Infineon CY8C6016BZI-F04 Microcontroller Data Sheet

Add to My manuals
78 Pages

advertisement

Infineon CY8C6016BZI-F04 Microcontroller Data Sheet | Manualzz

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as “Cypress” document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

PSoC 61 MCU

General Description

PSoC

®

6 MCU is a high-performance, ultra-low-power and secured MCU platform, purpose-built for IoT applications. The CY8C61x6/7 product line, based on the PSoC 6 MCU platform, is a combination of a high-performance microcontroller with low-power flash technology, digital programmable logic, high-performance analog-to-digital conversion and standard communication and timing peripherals.

Features

32-bit Dual CPU Subsystem

Note: In PSoC 61 the Cortex M0+ is reserved for system functions, and is not available for applications.

■ 150-MHz Arm

®

Cortex

®

-M4F (CM4) CPU with single-cycle multiply, floating point, and memory protection unit (MPU)

■ 100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply and MPU

■ Core logic operation at either 1.1 V or 0.9 V, depending on the

part selected. See Ordering Information .

Active CPU current slope with 1.1-V core operation

Cortex-M4: 40 µA/MHz

Cortex-M0+: 20 µA/MHz

Active CPU current slope with 0.9-V core operation

Cortex-M4: 22 µA/MHz

Cortex-M0+: 15 µA/MHz

Two DMA controllers with 16 channels each

Memory Subsystem

■ 1-MB application flash, 32-KB auxiliary flash (AUXflash), and

32-KB supervisory flash (SFlash); read-while-write (RWW) support. Two 8-KB flash caches, one for each CPU.

■ 288-KB SRAM with power and data retention control

■ One-time-programmable (OTP) 1-Kb eFuse array

Low-Power 1.7-V to 3.6-V Operation

Six power modes for fine-grained power management

Deep Sleep mode current of 7 µA with 64-KB SRAM retention

On-chip Single-In Multiple Out (SIMO) DC-DC buck converter,

<1 µA quiescent current

Backup domain with 64 bytes of memory and real-time clock

Flexible Clocking Options

■ 8-MHz Internal Main Oscillator (IMO) with ±2% accuracy

■ Ultra-low-power 32-kHz Internal Low-speed Oscillator (ILO)

■ On-chip crystal oscillators (16 to 35 MHz, and 32 kHz)

■ Phase-locked loop (PLL) for multiplying clock frequencies

■ Frequency-locked loop (FLL) for multiplying IMO frequency

■ Integer and fractional peripheral clock dividers

Quad SPI (QSPI)/Serial Memory Interface (SMIF)

■ Execute-In-Place (XIP) from external quad SPI Flash

■ On-the-fly encryption and decryption

4-KB cache for greater XIP performance with lower power

■ Supports single, dual, quad, dual-quad, and octal interfaces with throughput up to 640 Mbps

Segment LCD Drive

Supports up to 99 segments and up to 8 commons

Serial Communication

Nine run-time configurable serial communication blocks

(SCBs)

Eight SCBs: configurable as SPI, I

2

C, or UART

One Deep Sleep SCB: configurable as SPI or I 2 C

USB full-speed device interface

Audio Subsystem

■ Two pulse density modulation (PDM) channels and one I

2 channel with time division multiplexed ( TDM) mode

S

Timing and Pulse-Width Modulation

Thirty-two timer/counter/pulse-width modulators (TCPWM)

Center-aligned, edge, and pseudo-random modes

Comparator-based triggering of Kill signals

Programmable Analog

12-bit 1-Msps SAR ADC with differential and single-ended modes and 16-channel sequencer with result averaging

Two low-power comparators available in Deep Sleep and

Hibernate modes

Built-in temperature sensor connected to ADC

One 12-bit voltage-mode digital-to-analog converter ( DAC) with

< 2-µs settling time

Two opamps with low-power operation modes

Up to 100 Programmable GPIOs

Two Smart I/O™ ports (16 I/Os) enable Boolean operations on

GPIO pins; available during system Deep Sleep

Programmable drive modes, strengths, and slew rates

Six overvoltage-tolerant (OVT) pins

Cypress Semiconductor Corporation • 198 Champion Court

Document Number: 002-21414 Rev. *O

• San Jose

,

CA 95134-1709 • 408-943-2600

Revised October 31, 2022

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Capacitive Sensing

(

Cypress CapSense

®

provides best-in-class signal-to-noise ratio

SNR), liquid tolerance, and proximity sensing

Enables dynamic usage of both self and mutual sensing

Automatic hardware tuning (SmartSense™)

Security Built into Platform Architecture

■ All Debug and Test ingress paths can be disabled

■ Up to eight Protection Contexts

Cryptography Accelerator

Hardware acceleration for symmetric and asymmetric cryptographic methods and hash functions

True random number generation (TRNG) function

Programmable Digital

Twelve programmable logic blocks, each with 8 Macrocells and an 8-bit data path (called universal digital blocks or UDBs)

Usable as drag-and-drop Boolean primitives (gates, registers), or as Verilog-programmable blocks

Cypress-provided peripheral component library using UDBs to implement functions such as communication peripherals (for example, LIN, UART, SPI, I

2

C, S/PDIF and other protocols),

Waveform Generators, Pseudo-Random Sequence (PRS) generation, and many other functions.

Profiler

Eight counters provide event or duration monitoring of on-chip resources

Packages

■ 124-BGA

■ 80-WLCSP (in 0.33 and 0.43 mm heights)

■ Thin 80-WLCSP (0.33 mm height) (qualification in process)

Device Identification and Revisions

Product line ID (12-bit): 0x100

Major/Minor Die Revision ID: 2/4

Firmware Revisions: Rom Boot: 4.1, Flash Boot: 1.20.1.45 (see

Boot Code

section)

This product line has a JTAG ID which is available through the

SWJ interface. It is a 32-bit ID, where:

■ The most significant digit is the device revision, based on the

Major Die Revision

■ The next four digits correspond to the part number, for example

"E4B0" as a hexadecimal number

■ The three least significant digits are the manufacturer ID, in this case "069" as a hexadecimal number

The Silicon ID system call can be used by firmware to get Silicon

ID and ROM Boot data. For more information, see the technical reference manual (TRM) .

The Flash Boot version can be read directly from a designated address 0x1600 2004. For more information, see the technical reference manual (TRM) .

Document Number: 002-21414 Rev. *O Page 2 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Contents

Development Ecosystem ................................................. 4

PSoC 6 MCU Resources............................................. 4

ModusToolbox Software.............................................. 5

PSoC Creator™ .......................................................... 6

Blocks and Functionality ................................................. 7

Functional Description ..................................................... 9

CPU and Memory Subsystem ..................................... 9

System Resources .................................................... 12

Programmable Analog Subsystem............................ 15

Programmable Digital................................................ 17

Fixed-Function Digital................................................ 17

GPIO ......................................................................... 18

Special-Function Peripherals .................................... 19

Pinouts ............................................................................ 22

Power Supply Considerations ....................................... 34

Electrical Specifications ................................................ 38

Absolute Maximum Ratings....................................... 38

Device-Level Specifications ...................................... 38

Analog Peripherals .................................................... 46

Digital Peripherals ..................................................... 55

Memory ..................................................................... 57

System Resources .................................................... 58

Ordering Information ...................................................... 66

PSoC 6 MPN Decoder .............................................. 67

Packaging ........................................................................ 68

Acronyms ........................................................................ 72

Document Conventions ................................................. 74

Unit of Measure ......................................................... 74

Revision History ............................................................. 75

Sales, Solutions, and Legal Information ...................... 77

Worldwide Sales and Design Support....................... 77

Products .................................................................... 77

PSoC® Solutions ...................................................... 77

Cypress Developer Community................................. 77

Technical Support ..................................................... 77

Document Number: 002-21414 Rev. *O Page 3 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Development Ecosystem

PSoC 6 MCU Resources

Cypress provides a wealth of data at www.cypress.com

to help you select the right PSoC device and quickly and effectively integrate it into your design. The following is an abbreviated, hyperlinked list of resources for PSoC 6 MCU:

Overview : PSoC Portfolio , PSoC Roadmap

Product Selectors : PSoC 6 MCU

Application Notes cover a broad range of topics, from basic to advanced level, and include the following:

AN221774 : Getting Started with PSoC 6 MCU

AN210781 : Getting Started with PSoC 6 MCU with Bluetooth

Low Energy Connectivity

AN218241 : PSoC 6 MCU Hardware Design Guide

AN213924 : PSoC 6 MCU Device Firmware Update Guide

AN219528 : PSoC 6 MCU Power Reduction Techniques

AN85951 : PSoC 4, PSoC 6 MCU CapSense Design Guide

Code Examples demonstrate product features and usage, and are also available on Cypress GitHub repositories .

Technical Reference Manuals (TRMs) provide detailed descriptions of PSoC 6 MCU architecture and registers.

PSoC 6 MCU Programming Specification provides the information necessary to program PSoC 6 MCU nonvolatile memory.

Development Tools

ModusToolbox

®

software enables cross platform code development with a robust suite of tools and software libraries.

There is no kit available for the PSoC 61 product line. However, the CY8CKIT-062-WiFi-BT PSoC 6 WiFi-BT Pioneer

Kit is available: a low-cost hardware platform that enables design and debug of the PSoC 62 CY8C62x6/7 product line, and the CYW4343W Wi-Fi + Bluetooth Combo Chip .

❐ PSoC 6 CAD libraries provide footprint and schematic support for common tools. BSDL files and IBIS models are also available.

Training Videos are available on a wide range of topics including the PSoC 6 MCU 101 series .

Cypress Developer Community enables connection with fellow PSoC developers around the world, 24 hours a day, 7 days a week, and hosts a dedicated PSoC 6 MCU Community.

Document Number: 002-21414 Rev. *O Page 4 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

ModusToolbox Software

ModusToolbox Software is Cypress' comprehensive collection of multi-platform tools and software libraries that enable an immersive development experience for creating converged MCU and wireless systems. It is:

■ Comprehensive - it has the resources you need

■ Flexible - you can use the resources in your own workflow

■ Atomic - you can get just the resources you want

Cypress provides a large collection of code repositories on GitHub . This includes:

■ Board Support Packages (BSPs) aligned with Cypress kits

■ Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL)

■ Middleware enabling industry-leading features such as CapSense

®

, Bluetooth Low Energy, and mesh networks

■ An extensive set of thoroughly tested code example applications

Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Cypress MCUs. It is a generic interface that can be used across multiple product families. For example, it wraps the PSoC 6 PDL with a simplified API, but the PDL exposes all low-level peripheral functionality. You can leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires finer-grained control.

ModusToolbox Software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a project creator, peripheral and library configurators, a library manager, as well as the optional Eclipse IDE for ModusToolbox, as

Figure 1 shows. For information on using Cypress tools, refer to the documentation delivered with ModusToolbox software, and

AN228571: Getting Started with PSoC 6 MCU on ModusToolbox .

Figure 1. ModusToolbox Software Tools

Document Number: 002-21414 Rev. *O Page 5 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

PSoC Creator™

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables you to design hardware and firmware

systems concurrently, based on PSoC 6 MCU. Figure 2 shows that with PSoC Creator, you can:

1. Explore the library of 200+ Components in PSoC Creator

2. Drag and drop Component icons to complete your hardware system design in the main design workspace

4. Co-design your application firmware and hardware in the

PSoC Creator IDE or build project for third-party IDE

3. Configure Components using the Component Configuration

Tools and the Component datasheets

5. Prototype your solution with the PSoC 6 Pioneer Kits. If a design change is needed, PSoC Creator and Components enable you to make changes on-the-fly without the need for hardware revisions.

Figure 2. PSoC Creator Schematic Entry and Components

 

Document Number: 002-21414 Rev. *O Page 6 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Blocks and Functionality

Figure 3 shows the major subsystems and a simplified view of their interconnections. The color coding shows the lowest power mode

where a block is still functional. For example, the SRAM is functional down to Deep Sleep mode.

Figure 3. Block Diagram

Color Key:

Power Modes and

Domains

System LP/ULP Mode

CPUs Active/Sleep

System

Deep Sleep Mode

System

Hibernate Mode

Backup

Domain

PSoC 61 MCU

CY8C61x6, CY8C61x7

System Resources

Power

OVP LVD

Clocks

IMO ECO

POR BOD FLL 2x PLL

Buck Regulator

XRES Reset

Backup Regs

2x MCWDT

ILO

PILO

WDT

RTC WCO

PMIC Control

Programmable Analog

SAR ADC 12 bit

DAC 12 bit

2x Opamp

Temperature Sensor

CapSense

LCD

LP Comparator

CPU Subsystem

Cortex M4F CPU

150/50 MHz, 1.1/0.9 V

SWJ, ETM, ITM, CTI

Cortex M0+ CPU

100/25 MHz, 1.1/0.9 V

SWJ, MTB, CTI

2x DMA

Controller

Crypto

DES/TDES, AES, SHA,

CRC, TRNG, RSA/ECC

Accelerator

Flash

1024 KB + 32 KB + 32 KB

8 KB cache for each CPU

SRAM

288 KB

ROM

128 KB

Programmable Digital: 12x UDB

32x TCPWM

SCB

8x I2C, SPI,

UART, or LIN

I2C or SPI

Audio Subsystem

I2S

PDM - PCM

Profiler eFuse: 1024 bits

QSPI (SMIF) with OTF Encryption/Decryption

USB-FS

USB

PHY

Document Number: 002-21414 Rev. *O Page 7 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

There are three debug access ports, one each for CM4 and CM0+, and a system port. PSoC 6 MCU devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. All device interfaces can be permanently disabled for applications concerned about a reprogrammed device or starting and interrupting flash programming sequences. All programming, debug, and test interfaces can be disabled.

Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The Eclipse IDE for ModusToolbox and PSoC Creator Integrated Development Environment (IDE) provide fully integrated programming and debug support for these devices. The SWJ (SWD and JTAG) interface is fully compatible with industry-standard third party probes. With the ability to disable debug features, with very robust flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, PSoC 6 provides multiple levels of device security.

Document Number: 002-21414 Rev. *O Page 8 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Functional Description

The following sections provide an overview of the features, capabilities and operation of each functional block identified in the block diagram in

Figure 3 . For more detailed information,

refer to the following documentation:

■ Board Support Package (BSP) Documentation

BSPs are available on GitHub . They are aligned with Cypress kits and provide files for basic device functionality such as hardware configuration files, startup code, and linker files.

The BSP also includes other libraries that are required to support a kit. Each BSP has its own documentation, but typically includes an API reference such as the example here . This search link finds all currently available BSPs on the Cypress

GitHub site.

■ Hardware Abstraction Layer API Reference Manual

The Cypress Hardware Abstraction Layer (HAL) provides a high-level interface to configure and use hardware blocks on

Cypress MCUs. It is a generic interface that can be used across multiple product families. You can leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires finer-grained control. The HAL

API Reference provides complete details. Example applications that use the HAL download it automatically from the

GitHub repository.

■ Peripheral Driver Library (PDL) Application Programming

Interface (API) Reference Manual

The Peripheral Driver Library (PDL) integrates device header files and peripheral drivers into a single package and supports all PSoC 6 MCU product lines. The drivers abstract the hardware functions into a set of easy-to-use APIs. These are fully documented in the PDL API Reference . Example applications that use the PSoC 6 PDL download it automatically from the

GitHub repository.

■ Architecture Technical Reference Manual (TRM)

The architecture TRM provides a detailed description of each resource in the device. This is the next reference to use if it is necessary to understand the operation of the hardware below the software provided by PDL. It describes the architecture and functionality of each resource and explains the operation of each resource in all modes. It provides specific guidance regarding the use of associated registers.

Register Technical Reference Manual

The register TRM provides a complete list of all registers in the device. It includes the breakdown of all register fields, their possible settings, read/write accessibility, and default states. All registers that have a reasonable use in typical applications have functions to access them from within PDL.

Note that ModusToolbox and PDL may provide software default conditions for some registers that are different from and override the hardware defaults.

CPU and Memory Subsystem

PSoC 6 has multiple bus masters, as

Figure 3

shows. They are:

CPUs, DMA controllers, QSPI, USB, and a Crypto block.

Generally, all memory and peripherals can be accessed and shared by all bus masters through multi-layer Arm AMBA high-performance bus (AHB) arbitration. Accesses between

CPUs can be synchronized using an inter-processor communication (IPC) block.

CPUs

There are two Arm Cortex CPUs:

The Cortex-M4 (CM4) has single-cycle multiply, a floating-point unit (FPU), and a memory protection unit (MPU). It can run at up to 150 MHz. This is the main CPU, designed for a short interrupt response time, high code density, and high throughput.

CM4 implements a version of the Thumb instruction set based on Thumb-2 technology (defined in the

Armv7-M Architecture

Reference Manual

).

The Cortex-M0+ (CM0+) has single-cycle multiply, and an MPU.

It can run at up to 100 MHz; however, for CM4 speeds above

100 MHz, CM0+ and bus peripherals are limited to half the speed of CM4. Thus, for CM4 running at 150 MHz, CM0+ and peripherals are limited to 75 MHz in system low power (LP) mode. In system ultra-low power (ULP) mode, CPU speeds are limited to 50 MHz and 25 MHz respectively.

CM0+ is the secondary CPU; it is used to implement system calls and device-level safety and protection features.

CM0+ implements the Armv6-M Thumb instruction set (defined in the

Armv6-M Architecture Reference Manual

).

The CPUs have the following power draw, at V

DDD using the internal buck regulator:

= 3.3 V and

Table 1. Active Current Slope at V

DDD

Internal Buck Regulator

= 3.3 V Using the

System Power Mode

CPU

Cortex-M0+

Cortex-M4

ULP

15  A/MHz

22  A/MHz

LP

20  A/MHz

40  A/MHz

The CPUs can be selectively placed in their Sleep and Deep

Sleep power modes as defined by Arm.

Both CPUs have nested vectored interrupt controllers (NVIC) for rapid and deterministic interrupt response, and wakeup interrupt controllers (WIC) for CPU wakeup from Deep Sleep power mode.

The CPUs have extensive debug support. PSoC 6 has a debug access port (DAP) that acts as the interface for device programming and debug. An external programmer or debugger

(the “host”) communicates with the DAP through the device serial wire debug (SWD) or Joint Test Action Group (JTAG) interface pins. Through the DAP (and subject to restrictions), the host can access the device memory and peripherals as well as the registers in both CPUs.

Document Number: 002-21414 Rev. *O Page 9 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Each CPU offers debug and trace features as follows:

CM4 supports six hardware breakpoints and four watchpoints,

4-bit embedded trace macrocell (ETM), serial wire viewer

(SWV), and printf()-style debugging through the single wire output (SWO) pin.

CM0+ supports four hardware breakpoints and two watchpoints, and a micro trace buffer (MTB) with 4-KB dedicated

RAM.

PSoC 6 also has an Embedded Cross Trigger for synchronized debugging and tracing of both CPUs.

Interrupts

This product line has 147 system and peripheral interrupt sources and supports interrupts and system exceptions on both

CPUs. CM4 has 147 interrupt request lines (IRQ), with the interrupt source ‘n’ directly connected to IRQn. CM0+ has 32 interrupts IRQ[31:0] with configurable mapping of one system interrupt source to any of the IRQ[31:0].

Each interrupt supports configurable priority levels (eight levels for CM4 and four levels for CM0+). One system interrupt can be mapped to each of the CPUs' non-maskable interrupts (NMI). Up to 41 interrupt sources are capable of waking the device from

Deep Sleep power mode using the WIC. Refer to the technical reference manual for details.

InterProcessor Communication (IPC)

In addition to the Arm SEV and WFE instructions, a hardware

InterProcessor Communication (IPC) block is included. It includes 16 IPC channels and 16 IPC interrupt structures. The

IPC channels can be used to implement data communication between the processors. Each IPC channel also implements a locking scheme which can be used to manage shared resources.

The IPC interrupts let one processor interrupt the other, signaling an event. This is used to trigger events such as notify and release of the corresponding IPC channels. Some IPC channels and

other resources are reserved, as Table 2

shows:

Table 2. Distribution of IPC Channels and Other Resources

Resources Available

IPC channels,

16 available

IPC interrupts,

16 available

Other interrupts

CM0+ NMI

Other resources: clock dividers, DMA channels, etc.

Resources Consumed

8 reserved

8 reserved

1 reserved

Reserved

1 CM0+ interrupt mux

DMA Controllers

There are two DMA controllers with 16 channels each, which support CPU-independent accesses to memory and peripherals.

The descriptors for DMA channels can be in SRAM or flash.

Therefore, the number of descriptors are limited only by the size of the memory. Each descriptor can transfer data in two nested loops with configurable address increments to the source and destination. The size of data transfer per descriptor varies based on the type of DMA channel. Refer to the technical reference manual for detail.

Cryptography Accelerator (Crypto)

This subsystem consists of hardware implementation and acceleration of cryptographic functions and random number generators.

The Crypto subsystem supports the following:

Encryption/Decryption Functions

Data Encryption Standard (DES)

Triple DES (3DES)

Advanced Encryption Standard (AES) (128-, 192-, 256-bit)

Elliptic Curve Cryptography (ECC)

RSA cryptography functions

Hashing functions

Secure Hash Algorithm (SHA)

SHA-1

SHA-224/-256/-384/-512

Message authentication functions (MAC)

Hashed message authentication code (HMAC)

Cipher-based message authentication code (CMAC)

32-bit cyclic redundancy; code (CRC) generator

Random number generators

Pseudo random number generator (PRNG)

True random number generator (TRNG)

Protection Units

This product line has multiple types of protection units to control erroneous or unauthorized access to memory and peripheral registers. CM4 and CM0+ have Arm MPUs for protection at the bus master level. Other bus masters use additional MPUs.

Shared memory protection units (SMPUs) help implement memory protection for memory resources that are shared among multiple bus masters. Peripheral protection units (PPU) are similar to SMPUs but are designed for protecting the peripheral register space.

