Fluke 96 Service Manual

Add to My manuals
267 Pages

advertisement

Fluke 96 Service Manual | Manualzz

FLUKE

AND

PHILIPS THE

GLOBAL ALLIANCE

IN

TEST

&

MEASUREMENT

Fluke

93/95/97

Philips

PM93/95/97

SCOPEMETER

Service Manual

Ruker

Philipe:

920121

915970

4622 872 05349

Warning: These servicing instructions are for use by qualified personnel oniy.

To reduce the risk of eiecthc shocks do not perform any servicing other than that specified in the operating instructions uniess you are fully qualified to do so.

FLUKE

IMPORTANT

In correspondence concerning thie instrument please give the model number and serial number as located on the type number plate on Ihe Instrument

All moditicallons up to production data

21 january 1992 are Incorpe rated

In this manual.

For your reference:

Model number:

Code number

:

Serial number:

PMxx

9444 yyy yyyyy

DM nn mmmm

Fluke xx

9444 yyy yyyyy

DM nn mmmm

Note: The design of this instrument is this subject to continuous development and improvement.

Consequently, instrument may incorporate minor changes

In detail from the infom}ation contained in this manual.

©

Copyright Philips Export

B.V.,

1992

All rights reserved.

No part of this publication may be reproduced by any means or In any form without written permission of the copyright owner.

Printed in

The r^eiheriande

CONJTENTS

TABLE OF CONTENTS

1.

SAFETY INSTRUCTIONS

1.1

INTRODUCTION

1.2

SAFETY PRECAUTIONS

1.3

CAUTION AND WARNING STATEMENfTS

1.4

SYMBOLS

1.5

1.6

IMPAIRED SAFETY

GENERAL SAFETY INFORMATION

2.

CHARACTERISTICS

2.A

PERFORMANCE CHARACTERISTICS

2.B

SAFETY CHARACTERISTICS

2.1

DISPLAY

2.2

SIGNAL ACQUISITION

2.3

CHANNELS A&B

2.4

TIMEBASE

2.5

TRIGGER

2.6

SIGNAL MEMORY (MODELS 95

AND 97 ONLY)

2.7

TRACE DISPLAY

2-8

SETUP MEMORY (MODEL 95 ONLY)

2.9

SETUP MEMORY (MODEL 97 ONLY)

2.10

CALCULATION FACILITIES (MODEL 95 ONLY)

2.11

CALCULATION FACILITIES (MODEL 97 ONLY)

2.12

CURSORS (MODELS 95 AND 97 ONLY)

2.13

MULTIMETER

2.14

AUTO SETTING

2.15

GENERATOR (MODEL 93 AND

95)

2.16

GENERATOR (MODEL 97 ONLY)

Page

2-1

2-1

2-1

2-8

2-8

2-9

2-9

2-14

2-16

2-16

2-6

2-6

2-7

2-1

2-1

2-2

2-4

2-5

2-6

1-1

M

1-1

1-1

1-1

M

M

IV

2.17

POWER ADAPTOR BATTERY CHARGER

2.18

POWER SUPPLY

2.19

MECHANICAL

2.20

ENVIRONMENTAL

2.21

INTERFACE (MODEL

97 ONLY)

2.22

SAFETY

2.23

ACCESSORIES

2.24

SERVICE AND MAINTENANCE

3.

CIRCUIT DISCRIPTIONS

3-1

3.2

3.4

INTRODUCTION TO CIRCUIT DiSCRIPTION

3.1.1

GENERAL

3.1.2

LOCATION OF ELECTRICAL PARTS

FUNCTIONAL BLOCK DISCRIPTION

3.2.1

INTRODUCTION

3.2.2

3.3.3

3.3.4

3.3.5

DATA ACQUISITION

MICROPROCESSOR

DIGITAL ASIC (D-ASIC) CIRCUITRY

LCD CIRCUl'mY

ANALOG CIRCUITS

(A2)

3.4.1

INTRODUCTION

3.4.2

3.4.3

3.4.4

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

OVERVIEW ANALOG CIRCUITS

ATTENUATOR SECTIONS, CHANNEL A AND B

EXTERNAL (BANANA) INPUT/OUTPOT CIRCUITRY

ANALOG ASIC (A-ASIC)

AND ADC CIRCUITRY

ANALOG CONTROL CIRCUIT

GENERATOR CIRCUIT

BATTERY CHARGER

POWER SUPPLY

4.

PERFORMANCE VERFICATION PROCEDURE

4.1

4.2

4.3

4.4

GENERAL INFORMATION

STANDARD PERFORMANCE VERFICATION PROCEDURE

STANDARD PERFORMANCE VERFICATION PROCEDURE SUMMARY

AODmONAL PERFORMANCE VERFICATION PROCEDURE

CONTENTS

3-1

3-1

3-1

3-1

3-2

3-2

3-4

3-7

3-9

3-12

3-14

3-14

3-14

3-14

3-18

3-20

3-24

3-30

3-32

3-34

2-21

2-22

2-23

2-23

2-17

2-17

2-18

2-19

4-1

4-1

4-2

4-16

4-17

CONTENTS

5.

CALIBRATION ADJUSTMENT PROCEDURE

5.1

5.2

GENERAL INFORMATION

RECOMMENDED

CALIBRATION ADJUSTMENT EQUIPMENT

5.3

5.4

5.5

ENTERING THE CALIBRATION PROCEDURE

OPERATING THE CAUBRATION PROCEDURE

CONTRAST CALIBRATION ADJUSTMENT PROCEDURE

5.6

6.1

5.7

5.8

SCOPE CALIBRATION ADJUSTMENT PROCEDURE

5.6.1

5.6.2

HARDWARE SCOPE CAUBRATION ADJUSTMENTS

CLOSED CASE SCOPE CALIBRATION ADJUSTMENTS

METER CAUBRATION ADJUSTMENT PROCEDURE

CALIBRATION ADJUSTMENT PROCEDURE SUMMARY

7.

6.

DISASSEMBLING THE SCOPEMETER

GENERAL INFORMATION

6.2.

DISASSEMBLY

6.2.1

6.2.2

6.2.3

6.2.4

PROCEDURE

REMOVING THE BATTERY PACK

OPENING THE SCOPEMETER

REMOVING THE ANALOG A2 PCB.

TO ENABLE

SCOPE CAUBRATION ADJUSTMENTS

REMOVING THE

DIGITAL A1

PCB

HARDWARE

CORRECTIVE MAINTENANCE

7,1

DIAGNOSTIC TESTING

7.1.1

AND TROUBLESHOOTING

INTRODUCTION

7.1.2

7.1.3

7.1.4

TROUBLESHOOTING TECHNIQUES

DISPLAY AND ERROR MESSAGES

MAIN TESTS

7.1.5

7.1.6

7.1.7

TROUBLESHOOTING

DIGITAL At PCB TROUBLESHOOTING

ANALOG A2 PCB TROUBLESHOOTING

72 REPLACEMB^TS

7.2.1

STANDARD PARTS

7.2.2

SPECIAL PARTS

7.2.3

7.2.4

7.2.5

TRANSISTORS AND INTEGRATED CIRCUITS

STATIC -SENSITIVE COMPONENTS

REPLACEMENT OF PARTS

7.3

SOLDERING TECHNIQUES

7-3-1

GENERAL SOLDERING TECHNIQUES

7.3.2

SOLDERING MICRO-MINIATURE SEMICONDUCTORS

V

5-1

5-1

5-1

5-2

5-3

5-4

5-4

5-4

5-8

5-15

5-24

6-1

6-1

6-1

6-2

6-2

6-4

6-4

7-1

7-1

7-1

7-1

7-2

7-5

7-7

7-7

7-28

7-40

7-40

7-40

7-40

7-40

7-42

7.5I

7-51

7-51

A

VI

7

7.5

7.6

7.4.1

SPECIAL TOOLS

EXTENDER FLAT CABLE

RECALIBRATION AFTER REPAIR

INSTRUMENT REPACKING

8.

MAINTENANCE OF THE PRIMARY CIRCUIT (PM8907/...)

9.

REPLACEABLE PARTS

LIST

9.1

9.2

INTRODUCTION

HOW TO

OBTAIN PARTS

10.

CIRCUIT DIAGRAMS

CONTENTS

9-1

9-1

9-2

10-1

7-52

7-52

7-52

7-52

8-1

1

-2 SAFETY INSTRUCTIONS

1.5

1 .6

IMPAIRED

SAFETY

Whenever

H

Is likely that safety has been Impaired, the Instrument must be turned off and disconnected from all external voltage sources, and the batteries must be removed.

The matter should then be referred to qualified technicians.

Safety

Is likely to be impaired if, for example, the instrument fails to perform the intended measurements or shows visible damage.

GENERAL SAFETY INFORMATION

WARNING: Removing the instrument covers or removing parts, except those to which access can be gained by hand, is likely to expose live parts and accessible terminals which can be dang^ous to life.

The instrument must be disconnected frorr> all voltage sources and batteries must be removed before rt is opened.

Capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources and batteries are removed.

Components which are important for the safety of the Instrument may only be replaced by components obtained through your local

FLUKE/PH

I

LI

PS organization.

These components are Indcated by an asterisk

(*) In the parts list sechon (chapters).

.

V

CHARACTERISTICS 2-1

2

CHARACTERISTICS

2.1

2.2

A.

Performance

Characteristics

PHILIPS and FLUKE guarantee the properties expressed in numerical values with stated tolerance.

Specified non-tolerance numerical values indicate those that coutd be nomir^lly expected from the mean of a range of identical instruments.

For definitions of terms, reference is made to lEC Publicatjon 351-1

The accuracy of all measurements

Is within i: {(Si of reading) ±(one least-significant digit)} from 18C to

28C.

Add

0.1

X

(specified accuracy

)/C for

< 16C or

> 28C ambient.

B.

Safety Characteristics

The Instrument has been designed and tested in accordance with

I

EC

Publication 348, Safety

Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition.

This manual contains Information and warnings that must be followed by the user to ensure safe ope ration and to keep the instrument in a safe condition.

DISPLAY

CHARACTERISTICS ADDITIONAL INFORMATION

Type

> Useful Screen Area

SPECIRCATtONS

LCD

64 mm x 64 mm

1

1 div equals 25 pixels.

div equals 8.75

mm.

Resolution

• Contrast Ratio

240 x

240 pixels

• Backlight (Model 97 only) Electro

Luminescence

SIGNAL

ACQUISITION

Sampling Type

@

1 ps/div...60s/dlv

@10 ns/div...500 ns/di

Maximum Sample Rate

Real Time

Quasi Random

25 MS/s

Adjustable via

LCD Menu.

6 bits

Sampling Rate depends on tims/div setting.

Over 10 divisions.

-

Maximum

Vertical

(voltage) Resolution

*

Maximum

Horizontal

(time) Resolution

-

Record Length

With capture 20 div

With capture

1

0 div

25 Samples/div

512 Samples

256 Samples

Per Channel-

Per Channel.

Per Channel.

2-2 CHARACTERiSTiCS

CHARACTERISTICS

-

Acquisition

Time

(for

20.4

dlv)

60s/dlv...1

ys/Olv

SPECIFICATIONS ADDITIONAL INFORMATION

500 ns/div...10 ns/div

20-5 X tlme/div

-i-

140 ms

20.5

X time/div

+ 120 ms

Excluding delay time.

Delay time

Is the selected trigger delay.

Excluding delay time.

In

Quasi-Random Mode, the acquisition time depends on triggers.

«

Sources

• Acquisition

Modes

Channel A

Channel ± B mV

Input

1

Channel Only

2 Channels

CHAN

A,

CHAN B

Chopped Mods from

60sydiv...50 ps/div.

Alternating

Mode from

20 ps/drv...10

ns/div.

2.3

CHANNELS A

& B

* Signal Inputs Isolated

BNC

Common

Input

• Input

Impedance

Black Safety

Banana Jack

R parallel 1

MO±

1%

Signal Input BNC commons are connected together.

Part of External Trigger Input.

Frequency dependent, see

Figure 2.1.

For

DC coupled input.

For

AC coupled input or

GND, add 22 nF in series with

R and C parallel.

C parallel

MAX.

INPUT

IMPEDANCE

25 pF

Figure

2. 1

Max.

Iriput

Impedance Versus Frequency rvn

CHARACTERISTICS

CHARACTERISTICS

• Input Coupling

SPECIFICATIONS

AC DC GND

Maximum

Input Voltage

(rms)

MAX.

PEAK

VOLTAGE

300

V

2 •

3

ADDITIONAL INFORMATION

Sequence: ac-doGND

(pre-charge ac), and back to ac.

Frequency dependent

Between see fig.

2.2

BNC inner and outer contact.

Outer BNC contacts and

Ground (Black) Banana Jack are internally connected together.

Figure 2.2

Max

Input Voltage Versus Frequency

• Defiection Coefftelent

Steps

1 mV/dlv...2

mV/div

(Models 95 and 97 only)

Steps

Error Limit

Overall

Nonlinearity

5 mV/d(V...100V/div

±

(

2

%

±

1 digit)

± (2%

1 1 cf git)

Dynamic Range

9.5

div

4 div

Position Range

(move control)

Frequency Response

4 dlv...+

4 div

Lower

Transition Point of

Bandwidth

DC

Input Coupling DC

AC

Input Coupling -

3dB <

1

0 Hz

Upper Transition Point of Bandwidth

>

50 MHz

(-3 dB)

Only

(or repetitive signals and llmebase 60 s...1mSif one of the channels is in this sensitivity, both channels will be switched to

Average =

4.

In a

1-2-5 sequence ot 14 positions.

Add 3% tor 1 mV and 2 mV per (EC 351 for frequencies

<

1

MHz.

for frequencies < 10 MHz.

for frequencies up to 50 MHz.

Z source

=

500.

<

1

Hz including 10

MO probe.

Subtract 5

MHz for

<

18 ®C and > 28 Ambient.

Rise time 7 ns.

v

2-4

CHARACTERISTICS

Max.

Baseline Inetabllity

Jump

SPECIFICATIONS

0.1

dlvor

1 mV

• Average

(Models 95 and 97 only)

Maximum Constant

Constant in Roll

MIN MAX

(Models 95 and 97 only)

Tlmebase setting

Pulse-wkJlh for

1X%

Probability

Pulse-wWtti for

25%

Probability

*

ZOOM

(Models 95 and 97 only)

Range for

Delay

256x lOX

S

^s/dlv

1

40 ns

10 ns

<640div

TIMEBASE

Modes Recurrent

Single Shot

Roll

«

Ranges

Recurrent

Dual Channel Chopped

Dual Channel Alternate

Single Shot

5s/dlv...10

ns/div

5a/div...50

pa/di

20 pa/d iv...

10 ns/div

5s/dlv...10

ns/dlv

CHARACTERISTICS

ADDtTtONAL INFORMATION

The baseline is automatical fy reac|usted after switching the attenuator or

AC/DC/GND.

Running Average.

Channel A only.

Expansion or compression in 1,2,5 sequence around the 4th division.

Automatic selected.

Every sweep needs a trigger.

A sweep first;

B sweep arms automatically.

For 500 ns,

200 ns, and

1

00 ns; an automatic Interpolation lakes place.

Chopped.

Roll

Mode

60s/div...10s/dlv

Maximum Tim abase Error ±

0.1

%

±

1

LSB

CHARACTERISTICS 2-5

2.5

CHARACTERISTICS

TRIGGER

Sources

Channel

Channel

A Signal

B

Signal

External Trigger Input

* External Trigger Input

Connector

SPECIFICATIONS ADDITIONAL INFORMATION

Sheeted Independently.

GHANA

CHAN B

EXT

Dual Salety

Banana Jack External Trigger Input common

(low) jack is electrically connected to the Channel A and

Channel B commons

(outer contact of BNC's).

' External Tiigger Input

Impedance

R parallel

C parallel

1

MJ^±1%

25 pF

• Trigger Error

Voltage Level

±1 LSB

±0.5

div

Time Delay ±1 LSB ±5 ns

Maximum

External Trigger

Input (rms)

300 V

Trigger Sensitivity

If used for mV DC >

1

MQ.

Including

Banana to

BNC adapter.

For frequencies <

1

MHz.

5s;dlv...50MS/dlv.

20 |i8/div...10

ns/div.

Frequency dependent, see fig.

2.2.

For Models 95 and

97, values must be multiplied by 5

In 2 mV/dIv.

and

1 mn/dfv.

Charrnel

A or

B a

100 MHz

^

60

MHz

@

10

MHz

External Trigger input

54 div

51.5

div

50.5

div

• Trigger Slope Selection positive going negative going

Trigger Level Control

Range

Channel A or

B

Trigger at

50%

External Trigger Input

±4 div

0.5 X

Fixed peak/t^ak value

@

TTL:10

TTL logic compatible using

10;1 attenuation Probe.

Measured during 20 ms.

Switchable lo

TTL via set-up menu.

2-6

CHARACTERISTICS

2.6

2.7

2.8

CHARACTERISTICS

N-cycle mode

(Models 95 and 97 only)

5s/fliv...1

^s/dJV,

N=

SPECIFICATIONS

2...

255

ADDITIONAL INFORMATION

For tlmebase settings from

20^s/dfv...1 ps/div acquisition and trigger on Channel A only.

Start via Ext; count with channel

A,

Events

(5s/div...1

ys/div)

• Trigger Delay

Range

1...1023

•20...

640 div

SIGNAL MEMORY (MODELS

95

AND

97 ONLY)

• Signal

Memory

Size

Memory

*1 up to #8.

Memoiies

Memory Depth

Wordlength

8

512 words

6

Bit

Functions Store

Save

Storage of signals.

Contents of Channel A and

Channel B are saved in temp memory

#1 and

#2, and (A ±

B) in temp memory

#3,

TRACE

DISPLAY

Sources A Maximum of

4 traces plus A vs B can be selected.

Channel

Channel

A±B

A vs

B

A

B

Memory #1 up to

#8 (Models 95 and 97 only).

* Position range

Horizontal

Vertical

+

4dfv...16.5

div

4

(jlv...+

4 div From screen center, select per trace.

SETUP MEMORY (MODEL

95 ONLY)

Memory Size 8 maximum Combined with waveform.

CHARACTERfSTICS

2.9

CHARACTERISTICS SPECIFICATIONS

SETUP MEMORY (MODEL

97 ONLY)

Memory

Sl2e

• Functions

10 maximum

Save

Delete

Recall

With soft up/down keys Next

Previous

* Initial setup selection of

AUTO SET only Amplitude or>ly

Time

Time and Amplitude trace identification trigger identification trigger sensitivity external

Clear after

Hold^un refresh time in

% RECORD scope mode on/off on/off

0.2V/2V on/off infinite

2 seconds

5 seconds

1 0 seconds

60 seconds

2-7

ADDITIONAL INFORMATION

Front Panel setups.

Actual front panel settings are stored

In memory* replacing contents of memory location

Indicated on LCD.

Contenis of memory tocation indicated on LCD are deleted.

Actual front panel settings are replaced by contents of location indicated on memory

LCD.

Actual settings are replaced by contents of the next

(+1

) location Indicated memory on LCD.

Actual settings are replaced by contents of the previous

(-1) memory location indicated on LCD.

2 -S CHARACTERISTICS

2.1

0

CHARACTERISTICS SPECIFICATIONS ADDITIONAL INFORMATION

CALCULATION

FACILITIES

(MODEL

95 ONLY)

Measurement Functions Maximum of 5 6imultar>90us measurement functions.

della

V della

1

RMS value

Mean (Average) value

Peak to

Peak value

Rise or

Fall lime

Frequency

1 delta t

Maximum value

Minimum value

Phase

Trigger time to cursor

Ratio

V of portion between portion.

£xpresslor> of value in

% or absolute on any one of the above values.

2.11

CALCULATION

FACILITIES

(MODEL

97 ONLY]

*

Measurement

Functions

Maxmum of 5 simultaneous measurement functions.

delta

V delta t

RMS value

Mean (Average) value

Peak to

Peak value

Rise or Fall time

Frequency

1 delta t

Maximum value

Minimum value

Phase

Trigger time to cursor

Ratio

\

> of portion between portion.

Expression of value

In

% or absolute on any one of the above values.

• Mathematics Multiplication

Add

Subtract

Fitter

Invert

Integrate of whole memory or Channel.

For timebase settings

20

PS ...10

ns, only displayed

Channels can be used.

CHARACTERISTICS

2 -g

2.12

CHARACTERISTICS SPECIFICATIONS

CURSORS (MODELS

95

AND

97 ONLY)

Horizontal

Display Resolution 25 parts per div

Digital Readout Resolution 3 digits

Error Limit ±0.1%±1 LSB

Cursor Range

Visible part of signal

Vertical

Display Resolution 25 parts per dIv

Digital

Readout Resolution

3 digits

Error Limit

±2%

ADDITIONAL INFORMATION

Cursors cannot pass each other.

Referred to Input at

BNC or Probe tip, after

Probe recalibration.

2.13

MULTIMETER

The

Multimeter uses the Channel

A input for

VDC & VAC measuremenlsand the Safety

Banana Jack

Inputs for Resistance, Diode Test, Continuity, and DC mV measurements.

An

Internal reference is used to optimize the accuracy of the Channel

Multimeter measurements

Is within

± {(% of reading) +

(number of least-significant digits)) from 18 *C to

28 ®C with relative humidity up to

20%

A

Input and any probes used.

The accuracy of all fora period of one year after calibration.

Add

0.1

x

{specified accuracy)/C for

18 or

28

”C Ambient.

Displayed range include used probe, if calibrated.

Values listed are without attenuating probe.

A Vrms AC and V DC dual display mode

Is optimized for power line measurements.

(mains) related

DC

Voltage

Ranges 300 mV.

3V.

30V & 300V

Resolution

Manual or automatic ranging on peak voltage.

High Voltage x10

Probe extends measurement to

600V.

Peak voltage is

2.5x range, except 375V

In

300V range.

Multiply x10 with High Voltage

Probe-

Accuracy

Digital Display

0.1

mV,

1 mV,

0.01V,

&0.1V

± (0.5% +

5)

3000 counts Up to

4500 counts, 3500 counts in

300V range.

Display update

Response Time

Zeroing

Series Mode

Rejection

Ratio

< 300 ms

<3.5s

automatic

> 50 dB or

60 Hz

@

50 Kz

2

-

10 CHARACTERISTICS

CHARACTERISTICS

AC

Voltage

Ranges

Digital Display

SPECIFICATIONS ADDITIONAL INFORMATION

Resolution

300 mV.

3V, 30V, 250V

0.1

mV,

1 mV, 0.01

V.

0.1V

Manual or automatic ranging on peak voltage.

High Voltage xIO Probe extends measurement to

600V.

Peak voltage is

2.5x

range and 375V in

250V range.

Multiply

X10 with High Voltage

Probe.

Valid from 5%..

100% of range.

Accuracy (AC Coupled)

Using High Voltage 10:1

Probe

50 Hz...

60 Hz

20

Hz...

20 kHz

5HZ...1

MHz

Accuracy (DC Coupled)

Using High Voltage 10:1

Probe

50

Hz...

60 Hz

1

Hz..

.20

kHz

Crest Factor

±(1%+

±(2%+

10)

15)

± (3% + 20)

± (1% +

10)

± (2% +

15)

3000 counts

Meter prevents crest factor errors by autoranging on

Input waveform peaks.

Up to

4500 counts, at

260V range: 2500.

c 300 ms

Display Update

Response Time

@

Input freq

>50 Hz

SMOOTH

FAST

DC Common Mods

Rejection Ratio

<

3.5s

< 10s

< Is

> 100 dB @ dc

> 100 dB

@

50, 60.

or 400 Hz

AC Common Mode

Rejection Ratio >60d6 @ dc..60Hz

V

CHARACTERISTICS 2-11

CHARACTERISTICS

«

Resistance

Open

Circuit Voltage

Full Scale Voltage

300n...3

Mfi

30 mi

Ranges

Resolution

Accuracy

Digital Display

Measurement

Current

Display Update

Response Time

SMOOTH

FAST

Protection

Continuity

Beeps if resistance is <:

Diode Test

SPECIFICATIONS

<

4V

< 250

<2V mV

300Q, 3 kii,

30 kil

300 kD.

3

Ma

30 MLl

0.10.0.001

kil 0.01

kO.

0.1

kO, 0.001

Mn, 0.01

MO

± (0.5% +

5)

3000 counts

0.5

mA...70

nA

< 300 ms

<3.5$

<10s

<

Is

600V RMS

5% of selected

ADDHIONAL INFORMATION

Manual or automatic ranging.

Up to

4500 counts, at

30

MO

3000

Decreases as range increases.

OL

Is indicated if measured voltage

IS

>

2.8V.

Maximum

Voltage

Range

Resolution

Accuracy

Digital DiS(^ay

Measurement Current

Display update

Response Time

SMOOTH

FAST

Protection

Polarity

Continuity (Alert)

4V

2.800V

0.001V

±{2% +

5)

3000 counts

0.5

mA

<300 ms

<

3.5s

<10s

<1s

600 V RMS on

on

RED Banana Jack

BLACK Banana Jack

Beeps if reading is below

1

If value

> 2800 readout gives OL.

2

12 CHARACTERISTICS

CHARACTERISTICS

DC mV

SPECIFICATIONS

Banana Jack Inputs

ADDITIONAL INFORMATION

Used for Accessory

(lr>cludlng

Temperature) input.

Manual or Automatic ranging.

Ranges

Resolution

Accuracy

Digital Display

Display update

Response Time

SMOOTH

FAST

Input

300 mV & 3V

0.1

mV

&

1 mV

± (0.5%

45)

3000 Counts

<300 ms

<

3.5s

<10s

<

Is

•K on on RED Banana Jack

BLACK Banana Jack

• Multimeter Math (Display)

Functions

97 only)

(Models 95 and

Relative

ZERO delta

%

Change {%

Relative)

ZERO % delta

%

Scale

Up to

3500 Counts.

SetO^ Reference SetO%

Set 100% Reference Set 100%

1

Power with respect to mW in selected load resistance

Select load resistance dBm

Voltage Ratio in dS with respect to tV

Audio power

Select load resistance

1200, 1000, 900, 800, 600,

500, 300, 250, 150, 135,

125, 110, 93,75,

60&50 dBV

WATTS or dBW

50,16,

8, 4. 2

& in

Displayed Value = Reading

Reference Reading.

Displayed Value « {(Reading/Refe rence Reading)

-1} x 100.

Displayed Value b

{(Reading -Set

0%

Reading)/{Set 1(X)% Reading-

Set

0%

Reading)} x

100%.

Present, Maximum. Minimum,

Average.

Present.

Maximum, Minimum,

Average.

CHARACTERISTICS 2-13

CHARACTERISTICS SPECIFICATIONS

Other Multimeter Operating Modes

Touch Hold HOLD

MIN MAX recording

(Models 95 and 97 only)

RECORD

ADDITIONAL INFORMATION

Causes the meter to capture the ne)(t measured reading (and beep) when a new stable measurement has been detected.

When first enabled, the numeric display is frozen (held) until a stable measurement is detected.

Stable measurements are defined as with in

± 100 display counts for 4 measurements

("Is.); and above a floor of

200 display counts m volts

(300 counts in ac, below 4000 counts in

O ar>d below 2800 counts in diode).

Overload

Is a valid stable condition except

In £2 and diode test.

Simultaneous displays o1

Maximum. Minimum. Peakto Peak.

Average* arvJ Present reading.

Frequency

Range

Accuracy

Tlmebd&e Accuracy

Resolution

Measuring Time

SMOOTH

FAST

Ranging

AUTO RANGE

Voltage

Range_Up

Voltage Range.Down

Time Range_Up

5 ms.

..50

us

20

US...1

us

Ttme Range.Down

5 ms.

..50

)is

20

US...1

us

1

H2...5

MHz

+/(0.5% + 2 counts)

+/-0.01%

4 digits

3.5s

<10s

<

1 s

Automatic

3500

0300

>

6 periods fn display

>

4 periods in display

<1.5

periods in display

<

0.75

periods in display

Manual for frequencies

< 20

Hz.

gradually degradation from and down.

Running average over 32 measurements.

100 Hz

Vdtage and Time are coupled.

Maximum reading in manual range

@

300 mV,

3V>

30V

:

4500.

@ external Input: 3500.

TIME switch selects manual timebase.

AUTOSET starts timebase ranging.

2

14 CHARACTERISTICS

2.14

CHARACTERISTICS

AUTO

SETTING

• Settling time

SPECIFICATIONS ADDITIONAL INFORMATION

3s The default values are indicated

(Model 97 only).

If this can be changed with the aid of the

SETUP

(auto-set) menu, tnis is shown.

Selectable mode of opefatl<xi (Model 97 only) Selected

Complete

@ in^al setup.

• Display functions

Channel Baseline

Separate

X-position mid screen

A = +

1 div

B a

-

1 dlv zero

Y-posil[ion zero

One channel display.

1

1

Dug^ Channel display.

SETUP: not affected

(Model 97 only).

SETUP: not affected or separation

(Model 97 only).

X-expand

A vs B

• Cursors

Mathematics

• Text

X

1 off not affected off

Not affected on

SETUP: not affected

(Model 97 only).

if cursors are on a not the selected channel, Channel A.

SETUP: not affected (Model 97 only).

SETUP: not affected

{Model 97 only).

Except for actual setting, that is adapted (Model 97 only).

SETUP: OFF (Model 97 only).

Trace identification

• Vertical AcQuisition

Y deflection source

Input coupling

Y deflection

Input voltage > 20 mV

Input voltage < 20 mV

Every source having a thggerable signal at its

Input ac

Channel A if no trigger is found.

SETUP: not affected

(Model 97 only).

Each channel is independently set.

approx.

5 dIv

Channel at 200 mV/dIv Due to trigger uncertainty at freq.

> 2 MHz

Of at duty cycle

<> 50% sensitivity can deviate from above, but signal will remain on the screen.

CHARACTERISTICS

2-15

CHARACTERISTICS

Average

SPECIFICATIONS off

ADDITIONAL INFORMATION

SET-UP: not affected

(Model 97 only).

• Horizontal Acquisition Free Run

Recurrent

TB

Deflection coefficient

Signal 40 Hz..

.5

MHz

Signal 5 MH2...50

MHz min.

2

, max 6 signal periods over ddiv min.

2

, max 20 signal periods over 8 div

5 ms/div

When no trigger found

• Triggering

Delay a 0

Off SETUP: not affected

(Model 97 only).

Negative delay

Triggerable signal

@ ext.

input

Not affected

No signal

@ ext input but trig, signal

A or

8

@ channel

No triggerable signal.

@ any input

Level channel A or channel B

Channel A

40...

60% of p©ak-tQ-peak value

SETUP:selectAorB

(Model 97 only).

Channel with lowest Input frequency

Is selected (Channel when frequencies are equal).

A

Slope Pos iti ve

Events

(Models 95 and 97 only)

N-Cycle

(Models 95 and 97 only)

• Nferious

OFF

OFF

Generator (Model 97 only)

OFF

Record restart timing

(Model 97 only)

OFF

After Autoset.

SETUP: not affected

(Model 97 only).

SET U P

: not affected

(Model 97 only).

SET-UP; not affected

(Model 97 only).

SET-UP; not affected

(Model 97 only).

SETUP: not affected.

SETUP: 2,5.10

or 60s or acquisitions, whichever

1

$ the shortest.

2-16

2.15

CHARACTERISTICS SPECIFICATIONS

GENERATOR (MODEL

93

AND

95)

* Probe Adjust

Voltage

(p-p)

Frequency

Source resistance

*

DC

Calibration

Voltage

Source resistance

5V

976 Hz

400ii

3V

4000

2.16

GENERATOR (MODEL

97

ONLY)

*

Probe Adjust

Voltage

(p-p)

Frequency

5V

976 Hz

4000 Source resistance

DC

Calibration

Voltage

(p-p)

Source resistance

*

LF Sine wave

3V

4000

Amplitude

(p-p)

Amplitude

(p-p)

IV

Frequency

Max.

Individual Harmonic

976 Hz

3%

4000 Source resistance

• Square wave

5V

Frequency

Source Resistance

1.95

kHz

978 Hz

488 Hz

4000

CHARACTERISTICS

ADDITIONAL INFORMATION

A square wave voltage is available via the external trigger input for adjusting probe compensation.

Including 10:1 attenuatior> Probe.

Inaccuracy is optimized internally.

A square wave voltage

Is available via the external trigger input tor adjusting probe compensatbn.

Including 10:1 attenuation Probe.

Inaccuracy is optimized internally.

1 selectable

CHARACTERISTICS 2-17

CHARACTERISTICS

DAC

Output Current

Amplitude

SPECIFICATIONS

0 mA...+

3mA

ADDITIONAL INFORMATION

Can be used for a component tester.

In max.

126 amplitude st^.

The time for every step can differ.

Max.

voltage

*

DAC output voltage

2V

In max.

126 amplihjde steps.

The time for every step can differ.

Amplitude

Max.

Current

-2V...+ 2V

±

1 mA

2.17

POWER ADAPTOR

/BATTERY

CHARGER

*

Input Connector 5 mm

Power Jack Per DIN 45323

*

Source Voltage dc

Nominal 15V dc

Limits of Operation

• Charging Current

Instrument

ON

Instrument

OFF

• Allowable Temperature

During Charging

Powe r

Consumption

Instrument

ON

Instrument OFF

8V...20V

dc

60 mA

170 mA

0®C...46

“C

5W

3W

2.18

POWER SUPPLY

• Battery Voltage Range

4V...6V

The batteries are not charged at delivery.

A warning is given if the battery voltage becomes lower than

4.4V, "Hie instrument is switched off if the battery voltage becomes lower than 4 V.

If the instrument

Is Battery

Powered, it will switch off automatrcaJly after 10 minutes of no operator actions, except in

RECORD or

ROLL mode.

2

18

CHARACTERISTICS

Recommended

Batteries

NICad

Battery Pack

SPECIFICATIONS

PM

9086/001

Recharging time

Life time

16 hours

Operating time

Stand Alone Batteries

(4x)

> 4 hours

Model KR27/S0

K70

C-CELL

Operating time

Temperature Rise of

Batteries

> 4 hours

20 'C

Temperature Range of

Alkaline Batteries.

Working

Storage

-20...65*C

-30...65“C

CHARACTERISTICS

ADDITIONAL INFORMATION

Only this Battery

Pack

Is internally re-chargeable.

After 500 cycles the capacity will be

>1100 mAh- The nominal capacity is

2200 mAh.

After Charging for

> 15 hours.

perlEC.

per ANSI

After instrument has reached a stable operating temperature.

2.19

MECHANICAL

Height

Width

Depth

Weight

262 mm

129 mm

60 mm

1.5

kg

)t is recommended to remove the batteries from the instrument when it is stored longer than 24 hours below

-

30 ®C or above 60 ®C.

CAIiTIONI UNDER NO

CIRCUMSTANCES SHOULD

BATTERIES BE LEFT

IN

INSTRUMENT @

THE

TEMPERATURES BEYOND THE

RATED SPECiFICATlONS OF THE

BATTERIES BEING USEDI

With holster 281 mm.

With holster 140 mm.

With holster 62 mm.

With holster ca 1-8 kg.

CHARACTERISTICS

2 19

2.20

CHARACTERISTICS

ENVIRONMENTAL

SPECIFICATIONS ADDITIONAL INFORMATION

The characteristics are valid only

If the instrument is checked in accordance with the official checking procedure.

• Meets Environmental

Requirements of:

Temperature

MIL-T-2a800D Type

111

Class

3, Style

C

Batteries removed from Instrument unless Pdttenes meet the required tmperature specifications.

Maximum

Operating Temperature derated 3 for each km. (each

3000 feet) above sea level.

Operating

Non

Operating (Storage)

*

Maximum Humidity

Non

Operating (Storage)

Operating

20^C...30

30 ®C...50“C

Maximum

Altitude

0 “C...50

20 ^..70

“C

95%

90%

70%

Relative Humidity

Memory backup batteries removed from instrument unless batteries meet maximum altitude specifications.

Operating

Non Operating (Storage)

3 km(10

OOOfeet)

12 km

(40 000 feet)

Vlpraoon (Operating)

Frequency 5 w.

15 Hz

Excursion (pk to pk)

Max

Acceleration

Frequency

15...

25 Hz

Excursion (pk to pk)

Max

Acceleration

Frequency

25...

55 Hz

Excursion (pk to pk)

Max

Acceleration

Sweep Time 7 min.

1.5

mm

7 m/s*

(0.7

X

9)

Sweep Time

3 min.

1.0

mm

13 m/s*

(1.3

X g)

Sweep Time

5 min.

0.5

mm

30 m/s* (3.0

X g)

@

@

@

15

25

55

Hz.

Hz.

Hz.

2-20 CHAftACTEHISTICS

CHARACTERISTICS

Resonance

Dwell

SPECIFICATIONS

10 min.

ADDITIONAL INFORMATION

@ each resonance frequency (or

@

33 Hz

If no resonance

Is found).

Shock

(Operating)

Number of shocks

Shock Wave Form

Duration

Peak Acceleration

Bench Handling

Meets requirements of:

18 Total

6 Each Axis

Half Sine

6...

9 ms

400 m/s*

(40 xg)

MIL-STD-810, Method

516,

Procedure V

• Salt

Atmosphere

Structural parts meet MIL-STD-810,

Procedure

Method 509, with

% salt

I

5 solution

EMI

(Electro Magnetic

Interference)

Meets requirements of:

MIL-STD-461 Class B

[3 in each direction).

Applicable requirements of Part 7:

CEOS, CE07, CS01, CS02, CS06,

RE02, RS03.(RS02: max 2 div distorsion in

20 mV/div)

VDE

0871 and

VDE 0875

Grenzwertkiasse 8

Packing meets requirements of:

Transportation meets requirements of:

UNO 1400

AN-D628

Packaged Transportation

Drop meets requirements of:

Nat Safa Transp.

Assoc.

Procedure

1

A-B-2

Packaged

Transportation

Vibration meets requirements of: Nat.

Safe Transp. Assoc.

Procedure 1A-B-1

ESD

(Electrostatic

Discharge) meets requirements of: lEC 801-2

Test severity level 15 kV.

CHARACTERISTICS 2-21

2.21

CHARACTERISTICS SPECIFICATIONS

INTERFACE (MODEL

97 ONLY)

Type of Interface

Plug

Spacing

•r

* Interface function repertoiry for printers

Baud Rate

Number of

STOP bits

Parity

Character length

Tranmission mode

Handshake

• interface function repertoiry for Interface

Baud

Rate

RS-232-C

9 pole D’plug male

Ught

No light

1200, 9600

1

No

S

Asynchronous, full duplex

XON/XOFF

75...19K2

Number od STOP bits

Parity

Character length

Tranmission mode

Handshake

ADDITIONAL INFORMATION

Optical.

Input and Output are the same

Software handshake only.

Input and Output are the same

Selectable by controller.

1

No, Odd or Even

8

Asynchronous, full duplex

XON/XOFF or no Handshake Software handshake only; d^ault: no Handshake.

Print facilities

Protocol

Print out

EPSON

FX.

LQ compatible

HP

ThinkJet com pall bfe

Screen log of readings: single every

2, 5,

10 or 60s selectable waveform

Front Panel Control

Modes

Local

Re motelocked

Remote'UnlocKed

Frorrt panel exclusively under manual control.

Front panel exclusively under

RS-232-C control.

Return To Local by User

ReQuest

2-22

CHARACTERISTICS

ADDITIONAL INFORMATION CHARACTERISTICS

CPL

Protocol Implemented:

SPECIFICATIONS

Go to

Remote

Go to Local

Local Lockout

Reset Instrument

(Master Reset)

Status Query

IDantifiCdtion query

GR

GL

LL

Rl

SO

ID

Auto Setup

Default Setup

Program Setup

Query Setup

Recall Setup

Save Setup

Program Communication parameter

Arm

Trigger

Trigger acquisition

Query Waveform

Program Waveform

Query for

Measurement data

AS

DS

PS

QS

RS

SS

PC

AT

TA

QW

PW

QM

SAFETY

Meets requirements of:

• Approvals lEC 348Clas8

II

VDE0411 Class

II

ANSI/ISA SQ2

UL1244

CSA C22.2

No.

231

VOE 0411 (applied for)

UL 1244 (applied for)

CSA

C22.2

No.

231

(applied for)

Restricted; only

0* 1= 2=

.

Gives

Type number and software version,

Default Scope settng.

Has to be done whh the string that comes out with QS.

With or without battery charger.

With or without battery charger.

1

CHARACTERISTICS

2.23

CHARACTERISTICS

ACCESSORIES

SPECIFICATIONS

« Accessories furnished with insirument: Users Manual

Quick Operating Guide

PM

8918/002

Scope Meter Accessory set:

2 X

HF adapter

2 X High voltage testpin

2 X Earth lead

2 X Trim screwdriver

4 mm adapter

Banana to

8 NC adapter

PM

906

1

/O0

Set Testleads and Testpins:

2

X testleads

2 X testpins

2 X banana adapter

Holster

Accessory case

PM

9083/001

C 75

Power Adaptor/Battery

Charger:

PM 8907/001

PM 8907/003

PM 8907/004

PM 8907/008

PM9080/001 (Model 97

Only)

2.24

SERVICE

AND MAINTENANCE

• Main Time Between

Failures (MTBF) 40 OOO hours

• Calibration Interval

-

Mean Time To Calibrate

(MTTC)

1 year

30 minutes

ADDITIONAL INFORMATION

2-23

2 X 10 Mli 10:1 Passive Probe,

1.5m.

shrouded.

Depends on model:

Universal Europe.

North American.

United Kingdom.

Universal 115V/ 230V.

RS-232-C

Interface

Predicted value, calculated through parts counting method, according toMILHDBK217E.

1

CIRCLUT DESCRIPTIONS

3

3

CIRCUIT

DESCRIPTIONS

3.1

INTRODUCTION TO

CIRCUIT DESCRIPTION

3.1.1

General

This chapter prasants a lay a rad description of the ScopeMeter circuitry.

First the ScopaM star's overall theory of operation

Is described, referring to the overall block diagram (section

3.2).

Tho next section gives some

Information conoeming the ScopeMeter’s data acquisition.

Then the circuits on both digital (A1) and analog (A2) pnntad circuit twards (FOB) are described.

After a short introduction, a detailed circuit description is given for each circuit pan.

The various circuit descriptions refer to the circuit diagrams in chapter 10.

NOTE: The large digital (A1) and analog (A2) printed circuit board diagrams are provided as separate drawings.

Whenever a signal line continues on anofher drawing, it is indicated by the following comment:

“FROM A

> coming from the digital (A

1 ) drcuit (figure 10.2)

“TO A2a

> the signal continues on the first circuit diagram of the analog A2 PCB

(figure 10.5)

3.1.2

Location of electrical parts

The

Item numbers of

C.,., R..„ V,.., H....

D...

and

K...

have been divided Into groups. TTiese groups relate to the functional parts on the PCBs:

Table

3. 1

Location of electrical parts.

Item number

'

I

1200-1299

1300-1399

1400-1499

1SOO-1599

1600-1699

2100-2199

2200-2299

2300-2399

2500-2599

2700-2799

2800-2899

2900-2999

Furtctional part

1 pP, Oigitaf

ASIC and related circuitry battery sense,

RAM power, backlight

LCD aryj related circuitry

ON/OFF circuit keypad attenuator channel attenuator channel

Analog ASiC and

B

A

ADC battery charger and power supply

EXTemal

Input-Zoutpul circuitry generator analog control circuitry

PCB diagram

A2

A2

A2

A2

A2

A2

A2

A1

A1

A1

A1

A1

1

A1

AT

A1

A1

A1

A2a

A2a

A2aZb

A2c

A2b

A2b

A2a

.

3-2

CIRCUIT DESCRIPTIONS

3.2

FUNCTIONAL BLOCK

DESCRIPTION

3.2.1

Introduction

This section contains an overall block diagram of the ScopeMeter. Refer to figure

3.1

The block diagram can be divided in two parts.

The upper part of the diagram shows components that are situated on the Printed Circuit

Board

ScopeMeter^s bottom cover.

Because this

(In the following text:

PCB), that

Is connected to the

PCB contains mainly analog circuits, it is called the analog

A2PCB.

The lower part of the diagram contains the digital circuitry of the ScopeMeter.

This circuitry Is located on the digKal A1 PCB, the

PCB connected to the ScopeMeter’s lop cover

The general layout of the block diagram is the same as the layout of the circuit diagrams

In

10.

The circuits that can be found on the same circuit diagram (chapter

1

0) box in the block diagram.

are placed in chapter a dashed

Analog A2 PCB

The signals at the red and gray

6NC input connectors are attenuated Oy the

CHANNEL A

ATTENUATOR section and the

CHANNEL B ATTENUATOR.

These attenuators are set by the

Microprocessor (on the digital

A1 PCB) via the

ANALOG CONTROL

CIRCUIT.

Also input protection circuits are provided here.

The output signals of the attenuator blocks are fed to the

ANALOG ASIC (ASIC » Application Specihe

Integrated Circuit).

TNs component is controlled by the ScopeMeter’s microprocessor (on the digital

A1 PCB).

The Analog ASIC incorporates signal amplification and channel selection.

It also prepares the signal for sampling by the Analog to Digital

Converter (ADC).

The red and black banana connectors are connected to the

CIRCUIT.

When the

ScopeMeter

Is set to mV.

DIODE or

EXTERNAL (BANANA)

IN

PUT/0 UTPUT

OHM METER mode, the External (banana) input/output circuit outputs its signal Into the circuit can act as

Channel A

Attenuator section.

In

SCOPE mode, the a trigger input.

The trigger signal Is fed to the Analog ASIC.

In the Analog ASIC

"channel A", "channel B" or "External thggeh' used to generate the can be selected as trigger source.

The trigger signal is

DELTAT voltage (time relation between trigger moment and sampling momer^t).

The built-in

GENERATOR uses the External (banana) input/output circuitry as output.

It is to generate a possible

DC voltage and a square wave voltage.

ScopeMeter model 97 also can generate sine wave voltages, a ramp voltage, and a ramp current.

CIRCUIT DESCRIPTIONS

r

r

I

CIRCUIT DIAGRAM A2c

1

SUfPLI

VOLTAGES

3-3

DATA

(8AHPL6D

ANALOG A2 PCB

DIGITAL

A1 PCB

(C)RCUIT DIAGRAH Al]

DATA

AD0PE6S

DI61TAL

ASIC

Vl

-’tiriEaAse

Function

•TAICBER rUNCTION

ACL

-«)N/nAX

•MSt

•DISALAT OONTROI.

v1

BACKLIGHT

CIRCUIT (973

ST63S«

9SO?C<

3-4

CIRCUIT DESCRIPTIONS

The power

$upply circuitry Is also located on the artalog A2 PCB. The separate Power aPapter/battery charger PM6907/... converts the line voltage Into

15V DC.

This voltage is used by the

CHARGER to Charge a NICad BATTERY PACK

(PM9086/001

)» if present.

BATTERY

The

POWER

(battery

SUPPLY section transforms the input voltage (fine operated) or the battery voltage operated) Into the supply voltages fjy the various ScopeMeter circuits on A1 and

A2.

Digital

A1 PCB

The ScopeMeter

Is controlled by the

MICROPROCESSOR located on the digital

A1 PCB.

This microprocessor performs several control tasks, for example;

-

Scanning the the

KEYPAD for user commands.

The keypad

KEYPAD

DRIVERS.

Is connected to the microprocessor via

Communlcatton with the outside world via the OPTICALLY COUPLED

RS-232-C

TRANSCEIVER.

This section contains an Infrared

LED

(transmitter) and a photolranslstor

(receiver).

Monitoring the battery voltage (BATTERY SENSE CIRCUIT).

Controlling the Analog ASIC on the analog A2 PCB.

Switching the power on or off

Performing a proper

(POWER ON/OFF CIRCUIT).

RESET at power on (RESET CIRCUIT).

Controlling the analog A2 circuits (via the

ANALOG CONTOOL

CtRCUfT).

S

Ignal p rocessi n g of acq ul red data

.

The mlcroproce ssor reads

, calibrate s and stores the acq u i red data.

The DIGITAL ASIC

Is the core of the ScopeMeter's digital clrcurtry.

It provides:

-

Timebase functions.

For example: tfte ScopeMeter's

Digital

ASIC.

ADC sampling signal fs generated by the

Trigger functions

(In real-time sampling mode).

Acquisition Control Logic (ACL).

This function controls the acquisition according to trigger acquisition modes.

The

Digital

ASIC contains acquisition

RAM for quick data storage.

Mln/Maxmode.

and

Decoding of the Internal access to the acquisition

ASIC addresses and synchronization of Digital

ASIC and microprocessor

RAM.

Display control.

The

Digital

ASIC generates the picture to be displayed on the LCD.

The picture, generated by the Digital

LCD is controlled by the

LCD

ASIC is displayed on the Liquid Crystal Display (LCD).

The

ROW

DRIVERS and the LCD COLUMN DRIVERS.

The LCD SUPPLY section provides for the voltages needed, ScopeMeter model 97 has a BACKLIGHT CIRCUIT, which can illuminate LCD.

3.2.2

Data acquisition

Data acquisition path in the ScopeMeter

The analog input signals are first by the attenuated and/or amplified

ADC.

The samples of the Input signals are stored in and then converted into digital values the Acquisition

RAM of the Digital ASIC.

If

512 samples are stored in memory, the second trigger pulse will signal the microprocessor that the acquisition

Is ready.

(We assume toatthe ScopeMeter is using random repetitive sampling, see next section.)

Then the acquired data is ready for processing.

The microprocessor reads the data from the

Acquisition

RAM and processes the data according to the actual calibration values.

