAMP (U23) circuitry, which will generate respective voltage signal proportional to the scaled current signal. Servo micro processes these signals and outputs scaled integer value to main micro-controller through SPI communication. Main micro uses these values for main process control and fault monitoring. Control board has a provision for monitoring four closed-loop hall sensor inputs. See inside back cover for detailed schematics. Refer to Help Codes for current related error codes.

69

















































































































































































































































































































































































































































DESCRIPTION OF OPERATION













































 

























 















pcB1 Voltage monitoring circuits (0558038416)

The voltage monitoring circuits are in place to monitor the bus and arc voltage levels for main process control and fault monitoring. Driver Board (PCB2) reads the voltages directly from the respective positions in the power supply and scales the values down to the microcontroller range (Refer to PCB2 Driver Board section for PCB2 details). The Servo Micro (U17) reads the voltages from Driver Board (PCB2) through J12 or J13 connector and OPAMP (U32 and U33) circuitry. Servo micro processes the scaled values and outputs the scaled integer values to the main micro through SPI communication. Refer to

Help Codes for voltage related error codes. See inside back cover for detailed schematics.

  

control Board Voltage monitoring circuit

Note:

A CMOS isolator was chosen to reduce propagation delay, and output jitter.









































































































Netbridge

Here













































































 

 









VOUT(-)

VWORK(+)

VBUS(-)













































Driver Board Voltage monitoring circuit





















































































G=[[4.3310E-4,-2.1648E-4][-2.1648E-4,4.3310E-4]]

[VworkOut-VbusOut][VworkOut-VArcOut]] =

G * [[VworkIn-VbusIn][VworkIn-VarcIn]]









































































































































































































Note:

Capacitor biasing circuit, and supply preloading.































































































































70









 





 





 

















 









 









































 









 

















































































































































































    



   

DESCRIPTION OF OPERATION

pcB1 pWm (0558038416)

The Pulse Width Modulator Circuit, referred to as PWM, is the circuit that generates the pulses to trigger IGBTs ON and OFF.

The Servo Micro (U17) generates the PWM signals ranging from 15 KHz to 25 KHz based on the current signal. These PWM signals from the servo micro are fed through logic gates to generate positive and negative pulses. These pulses are sent to the Driver Board (PCB2) (Refer to PCB2 Driver Board section for PCB2 details), through J12 or J13 connector on the PCB1, where IGBT gate and emitter connections are made. Reference the PCB1 and PCB2 test point chart. See inside back cover for detailed schematics.

pcB1 output circuits (0558038416)

m2 200 power source interfaces with CNC/Process Controller through either Digital (CAN) communication or analog communication.

Digital (CAN) Communication Interface:

Control board interfaces with CNC or Process Controller through CAN communication protocol. There are two sets of communication circuits available on the PCB1: U26, U46 comprise one set, and U27, U38 comprise other. Via CAN communication power source sends the required output signals to CNC or Process Controller.

Analog Interface:

The control board sends the output signals to control various functions. Refer to schematics located inside back cover for the output connector information.

pcB1 input circuits (0558038416)

As mentioned in previous section, m2 200 power source interfaces with CNC/Process Controller through either CAN communication or analog connection.

CAN Communication Interface:

The control board via CAN communication reads the inputs from the CNC or Process Controller. These input signals are used by the main micro U19 for the main process sequence.

Analog Interface:

Control board reads the input signal information from the external circuitry. Refer to schematics located inside back cover for the input connector information.

71

DESCRIPTION OF OPERATION

A

B

pcB1 Bias supply (0558038416)

5 3 4

The control board (PCB1) generates the onboard supply voltages to power the circuits on the board.

10VDC

Vdd_5v00 Vdd_5v00

2

Vdd_15v0

Vdd_3v30

D

C

270

0.1W

270

0.1W

MainContactorRelay

VOLT.REF.

0.1W

10.0K

0.1W

BusCharger

MainContactor

MainFan

FaultLight

MarkMode

HfIgnitor

ExtraRelaySignal2

The board receives centered tapped 34 VAC from control transformer (TB3-13, TB3-14 and TB3-15) on pins 1, 2 and 3 of con-

2

OUT2

0.1W

0.1W

nector J3. This center-tapped supply is used to provide both positive and negative output bias voltages.

6

7

IN2

IN5

IN6

IN7

OUT5

OUT6

OUT7

15

14

13

12

11

10

MainContactorRelay

HfIgnitorRelay

ExtraRelaySignal2Output

1

2

3

4

5

6

8

GND COM

9

Vdd_24v0

270

0.1W

MarkModeRelay

270

0.1W

9

10

7

8 circuit (D7, D8, D11, and D12) and filtered by a capacitor. This filtered DC is sent through a regulator U8 to have +15 VDC

13

14

ExtraRelaySignal3Output

PwrSrcFaultOutputRelay

1

2 which powers the circuits needing +15 volts. The filtered DC is also fed through a regulator U7 to have +5 VDC bias supply

270 270 which powers the circuits needing +5 volts. The positive 15 volts is also sent to the microcontroller for monitoring the +15

ExtraRelaySignal1Output

CoolantLevelOkRelay

CoolantFlowOkRelay

ShieldGasRelay

10VDC

5

9

10

7

8

11

Vdd_5v00 Vdd_5v00

StartGasRelay

VOLT.REF.

12

13

ExtraRelaySignal1

CutGasValve

StartGasValve

ShieldGasValve

CoolantFlowOk

CoolantLevelOk

MainArcEstOutput

Vdd_24v0

1

2

CutGasRelay

PilotArcHighLowInputSignal circuit (D7, D8, D11, and D12) and filtered by a capacitor. This filtered DC is sent through a negative 15 volt 3-pin regulator

3

4

14

15

16

17

18

19

21

22

3

4

5

6

7

8

IN2

IN3

IN4

IN5

IN6

IN7

GND

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

COM

16

15

14

13

12

11

10

9

ExtraRelaySignal1Output

CutGasRelay

StartGasRelay

CoolantLevelOkRelay

MainArcEstOutputRelay

Vdd_24v0

ShieldGasRelay

CoolantFlowOkRelay

5

10

11

12

13

8

9

6

7

HV_GND

PreFlowInputSignal

PlumbingBoxScalingSignal1

MainStartInputSignal

MarkModeInputSignal

FlowSwtichInputSignal

23

24

25

26

14

270

0.1W

270

0.1W

CoolantLevelOkRelay

positive 24 VDc low power Bias supply

MainArcEstOutputRelay

1

IN+ IN-

1

IN1 OUT1

16 PwrSrcFaultOutputRelay

2 PwrSrcFaultOutput

ExtraRelaySignal3

2

3

4

15

14

13

ExtraRelaySignal3Output

3

C1 FB

IN2

IN3

IN4

IN6

IN7

OUT2

OUT3

OUT4

OUT6

OUT7

12

11

270

0.1W

270

0.1W

R1 VCC

5

6

7

8

IN5

GND

OUT5

COM

10

9

Vdd_24v0

ExtraRelaySignal3Output

4

OUT VCC fied through diode bridge rectifier circuit (D5, D6, D9, and D10) and filtered by a capacitor. This filtered DC is sent through

A1

A2

A3

1

2

3

Vdd_24v0 a regulator U6 to have regulated 24 VDC. This regulated 24 VDC besides powering the circuits requiring 24 volts, also sent to microcontroller for monitoring the 24 VDC bias supply availability.

8

7

6

5

CurrentPotRefInput

Vdd_15v0

1

StationStatus

Station_ON_OFF

PwmPairEn1

PwmPairEn2

PwmPairEn3

PwmPairEn4

Note:

Pin1-2: 24Vac

Pin4: +15Vac

Pin5: 15Vac CT

Pin6: -15Vac

R8

1.00

R7

1.00

R6

1.00

R5

1.00

DGND

R14

1.00

0.25W

R13

1.00

0.25W

R12

1.00

0.25W

R11

1.00

0.25W

2

5

7

4

8

VIN

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

C55

10.0nF

Vdd_24v0

C54

1.00uF

C62

100uF

Note: The LM2576 should have a copper pour to improve heat dissipation. That pour should be stiched to the ground plane.

Vdd_15v0

C169

1.00uF

1

1

LED Indicators

Vdd_3v30

Vdd_3v30

2

3 4

5 6

9 8

11 10

13 12

Vdd_3v30

A1

A2

A3

1

2

3

1.00

0.25W

1.00

0.25W

1.00

0.25W

1.00

0.25W

HV_GND

1.00

0.25W

1.00

0.25W

1.00

0.25W

1.00

0.25W

1.50K

0.1W

68.0

0.1W

68.0

0.1W

FlowSensorInput

HV_Vdd_24v0

A1

A2

A3

A4

A5

1

2

3

4

5

R1

1.00

R2

1.00

R3

1.00

R4

1.00

Power Supply

R15

1.00

R16

1.00

R17

1.00

R18

1.00

5

+ +

C28

220uF

+ +

C27

220uF

4

IN2

C39

1.00uF

Note: Originally, there were 2 3W resistors, and they were replaced with 8 1/4W SMT resistors. This may not be enough.

4

OUT

3

4

8

2

VIN

5

7

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

Vdd_n15v0

C52

1.00uF

C59

47.0nF

Vdd_5v00

Note: The MC7915 should have a copper pour to help dissipate heat. There may not be a partitioned copper plane, but the opposite side of the board can be used for additional heat sink area.

3

2

5

7

4

8

VIN

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

Vdd_n15v0

Vdd_15v0

Note:

This is a switching 24V regulator for the isolated inputs. Clearances must be maintained with respect to

the rest of the circuitry.