Protection units support memory and peripheral access attributes including address range, read/write, code/data, privilege level, secured/non-secured, and protection context.

Some protection unit resources are reserved for system usage; see the technical reference manual (TRM) for details.

Document Number: 002-21414 Rev. *O Page 10 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Memory

PSoC 6 contains flash, SRAM, ROM, and eFuse memory blocks.

■ Flash

There is up to 1 MB of application flash, organized in 256-KB sectors. There are also two 32-KB flash sectors:

Auxiliary flash (AUXflash), typically used for EEPROM emulation

Supervisory flash (SFlash). Data stored in SFlash includes device trim values,

Flash Boot

code, and encryption keys.

After the device transitions into the “Secure” lifecycle stage,

SFlash can no longer be changed.

The flash has 128-bit-wide accesses to reduce power. Write operations can be performed at the row level. A row is

512 bytes. Read operations are supported in both Low Power and Ultra-Low Power modes, however write operations may not be performed in Ultra-Low Power mode.

The flash controller has two caches, one for each CPU. Each cache is 8 KB, with 4-way set associativity.

SRAM

Up to 288 KB of SRAM is provided. Power control and retention granularity is implemented in 32-KB blocks allowing the user to control the amount of memory retained in Deep Sleep.

Memory is not retained in Hibernate mode.

■ ROM

The 128-KB ROM, also referred to as the supervisory ROM

(SROM), provides code ( ROM Boot ) for several system func-

tions. The ROM contains device initialization, flash write, security, eFuse programming, and other system-level routines.

ROM code is executed only by the CM0+ CPU, in protection context 0. A system function can be initiated by either CPU, or through the DAP. This causes an NMI in CM0+, which causes CM0+ to execute the system function.

■ eFuse

A one-time-programmable (OTP) eFuse array consists of

1024 bits, of which 512 are reserved for system use such as die ID, device ID, initial trim settings, device life cycle, and security settings. The remaining bits are available for storing key information, hash values, unique IDs or similar custom content.

Each fuse is individually programmed; once programmed (or

“blown”), its state cannot be changed. Blowing a fuse transitions it from the default state of 0 to 1. To program an eFuse,

V

DDIO0

must be at 2.5 V ±5%, at 14 mA.

Because blowing an eFuse is an irreversible process, programming is recommended only in mass production under controlled factory conditions. For more information, see

PSoC 6 MCU Programming Specifications .

Boot Code

Two blocks of code,

ROM Boot

and

Flash Boot , are

pre-programmed into the device and work together to provide device startup and configuration, basic security features, life-cycle stage management and other system functions.

ROM Boot

On a device reset, the boot code in ROM is the first code to execute. This code performs the following:

Integrity checks of flash boot code

Device trim setting (calibration)

Setting the device protection units

Setting device access restrictions for life-cycle states

ROM cannot be changed and acts as the Root of Trust in a secured system.

Flash Boot

Flash boot is a firmware module stored in SFlash and application flash. It ensures that only a validated application may run on the device. It also ensures that the firmware image has not been modified, such as by a malicious third party.

Flash boot:

Is validated by ROM Boot

Runs after ROM Boot and before the user application

Enables system calls

Configures the Debug Access Port

Launches the user application

Document Number: 002-21414 Rev. *O Page 11 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Memory Map

Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is divided into the regions shown in

Table 3

. Note that code can be executed from the Code and External RAM.

Table 3. Address Map for CM4 and CM0+

Address Range

0x0000 0000 – 0x1FFF FFFF

0x2000 0000 – 0x3FFF FFFF

0x4000 0000 – 0x5FFF FFFF Peripheral

0x6000 0000 – 0x9FFF FFFF

Name

Code

SRAM

External

RAM

Use

Program code region. Data can also be placed here. It includes the exception vector table, which starts at address 0.

Data region. This region is not supported in PSoC 6.

All peripheral registers.

Code cannot be executed from this region. CM4 bit-band in this region is not supported in PSoC 6.

SMIF or Quad SPI, (see the

QSPI Interface Serial

Memory Interface (SMIF)

section). Code can be executed from this region.

0xA000 0000 – 0xDFFF FFFF

0xE000 0000 – 0xE00F FFFF

0xE010 0A000 – 0xFFFF FFFF

External

Device

Private

Peripheral

Bus

Device

Not used.

Provides access to peripheral registers within the CPU core.

Device-specific system registers.

The device memory map shown in Table 4 applies to both CPUs.

That is, the CPUs share access to all PSoC 6 MCU memory and peripheral registers.

Table 4. Internal Memory Address Map for CM4 and CM0+

Address Range

0x0000 0000 – 0x0001 FFFF

0x0800 0000 – 0x0804 7FFF

0x1000 0000 – 0x100F FFFF

0x1400 0000 – 0x1400 7FFF

0x1600 0000 – 0x1600 7FFF

Memory Type

ROM

SRAM

Application flash

Auxiliary flash, can be used for EEPROM emulation

Supervisory flash

Size

128 KB

Up to 288 KB

Up to 1 MB

32 KB

32 KB

Note that the SRAM is located in the Arm Code region for both

CPUs (see Table 3

). There is no physical memory located in the

CPUs’ Arm SRAM regions.

System Resources

Power System

The power system provides assurance that voltage levels are as required for each respective mode and will either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) when the power supply drops below specified levels. The design guarantees safe chip operation between power supply voltage dropping below specified levels (for example, below 1.7 V) and the reset occurring. There are no voltage sequencing requirements.

The V

DDD

supply (1.7 to 3.6 V) powers an on-chip buck regulator or a low-dropout regulator (LDO), selectable by the user. In addition, both the buck and the LDO offer a selectable (0.9 or

1.1 V) core operating voltage (V

CCD

). The selection lets users choose between two system power modes:

■ System Low Power (LP) operates V

CCD

at 1.1 V and offers high performance, with no restrictions on device configuration.

■ System Ultra Low Power (ULP) operates V speeds.

CCD

at 0.9 V for exceptional low power, but imposes limitations on clock

In addition, a backup domain adds an “always on” functionality using a separate power domain supplied by a backup supply

(V

BACKUP

) such as a battery or supercapacitor. It includes a real-time clock (RTC) with alarm feature, supported by a

32.768-kHz watch crystal oscillator (WCO), and power-management IC (PMIC) control. Refer to

Power Supply

Considerations

for more details.

Power Modes

PSoC 6 MCU can operate in four system and three CPU power modes. These modes are intended to minimize the average power consumption in an application. For more details on power modes and other power-saving configuration options, see the application note, AN219528: PSoC 6 MCU Low-Power Modes and Power Reduction Techniques and the Architecture TRM,

Power Modes chapter .

Power modes supported by PSoC 6 MCUs, in the order of decreasing power consumption, are:

■ System Low Power (LP) – All peripherals and CPU power modes are available at maximum speed

■ System Ultra Low Power (ULP) – All peripherals and CPU power modes are available, but with limited speed

■ CPU Active – CPU is executing code in system LP or ULP mode

■ CPU Sleep – CPU code execution is halted in system LP or

ULP mode

■ CPU Deep Sleep – CPU code execution is halted and system

Deep Sleep is requested in system LP or ULP mode

■ System Deep Sleep – Only low-frequency peripherals are available after both CPUs enter CPU Deep Sleep mode

■ System Hibernate – Device and I/O states are frozen and the device resets on wakeup

Document Number: 002-21414 Rev. *O Page 12 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

CPU Active, Sleep, and Deep Sleep are standard Arm-defined power modes supported by the Arm CPU instruction set architecture (ISA). System LP, ULP, Deep Sleep and Hibernate modes are additional low-power modes supported by

PSoC 6 MCU.

Clock System

Figure 4 shows that the clock system consists of the following:

Internal main oscillator (IMO)

Internal low-speed oscillator (ILO)

Precision ILO (PILO)

Watch crystal oscillator (WCO)

External MHz crystal oscillators (ECOs)

External clock input

Phase-locked loop (PLL)

Frequency-locked loop (FLL)

Clocks may be buffered and brought out to a pin on a smart I/O port.

Yellow multiplexers are glitch safe

IMO

EXTCLK

ECO

ALTHF dsi_out <1:0>

System LP/ULP Domain

System Deep Sleep /

Hibernate Domain

ILO*

WCO*

PILO

Path Mux

*Works in Hibernate

(FLL/PLL)

FLL

PLL

CLK_PATH2

CLK_PATH3

CLK_PATH4

CLK_LF

The default clocking when the application starts is CLK_HF[0] being driven by the IMO and the FLL. CLK_HF[0], clk_fast, clk_peri, and clk_slow are all either 50 MHz (LP mode) or 25 MHz

(ULP mode). All other clocks, including all peripheral clocks, are off.

Internal Main Oscillator (IMO)

The IMO is the primary source of internal clocking. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 8 MHz and tolerance is ±2%.

Internal Low-speed Oscillator (ILO)

The ILO is a very low power oscillator, nominally 32 kHz, which operates in all power modes. The ILO can be calibrated against a higher accuracy clock for better accuracy.

Precision ILO (PILO)

PILO is a 32.768-kHz clock that can provide a more accurate clock than ILO when periodically calibrated using a high-accuracy clock such as the ECO.

Figure 4. Clocking Diagram

Root mux

Predivider

(1/2/4/8)

Predivider

(1/2/4/8)

Predivider

(1/2/4/8)

Predivider

(1/2/4/8)

Predivider

(1/2/4/8)

Divider

CLK_HF[0] dsi_in0

Divider

CLK_HF[1] dsi_in1

CLK_HF[2] dsi_in2

CLK_HF[3] dsi_in3

CLK_HF[4] dsi_in4

Audio

QSPI/SMIF

USB clk_ext clk_peri

Divider

CM4

Peripheral

Clock Dividers

Peripheral clocks

TCPWM

SCB

CM0+

CapSense

AHB

UDB

DMA eFuse

MMIO

LCD

Analog

Subsystem

Smart I/O

PPU

Crypto

Document Number: 002-21414 Rev. *O Page 13 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

External Crystal Oscillators

Figure 5 shows all of the external crystal oscillator circuits for this

product line. The component values shown are typical; check the

ECO Specifications for the crystal values, and the crystal

datasheet for the load capacitor values. The ECO and WCO require balanced external load capacitors. For more information, see the TRM and AN218241, PSoC 6 MCU Hardware Design

Considerations .

Figure 5. Oscillator Circuits

PSoC 6

C

L

/ 2

See also

Table 5. ECO Usage Guidelines

Ports 12 and 13

MHz XTAL

Table 6

subsystem use.

C

L

/ 2 C

L

/ 2

32.768 kHz XTAL

C

L

/ 2

If the ECO is used, note that its performance is affected by GPIO switching noise. GPIO ports should be used as

Table 5

shows.

for additional restrictions for general analog

Ports

DDD

≤ 2.7 V

Port 11 60 MHz for SMIF

(QSPI)

Drive Strength for V

DDD

> 2.7 V

DRIVE_SEL 2 DRIVE_SEL 3

Slow slew rate setting

No restrictions No restrictions

Watchdog Timers (WDT, MCWDT)

PSoC 6 MCU has one WDT and two multi-counter WDTs

(MCWDTs). The WDT has a 16-bit free-running counter. Each

MCWDT has two 16-bit counters and one 32-bit counter, with multiple operating modes. All of the 16-bit counters can generate a watchdog device reset. All of the counters can generate an interrupt on a match event.

The WDT is clocked by the ILO. It can do interrupt/wakeup generation in system LP/ULP, Deep Sleep, and Hibernate power modes. The MCWDTs are clocked by LFCLK (ILO or WCO). It can do periodic interrupt/wakeup generation in system LP/ULP and Deep Sleep power modes.

Clock Dividers

Integer and fractional clock dividers are provided for peripheral use and timing purposes. There are:

Eight 8-bit clock dividers

Sixteen 16-bit integer clock dividers

Four 16.5-bit fractional clock dividers

One 24.5-bit fractional clock divider

Document Number: 002-21414 Rev. *O

Trigger Routing

PSoC 6 MCU contains a trigger multiplexer block. This is a collection of digital multiplexers and switches that are used for routing trigger signals between peripheral blocks and between

GPIOs and peripheral blocks.

There are two types of trigger routing. Trigger multiplexers have reconfigurability in the source and destination. There are also hardwired switches called “one-to-one triggers”, which connect a specific source to a destination. The user can enable or disable the route.

Reset

PSoC 6 MCU can be reset from a variety of sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up to the level required for the device to function properly. POR activates automatically at power-up.

Brown-out detect (BOD) reset to monitor the digital voltage supply V

DDD

and generate a reset if V

DDD minimum required logic operating voltage.

falls below the

External reset dedicated pin (XRES) to reset the device using an external source. The XRES pin is active low. It can be connected either to a pull-up resistor to V

DDD

, or to an active

drive circuit, as Figure 6 shows. If a pull-up resistor is used,

select its value to minimize current draw when the pin is pulled low; 4.7 kΩ to 100 kΩ is typical.

Figure 6. XRES Connection Diagram

1.7 to 3.6 V

PSoC 6

V

DDD

4.7 kΩ typ.

XRES drive

XRES

Watchdog timer (WDT or MCWDT) to reset the device if firmware fails to service it within a specified timeout period.

Software-initiated reset to reset the device on demand using firmware.

Logic-protection fault can trigger an interrupt or reset the device if unauthorized operating conditions occur; for example, reaching a debug breakpoint while executing privileged code.

Hibernate wakeup reset to bring the device out of the system

Hibernate low-power mode.

Reset events are asynchronous and guarantee reversion to a known state. Some of the reset sources are recorded in a register, which is retained through reset and allows software to determine the cause of the reset.

Page 14 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Programmable Analog Subsystem

12-bit SAR ADC

The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion. One of three internal references may be used for the ADC reference voltage: V

V

DDA/2

DDA

,

, and an analog reference (AREF). AREF is nominally

1.2 V, trimmed to ±1%; see Table 23 . An external reference may

also be used, by driving the V

REF

pin. When using V

DDA/2

or

AREF as a reference, an external bypass capacitor may be

REF

pin to improve performance in noisy connected to the V conditions. These reference options allow ratio-metric readings or absolute readings at the accuracy of the reference used. The input range of the ADC is the full supply voltage between V and V

DDA

/V

DDIOA of single-ended and differential signals in the same configuration.

SS

. The SAR ADC may be configured with a mix

The SAR ADC’s sample-and-hold (S/H) aperture is programmable to allow sufficient time for signals with a high impedance to settle sufficiently, if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it.

The SAR is connected to a fixed set of pins through an input multiplexer. The multiplexer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The result of each channel is buffered, so that an interrupt may be triggered only when a full scan of all channels is complete. Also, a pair of range registers can be set to detect and cause an interrupt if an input exceeds a minimum and/or maximum value. This allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software. The SAR can also be connected, under firmware control, to most other GPIO pins via the Analog Multiplexer Bus (AMUXBUS). The SAR is not available in Deep Sleep and Hibernate modes as it requires a high -speed clock (up to 18 MHz). The SAR operating range is

1.71 to 3.6 V.

ADC accuracy is affected by GPIO switching noise. To improve

accuracy, implement the GPIO port restrictions listed in Table 6 .

In addition, there should be no switching outputs on ports 9 and

10.

Temperature Sensor

An on-chip temperature sensor is part of the SAR and may be scanned by the SAR ADC. It consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor may be connected directly to the SAR ADC as one of the measurement channels. The ADC digitizes the temperature sensor’s output and a Cypress-supplied software function may be used to convert the reading to temperature which includes calibration and linearization.

12-bit Digital-Analog Converter

There is a 12-bit voltage mode DAC on the chip, which can settle in less than 2 µs. The DAC may be driven by the DMA controllers to generate user-defined waveforms. The DAC output from the chip can either be the resistive ladder output (highly linear near ground) or a buffered output using an opamp in the CTBm block.

Continuous Time Block mini (CTBm) with Two Opamps

This block consists of two opamps, which have their inputs and outputs connected to pins and other analog blocks, as

Figure 7

shows. They have three power modes (high, medium, and low) and a comparator mode. The opamps can be used to buffer SAR inputs and DAC outputs. The non-inverting inputs of these opamps can be connected to either of two pins, thus allowing independent sensors to be used at different times. The pin selection can be made via firmware.

The opamps also support operation in system Deep Sleep mode, with lower performance and reduced power consumption.

Low-Power Comparators

Two low-power comparators are provided, which can operate in all power modes. This allows other analog system resources to be disabled while retaining the ability to monitor external voltage levels during system Deep Sleep and Hibernate modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode

(Hibernate) where the system wake-up circuit is activated by a comparator-switch event.

Document Number: 002-21414 Rev. *O Page 15 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 7 shows an overview of the analog subsystem. This diagram is a high-level abstraction. See the

Architecture TRM for detailed connectivity information.

Figure 7. Analog Subsystem

AMUXBUSA

AMUXBUSB

P6.0

P6.1

P6.2

P6.3

P6.4

P6.5

P6.6

P6.7

P5.0

P5.1

P5.2

P5.3

P5.4

P5.5

P5.6

P5.7

P9.3

P9.7

P9.5

P9.4

P9.0

P9.6

P9.1

P9.2

P10.0

P10.1

P10.2

P10.3

P10.4

P10.5

P10.6

P10.7

LPCOMP0 inp inn

LPCOMP1 inp inn

AREF, 1.2 V

TEMP temp

V

SS

V

DDA

CTDAC vref vout

OA1

+

-

OA0

+

-

CSD shield_pad vref_ext csh cmod amuxbusa amuxbusb

S/H

10x

1x comp out

10x comp out

1x

V

V

DDA

DDA

/ 2

SARREF

To V

REF

Red dots indicate

AMUXBUS splitter switches

The DAC output is also routed directly to P9.6; not shown in this diagram.

See the Alternate Port

Pin Functionality table..

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P4.0

P4.1

P14.0

P14.1

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

Bold lines indicate direct connections from the opamp 10x ouputs to port pins.

SAR ADC vplus vminus vref pin, for bypass capacitor

P11.0

P11.1

P11.2

P11.3

P11.4

P11.5

P11.6

P11.7

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P13.0

P13.1

P13.2

P13.3

P13.4

P13.5

P13.6

P13.7

P12.0

P12.1

P12.2

P12.3

P12.4

P12.5

P12.6

P12.7

Document Number: 002-21414 Rev. *O Page 16 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Programmable Digital

Smart I/O

Smart I/O is a programmable logic fabric that enables Boolean operations on signals traveling from device internal resources to the GPIO pins or on signals traveling into the device from external sources. A Smart I/O block sits between the GPIO pins and the high-speed I/O matrix (HSIOM) and is dedicated to a single port.

There are two Smart I/O blocks: one on Port 8 and one on Port 9.

When Smart I/O is not enabled, all signals on Port 8 and Port 9 bypass the Smart I/O hardware.

Smart I/O supports:

■ System Deep Sleep operation

■ Boolean operations without CPU intervention

■ Asynchronous or synchronous (clocked) operation

Each Smart I/O block contains a data unit (DU) and eight lookup tables (LUTs).

The DU:

■ Performs unique functions based on a selectable opcode.

■ Can source input signals from internal resources, the GPIO port, or a value in the DU register.

Each LUT:

■ Has three selectable input sources. The input signals may be sourced from another LUT, an internal resource, an external signal from a GPIO pin, or from the DU.

■ Acts as a programmable Boolean logic table.

■ Can be synchronous or asynchronous.

Universal Digital Blocks (UDBs)

This product line has 12 UDBs. Each UDB is a collection of uncommitted logic (PLD) and nano-CPU (datapath) optimized to create common embedded peripherals and custom functionality, as

Figure 8 shows. UDB datapaths are 8 bits wide, and can be

chained to form 16, 24, and 32-bit functions. Included with the

UDBs is the digital system interconnect (DSI), which routes signals among UDBs, fixed function peripherals, I/O pins and other system blocks to implement full featured device connectivity. The DSI enables routing between any digital function and any pin. Port adapter blocks extend the UDBs to provide an interface to the GPIOs through the HSIOM.

Figure 8. UDB Block Diagram

PLD

Chaining

Clock

and Reset

Control

PLD

12C4

(8 PTs)

PLD

12C4

(8 PTs)

Status and

Control Datapath

Datapath

Chaining

Fixed-Function Digital

Timer/Counter/Pulse-width Modulator (TCPWM) Block

■ The TCPWM supports the following operational modes:

❐ Timer-counter with compare

Timer-counter with capture

❐ Quadrature decoding

Pulse width modulation (PWM)

❐ Pseudo-random PWM

PWM with dead time

Up, down, and up/down counting modes.

Clock prescaling (division by 1, 2, 4, ... 64, 128)

Double buffering of compare/capture and period values

Underflow, overflow, and capture/compare output signals

Supports interrupt on:

Terminal count – Depends on the mode; typically occurs on overflow or underflow

Capture/compare – The count is captured to the capture register or the counter value equals the value in the compare register

■ Complementary output for PWMs

■ Selectable start, reload, stop, count, and capture event signals for each TCPWM; with rising edge, falling edge, both edges, and level trigger options. The TCPWM has a Kill input to force outputs to a predetermined state.

In this device there are:

■ Eight 32-bit TCPWMs

■ Twenty-four 16-bit TCPWMs

Serial Communication Blocks (SCB)

This product line has nine SCBs:

■ Eight can implement either I

2

C, UART, or SPI.

■ One SCB (SCB #8) can operate in system Deep Sleep mode with an external clock; this SCB can be either SPI slave or I slave.

2

C

I

2

C Mode: The SCB can implement a full multi-master and slave interface (it is capable of multimaster arbitration). This block can operate at speeds of up to 1 Mbps (Fast Mode Plus). It also supports EZI2C, which creates a mailbox address range and effectively reduces I

2

C communication to reading from and writing to an array in the memory.The SCB supports a 256-byte

FIFO for receive and transmit.

I

The I

Mode, and Fast Mode Plus devices as defined in the NXP

2

2

C peripheral is compatible with I

2

C standard-mode, Fast

C-bus specification and user manual (UM10204). The I

I/O is implemented with GPIO in open-drain modes.