These calibration valuee

(constants) are copied from Flash been stored in Flash

ROM to

RAM during startup.

The calibration values have

ROM during the calibration process.

After processing, the data is stored In the

External RAMs.

These RAMs also contain the more static picture elements, for example the grid-, cursorand text data.

CIRCUIT DESCRIPTIONS

3 •

5

A multitasking kernel for hardware and software scheduling

Processing the acquiree data

Is only one of the tasks of the microprocessor.

The ScopeMeter uses a multitasking kernel for hardware and software schedullrig, based on internal and external Interrupts.

The microprocessor contains Internal timers, which can be programmed by the software.

One of these timers is used to generate interrupts, e.g. to scan the keypad for depressed or released keys,

Except processing (calibrating) the acquired data, the microprocessor also does mathematical computatlone and controls the hardware.

The multitasking kernel takes care that every 20 ms of processing time, a task is

Interrupted.

This task will then be held and rescheduled, unless it requires execution without

Interruption, kn this way a variety of user-requested tasks can be handled quasisi muttaneously, without the user being of the data on the aware of the heavy loads on the mioroprocsssor.

The display

LCD

Is done by the

Digital

ASIC, also taking part in the multitasking scheme.

*

Sampling and Triggering

The ScopeMeter uses two types of sampling,

REAL-TIME SAMPLING and commonly used in many

Digital Storage Oscilloscopes:

RANDOM

REPETITIVE SAMPLING.

In of the real-time sampling mode

(time base settings: 60s/div...1

^s/dlvj the ScopeMeter lakes a series samples from a single period of the

Input signal.

These samples are later used to reconstruct the signal.

During the rsa)-t)me sampling mode, the Digital

ASIC calculates the trigger pulses out of the acquired data

(for timebase settings between

60s/dlv...50ps/div).

For timebase settings between

20 ps/div and

1 ps/div.

the triggering Is done by the Analog ASIC, using analog comparators.

In random repetitive sampling mode, the

ScopeMeter takes a sample from successive cycles in a repetitive signal.

These samples are stored

In memory and combined to reconstmet the original signal.

In this sampling mode, samples are taken from the input signal at intervals determined by the internal

ScopeMeter clock.

Since there

Is no time-correlation between the system's clock and the Incoming signal, all samples are taken at random points of the signal.

and the sampling time between the trigger moment moment must be tracked to enable reconstruction of the signal from the samples.

This time,

DELTA

T, Is generated by the Analog ASIC.

See section 3.4.5

and figure 3.12.

During random repetitive sampling mode, the

ScopeMeter always uses analog triggering (Analog

ASIC).

)

CIRCUIT DESCRIPTIONS

3.3

DIGITAL CIRCUITS

(A1

3.3.1

Introduction

TTie following paragraphs describe the circuits on the digital

At

At (figure 10.2

in chapter

10).

PCB

In detail.

Refer to circuit diagram

3.3.2

Overview digital circuits

The digital circuitry of the

ScopeM eter can be separated

Into three main parts:

'

-

Micro proceeeor circuitry

Digital

ASIC

(in the following text:

D-ASIC) circuitry

LCD circuitry

A block diagram, which clearly shows the connections between these main parts.

Is shown

In figure 3.2

niOfl

ADC

TO/TROM

ANALOG

ASIC

DIGITAL

A1

PCB

tCIRCUIT DIAGRAM

ATI

ST6097

9?02C4

Figure 3.2

Block diegram main parts digital drcuitry

TO

ANALOG

ASIC

TO

ANALOG

CONTROL

CIRCUITS

TO/fRon

FROM ANALOG

AOC ASIC

3.3

DIQIT4

3.3.1

lntrodU(

The follow

A1

(figure

3.3.2

Overvie

The digita

*

MIcrop

Digital

LCDcJ

A block di; figure 3.2

3-6

i

CIRCUFT DESCRIPTJONJS 3-7

3.3.3

MICROPROCESSOR circuitry (p^P)

• Introduction

The ScopeMeter is controlled by a single chip microcomputer with on-board

ROM

(called

Mask ROM

In the following text).

TNs microprocessor controls the total system operation and communication between the ScopeMeter and the outside world (key pad,

RS

*232-0 interface).

It also controls the communication between

Internal system components.

*

Detailed circuit description

See figure 3.2

and circus diagram A1 (figure

1 0.2).

The ScopeMeter uses an

Intet

83C196 microprocessor D1201, with on-board Mask-programmed

ROM

(Mask ROM).

This microprocessor has an

S-bIt data bus and a 16-bit address bus.

The lower

B address bits AO..,

A7 are combined with the data brts

D1210 is used to separate data bits and address bits.

(multiplexed data bus).

ADDRESS LATCH

The microprocessor’s Mask ROM contains the startup software and a diagnostic kernel test (see chapter 7).

It also contains the software necessary to drive the serial interface program Rash ROMs.

and to clear and

The two Flash

ROMs (FRO Ms)

D1207 and 01208 contain the system software.

The FROMs are directly connected to the microprocessor via the datand address busses.

The microprocessor addresses the

RAMs via the

D-ASIC

(D1203).

The microprocessor contains five 8-bft I/O ports. Port 3 and 4 share their bits with the data and address busses.

The other I/O ports 0,1,2 are used for vanous purposes. For example: reading the keypad, operating tfie

RS-232-C interlace, battery voltage sense, switching Ihe power on/off, etc.

Keypad dreuitry

The keypad circuitry consists of five shift registers, 01601...D1606, each of which has eight Inputs.

These inputs are normally kept

"high" by S6 KIJ resistor arrays conr\ected to the +SV supply voltage.

Whenever a key on the keypad

Is pressed, the corresponding line is connected to ground, resulting in a

"low" signal.

All signals are clocked into the shift registers (with the

FRONT.CLOCK

and

FRONT.

LATCH signals).

Then they are converted into two signals

FRONT DATA1

(shift registers

D1603, 01604, D1606) and FRONT.OATA2

(D1601 andDl602).

Opi/caity isolated RS-232-C interface

The serial communications circuitry, which is built Info the microprocessor, infrared (IR)

Is used to operate the

RECEIVER and TRANSMITTER of the ScopeMeter.

For this purposes stripped version of the RS-232-C protocol is used.

Only the

TXD

(transmit data) and RXD

(receive data) lines from the RS-232-C standard are used.

The

IR transmitter

LED HI 201 is driven directly from the TXD-not pin of the microprocessor.

IS transmitted, the LED lights.

If a

"0"

The

IR receiver uses operational ^plifler N1301 to power the collector of phototransistor HI 202.

any

IR light Is received, the phototransistor will drive VI 207 in saturation.

This results In a "low"

If

RXD line, interpreted by the microprocessor as a 'T.

Battery sense circuitry

The battery voltage -V6AT generated on the analog unit is amplified by -2/3 at operational amplifier

N1301

.

The resulting signal

BAT.LEVEL

Is connected to an A/D converter Input of the microprocessor.

In this way microprocessor can monitor the battery voltage level.

If the battery voltage level drops below

4.4V, the microprocessor generates the

BATTERY LOW

Indication on the

LCD.

3-8 CIRCUIT DESCRIPTIONS

Analog ASIC bus

The Analog ASIC(A-ASIC D2301, see circuit diagram A2aJA2b, figure 10.5/10.6) orA-ASIC, as used

In the following text, is controlled by tine rncroprocessor.

The mtcrc^rocessor uses the signals CDAT,

CCLK and DTAEa,b,c to set the AASIC and the attenuator sections on the analog A2 PCB. These signals toge^er form Ihe

CONTROL bus.

Flash

ROM type selection

The ScopeMeter hardware allows the usage of different types of

Rash RO^/s.

The actual Flash

ROM configuration Is indicated by resistors

R1222 and R1224.

FLASH ROM CONFIGURATION

F51211X) Resistor(s)

R1222

R1224

The resulting voltage levels (0 volt, 2.5

vott or 5 volt) are read directly by the microprocessor A/D converter inputs.

ON/OFF circuit

The ON^OFF circuit operates almost like a thyristor.

When the

ON/OFF key

Is pressed, a current

1$ drawn from the base of VI 503, via R1 503 and VI 501 results in a current through R1507, R1504,

.

Transistor VI 503 will

V1502 and R1506.

The signal now start to conduct.

This

POWER.ON

will now become

"high*.

Also transistor V1 506 will conduct, supplying base current to

VI 503 after the

ON/OFF key

Is released.

The POWER-ON signal will latch "high*.

The ON/OFF signal will go high, turning off

VI 506 and VI

503, the next time the

ON/OFF hey

Is depressed.

The POWER_ON signal will become

"low" and the

ScopeMeter power turns

0

IF.

RESBTelreuH

The RESET circuit consists of

VI 203,

VI

205,

VI 21

5,

VI

201,

D1205 and related components.

When the ScopeMeter power

Is switched on, the -fSV supply voltage starts to rise.

This causes the zener diode VI 202 to conduct.

After some time transistor V1 203 also starts to conduct.

R1204 and Cl203form atime delay (see figure 33).

The RESET signal now

Is buffered by

D1 206 and connected with the

RESET

^ switch momem

Figure 3.3

RESET signal timing

Inputs of the microprocessor and the

D-ASIC circuitry.

After a reset, the voltage on the

EA

(External Address) input of the microprocessor

(pin 14) is 'high

".

The Microprocessor starts up using the internal

Mask ROM software.

Rrsithe Flash

ROMs are checked to see

If they contain valid software, if this Is true, ou^ut pin 6 of ^ip'flop

D1202 is set "low *.

Now the microprocessor invokes a software reset.

Because of the

"low** voltage on the

EA input of the microprocessor, the microprocessor will "start up" again, using the external Flash

ROM software.

The reset pulse is blocked by translstcw VI 201 to prevent the reset"

RESET signal from performing a "hardon the microprocessor agair>, At this software reset, the microprocessor enables the

LCD by means of the signal

LCDPWR.

Then the buffers that control the LCD contain valid data.

)

ClflCUIT

DESCRIPTIONS 3-9

3.3.4

DIGITAL ASIC (D-ASIC) cicultry

-

Introduction

The

Digital Application Specific Integrated Circuit (or

D-ASIC) D1203 forms the core of the digital circuitry of the

ScopeMeter ail located on the digital

A1 PCB.

Many functions are incorporated in this complex

CMOS

Integrated circuit (see figure 3.^ on the next page);

-

-

-

-

Timebase

Trigger

Acquisition Corttrol

Acquisition

RAM

Logic

Min/max

Display control

Decodmg and synchronization

D

Ig Ital-to-analog con verters

(

DAOs

Detailed circuit description:

See figure 3.4

and circuit diagram At

(figure 10.2).

The following gives a short description of the separate parts of the D-ASIC, which perform the functions mentioned above:

Tlmebase

The D-ASIC contains a crystal oscillator, which uses the 25 programmable divider generates timebase sign^

MHz crystal

G

1201.

An internal

TRACK with a frequency from 0.8333

Hz up to

25

MHz (see section 3.4.5).

This

TRACK signal is used to sample the ScopeMeter input signals.

Trigg&r

The trigger module in the

D-ASIC takes care of all trigger related functions:

• pre triggering post triggering event counting:

• n-cycle mcxje: the time interval corresponding to the trigger delay is

Increased by a programmed number of "evenlB" (trigger level crossings ofihe external trigger signal), which must occur before triggering.

trigger level crossings of the input signal are counted, and triggering occurs every n'*' crossing (2

< n < 255).

The n-cyde mode can be used as a digilal trigger hold-off.

In the real-time sampling mode

(<

1 ps^dlv), the

D-ASIC determines the trigger moment with digital comparators.

In the quasi -random sampling mode, the AASIC determines the trigger moment with analog comparators.

3-10

TO A-ASIC

{If uiatog tiagefinf)

CIRCUIT DESCRIPTIONS

«f

Ogim tnpgenngj

Figure 3.4

Schematic Diagram D-ASIC D1203

Acquisition Control Logic (ACL)

The ACL controls the analog input circuitry and the

ADC

(N2302, see circuit diagram A2a/A2b, figure

1 0.5/1 0.6).

The ACL also writes the digital representations of the input signals to the Acquisition

RAM in the 0-ASIC, according to the selected trigger and acquisition modes. Before the acquired trace data is displayed,

It is first processed by the microprocessor.

The microprocessor corrects for offsetand ampitfication errors, using the calibration values that are stored

In

Flash

ROM.

In fast timebase positions the microprocessor can read the data out of the AcqulSjtior\ uses the Acquisition

RAM.

In slow timebase positions the

RAM as a FIFO ®rs!

In First Qut) memory.

The microprocessor can start

ACL reading the acquired

ACL acquires 1024 values.

Then the acquisition Is stopped and the data Immediately after triggering.

Now there is synchronization between the

ACL and the microprocessor.

If the system uses analog triggering (time base ^ l^s), the trigger hold-off signal (HLDOFFN) to the

A-ASIC is generated.

In digital triggering mode, the DASIC generates the

HLDOUTN signal.

This signal

1$ fed to the

HLDIN input of the D-ASIC, via R1 211, C1221, R1214 and C1 211.

These components generate noise on the

HOLDOUTN signal, which is needed as a random factor in the

Delta-

T circuit.

Min/max

The Mln/max module finds the minimum and maximum value of the input signals between two time base pulses, and writes them into the Acquisition RAM.

To detect narrow glitches, the

(ADC sample frequency) is always 25

Ml-lz in

MirVmax mode.

TRACK signal

CIRCUIT DESCRIPTIONS 3-11

Di6ptay contra/

This it module reads screen data from the External also sends line pulses

RAMs

(D1

204 and D1

205) and sends

It to the LCD.

UNECL

(17 kHz) and frame pulses FRAME

(70 Hz).

This screen data, consisting of for example cursor and grid information,

Is stored In External

RAMs as bltplane information.

The trace data

Is stored as a value tor every vertical line on the LCD.

This data is converted to bitplar^ data and added to the cursor and grid Information.

The display control module also makes

It possible to change the dotsize of the signal displayed and to use dot joining.

Decoding and synchronization (DESY)

The DESY section is the decoder for the D-AStC’s internal addresses.

This module also synchronises the microprocessor with the D-ASIC's Display control module, as botii access the

RAM.

same

Acquisition

DigiW to ana/og converters (DACs)

The DACs module contains 10 one-bft pulse width modulated monotonous DACs, whose resolution ranges from five to ten bts.

The DACs are used to control level shifting, analog trigger level,

LCD contrast and the generator function (see section 3.4.7).

Externa/

RAMs

The

External

RAM section consists of two 32K

• d

SRAMs (D1204 and D1206).

These RAMs contain:

-

>

• wavefonms

(stored with the

WAVEFORM key) frontsettings bltplane

(stored with tiie data for the

SETUP key)

LCD picture text, to be used on the display data in data in

RECORD mode

A versus B modo (A» t

^

) data used while making a printout of the screen bltplane

Ram Power circuit

The

External

RAMs are powered by the

RAM Power circuit.

The RAM Power circuit is fed directly by the batteries, independently of the

The main power supply.

RAM Power circuit is a simple oscillator, used to generate a stabilised voltage -fVRAM out of the battery voltage -VBAT.

The basic oscillator circuit is

^own in figure 3.5.

-VBAT

Figure 3.5

Osc/7/afor

RAM

Power circuit

Input

B of Schmitt input low", the ou5>ut

NAND D1301 is connected to ground.

When the voltage on input A is also

C will become

"high".

Capacitor Cl 309 will charge via

R1313.

After some time input

A will become

'high", resulting in a "low" output C.

C^>acitorCi309 will then discharge via resistor

R1313.

The generated output pulses are buffered and converted to the i nto a DC voltage by C

1

31

1

,

C

1

3

1

2 a nd V

1

31 9

.

Th e outp ut voltag e + V RAM

Is fed back

NAND input A, via several transistors (voltage gap).

If the output voltage -fVRAM has reached the correct value, trie pulse train at

NAND output

C is stopped via this feedback (see figure 3.6). In

3-12 CIRCUIT DESCRIPTIONS this way capacitor C1312 is charged

Just enough to keep the output voltage -fVRAM at a stable value

{

3V DC).

sie*u

Figure

3.

6 Pulse trein signal on input A of Schmitt input

HAND

(Test Point 223)

3.3.5

LCD circuitry

• Introduction

The LCD used in the ScopeMeter is controlled by six

LCD driver integrated circuits.

These drivers get their information (dataand control signals) directly from the D-ASIC.

The microprocessor enables the display when valid data is present.

ScopeMeter models 93 and 95 use a reflexive LCD. Model 97

Is provided with atransflexive

LCD with a backlight, which can be switched on or off by the user.

• Detailed circuit description

See figure circuit diagram A1

(figure 10.2),

LCD

The ScopeMeter uses a Super Twisted Nematic Liquid Crystal Display

(LCD HI 401.

see circuit diagram A1, figure 10.2), with a resolution of

240

*

240 pixels.

The picture on the

LCD screen is written column

(vertical line) after column, rather hian row

(horizontal line) after row.

The LCD screen is divided horizontally In

3 row-sections, each 60 pixels wide and vertically into

3 column-secUons, each 60 pixels wide.

LCD drivers

The LCD display is controlled by the D-ASIC, via six

LCD drivers:

-

> three three

LCD row drivers:

D1404, D1406, D1407

LCD column drivers:

D1401, D1402, D1403

Description of the

LCD drivers lnput-/output signals:

LCD outputs

Yt...

YSO and X1...XS0

These outputs are connected to the

LCD matrix.

Every column driver serves 80 pixel columns of

LCD.

Every row driver serves 80 pixel rows.

The output signals are staircase signals, with levels the equal to the VI

...V6

voltages.

NOTE: On the ouput of every LCD driver, a Test Point is provided (TP207...TP212).

When the driver is working property, a staircase voltage can be measured on these test points.

Data inputs D0...D3

(row drivers only!)

The actual display data coming from the

D-ASIC is sent via the DRIVERBUS to the

LCD drivers

D0...D3

inputs.

Terminai input voitagee V1...V6

Out of these

DC signals, with

^

-20

V, the

LCD drivers generate the staircase signals.

The input voltages Vi...ve

are generated by die

LCD supply section.

.

CIRCUIT DESCRIPTIONS 3-

13

-

Display control signals LINECL, DATACL, M, frame

These slQTials are used to control the LCD.

The LCD picture is constructed from these display control signals and the data signals and sent to the

LCD via the

LCD outputs.

DATACL is the clock signal, used to clock the data D0...D3

Into the driver buffer.

LINECL is a clock signal, used to clock one complete line

(column) Into the LCD.

The M signal is described f urtheron (see M-randomize section)

LCD suppiy sectfon

*nte pulse modulated signal,

CONTRAST, comes from the D-ASIC.

and Cl 401 to get a

CONTRAST

Is filtered by R 1401

DC voltage.

The value of this

DC voltage depends on the duty cycle o1

CONTRAST signal.

Opamps N1401 convert the

DC signal Into stabilized

DC voltages VI...

V6.

If the signal,

LCDPWR, coming from the D-ASIC,

Is

"high" (+5V). the -20V voltage is generated and the system is active.

The -20V supply voltage is temperature corrected to compensate for the temperature dependency of the

LCD

(-80 mV/C).

The LCD supply voltages have to be corrected by the same amount to get a constant (over a temperature range) brightness and contrast of the LCD.

This temperature compensation is voltage

Is made by Positive Temperature Coefficient (PTC) R1418.

The -20V made out of the -30V voltage, coming from the analog A2 PCB.

Transistors VI 404 and

VI 402 form a protection circuit, that limits the current in case the -20V voltage is short circuited.

M-randomi2e sectfon

The signal

M

("LCD backplane modulation') has a time relation with the display control signals

LINECL and DATACL.

The M-randomize section converts

M

Into

Ml

, which is no longer time related to the other display control signals.

voltages into

The M1 signal

Is used by the

AC voltages, able to drive the LCD.

LCD drivers to convert all

DC

Depending on the type (brand) of

LCD mounted, integrated circuits

DUOS, 01409 and D1410 or

D1411 are used.

Backlight circuitry

The backlight circuitry is based on the Hartley oscillator principle.

Components VI 307.

T1301, and

Cl 302 form the oscillator.

Transistor VI 304 supplies current to the circuit.

This transistor is switched orVoff by the

ON C^F signal, coming from dne microprocessor.

When the output voltage across the backlight becomes

VI 311

.

This wll higher than 100V, tran^slorV1305 will be driven open via VI

308,

VI

309, and draw a\vay current (energy) supplied to the oscillating circuit (feedback regulation).

3-14

CIRCUIT DESCRIPTIONS

3,4

ANALOG

CIRCUITS

(A2)

3.4.1

Introduction

This

A2b, paragraph describes the circuits or> the analog A2 PCB and A2c

(figures 10.5, 10.6, and 10.7

in chapter

10).

in detail.

Refer to drcuit diagrams A2a.

3.4.2

Overview analog circuits

The analog A2 PCB contains several functional parts:

-

• circuits In the acquisition pati

attenuator sections

EXTernal (banana)

Input/output circuitry

Analog ASIC and AOC circuitry control circuitry signal generator power supply and battery charger

Each of these parts will be described separately.

First a short Introduction is given, followed by a detailed description.

3.4.3

ATTENUATOR sections,

CHANNEL A and B

-

Introduction

See figure 3.7.

The attenuator sections of both channels described.

A and B are identical.

In the following only char^nel A is

The corresponcSng compor>ents for channel B have the same numboiing, except the second number, vrfiichis ’T instead of

' 2 '.

For example: R2202 in channel A corresponds with R2102 fn channel B.

The attenuator section consists of a ntgh frequency (here after referred to as

H.F.) path and a low frequency (here after referred to as LF.) path, which are combined again in the impedance converter

(see figure 3.7).

To get a flat frequency charactehstlc, both paths must overlap over a wide frequency range.

Circuits are provided for automatic offset

The output of the attenuator sections of channel compensation.

A and B is processed further by the A-ASIC.

CIRCUIT DESCRIPTIONS

I

V

1

3-15

Figure

3.

7 Schematic diagram attenuator section

• Detailed circuit deacription

See figure 3.7

ar^d circuit diagram A2a

(figure 10.4).

input eoupHng

The incoming signal first passes the

AC/DC coupling section (C2202).

When re\ay

K2201 i$ opened, the signal is

AC coupied via C2202.

H.F.

(high frequency) path

After the coupling section, the L.F, pan of the signal

Is

Olocked by capacitor C2203. Only the H.F.

part of the input signal enters the H.F.

attenuator.

This is a triple capacitive divider, consisting of a

1 to

100, a

1 to 10.

and a

1 to 1.46 divider

The

1 to

1

.48

divider section is switched on when relay switches

K2202 and K2203 are

In the "upper" position (as shown on circuit diagram A2a, figure 10.5).

The

1 to 1.48

divider cc^sists of

C2203 and C2209 in parallel with some parasitic capacitors.

The attenuation of

1

.48

times in this straight-on path is compensated for later in the circuitry.

The separate sections are switched

In the signal path, depending on the attenuation required:

Table 3.2

Sections used in various attenuator settings.

|

Sections Used Attenuator Settings

5 mV/d iv 1

00 mV/di

200 mV/div

1

V/dlv

2 V/dlvIO V/div

20

V/dlv 1O0 V/div

| i

1.48X

1.48X.

10x

1.48x, lOOx

1.48X. lOx, lOOx

Attenuation

1.48

times

14.8

times

148 times

1460 times

3-16 CIRCUIT DESCRIPTIONS

In the

Scope Meter the response of the H.F

attenuator sections is adjusted by means of three variable capacitors C2209, C2207 and C2114.

These variable capacitors are used to compensate for parasitic capacitors of the printed circuit board.

The

1 to 1.48

divider

(1

The

1 to 14.8

divider

(1 to 1.48

section) can be adjusted with variable capacitor C2209.

to

1

.46

and

1 to 10 sections) can be adjusted with variable capacitor C2207.

The

1 to

148 divider

(1 to 1.48,

1 to 10 and

1 to

100 sections) can be adjusted with capacitor

C221

4.

NOTE: These capacitors do not have to be readjusted at every calibration, (see chapters, section

5.6.

1)

The capacitors are rough adjustments,

The attenuator response is fine adjusted by used means to compensate of the LF.

for hardware caiibration differences.

section (see next page).

Impedance converter

The output of the H.F.

path

Is connected with the Impedance converter, formed by transtsiors

V2207 and V2209 (see circuit diagram A2a, figure 10.5).

The bias voltage of

V2207

Is determined by R2216.

To prevent destruction of the gate of

V2207 by high voltages or voltage peaks, two clamps V2206 and

V2204 are provided.

Summation of the

H R and the L.R

signal parts

Is obtained in transistor V2207.

which acts as the collector impedance of V2208.

LF.

(Lew frequency) path

The

L.F.

part of the inptrt signal enters the L.F.

path, which consists of a

L.F.

attenuator section, a

L.F.

cal b ration section and a regulating feedback loop, which consists of a summator,

Inverter, another summator, and an emitter follower (see figure 3.7).

L.F.

attenuator

Fig 3.8

shows the L.F.

attenuator section in detail:

OPPser vouTAoe

The

L.F.

attenuator consists of an inverting amplifier.

N2201

, which atter>uates the L.F.

signal by a factor, depending on the settings of switches D2201.

These switches are controlled by signals named

Srib...Sr4b.

A

'high" signal switches on the corresponding latched relays.

Table 3.3

Attenuator drive signals Sr1b...Sr4b.

Attenuator settings

Srib

5 mV/dlv...100

rr>V/dfv

200 mV/djv...1

V/div

2V/div...10V/dlv

20 V/dlv...100

V/dIv high high low low

Sr2b low high low high

Sr3b low low high high

Attenuation

1

-48 times

14.8

times

148 times

1

480 times

L

CIRCUIT DESCRIPTIONS 3-17

The signal Sr4i> operates the switch, which is used to ground the L

F.

part of the input signal during offset calibration.

This is done automatically to prevent drift.

The offset

DAC oircuitry

(see figure 3.7) provides the offset voltage for operational amplifier

N2201

The offset compensation is done automatically by means of the signals So

10b...

So

14b, coming from the D-ASIC.

L.R

Calibration

R2229

-TMHI

S94s

S95a

^

^

W

0

1

R2233 R2234 R223R

M

3k83 hJ

^

7kS

M

7B0EI—

1

R2237

215k tv

R2231 lA

R2232

LF and HP attenuation ok increase LF stgnal part

/

Sg7a f Sg6a decrease LF signal part

Figure 3.5

Automatic ad/ustmenf of the LF.

attenuation

Rne adjustment of the L.F.

path attenuation

Is completed dunng calibration of the H.F.

path attenuation.

This is done by means of a simple 4-bits D>to-A converter, consisting of resistors R222Q,

R2231

,

R2232. R2233, R2234. R2236.

and switches D2202.

These switches are operated by sign^s

Sg4a, SgSa, 8960, and Sg7a, see figure 3.6.

Resistors R2229, R2231 end R2232 divide the output signal of the attenuator section.

Resistors R2233, R2234.

and R2236 increase the input resistance of the Inverting amplifier of the regulating loop.

Feedback loop

The output signal of the impedance converter is fed back to the Input of operations!

amplifier N2201 with the signal com^g from the LF.

calibration section (via R2237) and a DC position voltage (5V via

R2246), proportional with the

MOVEment of the trace (via R2248).

Transistor V2210 is used to enlarge the dynamic range: when D-POSCHA is active,

R2270 is incorporated in the circuitry.

The feedback loop operates as follows.

If, for example, the output signal of the

L.F.

path is too small, the correction amplifier N2201 will drive

V2207 via V2208.

In this way the amplitude of the

L.F.

path and the position voltage are increased (compensation).

Input pfoteethn

The input protection safeguards the

ScopeUeter against overvoltage.

The

Input protection circuit consists Ot

C2203 and V2206A/2204 (damp HF attenuator) and R2219 and V2212A^221

3 (clamp

LF attenuator).

3

18 CIRCUIT DESCRIPTIONS

3.4.4

EXTERNAL (BANANA) INPUT/OUTPUT circuitry

• Introduction

See figure 3.10.

The ScopeMeter

Is provided with two Panana connectors, which are used as Inputs In the mV,

DIODE, and

OHM METER modes or as EXTerna

I trigger inpirt in

SCOPE mode.

These connectors also serve as outputs for the built-in generator. Protection circuitry is provided to prevent damage by overvoltage.

t<27E1a

*0

Text, mv

Figure 3.10

Schematic diagram signal flow fn

EXTemaf (banana) input/output circuitry

• Detailed circuit deacription

See figure 3.1

0 and circuit diagram A2b

(figure 10.6).

mV DC measurement circuitry

The mV DC input voltage on the red banana terminal is fed to die L.F.

pan of the channel A attenuator section, via figure 10.6).

the followng path:

R2750, K2750a, K2751 b,

R2761

M/hen the ScopeMeter is switched to

,

D2751

(refer to circurt diagram A2b, mV DC measurement using the EXT banana terminals, the settings are as follows:

Table $.4

A-ASIC and attenuator settings in mV DC mode.

mV DC RANGE

300 mV

3

V

A-ASIC (02301)

I

100 mV/div

100 mV/dIv

LF-ATTENUATOR

(channel A)

1-

O.V

CIRCUIT DESCRIPTIONS

Ohm measurement circuitry

3-19

Figure 3.11

Ohm measurement circuitry

(principie of operation) n«i9»

The resistance R* to be measured is connected as a feedback resistor of an amplrfier circuit

(opamps

N2761).

The output voltage of this measuring amplifier

Is proportional to resistance R,:

VoLj.

=

<Vret''Rrt’'R«

The different ranges are obtained by selecting different values for resistor R, ine

Ohm range selection circuit

(D2750 and surroundmg resistors), which

Is

,

This can be done with controlled by the Analog

Control circuitry (circuit dagram A2a, figure 10.5,

B-OFFSET lines).

Table 3.5

Ohm range selection circuit control lines.

RANGE Sc15 Sc16 Set 7

300Q

3kii

30k£2

300W2

3MO

30MI2

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

Sole

1

0

0

0

0

0

Switches D2751 choose between the mV DC voltage and the voltage from the

Ohm circuit.

The outputs of these sv/itches are connected to the L.F.

part of the channel A attenuator (circuit diagram

A2a, figure 10.5).

Diode measurement circuitry

While

In

DIODE METER mode, the ScopeMeter uses the same circuitry as

In

OHM mode.

WARNING: The BLACK terminal id not connected to the BNC grounds, while in

DIODE METER mode!

While in

OHM er

DIODE METER mode, the

OHM or

ScopeMeter can not be grounded via the BLACK banana terminal.

EXTernai trlggerirjg

The trigger signal is fed to the A-AStC on A2a

(figure

1 0.6) via resistor

R2763/R2754

(see circuit diagram A2b, figure 10.6).

It

R2750 and voltage divider

Is also possible to trigger on the signal made by frie generator.

Then the trigger signal

Is made out of the Signals STIMUL and G-OUTP by D2S60.

V2758, and related components.

Generator signal

The output of the generator (see paragraph

3.4,7) is sent to the

K2750a and R2760.

EXT banana terminals via K2751 b.

V

3-20 CtRCUIT DESCRIPTIONS

Protection circuit (generator mode} if a high voltage is applied to the banana terminals

A and B, a current will flow from terminal A, through PTC

(Positive Temperature Coefficient) R2750, zenerdiodes

V2750 or V2751 and v<a

V2752 and V2753 back to terminal

B (see circuit diagram A2b, figure 10.5).

The voltage across the zener diodes is limited to 7.5V

for each diode.

The rest of the input voltage is dropped across R2750.

The resistance of this

PTC will rise and limft the current in the ctrcuit

Opamp N2750 drives

V2752 and

V2753, to prevent capacitive load of the generator by these zener diodes.

Protection (Ohm and diode measurement)

If a high voltage is put on the

EXT banana terminals, this results In an irn^rease of the voltage over

PTC R2750.

This Increases the value of this

PTC, limiting the current In the circuit.

Zener diode

V2764 limits the output voltage of the measurtng amplifier arcuit N2751

.

Resistor R2771 and clamp diodes V2759...V2763

protect the input of the measuring amplifier.

3.4.5

ANALOG ASIC (A-ASIC) and

ADC circuitry

Introduction

See figure 3.12.

The signals coming from the channel

A and B attenuators are fed to

D2301

.

Various oscilloscope functions are Integrated in this Application Specific Integrated Circuit (ASIC).

Analog ASIC D2301 selects the signal source and prepares the signal for further processing by the

ADC circuitry.

Also a trigger signal is derived from one of the channel

A or

8 inputs or the external trigger input (banana connectors).

Detailed circuit description

See figure 3.12

and circuit diagram A2a/A2b

(figure 10.5/10.6).

First a short description is given for the internal circuits of the A-ASIC.

The schematc diagram of the

A-ASIC D2301 is shown in figure 3.12.

The A-ASiC input/output signals are also described in the following sections.

Channei A Amptifierand Channei

B

Amptifier

The output signals of the charmel A and B attenuator sections are amplified

In the A>ASIC to obtain the most sensitive ranges.

Table 3.6

A-ASIC relative amplification at varfous attenuator settings.

Attenuator setting: A-ASICrelatIve ampfificatlon:

100 mV/dlv

50 mV/div

20 mV/div

10 mV/di

5 mV/div

2 mV/div*

1 mV/diV

1 time

2 times

5 times

10 times

20 times

10 times

20 times

(* both 1mV/dlv and 2 mV/div settings are made by miitiptying times f<ve and averaging the signal in

5 mV/di v.

ard 10 mV/di v.)

The A-ASIC itself can handle input signals with a maximum amplitude of

750 mV peak-peak.

A vertical offset voltage

Y PCS is added to the signal in the attenuator sections (section 3.4.3).

This means that

OV on an A-ASIC input terminal results In a trace in the vertical middle of the screen.

CIRCUIT DESCRIPTIOMS

Schematic Diagram AASK: OCX)30d

3-21

COAT CCLK DTAE

Figure

3.

12 Schematic diagrarrt AASIC D2301

Channet Se/eetor

The channel selector selects channel A or channel B.

depending on the level of the

GHANA signal

(Input13).

If

If

CHA is "high*' (> 3.5 V) channel A

Is selected.

CHA is "low" (< 1.5

V) channel 5 is selected.

If a timebase speed faster than 20

|xs is selected, both channels are displayed

In alternate

CHA is a square wave signal with a timebase-dependent frequency

(see table

3.7).

mode and

If a timebase speed slower than 50 ps is selected, both channels are displayed

In chopped mode. The is a square wave signal with a trigger-dependent frequency of

500 kH 2 maximum.

CHA signal

3-22

CIRCUIT DESCRIPTIONS

Table 3.7

Frequencies of A-

AS

IC signals In various modes^

Time Base

60 s/div

20 s/drv

10 s/div

5 s/div

2 $/div

1

.5

s/dIv s/div

.2

s/div s/div

.1

50 ms/dlv

20 ms/div

10 ms/div

5 ms/div

2 ms/div

1

.5

ms/div ms/div

.2

ms/div ms/dlv

.1

50 ps/div

20 ps/div

10 ps/div

5 ps/div

2 ps/div

1

.5

ps/dfv ps/div

.2

.1

ps/div ps/div

50 ns/div

20 ns/div

10 ns/div

TRACKN freq

1)

0.8333

Hz

2.5

Hz

5 Hz

10 Hz

25 Hz

50

100

Hz

Hz

250 Hz

500 Hz

1 kHz

2.5

kHz

5 kHz

10 kHz

25 kHz

50 kHz

100 kHz

260 kHz

600 kHz

MHz

1

1.25

2.5

MHz

MHz

5

12.5

MHz

MHz

25

25

MHz

MHz

25

25

MHz

MHz

25

25

MHz

MHz

25 MHz

CHA freq

1)

0.416

Hz

1.25

2.5

Hz

Hz

5

Hz

12.5

Hz

25

50

Hz

Hz

125

269

500

Hz

Hz

Hz

1.25

kHz

2.5

kHz

5 kHz

12.5

Id-fz

25 kHz

50 kHz

125 kHz

250 kHz

500 kHz

“ r

Trigger dependent f

MODE horizontal

~r roll

,

-

f

E i

C

U

R

R

E z

N

T

1 f

T

i s

N

G

L

E z m f vertical

_ i

C

H

0 p

1

-

F z i \

_

• r z

A

.

_

'

1 r

1 )

In

MtN/MAX frequency mod^

(only possible for one channel), the frequency of

CHA is zero and the sample

TRACK

Is always 25 MHz.

Clamp

To prevent the Track & Hold circuit from overdrive, the signal is damped.

The level of the output signal can be adjusted by means of consisting of

V2301,

VREF

(input 23).

VREF is the reference voltage, made by ihe circuit

V2302 and R2323, R2324, and R2325

(see

ADC section).

Track A Hold

The the maximum sampling frequency of the

ADC used in the ScopeMeter is

25 MHz.

This means that

ADC can only handle signals with frequencies up to 12.5

MHz

(half the sample frequency).

Because of this a Track & Hold circuit

Is incorporated

In the A-ASIC.

The Track & Hold circuit determines the frequency range of the whole system.

The timing in this part of the A-ASlC

(s determined by clock signal of the

TRACKN

(input

1 2).

The frequency

TRACKN signal depends on the selected timebase speed (see table 3.7).

.

CIRCUIT DESCRIPTIONS 3-23

The oiitput signal* fs fed to the

SGNOUT,

{output

1

B)

ADC.

The voltage range of

SGNOUT

)s 1 ,5V, ..3.5V,

The

Intermediate level of irom the

SGNOUT is derived

VREF voltage level, which is made by the ADC.

TRACK-

TRACK

(defiyM

A-AS(C

TRACK-)

TRACK i

^

HOLD

TRACK

1

TRACK

SSNOin'

OT A-ASIC

1

CLMADC dalayed

TRACK

1

.

> : oditf

HCUD

1

-An«

TBATK

1

ADC lakes sample

'

Track & Hoid timing

Externat Trigger Amplifier

This amplifier section prcxsesses the trigger section.

incoming external trigger signal so that it can be used in the

The

Input of this section is

TTL compatible

Trigger Selector

In this section tne channel A, channel source.

B or external trigger input signal is selected to ad as trigger

The trigger slope is also selected in this block.

Hysteresis

The hysteresis section converts the trigger signal into a pulse shaped signal.

Because of the hysteresis, the circuit will not trigger on noisy signals.

The LEVEL signal (input

20) that determines the trigger level>

Is a

DC voltage between +0.5V

and +2.0V.

The LEVEL signal

Is a DC voltage, generated in the Digital ASIC.

Resistor

R2309 and capacitors

C2312 andC2313 form alowpass filter, to convert a pulse width modulated signal into the

DC voltage.

Detta^T circuit

The Delta-T circuit measures the lime between a trigger pulse and the moment the input signal is sampled.

Figure 3.14

shows the timing diagram with relaton to the signal

(internal),

STOPN

(output

9), and TOUT

(output

15).

HLDF

(Input

1 0),

START

1$} clocX ir<3

CtOCA

START:

Internal (in the A-ASIC) start signal for the Delta-T measurement.

TOUT: a voltage proportional to the measured value (time) of

Delta T.

Figure 3.14

Timing diagram Delta-T circuH

Control logic

The control logic section contains a serial-ln parallel-out shift register.

This section gets the microprocessor (D1

201, circuit diagram A1.

figure 10.2) viafrie clock), and

CDAT

(serial data),

CCLK

(sertd

DTAE

(data-latch) lines.

The control logic section controls ail functional blocks within ttie

A-ASIC,

Its data from

3-24 CIRCUIT DESCRIPTIONS

ADC

The output signal e-bit

SNGOUT

(pin 18) of the

A-ASIC

Is fed to the

Analog Digital Converter

TDA

8703.

This component operates on a 2S MHz clocK signal.

The signal

TRACKN

Is delayed to compensate for the internal signal delay in

Track & Hold section) and is fed to

ADC pin 17.

^e

A-ASIC (behind the

The ADC provides for the reference voltage needed by the A-ASIC.

This reference voltage is derived from the ADC.

V/REF is made of the voltages on pin 4 (VRB « Reference Bottom Voltage: .5V) and pen 9 (VRT = Reference Top

Vottage: +3.5V) of the

ADC.

During normal operating conditions this reference voltage,

VREF, is

+2.5V

{+/-

3-6%, ref.

to ground).

VREF is adjusted with potent!

omeler

R2346, marked "OFFSET" andean be measured between TP331 and ground.

The ser>sitivity of the

ADC is adjusted with

B2347, marked "GAIN".

These calibrations are described

In chapter

5, section

5.6.1:

“Hardware SCOPE

Calibration Adjustments

The

8-bit output of the

ADC: ADCO.mADC?

Is connected to the Digital

ASIC on the digital

Af PCB.

3.4.6

ANALOG CONTROL CIRCUIT

• Introduction

See figure 3.13.

The various sectlor^s of the ScepeMeter, situated on the analog A2 PCB, are controlled by the microprocessor on the digital

A1 PCB.

This is done by means of the

CCLK

(serial clock),

CDAT

(serial data) and DTAE

(data-iatch) lines.

This bus system creates several control signals, which for example drive the relays switches in the attenuator sections.

Detailed circuit description

See figure 3.13

and circuit diagram A2a

(figure 10.5).

MAJNVOLThfT

RELAYS swrrCHES

(ATT SECnONi

OFFSeT-CO«P€NS*TION

LF<CALI9RATK)N

WAVEFOflM SeiKTION

Figure

3.

IS Schematic diagram analog control circuitry

Each shift register transforms the serial signal

COAT

Into

8 parallel control signals.

This

Is done by means of the serial dock signal

CCLK and the data-latch signals DTAEa, DTAEb and DTAEc.

The control circuitry comprises two series of cascaded shift registers:

D2907-D2908-D2909

(24 signals) and D2904- 02906(16 aignals).

-

-

-

The signals, that are made by the shift registers, are used: to control the buffers (D2901

/

D2902

/

D2903), which drive the relays

In the attenuator section.

for offset compensation (A-RANGE and B-RANGE) in the attenuator sections.

for L.F.

-calibration

(A-OFFSET and B-OFFSET)

In the attenuator sections.

to select the waveform in the signal generator section (sine wave/square wave/DC).

to drive the buzzer

(beeper).

CIRCUrr DESCRIPTIONS

-

Relay tables

In the following tables the number “1" means

"high" (active) signal. “0" means

"low“ signal and means "can be high or tow (don’t care)".

Channel 6 DC coupled

')

2) lOOmV/dIv

IV/div lOV/dIv lOOV/dIv

GROUND

K2101

1

1

1

1

0

0

1

0

1

1

K2102

1

1

1

K2103 K2201 K2202 K2203 K2750 K2751

0

0

1

X

X

X

X

X

X

X X

B

X

X

X

X

X

X

0

0

0

0

0

X

X

X

X

Channel

BAG coupled

100 mV/dIv

IV/div tOV/drv lOOV/dfV

GROUND

K2101 K2102

0 0

0

1

0 0

0

0

1

1

K2103 K2201 K2202 K2203 K2750 K2751

0 X X X X 0

0 X

1

1

1

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

0

0

0

0

Channel A DC coupled

100 mV/div

IV/drv lOV/div lOOV/dIv

GROUND

K2101 K2102 K2103 K2201 K2202

X X X

1

0

X

X

X

X

X

X

1

1

1

0

X

X

X

X

X

X

1

0

1

1

K2203 K2750 K2751

0 X 0

0

1

X

X

1

1

X

X

0

0

0

0

Channel A AC coupled

100 mV/d(v

1

V/dIv lOV/div lOOV/dIv

GROUND

X

X

X

X

X

K2101 K2102 K2103

X

X

X

X

X

X

X

X

X

X

0

0

0

0

0

1

1

0

1

0

K2203 K2750 K2751

X 0 0

0 X 0

1

X 0

1

1

X

X

0

0

Relay information valid for

SCOPE attenuator settings up to lOO mV/dIv.

*)

Relay Information valid for

SCOPE attenuator settings between 100 mV/dtv and

1 V/div, etc.

3-25

3 '26 CIRCUIT DESCRIPTIONS

EXTernal ir^ut

Ext.

Tng

Generator

K2101 K2102 K2103 K2201

X X X X

X

X X X

K2202 K2203 K2750 K2751

X

X

X

X

0

1

0

0

METER V DC mode

300 mV

3V

30V

300V

K2101 K2102 K2103 K2201 K2202 K2203 K2760 K2751

0

1 1 1 1

0 X 0

0

1 1

1

0

1

X 0

0

1 1 1 1 1

X 0

0

1 1 1 1 1

X 0

METER V AC mode

300 mV

3V

30V

300V

K2101 K2102 K2103 K2201 K2202 K2203 K2750 K2751

0

1 1

0

1

0 X 0

0

1

1

0 0

1 X 0

0

0

1

1

1

1

0

0

1

1

1

1

X

X

0

0

METER V DC + AC mode

300 mV

3V

30V

300V

K2101 K2102 K2103 K2201 K2202 K2203 K2750

K2751

0

1 1 1 1

0 X 0

0

1 1 1

0

1

X 0

0

1

1

1

1

1

1

1

1

1

1

X

X

0

0

METER mV mode

(EXTernal Inputs)

0

K2101 K2102 K2103 K2201 K2202 K2203 K2750 K2751

1 1

0 0

1 1

0 300 mV

3V

1

0 0

1 1

0

300 Ohm

3

KOhm

30

KOhm

300 KOhm

3

MOhm

30

MOhm

-

Control lines tables

Channel 6 DC coupled

100mV/div

I

1

100V/dlv

GROUND

1

Sr2a Sr3a D D

0

0

1 D D 1

1

1

K2103 K2201 K2202

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

K2203 K2750 K2751

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

Srib Sr2b Sr3b Sr4b SgndSa mV OHM

100mV/dlv

IV/dlv

Sfla 2 a Sr3a Sr4a|Sgnd8b Srlb Sr2b Si3b Sr4b Sgnd8a

1

0 0

1 1

0

10V/dlv

0

0

1 lOOV/dlv

GROUND

1 D D 1 mV OHM

0

0 0

100 mV/dIv

IV/dlv lOV/dlv lOOV/dlv

GROUND

Sr1b Sr2b CO Sr4b SgndSa mV

C

1

0 0 0 0

1

ID

1

0 0 0 D

1 1

0 0

0 0

Dl

Dl

Dl

1 1 1

0 0

0

1 1

0

CIRCUIT DESCRIPTIONS

3-28

Channel A AC coupled lOOmWdiv

1V/div

10V/dlv

10OV/dlv

GROUND

METER V DC mode

METER V AC mod©

METER V DC

4-

AC mode

METER mV mode (EXTemal

Inputs)

300V

1

Sria Sr2a Sr3a Sr4a

300 mV

0

0

0

0

0

0

1

1

SgndSb Srib Sr2b Sr3b Sr4b SgndSa OO

0

1 1 1 mV

1 D

1

0

1 1 1 1

OHM o

3-29 CIRCUIT DESCRIPTIONS

METER

0/ -Nmodes

'

300

30

Diode

Sr1a Sr2a Sr3a Sr4a

Ohm

0

Sr3b Sf4b

SgndSa mV D

1 1

0

D

3

30

300

KOhm

KOhm

KOhm

D

0

O

1 1

0 0 0

1 1

0

1

3MOhm

0 0 0

MOhm

D

0

0

0

D

0 0

D

1

0

1

0

1 1

D

1

0

DD

0

0

0 t

1

1

SgndBb Srib CO

1

1

1

0 D 0

0

0

D

0

1

1

1

1

0 D

D

1

0 0 0

1 1

0

1

D

1

0

1

0

D

1

0

1

OHM

1

1

30

300

3

Ohm

KOhm

1

Scl5 Scie Sc17 a

0

1 1

Scia

0

D

1

0 0

D

KOhm

1

300

3

30

Diode

KOhm

1

MOhm

MOhm

D

1

“I

1

1

0

D 0

1 a

0 D

1

Ext.

Trig.

Generator

G.OUTP

0

1

Buzzer off

Buzzer on

BUZ

1

0

D-POSCHA

D-POSCHB

SCOPE mode

Attenuator settings

>

20 mV/dlv 5 lOmV/dlv

0

1

1

1

METER

1

X mode

While the

Scope Meter

Is operating

In

SI, mV,

METER

OHM,

Srib, Sr2b, St3b, Sr4b, and mode or

D.POSCHB

when can the Instrument change

Is calibrated,

("hlgn/tow").

signals the signals

Ex and Ey are used to switch the relays.

Both signals are "high* when the relays are not operated.

Signals Sg4a, Sg5a, Sg6a, and SgTasetthe LF.

gain for channel A.

Sg^,

SgSb, Sg6b, and Sg7b set the LF.

gain for charnel B.

(Sg4b)

Is the most significant bit

(MSB), Sg7a (Sg7b)

Is the least slgr^lf leant bit (LSB).

Signals Sol

Ob,

Sot

1b,

SOI

2b,

Sol

3b, and So 14b are used to set the offset compensation

In the preamplifier circuits of channel A.

Signals Sc15, Sc16, Sc

17,

Sc18, and SO 14a are used to set the offset compensation in the preamplifier circuits of channel B.

SOI Ob (Sets) is the most slgr^flcant bit

(MSB), Sol 4b (Sol 4a) is the least significant bit

(LSB).

:

3-30

CIRCUIT DESCRIPTIONS

3.4.7

GENERATOR circuit

• Introduction

See figure 3.14.

The ScopeMeter has a bullt-ln signal generator, which can produce the following signals, used to adjust the probes:

• square wave voltage.