2

HV_GND

HV_GND

4

8

2

VIN

5

7

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

C16

10.0nF

HV_GND

Title

Size

C

Date:

EPP 202/362 Relay Interface & Supply

Document Number

0558038416

Thursday, September 25, 2014

1

Sheet 4 of 6

Rev

A

D

C

B

C20

1.00uF

C31

100uF

HV_GND HV_GND

A

72

C

ExtraRelaySignal1

CutGasValve

StartGasValve

ShieldGasValve

CoolantFlowOk

CoolantLevelOk

MainArcEstOutput

5

6

3

4

7

1

2

IN1

IN2

IN3

IN4

IN5

IN6

IN7

8

GND

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

COM

9

16

15

14

13

12

11

10

ExtraRelaySignal1Output

CutGasRelay

StartGasRelay

ShieldGasRelay

CoolantFlowOkRelay

CoolantLevelOkRelay

MainArcEstOutputRelay

Vdd_24v0

B

A

5

Relay Drivers

D

BusCharger

MainContactor

MainFan

FaultLight

MarkMode

HfIgnitor

ExtraRelaySignal2

5

6

7

3

4

1

2

IN1

IN2

IN3

IN4

IN5

IN6

IN7

8

GND

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

COM

9

16

15

14

13

12

11

10

BusChargerRelay

MainFanRelay

FaultLightRelay

MarkModeRelay

HfIgnitorRelay

ExtraRelaySignal2Output

Vdd_24v0

Vdd_5v00

PwrSrcFaultOutput

ExtraRelaySignal3

5

6

7

3

4

1

2

8

IN1

IN2

IN3

IN4

IN5

IN6

IN7

GND

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

COM

9

16

15

14

13

12

11

10

PwrSrcFaultOutputRelay

ExtraRelaySignal3Output

Vdd_24v0

Note:

Pin1-2: 24Vac

Pin4: +15Vac

Pin5: 15Vac CT

Pin6: -15Vac

A1

A2

A3

A4

A5

1

2

3

4

5

Vdd_24v0 Vdd_24v0

Power Supply

5

DGND

Vdd_5v00

3

10VDC

2

Vdd_15v0

Vdd_3v30

1 4

Vdd_5v00

BusChargerRelay

MainFanRelay

MarkModeRelay

ExtraRelaySignal2Output

Vdd_5v00

CutGasRelay

ShieldGasRelay

MainContactorRelay

FaultLightRelay

HfIgnitorRelay

ExtraRelaySignal1Output

StartGasRelay

CoolantFlowOkRelay

Vdd_24v0

10

11

12

8

9

6

7

13

14

3

4

1

2

5

Vdd_24v0

11

12

13

14

8

9

6

7

10

3

4

5

1

2

VOLT.REF.

0.1W

HV_GND

ExtraRelaySignal3Output

PwrSrcFaultOutputRelay

Vdd_24v0

MainArcEstOutputRelay

CoolantLevelOkRelay

CoolantFlowOkRelay

ShieldGasRelay

10VDC

StartGasRelay

VOLT.REF.

CutGasRelay

PilotArcHighLowInputSignal

PlumbingBoxScalingSignal2

PreFlowInputSignal

PlumbingBoxScalingSignal1

MainStartInputSignal

MarkModeInputSignal

FlowSwtichInputSignal

21

22

23

24

25

26

17

18

19

20

13

14

15

16

10

11

12

8

9

6

7

3

4

1

2

5

10.0K

0.1W

CurrentPotRefInput

StationStatus

1

LED Indicators

Vdd_3v30

Vdd_3v30

2

D

Station_ON_OFF

3 4

1

PwmPairEn1

5 6

PwmPairEn2

9 8

PwmPairEn3

11 10

PwmPairEn4

13 12

C

CoolantLevelOkRelay

MainArcEstOutputRelay

PwrSrcFaultOutputRelay

ExtraRelaySignal3Output

A1

A2

A3

1

2

3

Vdd_24v0

FlowFreqIN

1

2

3

IN+

C1

R1

4

OUT

IN-

FB

VCC

VCC

5

8

7

6

Vdd_15v0

positive 24 hVDc high power Bias supply:

Vdd_3v30

DESCRIPTION OF OPERATION

FlowSensorInput

The board receives 24 VAC from the control transformer (TB3-9 and TB3-10) on pins 1 and 2 of connector J2. The 24 VAC is rectified through diode bridge rectifier circuit (D4, D18, D31, and D34) and filtered by a capacitor. This filtered DC is sent though a regulator U2 to have 24 HVDC. This regulated high power 24 HVDC is used to power the isolated digital inputs.

B

Vdd_24v0

A1

A2

A3

1

2

3

HV_GND

4

8

2

VIN

5

7

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

Vdd_15v0

+

C62

Note: The LM2576 should have a copper pour to improve heat dissipation. That pour should be stiched to the ground plane.

Vdd_5v00

4

IN2

+ + + +

Note: Originally, there were 2 3W resistors, and they were replaced with 8 1/4W SMT resistors. This may not be enough.

4

OUT

3

2

5

7

4

8

VIN

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

Vdd_n15v0

Note: The MC7915 should have a copper pour to help dissipate heat. There may not be a partitioned copper plane, but the opposite side of the board can be used for additional heat sink area.

3

+

C65

2

5

7

4

8

VIN

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

+

C66

Vdd_n15v0

Vdd_15v0

+

C63

HV_GND

Note:

This is a switching 24V regulator for the isolated inputs. Clearances must be maintained with respect to

the rest of the circuitry.

2

HV_GND

2

5

7

4

8

VIN

NC

EN

GND

GND

FB

BOOT

6

3

SW

1

HV_GND

1

HV_Vdd_24v0

+

C31

HV_GND HV_GND

A

73

DESCRIPTION OF OPERATION

pcB1 test points

TP27

TP28

TP29

TP30

TP31

TP32

TP20

TP21

TP22

TP23

TP24

TP26

TP33

TP34

test point expected Value

TP1 24 VDC

TP2

TP3

0 VDC

24 VDC

TP4

TP5

TP6

TP7

TP8

TP9

TP10

-15 VDC

0 VDC

3.3 VDC

5 VDC

15 VDC

TP11

TP12

TP13

3.3 VDC

0 to 3.3 VDC

0 VDC

0 to 3.3 VDC

0 to 3.3 VDC TP14

TP15

TP16

TP17

TP18

TP19

0 VDC

0 VDC

5 VDC

0 to 3.3 VDC

0 to 3.3 VDC

10 VDC

0 to 10 VDC

0 to 3.3 VDC

0 to 3.3 VDC

0 to 3.3 VDC

0 to 3.3 VDC

signal

HVdd_24v0

HV_GND

Vdd_24v0

Vdd_n15v0

DGND

Vdd_3v30

function

24 VDC for high voltage isolated digital inputs

High voltage common reference

24 VDC bias supply

Negative 15 VDC bias supply for hall sensors

Digital Common Reference

3.3 VDC digital bias supply for micro

Vdd_5v00

Vdd_15v0

ANY_Iwork

AVdd_3v30

5 VDC bias supply

15 VDC bias supply for hall sensors

Work Current Signal from the hall sensor. 2.8 VDC = 0 Amps, 0.5 VDC = 360 Amps

3.3 VDC analog bias supply for micro

ANY_Ielectrode1 Electrode Current Signal from the hall sensor. 2.8 VDC = 0 Amps, 0.5 VDC = 360 Amps

AGND

ANY_Varc1

Analog Common Reference

Output Voltage Signal from the PCB2. 2.9 VDC = 0 VDC, 0.5 VDC = 360 VDC

ANY_Vbus1

RAW_PWM1L

C1TX

C1RX

DGND

DGND

Bus Voltage Signal from the PCB2. 2.9 VDC = 0 VDC, 0.5 VDC = 360 VDC

PWM Signal for IGBTs

CAN 1 transmit signal

CAN 1 receive signal

Digital Common Reference

Digital Common Reference

C2TX

C2RX

RAW_PWM1H

AVdd_5v00

CAN 2 transmit signal

CAN2 receive signal

PWM Signal for IGBTs

5 VDC analog bias supply

FlowSensorInput Voltage signal in to the micro proportional to the coolant flow rate

ANX_MainRefPot Voltage signal proportional to the set current

10 VDC

VOLT REF.

RAW_PWM2H

RAW_PWM2L

10 VDC bias supply

Voltage signal from external CNC or Process controller for current reference

PWM Signal for IGBTs

PWM Signal for IGBTs

ANY_Ielectrode2 Electrode Current Signal from the hall sensor. 2.8 VDC = 0 Amps, 0.5 VDC = 360 Amps

ANY_Iextra Current Signal from the hall sensor. 2.8 VDC = 0 Amps, 0.5 VDC = 360 Amps

ANY_Vbus2

ANY_Varc2

Bus Voltage Signal from the PCB2. 2.9 VDC = 0 VDC, 0.5 VDC = 360 VDC

Output Voltage Signal from the PCB2. 2.9 VDC = 0 VDC, 0.5 VDC = 360 VDC

74

pcB1 Board layout

DESCRIPTION OF OPERATION

75

DESCRIPTION OF OPERATION

pcB1 Bom (0558038416)

item #

1

0558038416 control assembly components reference QtY. Description / function

C1,C3,C10,C12,C13,C14,C15,C61,C68,

C74,C79,C82,C86,C90,C93,C101,C102,

C109,C110,C114,C115,C117,C121,C122,

C126,C133,C135,C138,C139,C140,C141,

C145,C146,C147,C148,C149,C150,C151,

C152,C162,C166,C167,C171,C172,C173,

C183,C184,C188,C189,C190,C191,C192,

C195,C196,C200

55 CAP, 100nF, 16VDC, 20%, X7R, (0603)

2

C2,C11,C20,C35,C36,C37,C38,C39,C40,

C41,C42,C43,C44,C45,C52,C54,C56,C67,

C104

19 CAP, 1.0uF, 50VDC, 20%, X7R, (0805)

3

4

C4,C5,C8,C9,C21,C22,C23,C24,C25,C26,

C27,C28,C29,C30

C16,C46,C47,C48,C49,C50,C51,C53,C55,

C60,C123,C153,C154,C155,C156,C157,

C158,C159,C160,C161,C164,C165,C175,

C176,C178,C179,C185,C186,C199

14

29

CAP, 220uF, 50VDC, ELECT.