2

C bus

UART Mode: This is a full-feature UART operating at up to

8 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common UART functions such as parity error, break detect, and frame error are supported. A 256-byte FIFO allows much greater CPU service latencies to be tolerated.

Routing Channel

Document Number: 002-21414 Rev. *O Page 17 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

SPI Mode: The SPI mode supports full Motorola SPI, TI Secure

Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block supports an EZSPI mode in which the data interchange is reduced to reading and writing an array in memory. The SPI interface operates with a 25-MHz clock.

USB Full-Speed Device Interface

PSoC 6 incorporates a full-speed USB device interface. The device can have up to eight endpoints. A 512-byte SRAM buffer is provided and DMA is supported.

Note: If the USB pins are not used, connect V and leave the P14.0/USBDP and P14.1/USBDM pins unconnected.

DDUSB

to ground

GPIO

This product line has up to 100 GPIOs, which implement:

Eight drive strength modes:

Analog input mode (input and output buffers disabled)

Input only

Weak pull-up with strong pull-down

Strong pull-up with weak pull-down

Open drain with strong pull-down

Open drain with strong pull-up

Strong pull-up with strong pull-down

Weak pull-up with weak pull-down

■ Input threshold select (CMOS or LVTTL)

■ Hold mode for latching previous state (used for retaining the

I/O state in system Hibernate mode)

QSPI Interface Serial Memory Interface (SMIF)

A serial memory interface is provided, running at up to 80 MHz.

It supports single, dual, quad, dual-quad and octal SPI configurations, and supports up to four external memory devices.

It supports two modes of operation:

Memory-mapped I/O (MMIO), a command mode interface that provides data access via the SMIF registers and FIFOs

Execute in Place (XIP), in which AHB reads and writes are directly translated to SPI read and write transfers.

In XIP mode, the external memory is mapped into the PSoC 6

MCU internal address space, enabling code execution directly from the external memory. To improve performance, a 4-KB cache is included. XIP mode also supports AES-128 on-the-fly encryption and decryption, enabling secured storage and access of code and data in the external memory.

LCD

This block drives LCD commons and segments; routing is available to most of the GPIOs. One to eight of the GPIOs must be used for commons, the rest can be used for segments.

The LCD block has two modes of operation: high speed (8 MHz) and low speed (32 kHz). Both modes operate in system LP and

ULP modes. Low-speed mode operates with reduced contrast in system Deep Sleep mode - review the number of common and segment lines, viewing angle requirements, and prototype performance before using this mode.

■ Selectable slew rates for dV/dt-related noise control to improve

EMI

The pins are organized in logical entities called ports, which are up to 8 pins in width. Data output and pin state registers store, respectively, the values to be driven on the pins and the input states of the pins.

Every pin can generate an interrupt if enabled; each port has an interrupt request (IRQ) associated with it.

The port 1 pins are capable of overvoltage-tolerant (OVT) operation, where the input voltage may be higher than V

OVT pins are commonly used with I

2 chip OFF while maintaining a physical connection to an operating I

2

DDD

C, to allow powering the

.

C bus without affecting its functionality.

GPIO pins can be ganged to source or sink higher values of current. GPIO pins, including OVT pins, may not be pulled up

higher than the absolute maximum; see Electrical Specifications .

During power-on and reset, the pins are forced to the analog input drive mode, with input and output buffers disabled, so as not to crowbar any inputs and/or cause excess turn-on current.

A multiplexing network known as the high-speed I/O matrix

(HSIOM) is used to multiplex between various peripheral and analog signals that may connect to an I/O pin.

Analog performance is affected by GPIO switching noise. In order to get the best analog performance, the following frequency and drive mode constraints must be applied. The

DRIVE_SEL values (refer to

Table 6 ) represent drive strengths

(see the Architecture and Register TRMs for further detail).

See also

Table 5

for additional restrictions for ECO use.

Table 6. DRIVE_SEL Values

Ports

Port 0

Port 1

Port 2

Ports 3 to 10

Ports 11 to 13

Ports 9 and 10

Max Frequency

8 MHz

1 MHz; slow slew rate, 2 outputs max

50 MHz

16 MHz; 25 MHz for SPI

80 MHz for SMIF (QSPI).

8 MHz; slow slew rate setting for TQFP

Packages for ADC performance

Drive Strength for V

DDD

≤ 2.7 V Drive Strength for V

DDD

> 2.7 V

DRIVE_SEL 2 DRIVE_SEL 3

DRIVE_SEL 1

No restrictions

DRIVE_SEL 2

No restrictions

Document Number: 002-21414 Rev. *O Page 18 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Special-Function Peripherals

Audio Subsystem

This subsystem consists of the following hardware blocks:

One Inter-IC Sound (I

2

S) interface

Two pulse-density modulation (PDM) to pulse-code modulation

(PCM) decoder channels

The I

2

S interface implements two independent hardware FIFO buffers – TX and RX, which can operate in master or slave mode.

The following features are supported:

Multiple data formats – I

2

S, left-justified, Time Division Multiplexed (TDM) mode A, and TDM mode B

Programmable channel/word lengths – 8/16/18/20/24/32 bits

Internal/external clock operation. Up to 192 ksps

Interrupt mask events – trigger, not empty, full, overflow, underflow, watchdog

Configurable FIFO trigger level with DMA support

The I

2

S interface is commonly used to connect with audio codecs, simple DACs, and digital microphones.

The PDM-to-PCM decoder implements a single hardware Rx

FIFO that decodes a stereo or mono 1-bit PDM input stream to

PCM data output. The following features are supported:

■ Programmable data output word length – 16/18/20/24 bits

Programmable gain amplifier (PGA) for volume control – from

–12 dB to +10.5 dB in 1.5 dB steps

■ Configurable PDM clock generation. Range from 384 kHz to

3.072 MHz

Droop correction and configurable decimation rate for sampling; up to 48 ksps

■ Programmable high-pass filter gain

Interrupt mask events – not empty, overflow, trigger, underflow

■ Configurable FIFO trigger level with DMA support

The PDM-to-PCM decoder is commonly used to connect to digital PDM microphones. Up to two microphones can be connected to the same PDM Data line.

CapSense Subsystem

CapSense is supported in PSoC 6 MCU through a CapSense sigma-delta (CSD) hardware block. It is designed for high-sensitivity self-capacitance and mutual-capacitance measurements, and is specifically built for user interface solutions.

In addition to CapSense, the CSD hardware block supports three general-purpose functions. These are available when CapSense is not being used. Alternatively, two or more functions can be time-multiplexed in an application under firmware control. The four functions supported by the CSD hardware block are:

■ CapSense

■ 10-bit ADC

■ Programmable current sources (IDAC)

■ Comparator

Document Number: 002-21414 Rev. *O

CapSense

Capacitive touch sensors are designed for user interfaces that rely on human body capacitance to detect the presence of a finger on or near a sensor. Cypress CapSense solutions bring elegant, reliable, and simple capacitive touch sensing functions to applications including IoT, industrial, automotive, and home appliances.

The Cypress-proprietary CapSense technology offers the following features:

Best-in-class signal-to-noise ratio (SNR) and robust sensing under harsh and noisy conditions

Self-capacitance (CSD) and mutual-capacitance (CSX) sensing methods

Support for various widgets, including buttons, matrix buttons, sliders, touchpads, and proximity sensors

High-performance sensing across a variety of materials

Best-in-class liquid tolerance

SmartSense auto-tuning technology that helps avoid complex manual tuning processes

Superior immunity against external noise

Spread-spectrum clocks for low radiated emissions

Gesture and built-in self-test libraries

Ultra-low power consumption

An integrated graphical CapSense tuner for real-time tuning, testing, and debugging

CapSense sensitivity and accuracy are affected by GPIO switching noise. To improve sensitivity and accuracy, implement the GPIO port restrictions listed in

Table 6

, and do the following:

Restrict CapSense pins to ports 6 and 7

There should be no other GPIO output activity on ports 6 and 7

There should be no more than two GPIO outputs on ports 5 and 8

Restrict GPIO output switching in ports 5 and 8 to 1 MHz, with slow slew rate setting

ADC

The CapSense subsystem slope ADC offers the following features:

Selectable 8- or 10-bit resolution

Selectable input range: GND to V

REF

GPIO input

and GND to V

DDA

on any

Measurement of V

DDA

against an internal reference without the use of GPIO or external components

IDAC

The CSD block has two programmable current sources, which offer the following features:

7-bit resolution

Sink and source current modes

A current source programmable from 37.5 nA to 609  A

Two IDACs that can be used in parallel to form one 8-bit IDAC

Page 19 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Comparator

The CapSense subsystem comparator operates in the system

Low Power and Ultra-Low Power modes. The inverting input is connected to an internal programmable reference voltage and the non-inverting input can be connected to any GPIO via the

AMUXBUS.

CapSense Hardware Subsystem

Figure 9 shows the high-level hardware overview of the

CapSense subsystem, which includes a delta sigma converter, internal clock dividers, a shield driver, and two programmable current sources.

The inputs are managed through analog multiplexed buses

(AMUXBUS A/B). The input and output of all functions offered by the CSD block can be provided on any GPIO or on a group of

GPIOs under software control, with the exception of the comparator output and external capacitors that use dedicated

GPIOs.

Self-capacitance is supported by the CSD block using

AMUXBUS A, an external modulator capacitor, and a GPIO for each sensor. There is a shield electrode (optional) for self-capacitance sensing. This is supported using AMUXBUS B and an optional external shield tank capacitor (to increase the drive capability of the shield driver) should this be required.

Mutual-capacitance is supported by the CSD block using

AMUXBUS A, two external integrated capacitors, and a GPIO for transmit and receive electrodes.

The ADC does not require an external component. Any GPIO that can be connected to AMUXBUS A can be an input to the

ADC under software control. The ADC can accept V voltage measurement).

DDA

as an input without needing GPIOs (for applications such as battery

The two programmable current sources (IDACs) in general-purpose mode can be connected to AMUXBUS A or B.

They can therefore connect to any GPIO pin. The comparator resides in the delta-sigma converter. The comparator inverting input can be connected to the reference. Both comparator inputs can be connected to any GPIO using AMUXBUS B; see

Figure 9 . The reference has a direct connection to a dedicated

GPIO; see Table 9 .

The CSD block can operate in active and sleep CPU power modes, and seamlessly transition between system LP and ULP modes. It can be powered down in system Deep Sleep and

Hibernate modes. Upon wakeup from Hibernate mode, the CSD block requires re-initialization. However, operation can be resumed without re-initialization upon exit from Deep Sleep mode, under firmware control.

Figure 9. CapSense Hardware Subsystem

AMUXBUS

A B

GPIO Pin

GPIO

Cell

CSD Sensor 1

CS1

Clock Input

GPIO Pin

GPIO

Cell

CSD Sensor 2

CS2

CSD Hardware Block

CMOD Pin

C MOD Sense clock

Clock

Generator

C

SH_TANK

( optional )

GPIO Pin

Shield Drive

Circuit

Modulator

Clock

GPIO Pin

GPIO

Cell

Compensation

IDAC

CSHIELD

Shield Electrode

Modulator

IDAC

Tx

GPIO Pin

GPIO

Cell

IDAC control

CSX Sensor 3

CS3

Raw

Count

CINT

A

Rx

GPIO Pin

GPIO

Cell

CINTAPin

GPIO

Cell

VREF

Sigma Delta

Converter

CINT

B

CINTB Pin

GPIO

Cell

ADC Input

IDAC Outputs

Comp Input

Document Number: 002-21414 Rev. *O Page 20 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 10

shows the high-level software overview. Cypress provides middleware libraries for CapSense , ADC , and IDAC on

GitHub to enable quick integration. The Board Support Package for any kit with CapSense capabilities automatically includes the

CapSense library in any application that uses the BSP.

User applications interact only with middleware to implement functions of the CSD block. The middleware interacts with underlying drivers to access hardware as necessary. The CSD driver facilitates time-multiplexing of the CSD hardware if more than one piece of CSD-related middleware is present in a project.

It prevents access conflicts in this case.

ModusToolbox Software provides a CapSense configurator to enable fast library configuration. It also provides a tuner for performance evaluation and real-time tuning of the system. The tuner requires an EZI2C communication interface in the application to enable real-time tuning capability. The tuner can update configuration parameters directly in the device as well as in the configurator.

CapSense and ADC middleware use the CSD interrupt to implement non-blocking sensing and A-to-D conversion.

Therefore, interrupt service routines are a defined part of the middleware, which must be initialized by the application.

Middleware and drivers can operate on either CPU. Cypress recommends using the middleware only in one CPU. If both

CPUs must access the CSD driver, memory access should be managed in the application.

Refer to

Guide

AN85951: PSoC 4 and PSoC 6 MCU CapSense Design

for more details on CSX sensing, CSD sensing, shield electrode usage and its benefits, and capacitive system design guidelines.

Refer to the API reference guides for available on GitHub.

Figure 10. CapSense Software/Firmware Subsystem

CapSense , ADC , and IDAC

Application Program

Software

Configurator

Middleware

Tuner

SCB Driver

(EZI2C)

SCB

CSD Driver

GPIO / Clock

Drivers

CSD Block

Hardware and Drivers

GPIOs / Clock

Document Number: 002-21414 Rev. *O Page 21 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Pinouts

Note: The CY8C61x6/CY8C61x7 datasheet web page contains a spreadsheet with a consolidated list of pinouts and pin alternate functions with HSIOM mapping.

GPIO ports are powered by V

DDx

pins as follows:

■ P0: V

BACKUP

P1: V

DDD

. Port 1 pins are overvoltage tolerant (OVT).

P2, P3, P4: V

DDIO2

P5, P6, P7, P8: V

DDIO1

P9, P10: V

DDIOA

, V

DDA

(V

DDIOA

, when present, and V

DDA

must be connected together on the PCB)

P11, P12, P13: V

DDIO0

■ P14: V

DDUSB

P0.3

P0.4

P0.5

P1.0

P1.1

P1.2

P1.3

P1.4

V

DD_NS

V

IND1

V

IND2

V

BUCK1

V

RF

XRES

V

REF

P0.0

P0.1

P0.2

Table 7. Packages and Pin Information

V

Pin

DDD

V

CCD

V

DDA

V

DDIOA

V

DDIO0

V

DDIO1

V

DDIO2

V

BACKUP

V

DDUSB

V

SS

G1

H3

H2

H1

F3

F2

G3

G2

B13

E3

E2

E1

K2

K3

K1

F1

124-BGA

A1

A2

A12

A13

C4

K12

L4

D1

M1

B12, C3, D4,

D10, K4, K10

J1

J2

Packages

80-WLCSP

B11

A10

F1

-

A6

M1

-

D11

P11

A8, D1, P5, R8

-

C10

D9

E10

F9

G8

F11

H11

H9

-

-

K9

K11

L10

M11

N10

-

G10

Document Number: 002-21414 Rev. *O

Pin

P2.6

P2.7

P3.0

P3.1

P3.2

P2.1

P2.2

P2.3

P2.4

P2.5

P5.1

P5.2

P5.3

P5.4

P5.5

P5.6

P5.7

P6.0

P3.3

P3.4

P3.5

P4.0

P4.1

P5.0

P6.1

P6.2

P6.3

P6.4

M9

N9

N10

M10

L8

M8

N8

L9

L10

L11

M11

N11

L6

M6

N6

L7

M7

N7

124-BGA

N2

L3

M3

N3

N1

M4

N4

L5

M5

N5

Packages

80-WLCSP

-

-

-

-

-

-

-

-

-

-

M7

R4

N6

J8

N8

R6

P7

L8

K7

L6

R2

P3

-

-

-

-

-

M9

Page 22 of 77

Table 7. Packages and Pin Information

(continued)

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Document Number: 002-21414 Rev. *O Page 23 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Each Port Pin has multiple alternate functions. These are defined in

Table 8

.

Table 8. Multiple Alternate Functions

[1]

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P1.0

P1.1

tcpwm[0].l

ine[0]:0 tcpwm[1].line

[0]:0 tcpwm[0].l

ine_comp l[0]:0 tcpwm[1].line

_compl[0]:0 tcpwm[0].l

ine[1]:0 tcpwm[1].line

[1]:0 tcpwm[0].l

ine_comp l[1]:0 tcpwm[1].line

_compl[1]:0 tcpwm[0].l

ine[2]:0 tcpwm[1].line

[2]:0 tcpwm[0].l

ine_comp l[2]:0 tcpwm[1].line

_compl[2]:0 tcpwm[0].l

ine[3]:0 tcpwm[1].line

[3]:0 tcpwm[0].l

ine_comp l[3]:0 tcpwm[1].line

_compl[3]:0 srss.ext

_clk:0 srss.ext

_clk:1 scb[0].ua

rt_rx:0 scb[0].ua

rt_tx:0 scb[0].ua

rt_rts:0 scb[0].ua

rt_cts:0 scb[7].ua

rt_rx:0 scb[7].ua

rt_tx:0 scb[0].i2

c_scl:0 scb[0].i2

c_sda:0 scb[7].i2

c_scl:0 scb[7].i2

c_sda:0 scb[0].spi

_select1:0 scb[0].spi

_select2:0 scb[0].spi

_mosi:0 scb[0].spi

_miso:0 scb[0].spi

_clk:0 scb[0].spi

_select0:0 scb[7].spi

_mosi:0 scb[7].spi

_miso:0 peri.tr_io_i

nput[0]:0 peri.tr_io_i

nput[1]:0 peri.tr_io_i

nput[2]:0 peri.tr_io_i

nput[3]:0 peri.tr_io_

output[0]:2 peri.tr_io_

output[1]:2 cpuss.swj_

trstn

P1.2

P1.3

P1.4

P1.5

tcpwm[0].l

ine[4]:4 tcpwm[1].line

[12]:1 tcpwm[0].l

ine_comp l[4]:4 tcpwm[1].line

_compl[12]:1 tcpwm[0].l

ine[5]:4 tcpwm[1].line

[13]:1 tcpwm[0].l

ine_comp l[5]:4 tcpwm[1].line

_compl[14]:1 scb[7].ua

rt_rts:0 scb[7].ua

rt_cts:0 scb[7].spi

_clk:0 scb[7].spi

_select0:0 scb[7].spi

_select1:0 scb[7].spi

_select2:0

P2.0

tcpwm[0]. line[6]:4 tcpwm[1].line

[15]:1 scb[1].ua

rt_rx:0 scb[1].i2

c_scl:0 scb[1].spi

_mosi:0 peri.tr_io_i

n put[4]:0 bless.mxd_dpslp_ret_switch_h v

P2.1

tcpwm[0].l

ine_-com pl[ tcpwm[1].line

_compl[15]:1 scb[1].ua

rt_tx:0 scb[1].i2

c_sda:0 scb[1].spi

_miso:0 peri.tr_io_i

nput[5]:0 bless.mxd_dpslp_ret_ldo_ol_h v

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 24 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 8. Multiple Alternate Functions

[1]

(continued)

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

tcpwm[0].l

ine[7]:4 tcpwm[1].line

[16]:1 tcpwm[0].l

ine_-com pl[7]:4 tcpwm[1].line

_compl[16]:1 tcpwm[0].l

ine[0]:5 tcpwm[1].line

[17]:1 tcpwm[0].l

ine_-com pl[0]:5 tcpwm[1].line

_compl[17]:1 tcpwm[0].l

ine[1]:5 tcpwm[1].line

[18]:1 tcpwm[0].l

ine_-com pl[1]:5 tcpwm[0].

line[2]:5 tcpwm[1].line

_compl[18]:1 tcpwm[1].line

[19]:1 tcpwm[0].

line_compl[2]:

5 tcpwm[0].

line[3]:5 tcpwm[1].line

_compl[19]:1 tcpwm[1].line

[20]:1 tcpwm[0].

line_compl[3]:

5 tcpwm[0].

line[4]:5 tcpwm[0].

line_compl[4]:

5 tcpwm[1].line

_compl[20]:1 tcpwm[1].line

[21]:1 tcpwm[1].line

_compl[21]:1 scb[1].ua

rt_rts:0 scb[1].ua

rt_cts:0 scb[2].ua

rt_rx:1 scb[2].ua

rt_tx:1 scb[2].ua

rt_rts:1 scb[2].ua

rt_cts:1 scb[2].i2

c_scl:1 scb[2].i2

c_sda:1 scb[1].spi

_clk:0 scb[1].spi

_select0:0 scb[1].spi

_select1:0 scb[1].spi

_select2:0 scb[1].spi

_select3:0 scb[2].spi

_mosi:1 scb[2].spi

_miso:1 scb[2].spi

_clk:1 scb[2].spi

_select0:1 scb[2].spi

_select1:1 scb[2].spi

_select2:1 peri.tr_io_i

nput[6]:0 peri.tr_io_i

nput[7]:0 bless.mxd_act

_dbus_rx_en bless.mxd_act

_dbus_tx_en bless.mxd_act

_bpktctl bless.mxd_act

_txd_rxd bless.mxd_dpslp_rcb_data bless.mxd_dpslp_-buck_en bless.mxd_dpslp_reset_n bless.mxd_dpslp_-clk_en bless.mxd_dpslp_isolate_n bless.mxd_dpslp_act_ldo_en bless.mxd_dpslp_xtal_en bless.mxd_dpslp_dig_ldo_en

P4.0

P4.1

tcpwm[0].

line[5]:5 tcpwm[0].

line_compl[5]:

5 tcpwm[1].line

[22]:1 tcpwm[1].line

_compl[22]:1 scb[7].ua

rt_rx:1 scb[7].ua

rt_tx:1 scb[7].i2

c_scl:1 scb[7].i2

c_sda:1 scb[7].spi

_mosi:1 scb[7].spi

_miso:1 peri.tr_io_i

nput[8]:0 peri.tr_io_i

nput[9]:0 bless.mxd_dpslp_rcb_clk bless.mxd_dpslp_rcb_le

P5.0

tcpwm[0].