DC voltage:

3V amplitude: frequency:

Scope Meter model 97 can also produce:

‘ sine wave voltages,

square wave voltages, am pi Itu de frequency: amplitude: frequencies:

-

slow ramp voltage, -2V...+2V slow ramp current. -3 mA,..43mA

5V peak-to-peak

976 Hz

5V peak-to-peak

976 Hz

5V peak-to-peak

488 Hz

1-95 kHz

The signal generator uses a square wave voltage, coming from the

D-ASIC to generate the various signals.

The circuit consists of an operational amplifier, a fourth order filter, and a current source.

The configuration can be changed by means of programmable switches to produce different output signals.

Detailed circuit description

See figure 3.16

and circuit diagram A2b

(figure 10,6).

Figure 3.16

shows the basic generator circuitry:

••5V

Figure

3.

16 Basic generator circuitry

This circuft amplitude uses a square between wave voltage,

STIMUL, coming from the D-ASIC.

This signal has an

OV and +5V.

The duty cycle of the square wave signal

Is varied depending on the signal to be generated.

The reference voltage +Vref is used to generate the

DC voltage.

CIRCUIT DESCRIPTIONS 3-31

The configuration depends on the settings of switches D2650 and D2751.

These switches are controlled by the signals FILT CALDCHD,

SQUAR and

Si.

Table 3.8

lists ttie various settings and resulting generator output signals.

Table 3.8

Generator control signals for various generator output signals.

STIMUL frequency duty cycle

CALDC-

CONTROL SIGNALS

RLT SCXJAR

HD

SI

OUTPUT SIGNAL amplitude waveform

488 Hz

976 Mz

1.95

KKz

50%

50%

50%

0

0

0

0

0

0

1

1

1

1

1

1

Square wave vonage

-

1

0 0 1

3Vp-p DC voltage

976 Hz 50%

0

1 1

1

Vp-p Sine wave voltage

20 kHz 0-100%

0

1

0

1 •2...+2VP-P

Slow ramp voltage

20 kHz 0-100%

0

1

0 0

0...+3 mA Slow ramp current

In this table

"V means: signal "high* (switch closed) and *'0" means signal "low* (switch open).

I

'

1

The slow ramp current signal is made with a current source.

A simplified schema^c diagram is given in figure 3.17;

Figure 3.17

Current source section of generator

When the duty cycle of

STIMUL Is0%, the bridge will be

In balance and current cycle of

STIMUL

1$ increased, a DC component is generated, which has a

1^

=

0.

When the duty linear relation to the duty cycle.

The operational amplifier tries amplifier will to keep the voltages on both inputs the now drive trana'stor V2854 to Increase

1^.

same.

The operatbr>a{

Because

Is almost equal to the output current will also Increase.

In this way it is possible to regulate the current i^ by means of the duty cycle of STIMUL.

3-32

CIRCUIT DESCRIPTIONS

3.4.8

BATTERY CHARGER

Introduction

Seo figufG 3.18.

The battery charger consists of a switched mode power supply and some auxiliary clrculiry.

Whenever the Scope Meter

Is connected to the line voltage (via the separ^e power adapter/battery charger PM6907), the instrument switches over to line voltage operation automatically.

If a NiCd battery pack

Is Installed, the

ScopeMeter wilt charge this

If line voltage

Is present.

Special circuitry prevents discharge of the batteries when the Instrument

Is not being used.

Detailed circuit description

See figure 3.18

and circuit diagram A2c

(figure

1 0.7).

HF

Fitter

The input voltage (between 8V and 20V) first passes MF FILTER Z2501 and is used to diive a flyback converter.

POWffi SUPPLY

Figure

3.

16 Schematic diagram battery charger

Une voitage detection

When the ScopeMeter is operated on line voltage, transistor

V2521 will be driven by the

(filtered)

Input voltage.

The signal

MAINVOLTHT will become

"low" to indicate that the Instrument is operated from the line voltage.

The related signal microprocessor analog input 19.

MAINS-D (connector XI

201, pin

5) is connected to the

When the signal

MAINS-0

Is "high", the microprocessor will not switch off the ScopeMeter, as in battery operated mode.

CIRCUIT DESCRIPTIONS 3-33

F/ybeck ccn verier

See ligure 3.19

and circuit diagram A2c

(figure

107).

The main components of this flyDack converter are

V2532

(convener-switch),

L2504 and L2505

(windings),

R2582 (sense resistor), and G2536 and V2533 (secondary circuit).

The main regulating element is

N2503

(see figure 3.19),

-VcH

Figure 3.

19 Schematic diagram flyback converter

N2503 incorporates an oscillator, the frequency of which is determined by R2548 and C2527

(fixed frequency of 100 kHz), This oscillator drives is compared to a DC voltage.

This a sawtooth generator.

The produced sawtooth voltage

DC voltage is made by ar; internal error amplifier (voltage regulator), which compares the produced converter voltage >V_CH to a stable

5V reference voltage.

This

Is done with a bridge circuit

(R2564, R2555, R2S57, R2568).

Figure 3.20

IntemaJ N2503 voltage waveforms

When the sawtooth voltage is larger than the is "high ".

DC voltage,

When the sasvtooth voltage is less than the

DC the output voltage, the signal ou4>u1

(CA.

CB signal is on pins

"low"'.

12,13)

In this way the duty cycle of

N2503’s output signal can be changed, thus changing the energy transferred to the secondary converter circuit.

The output signal is level shifted by transistor

V2526 and related circuitry.

Now this square wave signal is used to drive converter switch V2S32, which is bootstrapped via

V2526, V2529, R2546,

R2562, and C2537.

Charging current limiter

N2503 limits the voltage difference between CL+

(pin 4) and CL-

(pin 5) to

200 mV.

If the voltage between these two inputs starts to rise, the irxtamaf

DC voHage will rise, and the duty cycle of the output square wave voltage will decrease (see voltage regulation described earlier).

3*34

CIRCUIT DESCRIPTIONS

If th

0 ScopeMeter is connected to the line voltage and is not operallonaJ, the flyback converter operates almost wrthoiJt a load (only the NICd battery pack). This irr^plies that the current floating through windings

CL+

Is about 30

L2504 and L2505 (averaged

In time) is almost zero.

Because of this, mA and the voltage on CL-

Is about 170 mV.

The battery pack will the voltage on be charged with

170 mA.

If the will flyback converter

Is rise operated normally (ScopeMeter "ON"), the voltage on both CLand and the charging current will decrease to 100 mA.

CL+

Battery charge protection

To prevent charging of non -rechargeable batteries, a special protection circuit Is provided.

reasons, this circuit consists of two cascaded sections.

For safety

When the ScopeMeter

Is

"ON", the flyback converter will be operative.

The produced voltage

V2537 and V2538 Open

(conductive) via

POWER-ON will drive both Feld

Effect Transistors

R2568 and R2569.

Now the battery plus contact

Is connected to the ScopeMeter clrcuH ground, if line voltage

Is present, the voltage -VCH produced by the flyback converter will drive

V2534 and V2536, which prevent transistcfs

V2537 and V2638 from conducting.

The battery plus contact is disconnected from ground.

Power ON/OFF circuitry

During normal operation the

•Vbat/s

POWER-ON signal Is-hSV.

Transistor V2542 equals -V.CH.

If me ScopeMeter

Is operating and me

Is opened

(conductive), so

RESPOWHT

( 'reset power si^>ply") becomes

"high".

V2541 will conduct and V4542 will stop conducting. This will disconnect -VbaVs from

•V_CH.

3.4.9

POWERSUPPLY

• Introduction

See figure 3.19.

Different supply voltages are needed for various ScopeMeter sections.

A second flyback converter

Is used to convert -V Dal's to supply voltages of -30V, -5V and

-fSV.

This voltage, -VbaVs, is made by the first flyback converter

(In the battery charger section) or comes from the batteries.

-Vbat/s Is

5V

If operated with

NICad battery pack, and 8

V if operated from line voltage.

Detailed circuit description

See figure 3.19

and circuit diagram A2c

(figure 10.7).

|s»g»iairycrait8Tl

CIRCUIT DESCRIPTIONS 3-35

-

-

-

This self-oscillating flyback converter consists of:

V2509 (converter-switch)

R2509...R2517

(senseresistors)

V2502

(thyristor svsotch)

R2544

(Start-up resistor)

T2501 (windings)

3 separate secondary circuits for -30V, -5V, and +5V

The main regulating component

Is operational amp

Ilf ierN 2501.

This opamp compares the produced secondary *SV voltage with a rofarence voltage, produced by zener diode N2502.

If the secondary

•(•SV increases, the fault signal generated by the voltage drop over R2508.

Because of this,

N25Q1 will produce a current that causes an extra thyristor V2502 will fire earlier.

The switching frequency Of the flyback converter Inaeases and the secondary

-t-5

V voltage decreases.

When the ScopeMeler

Is switched on (RSSLSTN is "active low'),

V2544

(see circuit diagram A2c, figure 10.6) connects the Inverting Input of N2501 to ground.

When the ScopeMeler starts up, capacitor C2509 causes the reference voltage and therefore the output voltage, to rise ^owly, limiting the Inrush ("starting') current drawn from the batteries or line voltage.

Undervottage detection and protection circuit

When the flyback converter is oscillating, capacitor C2532 is charged every period via

R2543 and

V2516. During normal operation C2532

Is discharged by V2517, which

Is driven via R2641, V2511,

R2529, and V2509.

If, for example, the secondary discharged by V2517.

This will activate the

+5V voltage becomes too low,

C2532 ts not

RESPOWHT signal, and the povsrer wllf be switched off compietely, preventing further damage of circuits.

(The +5V voltage can become too low because the

Input voltage -VbaVs

Is too low.

or the power output to the

ScopeMeler circuitry Is too high.)

R2542, C2531

, and diode V2508 will reset

C2532 during the start up of the power supply (the voltage across C2532 will become zero).

This is necessary because V251 7 cannot be driven via V2541, just after the ScopeMeler

Is switched on.

Reference source

The reference source provides a stable positive (-t-Vref) and negative reference voltage (-Vref) used in other parts of the ScopeMeter.

It also uses the voltage across zener diode N2502 as an input voltage.

NOTE: The flyback converter, used in the battery charger seot/on (section 3.4.8) has a fixed osdllating frequency of 100 kHz.

duty cycle.

The amount of energy supplied is regulated by varying the

The flyback converter used in this power supply, however,

Is seff^scUlatlng and operates on a variable oscillating frequency and a fixed duty cycle.

For alkaline batteries, for example, the oscillating frequency s about 62 kHz.

PERFORMANCE VERIFICATrON PROCEDURE 4-1

4

PERFORMANCE

VERIFICATION

PROCEDURE

4.1

GENERAL INFORMATION

The ScopeMeter should be calibrated and

In operating condition when you receive

It.

The following perfcxmance tests are provided to ensure that the

Scope Meter is in a proper operating conditior>.

If the Instrument fails any of the performance tests, calibration adjustments (see chapter

5) and/or repair (see chapter

7) is necessary.

The Performance

Verification

Procedure described here consists of two parts:

Standard Performance

Verification

Procedure

(separate

SCOPE* and METER*sectlon)

Additional Performance

Verification

Procedure

The Standard Performance

Verlficalion Procedure uses built-in ScopeMeter front panel settings or frontsetlings, that can be accessed via the

SERVICE MENU.

To enter the SERVICE MENU, press t»th

AC/DC/QROUND keys simuttaneously.

This menu allows you to choose between

METER performance testing ("Verify").

SCOPE and

Vrms

AC

0.058

V

DC

C HANNEL A

AUlO

RANGE

10:1

+

0.012

30\

300V

2£kV lOOms/ACQ

SERVICE:

V9fity

CALIBRATE

SCOPE METER EM ScopeMetar EXIT

Figure 4.

1

Service menu lA/hen the Scope Meter is in

SERVICE mode, only the softkeys, the select/adjust keys and the

ON/OFF key can be operated.

It Is possible to move forward or backward through the frontsettings, that apply tc the separate performance test steps.

This can be done using the adjust/select keys.

You can leave the

Performance

Verification

Procedure any time by pressing the EXIT softkey.

The Performance

Veiificallon Procedure steps are explained in the following sections.

4-2 PERFORMANCE VERIFICATION PROCEDURE

The Additional Performance

Verification Procedure can be used to do some extra checks, depending on the

Scope Meter version (93, 95 or 97).

In these tests the ScopeMeter must be set up manually.

NOTE:

This Performance

Verification

Procedure is a quick way to check most of the instrument's specifications.

Because of the highly integrated design of the ScopeMeter.

it is not always necessary to check ail features separately.

The procedure described here often combines many test steps in one procedure step, thereby minimizing totaJ test time.

The Performance

Verif/cation

Procedure is based on the specifications, listed in chapter 2 of this Service Manual.

The values (requirements) given here are valid for ambient temperatures between idCandZBC.

4.2

STANDARD PERFORMANCE

VERIFICATION

PROCEDURE

This section explains the required Performance Verification Procedure setup, with the actions that have to be done for each step.

Follow the instructions described with each

The recommended test equipment, required for this

Standard Performance step.

Verification Procedure, is listed In table 4.1.

Table

4.

1

Recommended test equipment Standard Performance Verification Procedure

Instrument Type Recommended Model

Multifunction

Calibrator

Fluke 5100B

Function Generator

Time Mark Generator

Constant Amplitude

Sine wave Generator

Square wave

Calibration Generator

Philips

PM 5134

Tektronix

TG 501

Tektronix SG 503

Tektronix

PQ 506

Cables and terminations for the generators

(all

BNCtype)

Two standard banana test leads (delivered with the ScopeMeter)

BNC

(fern ale )-to-banar\a (male) (delivered with the ScopeMeter)

NOTE: During the following Performance

Verification Procedure, the ScopeMeter ir\put sockets are connected to the signal generator outputs

B) or two standard banana test leads by means of cables (BNC connector channei A or

(COM and mV/Ohm/Dlode banana connectors).

The oscilloscope probes delivered with the instrument are not used during the Standard

Performance Verihcaticn Procedure.

The calibration of the probes is described in the Users

Manual.

In the following text, this figure

Is keys (up/down) must be pressed, to display the Indicated step number

“x" on the

ScopeMeter screen.

used to indicate that one of the selecVadjust

PERFORMANCE VERIFICATION PROCEDURE 4-3

^/

2

.

LCD test

While

In the

SERVICE menu, press the

Performance

Verification Procedure.

SCOPE softkey to enter the

SCOPE section of the

Now a

(dark) test pattern is displayed.

This pattern consists of a circle placed

In a square, and a diagonal line

(see figure 4.2).

Observe the test pattern closely.

The lines may not be

Interrupted; the pattern must be continuous.

In this test sets the c^splay to a high contrast, resulting

In a dark display.

If there are defects

In the pixel

Liquid Crystal Display, they columns of the must be clearly visible now as

Intermissions

In the pattern.

After you have checked the display, press the upper select/adjust key once.

Now an oscilloscope screen is displayed.

Figure 4.2

Test pattern

3.

Ground level

Press the upper select/adjust key again to go to step 2.

Now the display shows the same pattern, but with a low contrast (bright screen).

This will help you to locate any failures in the pixel rows of the LCD.

check

A tOOmV OND lOOus/OV

B tOOfnV

Trig:

A/

QNO

P ress th e u pper se lect/adj u st key to go to step 3.

The purpose of this step is to check the ground level position ddjusiments (OV) for both traces.

The ScopeMeter display shows th© text

"

Verif 3", to show that this is the third

SCOPE

Performance

Verif icatron step (see figure 4.3).

a r

Ag

Requirements:

1

1

1 ser' VICE

Verity

CALIBRATE

S METER

EiU ScopeMeter EXrT

Figure 4.3

Reference set-up

Venfy thal the traces of both channels A and B are situated on the vertical middle of the screen.

4-4 PERFORMANCE VERIFICATION PROCEDURE

4.

Vertical deflection coefficients channei

A

These tests check the vertical deflection coefficients for cttannel

A in the

100 mV/div DC and AC ranges.

Test ec^uipment:

Fluke 5100B

Calibrator

Test setup:

Procedure/requlremente for

AC teat:

A

Apply a 1 kHz sine wave signal with an amplitude of

600

BNC connector.

mV AC peak-to-peak to the channel

A

(Set the Fluke 5100B to 212.13

mV RMS,

1 kHz sine wave).

Verify that the amplitude of the sine wave signal dieolayed is

5.68...6.12 divisions.

Procedure/requirements

B Apply 300

DC test: mV DC to channel A.

Verify that the distance between the trace for channel A and the vertical middle of the screen

(ground level) Id 2.94..

.3.06 divisions.

5/6/7.

Vertical deflection coefficients ctiannel

D

These tests check the vertical deflection coefficients for channel 6

In the DC and

AC ranges.

Test equipment:

Fluke

5100B

Calibrator

PERFORMANCE VERIRCATION PROCEDURE

Test setup;

4.5

Procedure/requirements for channel

A Apply 300 mV DC to

Channel 6.

6 AC and DC tests:

6 Change the input voltage and the setting of chanrtet B according to table 4.2

and check that the amplitude of the signal agrees wi^ the value fisted

.

Use the setect/adjust keys to select each step number.

NOTE: The AC voltages listed in this are peak-ta-peak voltages (sine wave).

The values listed between brackets

RMS values that have to be chosen on the Fluke 51008

() are the calibrator.

Requirements:

Table 4.2

Requirements verlicai deflection coefficients for channel

B.

Input voltage

300 mV DC

600 mV AC

3VDC pp

(212.13mV RMS).

1 kHz eVACpp

(2.1213V

RMS),

1 kHz

30V

60V

DC

AC

(21.213

V RMS),

1 kHz

Step number on display

"5"

-5-

"6"

•6"

"7"

'7'

Requirements

2.94...

3.06

div.

5.88...6-12div.

2.94...

3.06

dIv.

5.88...6.12div.

2.94...

3.06

div.

5.88...6.12

div.

The ScopeMeter uses the same input drcultry (hardware) for the

SCOPE and the

METER modes

(In the above attenuator settings).

When the voltage accuracy is checked (see the description "METER

Performance

Verification Procedure" step

1).

the deflection coefficients for

SCOPE channel

A are also tested.

8/9.

Rise time

The rise lime of the ScopeMeter is checked by means of a fast rise time pulse.

First channel B

Is measured.

Test equipment:

Tektronix PQ 506 Square Wave

Calibration Generator

)

6

Tost setup channel 6 rise

Hme measurement:

PERFORMANJCE VERIFICATION PROCEDURE

Proce<iiire for channel B rise time measurement:

A Apply a fast rise termination.

time pulse, repetition frequency

1

MHz, amplitude 0.5V

to channel B.

Use a

SetUie generator

In position

“FAST RISE*.

B Adjust the pulse am^^ltude to exactly 5 divisions.

See figure 4.4.

50Q

Requirements:

A/OTE; i^( measured) =

Inputsigriaf)

^ + t^{

ScopeMeter) ®

C Check the rise time,

The rise time t^ measured between

{measured)

10% and 90% of the pulse amplitude.

See figure 4.4.

must be 7 ns

(0.7

div) or less.

Figure 4.4

Rise time <o,7div blbVm

Test setup channel A rise time measurement:

Refer to the test set-up for channel B measurement.

Connect the pulse generator to the channel A BNC

Input connector.

PERFORMANCE VERIFICATION PROCEDURE 4-7

Proc^durd for channel A rice time meaaurament:

Refer to the settings/procedure for channel B measurement.

Requirements:

Refer to channel B requirements.

10/11/12/13.

Frequency response

These tests check the upper transition point of the bandwidth for

ScopeMeter vertical channels Aand

B.

Test equipment:

Tektronix

SG 503 Constant Amplitude Sine wave Generator

Test setup:

Procedure/requirements for channel

A frequency response measurement:

A Apply a 50 kHz sine wave with an amplitude of

120 mV peak-topeak to channel A.

Use a

501^ termination.

Adjust the input signal to a trace height of exactly 6 divisions.

B Without changing the amplitude of the sine wave signal, switch over to step

1 1 using the upper select/adjust key.

Increase the frequency of the sine wave to 50 MHz and venfy that the vertical deflection is 4.2

divisions or more.

Procedure/requiremente for channel B frequency response measurement!

C

Apply a 5D kHz sine wave with an amplitude of

1

20 mV peak-topeak to channel B.

Use a SOiZ termination.

Adjust me input signal to a trace height of exactly 6 divisions.

0 Without changing the amplitude of the sine wave signal, switch over to step 13 using the upper select/adjust key.

Increase the frequency of the sine wave to

50 MHz and check that the vertical deflection is 4.2

divisions or more.

4-8 PERFORMANCE VERIFICATICMM PROCEDURE

14/15/16/17.

Trigger sensitivity channel A and B

The trigger sensitivity depends on the amplitude and frequency of the trigger signal.

This test checks the trigger sensitivity of the ScopeMeter.

Also the

•hSLOPE/>SLOPE furrction (triggering on negative slope)

1$ tested for both channels A and

B.

Channel B is tested first.

Test equipment:

Tektronix SG 503 Constant Amplitude Sine Wave

Generator

Test setup:

Procedure/requlrementsfor channel B trigger seneftivHy measurement:

A Apply 3 100

MH

2 sine wave, with an amplitude of approximately 500 mV peak'to-peak channel B.

Use a

50Q termination.

to

6 Adjust the amplitude of the input signal to exactly 4 divisions on the display.

C

Verify that the signal

Is well triggered.

D Apply

8

60 MHz sine wave, with an amplitude of approximately

1

00 mV peaK-io-peak to channel B.

Use a 500 termination.

£

Adjust the amplitude of the Input signal to exactly

F

Verify that the signal

Is well triggered.

1

.5

divisions on the display.

G Apply a 10 MHz sine wave.

wHh an amplitude of 300 channel 8.

Use a

500 termination.

mV peak-to-peak to

I

H

Adjust the amplitude of the Input signal to exactly

1

.5

divisions, on the display.

Verify that the signal is well triggered on the falling edge.

See figure 4.5.

Figure 4.5

S/gnai triggered on the failing (negative) edge

PERFORMANCE VERIFICATION PROCEDURE

Procedure/requirements for channel A trigger eensitivlty measurement:

K Repeat steps G,..

I for channel A,

4-9

L

Repeat steps

A...F for channel

A.

18.

Timebase

This test uses a marker pulse calibration signal to verify the deflection coefficient of the time base.

Test equipment:

Tektronix

TG

501 Time Mark Generator

Teat set-up:

ScopsMeter

Procedure/requirementa:

A Apply a

1 ps

(1

V peaMo>peak) time marker signal to channel A.

Use a 50A termination.

B

Verify that the distance between the

1

0*^ marker pulse and the as the distance between the

10^ vertical

2^ marker pulse and the 2"^ vertical grid line.

grid line is the same

(Tolerance

±

1 pixel

= ± 0.04

divisions).

F/gure

4.

6 The

Ofstance

Oetween the 70'* marker pulse the werttcat grkS Une same as the distance between the

2”® marker pt^se and the

2^ vertical must he the grid line.

4

10 PERFORMANCE VERJFJCATION PROCEDURE

19.

Trigger sensitivity externai channei

This test checks the trigger sensitivity, using the ©jcternal banana connectors as the trigger input.

Test equipment:

Phiiips

PM 5134

Fur>clion Generator

Test setup:

Procedure/requ iremants:

A Apply

1

.4V

a

1 kHz sine wave signal, that has an amplitude of

1 .2

V peak-to-peak, superimposed on

DC to channei A and to the banana input sockets.

U&e a coaxial signal spiitter and a

BNC* tO'banana converter (see test setup).

Use 50Q terminations.

G Verify that the signal is well triggered.

CTirn

Figure 4.7

1.2V peak-to-peak sine wa ve superimposed on 1.4V

DC

20.

Horizontai deflection: x-deflection

TNs test checks the correct working of the

X-Y (A versus

B) mode.

Test equipment:

Philips

PM 5134

Function Generator

PERFORMANCE VERIFICATION PROCEDURE

Test set-up:

4-

11

Procedure:

A Apply a 2 kHz sine wave signal of

800 mV peak-to-peaK to channel

A and channel B.

Use 50^ terminations.

Adjust the Input signal to a trace height of 8 divisions.

Requirements:

Verify that a line with an angle of

45° is displayed.

See figure 4.8.

Figure 4.8

A versus

8 display

21/22.

Base line instability

This test checks the maximum base line instability.

Teat equipment: none

Test setup: no special setup required

:

4-12 PERFORMANCE VERIFICATION PROCEDURE

P rocedu re/roq u irem^nts

A

Turn off the signal sources connected to the ScopeMeler input or minimize

(zero) the signal amplitudes.

B Use the select/adjust keys to switch from front setting number 21 to number

22 and back to 21.

C

Verify that the trace does not jump more than 0.1

divisions while switching between front settings 21 and

22.

While in the

SERVICE menu, press the

Perfomiance

Verification Procedure.

METER softkey to enter the

METER part of the

1.

Voltage accuracy

METER mode

The lollowir^ section checks the voltage accuracy

In

METER mode.

The

ScopeMeter uses the same input circuitry

(hardware) for the

SCOPE

(channel A) and the METER modes

(In these attenuator settings).

When the voltage accuracy of the

METER

1$ checked, the deflection coefficients for

SCOPE channel A are also tested.

Test equipment:

Fluke 51

OOB

Calibrator

Test setup:

SeopeMeWf

Procedure:

A Apply 300 mV DC to channel A.

B Change the input voltage and the setting of channel A according to t^le 4.3

and check that the amplitude of the signal agrees with the value listed.

NOTE: TheScop&M^teris s&t to

METER "AUTORANGE^

(st&p

1) w/th a dual

(AC and DC) readout.

This implies that the

ScopeMeter range is set automaiicaHy according to the input signal.

PERFORMANCE VERIFICATION PROCEDURE

Requirements:

TaOle 4.3

Requirements for voltage accuracy test channel A.

METER mode.

input signal

300 mV DC

300

3V mV RMS AC.

1 kHz

DC

3V RMS

AC,

1 kHz

30V

30V

DC

RMS

AC,

1 kHz

^

Requirements

292.5..

302.0V

DC

.

307.5V

.3.020V

29.25..

2.925.-.3.075V

29-80.-, 3O.20V

.30.75V

RMS AC

DC

RMS AC

DC

RMS AC

2.

DC mV accuracy METER mode

These tests check the accuracy of the

DC mV function.

The supplied 1o the banana input connectors of the

ScopaMeter.

signal must be

4-13

Test equipment;

Fluke 5 1006

Catibralor

Test setup:

Seop«Meter

Proced ure/requ

I rementa:

A Apply 300 mV DC to the banana connectors of the ScopeMeter.

B

Verify that the readout is between 298

.2...

30

1 .8

mV

DC.

C Apply 3V DC to the banana connectors of the ScopeMeter.

D

Verify that the readout is between

2.982...

3.0

18V DC.

3.

3

Resistance accuracy

^

These tests check the accuracy of the resistance measurement function,

The signal has to be supplied to the banar^a input connectors of the ScopeMeter.

4-14

Test equipment:

Fluke 51 006

Calibrator

Test setup:

PERFORMANCE VERIFICATION PROCEDURE

ScQp«M«ter

Procedure/requirements for

A

Set the Fluke 5100B to

1 resi^nce function accuracy test:

0Oa

B Check that the readout is between

99.00...

C

Set the Fluke 510OB to 10

Ma

1

01 .OCl

D Check that the readout

Is between

9.900...10.10

MO.

4

.

Diode test accuracy

This test checks the accuracy of the Diode test function.

Test equipment:

Fluke 51006

Calibrator

Test setup:

SccwMeter

PERFORMANCE VERIFICATION PROCEDURE 4-15

Procedure/requlrementa for diode accuracy teatt

A Set the Fluke 5100B to

1 kn.

B Che<3< that the readout is between

0.420...

0.569V DC.

5.

Signal display and frequency measurement

This test checks the waveform display and the frequency measurement function in

METER MODE.

Test equipment:

Tektronix

TG 501 Time Mark Generator

Test setup:

Procedure/requirements for testing waveform display and frequency function:

A Apply a

1 ms (IV peak-to-peak) time marker signal to channel A.

Use a 50Q termtnatbn.

B Check that a stable (triggered) signal is displayed.

C Check that the frequency displayed is between 993..

.1007

Hz.

4

-16 PERFORMANCE

VERIFICATION PROCEDURE

4.3

STANDARD PERFORMANCE

VERIFICATION

PROCEDURE SUMMARY

This table provides an overview of all steps

In the Standard Performance

Verification Procedure.

It

Is intended to be used as a reference for frequent users.

For details on how to perform each Standard

Performance

Verification Procedure step, refer to section 4.2.

5

6

7

8

9

10

11

12

13

14

1

2

3

4

STEP

SCOPE PART

SIGNAL

SOURCE

.

-

-

Fluke 51 OOB

IS

16

17

18

19

20

21

22

Fluke 51 OOB

Fluke 5100B

Fluke 51

OOB

Tek PG 506

Tek PG 506

-

-

Tek

Tek

Tek

Tek

Tek

SG 503

SG 503

SG 503

SG 503

SG 503

Tek

Tek

Tek

SG 503

SG 503

SG 503

Tek TG SOI

PM 5134

PM 5134

-

SIGNAL

AMPUFREQ

.

-

-

-

212.1

300 mV(RWS)/1 kHz

(sine) mV/DC

A

A

300mV/0C B

212.1

3V/DC mV(RMS)/1 kHz

(sine)

B

6V(pp)/1 kHz

(sine)

B

B

30V/DC

60V(pp)/1

0.5V/1 kHz

(sine)

MHz

B

B

B (son term)

(fasi rise/square wa^^e)

0.5V/1

MHz A (son term)

(fasi rise/sguare wasre)

120 mV(pp)/50 kHz

(sine)

120mV(pp)/5QMHz

(atne)

120 mV(pp)/50 kHz

(sine)

A (50n term)

A(50n term)

B(50n term)

12OmV(pp)/50 MHz

(sine)

8 (50n term)

^500 mV(pp)/1 OO

MHz

(sine)

B (50n term)

*100 mV(pp)/60

300 mV(pp)/10

MHz

(Sine)

MHz

(sine)

8 (^term)

300 mV(pp)/10

MHz

*500 mV(pp)/100

MHz

(sine)

(sine)

A

A

(50n

(5012 term) term)

*100 mV(pp)/60

MHz

(sine)

1V(pp)/1 fis

(marker)

A

(5012 term)

1.2V/1 kHz

(Bine) (pp) on 1.4V/DC

800 mV(pp)/2 kHz

(sine)

SCOPEMETER REQUIRED

INPUTS

No interrupted lirres

No interrupted lines

T races on mid screen

Amplitude: 5.68...6.12dlv.

Diet mid screen end trace: 2.94...3.06

div.

Dist mid screen and trace: 2.94...

3.06

div.

Amplitude; 5. 88... 6.

12 div.

Dst mid screen and trace: 2.94... 3.

06 div.

Amplitude: §,63...

6.

12 div.

Dist mid screen and trace: 2.94..

.3.06

div.

Amplitude: 5.88.

6.

1

2 div.

Rise time:

<0.7

div.

Rise time:

<0.7

div.

A& EXT

(both

A&

B son term)

(both son term)

Adjust amplitude to 6 div.

Amplftudet > 4.2

div.

Adjust amplitude to 6 div.

Amplitude: > 4.2

div.

Weil triggered signal

Well triggered signal

Triggered on falling edge

Triggered on falling edge

Well triggered signal

Well triggered signal

Markers on lines

(tolerance

±

1 pixel

^±0.04

dtv.)

Well triggered signal

Line with angle 45^ displayed on screen

Trace jumps <

0.1 div.

when switching between setting 21 and 22

.

STEP

1

5

METER PART

SIGNAL

SOURCE

Fluke 5100B

1

Fluke 51 OOB

Fluke 51 OOB

RukeSIOOB

TekTG 501

SIGNAL

AMPL/FftEO

300 mV/DC

300mV(RMS)/l kHz

3V/DC

3V(RMSyi kHz

30V/DC

30V(RM5)/1 kHz

1

300 mV/DC

3V/DC looa

10M12 kQ

1

V(pp)/1 ms

(marker)

1

1

SCDPEMETER

INPUTS

A banana banana banana

A

(5012 term)

1

REQUIRED

298.0...302.0

292.5„.307.5

mV mV

2.960...

3.020V

2.925.

.3.075V

29.80..

.30

.20V

29.25,, .30

.75V

298.2. .301.8

mV

2982...3.018V

99.00...101.0Q

9.900...10.10M12

a420...0.589V

Stable oscilloscope picture

Frequency displayed: 993,-1007

Hz.

PERFORMANCE VERIFICATION PROCEDURE 4-

17

4.4

ADDITIONAL

PERFORMANCE

VERIFICATION

PROCEDURE

This paragraph describes the Additional Performance Vehficaton Procedure.

This procedure can be used to do some extra performance tests, depending on the

ScopeMeter version (93, 95, or 97).

Follow the instmctions described with each step.

The recommended test equipment required for this Additional

Performance

Verihcation Procedure is listed In table 4.4.

Table 4.4

Recommended test equipment for Additional Performance

Verification Procedure.

instrument Type

Function Generator

Multimeter

Power

Supply

Time Mark Generator

Constant Amplitude

Sine wave Generator

Square wave

Calibration Generator

Recommended Model

Philips

Philips

PM

51 34

PM

2525

Philips

PE 1537

Tektronix

TG 501

Tektronix SG 503

Tektronix

PG 506

'

Cables and terminators for the generators

(all

BNC type)

Two standard banana test leads (delivered with the ScopeMeter)

BNC

(fern ale) -to-banana (male) (delivered with the ScopeMeter)

5 mm.

Power Jack connector plug with attached cable (e.g.;

4822 321 20125)

NOTE: During the following

Performance

Verificetion Procedure, you must connect the

ScopeMeter ir^put connectors to the signal generator outputs. This connection must be

(BNC connector ctjannei

A or B) or two standard banana test leads made by cables

(COM and mV/Ohm/Diode banana connectors^ The Additional Performance

Verification

Procedure does not use the oscilloscope probes delivered with the Instrument.

The calibratior} of the probes is described in the Operating Manual.

1.

Autoset

All models •••

This test checks the correct operation of the

AUTO SET function.

Test equipment:

Tektronix

SQ

503 Constant Amplitude Sine wave Generator

Teat setup:

ScopeMeter

4-18 PERFORMANCE VERIFICATION PROCEDURE

Settings/procodure/requ Irements:

A Apply a 50 MHz

$lne wave signal of

1

00

B Switch on the Scope Meter and press the mV peak-lo-peak to channel A.

Use a 500 termination.

SCOPE key to get into

SCOPE mode.

Now press me

ALfTO SET key.

Check that the display

Is stable and well triggered.

Minimal 2 and maximal 20 signal periods must be displayed, over 8 divisions.

The signal amplitude must be approximately

5 divisions.

The NOTRIG indication on the display must not flash.

C Repeat settings/p roced ure for ch an n el

B.

2.

Vertical dynamic range and position range (move control)

All models •••

This test checks the vertical dynamic range, together with the position range (move control).

A certain overdrive of the

ScopeMeter must be allowed.

Test equipment:

Tektronix

SG 503 Constant Amplitude Sine wave Generator

Test setup:

.

ScoMMeier

Settings/procedu re/requirements for channel A:

Vertical dynamic range check:

A Switch on the ScopeMeter and press the

SCOPE key to get Into

SCOPE mode.

6 Apply a 50 kHz sine wave signal of 950 mV peak-to-peak to channel A.

Use a 50Q termination.

C

Press the

AUTO SET key.

Set channel A to 1

00 mV/dIv.

and set the tlmebas© speed to lOps/div.

D Use the vertical

MOVE key to shift the bottom of the sine wave vertically over the screen in the lower division.

Shin the top of the sine wave in the upper division.

Verify that the top and bottom of the sine

E Apply a 50 wave signal of 9.5

divisions can be displayed distortion free.

MHz sine wave signal of approximately 500 mV peaktopeak

(4 divisions on the screen) to channel

A.

Use a 50Q termination.

F Set the time base speed to 10 ns/dtv.

G Now a sine wave with an amplitude of 4 divisions must be displa/ed distortion Iree.

Move control check:

A Adjust the signal amplitude to

6 divisions on the screen.

B Check that the trace can be moved over 4 divisions up

(

+ 4 d

I v.) a nd over 4 d visions down

(-

4 d iv.

)

Settlngs/procedure/requlrements for channel

6:

Repeat the total procedure for channel

A.

:

PERFORMANCE VERIFICATION PROCEDURE

3.

Trigger level control range channel A and B

•••

All models

This test checks the trigger level control range.

Test equipment:

Tektronix

SO SOS Constant Amplitude Sine wave Generator

T^st setup:

4-19

Sett inge/procedure/requ Iremente

A Apply a 500 kHz sine wave wHh an amplitude o1

950 mV peak-to-peak to channel A.

Use a 5012 termination.

B Switch on the

Scope Meter and press the

SCOPE key to get into

SCOPE mode.

Now press the

AUTO SET key.

C

Verify that the signal is welt triggered.

D

Set channel A to 100 mV/div.

E Press the

TRIG 3 EH key.

Use the select/adjust Keys to verify that the trigger level range

Is more than 8 divisions (4 divisions up and 4 divisions down).

The selected trigger level

Is shown on the display {reversed Indication LEVEL*}.

Also the trigger level indication, marked with an Aj~ will shift, while shifting the trigger level.

See hgure

4.9.

F Repeat the same procedure for channel B.

run

Figure 4.9

Trigger level indication on screen

:

4-20 PERFORMANCE VERIFICATION PROCEDURE

4.

Power supply voltage range

•**

Ail models *'•

Th^ test checks the correct operation of the ScopeMeter within the boundaries of the

DC supply voltage.

Test equipment:

Philips

PE 1537 Power Supply 0-40V/0-1A

Tektronix

5

SO 503 Constant Ampittude Sine Wave Generator mm

Power Jack connector plug with attached cable {for example order 4622 321 20125)

Test set-up:

ScoQ«Uetar

Settl ngs/proeed ure

A

Insert the power plug into the power adapter contact on the side of the ScopeMeter.

B

Switch on the power supply and set the voltage to a wanted value between 8 and

C

Apply a 50 kHz sine wave v/tth an amplitude of

100 mV peak-topeak to channel

20V DC.

A.

Use a SOD termination.

D Swich on the ScopeMeter. At power on, a beep tone must be audible.

E Press

AUTO SET and verify that a well triggered signal with an amplitude of approximately 5 divisions is displayed over the whole supply voltage range.

Requirements:

A The ScopeMeter must start at any DC voltage between 3 and 20V, applied at Its power adapter contact.

B The ScopeMeter must remain operative over the indicated voltage range.

C The amplitude of the trace displayed must be approximately

5 divisions, independent of the supply voltage.

Figure 4.10

Power Jack connector

PERFORMANCE VERIFICATION PROCEDURE 4-21

5.

Supply current

«•»

All models

This lest checks the total suppl/ current (ScopeMeter supply curr^ and the bulH-in battery charger current).

Test equipment:

Philips

PE 1537 Power Supply 0-40V/0-1A

5

Digital Multimeter

(Philips

PM

2525 or equivalent) mm

Power Jack connector plug with attached cable (for example order 4822 321 20125).

Test set-up:

PHILIPS PU2S2S

ScopeMeter

Settings/procedu re/requ irements:

NOTE: A PM

9086 bstl^ry pack

(inctudad in tha shipment) has to be installed for this test

Only NiCad batteries can be charged b/ the Scr^eMeter!

A Set the power supply to

1

5V DC.

B Check that the charging current

Is

200 mA

C

Switch on the ScopeMeter.

D Check that the total supply current is

330

(typical mA reading

(typical on reading multimeter).

on multimeter).

6.

Battery backup functional test

•••

All models

This test verifies that the ScopeMeter settings will be kept

In memory

If power

Is switched off while the batteries are installed.

Test equipment: none

Test setup: no specific test setup required

Settings/procedure:

A Switch on the ScopeMeter and press the

SCOPE key to get into scope mode.

B Press the

AUTO SET key and set channel A and B to

500 mV/di v.

Set the timebase to

C Switch off the ScopeMeter with the

ON/OFF key and keep it switched off for

1 ms/div.

one hour to enable all capacitors to discharge.

D Press the

ON/OFF key to switch on the

ScopeMeter again, and verify that the settings for the timebase and attenuator have not changed.

Requirements:

ScopeMeter settings at power off must be restored the next time power

Is switched on.

4-22 PERFORMANCE

VERIFICATION PROCEDURE

7.

Cursor measursmsnU: time accuracy

*•* Models 95/97 only!

This test checks the accuracy of the cursors while measuring time.

Test equipment:

Tektronix

TG

501 Time Mark Generator

Test setup:

SeoD^Meter

Setting/procedure:

A Apply a

1 ms time marker signal to charnel A.

Use a 500 termination.

B Switch on the Scope Meter and press the

AUTO SET key.

SCOPE key to get into

SCOPE mode.

Now press the

C

Set the timebase to

1 ms/div.

D Press the HOLD/RUN key to freeze the display.

E Press the

CURSOR DATA key to get Into the cursor menu,

F Press the

CURSOR softkey to turn on the cursor lines.

G

Position the cursor lines with the

<CURSOR

-l-> and <CUfiSOR 2-> keys, so that they cover a distance of 6 time marker

Intervals.

Position the markers exactly lothe top of the marker pulses.

See figure 4.11.

Requirements:

The measured time distance between the cursors

Is displayed at the right side next to the traces.

This value must be

5. 99...

6.01

ms.

*5VAC PROBE *10 B Of

F

PROBE*10

Figure

4.

1 1

Cursor lines on marker pulses

:

.

PERFORMANCE VERIFICATfON PROCEDURE

8.

Cursor measurements: vohage accuracy

••• Models 95/97 only!

•••

This test checks the accuracy of the cursors while measuring voltage.

Test equipment:

Tektronix

PG 506 Square Wave

Calibratfon Generator

Test setup:

4-23

Setting s/procedure

A Apply a

1 kHz square wave voltage of

IV peak-to-peak to channel A.

Use the

*STD AMPL' output of the

PG

506.

B Switch on the Scope Meter and press the

AUTO SET key.

SCOPE key to get irio

SCOPE mode.

Now press

C

Set channel A to

200 mV/div and to

AC coupling.

D Press the HOLD/RUN key tc freeze the display

E

F

Press the

Press the

CURSOR DATA key to get into the cursor menu.

CURSOR softkey to activate the cursor lines.

G

Position the first cursor in the horizontal middle of the top of the waveform.

Use the

<CURSOR

-1-> key to position cursor

1

I

H

Position the second cursor in the horizontal mid of tiie bottom of the waveform.

Use the

<CURSOR

-2-> key to position cursor 2.

Use the most right softkey to select

NORMAL readout.

Requirements:

The measured voltage between the cursors is displayed at the right side next to the traces.

This value must be

0.98V-..

1.02V.

9.

SETUP memory f unctims

Model 97 only!

***

ScopeMeter model 97 enables storing up to

10 front settings that will be kept In a memory with a t>attery backup.

This test checks this function.

Test equipment; none

:

4-24 PERFORMANCE VERIFICATION PROCEDURE

Test setup: no specific set* up required

Setti n g/procedure

A Switch on the ScopeMeter and switch to

SCOPE mode.

Operate the keys to get a from setting that differs frorr the default settings:

Set channel A and B la 500 mV/di v.

Set the timebase to 1 ms/div.

B Press the

SETUP key to gel into the

SETUP menu

C Press the

SAVE softkey, select

SETUP 3 from the pop-up menu, and press ENTER.

This will save the current front setting as SETUP

3.

D

Set channel

A and B lo 2V/div.

Set the timebase to

1

^e/div.

E

Switch off the ScopeMeter.

F Switch on the ScopeMeter again (do not use MASTER RESET!). Press the

SETUP Key to get into the

SETUP menu.

G

Press the

RECALL softkey and choose SETUP

3 from the pop-up menu.

(Use the select/adjust keys and the

ENTER softkey.) This entry is marked in the pop-up menu.

The frortt setting must

I be restored to the setting previously selected

In step A.

H Now press the

DELETE softkey.

Use the select/adjust key and the

ENTER softkey to choose

SETUPS from the pop-up menu.

The RECALL marker svill disappear now as a sign that the front setting is no longer stored in msmory.

Press the

SAVE button to display the

Verify that the marker before

SETUP pop-up menu.

SETUP

3 has disappeared.

10.

Generator

»»* Model 97 only! *»*

This test checks the built-in generator.

Test equipment: none

Test setup:

ScopeMMr

:

PERFORMANCE VERIFICATION PROCEDURE 4-25

S«ttln gs^^roeedu ra/raq u i rofnorto

Squsr0 wave

A Switch on the Scope Meter and press the

B Press

SCOPE key to get Into scope mode.

We SPECIAL FUNCT

Key.

Now press the left most softkey, marked GENERATE.

This will reveal the

GENERATE popup menu.

C Use the select/adjust keys to select “Square: 976 Hz" and press the right most ENTER softkey to activate the generator.

0 Press the LCD key, and then press the softkey pop-up menu.

PROBE CAL.

This will reveal the

CAL&ADJUST

Use the select^adjust keys to select "Channel A

1 ;1 and press the

ENTER softkey

1

E to activate 1:1 coupling.

Now press

AUTO

SET.

F Press the

Q Press the

CURSOR DATA key.

This will get you to the

CURSOR DATA menu.

CURSOR softkey.

Use the <-CURSOR 1-> most negative part of the square wave signal.

Use the key to position the left cursor line on the

<-CURSOR 2-> key to position the right

H cursor line on the top of the square wave sgnal.

Now press the

FUNCTION softkey.

This will reveal the FUNCTION pop-up menu.

Use the select/adjust keys to select

"FREQUENCY" frequency measurement.

Press the and press the

ENTER softkey to activate the

FUNCTION softkey again.

This will remove the FUNCTION pop-up menu.

The ScopeMeter display will look like figure 4.12.

The generator must produce a square wave signal with an amplitude of

5V and a frequency of

976 Hz

(tyfrical values).

A2VAC

1

1

»

1

1 t

1 n

1

B2VOFF

TRIG: at n

1 1

PROS

10:1 dV:

5,00

V dL

2.64

ms

•REQ

976

Hz

Figure

4.

12 Generator produces square wave signal

J

S/ne wave

Now press the

SPECIAL FUNCT key.

Press pop-up menu.

We GENERATE softkey to reveal the

GENERATE

Use the select/adjust keys to select

"SINEWAVE" and press the

ENTER softkey

K to activate the generator.

Use the mV/V keys to adjust the attenuator.

4-26 PERFORMANCE VERIFICATION PROCEDURE

L The Scope Meter display will look like figure 4.1 3.

The generator must produce a sine wave signal with an amplitude of

IV and a frequency of

976 Hz

(typical values).

A200mVAC

500ya/DIV

8 2V OFF

TRIG.

A/

PROBE

10:1

CSV;

1.CO

V dt:

2.64

ms

FREQ:

97S

Hz

GENERATE

^

Figure

4.

t3

MEASURE PRINT PRINTER

^ FORMAT^ SETUPS

Genera for produces sine

START

PRINT

9ni79 wave signal

11.

Component test function

»** Model 97 only! *»•

This test checks the component test function (slow ramp voltage and slow ramp current).

Test equipment:

Red scope probe (delivered with the ScopeMeter)

Test setup: aius

Settinga/procedure/requ iremente;

A Switch on the

ScopeMeter and press the SPECIAL FUNCT key to enter the

SPECIAL FUNCT menu.

B Now press the

MEASURE softkey.

This will reveal the

MEASURE pop-up menu.

PERFORMANCE VERIFICATION PROCEDURE 4-27

C Use the selecVadjusl keys to select "Components: VOLTAGE', and press the

ENTER softkey

(most right) to start the component test function.

D

Adjust the channel A attenuator (press the mVA/ key once

In the direction "mV") to set the vertlcai axis to

500 mV/div.

E The ScopeMeter display will now look like figure 4,14.

It you use

F Press the a 10 kQ resistor, a 45^ line will be shown.

MEASURE softkey and use the select/adjust keys to select "Components:

CURRENT" from the

MEASURE pop-up menu.

Activate the selection by pressing the

ENTER softkey.

G Exchange the 10 kO resistor for a

1 kO resistor.

H Now the ScopeMeter display will show a line under

45'’, in the upper left quadrant.

-2V

-W

OV +1V +2V

Figure 4.

14 Componer^i test

"VOLTAGE'' mode

CALIBRATION ADJUSTMENT PROCEDURE 5-1

5

CALIBRATION

ADJUSTMENT PROCEDURE

5.1

5.2

GENERAL INFORMATION

The following information provides the complete Calibration

Adjustment Procedure for the

ScopeMeter.

Because various control functions are interdependent, a certain order of adjustment is necessary.

The procedure is therefore presented in a sequence that is best suited to this order.

Before you make calibration adjustments, always use the

Performance

Verification

Procedure in chapter 4 to check the ScopeMeter performance.

The

Calibration Adjustment Procedure, described here, consists of the following three parts:

CONTRAST

Calibration Adjustment Procedure

SCOPE

Calibration Adjustment Procedure

METER

Calibration Adjustment Procedure

Almost all Calibration Adjustments steps of the can be done without opening toe instrument.

Only the first four

SCOPE

Calibration Adjustment Procedure require disassembling of the ScopeMeter

(see section 5.6.1).

NOTE: Every year use the Performance

Verification

Procedure in chapter 4 to check the

ScopeMeter.

tfthe ScopeMeter fails the Periormarrce Verification Procedure, Caf/Prafton

Adjustments must be made, if the

ScopeMeter also fails the Calibration Adjustment

Procedure, repair is necessary (see chapter

7).