CAP, 10nF, 50VDC, 20%, X7R, (0603)

5 C31,C62,C63,C65,C66 5 CAP, 100uF, 35VDC, ELECT.

6

7

8

15

16

13

14

17

11

12

9

10

18

19

20

C57,C58,C76,C96,C97,C105,C112

C59

C64,C69,C71,C83,C84,C85,C89,C108,

C113,C116,C118,C125,C131,C136,C137,

C142,C163,C170,C194,C197,C198

C80,C81

C91,C95,C106,C107

C92,C94,C98,C103

C99,C119,C130,C134

C143,C144

C168,C169

C174,C177

C180

C181,C182,C187,C193

D3,D13,D17,D26,D27,D32,D33,D35,D48,

D51,D56,D64,D65,D67,D69,D71,D74,D76,

D78

D4,D5,D6,D7,D8,D9,D10,D11,D12,D18,

D31,D34

D19,D20,D21,D22,D23,D24,D36,D37,D38,

D39,D41,D42,D43,D44,D66,D68,D70,D72,

D73,D75,D77,D79,D80,D81,D82,D83,D84,

D85,D86,D87,D88,D89,D90,D91,D92

21

2

1

2

2

4

4

4

2

4

7

1

19

12

35

CAP, 10uF, 16VDC, 20%, X7R, (1206)

CAP, 47nF, 50VDC, 20%, X7R, (0603)

CAP, 470nF, 16VDC, 20%, X7R, (0805)

CAP, 22pF, 50VDC, 5%, C0G, (0603)

CAP, 330pF, 50VDC, 5%, C0G, (0603)

CAP, 680pF, 50VDC, 5%, C0G, (0603)

CAP, 68pF, 50VDC, 5%, C0G, (0603)

CAP, 1.0uF, 16VDC, 20%, X7R, (0805)

CAP, 1.0uF, 50VDC, 20%, X7R, (1206)

CAP, 1.0uF, 50VDC, 20%, X6S (0603)

CAP, 0.01uF, 16VDC, 20%, X7R, (0805)

CAP, 100nF, 50VDC, 20%, X7R, (0603)

DIODE, LED, RED Diffused, 2.0V 20mA

DIODE, 3A 200-600V, (SMC Pkg)

DIODE, 200mA 75V, 1N4148 (0603 Pkg)

76

38

39

36

37

40

33

34

31

32

35

28

29

26

27

30

24

25

21

22

23

DESCRIPTION OF OPERATION

L3

L4

L5

MH1,MH2

Q1

J9

J11

J12,J13,J18

J14,J15,J17

L1,L2

D25,D40,D45,D46

D47,D50,D53,D54,D57

D49

J1

J2,J16

J3

J4

J5,J6

J7,J10

J8

1

2

1

1

1

3

3

1

1

2

2

2

1

1

1

1

2

5

4

1

DIODE, SCHOTTKY, 3A 60V

DIODE, LED, GREEN Diffused, 2.0V 20mA

DIODE, LED, YELLOW Diffused, 2.0V 20mA

HEADER, VERT, MINI-COMBICON 6 PIN

HEADER, VERT, COMBICON, 3 PIN

HEADER, VERT, COMBICON, 5 PIN

HEADER, VERT, AMP, 6 PIN

HEADER, HORIZ, LATCHED RIBBON, 14 PIN

HEADER, VERT, AMP, 5 PIN

HEADER, VERT, MINI-COMBICON 4 PIN

HEADER, VERT, COMBICON, 8 PIN

HEADER, VERT, LATCHED RIBBON, 20 PIN

HEADER, VERT, LATCHED RIBBON, 26 PIN

HEADER, VERT, MINI-COMBICON 3 PIN

INDUCTOR, 150uH

INDUCTOR, 27uH

INDUCTOR, 82uH

CHIP INDUCTOR, 47uH

MOUNTING HOLE / GROUND PAD

TRANSISTOR, NPN, SWITCHING

77

DESCRIPTION OF OPERATION

50

55

78

58

59

60

56

57

51

52

53

54

46

47

48

49

41

42

43

44

45

RN3,RN4,RN5,RN7,RN9,RN10,RN11,

RN12,RN13,RN14,RN15

RT1

R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,

R12,R13,R14,R15,R16,R17,R18,R19,R20,

R21,R22,R23,R24

R25,R33,R38,R45,R112,R147,R165,R185

R26,R66,R106,R113,R119,R125,R138,

R139,R152,R153,R161,R162,R176,R186,

R204,R205,R207,R208,R210,R211,R213,

R214,R253,R254,R259,R262,R273,R274,

R279,R292,R293,R294,R296

R27,R28,R29,R30,R31,R32,R39,R40,R41,

R42,R43,R44,R263,R264,R265,R266,

R281,R282,R284,R285,R297,R298

R34,R62,R65,R68,R69,R72,R75,R78,R79,

R80,R129,R142,R180,R189,R203,R206,

R209,R212,R228,R233,R238,R243,R269,

R270,R289,R290,R301

R35,R60,R257

R36,R61,R63,R124,R131,R154,R191,

R216,R222

R37,R92,R94,R97,R121,R123,R198,R200

R46,R47,R48,R49,R50,R51,R52,R53,R54,

R55,R56,R57,R58,R59,R132,R133,R148,

R149,R158,R170,R171,R172,R260,R261,

R283,R286,R299

R64,R95,R98,R122,R144,R163,R199,

R225,R230,R236,R241

R67

R70,R71,R73,R74,R76,R77,R226,R231,

R235,R240,R267,R268,R287,R288,R300

R81,R82,R83,R84,R85,R86,R87,R88,R89

R90,R91

R93,R111,R140,R187,R196

R96

R99

R103,R104

11

1

24

8

33

22

27

3

9

8

9

1

1

2

2

5

27

11

1

15

RES, NET, 16 PAD, 10K

THERM, NTC, 12K (0805 Pkg)

RES, 1, 0.25W, 1%, (1206)

RES, 1.8K, 0.1W, 1%, (0603)

RES, 10.0K, 0.1W, 1%, (0603)

RES, 680, 0.25W, 1%, (1206)

RES, 1.0K, 0.1W, 1%, (0603)

RES, 15.0K, 0.1W, 1%, (0603)

RES, 2.7K, 0.1W, 1%, (0603)

RES, 3.3K, 0.1W, 1%, (0603)

RES, 270, 0.1W, 1%, (0603)

RES, 180, 0.1W, 1%, (0603)

RES, 680, 0.1W, 1%, (0603)

RES, 560, 0.1W, 1%, (0603)

RES, 68, 0.1W, 1%, (0603)

RES, 33.0K, 0.1W, 1%, (0603)

RES, 47.5K, 0.1W, 1%, (0603)

RES, 3.9K, 0.1W, 1%, (0603)

RES, 330, 0.1W, 1%, (0603)

RES, 180, 0.25W, 1%, (1206)

DESCRIPTION OF OPERATION

63

64

65

66

69

70

67

68

71

72

77

78

79

75

76

73

74

61

62

80

81

82

83

84

85

86

R105,R114,R116,R120,R126,R127,R178,

R197,R202

R107,R108,R109,R110,R134,R145,R150,

R151

R115,R117,R135,R136,R155,R156,R166,

R167

R118

R128,R130,R188,R190

R137,R146,R164,R177

R141,R143,R179,R181

R192

R201,R272,R275,R276

R215

R217,R218

R224,R227,R229,R232,R234,R237,R239,

R242

R244,R245,R280

R255,R256,R271,R277,R278

R258

R291,R295

R302

SW1,SW2,SW3,SW4

SW5,SW6

TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8,TP9,

TP10,TP11,TP12,TP13,TP14,TP15,TP16,

TP17,TP18,TP19,TP20,TP21,TP22,TP23,

TP24,TP26,TP27,TP28,TP29,TP30,TP31,

TP32,TP33,TP34

U1

U2,U6,U7,U8

U3,U4,U5,U43,U44,U45

U9

U10,U11,U20

U12,U24,U25

8

1

4

4

8

4

1

4

1

2

1

4

2

1

2

3

5

9

8

33

1

4

6

1

3

3

RES, 5.6K, 0.1W, 1%, (0603)

RES, TRIMPOT, 1K

RES, 3.3, 0.25W, 1%, (1206)

IGNORE / Non-Existent Virtual Part

RES, 1.2K, 0.1W, 1%, (0603)

RES, 6.8K, 0.1W, 1%, (0603)

RES, 5.1K, 0.1W, 1%, (0603)

RES, 12.1K, 0.1W, 1%, (0603)

RES, 1.5K, 0.1W, 1%, (0603)

RES, 27.0K, 0.1W, 1%, (0603)

RES, 270, 0.25W, 1%, (1206)

RES, 470, 0.1W, 1%, (0603)

RES, 120, 0.1W, 1%, (0603)

RES, 2.0K, 0.1W, 1%, (0603)

RES, 200K, 0.1W, 1%, (0603)

RES, 20.0K, 0.1W, 1%, (0603)

RES, 100K, 0.1W, 1%, (0603)

SWITCH, HEX ROTARY, 16 POSITION

SWITCH, SLIDE, DPDT 0.3A 6VDC

TEST POINT

I.C. LINE DRVR/RCVR, RS-232

I.C. REGULATOR, SWITCHING, 3A

I.C. OPTO-COUPLER, DUAL

REGULATOR, -15VDC

I.C. RELAY DRIVER

I.C. QUAD 2-INPUT NAND GATE

79

80

87

90

91

92

93

88

89

99

100

101

94

97

98

95

96

102

103

U13

U14

U15,U18

U16

U17 (Servo)

U19 (Main)

U21,U23

U22

U26,U27

U28,U29

U30,U31

U32,U33,U34,U35

U36

U37,U39,U40

U38,U41

U42

Y1

DESCRIPTION OF OPERATION

1

1

1

1

2

1

2

3

1

2

1

2

4

2

2

1

1

I.C. HEX INVERTER

REGULATOR, 3.3VDC

I.C. DUAL 4-to-1 MULTIPLEXER

EEPROM 8-PIN SOIC 256Kb

MICROCONTROLLER 44-PIN VTLA

MICROCONTROLLER 100-PIN TQFP

I.C. OP-AMP, QUAD

REGULATOR 3.3VDC 150mA

I.C. DIGITAL-ISOLATOR, DUAL

I.C. FLIP FLOP D-TYPE, DUAL

DC to DC CONVERTER, 5V/5V

I.C. OP-AMP, DIFFERENTIAL

I.C. DIFFERENTIAL LINE RECEIVER, QUAD

I.C. DIFFERENTIAL LINE DRIVER, QUAD

I.C. CAN TRANSCEIVER

I.C. FREQUENCY to VOLTAGE CONVERTER

CRYSTAL, 10MHz

DESCRIPTION OF OPERATION

pcB2 Driver Board (0558038382)

The driver board (PCB2) is used to (a) filter and condition the IGBT gating signals, (b) scale down the bus voltage and output

(Arc) voltage signals.

See inside back cover for complete schematics.

The IGBT gating signals are filtered and conditioned to reduce noise and stray voltages that could damage the IGBTs. These signals are distributed to each of the two IGBTs. The driver board receives IGBT gating pulses and command signals from the control board PCB1.

81

















































































































































































































































































































































































































































   



Note:

A CMOS isolator was chosen to reduce propagation delay, and output jitter.





































































































+





Netbridge

Here













































































 

















































 

 

DESCRIPTION OF OPERATION

 

pcB2 Bias supply









+









The driver board has bias supply built onboard to power its own circuitry. The board receives 24 VAC from the control trans-















  former (TB3-1 and TB3-2) on pins 1 and 3 of connector J5. This AC voltage is rectified through a diode bridge rectifier (D2,

D3, D5, and D6) and filtered by a capacitor. The filtered DC voltage is fed through a regulator U12 to have a regulated 24 VDC bias supply. This 24 VDC is used to power the circuits requiring 24 volts bias supply. The filtered DC from the rectifier bridge and capacitor filter is fed through resistor voltage divider to have 9 VDC bias supply which powers the circuits requiring the

9 volts supply. This 9 VDC is fed through U6 to have 5 VDC which is used for the IGBT gating pulses.

