line[4]:0 tcpwm[1].line

[4]:0 scb[5].ua

rt_rx:0 scb[5].i2

c_scl:0 scb[5].spi

_mosi:0 audioss.clk

_i2s_if peri.tr_io_i

nput[10]:0

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 25 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 8. Multiple Alternate Functions

[1]

(continued)

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P5.1

P5.2

P5.3

P5.4

P5.5

P5.6

P5.7

P6.0

P6.1

P6.2

tcpwm[0].

line_compl[6]:

0 tcpwm[0].

line[7]:0 tcpwm[0].

line_compl[7]:

0 tcpwm[0].

line[0]:1 tcpwm[0].

line_compl[4]:

0 tcpwm[0].

line[5]:0 tcpwm[0].

line_compl[5]:

0 tcpwm[0].

line[6]:0 tcpwm[0].

line_compl[0]:

1 tcpwm[0].

line[1]:1 tcpwm[1].line

_compl[4]:0 tcpwm[1].line

[5]:0 tcpwm[1].line

_compl[5]:0 tcpwm[1].line

[6]:0 tcpwm[1].line

_compl[6]:0 tcpwm[1].line

[7]:0 tcpwm[1].line

_compl[7]:0 tcpwm[1].line

[8]:0 tcpwm[1].line

_compl[8]:0 tcpwm[1].line

[9]:0 scb[8].i2

c_scl:0 scb[8].i2

c_sda:0 scb[5].ua

rt_tx:0 scb[5].ua

rt_rts:0 scb[5].ua

rt_cts:0 scb[3].ua

rt_rx:0 scb[3].ua

rt_tx:0 scb[3].ua

rt_rts:0 scb[5].i2

c_sda:0 scb[3].i2

c_scl:0 scb[3].i2

c_sda:0 scb[5].spi

_miso:0 scb[5].spi

_clk:0 scb[5].spi

_select0:0 scb[5].spi

_select1:0 scb[5].spi

_select2:0 scb[5].spi

_select3:0 scb[3].spi

_select3:0 scb[3].spi

_mosi:0 scb[3].spi

_miso:0 scb[3].spi

_clk:0 audioss.tx

_sck audioss.tx

_ws audioss.tx

_sdo audioss.rx

_sck audioss.rx

_ws audioss.rx

_sdi peri.tr_io_i

nput[11]:0 cpuss.fault

_out[0] cpuss.fault

_out[1] scb[8].spi

_mosi:0 scb[8].spi

_miso:0 scb[8].spi

_clk:0

P6.3

tcpwm[0].

line_compl[1]:

1 tcpwm[1].line

_compl[9]:0 scb[3].ua

rt_cts:0 scb[3].spi

_select0:0 scb[8].spi

_select0:0

P6.4

tcpwm[0].

line[2]:1 tcpwm[1].line

[10]:0 scb[8].i2

c_scl:1 scb[6].ua

rt_rx:2 scb[6].i2

c_scl:2 scb[6].spi

_mosi:2 peri.tr_io_i

nput[12]:0 peri.tr_io_

output[0]:1 cpuss.swj_

swo_tdo scb[8].spi

_mosi:1

P6.5

tcpwm[0].

line_compl[2]:

1 tcpwm[1].line

_compl[10]:0 scb[8].i2

c_sda:1 scb[6].ua

rt_tx:2 scb[6].i2

c_sda:2 scb[6].spi

_miso:2 peri.tr_io_i

nput[13]:0 peri.tr_io_

output[1]:1 cpuss.swj_

swdoe_tdi scb[8].spi

_miso:1

P6.6

tcpwm[0].l

ine[3]:1 tcpwm[1].line

[11]:0 scb[6].ua

rt_rts:2 scb[6].spi

_clk:2 cpuss.swj_

swdio_tms scb[8].spi

_clk:1

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 26 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 8. Multiple Alternate Functions

[1]

(continued)

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P6.7

P7.0

P7.1

P7.2

P7.3

P7.4

P7.5

tcpwm[0].l

ine_comp l[3]:1 tcpwm[1].line

_compl[11]:0 tcpwm[0].l

ine[4]:1 tcpwm[1].line

[12]:0 tcpwm[0].l

ine_comp l[4]:1 tcpwm[1].line

_compl[12]:0 tcpwm[0].l

ine[5]:1 tcpwm[1].line

[13]:0 tcpwm[0].l

ine_comp l[5]:1 tcpwm[1].line

_compl[13]:0 tcpwm[0].l

ine[6]:1 tcpwm[1].line

[14]:0 tcpwm[0].l

ine_comp l[6]:1 tcpwm[1].line

_compl[14]:0 scb[6].ua

rt_cts:2 scb[4].ua

rt_rx:1 scb[4].ua

rt_tx:1 scb[4].ua

rt_rts:1 scb[4].ua

rt_cts:1 scb[4].i2

c_scl:1 scb[4].i2

c_sda:1 scb[6].spi

_select0:2 scb[4].spi

_mosi:1 scb[4].spi

_miso:1 scb[4].spi

_clk:1 scb[4].spi

_select0:1 scb[4].spi

_select1:1 scb[4].spi

_select2:1 peri.tr_io_i

nput[14]:0 peri.tr_io_i

nput[15]:0 cpuss.trace_clock bless.ext_lna_rx_ctl_out bless.ext_pa_t

x_ctl_out cpuss.trac

e_data[3]:2 cpuss.trac

e_data[2]:2 cpuss.swj_

swclk_tclk scb[8].spi

_select0:1

P7.6

tcpwm[0].l

ine[7]:1 tcpwm[1].line

[15]:0 scb[4].spi

_select3:1 bless.ext_pa_lna_chip_en_ou t cpuss.trac

e_data[1]:2

P7.7

P8.0

P8.1

P8.2

tcpwm[0].l

ine_comp l[7]:1 tcpwm[1].line

_compl[15]:0 tcpwm[0].l

ine[0]:2 tcpwm[1].line

[16]:0 tcpwm[0].l

ine_comp l[0]:2 tcpwm[1].line

_compl[16]:0 tcpwm[0].l

ine[1]:2 tcpwm[1].line

[17]:0 scb[4].ua

rt_rx:0 scb[4].ua

rt_tx:0 scb[4].ua

rt_rts:0 scb[4].i2

c_scl:0 scb[4].i2

c_sda:0 scb[3].spi

_select1:0 scb[4].spi

_mosi:0 scb[4].spi

_miso:0 scb[4].spi

_clk:0 cpuss.clk_

fm_pump peri.tr_io_i

nput[16]:0 peri.tr_io_i

nput[17]:0 cpuss.trac

e_data[0]:2

P8.3

P8.4

P8.5

tcpwm[0].l

ine_comp l[1]:2 tcpwm[1].line

_compl[17]:0 tcpwm[0].l

ine[2]:2 tcpwm[1].line

[18]:0 tcpwm[0].l

ine_comp l[2]:2 tcpwm[1].line

_compl[18]:0 scb[4].ua

rt_cts:0 scb[4].spi

_select0:0 scb[4].spi

_select1:0 scb[4].spi

_select2:0

P8.6

tcpwm[0].l

ine[3]:2 tcpwm[1].line

[19]:0 scb[4].spi

_select3:0

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 27 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 8. Multiple Alternate Functions

[1]

(continued)

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P8.7

P9.0

P9.1

P9.2

tcpwm[0].l

ine_comp l[3]:2 tcpwm[1].line

_compl[19]:0 tcpwm[0].l

ine[4]:2 tcpwm[1].line

[20]:0 tcpwm[0].l

ine_comp l[4]:2 tcpwm[1].line

_compl[20]:0 tcpwm[0].l

ine[5]:2 tcpwm[1].line

[21]:0 scb[2].ua

rt_rx:0 scb[2].ua

rt_tx:0 scb[2].ua

rt_rts:0 scb[2].i2

c_scl:0 scb[2].i2

c_sda:0 scb[3].spi

_select2:0 scb[2].spi

_mosi:0 scb[2].spi

_miso:0 scb[2].spi

_clk:0 pass.dsi_ct

b_cmp0:1 peri.tr_io_i

nput[18]:0 peri.tr_io_i

nput[19]:0 cpuss.trac

e_data[3]:0 cpuss.trac

e_data[2]:0 cpuss.trac

e_data[1]:0

P9.3

P9.4

P9.5

P9.6

P9.7

tcpwm[0].l

ine_comp l[5]:2 tcpwm[1].line

_compl[21]:0 tcpwm[0].l

ine[7]:5 tcpwm[1].line

[0]:2 tcpwm[0].l

ine_comp l[7]:5 tcpwm[1].line

_compl[0]:2 tcpwm[0].l

ine[0]:6 tcpwm[1].line

[1]:2 tcpwm[0].l

ine_comp l[0]:6 tcpwm[1].line

_compl[1]:2 tcpwm[1].line

[22]:0 scb[2].ua

rt_cts:0 scb[2].spi

_select0:0 scb[2].spi

_select1:0 scb[2].spi

_select2:0 scb[2].spi

_select3:0 pass.dsi_ct

b_cmp1:1 cpuss.trac

e_data[0]:0 scb[1].ua

rt_rx:1 scb[1].i2

c_scl:1 scb[1].spi

_mosi:1 peri.tr_io_i

nput[20]:0 cpuss.trac

e_data[3]:1

P10.1

P10.3

tcpwm[0].l

ine_comp l[6]:2 tcpwm[1].line

_compl[22]:0 tcpwm[1].line

[23]:0 tcpwm[0].l

ine_comp l[7]:2 tcpwm[1].line

_compl[23]:0 scb[1].ua

rt_tx:1 scb[1].ua

rt_rts:1 scb[1].ua

rt_cts:1 scb[1].i2

c_sda:1 scb[1].spi

_miso:1 scb[1].spi

_clk:1 scb[1].spi

_select0:1 peri.tr_io_i

nput[21]:0 cpuss.trac

e_data[2]:1 cpuss.trac

e_data[1]:1 cpuss.trac

e_data[0]:1 tcpwm[1].line

[0]:1 scb[1].spi

_select1:1 audioss.p

dm_clk

P10.5

tcpwm[0].l

ine_comp l[0]:3 tcpwm[1].line

_compl[0]:1 scb[1].spi

_select2:1 audioss.p

dm_data tcpwm[1].line

[2]:2 scb[1].spi

_select3:1

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 28 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 8. Multiple Alternate Functions

[1]

(continued)

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P10.7

P11.1

P11.3

tcpwm[0].l

ine_comp l[1]:6 tcpwm[1].line

_compl[2]:2 tcpwm[1].line

[1]:1 tcpwm[0].l

ine_comp l[1]:3 tcpwm[1].line

_compl[1]:1 tcpwm[1].line

[2]:1 tcpwm[0].l

ine_comp l[2]:3 tcpwm[1].line

_compl[2]:1 smif.spi_

select2 smif.spi_

select1 smif.spi_

select0 smif.spi_

data3 scb[5].ua

rt_rx:1 scb[5].ua

rt_tx:1 scb[5].ua

rt_rts:1 scb[5].ua

rt_cts:1 scb[5].i2

c_scl:1 scb[5].i2

c_sda:1 scb[5].spi

_mosi:1 scb[5].spi

_miso:1 scb[5].spi

_clk:1 scb[5].spi

_select0:1 peri.tr_io_i

nput[22]:0 peri.tr_io_i

nput[23]:0 peri.tr_io_

output[0]:0

P11.5

tcpwm[1].line

[3]:1 tcpwm[0].l

ine_comp l[3]:3 tcpwm[1].line

_compl[3]:1 smif.spi_

data2 smif.spi_

data1 scb[5].spi

_select1:1 scb[5].spi

_select2:1 peri.tr_io_

output[1]:0

P11.6

P11.7

P12.1

tcpwm[1].line

[4]:1 tcpwm[0].l

ine_comp l[4]:3 tcpwm[1].line

_compl[4]:1 tcpwm[1].line

[5]:1 smif.spi_

data0 smif.spi_

clk smif.spi_

data4 scb[6].ua

rt_rx:0 scb[6].i2

c_scl:0 smif.spi_

data5 scb[6].ua

rt_tx:0 scb[6].i2

c_sda:0 scb[5].spi

_select3:1 scb[6].spi

_mosi:0 scb[6].spi

_miso:0 peri.tr_io_i

nput[24]:0 peri.tr_io_i

nput[25]:0 smif.spi_

data6 scb[6].ua

rt_rts:0 scb[6].spi

_clk:0

P12.3

P12.5

tcpwm[0].l

ine_comp l[5]:3 tcpwm[1].line

_compl[5]:1 tcpwm[1].line

[6]:1 tcpwm[0].l

ine_comp l[6]:3 tcpwm[1].line

_compl[6]:1 tcpwm[1].line

[7]:1 smif.spi_

data7 smif.spi_

select3 scb[6].ua

rt_cts:0 scb[6].spi

_select0:0 scb[6].spi

_select1:0 scb[6].spi

_select2:0 audioss.p

dm_clk audioss.p

dm_data scb[6].spi

_select3:0

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 29 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 8. Multiple Alternate Functions

[1]

(continued)

Port/

Pin

ACT #0 ACT #1 DS #2 ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #4 DS #5 DS #6

P12.7

P13.1

P13.3

tcpwm[0].l

ine_comp l[7]:3 tcpwm[1].line

_compl[7]:1 tcpwm[1].line

[8]:1 tcpwm[0].l

ine_comp l[0]:4 tcpwm[1].line

_compl[8]:1 tcpwm[1].line

[9]:1 tcpwm[0].l

ine_comp l[1]:4 tcpwm[1].line

_compl[9]:1 tcpwm[1].line

[10]:1 scb[6].ua

rt_rx:1 scb[6].ua

rt_tx:1 scb[6].ua

rt_rts:1 scb[6].ua

rt_cts:1 scb[6].i2

c_scl:1 scb[6].i2

c_sda:1 scb[6].spi

_mosi:1 scb[6].spi

_miso:1 scb[6].spi

_clk:1 scb[6].spi

_select0:1 peri.tr_io_i

nput[26]:0 peri.tr_io_i

nput[27]:0 scb[6].spi

_select1:1

P13.5

P13.7

tcpwm[0].l

ine_comp l[2]:4 tcpwm[1].line

_compl[10]:1 tcpwm[1].line

[11]:1 tcpwm[0].l

ine_comp l[3]:4 tcpwm[1].line

_compl[11]:1 scb[6].spi

_select2:1 scb[6].spi

_select3:1

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize utilization of on-chip resources.

Document Number: 002-21414 Rev. *O Page 30 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Analog, Smart I/O, and DSI alternate Port Pin functionality is provided in

Table 9

.

Table 9. Port Pin Analog, Smart I/O, and DSI Functions

Port/Pin

P0.0

P0.1

P0.2

P0.3

P0.4

P4.1

P4.2

P4.3

P5.0

P5.1

P5.2

P5.3

P5.4

P2.7

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P4.0

P5.5

P5.6

P5.7

P6.0

P14.1

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P0.5

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P14.0

Name

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

USBDP

P4.1

P4.2

P4.3

P5.0

P5.1

P5.2

P5.3

P5.4

P2.7

P3.0

P3.1

P3.2

P3.3

P3.4

P3.5

P4.0

P5.5

P5.6

P5.7

P6.0

USBDM

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

Analog wco_in wco_out lpcomp.inp_comp0

lpcomp.inn_comp0

Digital HV DSI dsi[0].port_if[0] dsi[0].port_if[1] dsi[0].port_if[2] pmic_wakeup_in hibernate_wakeup[1] dsi[0].port_if[3] dsi[0].port_if[4] pmic_wakeup_out dsi[0].port_if[5] dsi[1].port_if[0] dsi[1].port_if[1] dsi[1].port_if[2] dsi[1].port_if[3] hibernate_wakeup[0] dsi[1].port_if[4] dsi[1].port_if[5] dsi[2].port_if[0] dsi[2].port_if[1] dsi[2].port_if[2] dsi[2].port_if[3] dsi[2].port_if[4] dsi[2].port_if[5] dsi[2].port_if[6] dsi[2].port_if[7] dsi[0].port_if[6] dsi[0].port_if[7] dsi[1].port_if[6] dsi[1].port_if[7] dsi[3].port_if[0] dsi[3].port_if[1] dsi[3].port_if[2] dsi[3].port_if[3] dsi[3].port_if[4] dsi[3].port_if[5] dsi[3].port_if[6] dsi[3].port_if[7] dsi[4].port_if[0]

Document Number: 002-21414 Rev. *O

SMARTIO USB usb.usb_dp_pad

usb.usb_dm_pad

Page 31 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

P8.3

P8.4

P8.5

P8.6

P8.7

P9.0

P9.1

P9.2

P7.3

P7.4

P7.5

P7.6

P7.7

P8.0

P8.1

P8.2

P9.3

P9.4

P9.5

P9.6

P9.7

Table 9. Port Pin Analog, Smart I/O, and DSI Functions

(continued)

Port/Pin

P6.1

P6.2

P6.3

P6.4

Name

P6.1

P6.2

P6.3

P6.4

Analog lpcomp.inp_comp1

lpcomp.inn_comp1

Digital HV

P6.5

P6.6

P6.7

P7.0

P7.1

P7.2

P6.5

P6.6

P6.7

P7.0

P7.1

P7.2

csd.cmodpadd

csd.cmodpads

csd.csh_tankpadd

csd.csh_tankpads

csd.vref_ext

swd_data swd_clk

P10.0

P10.1

P10.2

P10.3

P10.4

P10.5

P10.6

P10.7

P8.3

P8.4

P8.5

P8.6

P8.7

P9.0

P9.1

P9.2

P7.3

P7.4

P7.5

P7.6

P7.7

P8.0

P8.1

P8.2

P9.3

P9.4

P9.5

P9.6

P9.7

P10.0

P10.1

P10.2

P10.3

P10.4

P10.5

P10.6

P10.7

csd.cshieldpads

ctb_oa0+ ctb_oa0ctb_oa0_out ctb_oa1_out ctb_oa1ctb_oa1+ ctb_oa0+ ctb_oa1+ or ext_vref sarmux[0] sarmux[1] sarmux[2] sarmux[3] sarmux[4] sarmux[5] sarmux[6] sarmux[7]

Document Number: 002-21414 Rev. *O

DSI dsi[4].port_if[1] dsi[4].port_if[2] dsi[4].port_if[3] dsi[4].port_if[4] dsi[4].port_if[5] dsi[4].port_if[6] dsi[4].port_if[7] dsi[5].port_if[0] dsi[5].port_if[1]

SMARTIO dsi[5].port_if[2] dsi[5].port_if[3] dsi[5].port_if[4] dsi[5].port_if[5] dsi[5].port_if[6] dsi[5].port_if[7] dsi[11].port_if[0] smartio[8].io[0] dsi[11].port_if[1] smartio[8].io[1] dsi[11].port_if[2] smartio[8].io[2] dsi[11].port_if[3] smartio[8].io[3] dsi[11].port_if[4] smartio[8].io[4] dsi[11].port_if[5] smartio[8].io[5] dsi[11].port_if[6] smartio[8].io[6] dsi[11].port_if[7] smartio[8].io[7] dsi[10].port_if[0] smartio[9].io[0] dsi[10].port_if[1] smartio[9].io[1] dsi[10].port_if[2] smartio[9].io[2] dsi[10].port_if[3] smartio[9].io[3] dsi[10].port_if[4] smartio[9].io[4] dsi[10].port_if[5] smartio[9].io[5] dsi[10].port_if[6] smartio[9].io[6] dsi[10].port_if[7] smartio[9].io[7] dsi[9].port_if[0] dsi[9].port_if[1] dsi[9].port_if[2] dsi[9].port_if[3] dsi[9].port_if[4] dsi[9].port_if[5] dsi[9].port_if[6] dsi[9].port_if[7]

USB

Page 32 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 9. Port Pin Analog, Smart I/O, and DSI Functions

(continued)

Port/Pin

P11.0

P11.1

P11.2

P11.3

P11.4

P11.5

P12.6

P12.7

P13.0

P13.1

P13.2

P13.3

P13.4

P13.5

P13.6

P13.7

P11.6

P11.7

P12.0

P12.1

P12.2

P12.3

P12.4

P12.5

Name

P11.0

P11.1

P11.2

P11.3

P11.4

P11.5

P11.6

P11.7

P12.0

P12.1

P12.2

P12.3

P12.4

P12.5

P12.6

P12.7

P13.0

P13.1

P13.2

P13.3

P13.4

P13.5

P13.6

P13.7

Analog eco_in eco_out

Digital HV DSI dsi[8].port_if[0] dsi[8].port_if[1] dsi[8].port_if[2] dsi[8].port_if[3] dsi[8].port_if[4] dsi[8].port_if[5] dsi[8].port_if[6] dsi[8].port_if[7] dsi[7].port_if[0] dsi[7].port_if[1] dsi[7].port_if[2] dsi[7].port_if[3] dsi[7].port_if[4] dsi[7].port_if[5] dsi[7].port_if[6] dsi[7].port_if[7] dsi[6].port_if[0] dsi[6].port_if[1] dsi[6].port_if[2] dsi[6].port_if[3] dsi[6].port_if[4] dsi[6].port_if[5] dsi[6].port_if[6] dsi[6].port_if[7]

SMARTIO USB

Document Number: 002-21414 Rev. *O Page 33 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Power Supply Considerations

The following power system diagrams show typical connections for power pins for all supported packages, and with and without usage of the buck regulator.

In these diagrams, the package pin is shown with the pin name, for example "V

DDA by that pin is also shown, for example "V

DDD

, A1; I/O port P1".