(After repair, it is to do also a Hardware Calibration Adjustment, see section 5.6.1) sometimes also necessary

Sections

5.5, 5.6

and

5.7

describe the calibration process in detail.

Section 5.8

contains a summary of all calibration adjustments as a reference for more frequent users.

RECOMMENDED CALIBRATION ADJUSTMENT EQUIPMENT

The equipment recommended for the Calibration Adjustment Procedure is listed in table 5.1.

All calibration adjustments must be done in ambient temperatures between

ScopeMeter can be used immediately: there is no warm-up time specified.

18C and 28C.

The

Table

5. 1

Recommended calibration adjustment equipment survey

Instrument Type

Multifunction Calibrator

Square Wave

Calibration Generator

Function Generator

*) Personal Computer

*) Optical to RS-232

Interface Cable

*)

Flash

ROM

Refresh software

*)

+12V

2.5%) Programming voltage

Recommended Model

Fluke 51

OOB

Tektronix

PG 506

Philips

PM 5134

Any IBM compatible PC, running

MS-DOS

PM9080/001

Contact your Service Center

)

These items are required after three calibrations, see note paragraph

5.3, pag 5.3

for details.

5-2

CALIBRATION ADJUSTMENT PROCEDURE

5.3

Cables and terminators for the generators

{all

6NC t^e]

Standard banana test leads

(two banana lest leads are delivered wltti the ScopeMeter)

BNC

(female)-lo-banana (mate) (delivered with the ScopeMeter)

The red and grey probes, delivered with the ScopeMeter.

ENTERING THE CAUBRATION PROCEDURE

The

Calibration Adjustment Procedure

Is operated via built-in sequences.

Before you can activate a calibration sequence, you must first connect a

1

2V DC programming vohage to the ScopeMeter. To do this, Rrst remove the bettery pack.

See section 6.2.1.

17

Figure 5.

1

Position of the -t‘12V and 0 contacts for calibration (items 25)

If you have removed the ScopeMeter battery pack and the battery cover

(figure 5.1

, item

17), you will have access to the -»-12V/0 contacts (figure 5.1

,

(+12V) and the right middle

(0) of the battery item

25).

These contacts are placed in the left middle compartment.

Connect +12V DC to the cor^tact marked

“0".

•+1 2V" and OV to the contact marked

CAUTION: To avoid damaging the Flash

ROM circuitry be sure to apply the polarity of programming voltage correctly.

1

2V

NOTE:

After you have performed the Calibration Procedure, remove the

12V programming voltage.

Do not perform measurements with the ScopeMeter, while the programming voltage is stiH present

CALIBRATION ADJUSTMENT PROCEDURE 5-3

5.4

Connect the ScopeMelerto th©

Power Adapt® r/Battdry Charger

PM

8907.

Use MASTER RESET to switch the ScopeMeter on. {To do this press the LCD key and keep rt pressed.

Then also press the

ON/OFF key.

When the ScopeMeter switches on, you wili hear two beeps.)

Now press both

AC/DC/GROUND

This keys simultaneous^.

This will start the

SERVICE menu

(see figure 4.1

, chapter

4), menu allows you to start the calibration sequence. Press the corresponding softkey marked

"CALIBRATE

ScopeMeter".

This will start the

CALIBRATE menu.

NOTE: The ScopeMeter will show the message:

"Space for

X more calibration sessions.

“(X is: 2.

1.

or

0}

After three electronic calibrations, the sessions".

This

ScopeMeter will display: "Space for 0 more calibration means that the internal Flash

ROMs of the ScopeMeter are full.

To enable another calibration, you must first empty the Flash

ROMs and reinstall the

ScopeMeter ope rati rtg software.

To do this, send the ScopeMeter to your nearest Service Center.

It is also possible to 'refresh* the

FlashROMs by yourself, using a PC. For more

Informatlort: contact your nearest Service Center.

OPERATING THE

CALIBRATION

PROCEDURE

Softkeys in the

CAUBRATE menu

In the CALIBRATE menu,

H is possible to choose the calibration mode (sequence) to be performed.

Press the softkey marked:

CONTRAST for the

CONTRAST

Cdilbratlon Adjustment Procedure (see section 5,5).

SCOPE for the SCOPE

Calibration Adjustment Procedure (see section 5.6).

METER for the

METER

Calibration Adjustment Procedure (see section 5,7).

When one of

^ese three calibration sequences is chosen, the corresponding text on be shown in reverse.

This shows that this calibration mode is active.

^e screen will

If you press the

SERVICE menu.

ESCAPE softkey, the

ScopeMeter will leave the CALIBRATE menu and return to the

NOTE:

If you use the

ESCAPE softkey to leave the CAU8RATION menu before storing the calibrations with the

CAL STORE softkey you will lose all new calibration values.

The instrument will continue using the calibration values that were used before entering the

CAUBRATE menu.

The CAL

SCOPE

Of

STORE softkey saves the new calibration values that are obtained in the

CONTRAST

METER sequences, to the Flash

ROM.

From the moment you press the

CAL STORE softkey, the ScopeMeter uses the new caftbration data.

The old calibration data is no longer valid.

This will also fill one calibration field in the Flash ROM.

See secticn 5.3.

NOTE:

After calibrating the ScopeMeter, reset the instrument (use a MASTER RESET), before performing measurements.

Keys

In

CONTRAST, SCOPEs or

METER

Caiibraiion mode

The calibration is presented as a sequence.

You can advance through this sequence by pressing the select/adjust keys.

Pressing the upper select/adjust key advances adjueVselect key brings you back one step.

one step; pressing the tower

In sections 5.5, 5.6

and S.7

this figure is used to indicate that one of the select/adjust number keys (up/down) must be pressed to display the indicated step

V

displayed on the ScopeMeter screen.

5-4 CAUBRATION ADJUSTMENT PROCEDURE

5.5

When the

ScopeMeter LCD displays the indication CAL", you must first apply the appropriata input

(calibration) signal.

When the correct signal is present at the correct terminal, you start the built-in calibration by pressing the most right

READY softkey.

The text

“READY" will be in reverse video, to show that the ScopeMeter’s internal calibration is active.

text will change again, from inverted to normal.

When the process is ready, the

"READY"

Now you can use the select/adjust Keys to advance to the next calibration step or return to a previous calibration step.

After you have completed a calibration sequence, press either

CONTRAST.

SCOPE or

METER softkey again to return to the

CALIBRATE menu.

The new calibration data will stay in memory to enable you to store it permanently with the

CAL STORE key.

Press the

ESCAPE softkey to leave the active calibration mode without storing the new calibration data. This will also return you to the

CALIBRATE menu.

CONTRAST CAUBRATION ADJUSTMENT PROCEDURE

You activate the

CONTRAST

Calibration Adjustment Procedure from the CALIBRATE menu, by pressing the left most CONTRAST softkey.

When this softkey

Is depressed, the text

‘CONTRAST" is shown in reverse video, to show that this calibration mode is active.

Now use the adjusl/select Keys to adjust the contrast of the

LCD to your own

(personal) setting.

When you have found the correct setting, you can make this setting ready for calibration atorage, by pressing frie

READY softkey once.

NOTE: When you press the oc»/?frast/s actually

READY softkey, this does not mean that the new value of the

LCD stored in the Flash

ROMs of the ScopeMeter.

This only happens when you press the

CAL STORE softkey.

Press the

CONTRAST softkey again to ieave the

CONTRAST

Calibration Adjustment Procedure.

The text

"CONTRAST will change from reverse video Into normal again.

5.6

SCOPE

CALIBRATION

ADJUSTMENT PROCEDURE

You can start the the

SCOPE

Calibration Adjustment Procedure from the CALIBRATE menu by pressing

SCOPE softkey.

When this softkey is pressed, the text

'SCOPE" is shown in reverse video, to show that this calibration mode is active.

The SCOPE

Calibration Adjustment Procedure

Is divided into two parts:

-

Hardware

Closed

SCOPE

Caiibration Adjustments: steps H1 to

H4

Case SCOPE

Calibration

Adjustments steps

85 to

S29

NOTE: During the following CaliPration

Adjustment Procedure, you must connect the ScopeMeter input connectors to the signal generator outputs by means of cables (BNC connector channel

A or B) or two standard banana test leads

(COM and mV/Ohm/Dk>de banana connectors).

5.6.1

Hardware SCOPE

Calibration Adjustments

The first four steps of the

SCOPE

Ceilbration Adjustment Procedure are called

Hardware SCOPE

Calibration Adjustments.

To perform the

Hardware SCOPE

Calibration Adjustments, you must open the ScopeMeter.

The dissssembly procedure for these calibration adjustments is described in chapter 6 (section 6.1

and

6.2.3).

CALIBRATION ADJUSTMENT PROCEDURE 5-5

WARNINGt To prevent personal injury, do not perform any diaaseembly procedures before reading chapter

6.

When the ScopeMeter

Is disassembled, it is not possible to apply the

+12V programming voltage in the normal way.

It Is possible to apply the -!'12V programming vol^ge by means of two test clips (see tlgure 5.2).

Remove all voltage sources from the ScopnMeter Turn the digital

Al PCB. mounted in the top cover so that the display and the keyboard are facing down.

Connect the

•••12V programming voltage to the appropriate places on the PCB.

It can be helpful to first install two metal screws again.

See figure 5.2.

Be sure not to short circuit with the metal shielding, mounted on the analog A1 PCB.

Turn the top cover and the mounted PCB.

Connect the

ScopeMeter to the power supply and switch the Instrument on.

Go to the SERVICE menu and press the

CALIBRATE ScopeMeter sotb<ey.

You can make the adjustments necessary with six trim capacitors (three for the attenuator of each channel) and two adjustment potentiometers (for^e Analog ASIC).

*12V

Figure 5.2

Connecting the

Adjustments.

12V programming voltage for

Hardware SCOPE

Calibration

NOTE: You only have to do Hardware

SCOPE

Calibration Ar^ustments, if you have repaired the

ScopeMeter in the Attenuator sections or a Hardware

In the

Analog ASIC circuitry.

After you have done

SCOPE

Calibration Ac^'ustment or you have ar^usted one of the potentiometers, you always need to do a full (software)

SCOPE and METER calibration, ft you decide not to do the

Hardware

Ca//Praf/or?

Adjustment now, you can advance to calibra^on S5 by pressing the upper seiect/adjust key 4 times.

.

5-6

CALIBRATION ADJUSTMENT PROCEDURE

H1.

Hardware pulse response of the attenuation

Purpoed: optimal pulea response of the

<>1 attenuation circuit.

Calibration

Philips equipment:

PM

61 34 Function Generator

Calibration eetup:

Procedure:

A

Apply a square wave with a frequency of 1 kHz, amplitude 300 and

-t-300 mV) to both channels A and

B,

Use 50Q mV terminations.

peak-to-peak (between 0 mV

B

Turn trimmer C2209 on the analog A2 PCB to get the best channel A pulse response on the

LCD

(least distorted waveform).

The position of trimmer C2209 can be found in section 10: figure 10.3

(A2 PCB layout SMD).

C

Turn trimmer C2109 on the anaog A2 PCB to get the best channel B pulse response on the

LCD.

The position of trimmer C2109can be found in section 10: figure 10.3 (A2

SMD).

PCB layout

D

Press the

READY softkey.

H2.

Hardware pulse response of the *10 attenuation

Purpose: optimal pulse response of the *1 0 attenuation circuit.

Calibration

Philips equipment:

PM

5134 Function Generator

Calibration setup:

See calibration setup H1

CALIBRATfON ADJUSTMENT PROCEDURE 5-7

Procddure:

A

Apply a square wave with a frequency of

1 kHz, amplitude 3V peak-to-peak (between OV and

+3V) to both channels A and

B.

Use 500 terminations.

B

Turn trimmer C2207 on the analog A2 PCB to get the best channel A pulse response on the

LCD

(least distorted waveform).

The position ot trimmer C2207car> be found in section 10: figure 10.3

(A2 PCB layout

SMD).

C

Turn trimmer C21 07 on the analog A2 PCB to get the best channel B pulse response on the

PCB layout

LCD, The positicm of trimmer C2107 can be found

In section 10: figure 10.3

(A2

SMD).

D

Press the

READY softkey.

H3.

Hardware pulse response of the *100 attenuation

Purpose: optimal pulse response of the

OO attenuation circuit.

Calibration equipment:

Tektronix

PG 506 Square Wave

Calibration Generator

Calibration setup:

Procedure:

A

Apply a square wave with a trequency of

1 kHz, amplitude 20V peak-to-peak (between OV and

+20

V) to tx)th channels A and

B.

Set the generator to the position

'STD AMPL".

B

Turn trimmer C221 4 on the analog A2 PCB to the best channel A pulse response on the

LCD

(least distorted waveform).

The position of trimmer C2214can be found in section

(A2

PCB layout

SMD).

1

0: figure

1

0.3

C

-

Turn trimmer C21 14 on the analog A2 PCB to getthe best channel B pulse response on the LCD.

The position

D

-

Press the of trimmer C2114 can be found in section 10: figure 10.3

(A2

READY softkey.

PCB layout

SMD).

5-8 CALIBRATION ADJUSTMENT PROCEDURE

H4.

Hardware offset and gain

Purpose: optimal response of complete analog A2 circuitry.

Calibration equipment:

Fluke 51CX)B Calibrator

Calibration setup:

Procedure:

A

-

Connect Test Point TP209 on the analog A2 PCB to

GROUND.

The posftlon of Test Point

TP209 can be found

In section 10: figure 10.4

(A2

B Apply a

1 kHz sine

PCB layout wired components side).

wave signal with an amplitude of

720 mV AC peak-to-peak to the channel A

BNC ccffinector.

(Set the Fluke 5100B to

254.56

mV RMS,

1 kHz sine wave.)

C

Turn the potentiometers R2346 and R2347 sc that the sine wave on the

LCD is exactly 6 divisions: maximum

(peak) on divisions, minimum

(peak) on -3 divisions (tolerance

±1 dot).

D

Press the

READY softkey.

5.6.2

Closed Case SCOPE

Calibration Adjustments

NOTE; The foHowiag calibratiori adjustments are done electronically.

For these calibrations, the

ScopeMeter must be in a fully assembled state!

S5. Offset correction

Purpose: remove offset of channel A and B input operational amplifiers.

Calibration equipment: none.

.

CALIBRATION ADJUSTMENT PROCEDURE

Calibration setup:

3MORT cincurr

5>9 rn-inrn rr

QQrjO

IZOCDOa n Q

QGfiDD

B°aB8

ScopeMeter

Procedure;

A

Short circuit both channel

B Press the

READY softkey.

A and channel B inputs.

S6/7.

Pulse response of the

*1M0 attenuation (fine adjustments)

Purpose: optimal pulse respor^se of the *1

,

*10 attenuation circuit.

Calibration

Philips equipment

PM 5134 Function Generator

Calibration setup:

See calibration setup HI

Procedure;

A

Apply a square wave with a frequency of

1 kHz, amplitude 300 mV peak-lo-peak (between 0 mV and

-hSOO mV) to both channels A and

B.

Use 50Q term! nations.

B

Press the

READY softkey.

C

Apply a square wave with a frequency of 1

KHz, amplitude 3V peak^topeak

(between OV and 43V) to both channels

D

Press the

READY softkey.

A and

B.

Use 500 terminations.

5-10 CALIBRATION ADJUSTMENT PROCEDURE

S8/9.

Pulse reeponee of the *1007*1000 attenuation (fine adjustments)

Purpose: optimal pulse response of the >100,

*1000 attenuation circuit.

Calibration equipment:

Tektronix

PG 506 Square Wave

Calibration Generator

Calibration setup:

See calibration setup H3.

Proce<3ure:

A

*

Apply a square wave with a frequency ot

1 kHz, amplitude 20V peak-to-peak (between OV and

+20V) to both channels

B

Press the

READ/

A softkey.

and

B.

Set the generator to the position

"STD AM

PL".

C

-

Apply a square wave with a frequency of

1 kHz.

amplitude 50V peak-to-peak

(between OV and -fSOV) to both channels

A and B.

Set the generator to the position

-STD AMPL*.

D

-

Press the

READY softkey.

SI 0/11/1 2/1 3/1 4/1 S/1 6/17

Gain for 5 mV, 10 mV, 20 mV, 50 mV, 100 mV, 200 mV, 2V,

20V

Purpose: correction of the system gain (from

BNC to microprocessor)

In attenuator settings: 5 mV,

1

0 mV, 20 mV, 50 mV, 100 mV, 200 mV,

2V,

20V.

Calibration equipment:

Tektronix PQ 506 Square Wave

Calibration Generator

Calibration setup:

See calibration seti^ H3.

Procedure:

A

Apply a square wave with a frequency ot

1 kHz, amplitude 20 mV peak-to-peak to both channels

A and

B.

Set the generator to the position

"STD AMPL".

B

-

Press the

READY softkey.

C

Change the Input voltage according to table 5.2.

After each calibration press the

READY softkey.

Use the adjust/sdect keys to advance/go back in the list.

NOTE: These steps calibrate both channel A and B at the same t/me.

CALIBRATION ADJUSTMENT PROCEDURE

Table 5.2 Catibra^on signals for step

S10.

SI

7.

Calibration step number

S10

S11

S12

S13

S14

S15

S16

S17

Calibration voltage square wave, t kHz, 20 mV peak-to-peak square wave,

1 kHz.

50 square wave,

1 kHz, 100 mV peak-to-peak mV peak-to-peak square wave,

1 kHz.

200 square wave,

1 kHz, 500 square wave.

1 kHz.

IV mV peak-to-peak mV peak-to-peak peaMo>peak square wave,

1 kHz.

square wave,

1 kHz, lOV peak-to-peak

100V peak-topeek

5-11

S18/19.

Shift gain

*1 mode and

/8 mode

Purpose: correct for the shift gain in "times

1 mode" and in

“dMded by 8 mode".

Calibration equipment:

Tektronix

PG 506 Square Wave

Galidration Generator

Calibration setup:

See calibration setup H3.

Procedure:

A

Apply a square and <-200 wave with a frequency of 1 kHz, amplitude 200 mV peak-to-peak (between 0 mV mV) to both channels A and B.

Set the generator to the position

"STD AMPL".

B

Press the READY softkey.

C

• Apply a square wave with a frequency of

1 kHz. amplitude 20 peak (between 0 mV and +20 mV) to both channels A and

B.

mV peak-to-

Setthe generator to the poslion

D

-

Press the

READY softkey.

"STD AMPL".

5-12 CALIBRATION ADJUSTMENT PROCEDURE

S20/21/22/23.

Channel A and channel B 50% and 90% trigger level

Purpose: calibrate the

50% and 90% analog trigger level of channel A and channel

B.

Calibration equipment:

Fluke 51008

Calibrator

Calibration setup:

Procedure:

A

Apply a sine wave with a frequency of 50 kHz.

amplitude

1 V peak-tO'peak to both channels A and

B.

Use 500 terminations.

jSetthe Ruke 5100B to 0.353.5

mV RMS,

5 kHz sine wave).

B

Press the

READY softkey.

C

Press the

READY softkey.

0

Press frie

READY softkey.

E

Press the

READY softkey

CALIBRATION ADJUSTMENT PROCEDURE

S24. External triggering

Purpose; calibrate tTie

0.2V

external trigger level.

Calibration equipment:

Fluke 5100B

Calibrator

Calibration setup:

6-13

BMC

(C

(female)

9ANANA

(n^)

Scope Udfer

Procedure:

A

Apply a 50 kHz

Sine wave signal with an amplitude of 1

V peak-to-peak to channel A and also to the banana connectors.

Use a coaxial signal splitter and a BNC(female)’tO'banana(male} converter (see calbration setup).

(Set the Fluke 51006 to

B

Press the

READY softkey.

0.35355V

RMS,

5 kHz sine wave).

S25.

Random sampling

Purpose: calibration of the random sampling levels.

Calibration equipment:

Tektronix PG 506 Square Wave

Calibration Generator

5-14

Calibration setup:

CAUBRATION ADJUSTMENT PROCEDURE

Procedure:

A

• Apply a

1

MHz square wave signal with an amplitude of approximately

600 mV peak-to-peak to both channel A and

B.

Setthe generator to the

FAST RISE position.

Use 50Q terminations.

B

Press the

READY softkey.

C

Now press the

SCOPE softkey to go back to tfie

CALIBRATE menu.

CALIBRATION ADJUSTMENT PROCEDURE 5-15

5.7

METER

CALIBRATION

ADJUSTMENT PROCEDURE

Press the

METER softkey to activate the

METER

Calibration Adjustment Procedure from the

CALIBRATE menu.

When you press this softkey, the text "METER' will be shown

In reverse video to show thmthls calibration mode is active.

NOTE: During the

METER calibration, the values displayed on the

LCD do not represent the values of the input voltagesf

M1

.

Linearity calibration and M2. Zeroing the ranges

Purpose Mt: calibration of the linearizalion table, used by the ScopeMeter

Purpose M2: this calibration zeros all ranges of the ScopeMeter in mode: 300 mV,

3V,

METER

30V and 300V on channel A and 300 mV and

3V of the banana connectors.

Calibration equipment; none

Calibration set-up:

&HORT CIRCUIT coDcn

no

DDBQD

C.LllQ^D

(-1 nn-i

ScopeMeief

Procedure:

A

• Short circuit the channel A BNC and the banana connectors.

B

Press the

READY softkey.

NOTE: During this calibration step many internal calibration constants are being set.

This process can last up to 3 minutes.

(C Short circuit the channel

A BNC and the banana connectors.)

D

Press the

READY softkey.

V

5-16 CALIBRATION ADJUSTMENT PROCEDURE

M3.

Channel A, 300

mV

range: zero for open input

Purpose: zero channel

A

In

Ihe 300 mV range with open

Input.

Calibration equipment: none

Calibration setup:

Channel A BNC open.

Procedure;

A

Remove any connection from the channel A BNC.

B

Press the

READY softkey.

M4/5/6/7.

Channel A, 300 mV/3V/30V/300V range: gain calibration

Purpose: calibration of the channel

A gain

In the 300 mV.

3V,

30V and 300 ranges.

Calibration equipment:

RukeSIOOB

Calibrator

Calibration setup:

BNC to

BANANA

(ternaio) {rrale)

ScopeMeter

Procedure:

A

Apply 300

8

Press the mV DC to channel

A.

READY softkey.

C

Change the input voltage according to table 5.3. After each calibration press the READY softkey.

Use the adjust/select keys to advance/go back

In the list.

CALIBRATION ADJUSTMENT PROCEDURE 5-17

Tabi9 S.3

CaJibrat/on signals for stop M4...M7.

Calibration Step Number C^ibration Voltage

M7

300 mV DC

3V

30V

30OV

DC

DC

DC

WARNING:

After you have performed calibration M7, deactivate the Fluke 5100B to remove the 300V DC.

Always set the Fluke S1008 to 300 mV DC before touching the connection cables!

M8/9.

External input, 300 mV/3V range: gain calibration

Purpose: calibration of the external input gain in the 300 mV and 3V ranges.

Calibration equipment:

Fluke 51

006

Calibrator

Calibratjon setup:

Procedure:

A

Apply 300 mV DC to the banana

B

Press the

READY softkey.

connectors.

C

Apply 3V DC to the banana connectors.

D

Press the

READY softkey.

1

5-18

CALIBRATION ADJUSTMENT PROCEDURE

M10.

AW ranges Oo calibration

Purpose: callbratior> of the 0^2 points In all ranges

Calibration equipment: none

Calibration setup:

J

SHORT CIROJd

A i aaaaa

DC3CIO oaonn

Q a a

OOeDD irni

D nop

ScopeMeler

Procedure:

A

“ Short circuit the banana connectors.

B

“ Press the

READY softkey.

M11/12/1 3/14/1 5/1 6.

Calibration of the

Ohm

ranges

Purpose: calibration of the 300£l

3 kO, 30 kO.

300 kCl 3 MO, and 30 ranges.

Calibration equipment:

Fluke

5100B

Calibrator

5-19 CALIBRATION ADJUSTMENT PROCEDURE

Calibration setup:

Scopef^er

Procedure:

A

Connect lOOnto banana connectors.

B

Press the

READY softkey,

C

-

Change the resistance according to table 5.4.

After each calibration press the

READY softkey.

Use the adjust^select keys toadvance/go back in the list.

Tdble 5.4 Calibration signals for step

Calibration Step Number

Mil

M12

M13

M14

M15

M16

Calibration Resistance

100&2

1 kn

10

Id^

100

1 kn m

10MQ

M17.

Voltage ramp calibration

Purpose: calibration of the voltage ramp of the circuit tester,

Calibration equipment: none

5-20

Calibration aotup:

CALIBRATION ADJUSTMENT PROCEDURE

Procedure:

A

Connect the channel A BNC to the red

GENERATOR OUT banana connector, by means of a

BNC cable and a

BNC

(lemalehtobanana (male) connector.

B

Press the

READY softkey.

M18.

Current ramp calibration

Purpose: calibrate the current ramp of the circuit tester.

Calibration equipment:

Fluke 5)006 Cahbrator

Calibration setup:

Procedure:

A

Connect a resistance of

100Q between both banana connectors.

Connect channel A to the red banana connector.

Do not use a prc^l Refer to the calibration setup.

B

Press the

READY softkey.

CALIBRATION ADJUSTMENT PROCEDURE

M19/20

10:1 calibration for channei A

(red) and channei B

(grey) probes

Purpose: determine the gain, using a

10:1 probe.

5-21

Calibration equipment:

Red scope probe (delivered with the ScopeMeter)

Qrey scope probe (delivered with the ScopeMeter)

Red adjust adapter (delivered with the ScopeMeter)

Calibration setup:

IMPORTANT:

Calibration steps M19 and M20 determine the Internal calibration constants that compensate for probe cheractenstics.

To achieve full accuracy (a$ listed In the specifications in chapter

2)t calibrations Ml

9 and M20 must be performed, using the probes that are normally to be used with the instrument.

If the probes delivered with the ScopeMeter are not available at the time of calibration, use other probes specifically designed for the ScopeMeter.

In this case you must notify the user that these calibrations have been performed, using different probes.

To achieve full accuracy, the user must

Calibration, using his do a User Probe own probes.

This procedure

Is described in the

ScopeMeter Users Manual.

Because the results of these User Probe Calibrations

5-22 CALIBRATION ADJUSTMENT PROCEDURE ar» atorod

In battery backed up RAM, they must be repeated if the batteries are removed for a longer period.

You will also loose the results of the User Probe

Calibration when you do a

MASTER RESET.

(A

MASTER RESET

Is done when the ScopeMeter

Is switched on while the

LCD key is depressed.

Two beeps are audible.)

Procedure:

A

Connect the red scope probe to the channel A BNC.

B

'

Connect the probe tip to the red

GENERATOR OUT banana cormeclor using the red adjust adapter.

Refer to the Calibration setup.

C

Press the

READY softkey,

If you have made ell connections correctly and you have connected the correct probe, the ScopeMeter will display the text;

"DC PROBE calibration in progress".

After a tew seconds the

ScopeMeter will display:

"PROBE successfully calibrated" and will also beep once, Now you can go to the next calibration step.

D

Connect the grey scope probe to the channel B BNC.

E

Connect the probe tip to the red

GENERATOR OUT Parana connector using the red adjust adapter.

F

'

Press the

Refer to the Calibration set-up.

READY softkey.

If you have rr>ade all connections correctly and you have connected the correct probe, the ScopeMeter wIK display the text:

"DC PROBE calibration in progress".

After a few seconds the ScopeMeter will display:

"PROBE successfully calibrated" and

It will also beep once.

Now you can go to the next calibration step.

M21/22.

1:1 probe calibration for channel A and channel B

Purpose: determine the gain, using a 1:1 probe.

Calibration equipment: none

Calibration set-up:

ScopeMeter

CAUBRATION ADJUSTMENT PROCEDURE

5-23

Proe^ure:

A

-

Connect the channel A BNC to the red

GENERATOR OUT banana connector, by means o1 a

BNC cable and a

BNC

(femate)-tobanana(male) connector.

B

-

Press tfie

READY softkey.

If all connections are good, the SoopeMeter will display the text:

"DC PROBE calibration In progress".

After a few seconds the SoopeMeter will display:

"PROBE successfully calibrated" and will also beep once.

Now you can go to the next calibration step.

Connect the channel connector, by

B BNC to the red GENERATOR OUT banana means of a BNC cable and a BNC(femaleHo-banana(male) connector.

Preoa the

READY softkey.

If all connections are good, the SoopeMeter will display the text:

"DC PROBE calibration In progress".

After a few seconds the SoopeMeter will display:

"PROBE successfully calbrated" and

It will also beep once.

Calibration is now complete.

5-24 CALIBRATION ADJUSTMENT PROCEDURE

5»8 Calibration Adjustment Procedure

Summary

This table provides an overview of all steps in the Calibration Adjustment Procedure.

It is intended to be used as a reference for frequent users.

For details on howto perform each Calibration Adjustment step, refer to sections 5.5, 5.6

and

5.7.

STEP

I

Table 5.5

Calibration Adjustment Procedure Summary.

SIGNAL SOURCE

I

SIGNAL AMPL/FREQ SCOPEMETER INPUTS ACTIONS

CONTRAST

Calibration Adjustment Procedure

Adjust for clear picture.

SCOPE

Calibration Adjustment Procedure

Hardware SCOPE

Calibration Adjustments: only to be done when ScopeMeter is repaired!

HI

H2

H3

H4

PM5134

PMS134

Tek PG S06

Fluke 5100B

300 mV(pp)/1 kH 2 (square)

A & 6 (50Q termin.)

3V(pp)/1

20V(pp)/1

254.5

kHz (square) kHz (square)

A & B (500 termln.)

A&B mV (RMS)/1 kHz

(sine]

A

Adjust C21 09^:^2209.

Adjust C2107/C2207.

Adjust C2114/C2214,

Adjust R2346/R2347,

Ground testpcrint

209.

Closed case SCOPE

Calibration

Adjustments

S5

S6

S7

S3

59

510

S11

SI 2

SI 3

SI 4

SI 5

SI 6

SI 7

SI 8

519

520

S21

S22

523

S24

S25

.

PM 5134

PM 5134

Tek

Tek

PG 506

PG 506

Tek

Tek

PG 506

PQ 506

Tek

Tek

Tek

PG 506

PG 506

PG 506

Tek

Tek

Tek

Tek

Tek

PG 506

PG 506

PG 506

PQ 506

PG 506

Fliice

5100B

Fluke 5100S

Fluke 5100B

Fluke S100B

Fluke

S100B

Tek

PG 506

.

_

300 mVjpp)/1

3V(pp)/1

20V(pp)^1

S0V(pp)/1 kHz (square) kHz (square) kHz (square)

20mV(pp)/1 kHz (square)

50mV(pp)/1 kHz

(square) too mV{pp)/1

200 mV(pp)/i

600 mV(pp)/1 kHz

(square) kHz

(square) kHz (square) kHz

(square)

A&B(5Cm termln.)

A

&

B(5011 termln.)

A&B

A&B

A&B

A&B

A&B

A&8

A&B

A&B

1V(pp)/l kHz (square)

10V(pp)/1 lOOV(pp)/1 kHz(squ^e) kHz (square)

A&B

A&B

200 mV(pp)/1 kHz

(square)

20 mV(pp)/1 kHz

(square)

353.5

353.5

mV

(RMS)/50 kHz

(sine) mV (RMS)/50 kHz

(sine)

A&B

A&B

A&B

A&B

A&B

353-5 mV (RMS)/50 kHz (sine)

353.5

mV

(RMS)/S0 kHz

(sine)

A&B

353.5

mV

(RMS)/S0 kHz

(sine)

A & banana

500 mV(pp)/l MHz

A&B

(500 termln.)

-

.

-

-

-

-

-

-

-

-

-

-

-

-

-

Short circuit

BNCs.

-

-

STEP SIGNAL SOURCE SIGNAL AMPL/FREO

METER

Calibration Adjustments

M1

-

M2

M3

M4

M5

M6

M7

Md

M9

M10

-

Fluke 51006

Fluke 51

OOB

Fluke 51006

Fluke 51006

Fluke 51006

~

Fluke

51006

-

300

3V mV DC

DC

30V

300V

DC

DC

300 rtiV

3V DC

DC

Fluke 31006 100

RukeSIOOB

1 kn Mg

Fluke 51006 lOldl

M14

Fluke 51006 100 kn

M15

Fluke 51006

1

M£2 lOMn M16

M17

RukeSIOOB

-

.

M18 lOOG

Fluke 51006

M19

M20

M21

M22 -

• red probe grey probe

.

-

-

SCOPEMETER INPUTS ACTIONS

-

A

A

A

A bananas bananas bananas bananas bananas bananas bananas bananas

ABNCto bananas resistor between bananas, connect A BNC to banana probe Dp to bananas probe tip to bananas

A BNC to bananas

6 BNC to bananas

.

-

.

-

Short circuit banana

BNCs &

Short circuit

A 8NC &

banana

A BNC open

.

.

.

.

.

.

.

.

.

.

-

Short circuit banana input

-

OISASSEMBLINQ THE SCOPEMETER 6-1

6

DISASSEMBLING THE

SCOPEMETER

6.1

6.2

GENERAL INFORMATION

Whenever

Uie ScopeMeter needs repair and/or Hardware SCOPE

Calibration Adjustments, the

Instrument must be disassembled.

NOTE: For ropfacemeni of Gomponents rofor to section

7.2; for

Hardware SCOPE

Caiibra^on

Adjustments refer to section 5.S.1.

This section provides the required disassembling procedures.

Both printed circuit boards from the instrument removed must be adequately protected against damage, and alt normal precautions regarding the use oi toots must be observed. During the disassembly process, make a careful note of all disconnected leads so that they can be reconnected to their correct terminals when you reassemble the Instrument.

WARNING: Removing the Instrument covers or removing parts, except those to which accees can be gained by hand,

Is likely to expose live parte and accessibie terminals may be live.

To avoid eiectric shock, disconnect the instrument from aii voltage sources and remove batteries before disassembling the Instrument.

If any adjustment, malrtenanee, or repair of the disassembled

Instrument under voltage is required,

It shall be carried out only by qualified personnel using customary precautions against electric shock.

Capacitors Inside the Instrument can hold their charge even if the instrument has been separated from all voltage sources and batteries have been removed.

DISASSEMBLY PROCEDURES

The following sections describe frie disassembly process of the ScopeMeter in sequence (from fully assembled instrument to separate primed circuit boards and chassis pans).

Start and end disassembly at the appropriate heading levels.

WARNING: To avoid electric shock, disconnect test leads, probes and power supply from any live source and from the ScopeMeter itself.

6-2

6.2.1

Removing the battery pack

17

DISASSEMBLING THE SCOPEMETER

Figure e. 7

Rerwving ffte battery pack

1

.

The battery cover (item 17) is secured to the ScopeMeter with two black

20).

M3 Torx screws (item

Use a Torx screwdriver to looeen the two screws (do not remove them) from the battery cover.

2.

Lift the battery cover from the ScopeMeter.

3.

Pull the black battery pull sihp (item 28) carefully to lift the battery pack.

4.

Remove the battery pack.

6^.2

Opening the ScopeMeter

Referring to figure 6.2, use the following procedure to open the ScopeMeter.

1

.

Loosen the two black

M3

Torx screws (item 4) (do not remove them) from the front cover.

2.

Lift the front cover assembly

(ftem

3) from the

ScopeMeter.

NOTE; The ga^et, between the front cover and the two case halves, is sealed to.

and must remain with, the front cover.

The front cover assembly lifts away from the top and bottom case halves easily.

Do not damage the gasket or separate ft from the front cover.

A correctly fitted gasket assures the sealing of the ScopeMeter.

3.

Remove the battery pack (see Section

6.2.1).

1

DISASSEMBLING THE SCOPEMETER 6-3

4.

The bottom cover aseembly is secured to the top cover with two M3

Torx screws (item 29) that are accessible in the battery compartment.

Use a

Torx screwdriver to remove the two screws.

5.

Lift the bottom cover a lithe from the top cover and unfold the Scope

Meter.

NOTE: Do not damage the black gaskets and keep them with the front co\/er and the lower case half.

A correctly f/tted gasket assures proper sealing of the ScopeMeter.

DIG tTAL

CIRCUIT

PRINTED

BOARD A

BATTERY

COVER

STAND

Figure 6.2

Opening the ScopeMeter

ANALOG

PRI>rTH3

CmCUITBOUnD

A2

BOTTOM COVER

6-4 DISASSEMBUNG THE SCOPEMETER

6.2.3

Removing the analog A2 PCS, to enable Hardware

SCOPE

Calibration

Adjustments

Referring to figure 6.2.

use the following procedure to remove the analog A2 PC6.

1

.

2.

First open the ScopeMeter {see Section 6.2.2).

The analog A2 PCB and top screening are secured to the bottom cover with two M3

Torx screws

(item 30).

Use a Torx screwdriver to remove the screws.

3.

Carefully lift the metal top screening, while pulling

It backwards.

4.

5.

6.

Pull the battery wiring plug (Item 27, figure 6.1

) out of the connector on the analog A2 PCB.

Use a

Torx screwdriver to loos^ the two black screws (item

1 input unit assembly.

Now the analog A2

(do not remove them) from the

3)

PCB can be lifted out of the bottom cover assembly.

The bottom of the analog A2 calibration

PCd shows the components (potentiometers) used for hardware adjustments.

The Hardware SCOPE

Calibration Adjustments are described in section 5.6.1.

NOTE: The digital

A

1

PCB and the metal shielding are stiil fixed to the top cover and must be connected to the analog A2 PCB by the 3(Ppoie fiat cable.

CAUTION: Damage may occur rf you diaconnect the flat cable between the two printed circuit boards withir) ten also occur seconds after turning off the Instrument.

Damage may when the Analog unit (A2) is powered when not connected to the

Digital unlt(A1).

6.2.4

Removing the digital A1 PCB.

1

.

First open the

Scope Meter (see Section 6.2.2).

NOTE: Note how the30-pole flat cad/e

Is positioned in the connector it must be replaced in exactly the same way

When the ScopeMeter is opened, the blue mar1<s on the flat cable must be visible.

Carefully

Hft the upper part of the flat cable connector on the digital

A1 must be lifted at both sides simuHaneously to unlock the flat cable.

PCB.

This plastic clamp

Now pull the flat cable out of the connector on the digital

A1 PCB.

Do not touch the flat cable ends!

DISASSEMBLING THE SCOPEMETER 6-5

3.

The digital

A1 PCB and metal screening are secured to the top cover with four

M3 Torn screws

(item 33).

Two of these screws contain small standoffs.

6e sure to reinstall them

In the correct place when the

ScopeMeler is reassembled.

Use a Torx screwdriver to remove the screws.

8.

Remove ihe metal A1 screening from the digital

A1 PCB.

9.

Remove the digital

A1 PCB from of the lop cover.

Be careful not to damage the infrared

LED and phototransistor of the optical interface.

NOTE: When reaseembUng ihe digital

A

1

PCB, make sure that the infrared

LED and phototran&stor are exactly aligned with the holes in the top cover.

CORRECTIVE MAINTENANCE 7-1

7 CORRECTIVE MAINTENANCE

7.1

DIAGNOSTIC

TESTING

AND TROUBLESHOOTING

7.1.1

Introduction

The ScopeMeter provides semimodular design to aid in troubleshooting. This section describes procedures needed to isolate a problem

In a specific functional area.

Finally, troubleshooting hints for each functional area are presented.

If the ScopeMeter fails, first verify that you are operating the ScopeMeter correctly by reviewing the

Operation Venficatlon Procedure found in the Users Manual.

WARNING: Opening the case may expose hazardous voltages.

Always disconnect the instalment from all voltage sources and remove the batteries before opening the case.

Remember that repairs or servicing should be performed by qualified personnel only.

7.1

.2

Troubleshooting techniques

If a fault appears, the following test sequence can be used to help you to locate the defective component:

Check to verify that the control settings of the instrum^t are correct.

Consult the operating instructions in the Users Manual.

Che<A the equipment to which the ir^strument is connected and check the interconnection cables.

• Verify that the instrument is properly calibrated.

If

It is not, refer to Chapter

5: 'Calibration

Adjustment P^ocedure^

• Locate the circuit{6) in which you suspect the fault: the

If the symptom often suggests the faulty circuit.

power supply is defective, the symptom may appear to be caused by several circuts.

Check the drcult(s)

In which you suspect the fauH.

Often it is possible to find faults such as cold or defective solder joints, intermittent or open interconnection plugs and wires or damaged components.

7-2

CORRECTIVE MAINTENANCE

7.1.3

Display and error messages

To ease the Scope Meter operation display messages are generated.

If you operate the Scope Meter

Incorrectly, it will display error messages. Each error message

Is displayed for 5 seconds.

The following table describes the display messages and error messages and the possible solutions.

If no speckle model number is stated, the message and solution apply to all

ScopeMeter models.

MESSAGE CAUSE

Key not possible in this

ScopeMeter mode.

(SCOPE/METER mode)

You have pressed an incorrect key.

For example: you have pressed the trigger key, white In meter mode.

Solutfon: Press a correct key.

Not executed: at least one trace on

(SCOPE mode)

LCD You have attempted to switch off the only displayed trace

In the

CHAN AB menu or

WAVEFORM menu (Model

97).

Solution; Turn on another channel.

Not executed: already max.

traces on

(SCOPE mode)

LCD

(Model 97)

You have attempted to turn on more than four traces simultaneously in the

CHAN AS menu and the

WAVEFORM menu.

Solution: Turn off another trace.

Chosen function changed other settings.

(SCOPE mode)

Sometimes some functions, for example events and n-cycle, can adapt (change) other

ScopeMeter settings automatically.

Sdutlon: Switch off the chosen function and check the settings.

Time base limit reached for present mode

(SCOPE mode)

The s

TIME ns key has been pressed, forcing the timebase to exceed the limit.

For examptei rfthe limit of 100 ns in single trigger mode is exceeded.

Solution: Select

RECURRENT trigger mode.

ScopeMeter auto shut down

In

5 minutes!

(SCOPE/METER mode)

No new key has been activated in the last

1

0 minutes.

To save battery power, the

ScopeMeter shuts down.

Solution: Press a key.

ScopeMeter mcxiel 9x

;

(SCOPE/METER mode)

Vx.xx

; yy*yy*yy ScopeMeter

‘ model number; software version; software date".

Both softkeys

1 (left) and

5 (right) have been pressed at the same time.

Solution:

CORRECTIVE MAINTENANCE

3

Seop6 mode: not rnorethan 5 measurements

(SCOPE mode)

You have attempted to switch on more than five cursor measurements dlmultaneously

In the cursor function pop*up menu.

Solution: Turn off another cursor function.

Unknown probe or wrong connection.

(SCOPE/METER mode)

No probe or a defective probe has been connected during probe DC calibration.

Solution: Connect a correct probe and do another DC calibration.

If the warning

Is still displayed, refer to the troubleshooting information of the Analog A2 PC6 later In this section.

No valid memory setup that can be used.

(

SCO P E mode

)

You have tried to recall a waveform and the co rrespond Ing setu p active), while

(Setu p recal

I a setup has not been saved for the stored wavefonrt.

Solution:

Choose a waveform for which there is a valid setup stored, or switch off the "Setup recall* furtction.

Not executed: no t2V programming voltage

(SCOPE/METER mode)

The CALIBRATE ScopeMeter softkey has

Deen pressed

In the

SERVICE menu without the 12V programming voltage being connected to the programming contacts in the battery compartment.

Solution:

Connect the 12V programming voltage, before pressing the CALIBRATE softkey,

NOTE:

Cslibration

/s to be done by qusl/fied eervice personnei Incorrect calibration data is stored if

12V programming voltage is connected, while the CALIBRATE ScopeMeter on.

mode is turned

For calibration of the

Scopemeter refer to chapters: ’'Calibration Adjustment Procedure".

CAL STORE error: no 12V or no space left

(SCOPE/METER mode)

1.

No

12V.

The 12V programming voltage xh&t Is connected to the programming contacts in the battery compartment has disappeared during the calibration adjustments.

2.

No space left.

The internal Flash

ROMs with the calibration constants are full.

Solution:

1

.

Check the 12V programming voltage connection in the battery compartment.

2-

The calibration constants part in the Flash

Roms must be emptied before other calibrations can be made. For refreshing the Flash ROMs, contact your nearest

Fluke/Philips Service Center.

PRINTER error: please reset printer.

(SCOPE/METER mode, modei 97 only)

No printing or the printing has stopped via the optically Isolated

RS- 232-C interface

PM9080.

Solution:

Check the settings on the printer

(ON LINE and BAUD

RATE).

Reset the printer.

Verify that if the optically isolated RS-232'C interface is still connected to the ScopeMeter.

CORRECTIVE MAINTENANCE

CALIBRATION error wrong input signal(s)

(SCOPE/METEfl mode)

The SoopeMeter has rejected the connected calibration adjustment signal during calibration.

Solution:

Check the calibration signal and repeat the calibration step.

If the signal is correct and the error message remains, refer to the troubleshooting information of the Analog A2 PCB later in this section.

PROBE successfully calibrated.

(SCOPE/METER mode)

The probe calibration has been successful.

** ERROR *** PLEASE RESET INSTRUMENT ***

General error message: eomethlng has gone

(SCOPE/METER mode) wrong, which cannot be undone easily.

Solution: Switch off the ScopeMeler and switch lion again, using key and keep it pressed.

MASTER RESET: Press the

LCD

Now press the

ON/OFF key.

The ScopeMeler wt\ give two beeps and will start up in a default condition.

No AUTOSET

(SCOPE mode) on time oratt: no channels You have tried to do an AUTOSET, while both channels A and B were switched off

(only waveforms in memory displayed!).

Solution; Switch on channel A and/or channel B before you activate

AUTOSET.

REF differs from present meter mode.

(METER mode)

The settings of the ScopeMeter have been changed, so that previously deteimined references are not valid.

Solution: Set new references.

PROBE CAL

Use AUTO

(SCOPE/METER mode)

SET to exit.

The ScopeMeter has been set Into the

AC ADJUST mode for channel A or B in the

PROBE CAL popup menu,

Solution;

AC adjust the probe and/or press the

AUTO SET key.

AUTO SET

..

AUTO SET

..

AUTO SET

(SCOPE/METER mode)

The ScopeMeter performs an auto set after the

AUTO SET key has been pressed.

Solution; Wait until the warning dis^pears (about

1 second).

If the warning stays, refer to the troubleshooting information tater

In this section.

Connect PROBE to

GENERATOR OUT.

(SCOPE/METER mode)

The AC ADJUST or the the

DC CAL item

In

PROBE CAL pop up menu has been selected.

Solution:

Connect a probe to the generator output and select

AC ADJUST or

DC CAL or watt for five seconds,

DC PROBE calibration in progress

(SCOPE/METER mode)

The DC CAL item in the

PROBE CAL pop-up menu has been selected.

Solution; Wait until the warning disappears.

A beep signals the end of the

DC PROBE calibration.

been successful, the

TROBE successfully calibrated" will If the calibration has message appear.

v

CORRECTIVE MAINTENANCE 7-5

7.1.4

Main tests

T.

1.4.1

Operation Verification Procedure

This test verifies the facet of

ScopeMeter with a minimum of test steps and actions.

It does not check every the Scope Meter's charade ri sties, but

It gives you an indication of correct operation.

For operation verification purposes, the ScopeMeter generates a 97S Hz/ 5V peak-to-peak square virave signal that can be measured and verified.

This signal Is measured in the mode.

SCOPE and METER

NOTE: To use the

ScopeMeter to Its fullest capability it is essential to use only callbratea probes with your instrument These calibrated probes are delivered with the Scc^Meter.

Operation Verification Procedure:

5-

6.

7.

1

.

2.

3.

4.

8.

9.

Turn

ON the

Scop^eter.

Connect the red 10:1 scope probe to channel A

(red

BNC) input.

Connect the red adjust adapter to the rod banana GENERATOR

OUTput connector.

Connect the red probe to the red banana/scope tip adapter.

Press the

SCOPE key.

Press the

Press the

Press the

Press the

LCD/CAL key.

PROBE CAL softkey to select the CALibration & ADJUST pop-up menu.

[21 select/adjust keys to select

ENTER softkey to enter the

AC

AC ADJUST of channel A.

ADJUST mode.

Check the

SCOPE display on the following settings and results:

Channel Configuration

Ve rtica

I

AmpI itude

Channel

Input Coupling

Probe

Selected

Time Base

Trigger

Mode (Press

SCOPE key)

Trigger Source (Press

TRIGGER key)

Trigger Slope (Press TRIGGER key)

Char^nel

A

1

V/di

AC

PROBE xlC

1O0 ps/div

Recurrent

Channel A

+ Slope

6

Result (see Figure 7.1

):

Square wave.

AmpI 5V peak-to=peak±

1

Freq97e Hzt1%

0%

A IV DC IC1

100i»/0iv

CORRECTIVE MAINTENANCE

Channel A

GENERATOR OLTT

Channal

B

PROBE PK7TURE GRID

GAL5 t t

BACK

Figure

7.

1

Result on LCD screen during verification proceaure

2.500

V

DC

OiANNElA

ALTO

RANGE

1C

1

PROBE

+X.XXX

&nWDJVAUTO

TRiGCEn

BQB

IN—>

V-mV“-nQ

10.

Press the

METER key.

The ScopeMeter sets itself to the

Inttlal

METER measurement lunctlon.

Check the

METER display on the following settings and results:

Result {see Figure

7.1):

Vrms AC

2.500

±10%

Ranging (see Rgure

7.1):

AUTO, 3V

11

.

Press the

AUTO SET key to end the operation verification procedure for channel A.