VOUT(-)





















VWORK(+)





















VBUS(-)





















G=[[4.3310E-4,-2.1648E-4][-2.1648E-4,4.3310E-4]]

[VworkOut-VbusOut][VworkOut-VArcOut]] =

G * [[VworkIn-VbusIn][VworkIn-VarcIn]]



























































































































































































































































Note:

Capacitor biasing circuit, and supply preloading.







































































































































 





 





 

















 









 





















+





+

















 









 



















+





+







PCB2 Driver board also gets 5 VDC and 3.3 VDC from Control Board (PCB1) via ribbon cable connector to have same common for the analog signals (voltage and differential PWM pulses).









































































































































 













    



82

DESCRIPTION OF OPERATION

pcB2 pWm pulse circuit

Main IGBTs:

The pulse circuit accepts the pulses from the control board (PCB1) and then isolates them through opto-coupler. In this way, the control board is isolated from the IGBTs and the gating pulses will have sufficient drive current to push the IGBTs. The pulses from the control board are sent via ribbon cable connector as low voltage (3.3 VDC) differential signals which are combined together and isolated to form high voltage (5.0 VDC) PWM pulse signal. These PWM signals are fed to IGBT gate driver U14. U14 is 24 VDC bias supplied IC which will output 24 VDC PWM pulses corresponding to the PWM pulses from the control board. In m2 200 all the IGBTs, connected to J8, J9, J10 and J11, are operated in parallel for either cutting or marking with a variable frequency ranging from 15KHz – 25 KHz.

















































































































































































































































































































































































































































  













































 

Note:

A CMOS isolator was chosen to reduce propagation delay, and output jitter.





































































































+





Netbridge

Here













































































 

























 















 

























VOUT(-)





















VWORK(+)





















VBUS(-)





















G=[[4.3310E-4,-2.1648E-4][-2.1648E-4,4.3310E-4]]

[VworkOut-VbusOut][VworkOut-VArcOut]] =

G * [[VworkIn-VbusIn][VworkIn-VarcIn]]





























































































































































































































































83

Note:

Capacitor biasing circuit, and supply preloading.







































































































































 





 





 

















 









 

























+

















 









 























+



























































































































































    



   

















































































































































































































































































































































































































































Note:

Capacitor biasing circuit, and supply preloading.































































































































 















































Note:

A CMOS isolator was chosen to reduce propagation delay, and output jitter.





































































































+





Netbridge

Here













































































 

















+









 















 

























VOUT(-)





















VWORK(+)





















VBUS(-)





















G=[[4.3310E-4,-2.1648E-4][-2.1648E-4,4.3310E-4]]

[VworkOut-VbusOut][VworkOut-VArcOut]] =

G * [[VworkIn-VbusIn][VworkIn-VarcIn]]





 























































































































































































 













DESCRIPTION OF OPERATION













































Pilot Arc IGBT:

Pulse circuit accepts the low voltage (3.3 VDC) differential PWM pulses from control board, are combined together and isolated to form high voltage (5.0 VDC) PWM pulses. These pulses are fed to Pilot Arc IGBT (Q5) connected to J3.









 





 





 

















 









 

























 









 





















+





+











+





+







 









































































































































pcB2 test points

TP10

TP11

TP12

TP13

TP14

TP15

TP16

TP17

test point

TP1

TP2

TP3

TP4

TP5

TP6

TP7

TP9

expected Value

-12 VDC

+12 VDC

0 VDC

signal

-V

+V

0V nRefPwmChannel nMainPwmChannel

HGND 0 VDC

45 VDC

5 VDC

3.3 VDC

0 VDC

0 VDC

5 VDC

0 VDC

ALVdd_5v00

LVdd_3v30

ALGND

LGND

VARC(-)

VWORK(+)

VBUS(-)

HVdd_5v00

HGND

function











Negative 12 VDC bias supply

12 VDC bias supply



0 VDC reference

Reference PWM signal

Main PWM signal for IGBTs

3.3 VDC digital bias supply for micro

Rectified Unregulated Voltage

5 VDC low voltage analog bias supply

3.3 VDC low voltage bias supply

Analog Common Reference

Analog Common Reference

Arc Voltage measuring point

Work Common Reference

Bus voltage measuring reference

High voltage 5 VDC bias supply

High voltage circuitry common reference

   



84

pcB2 layout (0558038381)

DESCRIPTION OF OPERATION

85

DESCRIPTION OF OPERATION

3

4

14

15

16

17

10

11

12

13

7

8

9

5

6

18

item

1

2

21

22

19

20

23

pcB2 Bom (0558038382)

reference

C1,C23,C32,C49

0558038382 Driver Board component list

QtY Description

4 CAP, 470nF, 16VDC, 20%, X7R, (0805)

C2,C4,C15,C22,C26,C27,C31,C35,C38,

C44,C45,C46,C56

13 CAP, 100nF, 16VDC, 20%, X7R, (0603)

C5,C6,C25,C48,C62 5 CAP, 220uF, 50VDC, ELECT.

C7,C8,C20,C43,C50,C60

C9,C10,C24,C30,C34,C66

C11

C12,C21,C47

C13,C16,C39,C41,C52,C54,C57,C59,C74

C14,C33,C51,C69,C72,C73

C17,C58

C28,C55,C64,C71

C53,C61,C65,C67,C68,C70,C75,C76

C63

D1

D2,D3,D5,D6

D4

D7,D8,D9,D10

J2

6

1

4

1

4

8

1

2

4

3

9

6

6

1

1

CAP, 100uF, 35VDC, ELECT.

CAP, 10uF, 16VDC, 20%, X7R, (1206)

CAP, 1.0uF, 16VDC, 20%, X7R, (0805)

CAP, 47nF, 50VDC, 20%, X7R, (0603)

CAP, 10nF, 50VDC, 20%, X7R, (0603)

CAP, 1.0uF, 50VDC, 20%, X7R, (1206)

CAP, 100nF, 50VDC, 20%, X7R, (0603)

CAP, 10uF, 50VDC, 20%, X7S, (1210)

CAP, 68nF, 50VDC, 20%, X7R, (0603)

CAP, 1.0uF, 50VDC, 20%, X7R, (0805)

DIODE, SCHOTTKY, 5A 60V

DIODE, 3A 200-600V, (SMC Pkg)

DIODE, SCHOTTKY, 3A 60V

DIODE, BI-DIRECTIONAL, SMCJ20CA

HEADER, VERT, LATCHED RIBBON, 26 PIN

J3

J4,J6,J7

J5

J8,J9,J10,J11

L1

1

4

1

3

1

HEADER, VERT, COMBICON, 2 PIN

TERMINAL .250

HEADER, VERT, COMBICON, 3 PIN

HEADER TB, 35°, SCREW, 2 POS

INDUCTOR, 56uH

24

25

26

L2

L3

Q1

1

1

1

CHIP INDUCTOR, 47uH

INDUCTOR, 33uH

TRANSISTOR, NPN, SWITCHING

86

DESCRIPTION OF OPERATION

31

36

37

38

39

40

32

33

34

35

41

27

28

29

30

42

43

44

45

46

47

48

49

R1,R2

R4,R5

R8

R11,R18,R21,R22,R23,R24,R28,R29,R31,

R33,R37,R46,R49,R54,R59

R12

R13

R14,R38,R41,R57,R62,R66,R74

R15,R19,R25,R34,R43,R47,R50,R55

R16,R64

R20

R27,R36,R40,R45,R56,R63,R65,R70

R32

R39,R42

R51,R67,R77

R52,R53,R58,R60,R61,R68,R69,R71,R72,

R73,R78,R79,R80,R97,R98

R81,R82,R87,R88,R89,R90,R95,R96,R99,

R100,R105,R106,R107,R108,R113,R114,

R117,R118,R125,R126,R127,R128,R135,

R136,R144,R149,R150,R155,R156,R169,

R170,R183,R186,R199,R200,R213

R157,R158,R159,R160,R165,R166,R167,

R168,R171,R172,R173,R174,R179,R180,

R181,R182,R187,R188,R189,R190,R195,

R196,R197,R198,R201,R202,R203,R204,

R209,R210,R211,R212

36

32

TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP9,TP10,

TP11,TP12,TP13,TP14,TP15,TP16,TP17

U1

U2,U12

U3

U4,U11

U5

16

1

2

1

2

1

1

1

8

1

2

3

8

2

1

7

15

2

2

1

15

RES, 4.7K, 0.25W, 1%, (1206)

RES, 100, 0.25W, 1%, (1206)

RES, 150, 0.1W, 1%, (0603)

RES, 120, 0.1W, 1%, (0603)

RES, 330, 0.1W, 1%, (0603)

RES, 33, 0.1W, 1%, (0603)

RES, 10.0K, 0.1W, 1%, (0603)

RES, 2.2K, 0.1W, 1%, (0603)

RES, 1.0K, 0.1W, 1%, (0603)

RES, 6.8K, 0.1W, 1%, (0603)

RES, 1, 0.25W, 1%, (1206)

IGNORE / Non-Existent Virtual Part

RES, 2.7K, 0.1W, 1%, (0603)

RES, 221, 0.1W, 1%, (0603)

RES, 100K, 0.25W, 1%, (1206)

RES, 22, 0.25W, 1%, (1206)

RES, 10, 0.25W, 1%, (1206)

TEST POINT

I.C. DIGITAL-ISOLATOR, QUAD

I.C. REGULATOR, SWITCHING, 3A

I.C. OPTO-COUPLER, IGBT GATE DRIVE

I.C. OP-AMP, DIFFERENTIAL

DC to DC CONVERTER, 24V/12V

87

88

50

51

52

53

54

55

U6

U7,U9

U8

U10,U13

U14

U15

DESCRIPTION OF OPERATION

1

2

1

2

1

1

REGULATOR ADJUSTABLE

I.C. DIFFERENTIAL LINE RECEIVER, DUAL

I.C. DIFFERENTIAL LINE DRIVER / RECEIVER

I.C. ISOLATION AMP

I.C. DRIVER, IGBT GATE

I.C. HEX INVERTER

description

interface control (pcB4): 0558038419

Interface Control (IC) is the heart of m2-200A power supply, it is the user interface module for selecting the proper cutting criteria file, monitor the IO signals, and read error messages etc. IC board takes 24 VDC supply from PCB5 through CAN1 connector and it converts this 24 VDC into different low voltage levels for on board circuitry operations. IC board interfaces with customer control unit though DB-37 analog interface port.