, A12". For V

DDx

pins, the I/O port that is powered

Figure 11. 124-BGA Power Connection Diagram

1.7 to 3.6 V

1 µF

1 KΩ at

100 MHz

1 µF

10 µF

1 KΩ at

100 MHz

10 µF 0.1 µF

1 µF

1 µF

1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

CY8C61x6/7, 124-BGA package

V

DD_NS

, J1 V

DDD

, A1; I/O port P1

V

BACKUP

, D1; I/O port P0

V

DDIO0

, C4; I/O ports P11, P12, P13

V

DDIO1

, K12; I/O ports P5, P6, P7, P8

V

DDIO2

, L4; I/O ports P2, P3, P4

V

DDUSB

, M1; I/O port P14

V

DDA

, A12

V

DDIOA

, A13; I/O ports P9, P10

B12,C3,D4,D10,K4,K10

V

SS

V

BUCK1

, K3

V

CCD

, A2

V

IND1

, J2

V

IND2

, K2

V

RF

, K1

0.1 µF

1 KΩ at

100 MHz

10 µF

4.7 µF

2.2 µH

0.1 µF

10 µF

Document Number: 002-21414 Rev. *O Page 34 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 12. 124-BGA (No Buck) Power Connection Diagram

1.7 to 3.6 V

1 µF

1 KΩ at

100 MHz

1 µF

10 µF

1 KΩ at

100 MHz

10 µF 0.1 µF

1 µF

1 µF

1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

CY8C61x6/7, 124-BGA package

V

DD_NS

, J1 V

DDD

, A1; I/O port P1

V

BACKUP

, D1; I/O port P0

V

DDIO0

, C4; I/O ports P11, P12, P13

V

DDIO1

, K12; I/O ports P5, P6, P7, P8

V

DDIO2

, L4; I/O ports P2, P3, P4

V

DDUSB

, M1; I/O port P14

V

DDA

, A12

V

DDIOA

, A13; I/O ports P9, P10

B12,C3,D4,D10,K4,K10

V

SS

V

BUCK1

, K3

V

CCD

, A2

V

IND1

, J2

V

IND2

, K2

V

RF

, K1

4.7 µF

Document Number: 002-21414 Rev. *O Page 35 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 13. 80-WLCSP Power Connection Diagram

1.7 to 3.6 V

1 KΩ at

100 MHz

1 KΩ at

100 MHz

10 µF 0.1 µF

1 µF

1 µF

0.1 µF

0.1 µF

1 µF

1 µF

10 µF

0.1 µF

0.1 µF

0.1 µF

CY8C61x6/7, 80-WLCSP package

V

DD_NS

, K11 V

DDD

, B11; I/O port P1

V

BACKUP

, D11; I/O port P0

V

DDIO0

, A6; I/O ports P11, P12

V

DDIO1

, M1; I/O ports P5, P6, P7, P8

V

DDUSB

, P11; I/O port P14

V

DDA

, F1; I/O ports P9, P10

A8, D1, P5, R8

V

SS

V

BUCK1

, N10

V

CCD

, A10

V

IND1

, L10

V

IND2

, M11

0.1 µF

1 KΩ at

100 MHz

10 µF

4.7 µF

2.2 µH

0.1 µF

Figure 14. 80-WLCSP (No Buck) Power Connection Diagram

1.7 to 3.6 V

1 µF

1 µF

1 KΩ at

100 MHz

1 µF

10 µF

1 KΩ at

100 MHz

10 µF

1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

0.1 µF

CY8C61x6/7, 80-WLCSP package

V

DD_NS

, K11 V

DDD

, B11; I/O port P1

V

BACKUP

, D11; I/O port P0

V

DDIO0

, A6; I/O ports P11, P12

V

DDIO1

, M1; I/O ports P5, P6, P7, P8

V

DDUSB

, P11; I/O port P14

V

DDA

, F1; I/O ports P9, P10

A8, D1, P5, R8

V

SS

V

BUCK1

, N10

V

CCD

, A10

V

IND1

, L10

V

IND2

, M11

4.7 µF

Document Number: 002-21414 Rev. *O Page 36 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

There are as many as eight V package, and multiple V

SS

DDx

supply pins, depending on the

ground pins. The power pins are:

V

DDD

: the main digital supply. It powers the low dropout (LDO) regulators and I/O port 1.

.

V

CCD

: the main LDO output. It requires a 4.7-µF capacitor for regulation. The LDO can be turned off when V from the switching regulator (see V technical reference manual (TRM) .

BUCK1

CCD

is driven

below). For more information, see the power system block diagram in the device

V

DDA

: the supply for the analog peripherals. Voltage must be applied to this pin for correct device initialization and boot up.

V

DDIOA

: the supply for I/O ports 9 and 10. If it is present in the device package, it must be connected to V

DDA

.

V

DDIO0

: the supply for I/O ports 11, 12, and 13.

V

DDIO1

: the supply for I/O ports 5, 6, 7, and 8.

V

DDIO2

: the supply for I/O ports 2, 3, and 4.

V

BACKUP

: the supply for the backup domain, which includes the

32-kHz WCO and the RTC. It can be a separate supply as low as 1.4 V, for battery or supercapacitor backup, as

Figure 15

shows. Otherwise it is connected to V

DDD

. It powers I/O port 0.

Figure 15. Separate Battery Connection to V

BACKUP

1.7 to 3.6 V

1.4 to 3.6 V

10 µF

1 µF

0.1 µF

0.1 µF

V

V

DDD

BACKUP

■ V

DDUSB

: the supply for the USB peripheral and the USBDP and

USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If

USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can be used as limited-capability GPIOs on I/O port 14.

Table 10

shows a summary of the I/O port supplies:

Table 10. I/O Port Supplies

Port

0

1

2, 3, 4

5, 6, 7, 8

9, 10

11, 12, 13

14

Supply

V

BACKUP

V

DDD

V

DDIO2

V

DDIO1

V

DDIOA

V

DDIO0

V

DDUSB

Alternate Supply

V

DDD

-

-

-

V

DDA

-

-

Note: If the USB pins are not used, connect V nected.

DDUSB

to ground and leave the P14.0/USBDP and P14.1/USBDM pins uncon-

Voltage must be applied to the V

DDD

pin, and the V

DDA

I/O port is not being used, applying voltage to the corresponding

V

DDx

pin is optional.

pin as noted above, for correct device initialization and operation. If an

V

SS

: ground pins for the above supplies. All ground pins should be connected together to a common ground.

In addition to the LDO regulator, a single input multiple output

(SIMO) switching regulator is included. It provides two regulated outputs using a single inductor. The regulator pins are:

V

DD_NS

: the regulator supply.

V

IND1

and V

IND2

: the inductor and capacitor connections.

V

BUCK1

V

CCD

: the first regulator output. It is typically used to drive

, see above.

V

RF

: the second regulator output. It is typically not used; the pin may not be available in some packages.

The various V

DD

power pins are not connected together on chip.

They can be connected off chip, in one or more separate nets. If separate power nets are used, they can be isolated from noise from the other nets using optional ferrite beads, as indicated in the diagrams.

No external load should be placed on V regulator is used.

CCD

, V

RF

, or any of the switching regulator power pins; whether or not the switching

There are no power pin sequencing requirements; power supplies may be brought up in any order. The power management system holds the device in reset until all power pins are at the voltage levels required for proper operation.

Note: If a battery is installed on the PCB first, V battery during product manufacture and storage.

DDD

must be cycled for at least 50 µs. This prevents premature drain of the

Bypass capacitors must be connected to a common ground from the V

DDx

and other pins, as indicated in the diagrams. Typical practice for systems in this frequency range is to use a 10-µF or

1-µF capacitor in parallel with a smaller capacitor (0.1 µF, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated for optimal bypassing.

All capacitors and inductors should be ±20% or better. The capacitor connected to V

IND2

should be 100 nF. The recommended inductor value is 2.2 µH ±20% (for example, TDK

MLP2012H2R2MT0S1).

It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the applied voltage is a significant percentage of the rated working voltage.

For more information on pad layout, refer to PSoC 6 CAD libraries .

Document Number: 002-21414 Rev. *O Page 37 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Electrical Specifications

All specifications are valid for –40 °C ≤ T

A

≤ 85 °C and for 1.71 V to 3.6 V except where noted.

Absolute Maximum Ratings

Table 11. Absolute Maximum Ratings

[2]

Spec ID#

SID1

SID2

SID3

SID4

SID5

SID3A

SID4A

SID5A

Parameter

V

DD_ABS

V

CCD_ABS

V

GPIO_ABS

I

GPIO_ABS

I

GPIO_injection

ESD_HBM

ESD_CDM

LU

Description

Analog or digital supply relative to V

(V

SSD

= V

SSA

)

SS

Direct digital core voltage input relative to V

SSD

GPIO voltage; V

DDD

or V

DDA

Current per GPIO

GPIO injection current per pin

Min

–0.5

–0.5

–0.5

–25

–0.5

Electrostatic discharge Human Body

Model

Electrostatic discharge Charged

Device Model

2200

500

Pin current for latchup-free operation –100

Typ

Max

4

1.2

Unit

V

V

– V

DD

+ 0.5

V

– 25 mA

– 0.5

mA

– – V

100

V mA

Details / Conditions

Device-Level Specifications

Table 14

provides detailed specifications of CPU current. Table 12

summarizes these specifications, for rapid review of CPU currents under common conditions. Note that the max frequency for CM4 is 150 MHz, and for CM0+ is 100 MHz. IMO and FLL are used to generate the CPU clocks; FLL is not used when the CPU clock frequency is 8 MHz.

Table 12. CPU Current Specifications Summary

Condition Range

LP Mode, V

DDD

= 3.3 V, V

CCD

= 1.1 V, with buck regulator

CM4 active, CM0+ sleep

CM0+ active, CM4 sleep

CM4 sleep, CM0+ sleep

CM0+ sleep, CM4 off

Across CPUs clock ranges: 8–150/100 MHz; Dhrystone with flash cache enabled

Minimum regulator current mode Across CM4/CM0+ CPU active/sleep modes

ULP Mode, V

DDD

= 3.3 V, V

CCD

= 0.9 V, with buck regulator

CM4 active, CM0+ sleep

CM0+ active, CM4 sleep

CM4 sleep, CM0+ sleep

CM0+ sleep, CM4 off

Minimum regulator current mode

Deep Sleep

Hibernate

Across CPUs clock ranges: 8 – 50/25 MHz; Dhrystone with flash cache enabled

Across CM4/CM0+ CPU active/sleep modes

Across SRAM retention

Across V

DDD

Typ Range

0.9–6.9 mA

0.8–3.8 mA

0.7–1.5 mA

0.7–1.3 mA

0.6–0.7 mA

Max Range

1.5–8.6 mA

1.3–4.5 mA

1.3–2.2 mA

1.3–2 mA

1.1–1.1 mA

0.65–1.6 mA 0.8–2.2mA

0.51–0.91 mA 0.72–1.25 mA

0.42–0.76 mA

0.41–0.62 mA

0.65–1.1 mA

0.6–0.9 mA

0.39–0.54 mA

7–9 µA

300–800 nA

0.6–0.76 mA

-

-

Note

2. Usage above the absolute maximum conditions listed in Table 11 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended

periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature

Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Document Number: 002-21414 Rev. *O Page 38 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 16. Typical Device Currents vs. CPU Frequency; System Low Power (LP) Mode

[3]

8

7

6

5

4

CM4 Active, CM0+ Sleep 1/2 CM4

CM4 Active, CM0+ Sleep same as CM4

CM0+ Active, CM4 Sleep

3

2

1

0

0 25 50 75

CPU Clock, MHz

Power Supplies

Table 13. Power Supply DC Specifications

Spec ID# Parameter

SID6 V

DDD

Description

Internal regulator and Port 1 GPIO supply

SID7

SID7A

SID7B

SID7E

SID7C

SID7D

SID7F

V

V

V

V

V

V

V

DDA

DDIO1

DDIO0

DDIO0

DDIO2

DDIOA

DDUSB

Analog power supply voltage.

Shorted to V

DDIOA

on PCB.

GPIO supply for ports 5 to 8 when present

GPIO supply for ports 11 to 13 when present

Supply for eFuse programming

GPIO supply for ports 2 to 4 when present

GPIO supply for ports 9 and 10 when present. Must be connected to V on PCB.

DDA

Supply for port 14 (USB or GPIO) when present

SID6B

SID8

SID9

SID10

SID11

V

V

V

C

C

BACKUP

CCD1

CCD2

EFC

EXC

Min

1.7

1.7

1.7

1.7

2.38

1.7

1.7

1.7

Backup power and GPIO Port 0 supply when present

1.7

Output voltage (for core logic bypass) –

Output voltage (for core logic bypass) –

External regulator voltage (V bypass

CCD

)

Power supply decoupling capacitor

3.8

Typ

2.5

1.1

0.9

4.7

10

100

Max Unit

3.6

V –

3.6

3.6

3.6

2.62

3.6

3.6

3.6

3.6

5.6

µ

µ

V

V

Internally unregulated supply

V –

V

Must be ≥ V

DDA

if the CapSense

(CSD) block is used in the application

V –

V

V

125

Details / Conditions

Min. supply is 2.85 V for USB

V Min. is 1.4 V when V

V

V

System LP mode

150

DDD

F X5R ceramic or better;

F X5R ceramic or better

is removed.

ULP mode. Valid for –20 to 85 °C.

Note

3. CM4 Active, CM0+ Sleep 1/2 CM4 trace values are higher because above 100 MHz, the PLL must be used instead of the FLL.

Document Number: 002-21414 Rev. *O Page 39 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

CPU Current and Transition Times

Table 14. CPU Current and Transition Times

Spec ID# Parameter Description Min Typ Max Unit

LP RANGE POWER SPECIFICATIONS (for V

CCD

= 1.1 V with Buck and LDO)

Cortex M4. Active Mode

Execute with Cache Disabled (Flash)

2.3

3.2

SIDF1 I

DD1

Execute from Flash; CM4 Active

50 MHz,

CM0+ Sleep 25 MHz.

With IMO & FLL. While(1).

SIDF2 I

DD2

Execute from Flash; CM4 Active

8 MHz, CM0+ Sleep 8 MHz. With

IMO. While(1).

Execute with Cache Enabled

SIDC1

SIDC2

SIDC3

SIDC4 I

I

I

I

DD3

DD4

DD5

DD6

Execute from Cache; CM4 Active

150 MHz, CM0+ Sleep 75 MHz.

IMO & PLL. Dhrystone.

Execute from Cache;

CM4 Active 100 MHz, CM0+ Sleep

100 MHz. IMO & FLL. Dhrystone.

Execute from Cache; CM4 Active

50 MHz, CM0+ Sleep 25 MHz. IMO

& FLL. Dhrystone

Execute from Cache; CM4 Active

8 MHz, CM0+ Sleep 8 MHz. IMO.

Dhrystone.

Cortex M0+. Active Mode

Execute with Cache Disabled (Flash)

SIDF3

SIDF4 I

I

DD7

DD8

Execute from Flash;

CM4 Off, CM0+ Active 50 MHz.

With IMO & FLL. While (1).

Execute from Flash;

CM4 Off, CM0+ Active 8 MHz.

With IMO. While (1).

3.1

5.7

0.9

1.2

2.8

6.9

10.9

13.7

13.7

15.5

4.8

7.4

11.3

2.4

3.7

6.3

0.9

1.3

3

2.4

3.2

5.6

0.8

1.1

2.60

3.6

6.5

1.5

1.6

3.5

8.6

5.8

8.4

12

3.4

4.1

7.2

1.5

1.8

3.8

3.3

3.7

6.3

1.5

1.6

3.4

mA V

DDD

Details / Conditions mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD mA

V

V

DDD

DDD mA V

DDD mA V

DDD mA V mA V mA V

DDD

DDD

DDD

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

Document Number: 002-21414 Rev. *O Page 40 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 14. CPU Current and Transition Times

(continued)

Spec ID# Parameter

Execute with Cache Enabled

Description Min Typ Max Unit

3.8

4.5

SIDC5 I

DD9

Execute from Cache;

CM4 Off, CM0+ Active 100 MHz.

With IMO & FLL. Dhrystone.

SIDC6 I

DD10

Execute from Cache;

CM4 Off, CM0+ Active 8 MHz.

With IMO. Dhrystone.

Cortex M4. Sleep Mode

SIDS1

SIDS2

SIDS3 I

I

I

DD11

DD12

DD13

CM4 Sleep 100 MHz;

CM0+ Sleep 25 MHz. With IMO &

FLL.

CM4 Sleep 50 MHz;

CM0+ Sleep 25 MHz. With IMO &

FLL.

CM4 Sleep 8 MHz, CM0+ Sleep 8

MHz.

With IMO.

Cortex M0+. Sleep Mode

SIDS4

SIDS5 I

I

DD14

DD15

CM4 Off, CM0+ Sleep 50 MHz.

With IMO & FLL.

CM4 Off, CM0+ Sleep 8 MHz. With

IMO.

Cortex M4. Minimum Regulator Current Mode

SIDLPA1

SIDLPA2 I

I

DD16

DD17

Execute from Flash; CM4 LPA 8

MHz, CM0+ Sleep 8 MHz. With

IMO. While (1).

Execute from Cache; CM4 LPA 8

MHz, CM0+ Sleep 8 MHz. With

IMO. Dhrystone.

Cortex M0+. Minimum Regulator Current Mode

SIDLPA3 I

DD18

Execute from Flash;

CM4 Off, CM0+ Active 8 MHz.

With IMO. While (1).

Document Number: 002-21414 Rev. *O

5.9

9

0.8

1.20

2.60

1.5

2.2

4

1.2

1.7

3.4

0.7

1

2.4

1.3

1.9

3.80

0.7

1

2.4

0.9

1.2

2.8

0.9

1.3

2.9

0.8

1.1

2.7

6.5

9.7

1.3

1.7

3.4

2.2

2.7

4.6

1.9

2.2

4.3

1.3

1.5

3.3

2

2.4

4.6

1.3

1.5

3.3

1.5

1.7

3.5

1.5

1.8

3.7

1.4

1.6

3.6

mA

V

V

DDD

DDD

Details / Conditions mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V mA V

DDD mA V

DDD mA V mA V

DDD mA V

DDD mA mA V

DDD mA V

DDD mA = 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C mA

V

V

DDD

DDD

DDD

DDD mA V

DDD mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

= 3.3 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 1.8 to 3.3 V, LDO, Max at 85 °C

Page 41 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 14. CPU Current and Transition Times

(continued)

Spec ID# Parameter

SIDLPA4 I

DD19

Description

Execute from Cache; CM4 Off,

CM0+ Active 8 MHz. With IMO.

Dhrystone.

Min Typ Max Unit

0.8

1.2

2.7

1.4

1.7

3.6

mA V

DDD

Details / Conditions

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C

Cortex M4. Minimum Regulator Current Mode

SIDLPS1 I

DD20

CM4 Sleep 8 MHz, CM0+ Sleep 8

MHz.

With IMO.

0.7

1

2.4

1.1

1.5

3.3

mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C

Cortex M0+. Minimum Regulator Current Mode

SIDLPS3 I

DD22

CM4 Off, CM0+ Sleep 8 MHz. With

IMO.

0.6

0.9

1.1

1.5

mA V mA V

DDD

DDD

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

– 2.4

3.3

mA V

DDD

= 1.8 to 3.3 V, LDO, Max at 85 °C

ULP RANGE POWER SPECIFICATIONS (for V

CCD

= 0.9 V using the Buck). ULP mode is valid from –20 to +85 °C.

Cortex M4. Active Mode

Execute with Cache Disabled (Flash)

SIDF5 I

DD3

Execute from Flash; CM4 Active 50

MHz, CM0+ Sleep 25 MHz.

With IMO & FLL. While(1).

– 1.7

2.2

SIDF6

Execute with Cache Enabled

SIDC8

I

I

DD4

DD10

Execute from Flash; CM4 Active 8

MHz, CM0+ Sleep 8 MHz. With

IMO. While (1)

Execute from Cache; CM4 Active

50 MHz, CM0+ Sleep 25 MHz.

With IMO & FLL. Dhrystone.

2.1

0.56

0.75

1.6

2.4

0.8

1

2.2

mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C

2.4

0.65

0.8

2.7

0.8

1.1

mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C

SIDC9

SIDF7 I

I

DD11

DD16

Execute from Cache; CM4 Active 8

MHz, CM0+ Sleep 8 MHz.

With IMO. Dhrystone.

Cortex M0+. Active Mode

Execute with Cache Disabled (Flash)

Execute from Flash; CM4 Off,

CM0+ Active 25 MHz. With IMO &

FLL. Write(1).

SIDF8 I

DD17

Execute from Flash; CM4 Off,

CM0+ Active 8 MHz. With IMO.

While(1).

Execute with Cache Enabled

SIDC10 I

DD18

Execute from Cache; CM4 Off,

CM0+ Active 25 MHz. With IMO &

FLL. Dhrystone.

SIDC11 I

DD19

Execute from Cache; CM4 Off,

CM0+ Active 8 MHz. With IMO.

Dhrystone.

1

0.91

1.34

1.4

1.34

1.6

0.54

0.75

0.73

1

1.25

1.6

0.51

0.72

0.73

0.95

mA mA

V mA V mA V mA V

V mA V mA V mA V

DDD

DDD

DDD

DDD

DDD

DDD

DDD

DDD

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

Document Number: 002-21414 Rev. *O Page 42 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 14. CPU Current and Transition Times

(continued)

Spec ID# Parameter

Cortex M4. Sleep Mode

Description Min Typ Max Unit

SIDS7

SIDS8 I

I

DD21

DD22

CM4 Sleep 50 MHz, CM0+ Sleep

25 MHz. With IMO & FLL.

CM4 Sleep 8 MHz, CM0+ Sleep 8

MHz.

With IMO.

Cortex M0+. Sleep Mode

0.76

1.1

0.42

0.59

1.1

1.4

0.65

0.8

Details / Conditions mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C

SIDS9 I

DD23

CM4 Off, CM0+ Sleep 25 MHz.

With IMO & FLL.

0.62

0.88

0.41

0.58

0.9

1.1

0.6

0.8

mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C

SIDS10 I

DD24

CM4 Off, CM0+ Sleep 8 MHz.

With IMO.

Cortex M4. Minimum Regulator Current Mode

SIDLPA5 I

DD25

Execute from Flash. CM4 Active 8

MHz, CM0+ Sleep 8 MHz. With

IMO. While(1).