NOTE: To verify the

SCOPE operation of Channel B, proceed

In the same order as Channel

A.

use the grey channel B BNC socket and the grey 10:1 scope probe.

CORRECTIVE MAINTENANCE 7-7

7.

1.4.2

Performance

Verification Procedure

The Performance Verification Procedure is a very quick way to check most of the ScopeMeter'e specifications.

It is based on the specifications listed in Chapter 2 of this Service Manual.

If the instrument fails of chapter

7) Is any of these tests, Calibration Adjustments (see chapter

5) necessary.

The complete Performance

Verification

Procedure

Is and/or repair (see described in chapter 4.

7.1

.5

Troubleshooting

7

7-5. 7 Trouble shooting htnts

OPENING THE SCOPEMETER:

To troubleshoot the ScopeMeter,

ScopeMeter" of chapters open the Instrument as described in subsection 6.2.2 ''Opening the

"OISASSEMBLINQ THE SCOPEMETER^.

TEST POINT AND COMPONENTS LOCATION:

Added with the PCB layouts figures 10.1, 10-4, and 10.6

and the dicult diagrams figures 10.2, 10.3,

1

0,6,

1

0.7, and 10-8 are location reference lists for fast location of the test points and the components.

CONNECTING THE GROUND

(ZERO) LOGIC 0 REFERENCE:

While performing measurements, ft

Is possible to use the metal shielding as zero reference.

It is also possible to Install the metal screws, as

Is described in section 5.6.1

"Hardware

Adjustments".

You can use one of the screws as a zero

SCOPE reference: refer to figure 5.2.

Calibration

LOGIC

1

LEVEL:

The logic one level is *h5V.

7.1.6

Digital A1 PCB Troubleshooting

Rest remove the digital

A1 PCB as described

In section 6.2.4

'Removing the digital

PCB".

7.

1.6.1

Powetir^g the ScopeMeter

Power the ScopeMeter with the powerAdapter/Batteiv Charger PMB907.

7.

1.6.2

Kernel Test

The

Kernel tests the Address/Oata outputs from the microprocessor (D1201

), transmitter and receiver circuits of the optical Interface, and the

The test results are measured with an oscilloscope.

the Interface

Random Access Memories (RAM).

NOTE:

If loading the ScopeMetefS FlashROMs falls, It is possible to get a ScopeMeter which is not functioning.

For example: if the eperaftng system of the

ScopeMeter is corrupted, it is not possible to operate the instrument normally. In this case you should also use the following procedure to establish communication with the ScopeMeter.

When communication is established, you can reload the operating software Into the

FlashROMs.

(For this action need special software: contact your nearest Fluke/PhUips Service Center.) you

1

,

Power the ScopeMeter with the Power

Adapter/Battery Charger PM8907.

2,

G round teslpoint

TP2

1

6

, tu rn on the

Scope Meter and re lease the g ro u nd {from testpol nt

TPS

1 6)

.

.

7‘8 CORRECTIVE MAINTENANCE

MICROPROCESSOR 01201

3.

Measure on connector contact X1 201 /6 to test the microprocessor D1201

Corrects 0.5

Hz.

Incorrect (defect microprocessor D1201

)

*• not O.S Hz.

OPTICAL ItiXERPACE

4.

Shine with a lamp

In the "Optical interface * holes to test the optical interface receiver.

5.

Measure on the transceiver line

D1 201/32.

Apply li^ht and verify that the signal level changes from OV DC

(dark) to 0.3V

DC

(tight).

ADDRESS/DATA LINES

6.

Measure on address/data t>u$

OO (ADOO,

D1201/2J.

Correct

=

Logic

0.

All Other address data lines

(AD01 to

ADI

5) are logic

1

(-i-SV).

7.

Ground and release testpoint

TP21

7 (first time) and the next address/data AD01 line will go low

(to logic

0).

Continue grounding and releasing testpoint

TP2 17 until address/data line

AD15 goes low

(fifteenth time).

With steps 6 and 7 the buffered addresses throughout the whole instrument are active and can be traced.

RAMS D1204 AND

D1206.

8.

The next

D1204.

grounding of testpoint

TP21

7

(sixteenth time) starts

Measure on conr^ector contact XI 201/6.

the

RAM test of the first

During the

RAM test connector contact starts at logic 0.

RAM correct

*

0.5

Hz,

HAM incorrect

= logic

1

RAM

9

.

G rou n d and rel ease testpoint

TP2

1 7

(seventeenth

D1206.

Measure on connector contact XI 201/6.

ti me) to start the

R AM test of

^e secon d

RAM

During the

RAM test connector contact XI 201/6 starts at logic 0.

RAM correct

*

0.5

Hz.

RAM incorrect s logic 1

ESTABLISHING COMMUNICATION.

to.

After the seventeenth time of grounding TP217, the

ScopeMeter sends an <XON> via the

RS-232 interface.

Now communication is established, it is possible to reprogram the

PI ash ROMs.

For special software contact your nearest Fluke/Ph^lipe Service Center.

1 1

.

Ground testpoint

TP216 one more tme to abort the Kernel Test.

CORRECTIVE MAIMTENANCE

7.

1.6-

3 Test point signals.

TTie digital

A1 PCB

Is provided wltti test points, marked:

"TP’*

See figure 10.1: A1

(component side).

These can be used to check correct furtctloning of the PCB.

PCS layout

All measurements are

ScopeMeter using made

In the default

MASTER

RESET).

MASTER RESET condition (start the measurements

In the

A

1

.

MASTER RESET

Is performed as fellows:

Remove all signals from the ScopeMeter.

2.

3.

Turn off the

Hold

ScopeMeter down the

LCD key and press the ON/OFF key simultaneously.

Two beeps are audible, and all to volatile the memories

METER mode.

(RAM with battery backup) are reset.

The ScopeMeter

Is automatically set

Use another oscilloscope with high Input

Inpedance and

10:1 probe to measure the signals on the test points.

See table 7.1:

Table

7.

1.

Overview on Test Points on the digital

A

1

PCB.

Logic O=0V, Logic 1=+5V

TP Name Scope Freq.

Data

H/L/A

Description jTjvin

207 Y40

20B Y120

209 Y200

1 n n n

II

1

595 Hz A Output

40,

D1404

' ^rLTLRj mi krmj

.

.

ni

595 Hz A OUput120, D1406

1

595 Hz A

Output 200,

D 1407

595 Hz A

1

Output

40,

D1401 210 X40

211 X120

212 X2O0

J

1

1

1

1 r

1

]

595 Hz

595 Hz

A

A

Output 120,

D1402

Output 200,

D1403

213

WEN

214 REN

216 TEST1

217 TEST2

219 ON.OFF

1

...U

.

U U

.

.

jirwirii"..

..

0

A

A

H

Write

D1203

Enable Not point 10 of

Read Enable Not point 11 of

D1203

TEST

1/analog charnel

3, point 16

Of

D1 201

TEST

2/timer 2 dock, point

64 of D1201

ON OFF/high speed input

0.2, point

53 of

D1201

POWER ON 221

POWER ON

'

0

muiTL

12.1

kHz

-

0

A

L

H

7-9

7-10 CORRECTIVE MAINTENANCE

TP Name

222 NOT.ON

223 RAM.

POWER

224 +VRAM

233 VI

234 V2

235 V3

237 V5

239 pPCLK

241 BAT.LEVEL

244 RAMSELN

246 OPTSELN

247 A15

248 •20V

249 +5V

Scop©

Freq.

Data

H/UA

Description

L

0

0

L

H

NOTON

RAM POWER

.

1

1

9

0

lAAFLJXl.

0

0

0

0

0

A.

\7

AAA

12.5

MHz A

\7 \/

L

0

500 kHz

H

H

L

L

H

A

A

^Supply Voftage for tne

RAM/...

Power supply for

LCD drive

(•^2.3V)

Power supply for

LCD drive

(-23V)

Power supply for

LCD drive

(-0.8V)

Power supply for

LCD drive

(-22V) p Processor

D1201 clock, points of

BATtery LEVEL/analog channel

6.

point

20 of D1 201

RAM

SELect Not. point 20 of

D1204

Option Select Not

UAJIMiriA

100 kHz A

.../ROM

1 select not

H 0 •20V supply

H +5V supply 0

1 5

CORRECTIVE MAINTENANCE

7

11

7

.

1

.

$.4

Defa uft signals measured in the digital Girovits.

The

Digital Ai

PCB is provided with large

I meg rated ctrcults.

Fortesting the board, tfie inpirt signals and output signals of corresponding figures.

the large Integrated circuits are given in tables 7.2

up to 7.5.

and the

These signals can be used to check correct functioning of the large Integrated

Circuits on the digital

A1 PCS.

All measurements are

SoopeMeter using made in the default

MASTER RESET).

MASTER RESET condition

(start the measurements in the

A MASTER RESET is performed as follows:

1.

Remove all signals from the Scope Meter.

2

.

3.

Turn off the

Hold ail volatile

Scope M eter down the

LCD key and press the ON/OFF key sfmuttaneously.

Two beeps are audible, and memories (RAM with battery backup) are reset.

The ScopeMeter is automatically set to the Meter mode.

Use another oscilloscope with high Input impedance and

1

0:1 probe to measure the signals on the integrated circuits.

oi^ooauQOAOOaaaao

AD1

ADO

St

ALE/AlJy

INST

BUSWIDTM

CLKOUT

XTAL2

XTAL1

T2CLK

VSS

(0}

RCADY

P2.4

"WSL/WR

PWM

T2CAP P2

VPP (+5V)

VSS

(0)

VSS

(o)

H50.3

VCC (-H5V)

VSS

(

0

)

H50.2

P2.6

PI-7

PT.6

PI.

MSO.l

HSO.O

HS0.3

VSS (Oj

WSD.4

f z i-i irt

Z

<j

2^

s

•n

Figure 7.2

Microprocessor D 120

ST6613

911114

7-12 CORRECTIVE MAINTENANCE

4

5 e

7

8

9

Table 7.2

Signals measured on microprocessor D1201.

Logic

ObOV,

Logic 1»-i-5V

Comp Name

(pin)

Circ/lC

D1201

1

AD01 /AD1/P3

Scope Freq.

2

3

ADOO/ADO/P3

Data

H/LiA

Description

riJlJTnjlJ

1-5

MHz A Address

Dalai /Address

Datal ports

rXJTJnJTJlJ

2

MHz A Address DataO/Address

DataO por13

2 MHz A Read noVRead

ADVN /AL£/ADV

2

MHz A Address valid not/Address latch output enable/ Address valid

/INST 1

nn

200 kHz A

/Instruction fetch for externaJ memory

/BUSWIDTH 0

1

/Buswidth selection, 8 or

16 bit

MPCLKoi;T/cLKoirr

/^•TAL2

AAAAj-

.

6.25

MHz A pP clock ouVcIock out 1/2 oscillation frequency 50%

/\

V

\/ \/ duty cycle

A

A

A

12.5

MHz A

/Crystal

12.5

MHz A /Crystal /X-TAL1

10 A/SS

11

A/SS

12

NCC

0 n

0

1

1

H

/Voltage supply ground

(0)

/Voltage supply ground

(0)

/Main supply (45V)

H /Main supply (45V) 13 A^CC

14 /EA

15 /NMI

16 yPO.3

17 /ACH1

18

/ACHO

I* mill iiiiiiiiini

0

0

0

0

H

A

/External access

/NonMaskable Interrupt

H

/port 0.3

H

/Artslog channel

1

0 H /Analog channel 0

0

0

7-13 CORRECTIVE MAINTENANCE

Comp Name

(pin}

CIrc /IC

Scope

Freq.

Data

H/UA

Desorption

19 /ACH2

1

0

20 /ACH6

21

/ACH7

23 /ACH5

24 HLDOFN/ACH4

N

K K

0

0

0

H

H

A

/Analog channel 2

/Analog channel 6

/Analog channel 7

22 A'SS

25 /ANGND

26 A/REF

.1

1

1

...1

A

0

1

1

L /Voltage supply ground

{0)

/Analog channel 5

H

1

L

H

/A Hold off not /Analog channel 4

/Analog ground (A/D convertor)

/Vreference (A/D convertor)

27 /VSS

26 ACQRDY/EXTINT

29 /VCC

30 pPRESET/RESET

31

/RXD

0

0

0 irUlfUlTL....

5 Hz

0 d

0

1

/Clock Detect Enable

A

H

H

H

Acquisition ready/External interrupt

/Main supply (+5V) pP reset /reset

/Receive data/port 2 0

32 yrxo 0 H

/Transmit data/port 2

34

35

36

37

36

39

33 A^SS n

1

COAT

/PI.

A

/Voltage supply ground

(

0

)

Cbus DATA

/Port 1.0

nniiEii:...

5 Hz

DTAEb/Pl.l

u

1

L UMiM Bndne /r^n i

, i

FRONTCLOCK/P1.2

CCLK/P1.3

innnru...

60 kHz A

Front clock /Port 1.2

.mumu

100 kHz A Cbus clock /Port

1

.3

PS0/P1.4

iniiioiiiinM....

40 Hz A page select

0

/Port 1.4

FRONTDATA1/HS1.0

0 H

Frontdatal /High speed Input

1.0

.

7-14 CORRECTIVE MAINTENANCE

Comp Name

(pin)

CJrc ^IC

40 FRONTDATA2/HS1

.1

r

Scope

41 /HS0.4

niiiiiiiiiiiiiiii

42 /VSS

43 AD15^S0.5

44 LIGHT/HSO.O

45 /HSO.l

46 PS1

/PI .5

47 PS2

/PI .6

48 PS3/P1.7

49

50

DTAEC/P2.6

/HS0.2

51 /VSS

52

NCC

53 ON OFF/HS0.3

54 A^SS

65 ATSS

56

57

/VPP

FRONT LATCH

/T2CAP/P2

68 TEST2/PWM

69

WRIN/WRUWR

60 /WRH/BHE

;

0

Freq.

400 Hz

Data

H/UA

H

Description

A

Frontdata2

/High speed input 1.1

/High

Speed input 0.4

1 1 1

0 n

0

1

1

1

L/A

/Voltage supply ground

(0)

Address data 15/High Speed input 0.5

Light /High

Speed input 0.0

/High Speed input 0.1

0 page select 1 /port 1 .5

.loiiminjir.

45-1.5

kHz A page select

2

/port

1

.6

_mrurui[

.

45-1

.5

kHz A page select 3 ^ort

1

.7

0

0

1

1

L

Data enable C

/port 2.6

/High Speed

Input 0.2

n

1

L

1

L /Voltage supply ground

(

0

)

/Main supply

(*^5V)

0 H on oft

/High Speed input 0.2

0 1

L

0 1

/Voltage supply ground

(

0

)

/Voltage supply ground

(0]

/(+5V) 0 H

H/A Front latch /

~r.

\

'

V

12 kHz A

Test 2 /Pulse wdth .liifiiiJiJirL...

modulator mr

2.08

MHz A

Write not A/Vrite low/WrIts nmr:--

2.08

MHz A

/Write high,

Bus High Enable

.

CORRECTIVE MAINTENANCE

Comp Name

(pin)

Clrc/IC

Scope

Freq.

Data

H/i7A

Deacriptfon

61

62

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

63

ADC7/P2.4

SYNCRDY/READY

A/SS

TEST27r2CLK

AD15/A015

ADI 4 /ADI 4

ADI 3 /ADI 3

AD12/AD12

AD11/AD11

AD10/AD10

AD09/AD

A008/AD

AD07 /AD

AD06//«3

/VCC

ADOS /AD

AD04/AD

AD03/AD

.c

.

iiiiiiir.

A Analog digital convertor/ port 2.4

ruuuj

2 MHz A

Synchronisation i^dy/Ready

0 L /Voltage supply ground

(0)

inmnniL

12 kHz A

Test

2 /Timer 2 clock

10 O khz A

.rujuL..

Address data 1

5/Address data 15

100 kHz A

njuiJL

Address data 14/Address data 14

100 kHz A

.fimjL

Address data 13/ Address data 13

100 kHz A

ruifUL

Address d^a 12/Address data 12

100 kHz A

njiruL

Address data 11 /Address data

11

100 kHz A

.rLonjL

Address data 10/Add ress data 10

.[i_niUL..

100 kHz A Address data 09/Address data 09

iimjL

100 kHz A Address data 08/Address data 08

annnr

.

1-2

MHz A

Address data 07/Address data 07

innnnni:...

1-2

MHz A Address data 06/Address data 06

— iSV

0

H

/Main supply (+5V) n

.Ln__njir.

1.5

MHz A Address data 05/Address data 05

1.5

MHz A Address data 04/Address data 04

LTLJLQr....

1.5

MHz A Address data 03/Address

03 data

0 L A/oltage supply ground

(0)

A/SS

80 A002 /AD2 ruimi...

1.5

MHz A

Address data 02/ Address data 02

7-15

V

7-16 CORRECTIVE MAINTENANCE

LU

2 o

<

Cf a; ct

Q Q Q o u

CJ u _i a

< z

U a

Ul s

< et u 2 z

C to u a;

>

K

+ c a o ft; > lA o to I

C/1

>

UJ t:

2 to

1

1

Fol aI

1

R

fe^ fF)

R m

a

HnI R

H

IH

a m

OPTSELN

1

607

2

BD6 1

BD5 4

BD4 5

803 e

B02 7

GD1 8

BDO 9

WftOUTN 10

RDOUTN

1

1

(

0

) vss

>2

8AI4 13

SV) VDD

1i

3A13 15

SAl2

16

BA11 17

BA10

16

BA9

BAS

I

20 batITT

BA6

QF

845

[IT

BA4 [FT

BA3

I

B42 FFT

8A1

BAO

ROMOSELN [TT

ROMISELN fjo’

D1203 snuuL

79

I

CONTR

7S

I

CHANA

77

I

TRACKN

^0 j

TRACK

7S i

HLOOFFN

74

I

5TOPN

"?n

40CO

TFI

ADC1

771

A0C2

70

I

ADC3

69

I

VS?

fO)

"eil A0C4

67 i

VOQ

C+3V)

66

I

AOCS

65

I

ADC6

64

I

ADC7

63

I

HLDOUTN

HLDINN

61

I

05C0

60

I

OSCI

59

I

PSO

Sa

~5 t1

I

PS1

PS2

56

I

ACQRDY

55

\

UPCLOCK

~54 l

WRIN

53

I

RDIN

52

I

SLADVN

TTl ADV

OQ a

N o fO

Q o

[BJ ir> o

[3 ill a o

K o

03

<

a

g

> rs lK)

I

•« lio 1(0 ir^ 103

Ot

<

>•«<•<<<

5T6619

911114

Figure 7.3

Digital

ASIC D1203

7a W© 7.3

Signals measured on digital

ASIC D

1203.

Logic 0=0V

Logic 1=2+5

Comp Name

(pin)

Cifc/IC

D1203

Scope

/OPTSELN

1

Data

H/L/A

499,8 kHz A

Deacription

Optional

RAM

Select Not

CORRECTIVE MAINTENANCE

Comp Name

(pin)

ClrcyiC

2 BD07/BD7

3 BD06/BD6

Scope

Unstable

Unstable

4 BD05/B05

5

BD04/BD4

6 6D03/B03

7 BD0a/BD2

8 BD01/BD1

9

BDOO/BDO

10 WEN/WflOUTN

11

REN/RDOUTN

12

13

VSS

BA14/BA14

14

15

+5VD/VDD

BA13/BA13

16 BA12/BA12

17 BA11/BA11

Unstable

7-

17

Rreq.

lOOkHz

Data

H/l/A

Description

A

Buffered Data

100 kHz A

Buffered Data

Buffered Data

Buffered Data

Buffered Data

Buffered Data

Buffered Data

Buffered Data

Write Enable NoVWrite Out

Not

Read &iable NoVRead Out

Not

0

200 kHz

L

A

Volt

Supply ground

Buffered Address

0

635 kHz Unstable

miiinii]

Urt stable

niniim

Unstable

mxrrrmi

635 kHz

635 kHz

H

A

A

A

Volt Supply

Buffered Address

Buffered Address

Buffered Address

1

3

7

ia CORRECTIVE MAINTENANCE

Comp Name

(pin)

Circ/IC

18 8A10BA10

19 BA09/BA9

20 BA0BBA8

Scope

Unstable

Freq.

635 kHz

Data

H/L7A

Deecription

A

Buffered Address

635 kHz A

Buffered Address

635 kHz A

Buffered Address

21 BA07/BA7

22 BA06BA6

Unstable

^ M

I m

.

— rfc ai

M

miriTimjm].

Unstable

616 kHz

616 kHz

A

A

Buffered Address

Buffered Address

23 BA05/BA5

Unstable 616 kHz A

Buffered Address

24

25

26

27

28

BA04/BA4

BA03/BA3

BA02/BA2

BA01/BA1

BAOO/BAO

29

30

CEN/ROMOSELN

A15/ROM1SELN

31

UPCLOCK

32

33

34

35

36

ADOO/DO

AD01/D1

AD02/D2

AD03/D3

AD04/D4

37

38

AD05/D5

AD06/D6

39

40

AD07/D7

AD08/D6

41

+5VDyVDD

42 AD09/D9

43

.,.,/VSS

44 AD10/A10

45 ADIVAII

46 AD12/A12

47 AD

13/1

48

49

AD14/A14

50

AD15/A15

SYNCRDY

/SYNCRDY

Unstable

Unstable

Unstable

Unstable

Unstable

1

1

nTtrirnw^^

0

0

590 kHz

599 kHz

599 kHz

599 kHz

624 kHz

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

^WWWVW"

12.496MHz

A

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 o o o

0 o

0 o

H o o o o

L o o o o

0

H

H

A

A

A

A

A

Buffered Address

Buffered Address

Buffered Address

Buffered Address

Buffered Address

/Rom 0 Select Not

Address 15/Rom

1

Select

Not

Micro-processor Clock

Address Data/Oata Bus

I/O 0

Address Data/Oata Bus

I/0

Address Data/Data Bus

I/O 2

Address Data/Data Bus

I/O 3

Address Data/Data Bus

I/O

4

Address Data/Data Bus

I/O 5

Address Data/Data Bus

I/O 6

Address Data/Data Bus

I/O 7

Address Data/Oata Bus

I/O 8

Volt Supply

Address Oata/Oata Bus

I/O 9

Volt

Supply Ground

Address Data/Data Bus

I/0

10

Address Data/Data Bus

I/O 11

Address

Data/Data Bus

I/0

12

Address

Data/Oata Bus

I/O

14

Address Data/Oata Bus

I/O

Address Data/Data Bus

I/0

15

Synchronisation ready

CORRECTIVE MAIWTENANCE

Comp Name

(pin)

Clfc /IC

Scopo

Freq.

Data

H/UA

Description

51

52

53

64

55

56

57

58

59

60

61

62

63

64

65

66

67

ADVN/ADVN

SLADVN

ROIN/ROIN

WRfNAVRIN

1

Unstable

.OOTOR.

...

0

1.200

MHz A

H

Unstable

[XQZIXLIIJ.

Unstable iiililWW/

1.200

MHz A

33 kHz A

Address

Valid Not

Slow Address Valid Not

(not used)

Read

In

Write

In

6.248

MHz A

Micro Processor Clock

UPCLOCKOJPCLOCK

.

ACQRDY/ACQRDY

[”1 fl fl

PS2/PS2

Unstable

.IROR

R

PS1/PS1

PSCVPSO

.iRur

1

Unstable

JITLJR

...

.../OSCI

5HZ

130 Hz

0

125 Hz

A

A

Acquisition

Ready

0

Page

Select

1

A

Page Select 2

Page

Select 0

A/VWVWWWW

25 MHz X

Oscillator

In

.../OSCO

/HLDINN

/HLDOUTN

ADC7/ADC7

ADC6/ADC6

ADC5/A0C5

/vwwwwww

25 MHz X

Oscillator

Out

6Hz Unstable A Hold

In

Not

TT'"

A Unstable 5 Hz Hold Out Not

Unstable

U

IT

100 Hz A ADC data output

7

ITRRir Ri:..

Unstable

JTRLJr

L

..

Unstable

.JO_JT

100 Hz

100 Hz

A

A

ADC data output 6

ADC data outputs

+5VOA/DD

0 H

Volt Supply

7-19

7-20

Comp Name

(pin)

CIrc/IC

68 ADC4/ADC4

Scope

Unstable

ICLJf

0

Unstable

69

70

.../VSS

ADC3/ADC3

71 ADC2/AOC2

72 ADC1/ADC1

73 ADCQ/ADCO Unstable

74 STOPN/STOPN Unstable

75 HLDOFFN

/HLDOFFN Unstable

76 TRACKn'RACK Unstable

77

78

79

.../TRACKN

CHANA/CHANA

CONTR/CONTR not used

1

80

81

82

STIMUUSTIMUL

HF-COMP/HFCOMP Unstable

nnn

TRIMD/TRIMD

1 1 1

1 1

83

.../TflIMC

1 1 1 1

1

84 .../TRIMS

1 1

1

1

1

11

1

1

1

85 .../TRIMA

86 POS-CHB/SHIFTB

1

1 1 1

1

CORRECTIVE MAINTENANCE

Freq.

100 Hz

Data

H/L/A

Description

A ADC data output 4

0

500 Hz

L

A

Volt Supply Ground

ADC data output 3

1 kHz A ADC data output 2

2.5

kHz A ADC data output

1

2.7

kHz A ADC data output 0

5

Hz A

Acquisition Stop Not

5

Hz A

Trigger Hold Off Not

11 kHz Track (acquisition clock

ADC)

0

4.68

kHz

H

A

976 Hz A

4.882

kHz A

4.882

kHz A

0 L

Track

Channel A

Contrast

Stimulus output

High Frequency

Compensation

(32 digit zero meter correction)

Trimming output

D

Trimming output

C

4.862

kHz A

4.882

kHz A

Trimming output

B

(not used)

Trimming output

A

(not used)

4.682

kHz A

Position -Channel B/Shift channel B

CORRECTIVE MAINTENANCE 7-21

Scope

Freq,

Comp t

Name

(pin)

Circ no

Data

H/17A

Description

91

87

98

89

90

92

93

94

..7VSS

POS-CHA/SHiFTA

+5VO/VDO

LEVELTRGLVt

RESETN/RESETN

-

)

Logic

OsOV 0 L Voltage Supply Ground

.mimr

4.882

kHz A

Position Channel

A/Shrft channel A

.BV

H 0

Volt

Supply

0

ruinn..

4.8S2

kHz A

Level/Trigger Level ruiruTL

0 H Reset Not

M/M

FRAME/FRAME

A

Multiplex

LCD

.rLTLOTL.....

35 Hz

MINI

70 Hz A Frame clock

16.66

kHz A llllllllllll Line Clock LINECLyUNECL

95

96

DATACUDATACL

DO/LCDO

MJUUUUUUL..

999.6

kHz A

Data Clock

Unstable 60 kHz A Data 0/Liquid Crystal Display

DO

97 D1/LCD1 Unstable

liiltMIM

Unable

60 kHz

98 D2/LCD2

99 D3/LCD3 Unstable

58 kHz

58 kHz

A Data

1

/Liquid Crystal Display

D1

A Data 2/Liquid Crystal Display

D2

A Data 3/Llquid Crystal Display

D3

100 .../RAMSELN

iUUUUUlUUL..

999.6

kHz A Ram

Select Not

7-22

»>>>*C 5

V r«

» iiBiirBi

«

»n

^

IB

» V

(»•

CORRECTIVE MAINTENANCE

OU04

D1406

D1407

SlJr72 ri

1

30

«Q ^ l>«l >LI« l»

^ litflKI

• ass?5SgjJ2aS3Sg’*-

TOF»

VIEW H061 104A

^ f4

XXX X>4XX HX

35?n

?

5 S

5T6d20

9nii4

Q9

XU

26) til

263

H64 xea

X66

K67

XfiS

K6S

X70

V7«

272

X75

27*

»’S

S76

X?7

WS

279 oi

V43

«S

XV4 l59

G6

«?

Figure

7.4

TOP VIEW HD6 11054

?T6fi3)

9ti iu

D1 401/02/03/04/06/07 Display drivers

CORRECTIVE MAINTENANCE 7-23

Tabl9

7.4

Signals measured on display drivers

D1 401/02/03.

Logic 0=OV Logic

1

=+5V

Comp Name

CIrc/IC

01 401/DI 402/D1 403

31 NC

Scope

Freq.

0

Data

HlUA

L

Description

Not Connected

32 -20V /VEE

0 H Power supply

33 NC

0 L Not Connected

34 FRAME/DI

35

M

IhA

36 NC

_L

1

70 Hz

L 34.7

Hz

0

A

A

L

..yshift

register

Data

Input

Signal to convert

LCD driver signal Into

AC

Not Connected

37 /SHL

0 L Select shift direction

38 /CL k A

,

Ul

16.7

kHz A shift

CLock

39 /FCS

40 NC

41

GND

42 NC

0

0

0

0

L

L

L

L shift dock phase

Not Connected

GROUND

(OV)

Not Connected

43 /DO

44 VCC

45 NC

1 1 1 1

70 Hz

0

0

A

H

L shift register Data Output

Volt supply (+5V)

Not Conr^ected

46 NC

0 L Not Connected

Power supply for

LCD drive

47 VI /VI 0 H

H 48 V2/V2

49 V5/V5

0 Power supply for

LCD drive

Power supply for

LCD drive

0 H

7-24 CORRECTIVE MAINTENANCE

Comp Name

Clrc/IC

50

5

21

55

79

96

V6 /V6

X26 /X26

X106/X26

XI 86 /X26

X10/X10

X90/X10

X170/X10

X76/X76

XI 66 /X76

X236 /X76

X52 /X52

XI 32 /X52

X212/X52

X35 /X35

X115/X35

X195 /X35

Scope

Freq.

TOJTzir

0

34.7

Hz

Data

H/UA

Description

H

A

Power supply for

LCD drive

Liquid crystal driver output 5

A

34.7

Hz

Liquid oystal drK/er output 21

lL_JT“LJr

I I I I I I I I

34.7

Hz nxLn

TOTTEU

34.7

Hz

34.7

Hz

A

A

A

Liquid crystal drK/er output 55

Liquid crystai driver output 79

Liquid crystal driver output

96

Table 7.5

Signals measured on display drivers

D1

404/05/07.

Logic 0=0V Logic 1*+5V

Comp Name

Clrc/IC

D1 404/DI 406/D1 407

31 -20V A/EE

Scope

Freq.

0

Data

HIU/K

H

Description

Power supply (-20

V)

32 VI A/1

33 V2 /V2

0 H

H

Power supply for

LCD drive

Power supply for

LCD drive

34 V3/V3 0 H Power supply for

LCD drive

35 V4 A/4

36

/GND

0

0

H

L

Power supply for

LCD drive

GROUND

(OV)

37 LINECLyCLI

38 /SHL

0

\Jk LINE CLock/Latch Clock

1

H

.../SHift direction

A

..,/shlft

CLock

2

39 DATACL/CL2

40 NC

41

D0/D3

0

.lAi_UA__UL

16 -^

L

A

Not Connected

CORRECTIVE MAINTENANCE

Comp Name

ClrcVIC

49 A/CC

50

5

21

55

79

96

NC

Y26/Y26

Y106/Y26

Y186/Y26

Y10/Y10

Y9O/Y10

Y170/Y10

Y76/Y76

Y156/Y76

Y236/Y76

Y62/Y52

Y132/Y52

Y212 /Y52

Y35/Y35

Y115 /Y35

Y195/Y35

42 D1 /D2

43 D2/D1

44 D3 /DO

45 /E^N D1404

/E_N D1406

/E_N D1607

46 M/M

47 NC

48 /CAR_N 01404

/CAR_N 01406

/CAR_ND1407

Scope

Freq.

Data

HA/A

Description

Ai lii/ i

AA_JL

41.6

kHz A jm

112 kHz A

100 kHz

AU

L

r~

A

1

^

16.7

kHz A

.../Enable input

r

L

_TL

16.7

kHz A

.../Enable Input

0

1 .../Enable Input

.nxirLTL

34.7

Hz A ssvilch signal to convert

LCD drive waveform in

AC

0

1

Not Connected

XTTTXl

..

16-7 kHz H/A Enable output for cascade connection

1

1 irnr-ij-...

16.7

kHz H/A Enable output for cascade connection

r

inn

16.7

kHz H/A Enable output for cascade connection

rxxrri....

0 H Power supply (+5V)

0

35 Hz

1

A

Not Connected

Liquid crystal driver outputs wiJiJirir

A

Liquid crystal driver output 21 iiiJ m

III!

lii lui

rijiji

um finam nafliui

^ imnJ LnnJ

35 Hz

35 Hz A

Liquid crystal driver output

55

35 Hz A

J

>inn mi an ttaaa i.„njn

Liquid crystal driver output 79

A 35 Hz

Liquid crystal driver ou^DUt 96

AJO/^

7-25

A

7-26

CORRECTIVE MAINTENANCE

SRG5

2

1^

T

1

1 Cl

II

Ci

>

>

C2/-^

10

1 1

12

T3

1

4

5

4

5

20

30

3D

6

D3

07

5T6622

9T11

U

7 HCT !65

ST6625

Figure

7.

S Keyboard decoders D160

1/02/02f04/0$

Table

7.6

Signals measured on keyboard decoders

D

1601/02/03/04/06.

Logic

0*0V

Logic 1=+5V

1

Comp Name

CIrc/IC

Scope

D1601/D1 602/D1603/D1 604/DI 606

2

3

4

FRONT-LATCh/GI Unstable

FRONT-CLOCK/>1

Unstable

CURSOR2-U...

B-MOVE-UP/...

CURSOR1-R/...

TlME-ns/...

LCD/...

D1601

D1602

D1603

D1604

D1606

CURSOR1-L/...

TlME-s/...

SOFT-5/...

A-MOVE-UPy...

SPECIAL/....

5 SOFT-4/...

A-mV/...

SOFT-3/...

BAC/DC/...

HOLD/RUN/...

Freq.

Data

H/L/A

Description

0

0

0

0

0

0

0

0

0

0

0

0

0

0

34 Hz

775 Hz

0

A

A

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

FRONT LATCH signal

FRONT CLOCK signal

CURS0R2-Left key

Channel B-MOVE-UP key

CURSOR1

-Right key

TIME-ns key

Liquid Crystal Display key

CURSOR1

-Left key

TlME-s key

Soft key -5

Channei A-MOVE-UP key

SPECIAL FUNCTion key

Soft key ^4

Channel A-mV key

Soft key -3

Channel 6-

AC/DC/GROUND key

HOLD/RUN

-

CORRECTIVE MAINTENANCE 7-27

Comp Name

CIrc/IC

Scope

Freq, Data

H/UA

Description

7

8

6

6

10

11

12

13

14

15

16

SOFT-2/...

CHAN-A/B/..-

SOFT-1/...

TRIGGER/...

SETUP/...

not jsdd

VSS

Logic

0*0V

FRONT-DATA2/...

D1 602/9 connected to D1 601/10

FRONT-OATA1/...

D1 604/9 connected to D1 603/10

D1 606/9 connected to

D1 604/10

D 1601/10 connected tp Di 602/9

WAVEFORM/...

D 1603/10 connected tp

DI 604/9

DI 604/10 connected tp

DI 606/9

E/...

AUTOSET/...

RECORD/...

A

AC/DC/..

BV/...

D/...

METER/...

B MOVE

DOWN/...

CURSOR

DATA/...

A MOVE

DOWN/...

UNDO/...

SCOPE/...

MOVE

U...

DOWN/...

A MOVE

DOWN/...

MATH/...

UP/...

A

V/...

CURSOR 2

R/...

B mV/...

A/...

FRONTCLOCK/...

0

0

H

H

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

inTTinnrir

60kHz A

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 vcc/.,.

H

0

0

Soft key -2

CHANnel A/B key

Soft key -1

TRIGGER key

SETUP key not used

Volt

Supply ground

FRONT-DATA block 2

FRONT-DATA block

1

WAVEFORM key not used

AUTOSET key

RECORD key

Channel A-

AC/DC/GROUND key

Channel B-V key not used

METER key

Channel B-MOVE DOWN key

CURSOR DATA key

Channel A-MOVE

UNDO key

DOWN key

SCOPE key

MOVE

Left key

DOWN key

Channel A

MATH key

MOVE DOWN key

UP key

Channel A-V key

CURSOR

2-Rlght key

Channel B-mV key not used

Main supply

7-28 CORRECTIVE MAINTENANCE

7.1.7

Analog A2

PCB

Troubleshooting.

7.

1.7.1

Test point signals.

The analog A2 PCB is provided with test points, marked: TP" See figure 10.4:

A2 components side).

These can be used to check correct functioning of the PCB.

PCB layout (wired

AH measurements are

ScopeMeter using made in the default

MASTER RESET).

MASTER RESET condition (start the measurements in the

A MASTER RESET is performed as follows:

1

,

Rem 0ve al

I signals f rom th e Scope Meter,

2.

Power the

ScopeMeter with the

Power Adapts r/Battery charger

PM

8907.

3.

4,

Turn off the

ScopeMeter

Hold down the

LCD key arvi press the

ON/OFP key simultaneously.

Two beeps are audible, and all volatile memories {RAM with battery backup) are reset.

The ScopeMeter is automatically set to the meter mode.

NOTE: For the measurements on Test Points W1...529

and

901...

921 apptya

W

kHz square wave sigr\al to the channel A BNC.

Press the

SCOPE button to go to

SCOPE mode and press

AUTOSET to get a stable picture on the LCD.

NOTE: For the measurements on

Test Points 700...

906 first switch on the

ScopeMeter using a

MASTER RESET

Then press the

SPEC/AL FUNCT/on key and the

GENERATE softkey.

Use the select/adjust keys to select ^square 1.95

kHz'', and press the right most ENTER softkey to aciiyete the generator.

102

Use another osti

I loscope with high input impedance and

10:1 probe to measure the signals on the lest points.

See table 7.7:

TP

Table 7.7

Oyen/iew signals on

Test Points (TP) on analog A2 PCB.

Logic 0=0V, Logic 1=+5V

Name Scope Freq.

Data Description

0 Base V2112 101

109

0 Output D2101

103

104

106

107 ATTB-A

[

I r

[

^

1

«6

0

0

•••0

133

0

0

Output N2101

Collector V21 05

Base V2104

Coliector V2111

108

201

POS-CHB i

I

0

-1B*w

0

0

0

TP for

OFFSET DAC

POS-CHB

Base V2212

CORRECTIVE MAINTENANCE 7-29

521

522

523

524

501

502

503

504

506

507 +Vref

508

-Vref

509

511

202 mV-in from A2d

203

204

206

207 ATTA-A

208

209 POS-CHA

331

332

0

10kH2

10 kHz

Outpul D2201

OiitputN2201, Voc

= -1-5V

ColleclorV2206 r

I

-1 33

0

10 kHz

0

0

77 KHz

POS-CHA

0

VREF D2301

-0J3

LF: sq.

HF: sq.

10 KHz

500

SGN-in N2301

KHz

Voc = 2.3V

77 kHz

Collector V2517, Vpc

=

-7.7V

Base V2517

73 KHz

-_AAylyL4

y^lAAAA:!

,.3

6

0

-3

73 kHz

73 kHz

0

0

0

Base V2204

Collector

V2211

TP for offset

DAC

Base V2503, Vqc * -3,83

V

Sense

Resistors, Pos. side

Vdc

=

-7.7V

Sense Resistors, Neg.

side

Voc = -7.75V

+Vref

-Vref

0

100 kHz

100 khz

0

Output N2501

TP for

FEEDBACK

AMPLIFIER

PSG-lnputZ2501,

Vdc = -1.1

mV

Oscillator

N2503,

Vk = 0.24V

INV N2503

100 kHz

Collector V2526,

Voc=^'0.12V

7-30

701

702

704

526

527

528

529

700

902

903

904

906

907

908

909

706

801

802

803

604

805

806

901

CORRECTIVE MAINTENANCE b

.

lUU I^H4 OUUK.^ V2532, VpQ -

‘O.AV

/

K /

^Sfiv an

/ / ^

I

1

-7fnv

'

100 kHz Source V2537,

Vdc = -1-05V

100 WHz Source V2538, Vpc = -1-7V

0

CLN N2503

I e

1

1

1.95

kHz

1

L

K2750a/K2751b Vqc = 0.29V

oriAA.

1.95

kHz Anode Zener V2752

Vdc = 0.27V

Output

D2350

0

0

0

0

0

0

A

0

A

0

1.953

kHz

A

A

A

A

Collector V2761.

Vdc^ 0.27V

Anode zener V2764

Output 02850, Vqc» 2.5V

Emitter

V2852

Non-inverting Input

N2850a

Output N2850, Vqc

= 0.29V

Mon-inverting Input

N2850b

TP for

CURRENT SOURCE

Output 182 D2901

Output 384 D2901

Output 5S6 D2901

Output 7&8 D2901

Output 1&2 D2902

Ou^JUt 384 02902

Output 586 D2902

Output

788 D2902

0

CORRECTIVE MAINJTENANCE dll

912

914

916 SgndSa

917 Ex/Ey

918 SgndSb

919 Sr4b

921 D-POSCHB

.

1

0

0

.5v

0

0

0

0

0

0

0

Output 1&2 D2903

Output 3&4 D2903

Output 7&8 D2903

SgndSa D2904

Ex/Ey D2906

SgndSb D2907

Sr4b 02908

D-POSCHB D2909

7-31

1

7-32 CORRECTIVE MAIfsiTENANCE

TRIG

m

GnDC 7

INPB

3

VCCA 4

COAT

S

CCLK 6

DTAE

7

GNDT

S

9

HLDF

QO.

CLK

1

1

CLKN

M

CHA

;

IS

VEET

14

000308

ST6624

Figure 7.6

Analog ASIC D2301

1 o

Table

7.8

Signals measured on analog ASIC D2301.

Logic 0*0 V

Logic

1*+5V

Comp

1

Name

Cifc/IC

Scope Freq.

0

.

TRIG 0 n

0

3 (NPB

0

Data

H/L/A

Description

EXT.

Trigger Input

Analog-

In put-clrcu it input signal

B

4 VCCa

5

COAT

1

In-

0

0

»B'T'

500 kHz

Positiv power supply

Analog-i n p ut-circu it

Serial Data line

VOC = 5V

6

CCLK 100 kHz

7

6

DTA£

GNDt

1

'

|1S0«’ l-zmm

500 kHz

0

Clock line

Voc= 18 mV

Latch enable line

Voc * 20.7

mV

Ground Trigger-output-circuit

Freq.

Data

H/L/A

Description

7

.

33 CORRECTIVE MAINTENANCE

Comp Name

Circ/IC

9

STOP

10

11

HLDF

VDC =

5

CLK

12 CLKN

13

CHA

14 VEEt

15

TOUT

16 VCCt

17 VCCs

18

SNGOUT

19

QNDs

20 LEVEL

21

VEEs

22 VCCc

23 VREF

24 VEEc

25 GHDc

26 INPa

27 VEEa

28 INPGND

I

I

\

Scope

[_

^

Q so kHz

20 Hz

Chanel switch

Voc = 2-4V

Negativ power supply

T rigge r-output-ci rcuit

DC-Tngger output

Posltlv power supply

Trlgger-output-clfcult

Positiv power supply

Signal’OUtput-circuit

LF: sq.

10 kHz

HF: sq.

500 KHz

Output signal, Vqc = 2.3V

GrounP

Si gnal -0 utpu1-cu rcu

It

Trigger level input

0

0

0

Negativ power supply

Signal-output-circuit

Positiv power supply

Control-log Ica-cl rcu

It

ReFerence potential

0

0

Negativ power supply

Control*!

og

Ica-ci rcuit

Ground control-log ica-ci rcuit

Input signal A, Vpc = *17 mV

Negativ power supply

Ar>a log* In put-ci rcu

It

Ground input

7-34 CORRECTIVE MAINTENANCE

7

8

5

6

3

4

IN

AGND

VRB

DEC

NC

VCCa

9 VRT

Figure 7.7

ADCN2302

Table 7.9

Signals measured on

ADC

N2302.

Logic 0=0V

Logic i

=+5V

Comp Name

C\rc/\0

Scope

Frep, Data

H/UA

Description

Data output brt no.l

Voc = 2.6V; for

HFse© no.

12

Data output bit no.O

Voc = 2.1V; for

HF see no.

12

0

0

0

0 Not Connected

0

•92

0

LF:sq. 10 kHz

HF:

8 C

1

.

500 kHz

0

Vdc =

2.3V

V

13 D6

14 D5

15 D4

16 CL

17 CLN

18

VCCD

19

VCCO

20

DQND

21

OCTN

22

CEN

23 D3

24 D2

CORRECTiVE MAIf^NANCE

Comp Name

ClfC/IC

10

NC

11

0/UFL

12

D7

7-35

Scope Freq.

Data

H/L/A

Description

0

If

F

I (

0

1IL

LRIOkHz

HR 500 kHz

I

X

-1

LRIOkHz see pin no.

13 see pin no.

13 snoiM

M a 8$ Aignsi

A ^

0

0

(9 7

0

0

Q lUHz

0

0

0

0

Not Connected

Not Connected

Data oLrtput bit no.

Voc^3.1V

Data output bit no.6

Vqc

*

1 .1

V; ior

HF see no.

1

Data output b(t no.5,

Vqcs1.iv

D ata oiitout bit no.4, Vdc

=

1 .1

Vqc = 1.42V

Vqc = 0.55V

•^a.2

^.4

Data output bit no.

Voc*027V;forHFseeno.

12

Data output bit no.

VDC =

1

.84V; for

HF see no.

1

7-36 CORHECTrVE MAIOTENANCE

AO

EX

AlCH

A2

AS

A4

CL

AS

CL

Asdl

A7

CL

GND

1

10

541

ISvcc

HI n]vo lU'n jT]

,s jU

^3

m

Ys iHyb jj] V7

ST$626

911

M4

Figure 7.6

Buffer/drivers

D2901/D2902/D2903

Table 7.10

Sigr^ais measured on buffer/driver D2901.

Logic 0=0 V

Logic 1=+5V

Comp Name

Circ/IC

Scope

Freq.

Data

H/UA

Description

1

2

Ex

Sg4b

3

4

Sg4b

5

6

7

Sg5b

Sg5b

3g6b

Sg6b

8 SolOb

9 So10b

10

GNO

0

0

0

0 n

A

A

0

A n

Control signal input no.1

Input no.2

Input no.3

Input no.4

Input no5

Input no.6

Input no7

Input no.8

Ground

7

CORRECTIVE MAINTENANCE

11

12

13

14

15

16

17

18

19 Ex

20 Vcc

Comp Name

Circ/IC

Scope

0

0 kSV

0

0

0

0

0

0

0

0

0

Freq.

Data

HAJA

Description

Output no.

Output no.

Output no.

Output no.

Output no.

Output no.

Output no.

Output no.l

Control signal

Power supply

3

4

1

Table

7.

11

Signals measured on buffer/driver

D2902

Logic 0=0 V Logic 1=+5V

Comp Name

Circ/IC

Scope

Frep.

Data

HAJA

Description

2

Ey

Sg4b

I

I

^ sv

0

0

Control signal

Input no.l

5

6

Sg4b

SgSD

SgSb

Sg6t>

I

'

[

0

-sv

0

.5V

0

0

0

0

Input no.

Input no.

Input no.

Input no.

7 Sg6b

8 Sollb

0

0

^

0

Input no.

Input no.

7-37

7-38 CORRECTIVE MAINTENANCE

Comp Name

0\ic/\C

9 Sollb

10 Gnd

11

12

13

16

17

14

15

18

19 Ey

20 Vcc

Scope

0

0

0

0

A

0

0 n

A

0

A

Freq.

Data

H/iyA

Description

Input r>o 8

Ground

Output no.

Output no.

Output no.

0

Output no

.5

Output no.4

Output no.3

Output no.2

Output no.1

Control signal

Power supply

1

Table

7.

12 Signals measured on buffer/driver D2903.

Logic

ObOV

Logic 1^ +5V

Comp Name

CIrc/IC

Scope

Freq.

— iSV

Ey

0

0

Sg4a

0

Data

H/UA

Description

Control signal

Input no.^

4

Sg4a

Sg5a

0

0

Input no.2

Input no.3

&

5 Sg5a

0 Input no.4

6

7

Sg6a

Sg6a

0

0

Input no.

Input no.

a

CORRECTIVE MAINTENANCE

15

16

17

16

19 Ey

20 Vcc

11

12

13

14

Comp Name

Orc/IC

8 SC16

9 Sc16

10 Gnd

Scope

1

1 r

0

0

.sv

0

-sv c

0

0

0

0

0

0

0

0

Freq.

0

Data

HfUA

Description

Input no.

0

Input no.

0 Ground

Output no.

Output no.7

Not connected

Not connnected

Output no.

Output no.3

Output no.2

Output no.l

Control signal

Power supply

7-39

7-40 CORRECTIVE MAINTENANCE

7.2

REPLACEMENTS

7.2.1

Standard parts

Electrical and mechanical parts replacements can be obtained through your local organization or represenla^ve.

However,

FLUKE/PH ID PS many generic electronic components can be obtained from other sources.

Before purchasing orordering replacement parts, check the parts Ms!

for value, tolerance, rating, and description.

NOTE:

Physica/ $/ze and shape of a component h/gh frequencies.

may af^

/nstrument performance, particu/ajiy at

A/ways use d/recf^rep/acemenf components, un/ess it is known that a substitute wilt not degrade the instrument's performance.

7.2.2

Special parts

In addition to the standard electronic components, some special components are used;

Compon ents

, custom manufactured or selected by FLU K E/P H

I

LI

PS to meet specific pe rformance requirements.