The Interface Control (IC) provides the plasma process control including current and gas control. It also serves as the interface between the customer CNC and the Plasma Console. At the same time, it functions as a hub for CAN communication.

cnc Direct Board

p/n 0558038419

The CNC Direct board is the control and interface board inside the IC. It provides the process control, interface to customer CNC, system setup, panel interface, etc. This illustration is a skeleton of this CNC board. It shows the major components and the major connectors on the board. The table below gives the functions of these connections.

port

X1

X2

X3

X4

X6

X7

X8

X9

function

CNC Control, DB37

RS232

CAN1 and 24VDC input

CAN2

Spare I/O

Reserved

Aux Control, DB25

ASIOB1 Communication

port function

XP1

XP2

Programming port 1

Programming port 2

S2, S3 ID switches, by default S2=1, S3=4

V12 IC, Main processor

V13

V41

J1

EEPROM, Save data for system configuration, error history, etc.

IC for ASIOB1

89

operation

interface control

The Interface Control (IC) is used to interface the ESAB m2 Process Control with the customer CNC using digital

I/O.

The following pages describe how to operate the IC.

Interface Control (IC) display

Interface Control (IC) Encoder Wheel

90

operation

Display screens

On powerup the IC screen displays the following information for 3 seconds:

start-up screen top menu screen

Screen Number

Setup Screen

Main Screen

Error Log Screen

Diagnostics Screen

System Information Screen

91

main screen

Back

If the circle is filled in, the parameters are not the default.

Screen Name

operation

Screen Number

Parameter selection.

Comes from the database inside the EEPROM, with a fixed width of 20 characters. Select by scrolling.

Gas parameters. Can be modified, but when modified, causes the "Custom

Parameter" to fill in.

Restores the defaults for the parameters.

Status of the complete system:

• READY - ready to run

• PREFLOW - Preflowing the plasma and shield gas

• START - Starting the torch

• RUN - Cutting with the torch

• STOP - Stopping the cutting sequence

• FAULT - Fault on the system

• WARN - Coolant level is low

Module Status:

• Empty - Module missing from CAN bus

• Solid - Module on the CAN bus and ready

• Flashing - Module has an error

operation sequence

1. Turn the input gases ON for the CGC-2 unit.

2. Verify consumables in the PT-36 torch match your required cutting condition.

3. Turn the Plasma Console ON.

4. Go to the Main Screen (file select) and set the file to match your required cut data.

5. If there are no faults on the CNC, send a start signal to the m2 Smart Plasmarc system.

6. Wait for the ARC ON digital input from the system and set motion enable on the CNC to continue cutting with the machine.

7. For any faults on the display, refer to the troubleshooting section of this manual.

92

Module Status:

• Empty - Module missing from CAN bus

• Solid - Module on the CAN bus and ready

• Flashing - Module has an error

setup screen save screen

operation

Refer to Main Screen

Pre-flow time is the total time for pre-flowing before attempting to start the arc. It can not go lower than the minimum pre-flow time for the torch leads.

"Standard" displays the units in PSI/CFH. "Metric" displays the units in BAR/CMH.

Filters the parameter selection to the options selected.

Disable system errors

Saves the settings to EEPROM.

Reloads the settings from the EEPROM.

reload screen

Cancels save

Confirms saving of setup from EEPROM Cancels reload

Confirms reloading of setup from EEPROM

93

setup-> error Disable screen

operation

Disables the plasma gas output pressure too high and too low errors.

Disables the shield gas output flow too high and too low errors.

Disables the current output too high and too low errors.

Disables the arc lost error.

editing a parameter on the Display

Only available when communication is set to none or Local/Remote switch is set to Local.

1.

Use the encoder wheel to scroll to the parameter.

2.

Push the wheel.

3.

Turn the wheel to edit the value.

4.

Push the wheel again to lock the value.

setup-> parameter filter screen

Material selection options available: MS, ALL

Plasma gas selection options: N2, O2, Air

94

accessing error log screen

operation

error log screen

Refer to Main Screen

Last error - refer to Maintenance/Troubleshooting

PROC - see Process Errors section

IC - see IC Errors section

GC or PS - see Module Errors section

error screen

Clears the error log screen

Refer to Main Screen

Module Type

Number of starts since last reboot

Error code

Error details

95

accessing Diagnostics screen

operation

Diagnostics screen

Plasma Start from CNC

Hold signal from CNC

Gas Test from CNC

Arc On signal to CNC

Fault signal to CNC

Air Curtain output

Plasma Console diagnostics

Gas Control diagnostics

Diagnostics - > plasma console screen

Plasma start to control board

Arc On from control board

Coolant level from control board

Coolant flow

Output current

Pilot Arc current

Starting current

Cutting current

Stoping current

Current ramp up time

Current ramp down time

96

Diagnostics - > plasma console screen

operation

Refer to Main Screen

Commanded plasma gas pressure

Plasma gas output pressure

Commanded shield gas flow

Shield gas flow

Refer to Main Screen

accessing system information screen system information screen

Version of the firmware on the Interface Control.

Version of the firmware on the Plasma Console.

Version of the parameter data set.

Version of the firmware on the PCUP.

Version of the local PLC on the Gas Control.

97

operation

Digital i/o

Digital inputs

Digital inputs are to be only turned on with 24 VDC. Any other voltage may damage the board or cause unpredictable results. The best method is to send the 24 VDC from the DB37 connector back on the input, via a relay or opto-isolator chip.

signal name

Plasma Start

Gas Test

Hold

Description

Starts the plasma process

Starts the plasma process without igniting the torch

Prevents the system from starting the Plasma Console

Digital outputs

Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement.

signal name

Arc On

System Fault

Description

This signal is high when the arc is on

The IC has detected a problem which required the process to stop. Check the error log to get the exact set of errors.

98

operation

interface Wiring Descriptions interface Wiring

DB37 connector

This cable should be a twisted pair cable with an overall shield attached to the shell on both ends of the cable. It has a DB37 male connector on one end and flush cut on the other end.

pin no.

Wire color

4

13

15

17

18

*23

7

12

5

6

GRN

GRN/WHT

ORN/WHT

BLK/WHT

GRY/WHT

RED/WHT

GRY

RED

BLK

ORN

signal name

Digital Output 1 (-)

Digital Output 2 (-)

Digital Output 3 (-)

Digital Output 4 (-)

Digital Input 1

Digital Input 2

Digital Input 4

24VDC

GND

Digital Output 1 (+)

Motion Enable Emitter

System Fault Emitter

Air Curtain Emitter

Spare Output Emitter

Hold Ignition

Gas Test

Cycle Start

24 VDC Power

Ground

Digital Output Collector

Braided Shield PE

* All digital output collectors are combined together.

Potential Earthing

function recommended DB-37 i/o connections to customer controller

99

operation

Digital output Wiring examples

Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement. There are two good methods for doing this. There is a small voltage drop across the opto-isolator on the Interface Control Board, so it is recommended that a voltage of at least 12 VDC be used in order to protect against noise generated by the plasma system’s starting circuit.

method 1: Using the 24 VDC to drive a digital input circuit on the CNC’s input.

24V

DO+ 1

R1 R2

DO- 1 5V

10K

R3

2.74K

1M

24V

24V

DO+ 1

the coil however the CNC needs it.

DO- 1

R2

5V

10K 1M

R3

2.74K

DO+ 1

DO- 1

A coil

B

External CNC

Serial

Digital I/O

100

External CNC

Serial

Digital I/O

External Power

230V/3A w/ Height Control

Water Injection

120V/3A w/o Height Control

Water Injection

Optional

Standard

ICH

(Interface

Control Hub)

CGC

DO+ 1

DO- 1

A coil

B

24V

RAS BOX or

External Power

230V/3A w/ Height Control

120V/3A w/o Height Control

B4 Lift

Optional

SGB

Standard

PGB

Water

Injection

ICH

(Interface

Control Hub)

CGC

RAS BOX or

CAN PS

B4 Lift

SGB

PGB

Water

Injection

operation

Dc power supply (pcB5):0558012288

PCB5 is a DC power supply which provides 24 VDC to IC board and CGC-2. It takes 115-120 VAC from the Control Transformer

(T2) and rectifies it to a DC voltage which is then passed through a switching DC-DC converter which will regulate the output at 24 VDC. This regulated 24 VDC is fed to PCB4 and CGC-2 through CAN1 connector. See the schematics inside back cover for connection details.

101

102 operation

trouBleshooting

104

TroubleshooTing

TroubleshooTing troubleshooting

Warning

electric shocK can Kill!

Do not permit untraineD persons to inspect or repair this eQuipment. electrical WorK must Be performeD BY an experienceD electrician.

caution

stop work immediately if plasma console does not work properly.

have only trained personnel investigate the cause.

use only recommended replacement parts.

Check the problem against the symptoms in the following troubleshooting guide. The remedy may be quite simple. If the cause cannot be quickly located, shut off the input power, open up the unit, and perform simple visual inspection of all the components and wiring. Check for secure terminal connections, loose or burned wiring or components, bulged or leaking capacitors, or any other sign of damage or discoloration.

The cause of control malfunctions can be found by referring to the sequence of operations, electrical schematics and checking the various components. A volt-ohmmeter will be necessary for some of these checks.

troubleshooting guide

When the input power is applied to m2 Smart Plasmarc system, pump motor should turn ON immediately, the power light on the front panel will be ON and fault light will be OFF (if there are no errors/faults) indicating normal operation.

Check the following:

1. If pump motor doesn’t turn ON, fuse(F3) might be bad or check for a bad connection to pump motor.

2. If POWER light doesn’t turn ON or main contactor and main fan doesn’t turn ON, then it could be caused by blown fuses F1 or F2.

3. If the FAULT light is ON, then check the CNC/Process Controller display screen for the type of error message from Plasma Console.

Fault Light, Main Contactor and Main Fan status for different errors/faults:

type of fault

Thermal or Ambient

Servo Fault

All other Faults

fault light status on toggle toggle fault light frequency

Continuous

50% duty cycle with a period of 1 second

50% duty cycle with a period of 2 seconds

K1 and main fan status on off off

When fault light is in either one of the above-mentioned states, check the Interface Control screen for the description of the error and further details in this section.

105

TroubleshooTing

fault isolation fan not Working

problem

Fan does not turn ON

possible cause

This is normal when unit is in idle mode for more than 5 minutes.

Broken or disconnected wire in fan motor circuit.

Faulty fan(s)

Relay failed to close

action

None

Repair wire.

Replace fans

Check relay connection and/or replace relay.

torch Will not fire

problem

Main Arc Transfers to the work with a short “pop”, placing only a small dimple in the workpiece.

Arc does not start. There is no arc at the torch. Open circuit voltage is OK.

possible cause action

Communication between plasma unit and CNC or process controller is lost.

CNC or Process Controller removes the start signal when the main arc transfers to the work.

Remote current values are not present.