SIDLPA6 I

DD26

Execute from Cache. CM4 Active 8

MHz, CM0+ Sleep 8 MHz. With

IMO. Dhrystone.

Cortex M0+. Minimum Regulator Current Mode

SIDLPA7 I

DD27

Execute from Flash. CM4 Off,

CM0+ Active 8 MHz. With IMO.

While (1).

0.52

0.76

0.78

0.75

1

0.54

0.76

1

0.51

0.75

0.75

0.48

0.7

1

0.7

0.95

mA mA V mA V mA V mA

V

V mA V

DDD

DDD

DDD

DDD

DDD

DDD

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C mA V

DDD

= 3.3 V, Buck ON, Max at 60 °C mA V

DDD

= 1.8 V, Buck ON, Max at 60 °C

SIDLPA8 I

DD28

Execute from Cache. CM4 Off,

CM0+ Active 8 MHz. With IMO.

Dhrystone.

Cortex M4. Minimum Regulator Current Mode

SIDLPS5 I

DD29

CM4 Sleep 8 MHz, CM0 Sleep 8

MHz.

With IMO.

Cortex M0+. Minimum Regulator Current Mode

SIDLPS7 I

DD31

CM4 Off, CM0+ Sleep 8 MHz. With

IMO.

Deep Sleep Mode

SIDDS1

SIDDS1_B I

SIDDS2 I

I

DD33A

DD33A_B

DD33B

With internal buck enabled and

64K SRAM retention

With internal buck enabled and

64K SRAM retention

With internal buck enabled and

256K SRAM retention

With internal buck enabled and

256K SRAM retention

SIDDS2_B I

DD33B_B

Hibernate Mode

SIDHIB1 I

DD34

SIDHIB2 I

DD34A

V

V

DDD

DDD

= 1.8 V

= 3.3 V

0.4

0.57

0.39

0.56

7

7

9

9

300

800

0.6

0.8

0.6

0.8

– mA mA

µA

µA

µA

µA nA nA

V mA V

V mA V

DDD

DDD

DDD

DDD

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

= 3.3 V, Buck ON, Max at 60 °C

= 1.8 V, Buck ON, Max at 60 °C

Max value is at 85 °C

Max value is at 60 °C

Max value is at 85 °C

Max value is at 60 °C

No clocks running

No clocks running

Document Number: 002-21414 Rev. *O Page 43 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 14. CPU Current and Transition Times

(continued)

Spec ID# Parameter

Power Mode Transition Times

SID12

T

LPACT_AC

T

Description

Minimum regulator current to LP transition time

SID13 T

DS_LPACT

Deep Sleep to LP transition time

SID14 T

HIB_ACT

Hibernate to LP transition time

Min Typ Max Unit

500

35

25

µs

µs

µs

Details / Conditions

Including PLL lock time

Guaranteed by design

Including PLL lock time

XRES

Table 15. XRES DC Specifications

Spec ID# Parameter

SID17 T

XRES_IDD

SID17A T

XRES_IDD_1

SID77 V

IH

Description

IDD when XRES asserted

IDD when XRES asserted

Input voltage high threshold

SID78 Input voltage low threshold

SID80

SID81

SID82

V

IL

C

IN

V

HYSXRES

I

DIODE

Input capacitance

Input voltage hysteresis

Current through protection diode to

V

DD

/V

SS

Min Typ Max Unit

300

800

– nA V

DDD

Details / Conditions

= 1.8 V nA V

DDD

= 3.3 V

V CMOS Input 0.7 ×

V

DD

– – V CMOS Input

– 3

0.3 ×

V

DD

– pF –

100

100 mV

µA

Table 16. XRES AC Specifications

Spec ID# Parameter

SID15 T

XRES_ACT

SID16 T

XRES_PW

Time from XRES release to

Cortex-M0+ executing application code

Description

XRES Pulse width

V

V

V

V

IH

IL

IH

V

IL

V

OH

OL

LVTTL input, V

LVTTL input, V

LVTTL input, V

DD

DD

< 2.7 V

< 2.7 V

DD

≥ 2.7 V

LVTTL input, V

DD

≥ 2.7 V

Output voltage high level

Output voltage low level

Min

5

Typ

750

GPIO

Table 17. GPIO DC Specifications

Spec ID#

SID57

SID57A

V

IH

I

IHS

Parameter

SID58 V

IL

Description

Input voltage high threshold

Input current when Pad > V

DDIO for OVT inputs

Input voltage low threshold

Min

0.7 × V

DD

SID241

SID242

SID243

SID244

SID59

SID62A

0.7 × V

DD

2.0

V

DD

– 0.5

Max

Typ

Unit

µs Not minimum regulator current mode; Cortex-M0+ executing at

50 MHz

µs –

Max

0.3 ×

V

10

DD

0.3 ×

V

DD

0.8

0.4

Unit

V

µA Per I

2

C Spec

V

V

V

V

V

V

V

Details / Conditions

CMOS Input

CMOS Input

Details / Conditions

I

OH

= 8 mA

I

OL

= 8 mA

Document Number: 002-21414 Rev. *O Page 44 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 17. GPIO DC Specifications

(continued)

Spec ID#

SID63

SID64

SID65

SID65A

SID66

SID67

SID68

SID69

SID69A

I

I

I

Parameter

R

PULLUP

R

PULLDOWN

I

IL

IL_CTBM

C

V

V

IN

HYSTTL

HYSCMOS

DIODE

TOT_GPIO

Description

Pull-up resistor

Pull-down resistor

Input leakage current (absolute value)

Input leakage on CTBm input pins

Input Capacitance

Input hysteresis LVTTL V

DD

2.7 V

>

Input hysteresis CMOS

Current through protection diode to V

DD

/V

SS

Maximum total source or sink

Chip Current

Min

3.5

3.5

100

0.05 × V

DD

Typ

5.6

5.6

0

100

200

4

5

Max

8.5

8.5

2

Unit kΩ –

Details / Conditions kΩ – nA 25 °C, V

DD

= 3.0 V nA – pF – mV – mV –

µ A – mA –

Table 18. GPIO AC Specifications

Spec ID#

SID70 T

Parameter

RISEF

SID71

SID72

T

T

FALLF

RISES_1

Description

Rise time in Fast Strong Mode.

10% to 90% of V

DD

Fall time in Fast Strong Mode.

10% to 90% of V

DD

Rise time in Slow Strong Mode.

10% to 90% of V

DD

SID72A T

RISES_2

SID73 T

FALLS_1

Rise time in Slow Strong Mode.

10% to 90% of V

DD

Fall time in Slow Strong Mode.

10% to 90% of V

DD

SID73A

SID73G

SID74

SID75

T

FALLS_2

T

FALL_I2C

F

GPIOUT1

F

GPIOUT2

Fall time in Slow Strong Mode.

10% to 90% of V

DD

42

Fall time (30% to 70% of V

DD

Slow Strong mode

) in 20 × V

DDIO

5.5

/

GPIO Fout. Fast Strong mode.

GPIO Fout; Slow Strong mode.

Min

52

48

44

Typ

SID76

SID245

SID246

F

GPIOUT3

F

GPIOUT4

F

GPIOIN

GPIO Fout; Fast Strong mode.

GPIO Fout; Slow Strong mode.

GPIO input operating frequency;1.71 V  V

DD

 3.6 V

Max

2.5

2.5

142

102

211

93

250

100

16.7

7

3.5

100

Unit Details / Conditions ns Cload = 15 pF, 8 mA drive strength ns Cload = 15 pF, 8 mA drive strength ns Cload = 15 pF, 8 mA drive strength,

V

DD

 2.7 V ns Cload = 15 pF, 8 mA drive strength, 2.7 V <

V

DD

 3.6 V ns Cload = 15 pF, 8 mA drive strength,

V

DD

 2.7 V ns Cload = 15 pF, 8 mA drive strength,

2.7 V < V

DD

 3.6 V ns Cload = 10 pF to 400 pF,

8-mA drive strength

MHz 90/10%, 15-pF load,

60/40 duty cycle

MHz 90/10%, 15-pF load,

60/40 duty cycle

MHz 90/10%, 25-pF load,

60/40 duty cycle

MHz 90/10%, 25-pF load,

60/40 duty cycle

MHz 90/10% V

IO

Document Number: 002-21414 Rev. *O Page 45 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

SID288

SID288A

SID288B

SID290

SID290A

SID290B

SID291

SID292

SID65A

Analog Peripherals

Opamp

Table 19. Opamp Specifications

Spec ID#

SID269

SID270

SID271

SID272

SID273

SID274

SID275

SID276

SID277

SID278

SID279

SID280

I

I

I

Parameter

I

DD

I

DD_HI

I

DD_MED

I

DD_LOW

GBW

G

BW_HI

G

BW_MED

G

BW_LO

I

OUT_MAX

I

OUT_MAX_HI

I

OUT_MAX_MID

I

OUT_MAX_LO

I

OUT

OUT_MAX_HI

OUT_MAX_MID

OUT_MAX_LO

Description

Opamp block current. No load.

Power = Hi

Power = Med

Power = Lo

Load = 50 pF, 0.1 mA.

V

DDA

 2.7 V

Power = Hi

Power = Med

Power = Lo

V

DDA

 2.7 V, 500 mV from rail

Power = Hi

Power = Med

Power = Lo

V

DDA

= 1.71 V, 500 mV from rail

Power = Hi

Power = Med

Power = Lo

SID281 V

IN

Input voltage range

SID282

SID283

SID284

SID285

SID286

V

CM

V

OUT

V

OUT_1

V

OUT_2

V

OUT_3

V

OUT_4

V

OS_TR

V

OS_TR

V

OS_TR

V

OS_DR_TR

V

OS_DR_TR

V

OS_DR_TR

CMRR

PSRR

I

IL_CTBM

Input common mode voltage

V

DDA

≥ 2.7 V

Power = Hi, Iload = 10 mA

Power = Hi, Iload = 1 mA

Power = Med, Iload = 1 mA

Power = Lo, Iload = 0.1 mA

Offset voltage

Offset voltage

Offset voltage

Offset voltage drift

Offset voltage drift

Offset voltage drift

DC common mode rejection ratio

Power supply rejection ratio at

1 kHz, 10-mV ripple

Input leakage on CTBm input pins

10

10

6

3

1

4

4

0

Min

0

0.5

0.2

0.2

0.2

67

70

–1

–10

±10

±10

80

85

5

2

Typ

Max

1300 1500

450 600

250 350

– –

V

DDA

0.2

V

DDA

1.5

V

DDA

0.5

V

DDA

0.2

V

DDA

0.2

V

DDA

0.2

1 ±0.5

±1

±2

±3

10

4

Unit

µA –

µA –

µA –

Details / Conditions

MHz –

MHz –

MHz –

– mA – mA – mA –

– mA – mA – mA –

V

Charge pump ON

V

V

Charge pump OFF,

V

DDA

 2.7 V

V

V

V

– mV

Power = Hi, 0.2 V < V

OUT

< (V

DDA

- 0.2 V) mV Power = Med mV Power = Lo

µV/°C

Power = Hi, 0.2 V < V

OUT

< (V

DDA

- 0.2 V)

µV/°C Power = Med

µV/°C Power = Lo dB V

DDA

≥ 2.7 V dB V

DDA

≥ 2.7 V nA –

Document Number: 002-21414 Rev. *O Page 46 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 19. Opamp Specifications

(continued)

Spec ID#

Noise

Parameter Description

SID293

SID294

SID295

SID296

SID297

VN1

VN2

VN3

VN4

CLOAD

Input-referred, 1 Hz – 1 GHz, power = Hi

Input-referred, 1 kHz, power = Hi

Input-referred, 10 kHz, power = Hi

Input-referred, 100 kHz, power = Hi

Stable up to max. load.

Performance specs at 50 pF.

SID298 SLEW_RATE Output slew rate

SID299

SID300

SID301

SID302

SID303

T_OP_WAKE

COMP_MODE

T

PD1

T

PD2

T

PD3

V

HYST_OP

From disable to enable, no external RC dominating

Comparator mode; 50-mV overdrive, Trise = Tfall (approx.)

Response time; power = Hi

Response time; power = Med

Response time; power = Lo

Hysteresis

Deep Sleep Mode

Mode 2 is lowest current range.

Mode 1 has higher GBW.

SID_DS_1 I

DD_HI_M1

SID_DS_2 I

DD_MED_M1

SID_DS_3 I

DD_LOW_M1

SID_DS_4 I

DD_HI_M2

SID_DS_5 I

DD_MED_M2

SID_DS_6 I

DD_LOW_M2

SID_DS_7 GBW_HI_M1

Mode 1, High current

Mode 1, Medium current

Mode 1, Low current

Mode 2, High current

Mode 2, Medium current

Mode 2, Low current

Mode 1, High current

SID_DS_8 GBW_MED_M1 Mode 1, Medium current

SID_DS_9 GBW_LOW_M1 Mode 1, Low current

SID_DS_10 GBW_HI_M2 Mode 2, High current

SID_DS_11 GBW_MED_M2 Mode 2, Medium current

SID_DS_12 GBW_LOW_M2 Mode 2, Low current

SID_DS_13 V

OS_HI_M1

SID_DS_14 V

OS_MED_M1

SID_DS_15 V

OS_LOW_M1

Mode 1, High current

Mode 1, Medium current

Mode 1, Low current

Document Number: 002-21414 Rev. *O

Min

4

Typ Max Unit Details / Conditions

100

180

µVrms – nV/rtHz –

70 – nV/rtHz –

38

25

150

400

2000

10

1300 1500

460 600

230

120

350

60

15

4

2

0.5

0.5

0.2

0.1

5

5

5

125

– nV/rtHz – pF

V/µs

µs

Cload = 50 pF,

Power = Hi, V

DDA

 2.7 V

Refer to

Figure 17 and

Figure 18

.

– ns – ns – ns – mV –

Deep Sleep mode operation: V

V

IN

DDA

is 0.2 to V

DDA

≥ 2.7 V.

–1.5 V

µA Typ at 25 °C

µA Typ at 25 °C

µA Typ at 25 °C

µA 25 °C

µA 25 °C

µA 25 °C

MHz 25 °C

MHz 25 °C

MHz 25 °C

MHz

MHz

MHz mV

20-pF load, no DC load

0.2 V to V

DDA

– 1.5 V

20-pF load, no DC load

0.2 V to V

DDA

– 1.5 V

20-pF load, no DC load

0.2 V to V

DDA

– 1.5 V

25 °C, 0.2 V to V

DDA

1.5 V

– mV mV

25 °C, 0.2 V to V

DDA

1.5 V

25 °C, 0.2 V to V

DDA

1.5 V

Page 47 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 19. Opamp Specifications

(continued)

Spec ID# Parameter Description

SID_DS_16 V

OS_HI_M2

Mode 2, High current

Mode 2, Medium current SID_DS_17 V

OS_MED_M2

SID_DS_18 V

OS_LOW_M2

Mode 2, Low current

Mode 1, High current SID_DS_19 I

OUT_HI_M1

SID_DS_20 I

OUT_MED_M1

SID_DS_21 I

OUT_LOW_M1

SID_DS_22 I

OUT_HI_M2

Mode 1, Medium current

Mode 1, Low current

Mode 2, High current

SID_DS_23 I

OUT_MED_M2

SID_DS_24 I

OUT_LOW_M2

Mode 2, Medium current

Mode 2, Low current

Figure 17. Opamp Step Response, Rising

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.25

0

Input

Output, Power = Hi

Output, Power = Med

0.25

Time, µs

0.5

0.75

1

Min

Typ

5

5

5

10

10

4

1

1

0.5

Max

Unit mV mV mV mA mA mA mA mA mA

Details / Conditions

25 °C, 0.2 V to V

DDA

1.5 V

25 °C, 0.2 V to V

DDA

1.5 V

25 °C, 0.2 V to V

DDA

1.5 V

Output is 0.5 V to V

DDA

0.5 V

Output is 0.5 V to

V

DDA

– 0.5 V

Output is 0.5 V to V

DDA

0.5 V

Output is 0.5 V to V

DDA

0.5 V

Output is 0.5 V to V

DDA

0.5 V

Output is 0.5 V to V

DDA

0.5 V

Figure 18. Opamp Step Response, Falling

1.4

1.2

1

Input

Output, Power = Hi

Output, Power = Med

0.8

0.6

0.4

0.2

0

-0.25

0 0.25

Time. µs

0.5

0.75

1

Document Number: 002-21414 Rev. *O Page 48 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Low-Power (LP) Comparator

Table 20. LP Comparator DC Specifications

Spec ID#

SID84

SID85A

SID85B

SID86

SID86A

SID87

SID247

SID247A

SID88

SID89

SID248

SID259

SID90

I

I

I

V

V

V

V

V

V

V

V

Parameter

OFFSET1

OFFSET2

OFFSET3

HYST1

HYST2

ICM1

ICM2

ICM3

CMRR

CMP1

CMP2

CMP3

ZCMP

Description

Input offset voltage for COMP1.

Normal power mode.

Input offset voltage. Low-power mode.

Input offset voltage. Ultra low-power mode.

Hysteresis when enabled in

Normal mode

Hysteresis when enabled in

Low-power mode

Min

–10

–25

–25

Input common mode voltage in

Normal mode

Input common mode voltage in

Low power mode

0

0

Input common mode voltage in

Ultra low power mode

Common mode rejection ratio in

Normal power mode

Block Current, Normal mode –

Block Current, Low power mode –

Block Current in Ultra low-power mode

DC Input impedance of comparator

0

50

35

Typ

±12

±12

Max

10

0.3

– V

DDIO1

– 0.1

– V

DDIO1

– 0.1

– V

DDIO1

– 0.1

150

10

0.85

25

25

60

80

Unit Details / Conditions mV COMP0 offset is ±25 mV mV

– mV

– mV

– mV

V

V

V

– dB

µA –

µA –

µA

Table 21. LP Comparator AC Specifications

Spec ID#

SID91

SID258

SID92

T

T

T

Parameter

RESP1

RESP2

RESP3

Description

Response time, Normal mode,

100 mV overdrive

Response time, Low power mode, 100 mV overdrive

Response time, Ultra-low power mode, 100 mV overdrive

SID92E

SID92F

T_CMP_EN1

T_CMP_EN2

Time from Enabling to operation

Time from Enabling to operation

Min

Typ

Table 22. Temperature Sensor Specifications

Spec ID#

SID93 T

Parameter

SENSACC

Description

Temperature sensor accuracy

Table 23. Internal Reference Specification

Spec ID#

SID93R V

Parameter

REFBG

Description

Document Number: 002-21414 Rev. *O

Min

–5

Min

1.188

Typ

±1

Typ

1.2

Max

100

1000

20

10

50

Max

5

Max

1.212

Unit

°C

Unit

Details / Conditions ns ns

µs

µs

Normal and Low-power modes

µs Ultra low-power mode

Details / Conditions

–40 to +85 °C

Unit

V –

Details / Conditions

Page 49 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

SAR ADC

Table 24. 12-bit SAR ADC DC Specifications

Spec ID# Parameter

SID94 A_RES

SID95 A_CHNLS_S

Description

SAR ADC Resolution

Number of channels - single-ended

SID96 A-CHNKS_D

SID97 A-MONO

SID98 A_GAINERR

SID99 A_OFFSET

SID100 A_ISAR_1

SID100A A_ISAR_2

SID101 A_VINS

SID102 A_VIND

SID103 A_INRES

SID104 A_INCAP

Number of channels - differential

Monotonicity

Gain error

Input offset voltage

Min

Current consumption at 1 Msps –

Current consumption at 1 Msps.

Reference = V

DD

Input voltage range - single-ended V

SS

Input voltage range - differential V

SS

Input resistance –

Input capacitance –

Typ

Max

12

16

8

±0.2

2

1

1.25

V

DDA

V

DDA

2.2

10

Unit bits –

Details / Conditions

8 full speed.

Diff inputs use neighboring

I/O

Yes –

% With external reference.

mV Measured with 1-V reference mA mA

At 1 Msps. External Bypass

Cap.

At 1 Msps. External Bypass

Cap.

V

V kΩ – pF –

Table 25. 12-bit SAR ADC AC Specifications

Spec ID# Parameter Description

12-bit SAR ADC AC Specifications

SID106 A_PSRR Power supply rejection ratio

SID107 A_CMRR Common mode rejection ratio

One Megasample per second mode:

SID108 A_SAMP_1

SID108A

SID108B

SID109

A_SAMP_2

A_SAMP_3

A_SINAD

Sample rate with external reference bypass cap.

Sample rate with no bypass cap;

Reference = V

DD

Sample rate with no bypass cap.

Internal reference.

Signal-to-noise and Distortion ratio

(SINAD). V

1 Msps.

DDA

= 2.7 to 3.6 V,

SID111A A_INL

SID111B A_INL

Integral Non Linearity.

V

DDA

= 2.7 to 3.6 V, 1 Msps

Integral Non Linearity.

V

DDA

= 2.7 to 3.6 V, 1 Msps

Min

70

66

64

–2

–4

SID112A A_DNL –1

SID112B

SID113

A_DNL

A_THD

Differential Non Linearity.

V

DDA

= 2.7 to 3.6 V, 1 Msps

Differential Non Linearity.

V

DDA

= 2.7 to 3.6 V, 1 Msps

Total harmonic distortion.

V

DDA

= 2.7 to 3.6 V, 1 Msps.

–1

Document Number: 002-21414 Rev. *O

Typ

Max

2

4

1.4

1.7

–65

Unit dB –

Details / Conditions dB Measured at 1 V.

1

250

100

Msps – ksps – ksps – dB Fin = 10 kHz

LSB dB

Measured with internal

V

V

REF

REF

= 1.2 V and bypass cap.

LSB Measured with external

≥ 1 V and V mode < 2 * Vref.

Fin = 10 kHz

IN

common

LSB Measured with internal

V

REF

= 1.2 V and bypass cap.

LSB Measured with external

V

REF

≥ 1 V and V

IN

common mode < 2 * Vref.