Components that are important for the safety of personnel.

NOTE: Both type of components may oniy be replaced by components obtained through your iocai

FLUKE/PHIUPS organization or representative.

7.2.3

Transistors and integrated circuits

Some notes on handling these components:

Do not replace or swap semiconductor devices unnecessarily, because the change may affect the calibration of the instrument.

-

When a device has been replaced

, check the circuit that may be affected for proper operation

.

See also the Performance Verification Procedure in chapters

7.2.4

Static* sensitive components

In tie ScopeMeier the black/yellow ‘'static-sensitive components” symbol is present (see also figure

7.4).

This means that ^is instrument contains electrical components that can be damaged by electrostatical discharge.

Although all

MOS

Integrated circuits incorporate protection against electrostatic discharge, they nevertheless can be damaged by accidental overvoltages.

Figure

7.

9 Sta tic-sensitive symbol

(black/yelio w)

CORRECTIVE MAINTENANCE 7-41

It Is also possible that a delayed failure or “winding" effect may cxx^ur.

When this happens, the component will fail anywhere between two hours to six months later.

When storing and handling static>sensitive components, the normal precautlor^ for these devices are recommended.

Handling and servicing static-sensrtlve assemblies and components should be done only at a static free workstation by qualifted personnel.

CAUTION:

Testing, handling, and mounting call for special attention.

Personnel handling static-sensitive devices ohmic resistor.

should normally be connected to ground via a high-

7-42

7.2.5

Replacement of parts

7.2.5.

1

Replacing parts in the battery compartment

CORRECTIVE MAINTENANCE

Figure

7.

fO Replacing parts in battery compartment

Referring to figure 7.10, use the followtng procedure for replaoernenls

In the battery compartment.

Battery co^er assembly replacement

1

.

The battery cover (item

1

20).

7) is secured to the ScopeMeter with two black M3 Torx screws (Item

Use a Torx screwdriver to loosen the two screws (do not remove them) from the banery cover.

2

.

Lift th e batte ry cover from the ScopeM ete r.

.

CORRECTIVE MAIKfTENANCE

3.

7-43

Reinstall the new battery cover.

Bat^ry^GOver Gastef replacement

1

.

Remove th e batte ry cover

(

Item

1 7)

2.

3.

Use a pair of tweezers to pull the elastic gasket (item

18) from the battery cover.

Mount the new elastic gasket on the battery cover.

NOTE: Take care that the gasket is nof damaged.

ScopeMeter

A correctly fitted gasket assures the sealing of the

Battery cover Torx screws and Feet repiacement

1

.

Rem

0 ve th e batte ry cover.

2.

The black M3

Torx screws are of a captured type (Item 20).

Remove screws by unscrewing them with a Torx screwdriver.

Add a little pressure with another small screwdriver at the back of the screw.

NOTE: Do riot force the screws by pressing them in or out The screw action

Is vital for the captured screws.

3.

Pull the two rubber feet (Item 19} from the battery cover.

4.

5.

Push the new rubber feet onto the battery cover.

Reinstall the (new) black

M3

Torx screws

Into the battery cover.

7.

2. 5.

2 Replacing parts on front cover

3

Figure

7.

J 1

Replacing parts on front cover fletemng to figure 7.11, use the fol lowing procedure for replacements on the front cover,

Front cover assembly replacement

1

.

The front cover

Is secured to the

ScopeMeter with two black

M3

Torx screws

(item

4).

Use a Torx screwdriver to loosen the two screws (do not remove them) from the front cover.

7-44 coflREcrrvE maintenance

2.

Lift the front cover aesembly (Kem

3) from the

Scope

Meter.

NOTE: The gasket tietween the front cover and the two case halves ts sealed to.

and must remain with, the front cover.

The front cover lifts away easily.

separate the front cover from the gasket.

Do not damage the gasket anQ do not

A correctly fitted gasket assures the sealing of the

ScopeMeter

3.

Reinstall the new front cover.

Front cover Torx screw replacement

1

.

Remove the front cover.

2.

The two black

M3

Tonr screws (Item 4) are captured type screws.

Remove screws by unscrewing them with a Torx screwdriver.

Add a little pressure with another smalt screwdriver at the back of the screw.

NOTE: Do not force the screws by pressing them in or out.

The screw action is vital for the captured screws.

3.

Reinstall the new Ton screws into the front cover

CORRECTIVE MAINTENANCE

T.S.S.3

Replacing pans on bottom cover

7-45

Figure

7.

12 Bottom cover replacements

Referring to figure 7.12, use trie following procedure for replacements in the bottom cover.

Bottom cover assembly replaesmeats

1

.

Rrst remove trie battery cover assembty (see Section 7.2.5.1

.)

2.

Trie bottom cover ie secured to the top cover by two M3 Torn screws

(item 29) that are accessible in the battery compartment.

Use a Torx screwdriver to remove the two screws.

3.

Lift the bottom cover a little from the top cover and infold the ScopeMeter.

NOTE: A

Hat cable is used for interconnection between the bottom cover with the analog A

1

PCB and the digital

A2 PCB.

To remove the fiat cable, refer to Section 6.2.4.

The gasket between the two case halves f$ sealed to, and must remain with, the lower case half.

The upper case hatf lifts away easily.

Do not damage the gasket and do not separate the lower case half from the gasket.

A correctly fitted gasket assures the sealing of the ScopsMotor.

7-46 CORRECTIVE MAINTENANCE

4.

The analog A2 PCB and top screening are secured to the bottom cover by two M3

Torx screws

(item 30).

Use a Torx screwdriver to remove the two screws.

5.

Carefully lift the metal top screening, while pulling it backwards.

6.

Pull the battery wiring plug (item 27) out of the connector on the analog A2 PCS,

7.

Use a Torx screwdnVer to loosen the two black screws

[item 13).

Do not remove them from the input unit assembly.

Now analog A2 PCS can be lifted out of the bottom cover assembly.

8.

Fold the analog A2 PCS back on the digital A1 PC6

In the tc^ cover.

9.

Lift the bottom cover screening out of the bottom cover assembly.

10.

Reinstall the new bottom cover assembly.

Battery wiring asaemb/y rop/acement

26

CHAPGIt^

Referring to figures 7.10

and

7.13, use the following procedure for replacing the battery wiring and battery contacts.

1

.

First remove the bottom cover assembly.

2.

Unsolder the battery wiring assembly

(item 27) from the battery compartment.

3.

Reinstall the new battery wiring assembly.

Battery contacts reptacement

1

.

First remove the bottom cover assembly.

2.

Remove the battery wiring assembly.

CORRECTIVE MAIf^ENANCE 7-47

3.

Unsolder small battery contact IrMerconnection wire (see figure 7.13).

4.

6end ttie solder tags ot the battery coatacts (figure 7.10, Item 23)

In the bottom cover

In such way that the contacts can be pulled out of the battery compartment.

5.

Pull the battery contacts (figure 7.5, items 22 and 23) and the black buffers (figure 7.10.

item 24) out of the battery compartment with a pair of tweezers.

NOTE: The extra black plastic buffers /n two battery contacts (see figure 7.

10, item 23) prevent erroneous charging of the battery.

Mourtt these battery contacts in the correct position!

5.

Reinstall the new battery contacts.

Battery charging contact and *12VJ0 contact replacement

1

.

First rerrx>ve the bottom cover assembly.

2.

Remove the battery wiring assembly.

3.

Bend the solder lugs of the contacts (figure 7.1

0, items 25 the contacts can be pulled from the battery companment.

and

26) in the bottom cover so that

4.

Pull the contacts horn the battery compartment

5.

Reinstall the new charging contact and/or the new

+1 2V/0 contacts.

7.Z5.4

Stand re(>lacement

Referring to figure 7.10, use the following procedure for stand replacement.

Stand assembly replacement

1

.

The stand is secured to the ScopeMeter with two black

M3

Torx screws

(figure 7.1 0.

item 16).

Use a Tone screwdriver to loosen the two screws.

2.

Lift

^e stand from the ScopeMeter.

3.

Reinstall the new stand.

Stand Tone screw replacement

1

.

Remove the stand assembly (figure 7.10, item 15).

2.

The black

M3 Tone screws are of a oa^ured type (item

1 6].

Remove screws by unscrewing them with a Tone screwdriver.

Add a little pressure with another small screwdriver at the back of the screw.

NOTE: Do no/ force the screws by pressing (hem

In or out The screw action is vital for the captured screws.

3.

Reinstall the new

Torx screws.

7.

2.

5.

5

30-poie fia t cabte replacement

Refer to Section 6.2.4. of this Senrice Manual for instructions on how to replace the 30-pole flat cable.

7

-4fi

7.

2.

5.6

Input unit assembly replacement

CORRECTIVE MAINTENANCE

Figure

7.

14 Irput unit assembly

Referring to figure 7.14.

use the foilowing procedure for Input unH assembly replaoOTeni.

1

.

Remove the front cover assembly.

2

.

Disassem bl e the bottom cove r assemb ly.

3.

Remove the 30-pole flat cable.

4.

Unsolder the wiring (6x) of the input terminals from the analog A2 PCB.

5-

The input unit assembly

Is clamped onto the analog A2 PCB. Loosen these clamps and pull the input unit assembly from the analog A2 PCB.

NOTE: The white gaskets on the input terminals (4x) are sealed to, and must remain with the input unit assembly.

Do not damage the gaskets and do not separate them from the Input unit assembly. Correctly fitted gaskets assure the sealing of the ScopeMeter.

6.

Reinstall the front unit assembly.

7.

2. 5.

7 Top cover assembly replacement.

Referring to figure 7.12.

use the following procedure for top cover assembly replacement.

1

.

Remove i^e bottom cover assembly.

2.

Remove the 30-pole fiat cable.

3.

The digital A1

PCB and metal screening are secured to the lop cover with four

M3

Torx screws

(Item 33).

Two of these screws contain standoffs, be sure to put them on the right place again.

Use a Torx screwdriver to remove the screws.

4.

Remove the metal A1 screening from digital At PCB.

5.

Lift the digital

A1 PCB out of the top cover.

Be careful not to damage the infrared

LED and phototranslstor of the optical Interlace.

CORHECTrVE MAINTENANCE 7-49

NOTE: The gasket between the two Optica!

H3-232-C

Interface

LEDs on the digitaJAl

PCB and front cover must remain with the LEDs.

The top cover lifts away easily.

gasket A correctly fitted gasket assures the sealing of (he ScopeMeter.

Do not damage the

6.

Lift the keypad from the top cover (item

2).

7.

Remstail the new top cover (item

1 ),

7.

2.

5.6

Keypad replacement

1

.

Remove th e botto m cove r asse mbiy.

Remove the 30>pole flat cable.

2.

3

.

Disasse mbie the top cove r assemb ly.

4.

5.

Lift the keypad from the top cover (item

2).

Reinstall the now keypad.

7.2.5

9 Liquid crystal display (LCD), contact strips and backlight foil

(Model 97 only) replacement.

Referring to figure 7.15, use the following procedure for

LCD replacem^t.

1

.

2.

Remove the bottom cover assembly.

Remove the 30-pole flat cable.

3.

Disasserrble the top cover assembly.

NOTE:

Oifs or dirt from the hands are ennemies of the

LCD contact strips used in the

LCD assembly.

Whenever handling these strips, it is advised that tweezers be used so as not to contaminate them.

Care should also be taken fingerprints when handling the front panel lens or

LCD glass. Dirt or on these parts will be visible to the user and may impair the readabUhy of the display

7

50 CORRECTIVE MAINTENANCE

4.

Pull thd three metal clamps from the display (Item

6).

5.

Lift the LCD complete

In Ms frame from the digital

A1 PCB.

6.

Push the

LCD includirtg the

LCD contact strips out of the display frame.

7.

8.

9.

Take the two display adjustment screws

(Item 6) out o1 Ute display frame.

Lift the top

T LCD contact strip (item

1

0) from the display.

Pull the left and right

T" LCD contact strips (item 9) from the display.

10.

(MODEL 97 ONLY)

The backlight foil (item

1 2) is glued to the reflective

LCD (Model 97 only).

The backlight two contact legs that make contact with two large rectangle spots on the digital A1 PCB.

foil has

11.

Pu il the backi ight foi

I fro m the d Isplay.

12.

Reinstall the

LCD rubber tilling part (item 13) and the back light foil.

1 3.

Reinstall the two “L”

LCD contact strips.

14.

Reinstall the display with 'L"

LCD contact strips in the display frame.

15.

Rei nstal

I th e

T

LCD contact strips on the disp lay.

1 6.

Reinstall the two display adjustment screws.

1 7.

Reinstall the frame with the display assembly on the digital

At PCB.

1

8.

Reinstall the three metal clamps.

1

9.

Reinstall the digital

A1 PCB and top cover.

CORRECTIVE MAOTENANCE

7 -SI

7.3

SOLDERING TECHNIQUES

7.3.1

General soldering techniques

Method:

• Carefully unsolder the soldering leads of the semiconductor one after the other.

Remove all superfluous soldering material.

Use de&oldering wick, ordering code; 4822 321 40042.

' Verify that the leads of the replacement part are clean and have pre-tinned leads.

’ Place the replacement semiconductor exactly in the same position, and solder each lead to the relevant printed circuit padon the

PC

B.

NOTE: The maximum permissible soldering time is

10 seconds during which the temperature of the leads must not exceed 2SDC.

The use of solder with a low melting point is recommended

Take care not to damage the plastic encapsufation of the semiconductor (softening point of the pfastfc is

1S0C).

CAUTION; When you are soldering inside the Instrument

It

Is essential to use a low voltage soldering Iron, the tip of which must be connected to the ground of the

Scope Meter.

A suitable soldering iron is:

• Mini solderirtg iron station,

WECP-COD3

(regulated transformer) and Weller LR-20 (soldering

Iron).

Ordinary 60/40

Cin/lead solder with flux core and a35W to

40W pencil' type soldering Iron can Pe used to do most of the soldering.

If a higher wattage soldering Iron heat may cause the circuit wiring to separate from the PCB

Is used

Pass on the circuit

PCB, excessive material.

7.3.2

Soldering micro-miniature semiconductors

Because of the small dimensions of these

SOT semiconductors and the lack of space between the components on the PCB,

It is necessary to use a miniature soldering iron with a pinpoint tip

(max.

diameter

1 mm.) to solder a

SOT onto a

PCB.

Suitable soldering tools are:

“ Mini soldering Iron station.

WECP-COD3

(regulated transformer) and Welle r

MLR

-20 (rm'nl soldering

Iron).

-

A hot-air solder tool: Leister Hot-Jet

Next, the foliowing materials are recommended:

• Soldering tin, diameter 0.8

mm., code; 4S22 390 80133.

SnPb 60/40 with a Resin Mildly Activated

(RWA) flux.

Ordering

Desolder braided wire.

Ordering code 4822 321 40042.

Solder paste

26.

Non-corrosive and Resin Mildly Activated (RMA) flux-Colophony.

Ordering code: 4822 390 50025.

Refer to the Support

Bulletin

OSC 296 (ordering code 4822 872 06407) for a complete discussion of the soldering techniques for

SMD's.

7 ‘52 CORRECTIVE MAINTENAWCE

7.4

SPECIAL

TOOLS

7.4.1

Extender flat cable.

For diagnostic testing this extender flat cable and troubleshooting, a 30-pole 50 cm extender flat cable can be used.

Using makes it easier to separate the two units

A1 and A2 without breaking the interconnection.

The ordering code for the extender flat cable is:

5322 321 61 36S.

7.5

7.6

RECALIBRATION AFTER

REPAIR

After any electrical component has been replaced the performance of that particular circuit should be checked, as well as the performance of other closely- related circuits.

If necessary a recalibration must be performed.

Since the power supply influences all circuits, the performance of the entire instrument should be verified if work has been done in the power supply or if the transformer has been replaced.

If necessary a recalibralion must be done.

If parts of the attenuator circuits and/or the

Artaiog

AStC have been replaced,

It might be necessary to do Hardware SCOPE

Calibration

Adjustments.

Refer to section 5.6.1 of this Service Manual.

INSTRUMENT REPACKING

If the

ScopeMeter is to be reshipped to a Service Centre for service or repair, attach a tag showing the full address and the name of the individual at the users firm that can be contacted.

The

Service Centre needs the complete ScopeMeter, Including the

RED and the

GREY scope probe, its serial number, and a complete description of the problem and the work that is to be dons.

If the original container is not available, repack the Instrument so that no damage occurs during transport.

MAINJTENANCE OF THE PRIMARY CIRCUIT 8-1

8

MAINTENANCE OF THE PRIMARY CIRCUIT

(PM8907/...)

The ScopeMeter

Itself has no primary (mains) power supply.

The

Instrument is powered with a separate

Power adapter/battery charger PM8907/...,

In which the primary power supply is located.

The PM8907/...

Is non-repalreble.

it can be ordered at your nearest

FluKe/Philips Service Center.

Table

6.

1

Power adapter/batiery charger survey.

Typenumber Oescflptlon

PM8907/001

PM8907/003

PM8907/004

PM8907/008

Universal Europe 220V.

50 Hz

North American UL.

CSA,

110V, 60 Hz

United Kingdom 240V, 50 Hz

Universal 115V /230V

Figure 8.

1

ScopeMeter Po wer A dapter/banery Charger PM690

7/....

REPLACEABLE PARTS LIST 9-1

9

REPLACEABLE PARTS

LIST

9.1

Assembly name

ScopeMeter final assembly

Front cover assembly

Input unit assembly

Display assembly

Battery contact assembly

Stand assembly

Battery cover assembly

Bottom cover assembly

Digital

A1 PCB assembly

Analog A2 PCB assembly

Accessories replacements Fluke

Accessories replacements

Philips

Rgure/page

9.1

9-3

9.2

9-5

9.2

9-5

9.2

9-5

9.3

9-7

9.3

9-7

9.3

9-7

9.3

9-7

9.4.

9-B

9.5Z9.6

9-14/9-15

9.7

9.8

Table/page

9.1

9-2

9.2

9-4

9.2

9-4

9.2

9-4

9.3

9-6

9.3

9-6

9.3

9-6

9.3

9-6

9.4.

9-8

9.5.

9-13

9.6

9.7

INTRODUCTION

The replaceable parts section provides illustrated parts lists for the ScopeMeter models

Philips

PM93/PM95/PM97 and Fluke 93/95/97.

The mechanical parts are listed numerically by asssembly.

boards A1 and

The electrical parts on the phnted circuit

A2 are listed alphanumencally by assembly.

Each part is shossm In an accompanying illustration.

The parts lists provide the following information for each part:

Item number

Figure number

Description

Ordering code

Total quantity of componenents per assembly

9-2 REPLACEABLC PARTS UST

9.2

HOW

TO

OBTAIN

PARTS

For Philips Export B.V.:

Contact your local Philips Sal os and Service ropreeentative.

The addresses and telephone numbers are listed in this manual

In section 11:

"Sales & Service all over the world".

For the John Fluke Mfg.

Co., Inc.:

Cor>tactyouf local Fluke authorized representative.

In the U,S.

order directly from the Fluke Parts

Deol.

by catling 1-

800-526-4731.

To ensure prompt and efficient handling of your order, Include the following Information:

1

.

Mode number {PM xx),

{Fluke xx),

Code number (9444 items are printed on the type plate on the bottom cover.

2.

Ordering code

) and Serial number (DM

}.

The

3.

Item number

4.

Description

5.

Quantity

Tat)le 9. 1

ScopeMeter final assemoiy. (See figure 9.1)

When servicing the ScopeMeter, use only the replacement parts specified.

Item

1

1

1

1

1

1

2

2

2

29

30

31

-

32

33

Figure

9,1

9.1

9.1

9.1

9.1

9-1

9.1

-

9.1

9.1

9.1

9.1

9.1

9,1

9.1

Description

Top cover assembly PM

93

Top cover assembly PM 95

Top cover assembly PM97

Top cover assembly 93

Top cover assembly 95

Top cover assembly 97

Keypad PM93/93

Keypad PM95/95

Keypad PM97/97

Bottom cover to rx

-screw blank

Board A2 torx-screw blank M3

Input unit torx-screw blank M3

M3

30-pole flat cable

30-pole extender flat cable for repair purposes

Top cover torx-screw blank M3

Ordering code

5322 447 70108

5322 447 70109

5322 447 70104

5322 447 70105

5322 447 70111

5322 447 70115

5322 218 61461

5322 218 61459

5322 218 61457

5322 502 13772

5322 502 13772

5322 502 13772

5322

321

61238

5322 321 61369

5322 502 13772

1

2

Qty

1

1

1

1

1

1

1

1

1

2

2

2

1

REPLACEABLE PARTS LIST

Tebie 9 2

Front cover assembly (See ftgure 9.2)

Input unit assembly

Display asssembiy

When servicing the Sc»peMeter, use only the replacement parts specified-

Item

11

11

12

13

3

4

5

6

7

S

9

10

Figure

9.2

9.2

92

9.2

9.2

9.2

9.2

9.2

9.2

9.2

9.2

9.2

Description

Front cover assembly

Torx screw black M3

Input unit assembly

LCD adjust screw

LCD frame

LCD clamps

LCD contact strip

L-shape

LCD contact strip l-shape

Display reflective

PM93/93 PM95/95

Display transflective

PM97/97

Backiight foil

LCD rubber filling part

Ordering code

6322 447 70112

5322 50213771

5322 218 61462

5322 535 93237

5322 255 41246

5322 401 11411

5322 466 6204B

5322 266 90443

5322 130 90991

5322130 91054

5322 466 62052

5322 466 62049

Qty

1

2

1

2

1

1

1

1

1

1

9-6 REPLACEABLE PARTS LIST

Tsd/e 9.3

Battery contact assembly.

(See figure 9.3)

Stand assembly

Battery cover assembly

Bottom cover assembly

When servicing the ScopeMeter, use only the replacement parts specified.

Item

25

26

27

28

21

22

23

24

14

15

16

17

18

19

20

Figure

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

9.3

Description

Stand assembly

Anti slip strip

Torx screw black M3

Battery cover assembly

Gasket

Rubber fool

Torx screw black

M3

Bottom cover assembly

Battery contact spring

Battery contact spring assembly

Buffer

12V/0 contact

Charging contact

Battery wiring assembly

Battery pull strip

Ordering code

5322 456 90416

5322 466 62045

5322 502 13771

6322 447 70116

5322 530 51238

5322 462 41825

5322 502 13771

6322 447 70113

5322 492 70908

5322 492 70909

5322 466 62047

6322 466 82843

6322 466 82842

5322 321 61237

6322 466 62046

Qty

1

1

1

4

2

1

1

1

1

1

1

2

2

1

3

r

1

REPLACEABLE PARTS

LIST

Table

9.

4

Digital

A PCS assembly

(figure 9.4)

When servicing the ScopeMeter, use only the replacement parts specified.

1

Item Figure Description Ordering code

A1 9.4

Digital A1

Digital A1

Digital At

PCB assemply PM93/93

PCB assembly PM 95/95

PCB assembly PM97/97

5322218 61463

5322218 61464

5322216 51275

Qty

1

1

1

9202U

Figure 9.4a

Digital

A

1

PCB assembly

REPLACEABLE PARTS LIST

Irnl cim

IIIK

Figure 9.4b

Modifications Digital

A

1

PCB assembly

7hr /ik ’tttt.

CU2Z MOUNTEO OWE# R12J2

VU»I

REPLACEABLE PARTS LIST

5322 12233869

5322 122 33869

4822 122 32916

5322 122 33869

4822 122 33498

4822122 32916

5322 126 10733

5322

1

22 32448

4822 126 10004

5322

1

24 42332

5322122 34096

532212610785

4822122 32916

4822 122 33498

5322 126 10785

5322 124 42331

5322

1

22 34098

5322 122 34098

4822122 32916

5322 124 42332

5322 122 34098

5322122 34098

5322 12234098

5322 122 34098

532212234098

5322 122 34098

5322

1

22 34098

532212234098

5322 122 34098

532212234098

532212234098

5322 122 34098

5322

1

22 34098

5322 122 34098

5322 122 34098

Ordering code

CAPACITORS

5322 122 34098

532212610785

4822 122 32916

5322122 32654

532212233869

5322 122 34098

5322 122 34098

532212234098

5322 122 34098

4822 12232916

Descriplion

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CARCHIP

CAP.CHIP

CAP.CHIP

CAP.CERAMIC

CfiP.CHlP

CAP.ELECTROLYT.

CAP.CHIP

CARCHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.ELECTROLYT.

CAP.CHIP

CAP.CHIP

CARCHIP

CAP.ELECTROLYT.

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CARCHIP

CARCHIP

CAP.CHIP

CARCHIP

Item

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

50V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

6.3V

63V

63V

63V

50V

63V

63V

63V

63V

63V

10% 10NF

10% 100NF

10% 220NF

C

1201

C 1202

C 1203

10% 22NF C 1204

5%

15PF C 1205

10% 10NF C 1206

10% 10NF C 1207

10% lONF C1208

10% 10NF C 1209

10% 220NF C

1211

5% 15PF C1212

5% 15PF C 1213

10% 220NF C1214

5% 15PF C 1215

10% 2.7NF

C1216

10% 220NF C1217

5% 660PF C1220

5% 10PF C1221

5% 120PF C1222

20% 10UF C1302

10% 10NF C1303

10% 100NF C 1304

10% 220NF C 1305

10% 2.7NF

C 1309

10% 1O0NF C 1311

20% 100UF C

1312

10% 10NF

10% 10NF

C

C

1316

1317

10% 22QNF C 1318

20% 10UF C 1319

107o 10NF

10% 10NF

10% 10NF

10% 10NF

10% 10NF

C

1321

C 1322

C 1323

C 1324

C 1326

10% lONF

10% 10NF

10% 10NF

10% 10NF

10% 10NF

C 1327

C 1328

C 1329

C 1330

C1332

10%

10%

10NF

10NF

C1333

C 1334

10% lONF C1335

10% 10NF C1336

10% 10NF C1337

9-

11

E

9 > 12 REPLACEABLE PARTS LIST

RESISTORS

5322

111

91599

5322116 81226

4822

111

91B14

4822 116 81165

4822 116 82532

4822 116 82532

4822 116 82532

4822 116 82532

5322

111 91811

5322 111

91993

4822 116 82532

4622 116 61165

4822 116 82532

4822

116 82385

5322 116 80427

5322116 82904

5322116 80427

4822116 82532

5322116 80427

4822 116 82532

4822 116 82532

4822116 82532

4822 116 82532

OrcJering cx>de

5322 122 34090

5322 122 34098

5322

1

22 34098

5322 122 34098

53221 22 34098

5322 122 34098

5322 122 34098

5322 122 34098

4822 122 32916

5322 122 34098

5322 122 34098

5322 122 34098

5322 124 42332

4822 122 32916

5322 126

1

0785

4822 122 32916

4822 122 32916

4822 122 32916

4822 122 32916

4822 122 32916

4822 122 32916

5322 126

1

0733

5322 122 34098

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.NETWOHK

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES-MET.GLAZED

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

Description

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.ELECTROLYT.

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

63V

63V

5CV

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

62V

63V

63V

63V

63V

Item

10% 10NF

10% 10NF

10% 10NF

10% 10NF

10% 10NF

10% 10NF

10% 10NF

10% 10NF

10% 220NF

10% 10NF

10% 10NF

10% 10NF

C 1352

C 1353

20% 10UF C 1401

10% 220NF C 1402

10% 100NF C 1403

10% 220NF

10% 220NF

10% 220NF

10% 220NF

10% 220NF

C 1404

C 1405

C 1406

C 1407

C 1408

10% 220NF

C

1409

5% 680PF C1411

10% 10NF C

1603

C 1338

C 1339

C 1340

C

1341

C 1344

C 1346

C 1347

C 1348

C 1349

C 1351

RC'02H

RC-02H

RC-02H

RC-02H

RC-02H

RMC1/8

RC-02H

RC-02H flC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMC1/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

002-563

1% 261 R 1201

1% 215E R 1202

1% 121E R 1203

1%

1%

1M R 1204

11K R 1205

1%

1%

1%

11K

11K

11K

R

R

1206

1207

R 1206

1% 5K62 R 1209

56K R 1210

1%

1%

1%

11K R

1211

1M R 1212

11K R 1213

1%

51 K1 R1214

1% 1K R 1215

1% 464K fl

1216

1%

1K R 1217

1%

1%

11K

1K

R1218

R1219

1% 11K R1220

1% 11K R1221

1% 11K R1222

1% 11K R 1223

E

REPLACEABLE PARTS LIST

Description

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.

NETWORK

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

HES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.QLAZED

TEMP.SENSOR

RES.CHIP

RES.CHIP

RES.CHIP

HES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.NETWORK

RES.NETWORK

RES.NETWORK

Ordering code

5322 116 80427

4822

116 01789

5322111 91899

5322 11680427

4822111 91826

4822111 91814

5322111 91993

5322 116 80427

5322 116 82011

5322 116 80429

5322116 81795

5322 116 81226

5322 116 80428

4822111 91891

4822

111

91014

5322 116 81794

5322 116 81226

4822 116 82S32

5322111 91811

5322111 91811

4822111 91828

5322111 91811

5322 111 91811

4822111 91885

5322111 91963

5322 111

91963

5322111 91963

5322

111

91963

4822

111

91885

4822 116 82532

5322 116 62902

4822 130 90972

532211681794

5322111 91893

4822 116 82532

4822116 62839

5322 116 80427

5322 116 80429

5322116 80429

5322 116 80429

5322116 80429

5322

116 80429

5322116 80427

5322111 91993

5322111 91993

5322

111

91993

RC-02H

RMC1/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-oaH

RC-02H

RMC1/B

RMC1/8

RMC1/8

RMC1/8

RMC1/8

RMC1/8

RC-02H

RMC1/8

KTT81-220

RC-02H

RMC1/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

002-563

002-563

002-563

RMC1/8

RC-02H

RC-02H

RC-02H

002-563

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-OSH

RC-02H

RC-02H

RC-02H

RC-02H

Item

1% 1K H 1225

^% 316E R 1226

261

IK

R1227

R 1228

^% 511E R1229

^% 121E R 1230

56K R

1231

1% IK R 1232

1% 147K R 1301

1% 100K R 1302

1% 3K46 R 1309

1% 215E R 1311

1% 10K R 1312

1% 34K8 H 1313

1% 121E R 1314

1% 2K15 R 1316

1% 215E R 1319

1%

11K R 1401

1% 5K62 R 1402

1% 5K62 R 1403

1% 68K1 R 1404

1% 5K62 R 1406

1% 5K62 R 1407

10E R 1408

1% 34E8 R 1409

1% 34E8 R 1411

1% 34E6 n 1412

1% 34E8 R 1413

1%

10E R 1414

1% 11K R 1416

1%

23K7 R 1417

R 1418

1% 2K15 R 1419

1% 51E1 R 1421

1% 11K R 1422

1% 90K9 R 1423

1% IK R 1424

1®/o

100K R 1501

1% 100K R 1502

1% 100K R 1503

1% 100K R 1504

1% 100K R 1506

1% IK

56K

56K

56K

R 1507

R 1601

R 1602

R 1603 g-

13

9-14 REPLACEABLE PARTS LIST

Ordering code Description

SEMI-CONDUCTORS

4822130 42513

5322 130 32731

4822 130 42513

4822 130 42513

5322 130 34337

TRANSISTOR, CHIP

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOR,CHIP

DIODE,CHIP

5322 130 42136

5322 130 34337

4822 130 42513

5322 130 82043

4822 130 42513

TRANSISTOR, CHIP

DIODE, CHIP

TRANSISTOR, CHIP

DIOOe,CHIP

TRANSISTOR,CHIP

5322 130 34337

4822 130 42513

5322 130 62237

5322 130 34337

4822 130 82521

4822 130 82521

5322 130 42136

5322 130 42136

5322 130 42136

5322 130 42136

4822 130 42132

4822 130 42513

4822 130 82262

5322 130 42136

4822 130 42513

4822 130 42513

5322130 42136

5322 130 34337

4822 130 82262

5322 130 34337

5322 130 34337

4822130 42513

5322 130 42136

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOR,CHIP

DIODE, CHIP

DIODE, CHIP

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

TRANSISTOR,CHIP

DIODE,CHIP

TRANSISTOR,CHIP

TRANSISTOR,CHIP

TRANSISTOR, CHIP

TRANSISTOR,CHIP

DIODE, CHIP

DIODE, CHIP

DIODE,CHIP

DIODE,CHIP

TRANSISTOR,CHIP

TRANSISTOR,CHIP

INTEGRATED CIRCUITS

5322 209 30822

5322 200 731 79

5322 209 30819

5322 209 30228

5322 209 60428

U-PROCESSOR

INTEGR.CIRCUIT

DIGITAL ASIC

SRAM 32Kx8

INTEGR.CIRCUIT

5322 209 30226

4822 209 63758

5322 209 30674

5322 209 60428

5322 209 73181

INTEGR.CIRCUIT

FROM leKxe

FROM 32Kx8

INTEGR.CIRCUIT

l^fTEGR.ClRCUIT

BC858C

BZX84-C3V6

BC855C

BC858C

BAV99

BC848C

BAV99

BC8580

B2V49-C13

BC858C

BAV99

BC858C

BCX54-16

BAV99

B2X84-B47

BZX84-B47

BC848C

BC848C

BC34SC

BC848C

BC807

BC658C

BAT54S

BCS48C

BC858C

BC858C

BC848C

BAV99

BAT54S

BAV99

BAV99

BC858C

BC846C

S63C196

PC74HCT74T

SCOPEMETER

HM62256

PC74HC132T

HM62256

N28F256-A200

N28F512-200P1C4

PC74HC132T

PC74HCT373T

Item

V 1201

V 1202

V 1203

V 1205

V 1206

V 1207

V 1210

V 1215

V 1220

V 1304

V 1305

V 1306

V1307

V 1308

V 1309

V

1311

V 1312

V 1313

V 1314

V 1316

V 1317

V 1318

V 1319

V1401

V 1402

V 1403

V 1404

V 1405

V 1406

V 1501

V 1502

V 1503

V 1506

D 1201

D 1202

D 1203

D 1204

D 1205

D 1206

D 1207

D 1208

D 1209

D 1210

REPLACEABLE PARTS LIST

Ordering code

5322 20911147

4822 209 63761

4822 209 63761

4822 209 63761

4822 209 63759

4822 209 63759

4822 209 63759

4822 209 30208

5322 209 11996

5322 20930675

482220963762

4822 209 63762

4822 209 63762

482220963762

482220963762

482220960175

5322 209 61473

Description

INTEGR.CIRCUIT

LCD DRIVER

LCD DRIVER

LCD DRIVER

LCD DRIVER

LCD DRIVER

LCD DRIVER

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

!.C.

I.C.

INTERFACE

INTERFACE

!.C.

I.C.

I.C.

INTERFACE

INTERFACE

INTERFACE

INTEGR.CIRCUIT

INTEGR.CIRCUIT

HEF4093BT

HO61105A

HD61105A

HD61105A

HD61104A

HD61104A

HD61104A

PC74HCT86T

PC74HCT393T

PC74HCT163T

PC74HCT165T

PC74HCT165T

PC74HCT165T

PC74HCT165T

PC74HCT165T

LM358M

LM324M

COILS

5322

1

57 63648

5322 157 63651

COIL

COIL

1UH 5%

C6-322513T

L1201

L 1202

MISCELLANEOUS

5322 242 8021 5

5322130 61296

532213062923

CRYSTAL 25MHZ

INFRARED ELEMENT SFH409-2

PHOTO TRANSISTOR SFH309F-4

HC-49/U G

1201

H 1201

H 1202

CONNECTORS

5322 267 70302

CONNECTOR

30-PIN STRAIGHT X 1201

Item

D 1301

D 1401

D 1402

D

1403

D

1404

D 1406

D 1407

D1408

D 1409

01410

D1601

D 1602

D 1603

D 1604

D1606

N 1301

N 1401

9-

15

9-16 i

r

REPLACEABLE PARTS LIST

Table

9.

5 Analog A2 PCB assembly (Figure 9.

5)

When servicing the Scope Meter, use only the replacement parts specified.

Hem Figure

A2

9.S/9.6

Description

Analog A2 PCB assembly

Ordering code

5322 218 61465

I

I

Qty

D E

F G

Figure 9.5a

Analog A2 PCB assembly (SMD components side)

REPLACEABLE PARTS LIST

Figure 9.5b

Mcxiifications Ar)alog

A2 PCB (SMD Component side)

J

I

N9T COilNECTED

<4

««

«o

NOT

COKNECTEO

I

9 -

C23

J

C

9-

18

D E

F

6

REPLACEABLE PARTS UST

G

ST 661

920204

Figure 9.S

Analog A2 PCS sss9mt>ty (Wired components side)

REPLACEABLE PARTS LIST

Ordering code

CAPACITORS

5322 121 40308

5322122 32982

4822 12231194

5322122 33869

4822122 31195

5322125 11029

4822122 31072

532212511029

4822122 30149

4822 122 31049

482212232027

5322 125 11029

5322 861 12331

4822 122 31194

5322122 32661

5322 861 12331

4822 122 32916

5322122 32967

5322 122 34098

4822 122 33339

4822122 33691

4822122 33891

4822126 10004

4822122 32916

4822122 32891

4822

1

22 32448

4822122 33891

4622 122 33496

5322122 34096

5322 122 34098

5322 122 34096

5322122 34098

5322122 32664

5322122 32654

4822122 33515

4822122 33127

4822 122 33127

4822122 33127

4822 122 33127

4822

1

22 33127

4822 122 33127

4822 122 33127

4822 122 33127

5322 121 40308

5322122 32982

Description

CAP.FOIL

CAP.CERAMIC

CAP.CERAMIC

CAP.CERAMIC

CAP.CERAMIC

CAP.VARIABLE

CAP.CERAMIC

CAP.VARIABLE

CAP.CERAMIC

CAP.CERAMIC

CAP.CERAMIC

CAP.VARIABLE

CAP.CHIP

CAP.CERAMIC

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CERAMtC

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CERAMIC

CAP.CERAMIC

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.FOIL

CAP.

Item

400V

63V

^Q% 22NF C 2102

2% 56PF C2103

0.25PF

8.2PF

C2104

5% 15PF C2105

2% 10PF C2106

10

PF MUR C2107

10

2% 47PF C2108

PF MUR C2109

0.25PF

6.8PF

C2111

0.25PF

6.8PF

C2112

63V

63V

63V

63V

63V

63V

63V

10

2% 56PF C2113

PF MUR C2114

5% 330PF C2115

0-25PF 8.2PF

C2116

5% 56PF C2117

5% 330PF C2118

10% 220NF C 2119

5%

5.6PF

C2120

10% 10NF C2121

10% 4.7NF

C2122

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

10% 3.3NF

C2123

10% 3.3NF

C2124

S% 120PF C 2125

10% 220NF C2126

10% 68NF C2127

0.5PF

10PF C 2126

10% 3.3NF

C2129

10% 100NF C2130

10% 10NF C2131

10% 10NF C2132

10% 10NF C2133

10% 10NF C2134

10% 22NF C2136

10% 22NF C2138

6% 82PF C2137

63V

63V

63V

63V

63V

63V

63V

63V

400V

10% 2.2NF

C2139

10% 2.2NF

C2140

10% 2.2NF

C2141

10% 2.2NF

C2144

10% 2.2NF

C2145

10% 2.2NF

C2146

10% 2.2NF

C2147

10% 2.2NF

C2148

10% 22NF C2202

2%

56P C2203

9-

19

9-20

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

Description

CAP.CERAMIC

CARCERAMIC

CAP.CERAMfC

CAP.VARIABLE

CAP.CERAMfC

CAP.VARIABLE

CAP.CERAMIC

CAP.CERAMIC

CAP.CERAMIC

CAP.VARIABLE

CAP.CHIP

CARCERAMIC

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CERAMIC

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CARCERAMIC

CAP.CERAMIC

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

Ordering code

4822 122 31194

5322 122 33669

4822 122 31195

5322 125 11029

4822 122 31072

5322 12511029

4822 122 30149

4522 122 31049

4822 122 32027

5322 125 11029

5322 861 12331

4822 122 31194

5322 122 32661

4822 122 33216

4822 122 32916

5322 122 32967

5322 122 34098

4822 122 33339

4822 122 33891

4622 122 33891

4822 126 10004

4822 122 32916

4822 122 32891

4822 122 32448

4822 122 33891

4822 122 33496

5322 122 34098

5322 122 34098

5322 122 34098

5322 122 34098

6322 122 32654

4822 122 33515

5322 122 32664

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33496

4822 122 33496

4822 122 33496

5322 122 32654

5322 122 33869

4822 122 33496

4822 122 33496

REPLACEABLE PARTS USX

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

Item

0.25PF

5%

2%

10PF

2

%

10 PF

0.25PF

0.25PF

2%

10PF

8.2PF

15PF

C2204

C2205

10PF C2206

MUR C2207

47PF C2208

MUR C2209

6.8PF

6.8PF

56PF

C2211

C2212

C2213

MUfl C2214

5%

0.25PF

5%

5%

10%

330PF

8.2PF

56PF

270PF

220NF

C2215

C2216

C2217

C2218

C2219

5%

10%

10%

10%

10%

5.6PF

10NF

4.7NF

3.3NF

3.3NF

C2220

C2221

C2222

C2223

C2224

5%

10%

10%

0-5PF

10%

10%

10%

10%

10%

10%

10%

5%

10%

10%

10%

120PF

220NF

C2225

C2226

68NF C2227

10PF

3.3NF

C2228

C2229

100NF

10NF

10NF

10NF

10NF

C2230

C2231

C2232

C2233

C2234

22NF C2235

82PF C2237

22NF C2238

2.2NF

2.2NF

C2239

C2240

10%

10%

10%

10%

10%

2.2NF

2.2NF

2.2NF

2.2NF

2.2NF

C2241

C2242

C2243

C2244

C2245

10%

10%

10%

10%

10%

2.2NF

2.2NF

2.2NF

100NF

100NF

10%

10%

5%

10%

10%

100NF

22NF

15PF

100NF

100NF

C2246

C2247

C2248

C2301

C2302

C2303

C2304

C2305

C2306

C2307

REPLACEABLE PARTS LIST

Description

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP.CHIP

CAP-CHIP

CAP.CHIP

CAP.CHIP

CAP.ELECTROLYT,

CAP.CHIP

CAP-CHIP

CAP.CHIP

CAP.CHIP

CAP-ELECTROLYT.

CAP.CHIP

CAP.ELECTROLYT.

CAP.CERAMIC

CAP.CHIP

CAP.CHIP

CAP.FOIL

CAP.CERAMIC

CAP.CHIP

CAP.CHIP

CAP.FOIL

CAP.FOIL

CAP.FOIL

CAP.ELECTROLYT.

CAP.CHIP

CAP.CHIP

CAP.ELECTROLYT.

CAP.CHIP

CAP.FOIL

CAP.FOIL

CAP.ELECTROLYT.

CAP.CHIP

CAP.ELECTROLYT.

CAP.CHIP

CAP.CHfP

CAP.CHIP

CAP.FOIL

CAP.CHIP

CAP.ELECTROLYT.

CAP.CHIP

CAP.ELECTROLYT

CAP-CHIP

CAP.CHIP

CAP.FOIL

5322 121 43886

5322121 43884

4822 124 11162

4822122 32916

5322 122 32654

4822 124 ni62

5322122 32654

5322 121 43887

5322121 43887

4822124 11162

5322122 32654

4822 124 11162

5322 122 32654

5322 122 32654

5322 122 32654

5322121 43885

5322126 10733

482212411162

4822

1

22 32916

4822 124 11162

4022

1

22 33127

5322

1

22 32654

6322 121 43885

Ordering code

5322 122 34098

4822122 33496

5322 122 34096

4822 122 33496

4822122 32916

5322 122 32654

5322 122 32654

4822 122 32139

4822 122 33496

4822 124 11162

4822 122 33496

4822

1

22 33498

5322 122 32654

5322

1

22 34093

4822 124 23627

4822 122 33127

4822 124 23627

5322122 32452

5322 122 33869

5322122 33869

5322121 43865

4822 122 32891

4822122 33127

4822122 33127

5322 121 43884

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

S3V

63V

S3V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

Item

10% 10NF C 2308

10% 100NF C23Q9

10% 10NF C 2310

10% 100NF C2311

10% 220NF C2312

10% 22NF C2313

10% 22NF C2314

5% 12PF C2315

10% 100NF C2316

20% 68UF C2317

10% 100NF C2318

10% 100NF C2319

10% 22NF C2320

10% 10NF C2321

20% 4.7UF

C2322

10% 2.2NF

C2323

20% 4.7UF

C2324

5% 47PF C2326

5% 15PF C2340

5% 15PF C2341

20% 470UF C2501

10% 68NF C2502

10% 2.2NF

C 2503

10% 2.2NF

C2504

20% 1200UF C2506

20% 180UF C 2507

20% 1200UF C2508

20% eeuF C2509

10% 220NF C2511

10% 22NF C2512

20% 68UF C 2514

10% 22NF C2515

20% 470UF C2516

20% 470UF C2517

20% 68UF C2518

10% 22NF C2519

20% 68UF C2521

10% 22NF C2522

10% 22NF C2523

10% 22NF C2524

20% 470UF C2526

5% 680PF C2527

20% 68UF C2530

10% 220NF C2531

20% 68UF C2532

10% 2.2NF

C2533

10% 22NF C2534

20% 470UF C2536

9

21

9-22 REPLACEABLE PARTS LIST

Ordering code

4822 122 32891

5322 122 32654

5322 122 34098

5322

122 34096

4822126 10004

5322 122 32654

4822 12411162

5322 122 32654

4822 12411162

5322 122 32654

5322124 42329

5322 122 34093

5322 122 34098

5322 122 34098

5322 126 11389

5322 122 32654

4822 122 33127

4822 122 33127

5322 122 32654

4822 122 33127

4822 122 33127

4822122 33127

4822 122 33127

4822 122 33127

4822 122 33127

4822 122 33127

5322 122 34098

5322 122 34098

5322 122 33697

5322 122 33897

5322 122 33897

5322 122 33816

5322 126

1

0733

4822

122 33216

5322

122

32452

5322 122 34098

5322 122 34098

5322 122 32452

5322 122 34096

4822

122 33127

4822 122 33127

4822 122 33127

5322 122 34098

Description

CARCERAMIC

CARCHIP

CAP.CHIP

CAP.

CHIP

CARCHIP

CARCHIP

CARELECTROLYT.

CARCHIP

CARELECTROLYT

CARCHIP

CARELECTROLYT.