Current value is too low.

Check communication cable.

Make sure CNC or Process Controller is sending start signal correctly.

Check if correct current values are sent down the CAN Bus.

Increase current value.

Open connection between the Plasma

Console positive output and the work. Repair connection.

Pilot current and/or start current should be increased for better starts when using consumables for 100A or higher (Refer to process data included in torch manuals).

Increase pilot current. (Refer to process data included in torch manuals).

Fault light is ON.

Faulty PCB1 (control board).

Check Help Codes table.

Replace PCB1 (control board).

106

TroubleshooTing ic maintenance/troubleshooting

Digital input problems

problem

The wrong input on the screen is changing when the CNC turns on an input to the IC

No input on the screen is changing when the

CNC turns on an input to the IC

resolution

Make sure the inputs are wired to the proper input on the IC.

Make sure the CNC is only sending the 24 VDC from DB37 connector back to the IC as the input when turning the input on.

Digital output problems

problem

The IC shows the output turning on but there is no voltage on the output’s emitter side.

resolution

Check for voltage on the collector side. If there is a DC voltage there greater than 10 volts, then call service.

gas problems

problem

The CNC turns on a gas test and no gas comes out of the torch.

resolution

Make sure the plasma gas box and shield gas box have power (green

LED on the same side as the cable connections is lit).

107

TroubleshooTing

error messages on the ic Display error log screen

Last received error always shown at top.

Clear all errors on screen.

This screen displays a log of the last 13 errors received by the IC. By moving the cursor to the error and pressing the hand wheel, more details of the error are displayed.

error screen

Module Type

Number of starts since last reboot

Error code

Error details

108

error screen

TroubleshooTing

Type of Error

Number of starts since IC boot up

Plasma Console error code

Error details

error screen

Type of Error

Number of starts since IC boot up

Error ID

Command value for error

Actual value when error occurred

Error details

109

110

TroubleshooTing

module errors

61

62

63

1E

1F

23

53

60

64

iD

9

B

65

problem

The checksum of the station constants do not match the station constants.

The watchdog telegram has not been received in 400 ms.

solution

This error will normally correct itself. If it continues, replace the module/board.

The CAN send buffer has overflowed.

The CAN receive buffer has overflowed.

The checksum of the calibration data is wrong.

The checksum of the local PLC on the gas control is wrong.

The output to the valve on channel 1 is drawing too much current.

The output to the valve on channel 2 is drawing too much current.

The output to the valve on channel 3 is drawing too much current.

The output to the valve on channel 4 is drawing too much current.

The module's telegram counters do not match the interface control's telegram counters.

Replace the gas control module.

Replace the gas control module.

1. Check for a short on the output of the channel.

2. Replace the valve.

1. Check for a short on the output of the channel.

2. Replace the valve.

1. Check for a short on the output of the channel.

2. Replace the valve.

1. Check for a short on the output of the channel.

2. Replace the valve.

1. Check for all the dip switches on the IC board are toward the display.

2. Check for SW1 on the control board in the Plasma Console is set to "Closed"

3. Check for the CAN cable is properly connected to the module.

4. Check for coiling of the CAN cable near power leads.

The module has reset itself.

1. Check for all the dip switches on the IC board are toward the display.

2. Check for SW1 on the control board in the Plasma Console is set to "Closed"

3. Check for the CAN cable is properly connected to the module.

4. Check for coiling of the CAN cable near power leads.

TroubleshooTing

process errors

iD problem solution

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

The shield gas output flow is higher than expected. 1. Check that the correct consumables are installed in the torch.

2. Check for a leak in the shield output gas line from the gas control.

3. Check the flow reading while the start signal is low. If there is more than XX CFH

(X.X CMH), replace the shield gas pressure sensor.

The shield gas output flow is lower than expected.

1. Check that the correct consumables are installed in the torch.

2. Check for a clog in the shield output gas line from the gas control.

3. Check that there is power to the pressure sensor.

4. Check for a loose or misplaced wire from the pressure sensor.

The gas control is not properly communicating on the CAN bus.

1. Check for all the switches on SW1 of the IC board are toward the display.

2. Check for SW1 on the control board in the Plasma Console is set to "Closed"

3. Check for the CAN cable is properly connected to the module.

4. Check for power to the module.

The plasma gas output pressure is higher than expected.

The plasma gas output pressure is lower than expected.

1. Check that the correct consumables are installed in the torch.

2. Check for a clog in the plasma output gas line from the gas control.

3. Check the pressure reading while the start signal is low. If there is more than X

PSI (X.X BAR), replace the plasma gas pressure sensor.

1. Check that the correct consumables are installed in the torch.

2. Check for a leak in the plasma output gas line from the gas control.

3. Check that there is power to the pressure sensor.

4. Check for a loose or misplaced wire from the pressure sensor.

The current output of the Plasma Console is higher than expected.

The current output of the Plasma Console is lower than expected.

The arc was lost before plasma start signal was removed.

Coolant flow is lower than 1.0 GPM.

1. Pierce height is too high during start.

2. No plate under torch during cutting.

3. Pierce time is too long.

1. Check the coolant level in the coolant tank.

2. Check for a clog in the filter.

3. Check for a clog in the flow sensor.

4. Check for a kink in the coolant lines.

5. Check for power to the flow sensor.

The Plasma Console has thrown an error.

The control board is not properly communicating on the CAN bus.

The system failed to start.

Coolant level is below the recommended level for operation.

The cycle start was present during boot up.

The plasma gas pressure sensor was reading a pressure when there was no command.

The shield gas pressure sensor was reading a flow when there was no command.

Check the CAN PS error code for more details.

1. Check for all the switches on SW1 of the IC board are toward the display.

2. Check for SW1 on the control board in the Plasma Console is set to "Closed"

3. Check for the CAN cable is properly connected to the control board.

4. Check for power to the control board.

1. Check that the torch is close enough to the work piece.

2. Check that the work piece and work leads from the Plasma Console are connected electrically (< 10 Ohms).

1. Refill the coolant tank with coolant.

2. Replace the coolant level sensor.

1. Check the start signal to the interface control while the Plasma Console is off. If there is voltage on the input, find and fix the wiring error.

2. Check the start signal to the interface control while the Plasma Console is on. If there is voltage on the input while the output of the CNC is off, check the interface control wiring for a short to the input.

3. Replace the interface control.

1. Check the input pressure to the plasma gas.

2. Check the wiring for the plasma gas pressure sensor.

3. Replace the plasma gas pressure sensor.

1. Check the input pressure to the shield gas.

2. Check the wiring for the shield gas pressure sensor.

3. Replace the shield gas pressure sensor.

111

TroubleshooTing

can ps errors

Error code

01

problem

Solution

Supply Line Voltage exceeded or dropped below + / - 15% of rated input when machine is in Idle mode

1. Check the input voltage to the machine with a voltage meter.

2. Check the input power cable for correct size and resistance.

3. Check the Main Transformer (T1) voltage tapping connections.

4. Check the input fuses in the PS.

5. Check the input line fuses in the disconnect box.

6. Check the multi-color ribbon cable between J12 on PCB1 and J2 and PCB2.

Supply Line Voltage exceeded or dropped below + or - 20% of rated input while cutting

Control Transformer not supplying proper voltage to control board or the

+24 and +/-15 volt bias supplies are not balanced

There is a thermal fault inside the

Plasma Console. Fix any coolant flow errors before investigating this error.

1. Check the input line voltages to the machine with a voltage meter.

2. Check the input power cable for correct size and resistance.

3. Check the Main Transformer (T1) voltage tapping connections.

4. Check the input fuses in the PS.

5. Check the input line fuses in the disconnect box.

6. Check the multi-color ribbon cable between J12 on PCB1 and J2 and PCB2.

7. Notify your power company of the line stiffness issues.

1. Check the input voltage taps on the control transformer.

2. Check the control transformer output voltages on TB3, if the voltages read within +/-15% of the specified value then replace the control board else replace control transformer.

1. Wait 10 minutes for the unit to cool. If the thermal fault clears on its own then check for the ambient temperature being above 40C or dirt in the radiators.

2. Check if main fan is functioning and it is pulling air through the Plasma Console.

3. Shut off the Plasma Console and allow the machine to cool.

4. Check the diode bridge for an open thermal switch. If the switch is still open after certain time then replace the switch.

5. Check the IGBT module for an open thermal switch. If the switch is still open after certain time then replace the switch.

CYCLE START signal is high while the power source is booting up.

Failed to fire/ ignition did not take place within 4 seconds after HF is turned ON.

1. Check the start signal to the Plasma Console while the Plasma Console is OFF. If there is voltage on the input, find and fix the wiring error.

2. Check the start signal to the Plasma Console while the Plasma Console is ON. If there is voltage on the input while CNC is OFF, check the Plasma Console control wiring for a short to the input.

1. Check the distance from the work piece matches the recommended ignition height.

2. Check the electrical connection from the work piece to the work connection on the Plasma Console.

3. Check the HF relay inside the Plasma Console.

4. Check the 115VAC voltage on the control transformer.

5. Check the consumables.

Torch error/Electrode current was present before the PWM was enabled.

Arc voltage is greater than 40V in Idle mode.

Output current is greater than the minimum idle current.

A phase of the input power is missing.

Open circuit voltage did not reach 280 volts within 200 msec.

Ambient temperature exceeded 75° C in control enclosure.

Bus voltage failed to reach 200 VDC with in 500 ms.

1. Check the jumper inside the RAS box between pins L and J on the 14-pin Amphenol connector.

2. Check for short between electrode and nozzle.

3. Check the IGBT gate pulse voltage connection on the driver board.

4. Check for shorted IGBT.

5. Check for shorted diode (D9).

1. Check for shorted IGBT.

2. Check for shorted diode (D9).

3. Check the arc voltage feedback connection on the driver board from the Electrode (-) terminal.

4. Check IGBT gate pulse voltage connection on the driver board.

1. Check for shorted IGBT.

2. Check for shorted diode (D9).

3. Check the IGBT gate pulse voltage connection on the driver board. If there is positive voltage then replace the driver board.

4. Check the hall sensors and their connections to the control board.

5. Replace the control board.

1. Check the fuses in the disconnect box for bad fuse.

2. Check the main contactor contacts for any damage.

3. Verify the input to the Plasma Console is providing all 3 phases.

1. Check for short between the electrode and nozzle.

2. Check for short between the electrode cable and a connection to the work output of the Plasma Console.

3. Check for an open IGBT.

4. Check the IGBT gate pulse voltage connection on the driver board.

5. Check the multi-color ribbon connection from J12 on PCB1 to J2 on PCB2.

1. Check the temperature inside the control panel, if it reads below 55C and still the error is present then replace the control board.