Page 50 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

DAC

Table 26. 12-bit DAC DC Specifications

Spec ID# Parameter

SID108D DAC_RES

SID111D DAC_INL

Description

DAC resolution

Integral non-linearity

SID112D DAC_DNL Differential non-linearity

SID99D DAC_OFFSET Output Voltage zero offset error

SID103D DAC_OUT_RES DAC Output Resistance

SID100D DAC_IDD DAC Current

SID101D DAC_QIDD DAC Current when DAC stopped

Min

–4

–2

–2

Typ

15

Max

12

4

2

1

125

1

Unit bits –

LSB –

Details / Conditions

LSB Monotonic to 11 bits.

mV For 000 (hex) k Ω –

µA –

µA –

Table 27. 12-bit DAC AC Specifications

Spec ID# Parameter

SID109D DAC_CONV

Description

DAC Settling time

SID110D DAC_Wakeup Time from Enabling to ready for conversion

CSD

Table 28. CapSense Sigma-Delta (CSD) Specifications

Spec ID# Parameter

CSD V2 Specifications

SYS.PER#3 V

DD_RIPPLE

Description

Max allowed ripple on power supply, DC to 10 MHz

Min

SYS.PER#16

SID308

SID308A

SID309

SID310

SID311

SID312

I

I

V

SID.CSD#15A V

V

DD_RIPPLE_1.8

SID.CSD.BLK I

CSD

SID.CSD#15 V

REF

REF_EXT

SID.CSD#16 I

DAC1IDD

SID.CSD#17 I

DAC2IDD

CSD

V

COMPIDAC

DAC1DNL

DAC1INL

I

DAC2DNL

I

DAC2INL

Max allowed ripple on power supply, DC to 10 MHz

Maximum block current

Voltage reference for CSD and

Comparator

External Voltage reference for

CSD and Comparator

IDAC1 (7-bits) block current

IDAC2 (7-bits) block current

Voltage range of operation

Voltage compliance range of

IDAC

DNL

INL

DNL

INL

Typ

Min Typ

0.6

0.6

1.7

0.6

–1

–3

–1

–3

Max

2

10

Max

Unit

µs

Unit

Details / Conditions

µs Driving through CTBm buffer;

25-pF load

Details / Conditions

±50

±25 mV V

DDA

> 2 V (with ripple), 25 °C

T

A

,

Sensitivity = 0.1 pF mV V

DDA

> 1.75 V (with ripple),

25 ° C T tance (C

≥ 0.4 pF

A

P

, Parasitic Capaci-

) < 20 pF, Sensitivity

µA –

V V

DDA

– V

REF

≥ 0.6 V

4500

1.2

V

DDA

0.6

V

DDA

0.6

1900

1900

– 3.6

– V

DDA

0.6

1

3

1

3

V

µA

µA

V

V

DDA

– V

REF

1.71 to 3.6 V

V V

DDA

– V

REF

≥ 0.6 V

≥ 0.6 V

LSB –

LSB If V

DDA

< 2 V then for LSB of

2.4 µA or less

LSB –

LSB If V

DDA

< 2 V then for LSB of

2.4 µA or less

Document Number: 002-21414 Rev. *O Page 51 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 28. CapSense Sigma-Delta (CSD) Specifications

(continued)

Spec ID# Parameter Description Min Typ Max Unit

SNRC of the following is Ratio of counts of finger to noise. Guaranteed by characterization

SID313_1A SNRC_1 5 – –

Details / Conditions

Ratio 9.5-pF max. capacitance

SID313_1B SNRC_2

SRSS Reference. IMO + FLL

Clock Source. 0.1-pF sensitivity

SRSS Reference. IMO + FLL

Clock Source. 0.3-pF sensitivity

5 – – Ratio 31-pF max. capacitance

SID313_1C SNRC_3 5 – – Ratio 61-pF max. capacitance

SID313_2A

SID313_2B

SID313_2C

SNRC_4

SNRC_5

SNRC_6

SRSS Reference. IMO + FLL

Clock Source. 0.6-pF sensitivity

PASS Reference. IMO + FLL

Clock Source. 0.1-pF sensitivity

PASS Reference. IMO + FLL

Clock Source. 0.3-pF sensitivity

PASS Reference. IMO + FLL

Clock Source. 0.6-pF sensitivity

5

5

5

Ratio 12-pF max. capacitance

Ratio 47-pF max. capacitance

Ratio 86-pF max. capacitance

SID313_3A SNRC_7 5 – – Ratio 27-pF max. capacitance

SID313_3B

SID313_3C

SID314

SID314A

SID314B

SID314C

SID314D

SID314E

SID315 I

I

I

I

I

I

I

SNRC_8

SNRC_9

DAC1CRT1

DAC1CRT2

DAC1CRT3

DAC1CRT12

DAC1CRT22

DAC1CRT32

DAC2CRT1

PASS Reference. IMO + PLL

Clock Source. 0.1-pF sensitivity

PASS Reference. IMO + PLL

Clock Source. 0.3-pF sensitivity

PASS Reference. IMO + PLL

Clock Source. 0.6-pF sensitivity

Output current of IDAC1 (7 bits) in low range

Output current of IDAC1(7 bits) in medium range

Output current of IDAC1(7 bits) in high range

Output current of IDAC1 (7 bits) in low range, 2X mode

Output current of IDAC1(7 bits) in medium range, 2X mode

Output current of IDAC1(7 bits) in high range, 2X mode. V

2 V

DDA

>

Output current of IDAC2 (7 bits) in low range

5

5

4.2

33.7

270

8

67

540

4.2

5.7

45.6

365

11.4

91

730

5.7

Ratio 86-pF max. capacitance

Ratio 168-pF max. capacitance

µA

µA

µA

µA

µA

µA

µA

LSB = 37.5-nA typ

LSB = 300-nA typ.

LSB = 2.4-µA typ.

LSB = 37.5-nA typ.

2X output stage

LSB = 300-nA typ.

2X output stage

LSB = 2.4-µA typ.

2X output stage

LSB = 37.5-nA typ.

SID315A

SID315B

SID315C

SID315D

SID315E

SID315F I

I

I

I

I

I

DAC2CRT2

DAC2CRT3

DAC2CRT12

DAC2CRT22

DAC2CRT32

DAC3CRT13

Output current of IDAC2 (7 bits) in medium range

Output current of IDAC2 (7 bits) in high range

Output current of IDAC2 (7 bits) in low range, 2X mode

Output current of IDAC2(7 bits) in medium range, 2X mode

Output current of IDAC2(7 bits) in high range, 2X mode. V

2 V

DDA

>

Output current of IDAC in 8-bit mode in low range

33.7

270

8

67

540

8

45.6

365

11.4

91

730

11.4

µA LSB = 300-nA typ.

µA

µA

µA

µA

µA

LSB = 2.4-µA typ.

LSB = 37.5-nA typ.

2X output stage

LSB = 300-nA typ.

2X output stage

LSB = 2.4-µA typ.

2X output stage

LSB = 37.5-nA typ.

Document Number: 002-21414 Rev. *O Page 52 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 28. CapSense Sigma-Delta (CSD) Specifications

(continued)

Spec ID#

SID315G

SID315H

SID320

SID321

SID322

SID322A

SID322B

SID323

SID324

SID325

I

I

I

I

I

I

I

Parameter

DAC3CRT23

DAC3CRT33

DACOFFSET

I

DACGAIN

I

DACMISMATCH1

DACMISMATCH2

DACMISMATCH3

DACSET8

DACSET7

CMOD

Description

Output current of IDAC in 8-bit mode in medium range

Output current of IDAC in 8-bit mode in high range. V

DDA

> 2V

All zeroes input

Full-scale error less offset

Mismatch between IDAC1 and

IDAC2 in Low mode

Mismatch between IDAC1 and

IDAC2 in Medium mode

Mismatch between IDAC1 and

IDAC2 in High mode

Settling time to 0.5 LSB for 8-bit

IDAC

Settling time to 0.5 LSB for 7-bit

IDAC

External modulator capacitor.

Min Typ

67

540

2.2

6

5.8

10

10

Max Unit

91

Details / Conditions

µA LSB = 300-nA typ.

730

1

±15

9.2

µA LSB = 2.4-µA typ.

LSB Polarity set by Source or Sink

% LSB = 2.4-µA typ.

LSB LSB = 37.5-nA typ.

LSB LSB = 300-nA typ.

LSB LSB = 2.4-µA typ.

µs Full-scale transition.

No external load.

µs Full-scale transition.

No external load.

nF 5-V rating, X7R or NP0 cap.

Table 29. CSD ADC Specifications

Spec ID# Parameter

CSDv2 ADC Specifications

SIDA94 A_RES

Description

Resolution

SID95

SIDA97

SIDA98

A_CHNLS_S

A-MONO

Number of channels - single ended

Monotonicity

A_GAINERR_VREF Gain error

SIDA98A

SIDA99

SIDA99A

SIDA100

A_GAINERR_VDDA Gain error

A_OFFSET_VREF

A_OFFSET_VDDA

A_ISAR_VREF

Input offset voltage

Input offset voltage

Current consumption

Document Number: 002-21414 Rev. *O

Min Typ Max Unit

0.6

0.2

0.5

0.5

0.3

10

Yes

Details / Conditions bits Auto-zeroing is required every millisecond

16 –

– V

REF

mode

% Reference Source: SRSS

(V

(V

REF

REF

= 1.20 V, V

2.7 V), (V

REF

2.7 V)

DDA

< 2.2 V),

= 1.6 V, 2.2 V < V

= 2.13 V, V

DDA

<

DDA

>

% Reference Source: SRSS

(V

REF

= 1.20 V, V

DDA

< 2.2V),

(V

REF

2.2 V < V

(V

REF

= 1.6 V,

DDA

< 2.7 V),

= 2.13 V, V

DDA

> 2.7 V)

LSB After ADC calibration, Ref. Src

= SRSS, (V

REF

= 1.20 V,

V

DDA

< 2.2 V), (V

2.2 V < V

DDA

REF

< 2.7 V),

(V

REF

= 2.13 V, V

DDA

= 1.6 V,

> 2.7 V)

LSB After ADC calibration, Ref.

Src = SRSS, (V

REF

= 1.20 V,

V

DDA

(V

< 2.2 V),

REF

= 1.6 V, 2.2 V < V

2.7 V),

(V

REF

= 2.13 V, V

DDA

<

DDA

> 2.7 V) mA CSD ADC Block current

Page 53 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 29. CSD ADC Specifications

(continued)

Spec ID# Parameter

SIDA100A A_ISAR_VDDA

SIDA101 A_VINS_VREF

SIDA101A A_VINS_VDDA

SIDA103 A_INRES

SIDA104 A_INCAP

SIDA106

SIDA107

SIDA108

A_PSRR

A_TACQ

SIDA108A A_CONV10

SIDA109

SIDA109A A_SND_VDDA

SIDA111

SIDA111A

SIDA112

SIDA112A

A_CONV8

A_SND_VRE

A_INL_VREF

A_INL_VDDA

A_DNL_VREF

A_DNL_VDDA

Description

Current consumption

Input voltage range - single ended

Input voltage range - single ended

Input charging resistance

Input capacitance

Power supply rejection ratio

(DC)

Sample acquisition time

Conversion time for 8-bit resolution at conversion rate =

Fhclk/(2"(N+2)). Clock frequency = 50 MHz.

Conversion time for 10-bit resolution at conversion rate =

Fhclk/(2"(N+2)). Clock frequency = 50 MHz.

Signal-to-noise and Distortion ratio (SINAD)

Signal-to-noise and Distortion ratio (SINAD)

Integral non-linearity. 11.6 ksps

Integral non-linearity. 11.6 ksps

Differential non-linearity.

11.6 ksps

Differential non- linearity.

11.6 ksps

Min Typ Max Unit

– 0.3

Details / Conditions mA CSD ADC Block current

V

SSA

– V

REF

V

SSA

15

41

60

V

DDA

V (V

REF

(V

REF

= 1.20 V, V

DDA

< 2.2 V),

= 1.6 V, 2.2 V < V

DDA

<

2.7 V),

(V

REF

= 2.13 V, V

DDA

> 2.7 V)

V (V

REF

(V

REF

= 1.20 V, V

DDA

< 2.2 V),

= 1.6 V, 2.2 V < V

DDA

<

2.7 V),

(V

REF

= 2.13 V, V

DDA

> 2.7 V) kΩ – pF – dB –

10

25

µs Measured with 50-Ω source impedance. 10 µs is default software driver acquisition time setting. Settling to within

0.05%.

µs Does not include acquisition time.

60

57

52

2

2

1

1

µs dB dB

Does not include acquisition time.

Measured with 50-Ω source impedance

Measured with 50-Ω source impedance

LSB Measured with 50-Ω source impedance

LSB Measured with 50-Ω source impedance

LSB Measured with 50-Ω source impedance

LSB Measured with 50-Ω source impedance

Document Number: 002-21414 Rev. *O Page 54 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Digital Peripherals

Table 30. Timer/Counter/PWM (TCPWM) Specifications

Spec ID# Parameter

SID.TCPWM.1

I

TCPWM1

SID.TCPWM.2

I

TCPWM2

SID.TCPWM.2A I

TCPWM3

SID.TCPWM.2B I

TCPWM4

Description

Block current consumption at

8 MHz

Block current consumption at

24 MHz

Block current consumption at

50 MHz

Block current consumption at

100 MHz

SID.TCPWM.3

TCPWM

FREQ

Operating frequency

Min Typ Max Unit

– – 70 µA

Details / Conditions

All modes (TCPWM)

180 µA All modes (TCPWM)

270 µA All modes (TCPWM)

540 µA All modes (TCPWM)

SID.TCPWM.4

TPWM

ENEXT

Input Trigger Pulse Width for all Trigger Events

2 / Fc –

SID.TCPWM.5

TPWM

EXT

SID.TCPWM.5A TC

RES

SID.TCPWM.5B PWM

RES

SID.TCPWM.5C Q

RES

Output Trigger Pulse widths

Resolution of Counter

PWM Resolution

1.5 /

Fc

1 / Fc –

1 / Fc –

Quadrature inputs resolution 2 / Fc –

100 MHz Fc max = Fcpu

– ns ns ns

Trigger Events can be Stop, Start,

Reload, Count, Capture, or Kill depending on which mode of operation is selected. Fc is counter operating frequency.

Minimum possible width of Overflow,

Underflow, and CC (Counter equals

Compare value) trigger outputs

Minimum time between successive counts

– ns Minimum pulse width of PWM Output

– ns

Minimum pulse width between

Quadrature phase inputs. Delays from pins should be similar.

Table 31. Serial Communication Block (SCB) Specifications

Spec ID# Parameter

Fixed I

2

C DC Specifications

SID149 I

I2C1

Description

SID150

SID151 I

I

I2C2

I2C3

Block current consumption at

100 kHz

Block current consumption at

400 kHz

Block current consumption at

1 Mbps

SID152 I

I2C4

I2C enabled in Deep Sleep mode

Fixed I

2

C AC Specifications

SID153 F

I2C1

Fixed UART DC Specifications

Bit Rate

SID160 I

UART1

SID161 I

UART2

Block current consumption at

100 kbps

Block current consumption at

1000 kbps

Min Typ

Max

1

30

180

30

80

180

1.7

Unit

µ A –

µ A –

µ A –

µ A At 60 °C

Mbps –

µ

µ

A

A

Details / Conditions

Document Number: 002-21414 Rev. *O Page 55 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 31. Serial Communication Block (SCB) Specifications

(continued)

Spec ID# Parameter

Fixed UART AC Specifications

Bit Rate SID162A

SID162B

F

UART1

F

UART2

Fixed SPI DC Specifications

SID163 I

SPI1

Description

Block current consumption at

1 Mbps

Min Typ

Max

3

8

220

SID164

SID165 I

I

SPI2

SPI3

Block current consumption at

4 Mbps

Block current consumption at

8 Mbps

340

360

SID165A I

SP14

Block current consumption at

25 Mbps

– –

Fixed SPI AC Specifications for LP Mode (1.1 V) unless noted otherwise.

800

Unit

Mbps ULP Mode

µ

µ

µ

µ

A

A

A

A

LP Mode

Details / Conditions

SID166 F

SPI

SPI Operating Frequency

Master and Externally

Clocked Slave

– – 25 MHz 14-MHz max for ULP (0.9 V) mode

SID166A F

SPI_IC

SPI Slave Internally Clocked – – 15 MHz 5-MHz max for ULP (0.9 V) mode

SID166B F

SPI_EXT

SPI Operating Frequency

Master (F

SCB

is SPI Clock)

– – F

SCB

/4 MHz F

Fixed SPI Master mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.

SCB

max is 100 MHz in LP mode, 25

MHz max in ULP mode

SID167 T

DMO

– – 12 ns 20-ns max for ULP (0.9 V) mode

SID168

SID169

SID169A

T

T

T

DSI

HMO

SSELMSCK1

MOSI Valid after SClock driving edge

MISO Valid before SClock capturing edge

MOSI data hold time

SSEL Valid to first SCK Valid edge

5

0

18

– ns ns ns

Full clock, late MISO sampling

Referred to Slave capturing edge

Referred to Master clock edge

SID169B T

SSELMSCK2

SSEL Hold after last SCK

Valid edge

18 – – ns

Fixed SPI Slave mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.

Referred to Master clock edge

SID170 T

DMI

5 – – ns –

SID171A T

DSO_EXT

MOSI Valid before Sclock

Capturing edge

MISO Valid after Sclock driving edge in Ext. Clk. mode

– – 20 ns 35-ns max. for ULP (0.9 V) mode

SID171

SID171B

SID172

SID172A

SID172B

T

DSO

T

T

DSO

HSO

TSSEL

TSSEL

SCK1

SCK2

MISO Valid after Sclock driving edge in Internally Clk.

Mode

MISO Valid after Sclock driving edge in Internally Clk.

Mode with Median filter enabled.

Previous MISO data hold time 5

SSEL Valid to first SCK Valid edge

65

SSEL Hold after Last SCK

Valid edge

65 –

– T

DSO_EXT

+

3 × Tscb

– T

DSO_EXT

+

4 × Tscb

– ns Tscb is Serial Comm. Block clock period. ns ns ns ns

Tscb is Serial Comm. Block clock period.

Document Number: 002-21414 Rev. *O Page 56 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

LCD Specifications

Table 32. LCD Direct Drive DC Specifications

Spec ID# Parameter

SID154 I

LCDLOW

SID155 C

LCDCAP

Description

Operating current in low-power mode

LCD capacitance per segment/common driver

SID156 LCD

OFFSET

SID157

SID158 I

I

LCDOP1

LCDOP2

Long-term segment offset

PWM Mode current.

3.3-V bias. 8-MHz IMO. 25 °C.

PWM Mode current.

3.3-V bias. 8-MHz IMO. 25 °C.

Min Typ Max Unit

– 5 –

Details / Conditions

µA 16 × 4 small segment display at 50 Hz

– 500 5000 pF –

20

0.6

0.5

– mV – mA

32 × 4 segments

50 Hz

Table 33. LCD Direct Drive AC Specifications

Spec ID# Parameter

SID159 F

LCD

Description

LCD frame rate

Min

10

Typ

50

Max

150

Unit

Hz –

Details / Conditions

Memory

Flash

Table 34. Flash DC Specifications

[4]

Spec ID#

SID173A I

PE

Parameter Description

Erase and program current

Min

Typ

Max

6

Unit mA –

Details / Conditions

Table 35. Flash AC Specifications

Spec ID#

SID179S T

Parameter

SID174 T

ROWWRITE

SID175 T

ROWERASE

SID176 T

ROWPROGRAM

SID178 T

BULKERASE

SID179 T

SECTORERASE

SID178S T

SSERIAE

SSWRITE

Description

Row write time (erase & program)

Row erase time

Row program time after erase

Bulk erase time (1024 KB)

Sector erase time (256 KB)

Subsector erase time

Subsector write time; 1 erase plus 8 program times

Min

Typ

Max

16

11

5

11

11

11

51

Unit ms ms ms ms ms ms ms

Details / Conditions

Row = 512 bytes

512 rows per sector

8 rows per subsector

SID180S T

SID180

SID181 F

SID182

T

F

SID182A F

SID182B F

SWRITE

DEVPROG

END

RET1

RET2

RET3

Sector write time; 1 erase plus 512 program times

Total device write time

Flash Endurance

Flash Retention. T

A cycles

 25 °C, 100 k P/E

Flash Retention. T cycles

A

 85 °C, 10 k P/E

Flash Retention. T

A cycles

 55 °C, 20 k P/E

100 k

10

10

20

2.6

15

– seconds – seconds – cycles – years years years

SID256 T

WS100

SID257 T

WS50

Number of Wait states at 100 MHz

Number of Wait states at 50 MHz

3

2

Note

4. It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.

Make certain that these are not inadvertently activated.

Document Number: 002-21414 Rev. *O Page 57 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

System Resources

Power-on-Reset

Table 36. Power-On-Reset (POR) with Brown-out Detect (BOD) DC Specifications

Spec ID# Parameter

SID190

SID192

V

V

FALLPPOR

FALLDPSLP

Description

BOD trip voltage in system LP and

ULP modes.

BOD trip voltage in system Deep

Sleep mode.