CARCHIP

CARCHIP

CARCHIP

CARCERAMIC

CAP.CHIP

CARCHIP

CAP.CHIP

CARCHIP

CARCHIP

CARCHIP

CARCHIP

CAP.CHIP

CARCHIP

CARCHIP

CAP.CHIP

CAP.CHIP

CARCHIP

CARCERAMIC

CARCERAMIC

CARCERAMIC

CARCERAMIC

CAP.CHIP

CARCHIP

CARCERAMIC

CAP.CHIP

CARCHIP

CARCERAMIC

CAP.CHIP

CARCHIP

CARCHIP

CAP.CHIP

CARCHIP

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

63V

(tern

10% 68NF C2537

10% 22NF C2538

10%

10% 10NF C2543

5% 120PF C2544

10%

20%

10NF

22NF

68UF

C2542

C2546

C2547

10% 22NF C2548

20% 68UF C2549

10% 22NF C2551

20% 3900UF C2552

10% 10NF C2701

10% 10NF C2703

10% 10NF C2705

10% 22PF C2750

10% 22NF C2752

10% 2.2NF

C2753

10% 2.2NF

C2754

10% 22NF C2756

10% 2.2NF

C2757

10% 2.2NF

C2758

10% 2.2NF

C2759

10% 2.2NF

C2760

10% 2.2NF

C2761

10% 2.2NF

C2762

10% 2.2NF

C2763

10% 10NF C2804

10% 10NF C2806

5%

3.3NF

C2650

5%

3.3NF

C2851

5%

3.3NF

C2852

5%

2.2NF

C2853

5% 680PF C2354

5% 270PF C2856

5% 47PF C2857

10% 10NF C2861

10% 10NF C2862

5% 47PF C2863

10% 10NF C2864

10% 2.2HF

C2866

10% 2.2NF

C2867

10% 2.2NF

C2866

10% 10NF C2901

E

REPLACEABLE PARTS LIST

Ordering code

RESISTORS

5322 11682895

5322 11680429

4622 051 10108

4622

111

91885

4822

111 91885

5322

111

91693

5322

111

91963

4822 116 81789

5322 116 82899

4822 051 10106

4322 051 10106

4322 061 10106

4322 116 82408

4822 051 51331

5322

111

91899

4622

111

91891

4622 050 29534

4622 051 10106

4622 11681165

5322 116 80428

4822 051 51005

5322 111 91893

4822 051 57502

5322 116 60429

4822 116 82532

4822 11681165

5322 11682112

5322 116 80429

5322 11682011

4622 116 62867

5322 116 82899

5322 116 80609

5322 in 91893

4822 116 82384

5322 111 91309

5322 116 80427

5322 116 80426

5322

111

91893

5322 116 80428

4822 051 51781

5322 11681795

4822

111

91814

5322 11682899

5322 11662699

5322 11662011

5322 11662904

5322

111

91893

Description

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.MET.GLAZED

RES.MET.GLAZED

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.NETWORK

RES.CHIP

RES.CHIP

RES.MET.GLAZED

RES.MET.GLAZED

RES.METAL

FILM

RES.MET.GLAZED

HES.CHIP

RES.CHIP

HES.CHIP

RES.CHIP

RES.CHIP

HES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.GLAZED

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES-METAL FILM

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.GLAZED

RES.CHIP

RES.CHIP

Item

RMC1/8

RC-02H

RC-01

RMC1/8

RMC1/8

1%

31 E5 R2101

1%

5%

1%

1%

100K

IE

10E

10E

R2103

R2104

R2106

R2107

RMC1/8

RMC1/8

RMC1/8

RMC1/8

RC-01

1%

1%

1%

1%

5%

51E1

34E6

316E

3K83

10M

R2108

R2109

R2110

R2111

R2112

RC-01

RC-01

RC-02H

RMC1/8

RMC1/8

5%

5%

1%

1%

1%

10M

10M

1K33

133E

261E

R2113

R 2114

R2115

R 2116

R2117

RC-02H 1% 34K8 R2118

MRS25 1% 953K R 2119

RC-01

RC-02H

RC-02H

5%

1%

1%

10M R2120

1M R2121

10K R2122

RMC1/8

RC-02H

RMC1/8

RC-02H

RC-02H

RC-02H

RC-02H

RMC1/8

HC-02H

RMC1/8

RC-02H

RMCl/8

RMC1/8

RC-02H

RC-02H

RC-02H

RMC1/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMC1/8

RMC1/8

RC-02H

RMC1/8

RMC1/8

1% 1M R2123

1% 51E1 R2124

1% 7K5 R2125

1% 100K R2126

1% 11K R 2127

1%

1%

1%

1%

1%

1%

1%

1M

681

R2128

1% 100K R2130

1% 147K R2131

1% 75K

R2129

H2132

3K83

7K5

51 El

750E

215K

R 2133

R2134

R2135

R2136

R2137

1%

1%

1%

1%

1%

IK

10K

51E1

10K

178E

R2136

R2139

R2140

R 2141

R2142

1%

1%

3K48

121E

R2143

R2144

1% 3K83 R2145

1% 3K63 R2146

1% 147K R2147

1% 464K R2148

61E1 R2149

9 '23

E

& -24 REPLACEABLE PARTS LIST

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.QLAZED

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.QLAZED

RES.CHIP

RES.CHIP

RES.CHIP

Description

BES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.GLAZED

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.MET.QLAZED

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.QLAZED

HES.MET.GLAZED

RES.CHIP

RES.CHIP

RES.CHIP

Ordering code

48Z2

111

91885

4822 116 82886

4822

116

82387

4822 116 82887

5322 116 80428

4822 116 81165

5322 116 82903

4822 116 82885

5322 116 80429

4822

111

91826

5322 116 81794

5322

111

91809

5322116 82904

4822 116 82888

4622 051 10106

4822 116 90788

4822 116 61165

4822 116 82532

5322 116 82903

5322 116 82899

5322 116 80428

5322 116 81794

5322 116 82695

5322 116 80429

4822

051 10108

4822

111

91885

4822111 91886

5322

111

91893

4822

111

91887

4822116 81789

5322116 82899

4822 051 10106

4822 051 10106

4822 051 10106

4822 116 82408

4822 051 51331

5322

111

91899

4822

111 91891

4822 050 29534

4822 051 10106

4822 116 81165

5322 116 80428

4822 051 51005

5322111 91893

5322 116 82901

5322116 60429

4822 116 82532

4822116 81165

RMC1/8

RMC1/8

RC-02H

RC-02H

RMC1/8

Item

RMC1/8

1

RC-02H

1

RC-02M

1

% 10E R2150

%

61K9 R2161

%

75K R2152

RC-02H

1

RC-02H

1

RC-02H

1

RMC1/8

1

RC-02H

1

%

75K R2153

%

10K R2154

%

1M R2155

%

31K6 R2157

%

51K1 R2156

RC-02H

1

RC-02H

1

RC-02H

%

100K R2159

%

511E R2160

1% 2K15 R2161

RC-02H

RMC1/8

1%

1%

216K

464K

R 2162

R2163

RC-02H

RC-01

RMC1/8

RC-02H

RC-02H

1%

5%

1%

1%

1%

825K

IE

68E1

1M

11K

R2164

H 2165

R2166

R 2167

R2168

1%

31

K6 R2169

1% 3K83 R2170

1% 10K R2171

1% 2K15 R2172

1% 31E6 R 2201

RC-02H 1% 100K R2203

RC-01

RMC1/8

1

6% IE R2204

%

10E R 2206

RMC1/8

1

RMC1/8

1

%

10E R2207

%

51E1 R 2208

RMC1/8

RMC1/8

RMC1/8

RC-01

RC-01

RC-01

RC-02H

RMOiye

RMCiyS

RC-02H

1%

1%

1%

5%

5%

42E2

316E

3K83

10M

10M

R2209

R2210

R 2211

R2212

R2213

5% 10M R2214

1% 1K33 R2215

1% 133E R2216

1%

261 R 2217

1% 34K8 R2218

MRS25

HC-01

1% 9S3K R2219

5% 10M R 2220

RC-02H

RC-02H

1

1% 1M R2221

%

10K R 2222

RC-02 1% 1M R2223

RMC1/8

RMC1/8

RC-02H

RC-02H

RC-02H

1% 51E1 R2224

1% 19K6 H2225

10OK R2226 1%

1%

1%

11K R2227

1M R 2228

E

REPLACEABLE PARTS LIST

Description

RES.CHiP

flES.CHIP

RES.METAL

FiLM

RES.CHIP

RES.METQLAZED

HES.MET.QLA2ED

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.NETWOHK

RES.CHIP

RES.CHIP

RES.METQLAZED

RES.MET.GLAZED

RES.METAL

FILM

RES.MET.GLA2ED

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.OLAZED

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FiLM

RES.METQLAZED

RES.METAL

FiLM flES.CHIP

RES.CHIP

RES.CHIP

flES.CHIP

RES.METGLAZED

RES.MET.QLAZED

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

Ordering code

5322 116 82112

5322 116 80429

5322 116 62011

4822 116 82867

5322 116 82899

5322 116 80609

5322

111

91893

4822 116 82384

5322

111

91809

6322 116 80427

5322 116 80428

5322

111

91893

5322 116 80428

4822

051 51761

6322

116 81795

4822

111

91814

5322 116 82899

5322 116 82899

5322 116 82011

5322 116 82904

6322

111 91893

4822

111 91885

4822 116 82886

4822 116 82887

CO 116 62887

5322 116 80428

4822 116 81165

5322 116 82903

4822 116 62885

5322 116 80429

4822

111

91826

5322 116 81794

5322 111 91809

5322 116 82904

4822 116 82888

4822 051 10108

4822 116 90788

4822 116 61165

4822 116 82532

5322 116 82903

5322 116 82899

5322 lie 80428

5322 116 81794

4822

051 10108

4822

051 10108

4822 116 82408

4822 111 91892

4822 051 10108

51 El

10E

61 K9

75K

7SK

10K

1M

31 K6

61 K1

100K

611E

2K15

215K

464K

825K

IE

68E1

1M

11K

31 K6

3K83

10K

2K15

IE

IE

681

100K

147K

75K

3K83

7K5

51E1

750E

215K

IK

10K

51 E1

10K

178E

3K48

121E

3K83

3K33

147K

464K

1K33

511K

IE

Item

R 2229

R2230

R 2231

R2232

R2233

R2234

R2235

R2236

R 2237

R2238

R2239

R 2240

R2241

R 2242

R2243

R2244

R2245

R2246

R2247

R2248

R2249

R2250

R 2251

R2252

R 2253

R 2254

R2265

R2257

R2258

R2259

R2260

R2261

R2262

R2263

R2264

H 2265

R2266

R2267

R2266

R 2269

R2270 fl

2271

R2272

R 2301

R2302

R2303

R2304

R2305

RC-02H

RMC1/8

RC-02H

RMC1/8

RC-02H

RC-02H

RMC1/8

RMC1/8

RC-02H

RMCl/8

RMCI/S

RC-02H

RC-02H

RC-02H

RMC1/8

RC-02H

RMCl/8

RC-02H

RC-02H

RC-02H

RC-01

RMCl/8

RC-02H

RC-02H

RMCl/8

RMCl/8

RC-02H

RC-02H

RC-01

RC-01

RMC1/8

RMCl/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMCl/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMCl/8

RC-02H

RC-02H

RC-02H

RC-01

5%

1%

1%

1%

1%

1%

1%

1%

5%

5%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

5%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

9-25

E

9-26 REPLACEABLE PARTS UST

Ordanng code

4822 051 10108

4622 051 10108

4622116 82887

4822 116 82887

5322111 91899

4822 051 10108

4822

051 10108

4622 051 10108

5322111 91901

5322 116 80429

4822111 91826

5322 118 82897

4822111 91688

4822

116

82885

4822 116 82884

5322 116 82903

5322 116 62898

4822 116 81789

4822

111

91821

4822

111

91888

4822

111

91888

4822

111

91888

4622

111

91888

4822

111

91888

4622

111

91888

4622 111 91888

4822

111

91868

5322116 81794

5322 116 82895

5322 116 82895

5322 116 82896

5322116 82896

5322 116 80429

5322

101

60062

5322 101 60082

4822111 91826

4822 111

91826

4822 051 10106

4822116 82532

4622

111 91865

5322 111

91963

5322

111

91893

4822 051 10108

4822 051 10108

4822 051 10106

4822 051 10108

4822

051 10108

Description

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METGLAZED

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.METGLAZED

RES.MET.GLAZED

RES.CHIP

CAP.CHIP

RES.CHtP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.NETWORK

RES.NETWORK

RES.MET.GLAZED

RES.MET.GLAZED

RES.CHIP

POTM.TRIMMER

POTM, TRIMMER

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

IE

IE

56E2

51 K1

316K

31 K6

464E

316E

2K61

56E2

56E2

56E2

56E2

56E2

56E2

56E2

56E2

75K

75K

261

1E

IE

IE

346E

100K

68K1

383E

IE

11K

10E

34E8

5E1

IE

IE

1E

IE

IE

2K15

31E6

31 E6

46E4

46E4

100K

10K

10K

511E

511E

R2345

R2346

R2347

R2501

R2502

R2503

R2504

R 2506

R2507

R 2506

R 2509

R2511

R 2512

R2513

R2514

R 2324

R2325

R2330

R2331

R2332

R2333

R2334

R2335

R 2336

R2337

R2338

R2340

R2341

R2342

R2343

Item

R2306

R2307

R2308

R 2309

R2310

R2312

R2313

R2314

H2315

R2316

R2317

R2318

R 2319

R2320

R 2321

R2322

R 2323

5%

5%

1%

1%

1%

6%

5%

1%

1%

1%

1%

1%

5%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

1%

RC-02H

RMC1/8

RMC1/8

RMC1/8

RMCI/a

RC-02H

VG4

VG4

RC-02H

RC-02H

1%

25%

25%

1%

1%

1%

1%

1%

1%

1%

RC-01

RC-02H

RMC1/3

RMC1/3

RMC1/8

5%

1%

1%

1%

1%

RC-01

RC-01

RC-01

RC-01

RC-01

5%

5%

5%

5%

5%

RC-01

RC-01

RC‘02H

RC-02H

RMC1/8

RC-01

RC-01

RMC1/6

RC-02H

RMC1/8

RMC1/8

RMC1/8

HMC1/8

RMC1/8

RMC1/8

RMC1/8

RMC1/8

RC-01

RMC1/8

RC-02H

RC-02H

RMC1/8

RMC1/8

RC-02H

RC-02H

RMC1/8

RMC1/8

REPLACEABLE PARTS

LIST

Ordering code Description

5322 116 81794

5322116 81794

5322116 81794

6322111 91809

4822116 82532

4822111 91885

5322111 91B11

5322111 91893

4822111

91891

4822111 91891

5322111 91809

5322

111

91609

4822051 10108

5322

116 80429

5322111 91809

4822116 82865

6322116 80429

5322113 41318

4822 051 10108

4822 051 10108

4822 051 10108

4822051 10106

4822 051 10106

RES.CHIP

RES.ChlP

RES.ChIP

RES.CHIP

RES.CHIP

4822116 82532 RES.CHIP

5322116 81796

4822111

91

RES.CHIP

BU

RES.CHIP

4822111 91891 RES.METALFILM

5322116 81794 RES.CHIP

4822116 82532

4822

111

91814

5322116 81228

4822

111

91885

4822111 91885

5322116 82901

4822 116 82865

5322116 80427

4822111 91891

5322 116 82367

6322116 82367

4822116 82532

4822111 91385

5322116 81228

4822111 91691

4822111 91814

4822

111 91816

4822116 82532

4822116 82408

5322111 91811

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METGLA2ED

RES.METALFILM

RES.CHIP

RES.METALFILM

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METALFILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.METAL

FILM

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES.

Item

RC-01

RC-01

RC‘01

RC-01

RC-01

RC-02H nc-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMCI/e

RMCl/8

5%

5%

5%

5%

5%

IE

IE

IE

10M

10M

R 2516

R2517

R 2518

R2519

R2521

1%

11K R2522

1% 3K48 R2523

1% 121E R2524

1% 34K8 R 2526

1%

2K15 R2527

RMCl/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMCl/8

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

1% 11K R2526

1% 121E R 2529

1% 5K11 R2530

1% 10E R 2531

1%

10E R2532

1% 19K6 R2534

1%

51K1 R 2535

1% IK R2536

1% 34K8 R2537

1% 3K16 R2536

1% 3K16 R2540

1%

11K R2541

1%

10E R 2542

1% 5K11 R 2543

1% 34K8 R 2544

1% 121E R 2546

1% 14K7 R2648

11K R2551

1% 1K33 R2554

1% 5K62 R2556

1% 2K15 R2557

1% 2K15 R2568

1% 2K15 R2559

1% 215K R2561

1%

11K R2562

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMCl/8

RC-02H

RMC1/8

RC-02H

RC-02H

RC-02H

RC-02M

RC-01

RC-02H

RC-02H

10E R2663

1%

5K62 R2564

1% 51E1 R2565

34K8 R 2566

1% 34K6 R2567

215K R2568

1% 215K R 2569

5% IE R2571

1% 100K R2572

215K R2573

RC-02H

RC-02H

1% 51K1 R2575

1% 100K R2581

SMW02 5%

0E1 R2582

9-27

E

9-28 REPLACEABLE PARTS LIST

Description

RES.CHIP

RES.CHIP

RES.METGLAZED

RES.METQIA2ED

RES.CHIP

RES.METGL4ZEO

RES.CHIP

RES.N.T.C.

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES-METAL FILM

RES.CHIP

RES.CHIP

RES.NETWORK

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.MET.GLAZED

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.METAL

FILM

RES.METGLAZED

RES.MET.GLAZED

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.CHIP

RES.METAL

FILM

RES.CHIP

RES.METAL

FILM

RES.METAL

FILM

RES.CHIP

RES.METAL

FILM

RES.METAL

FILM

5322 116 82011

4822

111

91891

5322 116 80429

5322 116 60429

4822

051

61002

4822

111

91814

5322 116 81795

4822

111 91891

5322 tn 91893

5322 116 82905

4822 051 63483

5322 116 82903

4822

111

91828

4822

111

91828

4822 051 10108

4822 116 82887

4822 051 10106

4822 116 82883

5322

111

91812

5322 116 81795

4822

111

91891

4822

111

91891

4822111 91814

4822

111

91891

4822111 91891

Ordering code

4022 051 10108

4822

111

91885

5322 116 82901

5322 116 82901

5322 116 80429

5322 116 82901

4322 116 82886

5322 116 40214

5322 116 82905

4822

111 91892

5322 116 80427

4822

111 91891

5322 116 80428

5322

111

91899

4822 116 90788

5322

111

91809

4822 116 81165

4822

051 10106

4822111 91828

5322116 82901

5322 116 81228

4822 116 82883

Item

RC-01

RMC1/8

5

%

1E

10E

R2583

R2584

RMC1/8

RMC1/8

RC-02H

RMC1/8

RC-02H

1% 19K6 R2596

1% 19K6 R2597

1% 100K R2598

1% 19K6 R2599

1%

61 K9 R2729

SPEC

R25 487K1%

RC-02H

RC-02H

RC-02H

R2750

R2763

1% 5t1K

1% IK

R2754

R2755

1% 34K8 R2757

RC-02H

HMC1/8

RMC1/8

RC-02H

RC-02H

RC-01

RC-02H

RMC1/8

RC-02H

RC-02H

1%

10K R2758

1% 261 R2759

1% 68E1 R2760

1%

21

6K R2761

1% 1M R2762

5% 10M R2763

1% 68K1 R2764

1% 19K6 R2766

1% 5K11 R2767

1% 237K R2766

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RC-02H

RMC1/8

R25

RMC1/8

RMC1/8

RC-02H

RC-02H

RC-01

RC-02H

RC-01

RC-02H

HC-02H

RC-02H

HC-02H

RC-02H

HC-02H

RC-02H

RC-02H

1% 147K R2769

1% 34K8 R2770

1% 100K R2771

1% 100K R2772

1% IK R2773

1% 121E R2774

1% 3K48 R2775

1% 34K8 R2776

1% 51E1 R2777

1% 487K R2778

1% 34K8 R2653

1%

31 K6 R2854

1% 68K1 R2856

1% 68K1 R2857

5% IE R2858

1% 75K R2859

5% 10M R2860

1% 237K R2861

1% 562K R2862

1% 3K48 R2ee3

1% 34K8 R2864

1% 34K8 R2865

1% 121E R2866

1% 34K8 R2867

1% 34K8 R2868

REPLACEABLE PARTS LIST

Ordering code

4822 051 53463

5322116 82111

5322 lie 82904

5322116 82904

5322116 82111

5322111 91809

4822116 82884

5322111 91809

4622116 82885

5322116

82901

5322111 91899

5322116 82901

5322116 82011

5322 116 82903

5322 116 82903

4822111 91891

5322 116 82903

5322 116 82903

Description

RES.

METAL FILM

RES.CHIP

RES.MET.GLAZED

RES.MET.GLAZEO

RES.CHIP

RES.METALFILM

RES.CHIP

RES.METALFILM

RES.METALFILM

RES.MET.GLAZED

RES.CHIP

RES.MET.GLAZED

RES.METAL

FILM

RES.MET.GLAZED

RES.MET.GLAZED

RES.METALFILM

RES.MET.GLAZED

RES.MET.GLAZED

5322

1

30 42145

5322

1

30 42136

6322130 42146

4822130 42513

4822

1

30 42513

5322 130 42145

5322130 42145

5322130 44787

5322

1

30 42145

5322130 61707

5322130 42718

5322 130 42145

5322 130 42136

5322 130 42145

4822 130 42513

4822130 42513

6322130 42145

5322130 42136

5322 130 44711

5322

1

30 34337

SEMI-CONDUCTORS

5322130 42145

5322130 44787

5322

1

30 42145

5322130 61707

5322 130 42718

TRANSISTOR, CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

TRANSISTOR

TRANSISTOR,CHIP

5322 130 34337

5322 130 62661

5322 130 62659

TRANSISTOR,CHIP

TRANSISTOR,CHIP

TRANSISTOR,CHIP

TRANSISTOR,CHIP

TRANSISTOR.CHIP

TRANSISTOR,CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

DIODE.CHIP

DIODE.CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

BFR92

BFR31

8FR92

BF991

BFS20

BFR92

BC848C

BFR92

BC858C

BC856C

6FR92

BFR92

BFR31

BFR92

BF991

BFS20

BFR92

BC848C

BFR92

BC858C

BC858C

GFR92

BC848C

BFT92

BAV99

BAV99

BRY62

BUZ11A

RC-02H

RC-02H

RMC1/8

RMC1/8

RC-02H

RC-02H

RC-02H

HC-02H

RC-02H

RMC1/8

RMC1/8

RMC1/8

RC-02H

RMCI/a

RMC1/8

RC-02H

RMC1/8

RMC1/8

Item

1% 34K8 R 2869

1% 261 R2870

1% 464K R 2871

1% 464K R2872

1% 261 R2873

1%

21

5K R2875

1% 316K R2876

1%

21

6K R2877

1%

51 K1 R2878

1% 19K6 H2879

1%

261 R2881

1% 19K6 R2901

1%

147K R2903

1%

31

K6 R2904

1%

31

K6 R2906

1% 34K6 R2907

1%

31

K6 R 2908

1%

31

K6 R2909

V 2104

V2105

V 2106

V2107

V 2108

V 2109

V2110

V2111

V21I2

V21I3

V2114

V2204

V2205

V 2206

V2207

V2208

V 2209

V2210

V 2211

V2212

V2213

V2214

V2301

V2302

V2303

V 2501

V2502

V 2503

P

29

9-30

Description

DIODE, CHIP

DIODE

DIODE

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

DIODE.CHIP

TRANSISTOR,CHIP

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOR,CHIP

TRANSlSTOR,CHlP

TRANSISTOR, CHIP

DIODE, CHIP

TRANSlSTOR,CHIP

DIODE.CHIP

TRANSlSTOR,CMIP

DIODE, CHIP

DIODE

TRANSISTOR.CHIP

TRANSISTOR,CH(P

TRANSISTOR

TRANSISTOR

DIODE

TRANSISTOR.CHIP

DIODE, CHIP

TRANSISTOR,CHIP

TRANSISTOR,CHIP

DIODE, CHIP

DIODE, CHIP

DIODE, CHIP

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOR.CHIP

DIODE, CHIP

TRANSlSTOaCHIP

DIOOE.CHIP

TRANSISTOR, CHIP

TRANSISTOR, CHIP

DIODE, CHIP

DIODE, CHIP

DIODE, CHIP

TRANSISTOR, CHIP

TRANSISTOaCHIP

TRANSISTOR, CHIP

TRANSISTOaCHIP

DIODE.CHiP

Ordering code

5322 130 34337

5332 130 62922

5322 130 62922

5322 130 34337

5322 130 42136

4822 130 42513

5322 130 34337

4822 130 42513

5322 130 34337

4822 130 42513

5322 130 42136

4622 130 42513

5322 130 42136

5322 130 34337

4622

130 42133

5322 130 34337

5322 130 42136

5322 130 34337

5322 130 62922

5322 130 42136

5322 130 42136

5322 130 62921

5322 130 62921

5322 130 62922

5322 130 42136

4822 130 82262

4822 130 42513

4822 130 42513

4822 130 82522

4822 130 82522

4822 130 62522

4822 130 82522

5322130 44787

5322130 44787

5322130 34337

5322 130 60502

6322 130 34337

5322 130 42136

5322 130 42136

5322 130 34337

5322 130 34337

4622 130 82522

5322 130 42136

5322 130 42136

5322 130 42136

5322 130 42136

4822130 82522

BAV99

MBRD630CTT4

MBRD630CTT4

6AV99

8C848C

BC858C

BAV99

BC858C

BAV99

BC858C

BC848C

BC858C

8C848C

BAV99

BC817

BAV99

BC648C

BAV99

MBRD630CTT4

BC848C

BC848C

2SK974STR

2SK974STR

MBRD630CTT4

BC648C

BAT54S

BC858C

BC856C

B2D27-C7V5

BZD27-C7V5

BZD27-C7V5

B2027-C7V5

BFR31

BFR31

BAV99

6SS63

BAV99

BC846C

BC848C

0AV99

BAV99

B2D27-C7V5

BC848C

BC848C

5C848C

8C848C

B2D27-C7V5

REPLACEABLE PARTS LIST

Item

V2736

V2751

V2752

V2753

V2765

V2754

V2756

V2757

V2758

V2759

V2521

V2523

V2526

V2527

V2528

V2529

V2533

V2534

V2536

V2537

V2538

V2539

V2541

V2543

V2544

V25CM

V2506

V2507

V2508

V2509

V2S11

V2512

V2513

V2514

V2516

V2517

V2518

V2760

V2761

V2762

V2763

V2764

V2765

V2766

V2767

V2766

V2811

REPLACEABLE PARTS

LIST

Ordering code

4822 130 32522

482213062522

5322

1

30 60502

4822130 42513

4822

1

30 42513

4822 130 42513

4822

1

30 42513

Description

DIODE, CHIP

DIODE, CHIP

TRANSISTOR,CHIP

TRANSISTOR CHIP

TRANSISTOR.CHIP

TRANSISTOR.CHIP

TRANSISTOR,CHIP

INTEGRATED CIRCUITS

4822 209 63764

4822 209 63764

4822 209 63764

4622 209 63764

5322 209 30821

I.C.

INTERFACE

I.C.

I.C.

INTERFACE

INTERFACE

I.C.

INTERFACE

ANALCH3 ASIC

4622 209 63764

4822 209 63764

4B22 209 63764

4822 209 63763

4822 209 63763

I.C.

INTERFACE

I.C.

I.C.

INTERFACE

INTERFACE

I.C.

I.C.

INTERFACE

INTERFACE

4822 209 63763

5322 20912171

5322 20912171

5322 209 12171

5322 209

12171

I.C.

INTERFACE

INTEGR.CIRCUIT

INTEQR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

5322 20912171

4822 209 63757

4822 209 63757

5322 209 30676

4822 209 60175

4822 209 63765

5322 209 71607

5322 209 31309

5322 209 31309

4822 209 63757

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEQR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

INTEGR.CIRCUIT

COILS

5322 157 63649

5322167 63648

5322157 63647

5322157 63647

5322157 63648

5322157 63092

5322157 63092

5322157 52707

5322 157 52707

532215611139

COIL

COIL

COIL

COIL

COIL

COIL

COIL

COIL

COIL

COIL

B2D27-C7V5

BZD27-C7V6

BSS83

BC658C

BC858C

BC856C

BC858C

PC74HC4316T

PC74HC4316T

PC74HC4316T

PC74HC4316T

OQ00308

PC74HC4316T

PC74HC4316T

PC74HC4316T

PC74HC541T

PC74HC541T

PC74HC541T

PC74HC4094T

PC74HC4094T

PC74HC4094T

PC74HC4094T

PC74HC4094T

LF453CM

LF453CM

TDA8703T/C4

LM358M

LM285M-1

.2

SG35240

TLC27M2AC0R

TLC27M2ACDR

LF453CM

39NH 20% lUH

0.1

5%

UH 5%

0.1

UH 5% lUH 5%

68UH

68UH

22UH

22UH

FILTER 50V-10A

Item

V2769

V2812

V2851

V2852

V2853

V2854

V2901

D2903

D2904

0 2906

D 2907

D2908

D2909

N 2101

N2201

N2302

N2601

N2502

N2503

N2750

N2751

N 2850

D2101

D2102

D2201

D2202

D2301

D2750

D2751

D2850

D2901

D2902

L2301

L2302

L2303

L2304

L2501

L2502

L2503

L2504

L2506

Z2501

9-31

9-32

Ordering code Description

MISCELLANEOUS

5322 280 10245 BU22ER

6322 280 80745

5322 280 80745

5322 280 80745

5322 280 80745

5322 280 80745

5322 280 60745

5322 280 80745

5322 280 80745

RELAY

RELAY

RELAY

RELAY

RELAY

RELAY

RELAY

RELAY

CONNECTORS

5322 267 70302

4822 267 30431

5322 265 30434

CONNECTOR

SOCKET

CONNECTOR

MEB-12B-12

RAL3W-K

RAL3W-K

RAL3W-K

RAL3W-K

RAUW-K

RAL3W-K

RAL3W-K

RAL3W-K

REPLACEABLE PARTS LIST

Item

H2901

K2101

K2102

K2103

K2201

K2202

K2203

K2750

K2751

30-PIN STRAIGHT

HECO730-O1-O1O

3-PIN STRAIGHT

X2001

X 2501

X2502

REPLACEABLE PARTS LIST

Table 9.7

Accessories replacements Fluke

ORDER NUMBER

^MOOEL NUMBER

PM9066/001

PM8907/003

PMB01

8/002

PM9081/001

PM90d3/OOl

C75

FIjka S160T5

Ruke 916010

Ftuka918l27

Fluke 916119

Fluke 916122

Fluke 915970

DESCRIPTION

NiCed

BskUery

Pack

Line Voltage Adapter/Battery Charger (North Amerce)

Safety-Designed

5dtety*Daeigned

SccpaMeier Probe Bet

Dual Banana Plug to

Female 5NC

Adapter

SeepeMerer Yerilow ProteclK'e Holeter

Aaessory Case

Multimeter Test Lead 3ei

ProbeTip to

Banana

Plug Adapter/Adjuat adapter

Quick Operating Guide

ScopeMeter Engilah Users Manual

ScopeMefer French, Spanish,

Italian Users Manual

Sdivics Mani>a)

Figure 9.6

Accessories replacements Fluke

9-33

ITEM

15

16, 17, 18, 19, a, 4, 7.6,

1

9, 10, 11, 12, 13, 14,

2

9-34 REPLACEABLE PARTS LIST

Table 9.S

Accessories replacoments Philips

FTEM DESCRIPTION

1

Adapter Banana/SNC

2 Adjust adapter

RED

3

HP adaptar BLACK

4 HF adapter

BLACK

5 Mini test hook

6

Mini test hook

RED

GREY

7

6

Trim screwdriver

Tffrn

Bcrewdrtver

RED

GREY

9 Test lead

RED

10 Test lead

BLACK

11 Test p<n

RED

12 Test pm BLACK

13

14

Banana adapier RED

Banana adapter BLACK

[

L o cu

0)

J

15 Power adaptere/Battery charge re

Uncveisai Europe 220V,

50 Hz

North America UL.

CSA, 110V.

60 Hz

United Kingdom 240V.

50 Hz

Universal 115V/230V

ORDER NUMBER

/MODEL NUMBER

PMd06

1/001

5322 263 50192

5322 263 50193

5322 263 50193

5322 210 70131

5322 210 70126

5322 395

5322 395

50417

50416

5322 397 601 57

5322 397 60156

5322 264 2GC46

5322 264 20045

5322 264 20051

5322 264 20052

PMB9Q7/001

PMS9Q7/003

PM 8907/004

PM09O7/OO8

.

ITEM DESCRIPTION ORDER NUMBER

/MODEL NUMBER

>

16 Scope probe

RED

17 Scope pmbe GREY

18 High voltage teatpin

RED

S322 264 20097

19 High voltage teat pin

3 HF adapter BLACK

4 HF adapter BLACK

GREY

5322 264 20068

5322 263 50193

5322 263 50193

7 Trim screwdrtver

RED

6 Trim screwdriver

GREY

5322 395 50417

5322 395 50416

>• e/002

PM691

NiCad Battery Pack

Holster

Accessory case

PM9086/001

PM9083/001

C 75

Users

Engish

Manuals

Dutch, German, French

Swedish, Danish,

Finnish, Norwegian

Frencn. Spanish, Italian

4822 872 00492

4822

872

00494

4822 872 00495

4822 872 00493

Quick Operating Guide

Service Manual

4822 872 00491

4822 872 06346

(C^r^j

Figure 9.6

Accessories replacements

Philips

CIRCUIT DIAGRAMS

10 CIRCUIT DIAGRAMS

10-1

lt£SM,

CU22 MOUNTED OVER

R1232

J

g

01 ?}?

C1222

C1222 MOUNTED OVER R1232

VU06

CU02

Figure 10.

la Mod/fications Digital

A

1

PCB

CIRCUIT DIAGRAMS

Ttiis chapter contains ail circuit diagrams and PCB layouts of both the Scop ©Meter analog and digital

RGBs

PARTS LOCATION A1 (PCB)

Cl 349

C1351

C1352

C1353

C1401

C1402

C1403

C1404

C140S

C1406

Cl 406

Cl 407

C1408

Cl 409

C1340

C1341

C1342

C1343

C1344

C1345

C1346

C1347

C1348

C1411

C1501

C1502

D1201

01202

D1203

01 204

D1205

01206

01 207

D1208

D1209

01210

01301

D1401

D1402

D1403

D1404

D1406

D1407

01408

01409

01410

01601

01601

C1319

C1321

Cl 322

C1323

Cl 324

C1326

Cl 327

Cl 328

Cl 329

Cl 330

C1331

C1220

C1221

Cl 302

C1303

C1304

C1305

C1309

C1311

C1312

Cl3t4

C1316

C1317

C1318

C1201

C1202

Cl 203

Cl 204

Cl 205

Cl 206

C1207

Cl 208

C1209

C1211

C1212

C1213

C1214

C1215

C1216

C1217

C1332

C1333

C1334

C1335

C1336

C1337

C1338

C1339

FI

C3

B3

C4

03

A2

El

A2

F2

F2

D2

B4

C4

B4

A2

C4

A4

A3

B1

C4

D4

04

D4

04

D4

A1

El

A3

B4

02

E1

G1

C2

G3

E4

B2

F2

Cl

B2

H1

H4

C4

F2

F3

D4

03

03

02

Dt

A1

B5

B4

A1

B4

A2

A2

B1

D2

C3

C3

C4

C4

A1

B4

C4

E2

A3

B3

A3

B2

A4

C4

C4

B2

B3

C4

B1

C4

A2

A2

El

El

FI

FI

FI

B2

B1

FI

FI

03

04

E3

G1

G3

04

F2

G1

N3

F3

E4

A2

A3

A3

B2

01

Cl

02

Cl

Cl

C4

C2

E2

F2

H4

H2

HI

G2

G3

F3

04

N2

E3

B2

A3

C3

E2

03

C4

04

FI

01 603

D1604

D1606

G1201

H1201

HI 202

J3

L1201

LI 202

N1301

N1401

R1201

R1202

HI 203

H1204

R1205

R1206

R1207

H1208

R1209

H1210

H1211

R1212

H1213

R1214

R1215

R1216

R1217

R1210

H1219

R1220

HI 221

R1222

R1223

R1224

R122S

R1226

R1227

R1228

R1229

R1230

HI 231

R1232

R1301

R1302

R1309

R1311

R1312

D2

03

D4

C4

D1

D1

A3

C3

C4

A2

F2

1

Dt

El

F2

F2

E2

FI

F2

F2

F1

B4

E4

E4

E4

Cl

Cl

A2

A2

A3

A3

G2

G4

F4

14

12

E3

E2

F2

E3

B3

E2

FI

Cl

Cl

A2

B4

FI

Cl

B1

B1

E4

82

It

Cl

Cl

A2

A1

A1

B1

V1311

V1312

V1313

V1316

V1317

V1318

V1319

VI 401

VI 402

V1403

VI 404

VI 405

VI 407

VI 501

VI 502

VI 503

V1506

TP207

TP208

TP209

TP210

TP211

TP212

TP213

TP214

TP214

TP216

TP217

TP219

TP221

TP222

TP223

TP224

TP225

TP227

TP233

TP234

TP235

TP237

TP239

TP244

TP244

TP246

TP247

TP248

TP249

R1411

R1412

R1413

R1414

R1415

R1416

R1417

R1419

R1421

R1422

R1423

R1424

R1501

R1502

R1503

R1504

R1506

R1507

R1601

R1602

R1603

T1301

V1201

VI 203

VI 204

VI 205

VI 206

VI 207

V1210

V1215

V1220

VI 304

V1305

VI 306

R1313

R1316

R1319

R1401

R1402

R1403

R1404

R1406

R1407

R1408

R1409

VI 307

VI 308

V1309

F2

FI

A3

A3

B2

E3

E4

D1

E4

A3

A2

A2

A3

E4

E4

E3

E4

F2

F2

E4

E4

F4

B1

E2

B5

E2

A2

A2

F4

E2

C2

El

D1

El

E1

E2

E2

E1

B4

E2

E2

E2

F2

F2

04

F2

F2

F2

VU20

tO-3

Figure W.lb

DigitaJ A

1

PCB

10-4

1

Qu/off ciflcuir n^Mjo)

HieoK visot

“•soz

PKIR

T

•603

’oo*

3Mt y^g J

B*JS9

U

'8?-

I"-

T10-

SATt.

SENSE

Xei?;7 Xtis^e J.eis«i jiOf»

JkO-

J*0«

CISC'

10.

.

Lci?o2i

Cl3l9

•'Oi r'"' I

1C133I

.

Lciss

^tOn •

LCi3?3, f JO"

Ici3?<

JiD-

Lcja?o

^io«

Xt'326 yio«

.

iCIS89

• to.1

^

.

Lc<3»

• pO-i

C133?

lOc

.

Li:i333

["•

J

]

.CJ3J4

•*0t)

J.C1336,

Lci»g r"

:

['"

Icrss?

^•0"

.

icuu

^»6»

• pfl*

Xci3«l> j»o-

.

ici3«i

• to*

^

.

Lcis*’

IB('

^

1

CJS51 j.C)S63

.

Lcises

^!0r

yiQ" j

— r.»3sr>«i

^

7

^ «ir*o 6t'

J

T.

cijteoB)

> yeorr

4

I~I

T T euA&c>^r o

I

V t cuisoa jni Tc“«

* 'B i

T

^<

I

I

I

Tt

n

1

« f-T «b

IP

A y hOlD^Bwk

4i

I

A

A

"OV6 o»

HOVE 60«a

4

^

1 I rtme

7 tins

..

B

HOVE UP e HOVE oovN

•HI

'

^ T

^"OfC

I

^"Pr£

1

• f

1

“i^»J

T&€Ti..(> wAverc**' f LC&

A

Ci^nsOB

At/DC

C*^A

DO<fN cunmaa

Cl/KSfl"

"

^

^

^

60*T 5 ni'T 2

^

M-

A

8 V

HOVE

P novf t>ovN

B «v

'i"E fli

^*e

UP a Ac^sc

^m\[

I

e p

UNDO

HATH

A

LCn

SPEOIAL

HOLb/ftUK

74HCT165 l£?tLO*DJ

01M6

»«hCT»«

§rg5

SI tgwici]

MiC OO) r»nvT

»i fir»

TWTST-*tTro fiw iIrS

Figure 10.2a

Digital

A

1

GirGuit diagram (part a)

CIRCUIT DIAGRAMS

CIRCUIT DIAGRAMS 10-5

PARTS LOCATION A1 (CIRCUIT DIAGRAM)

A

A

A

E7

MOVE UP C7

MOVE DN C7

A AC/DC C6

A mV C6

AUTOSET

B7

B

B

MOVE DN ce

MOVE UP ca

B V

BmV

C9

C9

B AC/DC

B1209

Cl 201

Cl 202

Cl 203

C9

B19

Q2

G2

B17

C1204

C1214

Cl 217

C1305

Cl 309

C1311

Cl 312

C1316

C1317

C1319

Cl 321

Cl 322

Cl 323

Cl 324

Cl 326

Cl 327

C1328

C1329

Cl

3^

Cl 332

Cl 333

C1334

D2

F16

G16

G3

G4

G4

G4

G3

G5

G5

G5

G2

G2

G3

E2

H6

G8

G9

G9

Q9

G3

G3

I

Cl 335

Cl 336

Cl 338

Cl 339

C1340

C1341

C1346

Cl 347

C1348

Cl 349

Cl 350

Cl

351

Cl 352

Cl 353

C1503 D2

CHAN A/B B8

CURSOR DA B7

CURSOR1

L B7

CURSOR1 R B7

CURSOR2

L Bd

CURSOR2 R Bd

D C6

HI

H2

H3

H3

H3

Q6

Q5

G3

G5

G3

G3

03

Q4

G4

D1201

D1202

D1202

D1205

D1207

01208

01 209

01209

01209

01210

01301

01301

01601

01602

D1603

021

A18

B18

B17

E25

B25

N1301

N1301

ON KEY

R1201

R1202

F16

A20

R1217

R1221

A19 H1222

Q25 R1223

G7 R1224

H7

F13

R1225

R1226

H13 R1228

A13 R1229

D1604

01

606

DOWN

E

LCD

MATH

METER

MOVEL

MOVE R

R1203

R1204

R1205

R1210

R1210

R1213

R1215

R1216

B13

D13

B9

08

R1231

R1301

R1302

R1313

G4 R1314

Q17 R1316

G1337

H1201

HI 202 G16 R1501

HOLD/RUN 06 R1502

J3

L1201

C19

Q2

R1S03

R1504

F8

F8

A2

A3

A3

B3

G22 TP222

F2 TP223

E2

H7

TP224

TP228

TP239

83

A3

H11

I

TP241

TRIGGER

UNDO

UP

VI 201

VI 202

V1203

VI 205

A3

H7

G9

F2

08

E8

B6

07

D7

R1S06

R1507

R1601

B16

B16

R1601

R1602

R1602

F11

C11

G18

B2

A3

VI 206

VI 207

V1210

G14

G16

A18 F2 All

F16 R1602 H12 VI 215 B17

E6 R1602

G17 R1603

615

B15

B16

B16

A17

C12 VI 220

Dll

R210

SETUP

G18 V1312

RECORD D7

SCOPE B6

07

VI

313

V1314

V1316

SOFT1 A6 V1317

D17 SOFT2

G15 SOFT3

'

G16 SOFT4

F14 SOFTS

I

Q16 SPECIAL

C17 TEST1

C17 TEST12

017 TIME ns

017 TIME 5

G19 TP216

A7

A7

A8

C7

C7

D17

VI 301

VI 318

V1319

VI 501

XI 205

F7

F7

A9

E7

V1501

VI 502

D17 VI 506

G1S

B3

WAVEFORM D8

XI 201

C3

G7

G6

G7

F8

G6

G8

A3

B2

B3

D1

Cl

09

C3

TP217

TP219

D3

'

TP221

D20

F3

C6

E8

B9

C17

B15

10-6 CIRCUIT DIAGRAMS

Cl 304

C1318

C1401

Cl 402

Cl 403

Cl 404

Cl 405

Cl 406

C1407

Cl 409

C1411

D1204

Cl 205

Cl 207

Cl 207

Cl 208

Cl 209

C1211

C1212

C1213

C1215

C1221

Cl 302

C1303

PARTS LOCATION A1 (CIRCUIT DIAGRAM)

C9

A7

B7

B7

B7

R9

E9

E9

C9

E10

H19

020

J19

H11

E12

H13 on

El 4

El 4

F14

F14

H14

612

E2

D1205

D1205

01206

01 230

01401

01401

01402

01403

01404

01406

01407

01408

01408

01409

01409

01410

31201

H1401

J1401

LI 202

N1401

N1401

N1401

N1404

R1206

R1207

R1211

R1212

R1214

R1218

R1219

R1220

R1220

R1226

R1227

R1230

R1232

R1309

R1311

R1312

R1319

R1401

R1402

R1403

R1404

R1406

R1407

R1408

A3

B3

A2

D5

C12

A17

A18

A20

C16

D16

F16

A13

B13

A12

B12

614

£9

D19

C11

C8

G13

E14

F14

G12

R1409

R1411

R1412

R1413

R1414

R1416

R1417

R1418

R1419

R1421

R1422

R1423

R1424

T1301

T1301

TP207

TP208

TP209

TP210

TP211

TP212

TP213

TP214

TP233

E9

C9

G19

H20

H18

H19

D12

E13

E13

F14

G13

G13

D14

C9

E8

E7

C9

C9

A6

B6

E9

E9

E9

E9

TP234

TP237

TP244

TP246

TP247

TP24S

TP249

V1304

VI 306

VI 307

VI 308

VI 309

VI 311

VI 401

VI 402

VI 403

VI 405

VI 406

VI 503

X1201

XI 202

H12

G12

G12

H20

H19

C17

017

F17

B18

B18

B18

02

02

014

E14

F14

F14

G14

H14

G11

H13

G13

F14

H11

HU

G14

B4

A2

J19

D13

H12

Q12

E12

HU

H18

A22

H22

F4

HU

DU

G19

H19

G20

J20

J20

CIRCUIT DIAGRAMS a*Ct'

1^0)

I

>ee*i

62 fFOl

»IWSf

D>?B9

**HCri

V

BAOO ii996 iO*T$EbN

|B0'

B6»

B«9

BB4

BDS

BD«

BO' flOO vOnii'H

"OQviN

BU

6»' e*e

»0fie«tuN

Clasts

8T1IMI.I

CCn*b(

TBAC«j

•^Mrvnf fTO»Nl

40C«

•0S3l vB9l

*e:«i wjpi ap:s,

4o;6'

*et'i

MLMUTK

0£cr

(*»

B11

Pia

>COftO< j*CL»(rjT

»OIH^ suasinI flPJO

I ipu

.SEN

E«Cr|

IC31W09

Figure 10.2b

Digital

A

1 circuit diagram (part b)

gram (part b)

XciPOr

»1?CB

I'"

.I'U'74

STinuLl

CO"T»|

T04C*I

HOO'Ml

STQPnI

MSI

*a*oijT uem tMON

STO^ ic««

1

IM'-I n-PiWPortiSE t

_

1a *

"I

«l

1

-d

El

•urid'J

UP

5UPFLT 56CT1W

>l«03

A»er

LCO SyPPur BECTIOS

I"2«®

LiNect

*!kl

LC5 WtVERS

*t.

4«.

401

LlKCi.

iftfCL

CAB-N f iBI

, t340|| ri6

.

.

T*i6 tCD DlBPL^iT

LINE

Cl LlNfCL llXO

D«1VE«S

«i

V6

V6

1/8

VK

»'

.

,fSo i:i

?:

PC

S"k

ECS

*5

1!

VtC

M c.

C1|

03

.<150.

8ml

»ce

1161 .<?40

1 r

1

, ^ f

^9

.

.re

1

..)PC

4ao.

401

Si ..>59

>ai ..nos

OB'.

.*£40

3?0.

.?*t

T«.

.r»o

?..M

»C-0

AOtl

*rrrp

SI^

?2

J

30

^

HI 101

LCD

•S8.

.

'«B0

9?..

lec

* IS3..

T340

IB?. .2*0

1

.