2. Cool the area around the Plasma Console to below 40C. This is the upper limit of the rated operating range for the Plasma Console.

1. Check for faulty input fuse.

2. Check for shorted bus filter capacitor.

3. Check the bus charger contactor (K2) contacts and coil for any damage.

4. Check the bus-charger contactor relay (RB1-1) for failure.

5. Check bus charger resistors connections.

6. Check the ribbon cable connection between J6 and Relay Module (RB1).

7. Check the multi-color ribbon cable connection between J12 on PCB1 to J2 on PCB2.

8. Check the 24VAC supply on the control transformer.

112

02

03

04

05

06

08

09

11

12

13

14

15

TroubleshooTing

18

20

21

22

23

24

25

27

28

30

31

32

33

34

35

39

Output voltage fell below 70 volts during cutting or below 40 volts during marking.

Output or Arc voltage detected before

START signal issued

Main contactor failed to engage or disengage.

Work current is greater than Electrode current plus threshold limit during cutting.

The Plasma Console enable signal is missing.

There was an SPI communication error between the main and servo micro on control board.

The EEPROM on the control has failed.

The servo and supervisor on the control board of the Plasma Console has firmware version mismatch.

Jumper in the RAS box is missing.

1. Check for short in the torch cable.

2. Check cutting or marking height is too low.

3. Check for short between electrode and nozzle.

4. Check for short between Work (+) and Electrode (-) terminals on the Plasma Console.

5. Check for coiled or looped up electrode or work cables.

1. Check for a shorted IGBT.

2. Check the gate pulse voltage to IGBT from driver board. If there is a positive voltage during idle, replace the driver board.

3. Check the IGBT gate pulse voltage connections and make sure they are as per schematics.

4. Check the arc voltage feedback connections on the driver board.

5. Check for shorted diode (D9).

6. Check the multi-color ribbon cable connection between J12 on PCB1 and J2 on PCB2.

1. Check the input fuses inside the disconnect box.

2. Check the main contactor (K1) contacts.

3. Check the main transformer auxiliary windings connection on TB2 for 115VAC.

4. Check the relay RB1-2 on the relay module RB1.

5. Check the ribbon cable connection between J6 and relay module RB1.

1. Check the feedback from the hall sensors.

2. Check the connection from hall sensors to the control board.

3. Replace the control board.

1. Check the Plasma Console enable signal is present. This should be a dry contact output from the CNC.

2. Check for the Plasma Console enable signal going to J1 connector on PCB1.

3. Check the enable signal contacts on K4 relay.

4. Check control transformer 24VAC voltage on TB3 powering K4 and K5.

5. Replace the control board.

1. Shut off the Plasma Console for at least 5 minutes. If the error clears, check the grounding of the machine and the Plasma Console.

2. Replace the control board.

1. Shut off the Plasma Console for at least 5 minutes. If the error clears, check the grounding of the machine and the Plasma Console.

2. Replace the control board.

Replace the control board.

The servo on the control board has fault.

Coolant flow is below 0.45GPM.

Coolant flow is above 2.4GPM.

There was a watchdog error on the

CAN bus.

Ignition/Arc lost in dwell state immediately after it attached to the plate.

1. Check the jumper inside the RAS box between pins L and J on the 14-pin Amphenol connector.

2. Check for damaged control cable.

3. Replace the control board.

1. Check for bad hall sensor.

2. Check for diode (D9) connection on the IGBT module bus bars.

3. Shut off the Plasma Console for at least 5 minutes. If the error clears, check the grounding of the machine and the Plasma Console.

4. Replace the control board.

1. Check the coolant level.

2. Check for a clogged filter.

3. Check for leaks in the coolant return line.

4. Check the bypass regulator for bypassing too much coolant.

5. Check input power to the pump.

6. Check for proper pump function by looking for flow into the tank. If there is no flow and the motor in running, replace the pump head.

7. Check the connection of the flow sensor to the control board.

8. Check for the SW6 position set properly according the flow sensor either turbine flow or rotor flow sensor.

9. Replace the control board.

1. Check the connection of the flow sensor to the control board.

2. Check for the SW6 position set properly according the flow sensor either turbine flow or rotor flow sensor.

3. Replace the control board.

1. Check the CAN connection between the interface control and the Plasma Console’s control board.

2. Check the input power to the interface control.

3. Check for all the dip switches on the IC board are toward the display.

4. Check for SW5 on the control board in the Plasma Console is set to “CLOSE”.

5. Check for coiling of the CAN cable near power leads.

1. Check that the piercing distance of the torch is at the recommended level.

2. Check that the ignition distance of the torch is at the recommended level.

3. Check the consumables.

This will normally correct itself, if not replace the control board.

The station constant’s CRC received from the controller did not match the calculated CRC.

Hall Sensor Connector is removed or jumper is missing.

1. Check the hall sensor feedback connector for proper wiring.

113

114

TroubleshooTing

replacement parts

116

Replacement paRts

Replacement paRts replacement parts

general

Always provide the serial number of the unit on which the parts will be used. The serial number is stamped on the unit nameplate.

ordering

To ensure proper operation, it is recommended that only genuine ESAB parts and products be used with this equipment.

The use of non-ESAB parts may void your warranty.

Replacement parts may be ordered from your ESAB Distributor.

Be sure to indicate any special shipping instructions when ordering replacement parts.

Refer to the Communications Guide located on the back page of this manual for a list of customer service phone numbers.

note:

Schematics and Wiring Diagrams on 279.4 mm x 431.8 mm

(11” x 17”) paper are included inside the back cover of this manual.

Items listed in the assembly drawing Bill of Materials (included in the back of this publication) that do not have a part number shown are not available from ESAB as a replaceable item and cannot be ordered. Descriptions are shown for reference only. Please use local retail hardware outlets as a source for these items.

117

118

Replacement paRts

general information

General information

General information general information caution

Voltages in plasma cutting equipment are high enough to cause serious injury or possibly death. Be careful around equipment when the covers are removed.

maintenance

Maintenance

A maintenance schedule should be created and based on the following variables, amount of usage, placement of machine and cleanliness of local environment. A maximum time between should be no more the 90 days.

External: Check work cable for worn insulation and confirm tight electrical connections. Check safety ground ground at work piece and at power source. Check torch cables for worn insulation and confirm tight electrical connections. Drain any moisture from the bowl of the input filter / regulator.

Internal: Check for discolored connections as they indicate a loose connection. Check all plugs, fittings and electrical connections for tightness. Make sure cables and hoses are not damaged, flattened or kinked. With input power disconnected and wearing proper eye and face protection, blow out accumulated dirt and foreign materials for the inside of unit. Extra attention should be given to the finned heatsinks.

caution

Water or oil occasionally accumulates in compressed lines. Be sure to direct the first blast of air away from the equipment to avoid damage to the mm300x

General information

electrostatic Discharge

WARNING!

STATIC ELECTRICITY can damage circuit boards and electronic components.

• Observe precautions for handling electrostatic sensitive devices.

Use proper static-proof bags and boxes.

What is ESD?

A sudden transfer or discharge of static electricity from one object to another. ESD stands forElectrostatic Discharge.

How does ESD damage occur?

ESD can cause damage to sensitive electrical components, but is not dangerous to people.ESD damage occurs when an ungrounded person or object with a static charge comes intocontact with a component or assembly that is grounded. A rapid discharge can occur,causing damage. This damage can take the form of immediate failure, but it is more likelythat system performance will be affected and the component will fail prematurely.

How do we prevent ESD damage?

ESD damage can be prevented by awareness. If static electricity is prevented from buildingup on you or on anything at your work station, then there cannot be any static discharges.Nonconductive materials (e.g. fabrics), or insulators (e.g. plastics) generate and hold staticcharge, so you should not bring unnecessary nonconductive items into the work area. It is obviously difficult to avoid all such items, so various means are used to drain off anystatic discharge from persons to prevent the risk of ESD damage. This is done by simpledevices: wrist straps, connected to ground, and conductive shoes.

Work surfaces, carts and containers must be conductive and grounded, use only antistaticpackaging materials. Overall, handling of ESD–sensitive devices should be minimized to prevent damage.

ohm’s and Watt’s laws

General information

General information

or

+

+

R n

F n

C n

C n

SW n

D n

D n

D n

L n

T n

SCR

L n

glossary (general Definitions and symbols used in this manual)

SYMBOL NOTATION NAME VALUES DESCRIPTION

-

+ n

µ

A

V

R

W

F

Amperage

Volts

Resistance

Watt

Farad

BIAS

OCV

Number micro

ANODE:

CATHODE: n n n n n

Current: effectively the "amount of flow" of electricity.

Electromotive force: effectively the "pressure" of electron movement.

Opposition to electrom transfer: expressed in OHMS.

A measure of Power. Watts = V*A

Amount of electrical storage in a capacitor.

A voltage used to control or stabilize an electronic circuit. A forward bias is voltage applied in the direction of the current flow within a transistor, tube or circuit. A reverse bias is voltage applied in the opposite direction.

n VOLTS

0.00000n

Open Circuit Voltage:

Indicates that any number may be used in its place.

One Millionth of any unit.

+ Positive element of device.

- Negative element of device - the banded end of a diode.

CAPACITOR

ELECTROLITIC

CAPACITOR

RESISTOR

FUSE

µ

µ

F

F

Ω, W n A, n V

Stores energy in the electrostatic field generated between two metal plates separated by an insulator. Typical values are in F.

Electrolitic capacitors will be damaged if polarity is not correct. Capacitors can charge themselves from ambient electric fields and should be handled with caution.

Component that opposes current flow proportionately to its Ohm (W) rating. Power dissapation is expressed in Watts (W).

Device in series with a load which opens the circuit if its current rating (A) is exceeded.

SWITCH

DIODE

ZENER DIODE

SILICON

RECTIFIER

COIL

COIL (Iron Core)

TRANSFORMER

GROUND

Device which opens and closes a circuit.

A semi-conductor that conducts in only one direction

A diode that permits high current flow without damage, the reverse voltage remains almost constant over a wide range of currents, used esp. to regulate voltage.

Semiconductor diode that emits light when conducting current

Device having primary and secondary inductors for altering a-c signal amplitudes, impedance matching,and isolation purposes. . A reverse blocking triode thyristor

Wound wire device; current through the coil generates a electromagnetic field causing inductive reactance, which increases with number of turns and density.

Adding a core to a coil increases the inductance produced.

Wound wire device with a primary and secondary coil(s) which increases or decreases voltage applied to the primary based on coil and core configuration. 1:1 transformers are used for isolation.

Identifies the earth (ground) connection. NOTE: Not for a protective earth connection.

General information

glossary (general Definitions and symbols used in this manual)

SYMBOL NOTATION NAME VALUES DESCRIPTION ltr

NEUTRAL

Electronic neutral or common.

SOL n

PLUG

CONNECTION

SOLENOID

Variously configured male/female separable connectors.

Electro-magnetically operated valve.

Mn

M n

T SW n

Collector

Base or

Emitter or n n n n n or or

Q n

TP n

K n

Y n

MOTOR

THERMISTOR n Ø,HP,V A device which converts electrical energy to mechanical energy (motion).

A resistor whose resistance changes with temperature.

THERMAL

SWITCH

TRANSISTOR

Protective device that protects circuits from over temperature.

A transistor amplifies current.

A small base current controls the larger collector current.

TEST POINT

RELAY

Dedicated location for obtaining quantification.

n A, n V

Electro-mechanical device for opening / closing a circuit.

WIRE NODE

CRYSTAL

LAMP n MHz

Schematic representation of physical connection of wires.

Device using the mechanical resonance of a physical crystal of piezoelectric material to create an electrical signal with a very precise frequency.

Produces light by heating a filament.

General information

glossary (general Definitions and symbols used in this manual)

A

B

SYMBOL

X

NAME

AND GATE

LOGIC SYMBOLS

DESCRIPTION

An AND gate can have two or more inputs. The output of an AND gate is true when all its inputs are true.

AND

A

0

0

1

1

INPUT

B

0

1

0

1

OUTPUT

X = AB

0

0

0

1

A

B

A

B

A

B

A X

X

X

X

OR GATE

NAND GATE

NOR GATE

NOT

(INVERTER)

An OR gate can have two or more inputs. The output of an OR gate is true when at least one of its inputs is true.

0

1

A

0

1

INPUT

OR

1

0

B

0

1

OUTPUT

X = A+B

0

1

1

1

A NAND gate can have two or more inputs. The 'o' on the output means

'not' showing that it is a Not AND gate. The output of a NAND gate is true unless all its inputs are true.

NAND

INPUT

0

1

1

A

0

1

0

1

B

0

OUTPUT

X = A B

1

1

1

0

A NOR gate can have two or more inputs. The 'o' on the output means

'not' showing that it is a Not OR gate. The output of a NOR gate is true when none of its inputs are true.

NOR

INPUT

0

1

A

0

1

1

0

B

0

1

OUTPUT

X = A + B

1

0

0

0

A NOT gate can only have one input. The 'o' on the output means 'not'.

The output of a NOT gate is the inverse (opposite) of its input, so the output is true when the input is false. A NOT gate is also called an inverter.

NOT

INPUT

A

0

1

OUTPUT

X = A

1

0

General information

meter use

relay Voltage Drop as a means of voltage in circuit troubleshooting.

In all series circuits, the total circuit voltage is dropped across the load or electrical devices. The higher the resistance of the load the higher the voltage drop. The lower the load resistance the lower the voltage drop. An open contact in a branch circuit with a load will show a high voltage drop because the meter and the open switch have a very high resistance when compared to the load. While a closed contact that has a meter across, it shows a very low voltage drop since the resistance across the switch is lower than the load. So, using the meter set at the proper voltage range you can test if the contacts are closed or open.

ohm testing

General information

Diode testing

General information

ripple

General information

Voltage measurement

General information

General information

igBt testing

caution

the emitter and the gate of each affected igBt must be jumpered together to prevent electrostatic damage. each power source is supplied with six jumper plugs that mate to the igBt gate / emitter plug.

caution

electrostatic Discharge hazard electrostatic discharge may damage these components.

• Damage is accumulative and may only appear as shortened component life and not as a catastrophic failure.

• Wear a protective ground strap when handling to prevent damage to PCB components.

• Always place a pc board in a static-free bag when not installed.

remoVal:

A. Insure that input power is removed by two actions such as a disconnect switch and removal of fuses. Tag and lock any disconnect switch to prevent accidental activation.

B. Remove the top panel to gain access to the modules located in the top rear of the power source.

C. Clean the compartment containing the modules with dry, oil-free compressed air.

D. Unplug the gate drive leads connecting the IGBT Gates to the PWM/Gate Drive PC Board. In order to prevent damage to the IGBT, install jumper plugs into the IGBT Gate Drive Connector. See Caution below. Jumper plugs are supplied with each power source.

E. Remove the copper bus plates and bars connected to the IGBT’s. Save the M6 hardware connecting the bus structure to the module terminals. You may need to re-use the hardware. Longer hardware can damage the module by contacting the circuitry directly below the terminals.

F. Remove the M6 hardware mounting the modules to the heat sink. Save the hardware because you may need to re-use it. Hardware too short can strip the threads in the Aluminum heat sink. Hardware too long can hit the bottom of the holes causing the modules to have insufficient thermal contact to the heat sink.

Hardware too long or too short can cause module damage due to over heating.

caution

the module gate plugs must be plugged into the pWm/gate Drive pc Board whenever the power source is in operation. failure to plug them in will result in damage to the module and possible damage to the torch.

General information

igBt replacement

replacement:

A. Thoroughly clean any thermal compound from the heat sink and the modules. Any foreign material trapped between the module and heat sink, other than an appropriate thermal interface, can cause module damage due to over heating.

B. Inspect the thermal (interface) pad, P/N 951833, for damage. A crease or deformity can prevent the module from seating properly, impeding the heat transfer from the module to the heat sink. The result can be module damage due to over heating.

If a thermal pad is not available, a heat sink compound such as Dow Corning® 340 Heat Sink Compound may be used. It’s a good idea to mount all paralleled modules located on the same heat sink using the same thermal interface. Different interfaces can cause the modules to operate at different temperatures resulting in un-equal current sharing. The imbalance can shorten module life.

C. Place a thermal pad, and an IGBT module on the heat sink. Carefully align the holes in the thermal pad with the heatsink and module holes. If heat sink compound is used in place of a thermal pad, apply a thin coat of even thickness to the metal bottom of the module. A thickness of 0.002” – 0.003” (0.050mm – 0.075mm) is optimum. Too much compound impedes heat transfer from the module to the heat sink resulting in short module life due to over heating.

D. Insert the four M6 mounting bolts, but do not tighten. Leave them loose a few turns. Be certain that the threads from the mounting bolts do not bend the edges of the thermal pad clearance holes. A bent thermal pad can prevent the module from seating properly, impeding the heat transfer from the module to the heat sink. The result can be module damage due to over heating.

E. Partially tighten the four mounting bolts a little more than finger tight in the order: A-B-C-D. See figure below.

F. Fully tighten, in the same order above, to a torque of 35 – 44 in-lbs (4.0 – 5.0 N-M). See figure below.

G. Install the bus plates and bus bars. Be careful that the sheets of insulation separating the bus plates are still in their original positions. It’s a good idea to tighten the mounting hardware only after getting it all started. Torque the M6 module terminal hardware to 35 – 44 in-lbs (4.0 – 5.0 N-M).

H. Remove the jumper plugs from the module gate lead plugs, and plug into the appropriate plugs from the PWM/Gate

Drive PC Board. See Caution below.

I. Replace the top panel.

caution

1 - IBGT Collector

2 - IGBT Emitter

3 - FWD Cathode

6 - IGBT Gate

7 - IGBT Emitter

the module gate plugs must be plugged into the pWm/gate

Drive pc Board whenever the power source is in operation. failure to plug them in will result in damage to the module and possible damage to the torch.

a

D

Four-Point Mounting Type

Partial tightening - a

-

B

-

c

-

Fully tightening - a

-

B

-

c

-

D c

D

Key plug position 1 (reD)

1

2

B

3

6 (reD)

7 (Wht)

General information

igBt assembly testing (0558006183)

This assembly consists of 4 ea., 400A, 1200V IGBTs that combine the simple gate drive characteristics of the MOSFET with the high current and low saturation voltage capability of BJTs by combining an isolated gate FET for the control input, and a bipolar power transistor as a switch, in a single device.

When on, these IGBTs allow current to flow to the electrode.

test:

With the IGBT disconnected and your meter in the diode scale, check the internal diodes by making connections found in the table listed below.

Reverse the leads across the bipolar power transistor. Connect the black lead to 2 and the red lead to 1. Now, “gate on” the IGBT by connecting a 9V battery to G2 and E2 of the IGBT. In the diode scale, your meter’s reading should change from OL to 0.7 when the IGBT has been “gated on”. Reverse the battery leads to gate the IGBT off.

probe(+) igBt test (meter in Diode scale) probe(-) reading

2

1

1

3

0.7

0.7

The IGBT Assembly consists of all wire, connectors and tubing needed for proper connection of the IGBT module.

igBt testing

General information

notes

notes

G.

H.

D.

E.

F.

A.

B.

C.

esaB Welding & cutting products, florence, sc communication guiDe - customer serVices

CUSTOMER SERVICE QUESTIONS:

Telephone: (800)362-7080 / Fax: (800) 634-7548

Order Entry Product Availability

Hours: 8:00 AM to 7:00 PM EST

Pricing Order Information Returns

ENGINEERING SERVICE:

Telephone: (843) 664-4416 / Fax : (800) 446-5693 Hours: 7:30 AM to 5:00 PM EST

Warranty Returns Authorized Repair Stations Welding Equipment Troubleshooting

TECHNICAL SERVICE:

Telephone: (800) ESAB-123/ Fax: (843) 664-4452

Part Numbers Technical Applications Specifications

Hours: 8:00 AM to 5:00 PM EST

Equipment Recommendations

LITERATURE REQUESTS:

Telephone: (843) 664-5562 / Fax: (843) 664-5548

WELDING EQUIPMENT REPAIRS:

Telephone: (843) 664-4487 / Fax: (843) 664-5557

Repair Estimates Repair Status

WELDING EQUIPMENT TRAINING

Telephone: (843)664-4428 / Fax: (843) 679-5864

Training School Information and Registrations

WELDING PROCESS ASSISTANCE:

Telephone: (800) ESAB-123

TECHNICAL ASST. CONSUMABLES:

Telephone : (800) 933-7070

Hours: 7:30 AM to 4:00 PM EST

Hours: 7:30 AM to 3:30 PM EST

Hours: 7:30 AM to 4:00 PM EST

Hours: 7:30 AM to 4:00 PM EST

Hours: 7:30 AM to 5:00 PM EST

if You Do not KnoW Whom to call

Telephone: (800) ESAB-123

Fax: (843) 664-4462

Hours: 7:30 AM to 5:00 PM EST or visit us on the web at http://www.esabna.com

The ESAB web site offers

Comprehensive Product Information

Material Safety Data Sheets

Warranty Registration

Instruction Literature Download Library

Distributor Locator

Global Company Information

Press Releases

Customer Feedback & Support

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement

Table of contents

Languages