.399

LC{> &JSPL*>

10-8

Figure 10.3a

Analog A2 PCB (SMD components side)

J

ST6M7

920203

r

C2105

C2107

C2109

C2110

C2114

02129

C2130

C2131

C2132

C2133

C2134

C2135

C2136

C2139

C2140

C2141

C2144

C2145

C2146

C2147

C2148

C2203

C2206

02209

C2214

C2215

C2217

C2218

02219

C2220

C2207

0211

5

02117

C2118

02119

C2120

C2121

C2122

C2123

C2124

02125

02126

C2127

02128

C2221

02222

02223

02223

02224

C222S

C2226

02227

02228

02229

C2230

C2231

PARTS LOCATION A2 (PCB SMO COMPONENTS

SIDE)

C2323

02326

02340

02341

C2423

C2458

02484

C2502

02503

02504

02511

02512

02515

02519

02246

02247

02248

02301

02302

C2303

C2304

02305

C2306

02307

02308

02309

C2310

C2311

02312

02313

C2314

C231S

C2316

C2318

C2319

02320

02522

C2524

C2527

C2531

02533

C2534

02537

02538

C2232

C2234

C2235

C2236

02237

C2239

02240

02241

02242

02243

C2244

02245

D2909

R2136

R2137

R2137

R2138

R2139

R2140

R2141

R2141

R2143

R2144

R2108

R2109

R2110

R2111

R2112

R2113

R2114

R2115

R2116

R2117

R2118

R2122

R2124

R2126

R2126

R2127

R2128

R2129

R2129

R2130

R2131

R2132

R2133

R2134

R2135

H2561

L2301

L2303

L2304

L2501

N2101

N2201

N2302

N2501

N2502

N2503

M2750

1^751

N2850

R2101

R2103

R2104

Rai06

R2107

R2107

D2201

D2202

D2301

D2750

D2751

D2850

D2901

D2902

D2903

D2904

D2906

D2907

D2907

D2907

D2908

02854

C28S6

02857

02801

02862

C2863

C2864

02866

C2867

02758

02759

C2760

02761

C2762

C2763

C2604

02806

C2850

02851

02652

02853

02868

C2901

D2101

D2102

C2541

C2542

02543

C2544

02546

C2S47

02549

02551

02701

02703

02705

02706

02752

02753

02754

02757

A1

04

03

04

04

B3

B4

04

B4

B2

DI

03

F4

G2

E2

A1

D3

D4

D2

F2

G2

G1

E2

El

F4

A1

01

01

G1

G1

G1

G2

FI

El

E2

El

F4

A5

A3

A3

E3

A2

D5

D5

D5

FI

F2

G4

E2

Q2

G3

G3

E3

D3

D4

D3

E1

El

D2

D2

Di

D2

D1

01

DI

DI

D2

E2

D2

DI

D5

D5

B2

A2

B3

B3

B4

A1

Cl

DI

A1

01

02

03

A1

A3

A1

A2

A3

A4

A1

El

03

02

02

Cl

01

03

01

03

B1

02

01

B3

B1

02

01

02

02

C1

02

B1

El

El

D4

04

D3

D3

D3

El

D3

D3

E3

E2

D4

FI

El

El

E2

D2

El

D2

DI

D2

E2

El

02

El

DI

D2

DI

E2

E2

E2

D3

E3

D3

E2

D3

D4

D3

El

03

05

D4

D4

A1

E3

E2

D3

D5

F5

B1

D3

El

D3

DI

FI

B1

A3

B1

01

B3

A3

A3

D2

03

B3

D3

D2

F3

B2

E2

E2

63

G4

G2

F4

F4

E2

E2

D3

D3

D4

D3

E3

D4

D4

E2

El

D4

D4

D4

El

D4

D4

E2

D3

E3

D5

05

04

04

04

04

C3

04

D3

D4

D5

D5

D5

04

04

R2145

R2146

R2147

R2210

R2211

R2212

R2213

R2214

R2215

R2216

R2217

R2217

R2218

H2220

R2221

R2222

R2148

R2149

R2150

R2151

R2152

R2153

R2154

R2155

R2157

H2158

F12159

R2160

R2161

R2162

R2163

R2164

R216S

R2166

R2167

H2168

H2169

R2171

R2172

R2201

R2204

R2204

R2206

R2207

R2208

R2209

R2224

R2225

R2226

R2227

R2228

R2229

R2230

R2231

R2232

R2233

B2

E3

D4

FI

El

E3

B3

B3

D4

B4

B3

B3

B3

D4

D3

D4

D4

D3

D3

D4

DS

A1

D3

E3

E3

D4

D3

B1

El

El

F2

El

El

El

El

El

DI

DI

D2

DI

DI

DI

E2

D2

D2

E2

E2

DI

D2

D2

D2

DI

E2

DI

DI

DI

CIRCUIT DIAGRAMS

D1

D1

D1

D1

D2

D2

D1

D2

D2

D2

D1

83

S3

82

82

D2

D3

B1

81

D2

D3

D3

D1

E3

B3

83

D1

D3

61

D1

D1

D1

D2

D2

81

02

D1

C3

D2

C2

C2

C2

C2

C2

01

01

C3

C2

C2

C2

Cl

Cl

C3

C2

C2

Cl

R2341

R2342

R2343

R2345

R2346

R2347

R2501

R2502

R2503

R2504

R2506

R2507

R2508

R2509

R2511

R2512

R2513

R2514

R2516

R2517

R2518

R2519

R2521

R2522

R2523

R2524

R2526

R2527

R2528

R2529

R2530

R2531

R2632

R2534

R2535

R2S36

R2537

R2538

R2540

R2S41

R2322

R2322

R2323

R2324

R2325

R2330

R2331

R2332

R2334

R2335

R2336

R2337

R2336

R2340

R2542

R2543

R2303

R2304

R2305

R2306

R2307

R2308

R2309

R2311

R2312

R2313

R2315

R2261

R2262

R2263

R2264

R2265

R2267

R2268

R2268

R2269

R2270

R2271

R2272

R2301

R2302

R2316

R2317

R2318

R2319

R2320

R2321

R2251

R2252

R2253

R2254

R2255

R2257

R2258

R2259

R2260

R2234

R2235

R2236

R2237

R2238

R2239

R2240

R2241

R2242

R2243

R2244

R2246

R2247

R2248

R2249

R2250

C1

C1

Cl

C2

D2

C3

C2

53

A3

B3

B4

B3

E3

Cl

A2

A4

A4

A3

83

D1

A3

A3

B3

B3

E3

E3

A2

C3

C2

C2

C2

82

A2

B2

A2

A2

B2

A2

A2

A2

82

82

B2

82

A2

C2

C2

D1

Ct

Cl

Cl

Cl

Cl

Cl

A1

32

R2761

R2762

R2763

R2764

R2766

R2767

R2767

R2768

R2769

R2770

R2771

R2772

R2773

R2774

R2775

R2776

R2777

R2810

R2853

R2854

R2856

R2857

R2858

R2659

R2567

R2568

R2571

R2572

H2573

R2575

R2581

R2583

R2597

R2598

R2599

R2729

R2754

R27S5

R2757

R2768

R2759

R2760

R2544

R2546

R2548

R2551

R2554

R2556

R2557

R2558

R2559

R2562

R2563

R2564

R2565

R25ee

B1

F2

F2

E2

G2

G2

G2

F2

G4

G4

G4

G4

G3

G3

G4

G4

G4

F2

F3

Cl

A1

81

A1

A1

A1

Cl

B2

A4

A3

A2

A3

A3

A3

A3

A2

A3

A4

A3

A3

64

B4

A4

A5

A1

A4

A2

A2

C5

64

85

62

G3

F2

E2

B1

B1

V2210

V2212

V/2213

V2214

V2221

V2301

V2302

V2303

V2417

V2111

V2112

V2114

V2204

V2205

V2206

V2207

V2208

V2209

V2501

V2502

R2671

R2872

R2873

R2875

R2B76

R2877

R2878

R2879

R2B81

R2901

R2903

R2904

R290e

R2861

R2862

R2863

R2864

R286S

R2866

R2867

R2868

R2869

R2870

R2907

R2909

R2980

R3333

V2101

V2102

V2104

V2105

V2106

V2107

V2108

V2109

V2110

V2S03

V2504

V2506

V2507

V2508

V2509

V2511

V2512

V2513

V2514

V2516

V2518

V2521

V2523

V2526

V2527

V2528

V2529

V2532

V2533

V2534

V2536

V2537

V2538

V2539

V2541

V2542

V2543

V2544

V2550

V2596

V2736

V2750

V2752

V2753

V2754

V2756

V2757

V2758

V2759

V2760

V2760

V2761

V2762

V2763

V2765

V2766

V2768

V2811

V2812

V2851

V2852

V2853

V2854

V2901

V3113

El

D1

D1

01

B1

E2

E2

D1

D1

D1

Cl

61

A1

A1

A2

D4

D4

D4

B2

D4

E3

D4

El

D2

Cl

B2

C3

Cl

D3

D3

E2

D4

E2

F2

F2

B2

C2

C4

C4

G1

Q1

F2

G2

G2

F2

E2

E2

G2

G3

G1

G1

G2

G2

F2

B1

F1

E3

G3

C5

F4

A1

03

G4

G3

D3

G3

G4

G4

E3

B1

E2

F2

G2

B2

E3

F2

E3

E3

E3

C3

D3

A4

A4

B4

A5

A4

A4

A2

A3

A4

A3

A3

A3

A3

A1

A5

B4

A2

A3

A3

A2

B3

B3

E3

E3

B2

B2

B3

B2

A2

A2

A1

R211K c

Figure 10.3b

Modifications Analog A2 PCB (SMD component side)

C229I

^

A2Y23

J

C2U7

I

NOT CONNECTED

<•4

NOT

CONNECTED

C2247

J

V22Q7

I

ST6650

92C21C

10 10

CIRCUIT DIAGRAMS

C2102

C2103

C2104

C2106

C2108

C2111

C2112

C2113

C2116

C2202

C2203

C2204

C2206

C2208

C2211

C2212

C2213

C2216

C2317

C2322

C2501

C2506

C2507

C2508

PARTS LOCATION A2 (PCB WIRED COMPONENTS

SIDE)

F4

F4

E4

E4

E4

E4

E4

E4

E4

FI

FI

El

El

E1

El

El

El

E1

Cl

C1

B2

B3

A2

B3

El

El

F3

F2

A1

B1

A2

A2

A1

A1

Cl

D1

D1

A3

A2

A1

06

C5

F3

B1

F5

E4

E4

FI

K1201

K1202

K1203

K2201

K2202

K2203

K2750

K2751

L2502

L2503

C2609

C2514

C2516

C2517

C2518

C2521

C2524

C2525

C2530

C2532

C2547

C2549

C2750

H2901

D1

D1

D1

D3

A4

A4

F4

F3

A2

A1

B4

F1

A5

F3

F3

A4

B4

D3

D3

D5

D4

E2

D2

D2

L2504

L2506

R2119

R2219

R2582

R2750

R2753

R2778

T2501

X2001

X2501

X2502

Z2501

TP102

TP103

TP106

TP107

TP201

TP202

TP203

TP204

TP206

TP207

TP208

Cl

C2

B2

D2

B3

Cl

Cl

C2

C2

C2

C2

B4

C5

B3

C2

63

C4

B4

C4

C5

£2

E2

C3

F3

TP209

TP331

TP332

TP501

TP502

TP503

TP504

TP506

TP508

TP509

TF511

TP520

TP521

TP522

TP523

TP524

TP526

TP527

TP528

TP529

TP7O0

TP701

TP702

TP704

TP706

TP801

TP802

TP803

TP804

TP805

TP806

TP901

TP902

TP903

TP904

TP906

TP907

TP908

TP909

TP911

TP912

TP914

TP916

TP917

TP918

TP919

TP927

F2

Cl

E2

F2

F2

C3

C3

D4

C4

C4

C3

C3

C3

D3

B4

C4

E2

E2

C4

C4

B4

62

B1

CtRCUIT DIAGRAMS

Figure 10.4

Analog A2 PCB

(wired component side)

C D

E

F

G

ST6616

920204

1

10

-

12

CIRCUIT DIAGRAMS

C2102

C2103

C2104

C2105

C2107

C2108

C2109

C2in

C2112

C2113

C2114

C2145

C2146

C2147

C2202

C2203

C2205

C2206

C2207

C2208

C2209

C2210

C2211

C2212

C2213

C2214

C2215

C2216

C2115

C2116

C2117

C2118

C2119

C2120

C2122

C2123

C2124

C2125

C2126

C2127

C2128

C2129

C2130

C2131

C2132

C2133

C2134

C2135

C2136

C2137

C2138

C2139

C2140

C2141

C2144

PARTS LOCATION A2 (CIRCUIT DIAGRAM

A2a)

C2317

C2318

C2319

C2320

C2326

C2340

C2341

C2342

C2804

C2248

C2304

C2X7

C2X9

C2309

C2311

C2312

C2313

C2314

C2315

C2316

C2230

C2232

C2233

C2234

C2235

C2236

C2238

C2237

C2240

C2241

C2242

C2243

C2244

C2245

C2246

C2247

C2806

C2901

CH

A

D2101

D2102

D2201

D2202

0230

C2217

C2218

C2219

C2220

C2222

C2223

C2225

C2226

C2227

C2228

C2229 ail

B11

B16

Did

D14

D19

A21

E14

E15

C11

A4

C12

A23

A21

014

B22

FI

9

E16

E16

E17

A18

A18

A18

A19

C15

A19

B19

022

A21

A14

A15

A16

B19

A16

A17

A18

015

C19

D20

C22

A20

A2

A2

A17

A7

C20

All

FI 7

G13

FI 8

E18

FI 8

F10

G15

E19

R2136

R2137

R2138

R2139

R2140

R2141

R2142

R2143

R2144

R2145

R2146

R2147

R2148

R2U9

R21S1

R2152

R2153

R21 54

R2155

R2157

R2158

R2159

R2160

R2161

R2162

R2163

R2164

R2165

R2166

R2167

R2168

R2169

R2170

R2171

R2172

R2201

R2203

R2204

R2206

R2207

R2208

R2209

R2210

R2211

R2125

R2126

R2127

R2128

R2129

R2130

R2131

R2132

R2133

R2134

R2135

A11

A15

A14

B11

A17

A19

A17

B11

C11

E14

El 6

El

5

C11

Dll

E19

E17

F11

A10

CIO

E10

E3

E5

C2

C3

C7 ce

Ell

F28

E32

D25

D25

C19

C15

G19

G16

C31

A14

A14

A16

A16

A18

A19

A20

B20

A20

B21

B19

B21

A22

B13

B13

B15

C13

C13

A21

J17

H19

H14

H19

E21

F22

F26

F11

F25

F28

F25

F29

F28

E31

F29

F27

B32

B32

B32

E30

C31

D25

D2S

025

F11

F11

B3

£12

C14

C17

Q14

F17

E26

D11

Dll

G4

G13

E21

E23

F22

G16

J17

FI 9

H22

F21

H15

G19

H20

E20

Q2

G3

El 7

G8

H20

Dll

K2201

K2202

K2202

K2202

K2203

K2203

K2203

K2750

K2751

L2301

L2302

L2303

L2304

N2101

N2101

N2201

N2201

N2302

R2101

R2103

R2104

R2106

R2108

R2109

R2110

R2111

R2112

R2114

R2115

R2116

R2117

R2118

R2119

R2120

R2121

R2122

R2123

D2901

D2902

D2903

D2904

D2906

D2907

D2908

D2909

H2901

K2101

K2101

K2101

K2102

K2102

K2103

K2103

K2103

K2201

R2248

R2249

R2250

R2251

R2251

R2252

R2252

R2263

R22S3

H2254

R2254

R2255

R2257

R2230

R2231

R2232

R2234

R2235

R2236

R2237

R2238

R2239

H2240

R2241

R2242

R2243

R2245

R2246

R2247

R2212

R2213

R2214

R2215

R2215

R2216

R2217

R2218

R2219

R2220

R2221

R2222

R2224

R2224

R2226

R2227

R2228

R2229

R2258

R2258

R2259

R2259

R2260

R2265

R2266

R2267

B16

D15

D15

CIS

Cl 6

D15

D16

Die

C16

C17

A22

C17

C18

Cl 9

B22

E13

E14

E15

E15

G16

E17

E19

E19

F20

A6

B6

B6

B6

C23

022

A4

C22

A2

A4

C20

C20

C20

C21

C22

C23

C22

A3

A3

B22

A5

A6

A6

A23

D22

A6

A7

B5

B6

B7

D14

F20

E21

F21

F19

G15

H16

Q17

E22

G17

G18

G19

Q20

G20

H20

H21

H22

G22

F23

H22

G4

G22

H19

G2

H7

H7

G4

H7

G3

H4

H7

F21

E22

F13

F13

Q15

G13

H13

H14

H22

H15

H15

H15

Q16

H15

H16

F22

Q7

H7

Q7

HS

G7

E23

H22

Q8

68

CIRCUIT DIAGRAMS

R2270

R2271

R2272

R2318

R2319

R2320

R2321

R2322

H2323

R2324

R2325

R2330

R2331

R2332

R2333

R2301

R2303

R2305

R2312

R2313

R2314

R2315

R2316

R2317

R2334

R2335

R2336

R2337

R2338

R2340

R2341

R2343

TP101

TP103

TP104

TP104

TP106

TP107

TPlOe

TP109

TP202

TP206

TP207

TP208

TP209

TP331

TP332

TP717

TP901

R2345

R2346

R2901

R2903

R2904

R2906

R2907

R2908

R2909

H8 TP902

H14 TP903

F22 TP904

D25 TP906

C30 TP907

F26

F27

TP908

TP909

F25

F25

TP911

TP912

C28 TP914

C29 TP916

C29 TP918

E31 TP919

F28

F26

F28

F28

TP921

V2104

V2105

V2106

V2107 B29

B29

B30

V2106

V2109

C33 V2110

C32 V2111

C33 V2112

C32 V2113

C33 V2114

C32 V2204

C33 V2205

C32 V2206

C28 V2207

£24 V2208

E24 V2209

025 V2210

C29 V2211

C29 V2212

C8 V2213

B2

AS

V2214

V2301

C10 V2302

03 V2303

E2

C2

V2811

V2812

D12 V2901

C16 X2001

C14 X2001

C16 X2001

B20 X2O01

B22

A6

X2O01

X2108

A3 X2109

G13 X2208

X2209 F20

F23

G8

G3

C29

C29

F5

A11

G15

E20

E21

Q21

£23

H8

Q23

H13

H13

F22

B30

B30

E31

A21

C21

A23

B7

C23

D12

D13

822

F20

E11

F11

F3

D3

D5

D7

B20

B15

A20

F11

F11

C8

Q1

A1

B4

033

Cl

A13

A13

E13

E13

011

B11

B11

C11

C11

Dll

D11

Ell

8

— t

1

A

0

4> f

G

»

K met PosniOK r«en iT

>Vr*r

^

I

«5»«

^ *SV«

» 'yrkf illFX hSK ion j

•K

CS

EXTEOa

•v-u

'\r\j

AC/DC COUPDKG jrns

BELA

19

COKTROL

^

02901

<wcfr^

I

IcN

I

'2® r-i:

I0< r^><»

K^B

JiKft

C|iANN£U B

*!EhArS

»0n rpid4

74KC64

I TP9M

CHANNEL A ATT.

RELAYS lOa r«09

D?903

7«HCS1k

K^7'fi

V^M.

BTtiJ

C7»»

Xi*04

10i tP«i?XC

3703

6»?7X10

ty'rt

I

^cedM

RED BNC

^

INPUT

Strf

I

Ch A V-6-

L-..-XT

1j t'edCt

V??0«

AC/DC COUPLING ft?SO»

R^TVJ

2?20

ion

FROn

A-^a i9?i‘i‘ vpsig

BCdee

V?213

BCfisa

74HCOI6

'ft?S3Q

hooK

u^.:j

LF CAilBRATIW

KtO?

’4-tC4&l6 fEEDfiAC" I.UOP

lAlMt

^EEDBAr.^

HOJk

S«|)

s

IU-f$

LF CAL tBFATlOH

1

NHJ

1

*

*1^7

II

NS2ai

4S3

1

FEED9*C« LOOP

2ii2

C7i i«

22Qi4

tvUM ysto«

O'fiss

D6AC^ lOOP

R?I42

WACK

LOOT lAAlfi

*<Mr

BFOqf T'’?!' fP?07

•?e«o

5^A5 e»T.T«jo

AKALOO A3tc

VCCb

INP8ND

VEC« VCC»

OD03Q6 ei'AT ecu MAC

S«Ce SMDe VEtc

>2306

U

>t»i2 lE

SNCChjr

VR£F p b

CIR L tUM J

MOP

rouj U

XH*CKN

_$xet»w

01* VALUE

Rf3i9 rt-OF

0

CHA i3

*0 irvEi

1

>?3l

1 p»1 t

B"

HI r>fT»»j r><AVA

R2309

1

Cvfl

Xc£0i?

l^

Oft

UiSsi OTiTfCSK^l

?n?J

«.7^

ANMOG OIGITAL CONVERTER

5V

^100*1

^lOOtv tLcssi?

< &

5 g

JU z

U

B y

N?30c>

TDAfl703 z al

Vl?t

o;

06

P6

04 flO

D?

12

^13

14

IS

R£301

15£L^

23U t5S2>

Anu

£2_

“r535F“E^J

£4

4Hr» 1-9 >

ADCS

AOrA

*nr4

• IV-

AOrt

-2S-C

35^

1

RACAK

StOPN

DT-VM.itg

"LOfJfM

CHANA nr* co"p ifVEi

|_L2_<

1 lA

'

1R

1

10

1

PA

L.

TO ^

.

fnn

M

10-13

F/gur& 10,5 An^/og A2 circuit diagram A2a

10-14

C2311

C2313

C2314

C2315

C2316

C2317

C2318

C2319

C2320

C2322

C2323

C2324

C2326

C2340

C2704

C2705

C2750

C2751

C2752

C2753

C2301

C2302

C2303

C2304

C2305

C2306

C2307

C2308

C2309

C2310

C2311

C2754

C2756

C2757

C2758

C2758

C2759

C2760

C2761

C2762

C2763

C2801

C2850

C2851

C2852

C2853

C2864

C2856

C2857

C2861

C2862

C2863

C2864

C2866

C2867

C20 C2868

C21

C24

F21

C26

C21

C22

D2301

D2750

D27S1

D2751

D2650

D2850

B23

1

K2760

E20 K2750

C24 K2751

1

E24

I

K2751

E20

1

L2301

E23 L2302

D25

E23

L2303

L2304

F21

A27

N2302

N2750

A26 N2751

A27

.

N2751

D24 N2850

C25 N2650

C25 R2301

C25 R2302

B25 R2303

H3

E4

D6

B3

06

E6

B3

C6

D9

C19 R2304

E4

H3

B3

R2305

R2306

R2307

C5

1

R2308

DIO R2309

H3 R2310

R2312

R2313

R2314

R2315

R2316

R2317

R2318

R2319

R2320

D8

Cl

R2321

R2322

E13

E14

R2323

R2324

El 4 R2330

EU

R2331

R2332 E15

E15

E13

R2333

R2334

A15

815

E16

A16

FI 4

E17

R2335

R2336

R2337

R2340

R2341

R2342

PARTS LOCATION A2 (CIRCUIT DIAGRAM A2b)

C5

E5

D6

D6

D7

C20 R2881

B24 TP331

B24 TP332

C24 TP700

A4

B3

D5

D7

D10

D5

D5

A25 TP701

G3

C3

C4

TP702

TP704

TP706

C6

D3

TP801

TP802

TP803

TP804

TP805

TP806

V2301

V2302

V2303

V2736

V2751

V2752

V2753

V2754

E5

H3

H4

G4

G4

E5

B15

B15

A15

A16

B16

816

V275S

V2756

V2757

V2758

V2759

V2760

E17

F14

F14

F15

C14

A15

A1S

E9

C4

C1

V2761

V2762

V2763

B22

E13

E14

E1S

E15

V2764

V2765

E13 V2766

D13 V2767

E13

E13

V2768

V2769

V2861

V2852

V2863

E16

B14

V2854

X2001

X2001

X2201

R2772

R2773

R2774

R2775

R2776

R2777

R2778

R2838

R2853

R2854

R2856

H2857

R2858

R2859

R2861

R2862

R2664

R2865

B2866

R2867

R2668

R2869

R2870

R2871

R2872

R2873

R2875

R2876

R2877

R2878

R2879

R2343

R2346

R2346

R2347

R2535

R2729

R2750

R2753

R2754

R2755

R2757

R2769

R2760

R2761

R2762

R2763

R2764

R2766

R2766

R2767

R2768

R2769

R2770

R2771

E17

D21

D7

D17

D9

D12

A2

02

C3

04

F2

E23

D26

C20

C20

B26

C3

G4

G3

B16

D16

C20

C21

B25

C23

F21

C21

C22

G23

E23

C26

F22

E20

B27

B28

B27

B28

B27

D19

D19

C19

F23

E23

A24

A24

B28

B27

628

E20

B23

C24

B24

D25

E23

E23

H5

D2

D2

D8

E10

C4

E13

F15

B14

B17

FI

B28

FI

A17

B23

B23

04

04

B3

G3

G4

012

F14

D15

E16

615

A16

A25

F5

F4

G4

F5

F6

04

C6

H5

C6

A4

B3

A25

026

08

C4

04

CIRCUIT DIAGRAMS

CIRCUIT DIAGRAMS

A,

DM5Q

^NERATOR TRICGER

SELECTION a

A

Figure 10.6

Analog A2 circuit tf/apram

A2b

14 T( 15 7 kfi ts

HUGO)

?0

J

2^

2B

I

«

2^

I

25

2 ?

ANALOG

C^lQITAL CONVERTER

£8

I

££

10-15

TO

0AS1C

TO/fWon

DASTC

CONTROL- BUS

ST 6263

9S02IO

tO-16

C2431

C2434

C2543

C2544

C2546

C2547

C2S48

C2549

C2551

C2552

L2501

C2526

C2527

02529

C2530

C2532

C2533

C2536

C2637

C2536

C2501

C2502

C2503

C2504

C2506

C2507

C2508

C2509

C2511

C2512

C2514

C2515

C2516

C2517

C2518

C2519

C2521

C2522

C2523

C2524

L2502

L2503

L2504

L2506

N2S01

N2501

N2502

N2503

N2750

R2501

R2502

R2603

R2604

R2506

R2S07

PARTS LOCATION A2 (CIRCUIT DIAGRAM

A2c)

F17

C21

A3

03

C4

B3

G13

04

G0

B6

B13

A13

A14

019

E19

E19

B21

021

021

018

E17

020

B3

BS

A13

D19

D17

B4

A14

D19

C19

E18

E18

C21

821

B21

E19

E19

G13

A5

G14

E14

G15

E15

C17

F77

E17

D17

D19

El 4

FI 4

E16

FI 5

F15

E15

R2508

R2509

R2522

R2523

R2524

R2S26

R2527

R2528

R2529

R2530

R2531

R2532

R2534

R2535

R2636

R2537

R253Q

R2540

R2541

R2S42

R2511

R2512

R2513

R2514

R2516

R2517

R2513

R2519

R2521

R2543

R2544

R2546

R2548

R2551

R2554

R2556

R2557

R255d

R2559

R2561

R2562

R2663

R2564

R2565

R2S66

H2567

R2568

R2569

R2571

R2572

R2573

R2575

R2581

R2582

R2683

Fie

G18

A15

A15

019

E18

B1

C2

B4

B5

C5

66

El 8

G7

G8

D17

E14

FI 6

E16

FI 3

FI 3

E15

El 6

F13

D20

E20

B14

A16

G15

E13

F9

F9

09

E14

F15

£16

F17

017

F5

B6

66

A8

F7

FI 3

E13

A10

F5

F7

F8

E9

F9

G9

E10

G11

E10

V2544

V2550

X2001

X2Q01

X2001

X2001

X2501

X2502

Z2501

B5

05

A4

A5

B6

D8

08

08

F7

A8

B3

C4

BAS

05

B12

B13

AU

G15

G13

A13

F15

F8

F8

C18

D18

018

C17

D18

D19

D20

G15

Gie

G16

G17

G17

G17

G18

G18

Gie

B15

B21

E16

B13

A13

B12

F8

E8

E8

D8

G10

G10

A9

A9

08

B21

R2584

R2596

R2S97

R2698

R2599

T2501

T2601

TP501

TP502

TP503

TP504

TP506

TP507

TP508

TP509

TP511

TP520

TP521

TP522

TP523

TP524

TP526

TP527

TP528

TP529

V2501

V2502

V2521

V2523

V2526

V2527

V2528

V2532

V2533

V2534

V2536

V2503

V2504

V2506

V2507

V2508

V2509

V2511

V2512

V2513

V2514

V2516

V2517

V2518

V2537

V2538

V2539

V2541

V2542

V2543

D17

G5

022

G11

Ell

022

B1

H11

A2 aRCUIT DIAGRAMS

3

SALES & SERVICE ALL OVER THE WORLD

Bureau da

Liiiaori Philips

El Mau<adla, Alger

Tsl;60U05

An9ola

LUANDA

TeL 24A-2-372250

Philips Antiliana N.V.

SVUlefnsiaQ, Curacao

Tel:

15277

Phllipa ArgaHIna

1430 Buenc« Aires

81.

Tel:

54-1-5414106/5417141

Tel.

34-1-5422*11/5422451 *

CoasInSJL

Buan«9

Alree.

Argeniina

Tel: (54)

(1)&52 5243

PhmpaScienBfle&Industrlal PTV LM.

Auchlanct 3

New Zealand

Tel:

00-B941 60

Philips SoWiitfie ft

Induaoiai PTY Ud.

NonnRyde

Sydney

New

South Wales

211

Ta:

02-668 0416

02-688 6222*

PhlllF» Seiertinc ft

IndualriaJ PTY UO.

Malboiane Vkrtoria 3151 ta: 03-236 3686

Philips Sclentlfle ft Ihdualriai PTY Ud.

Aoaaae soum Ausiraiia sooa

Tel:

06-3482868

Philipa GelartOfle ft

IndueVlal PTY Ltd.

BuDane Queensland 4101

Tel;

07-3440191

Philips Sclentme ft

IndusVial PTY LM.

Panh

Tel:

Wb^

Australia 6104

0&877-4198

Philips Protasaionelta

EMdronlk

AiiQ

2 Wlan

GmbH

Tel: 0222/601fl1-G

Philips Prefassieneite EMMronlk GmbH

1101 Wien

Tel:

0222-60101 6x1.813

I4ess<>.

Mohamad fakhreo ft

Bros

Bahrain ra: 973-253529

Philips Bangladesh Ltd.

OHAKA

Tel.

885081-5

Molhertand Corporation

0a<oa-3.

Bar^iadaeh

Teh 680287249

Manning Wilkinaon ft

Chsllanor

Bndgsuwn

Tal

436^185

Philips Proreeeionel Sysiema SA.

1070 Brussel

Tel:

02 525 6692

Tel: 02-525 6694*

Holmes, Wilhama and Puivey

Hdmiiofi

Tal.

809-2955000

E.P.TA.

iNQBNIERA d.n.1.

LA PA2

Tel:

3-25952

Coaain Bolivia

La Paa, BoiMa

S.R^

Tel; I59t) (2)40962

Philips Madical Sytiema Lida.

04661 Sao Paulo S.P

T^: 55-11-5234811

ATP

HLIM

Seclronjea

Sac Paulo, Braatl

Lida.

r^;

(56)

{11)4215477

Brunei (via Singapore) Philips Prejeci

Devsiopment

(S)

PTY LU.

Singapore l?3i

Td; 65-3502000

Rsnk O'Conner’s.

5nd

Bandar Sen Begawan

Bhd

Negara Brunei Oanissaiam

Td- (6731

(2)

23109 or

23657

Iflterconautt { Philips

1309

Tel;

SOFIA

359-3-200765

Service }*

Fluke Elecironice Canada

Inc.

Burnesy, Bnitsh Colun«ia

Tel: (604)

439-9004

PkJka £laetranic« Canada

Inc.

Misdissauga, Ontario

L4Z 1X9 Canada

TSl:

(418)890-7800

Fluke Electronics

(^ada

Inc.

Ottawa. OntarlQ

Tef: (613) 723-6453

FkJka Eiactroolca Canada inc.

Dorvai.

Quebec

Tel; (514)685-9022

FhJke Eieetrofiica

Canada

Inc.

CslgarVi Alberts

Tel:

(403)291-5215

Philips

ChHem BA.

ds Product Baclr.

Casilia 2678

Sanitago de

CMe

TsI;

56-2-770030

Krortsa

Ssnbago, Chile

TsI: (55) (2)

232-4300

Philips

Td:

HongKdng

Lid.

7735586

Pluka Intemaiionej Cerp.

Bailing

100004

People's napubUe of China

Td:

(86)

1

612-3435

Industrias Hiilps da Columbia SA.

ApartBClo Aereo 4282

Bogota

Tal'

57 1-2900600

Sistemss E Instrumantabon.

Lids.

Bogota, Colombia

Tel: (57)232-4632

Elect rocom ban JOSS

CaetaRioa

Tel:

53-0083/57

Branch Cfftea Brno* ei300

TbI:

BRNO

4Z*2*37742e

Obhcvs

Parrvaeek n.p.*

18041

PRAHA6

Tel: 42-2-S94426/60361

D, Ouzounlan W. Souttenian ft

Ca. Ltd.

Nicosia

Tel:

067 2-442220

Philips A/B Test ftMeaeurement

DK 230C Kobantttvn S

TsI: -f45^-862100

Philips Ecuador

1

166Y Cordero

TsI; 593-2-565635

SA.

Pretefto

Ceeah

Cl*.« Ltde.

Quito, Ecuador

Td; (59) 32 529684

ProtecoCotaln Cla..

Uda.

Guayaduli. Ecifidor

T(H, (59^ (4)

3876 16

Phlips Egypt Branch

Middle Best B.V.

DokkI.

Cairo

Tel:

20-2-3490922

Phlips Emiepia (Priv.

UM, Co.)

Addis Ababa

Tel:

010-231-1-510300

Awa ftoutiwasl Pacific

Suva.

R|i

Tel: (679) 312C79

OY Phnips AB

S

SF-02631 Espoo m

-iasab 50261

A

Philips IndustrlaUe et Commerctala

03002 Bobrgny Codex

Tel:

(1)49426060

Tel. (1)

49426073*

Philips GmbH

EW1

D-SBOOKsssai

Tbl: 0581 S01 468

Phlips

GmbH

£W)

D

100G BeHin 30

Tel:

030*21006364

PhHlpa GmbH

EWI

0

4300 Essen

11

Tel:

0201*3610*245

PhUIpe

GmbH

-EWI

6000 Frankfurt 90

Tel:

069-794093-31

Phlips

GmbH

-

EWI

D 2000 Hsrnburg 73

Te»;

040-6797-270

Tel:

04(«79747r

Phlips

GmbH -EWI

D 8048 Isrrtaning

Tel: 089*9505-121

Phlips GffibH

*

EWI

D 7012 FsllDech

Tal

Tel

0711 -520*- 121

0711-5204160'

Malawi Eitgineering Cb. Ltd.

ACCRA

Fai 233*667*131

Phlips Sdantifle Tasi ft

Measurement

Watford Herts

WD2 4TT

TbI.

0923-240511

Phlips Sdantifle Test & Measurement

Cambridge CB1 2PX

Tn ozES-dsedoe

Phlips

1

E

SA

HelMnlgus

CR

1

7778 Tav?o&/Acnone

TM 30-1-4894911

Guyana Stores Ltd.

GEORGETOWN

TU: 221 2

GU VSTOR E

Q Y

Phulps Hong Kang

Ltd.

Hung Horn, Kowloon, hbngKong

Tel 7738588

Schmidt 1 Co

(H.K.), Ltd.

Wanchai, Hor>g Kong

Tal' (852)

(5)

6330*222

MTA-MMSZ ntlRps Servlea*

150 Z

BUDAPEST

Tal 36*1*1869780

Heimelistaeiri SP.

^2S RGykpvik

Tal

354-1-691500

Sameind H.F.

12S Reyk^vik

Tel 354*1 -25833

Paioo Slactronics ft

Elect^als Ltd.

I&E Olvlekm

Bombay 400 025

Tal 022 4930311/4930590

11 ‘

1

X

11 -a SALES & SERVICE ALL OVER THE WORLD

Peko Ekotr^in A

EI»eirlQal$ Ltd.

I&E Division

Calcutta 700 oao

Tel:

473621

Paico Efectroolcs 6

Eleetricab Ltd.

I&E Division

New DeJhi 110015

Tel: 5301 53

Tal‘ 533958/57*

Palco Electionfes & eiMlrtcab

Ltd.

I4E DIvlalon

Madras 600 006

Tel: 472341

Pelco Electronics 8

Eteetrfcals Ltd.

I&E Olvleion

Bangalore 900 OOi

Tel; S7911 9/579184

HlndHron Eeryfcas Pvt, Ltd.

Andheil (E|

Bombay

4X093,

India

Tei:(91)(22) 66G-455G

{91)

(22)634^68

HIndHren EervicM Pvt, Ltd.

Bangalore 560

Tal'(9l)(6l2) on.

India

363-139

Hlndltron Servioea Pvt. Ltd.

Calcutta 700017, India

Tel: (fllHSa) 432629

Hlndltron 3ervicM Pvt, Ltd.

Mew

Delhi.

110 019.

India

Teb(gi)(1l)-e4143380

Hlndltron Servicee Pvt, Ltd.

SeccnderaDad SCO 003, India

Tel: (91)

(642)021-1117

P.T

Deeng Brethars

JeKOfla

Tel: 021

12950

5301122

Ruha

IrrtaiTtaiional

Everett,

Coip.

WA

96206*9090

Tel

{

206

)

SS6-590O

PhlHpe Inn Ltd.

Private Joint Sloet

Comp

TEHRAN

Tel:

9&-2

1

*674 136^751

56

AHT«

Co.

Ltd.

Baghdad

Tel;

964.

1-71 91 e&2

Circuit Specialists

Ud

Caetleroy,

Teh 061

LlmariA

3X333

Philips S.p.A.

20052 SSonza

Tel; (039) 363524<l/8/9

NF

Cireult Oeeign Bloett Co., Ltd.

KokokukLi, Vl3kohama 223

Tel* (0^) 452-0411

Nltwn PhHpa Corporation*

Minatu-ku Tohyo

1X

Tel: 4466511

John Ruke Mfg.

Co., Inc.

MnatO'Ku, Tokyo

105, Jepen

Tel: (8lH3f 434-0161

John Fluke Mfg.

Co.

Inc.

Chuo-Ku, Osaka 541

Japan

Tel.

(81)

(61229*0371

Jordan Medical Supplies

Amman

Joidan

Tel: 962-6*619929

A ServICM

Philips

Nairobi

Kenya Lid.

Tel: 254*2*557999

Korea.

Republic of

Wyounp

Seoul.

Koras

Tel: (82)

(2f

784-9942

Corporation

IL

My^ng,

Inc.

Seoul Korsa

Tel:

82 2 652-6562.4

Myeung Crrporatlon

Taegu, Korea

Tel, 62 69 783-8 163.^4

Yusat A.

Alghanim

KUWAIT

Tel: 9&5*4d43968

8 Sons

Philips Industries (Korea) Ltd.

Seoul

Tel: a2*2*7970378

Hanmac

Electronics Co.

Ltd.

Seoul

Tel:

82.2-5^7441

Philips del Paraguay SJS.

Asuneioo

Tbl 686-2 1 -291 924/^ 1934

Philips

Peruana

Lime 100

S.A.

Tel:

51-1 4-35X59 tinportsclones

Eleetrcnicaa y Reprsssntaclones

S Jt.

Lima

Tel.

1

,

Peru

(S1)(14)28-66&0

Electronic Supplies S.AJI.L.

Beirul

Tel;

0I-6S4243

Philips Luxembourg

L-1616 Hewald

Tsf; 496111

Etectmnic

Sdn.

Bhd.

Systame (Matsysla)

Pelairg Jays

Selangor 46200

Tel:

60-3-7640112

Mscomb Malaysia Sdn. Shd.

Selangor.

MaJaypa

Tsi: (60) (3)

774-3422

Chailes A. Ulcallaf

&

Co. LIcL vailena

Tel:

356*221158

MexleiM de Elecvenfca Induatriel SA.

(hlexel}

C.P.

03100, Mexico

Tel: (BO) (5) 680*4323

Mexel Ssrvl^B en Computaolon*

Mexico D.F.

Td 90*5*583*6411

Samtai'

Casablanca

Tel:

243050

SonucM

Casablanca 05

Tel: 306051/52

Intaralectra E.E.

MAPUTO

TLX

6203 hCGOMHO

Bhajuratna Engineering & Salsa (P) Ltd.

Kathmandu

Tel: 2 25134

ASBOclatad Enterprises

Kathmandu, Nepal

Tel: 13868

Phlltps Nadtrland

6.V.

Test an Meelapparatan

SOX

ACTIIOurg

Tel:

019-390112

Philips Industrial Development Inc.

Makati.

Metro Manile

Pmiippstea

Tel eifroiei

Spaht Radio A Electronic, Corp.

Phillppriea

Td;

(63) (2)

7T519?

Electronic Irwtniment Service*

SO-186PODZNAN

Tel;

4381-461998

Philipa Portugueaa, 9.A.FU.. Division oi

1

10X Laboa Codex

4

E

Tel: 1

*€671 61

Philipa

41

Portugueaa* Division

X

Porto

Tel: (2)87827B

I

A E

Darwidi Trading Company

Doha.

Tel;

97X^434308

Polytechnic

Inst.

Buoareat* L.C.hLS. Philipa

Servica aUCA REST 70100

Tel:

400-505935

Messrs.

A.

Rsiab 6

A.

Blleilah

Jeddah 21411

TsI: 966-2*6810006

Meaare.

A.

Rajab & A.

Silsilah

Riyadh 11411 lai: 968*1-4122425

Uassrs.

A.

Rajab

Dammen

&

A.

SilaHah

Tel:

966-3-6323596/6331870

Philips Project OevelepmanI

(8)

PTY

Lid.

Singapcrs

Tel:

9131

66-3502000

Rank O'CoArwr’a Pie Ltd.

Singapore 0511

Tel: i65)

473-7944

South African Philips PTY

Ltd.

Johannesburg

Tel:

20X

27-11-889-3911

Philtpa Nederland

Tachriache Service Prof. Akt.*

5652 AJ Eindhoven

Tel:

040-723293

Philipa Seientme &

Industrial

PTY LU. T6et E hisasuremeni DepL

Auckland 3

Teh 09-084-1

South African Philipa

Majlincbie, Navr

VNe

PTY

Ltd.*

2X2

TeJ; 27-11*470-6937

Associated Electronic Products (Ntgarls)

Ltd.

Legofi

Tel;

234-1-90016069

Norsk

X12Cslo6

PhlHpa

Tel:

47-2-741010

Teir

47-2*290942

Messrs. Mustafa

HUWI

• r»1U5KAT

Jswad Trading Co.

Tsf:

968*706955

Philips Electrical Co. or PaUaian (Private) Ltd.

Karachi

Teh

-

744X

92-21-725772*8

Pluke kitsmstlonsl Corp.

Eveiett,

WA

96208*9090

W.

(206)

366-6600

TLX; 1861M FLUKE UT

FAX; (208)356-5116

Phillpe Iberiea

SAE

08004 Barcelona

Tel;

34-3-8361061

PhQIpa Ibarica*

2B027 Madrid

T&: 34-1-4042&00

Philips Ibarica 8AE‘

46012 BHbao

Tel:

34-4-43 13B00

Haylays Elacirenica

EnglnArtng

Ltd.

COLCMBO10

E

Tel; 94-1-699C67

-

4 2

SALES & SERVICE ALL OVER THE WORLD

Compulertinh Data Systerna, Ltd.

Colons,

5.

Sh Lanka

Tel;

{94)

(1)502202/3

C.

Kentan A Cck N,V.

P.O.Box 1808 n^niMAPfSO

SuiIbI

PARifMRlBO

Tel:

597.72118/77800

Philips Kietainduatner

16493

AB ret 4M-7031370

PhlUpe

AO

Teel UAd MeaMeehnh

8027 Zurich ral: 01 4882390

Philips

SA

Test etMeaure

1196 Gland

Tel:

022/647171

AI*S*>8hed Eleetrooies and

Tredlng Co.

amasojs ret: 22a00a/2l8605

Philips TaiwBn Lid.

10446 Taipei

T^; ea6-2-50P7666

Scdunidt Scientific

Taipei

Taiwan

Toi;

D2'5006779

Philips (Tanza/ila) Ltd.

Dar as Salaam

Tel'

25S5129S71

Phnipe Electrical Ce. of

Thailand Ud.

aangkoh 10500

Ten 6a*2-233-633Q/9 ueaaureironix LU.

aangkofa 10240

Thailand

Tel: (86) (2J

375-2733

Con^ieaaloo A Power Services (1980) Ltd.

SAN FERNANDO

6/

Pass

Tel* 663-S44S/6/7

8-TI.E.T-

32 b«$ rve Sen Ghedahem

Tunis

345666

Turk pnillpe Tieerel A.S.

60640 LevenVIetanbul

Tel: 90-

M

792770

Al SanenI TredInQ Eel.

Abu

E)hebi, UA.E.

Tel:

971-2-771370

Harts Al-Afaq Ltd.

Dubai, U.A.E.

Tal; 971 -4-283625

Industries Philips del Uruguay 6.A.

Montevideo.

Uruguay

Tel; (508) (2)

921111

N.V.

Philips

MOdCOW

Glosilampenlabrlehen

Tel' 709S-23CC465 infomedla Setrudniehleelvo

121111

MOSCOW

T^; 240 52 52

Indi.

Venezoianee Philips S.A.

Caracas 101 0-A

Tel< S6-2-d06 7061

Cosain

C.A.

Caracas

1

07&.A, Venezuela

Teh (58)

(2)241-03-09

Raehed

Sana'd,

Tndng & Travel Aganey

Yemen

Tell 967-2.27a231

N.V.

Phliipe Qleeifampenfabrleaer>

BEOGRAD

Td; 3811 .625344

Jugoeleetro*

11070 BEOGRAD

Td; 38-11 -178134

Techniear Senie*

41000 ZAGREB

Td; 041-276333

Philips Electronics

SJLR.L

Kinshasa

Tel:

31693

Pnillpe Slestricel

Zambia Ud.

Lusaka

Td; 218511/21 8701

Philtpa Electrical (Pvt.) Ltd.

Harare

T*l' 268-4-47211

F9T Courrtrfea ffot llatwd sbova:

Philips Export B.V.l

& E Export

Test & yeesuremeM

Buiidlng HVW-3

PO Bex 218

5600

MO

EinOhoven

The Netherlands

Tel:

Fax: k 31

40 766546

40 76661

TLX 35COO phlc nl

Pluhe JrSM Cerp.

POBox 9090

Mall Slop

Everett.

206A

WA

902O6'9OdO

Tel

206-358-5500

Fax: (206) 356 5118

TLX: 1851 ca

FLUKE UT

USA

HuRtsvile

HuntsvilW, AL 35805-6202

(205)

637.0581

Phoenli

Tsmpe.

AZ 85262

(602)

436-6314

Irvine*

Irvine,

CA 92714

(714)

663-9031

NoBiern*

Fremont

(416)

CA 94538

651.5112

Denver*

Aurora,

CO

8001

(303)

695-1000

Hartford

Qlastonhu7, CT

08039

(203)559-3541

Altamonte Springs*

ARamcnte Springs, FL 32603

(407) 331 '4681

AUants

Manana.

(404)

GA 30067

953-4747

Chicago*

PaJallne.lL80067

(706)

705-0500

Indianapolis indlanapoile. IN 46268

(317)875*7870

6eeten eilarcia.

MA

01821

(508)

683-2400 floctrvllie'

RockvHle,

MD

20652

(001)770-1570

6

Plymouth, Ml 46>70

522 9140

Minneapolis

Eagan.

MN

S6121

(612) a&4.5526

St.

Louis

Si Louis.

MO

63146

(314)

993-3806

ParamuB*

Paramua.

IHJ 07652

(201)262-9550

Hoc ha alar

Rocheeler.

NV 14622

(716)323-1400

Greensboro

Greensboro.

(919)

NC 27408

273-1015

Clevetand

MlCcflebvrg

Hoi^, OH 44190

(216)

234-4540

Phitsdelphca

Meivem. PA 193S5

(215)

647-9550

Deltas*

Dallas.

TX 75229

(214) 869-0311

San Antonio

San Antonio,

TX

7621

(512)

340-0496

Seattle*

Belevue,

WA

96005

(206)661-6986

11

-3

11-4

Northern CalHomia

Fremont^ California

{0(^15} 651 -&t 12

Soufliem California

In/ina.

CalHomia

(1) (714)

963-d031

Danvar

Auroia,

(3W)

Colorado

6»-im

(1)

Orlando

Altarnonla Soringe,

(1)(407) 931

-29»

RorlA

Chicago

PalatrM.

lUinoie

(1M708) 705-0600

WaaMnglon OX.

RodrviHa. Ma/yla/id

(1)001)770-1576

Paramua

Paramus.

(1)

(201)

New

Jersey

59*9500

Dalln

Carronon, Texas

(1M214)4(S>1000 daatiie

Everett,

^stxngtcn

(1)(20e) 356-5560

07H£A COWm/SS:

Buenoa Alraa, Argentirui

Coaain S.A.

(64)

(1)

652*5246

La Paz. Bolivia

Coasin BolMa S.R.L

(501

}

(2)

340.962

or 369*966

See

PauiOi Brazil

ATP/H

T^

Eladrorica Lift.

(55) (11)

42V5477

Mlaaleeauga, Ontario.

Canada

Fluke Electronics Canada ir>e.

(416)690*7600

Santiago.

Citlle llronsa

(56) (S)

232-430B

Baijing,

PiuKa

Paopla's knamauonai

R^ubllc of

Corp.

(66) (1)

512-343S

CMna

Bogota. Cetomtola

Slaiamaa E Inetnjrnentatton, Ltda.

287-5424

Quito, Ecuador

Proieco Coastn

Cia.,

(593)

(2)

230463

Ltoa.

IWanohaf, Hor>g Kong

Schmidt & Co

(H.K.), LtS.

(652) (5)

6330222

TM Avh^ lara^

R.O.T. ElactrorVcs Engineering

Ltd.

(972) 0) 5439797

Tokyo, Japan

John fluke Mfg. Oo..

tnc.

(81) (3)

3434*0181

Seoul.

Korea iL Mycur>g.

Inc.

(82)

(2)

552*6562-4

SALES & SERVICE ALL OVER THE WORLD

Selangor.

Malayala

Mecon4 Malaysia SQn. Bhd.

(60) (3)

774*3422

Colonia dal Valla, Maideo

Mexkeana da Bectronlca Industrial, S.A.

(Mexel)

(52) (5)

682*6040

Lima, Peru

Impohadonaa y

S.A.

Repreaemaciones Elactrontcas

(51)

1

14) 29*6650

Vetro lilanMa, Phlllpp(nee

Spark Rodks A

Electronica, Corp.

(63) (2)

700*621

Sb>g^)ere, Rapublla of Slngapora

Rank O'Connor’a Singapore PTE

Ud.

473*7944

(65)

IBIpal, TSIwan, R.O.C.

Schmidt Solemtfk: Taiwan

(866)

(21

501*3466

Bangkok, ThaHand

Measurstronlx

Ltd,

(56) (2)

376-27334

Montevideo, Uruguay

Coasm Unjguaya S.A

(598) (2)

789*015

Caracas, Vanaiuela

Coaain C A.

(56) (2) 241 *0309

FOR COUNTRIES NOT USTED

ABOVE:

Ruka kitamational Corp.

PO

Box 9090

Mall Slop

Everalt,

206A

WA

99306*9090

U.SA.

Tel;

Fax;

Tlx:

(1) (206)

3566S00

(1M206)

185103

996-51 18

R.U>«UT

CIRCUIT DIAGRAMS

DO.

t ?5

mF FiLTEft

Mi ce

22501

6 NX 0 C 2

*01 e-SQv pouE« co'«"ecTOf'

1

LC 2526

251

/

I

CHAflGEft

OSCIILATOR /

CONTROL

LEVEL SHIFT

AHD AftPLIflEft

R2559

2K15 C2534

22 -

R2561

215K

5 tC 2530

Tft«-

N?503

332 *

-4

OnO ii. VR£« i®.

SHUTO

« RT

^

Cd

-if if

06 C

EB

-f if

El i*

-4

_J.

Cl NI

0

.

1-3 INV -i.

CH-)

COfl®

-f

-i

12529

?2*

XTjWJ

T

R255* |R?S5?

1A23

I

2KI 5

H 235 e

5 K 6 ?

«2556

2 «

1

S

I

I

CURRENT

U

BATTERY

CHARGER

n%lO 0SC1UIAT1N5

PfteOUSNCY% IQOK-t

Figure iO.7

Ar\aiogA2drc\}ii6i&QramF.2c

LEVEL SHIFT

AND ArtPLJFlER

6

9 bainvOltmt

TO uP

«NALOC

1

>12537

3*K« ^^Jy.

.«36

^C25‘?

T

10*»

13 (5

C2544

1

200

V25t3 ^

5

JECTOU

%5V

(N^Codl

(LiWE VOLTABC) i

R2542f

1

OE

I

I iC25Cl

TT H70.

S5V

1

R2S41

/+v

Jf

] j

VARIA5UE OSCILLATIKO ffaeoicHCT

i

UF

OSCILLATING

SUPPLY

CS

.

0

.

P

.

S

.

^ so 22

10 17

advertisement

Related manuals

Download PDF

advertisement