Min

1.54

1.54

Typ

Max

Table 37. POR with BOD AC Specifications

Spec ID# Parameter

SID192A V

SID194A V

DDRAMP

DDRAMP_DS

Description

Maximum power supply ramp rate

(any supply)

Maximum power supply ramp rate

(any supply) in system Deep Sleep mode

Voltage Monitors

Table 38. Voltage Monitors DC Specifications

Spec ID# Parameter

SID195R V

HVD0

SID195 V

HVDI1

SID196 V

HVDI2

SID197 V

HVDI3

SID198 V

HVDI4

SID199 V

HVDI5

SID200 V

HVDI6

SID201 V

HVDI7

SID202 V

HVDI8

SID203 V

HVDI9

SID204 V

HVDI10

SID205 V

HVDI11

SID206 V

HVDI12

SID207 V

HVDI13

SID208 V

HVDI14

SID209 V

HVDI15

SID211 LVI_IDD

Description

Block current

Min

Typ

Min Typ

1.18

1.23

1.38

1.43

1.57

1.63

1.76

1.83

1.95

2.03

2.05

2.13

2.15

2.23

2.24

2.33

2.34

2.43

2.44

2.53

2.53

2.63

2.63

2.73

2.73

2.83

2.82

2.93

2.92

3.03

3.02

3.13

– 5

10

2.41

2.51

2.61

2.72

2.82

2.92

3.03

3.13

3.23

15

Max

1.27

1.47

1.68

1.89

2.1

2.2

2.3

Unit

V

Details / Conditions

Reset guaranteed for V levels below 1.54 V

DDD

V

Max Unit Details / Conditions

100 mV/µs System LP mode mV/µs BOD operation guaranteed

V –

V –

V –

V –

V –

V –

V –

V –

V –

µA –

Unit

V –

V –

V –

V –

V –

V –

V –

Details / Conditions

Table 39. Voltage Monitors AC Specification

Spec ID#

SID212 T

Parameter

MONTRIP

Description

Voltage monitor trip time

Min

Typ

Max

170

Unit ns –

Details / Conditions

Document Number: 002-21414 Rev. *O Page 58 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

SWD and Trace Interface

Table 40. SWD and Trace Specifications

Spec ID# Parameter Description

SID214 F_SWDCLK2 1.7 V  V

DDD

 3.6 V

Min

SID214L F_SWDCLK2L 1.7 V  V

DDD

 3.6 V

SID215 T_SWDI_SETUP T = 1/f SWDCLK

SID216 T_SWDI_HOLD T = 1/f SWDCLK

SID217 T_SWDO_VALID T = 1/f SWDCLK

SID217A T_SWDO_HOLD T = 1/f SWDCLK

SID214T F_TRCLK_LP1 With Trace Data setup/hold times of

SID215T F_TRCLK_LP2 With Trace Data setup/hold times of

SID216T F_TRCLK_ULP

With Trace Data setup/hold times of

3/2 ns respectively

0.25 * T

0.25 * T

1

Internal Main Oscillator

Table 41. IMO DC Specifications

Spec ID#

SID218 I

Parameter

IMO1

Description

IMO operating current at 8 MHz

Table 42. IMO AC Specifications

Spec ID# Parameter

SID223

SID227

F

T

IMOTOL1

JITR

Description

Frequency variation centered on

8 MHz

Cycle-to-Cycle and Period jitter

Internal Low-Speed Oscillator

Table 43. ILO DC Specification

Spec ID#

SID231 I

Parameter

ILO2

Description

ILO operating current at 32 kHz

Table 44. ILO AC Specifications

Spec ID# Parameter Description

ILO startup time SID234 T

STARTILO1

SID236 T

LIODUTY

SID237 F

ILOTRIM1

ILO Duty cycle

ILO frequency

Min

Min

Min

Min

45

28.8

Typ

Typ

9

Typ

±250

Typ

0.3

Typ

50

32

Max

15

Max

±2

Max

0.7

Max

7

55

36.1

Max

25

12

0.5 * T

75

70

25

Unit Details / Conditions

MHz

MHz

LP mode.

V

CCD

= 1.1 V

ULP mode.

V

CCD

= 0.9 V ns – ns – ns – ns –

MHz

MHz

MHz

LP Mode.

V

DD

= 1.1 V

LP Mode.

V

DD

= 1.1 V

ULP Mode.

V

DD

= 0.9 V

Unit

µA

Unit

% ps

Unit

µA

Unit

µs

Details / Conditions

Details / Conditions

Details / Conditions

Details / Conditions

Startup time to 95% of final frequency

% – kHz Factory trimmed

Document Number: 002-21414 Rev. *O Page 59 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Crystal Oscillator

Table 45. ECO Specifications

Spec ID# Parameter

MHz ECO DC Specifications

SID318 I

DD_kHz

Description

SID316 I

DD_MHz

MHz ECO AC Specifications

SID317 F_MHz Crystal frequency range kHz ECO DC Specification

Block operating current with Cload up to

18 pF

Block operating current with 32-kHz crystal

SID321E ESR32K

SID322E PD32K kHz ECO AC Specification

SID319 F_kHz

Equivalent Series Resistance

Drive level

SID320 Ton_kHz

SID320E F

TOL32K

32-kHz frequency

Startup time

Frequency tolerance

Min

16

Typ

800

0.38

80

– 32.768

50

Max

1600

35

500

250

1

1

External Clock

Table 46. External Clock Specifications

Spec ID# Parameter

SID305 EXTCLK

FREQ

SID306 EXTCLK

DUTY

Description

External Clock input Frequency

Duty cycle; Measured at V

DD/2

PLL

Table 47. PLL Specifications

Spec ID# Parameter

SID304P PLL_IN

SID305P PLL_LOCK

SID306P PLL_OUT

SID307P PLL_IDD

SID308P PLL_JTR

Description

Input frequency to PLL block

Time to achieve PLL Lock

Output frequency from PLL Block

PLL Current

Period Jitter

Min

0

45

Min

4

Typ

Typ

16

10.625 –

– 0.55

Max

100

55

Max

64

35

150

1.1

150

Unit

µA

Max = 35 MHz,

Typ = 16 MHz

MHz –

µA

– k Ω –

µW – kHz ms – ppm –

Unit Details / Conditions

MHz –

% –

Unit

MHz

µs –

MHz –

Details / Conditions

Details / Conditions mA Typ at 100 MHz out.

ps 100-MHz output frequency

Clock Source Switching Time

Table 48. Clock Source Switching Time Specifications

Spec ID# Parameter

SID262 TCLK

SWITCH

Description

Clock switching from clk1 to clk2 in clock periods

[5]

Min

Typ

Max

4 clk1 +

3 clk2

Unit periods –

Details / Conditions

Note

5. As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 4 ) then clk1 is the IMO and clk2 is the FLL.

Document Number: 002-21414 Rev. *O Page 60 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

FLL

Table 49. Frequency Locked Loop (FLL) Specifications

Spec ID#

SID450

Parameter

FLL_RANGE

Description

Input frequency range.

SID451 FLL_OUT_DIV2 Output frequency range.

V

CCD

= 1.1 V

24.00

SID451A FLL_OUT_DIV2 Output frequency range.

V

CCD

= 0.9 V

SID452

24.00

FLL_DUTY_DIV2 Divided-by-2 output; High or Low 47.00

SID454 FLL_WAKEUP Time from stable input clock to 1% of final value on deep sleep wakeup

SID455

SID456

FLL_JITTER Period jitter (1 sigma at 100 MHz)

FLL_CURRENT CCO + Logic current

Min Typ

0.001

Max

100

100.00

Unit Details / Conditions

MHz Lower limit allows lock to

USB SOF signal (1 kHz).

Upper limit is for External input.

MHz Output range of FLL divided-by-2 output

50.00

53.00

7.50

35.00

MHz Output range of FLL divided-by-2 output

% –

µs ps

With IMO input, less than

10 °C change in temperature while in Deep

Sleep, and Fout ≥ 50 MHz.

50 ps at 48 MHz, 35 ps at

100 MHz

5.50

µA/MHz –

UDB

Table 50. UDB AC Specifications

Spec ID# Parameter

Data Path Performance

SID249

SID250

SID251

F

F

F

MAX-TIMER

MAX-ADDER

MAX_CRC

Description

Max frequency of 16-bit timer in a

UDB pair

Max frequency of 16-bit adder in a

UDB pair

Max frequency of 16-bit CRC/PRS in a UDB pair

PLD Performance in UDB

SID252 F

MAX_PLD

Max frequency of 2-pass PLD function in a UDB pair

Clock to Output Performance

SID253 T

CLK_OUT_UDB1

Prop. delay for clock in to data out

UDB Port Adapter Specifications

Conditions: 10-pF load, 3-V V

DDIO

and V

DDD

SID263 T

LCLKDO

LCLK to Output delay

SID264

SID265

SID266

SID267

SID268

T

T

T

DINLCLK

DINLCLKHLD

T

LCLKHIZ

T

FLCLK

LCLKDUTY

Input setup time to LCLK rising edge

Input hold time from LCLK rising edge

Min

5

LCLK to Output tristated

LCLK frequency

LCLK duty cycle (percentage high) 40%

Typ

5

Max

100

100

100

100

11

7

28

33

60%

Unit

MHz –

MHz

MHz –

MHz – ns ns

%

MHz –

Details / Conditions ns LCLK is a selected clock; for more information see the TRM ns – ns –

Document Number: 002-21414 Rev. *O Page 61 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

USB

Table 51. USB Specifications (USB requires LP Mode 1.1-V Internal Supply)

Description Min Spec ID# Parameter

USB Block Specifications

SID322U Vusb_3.3

3.15

SID323U

SID325U

SID328

SID329

Vusb_3

Iusb_config

Iusb_suspend

Iusb_suspend

Device supply for USB operation

Device supply for USB operation

(functional operation only)

Block supply current in Active mode

Block supply current in suspend mode

Block supply current in suspend mode

2.85

Typ

8

0.5

0.3

28 – SID330U USB_Drive_Res USB driver impedance

SID331U USB_Pulldown

USB pull-down resistors in Host mode

SID332U USB_Pullup_Idle Idle mode range

SID333U USB_Pullup Active mode

14.25

900

1425

Max

3.6

3.6

44

24.8

1575

3090

QSPI

Table 52. QSPI Specifications

Spec ID# Parameter Description

SMIF QSPI Specifications. All specs with 15-pF load.

SID390Q Fsmifclock SMIF QSPI output clock frequency

SMIF QSPI output clock frequency SID390QU

SID397Q

SID398Q

SID391Q

SID392Q

SID393Q

SID394Q

SID395Q

SID396Q

Fsmifclocku

Idd_qspi

Idd_qspi_u

Tsetup

Tdatahold

Tdataoutvalid

Tholdtime

Tseloutvalid

Tselouthold

Block current in LP mode (1.1 V)

Block current in ULP mode (0.9 V)

Input data set-up time with respect to clock capturing edge

Input data hold time with respect to clock capturing edge

Output data valid time with respect to clock falling edge

Output data hold time with respect to clock rising edge

Output Select valid time with respect to clock rising edge

Output Select hold time with respect to clock rising edge

Min

4.5

0

3

0.5*

Tsclk

Typ

Max

Unit

V

V

Ω k Ω

Unit

Details / Conditions

USB Configured

USB Configured mA V

DDD

= 3.3 V mA

V

DDD

= 3.3 V, Device connected mA

V

DDD

= 3.3 V, Device disconnected

Series resistors are on chip

Bus idle

Upstream device transmitting

Details / Conditions

3.7

7.5

80

50

1900

590

MHz LP mode (1.1 V)

MHz

ULP mode (0.9 V).

Guaranteed by Char.

µA LP mode (1.1 V)

µA ULP mode (0.9 V) ns – ns ns

7.5-ns max for ULP mode (0.9 V) ns – ns ns

15-ns max for ULP mode (0.9 V)

Tsclk = Fsmifclk cycle time

Document Number: 002-21414 Rev. *O Page 62 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Audio Subsystem

Table 53. Audio Subsystem Specifications

Spec ID# Parameter

PDM Specifications

Description

SID400P

SID401

PDM_IDD1

PDM_IDD2

PDM Active current, Stereo operation, 1-MHz clock

PDM Active current, Stereo operation, 3-MHz clock

SID402

[6]

SID403

[6]

SID403A

[6]

SID403B

[6]

PDM_JITTER

PDM_CLK

RMS Jitter in PDM clock

PDM Clock speed

PDM_BLK_CLK PDM Block input clock

PDM_SETUP

Data input set-up time to

PDM_CLK edge

SID403C

SID404

SID405

SID406

[6]

[6]

[6]

[6]

PDM_HOLD

PDM_OUT

PDM_WL

PDM_SNR

Data input hold time to PDM_CLK edge

Audio sample rate

Word Length

Signal-to-Noise Ratio

(A-weighted)

SID407

[6]

PDM_DR Dynamic Range (A-weighted)

Min

–200

0.384

1.024

10

10

8

16

Typ

175

– 100

SID408

[6]

PDM_FR Frequency Response –0.2

SID409

[6]

SID410

[6]

SID411

[6]

PDM_SB

PDM_SBA

Stop Band

Stop Band Attenuation

PDM_GAIN Adjustable Gain –12

SID412

[6]

PDM_ST Startup time –

I2S Specifications. The same for LP and ULP modes unless stated otherwise.

SID415

SID413

I2S_IDD

I2S_WORD

Block current

Length of I2S Word

8

0.566

60

48

400

SID414 I2S_WS – –

SID414M

SID414A

I2S_WS_U

I2S_WS_TDM

Word Clock frequency in LP mode

Word Clock frequency in ULP mode

Word Clock frequency in TDM mode for LP

SID414X I2S_WS_TDM_U Word Clock frequency in TDM

I2S Slave Mode

SID430

SID430U

TS_WS

TS_WS

WS Setup Time to the Following

Rising Edge of SCK for LP Mode

WS Setup Time to the Following

Rising Edge of SCK for ULP Mode

SID430A TH_WS

WS Hold Time to the Following

Edge of SCK

5

11

TMCLK_SOC

[7]

+ 5

100

600

Notes

6. Guaranteed by design, not production tested.

7. TMCLK_SOC is the internal I2S master clock period.

Document Number: 002-21414 Rev. *O

Max

200

3.072

49.152

48

24

0.2

10.5

32

192

48

48

12

Unit Details / Conditions

µA 16-bit audio at 16 ksps

µA 24-bit audio at 48 ksps ps –

MHz –

MHz – ns – ns – ksps – bits – dB dB

PDM input, 20 Hz to

20 kHz BW

20 Hz to 20 kHz BW,

–60 dB FS dB f

DC to 0.45f. DC

Blocking filter off.

– dB – dB

PDM to PCM,

1.5 dB/step

WS (Word Select) cycles

µA bits – kHz Eight 32-bit channels kHz Eight 32-bit channels ns – ns – ns –

Page 63 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 53. Audio Subsystem Specifications

(continued)

Spec ID#

SID432

Parameter

TD_SDO

SID432U TD_SDO

SID433 TS_SDI

SID433U TS_SDI

SID434 TH_SDI

SID435 TSCKCY

I2S Master Mode

Description

Delay Time of TX_SDO Transition from Edge of TX_SCK for LP mode

Min

(TMCLK_SOC +

25)

Delay Time of TX_SDO Transition from Edge of TX_SCK for ULP mode

RX_SDI Setup Time to the

Following Edge of RX_SCK in Lp

Mode

(TMCLK_SOC +

70)

5

RX_SDI Setup Time to the

Following Edge of RX_SCK in

ULP mode

RX_SDI Hold Time to the Rising

Edge of RX_SCK

TX/RX_SCK Bit Clock Duty Cycle

11

TMCLK_SOC +

5

45

SID437

SID437U TD_WS_U

SID438

TD_WS

TD_SDO

SID438U TD_SDO

WS Transition Delay from Falling

Edge of SCK in LP mode

WS Transition Delay from Falling

Edge of SCK in ULP mode

SDO Transition Delay from

Falling Edge of SCK in LP mode

SDO Transition Delay from

Falling Edge of SCK in ULP mode

–10

–10

–10

–10

SID439 TS_SDI

SDI Setup Time to the Associated

Edge of SCK

5

SID440 TH_SDI

SDI Hold Time to the Associated

Edge of SCK

TMCLK_SOC +

5

SID443

SID445

TSCKCY

FMCLK_SOC

SCK Bit Clock Duty Cycle

MCLK_SOC Frequency in LP mode

SID445U FMCLK_SOC_U MCLK_SOC Frequency in ULP

SID446

SID447

TMCLKCY

TJITTER

MCLK_SOC Duty Cycle

MCLK_SOC Input Jitter

45

1.024

1.024

45

–100

Typ

Max

TMCLK_SOC +

25

TMCLK_SOC +

70

Unit Details / Conditions ns

Associated clock edge depends on selected polarity ns

Associated clock edge depends on selected polarity

55

20

40

20

40

55

98.304

24.576

55

100 ns – ns – ns –

% – ns – ns – ns – ns – ns ns

%

Associated clock edge depends on selected polarity

T is TX/RX_SCK Bit

Clock period.

Associated clock edge depends on selected polarity.

% – ps –

Document Number: 002-21414 Rev. *O Page 64 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Smart I/O

Table 54. Smart I/O Specifications

Spec ID#

SID420

SID421

Parameter

SMIO_BYP

SMIO_LUT

Description

Smart I/O Bypass delay

Smart I/O LUT prop delay

Min Typ Max

8

2

Unit ns ns

Details / Conditions

Precision ILO (PILO)

Table 55. PILO Specifications

Spec ID# Parameter

SID 430R I

PILO

SID431 F_PILO

SID432R ACC_PILO

Description

Operating current

PILO nominal frequency

Min

PILO accuracy with periodic calibration –500

Typ

1.2

32768

Max

4

500

Unit

µA

Hz ppm

Details / Conditions

T = 25 °C

JTAG Boundary Scan

Table 56. JTAG Boundary Scan

Spec ID#

JTAG Boundary Scan Parameters

Parameter Description Min Typ Max

JTAG Boundary Scan Parameters for 1.1 V (LP) Mode Operation:

SID468 TCKLOW TCK LOW

SID469

SID470

TCKHIGH

TCK_TDO

TCK HIGH

TCK falling edge to output valid

SID471

SID472

SID473

SID474

TSU_TCK

TCk_THD

TCK_TDOV

TCK_TDOZ

Input valid to TCK rising edge

Input hold time to TCK rising edge

TCK falling edge to output valid

(High-Z to Active).

TCK falling edge to output valid (Active to High-Z).

JTAG Boundary Scan Parameters for 0.9 V (ULP) Mode Operation:

SID468A TCKLOW TCK low

SID469A

SID470A

TCKHIGH

TCK_TDO

TCK high

TCK falling edge to output valid

SID471A

SID472A

SID473A

SID474A

TSU_TCK

TCk_THD

TCK_TDOV

TCK_TDOZ

Input valid to TCK rising edge

Input hold time to TCK rising edge

TCK falling edge to output valid (high-Z to active).

TCK falling edge to output valid (active to high-Z).

52

10

12

10

40

40

102

20

22

20

80

80

40 ns –

– ns ns – ns ns ns ns ns ns ns ns

– ns –

80 ns –

– ns –

Units

Document Number: 002-21414 Rev. *O Page 65 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Ordering Information

Table 57

lists the CY8C61x6 and CY8C61x7 part numbers and features. All devices include QSPI SMIF, ADC, DAC, 9 SCBs, USB-FS,

32 TCPWMs, 2 PDMs, and I2S. See also the product selector guide.

Table 57. Marketing Part Numbers

60

61

CY8C6036BZI-F04 150 – Single LP 512 128

CY8C6016BZI-F04 50 – Single ULP 512 128

CY8C6116BZI-F54 50 – Single ULP 512 128

CY8C6136BZI-F14 150 – Single LP 512 128

CY8C6136BZI-F34 150 – Single LP 512 128

CY8C6137BZI-F14 150 – Single LP 1024 288

CY8C6137BZI-F34 150 – Single LP 1024 288

CY8C6137BZI-F54 150 – Single LP 1024 288

CY8C6117BZI-F34 50 – Single ULP 1024 288

CY8C6136FTI-F42 150 – Single LP 512 128

CY8C6136FDI-F42 150 – Single LP 512 128

CY8C6137FDI-F02 150 – Single LP 1024 288

CY8C6117FDI-F02 50 – Single ULP 1024 288

1

1

1

0

1

0

0

0

0

0

0

1

0

0 No 100 No No No 124-BGA

0 No 100 No No No 124-BGA

12 Yes 100 Yes Yes Yes 124-BGA

0 Yes 100 No Yes Yes 124-BGA

12 Yes 100 No Yes Yes 124-BGA

0 Yes 100 No Yes Yes 124-BGA

12 Yes 100 No Yes Yes 124-BGA

12 Yes 100 Yes Yes Yes 124-BGA

12 Yes 100 No Yes Yes 124-BGA

0 Yes 62 Yes Yes Yes Thin

0 Yes 62 Yes Yes Yes 80-WLCSP

0 No 62 No Yes Yes 80-WLCSP

0 No 62 No Yes Yes 80-WLCSP

Document Number: 002-21414 Rev. *O Page 66 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

PSoC 6 MPN Decoder

CY XX 6 A B C DD E - FF G H I JJ K L

Field Description Values

CY Cypress CY

Meaning

Cypress

XX Firmware

8C Standard

B0 “Secure Boot” v1

S0

“Standard Secure” -

AWS

6 Architecture

A Line

1

2

6

0

PSoC 6

Value

Programmable

Performance

B Speed

2

3

3

4

4

Connectivity

Secured

100 MHz

150 MHz

150/50 MHz

0-3 Reserved

C

Memory Size

(Flash/SRAM)

DD Package

4

5

6

256K/128K

512K/256K

512K/128K

9

A

7

8

1024K/288K

1024K/512K

Reserved

2048K/1024K

AZ, AX TQFP

LQ QFN

BZ BGA

FM M-CSP

FN, FD,

FT

WLCSP

Field

E

Description

Temperature Range

Values

C

I

Q

Meaning

Consumer

Industrial

Extended Industrial

FF

G

H

I

JJ

K

L

Feature Code

CPU Core

Attributes Code

GPIO count

Engineering sample

(optional)

Die Revision

(optional)

Tape/Reel Shipment

(optional)

Cypress internal

S2-S6

BL

F

D

Integrated Bluetooth LE

Single Core

Dual Core

0–9 Feature set

1

2

31–50

51–70

3

4

ES

71–90

91–110

Engineering samples or not

Base

A1–A9 Die revision

T Tape and Reel shipment

Document Number: 002-21414 Rev. *O Page 67 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Packaging

This product line is offered in 124-BGA qualification is in process.

[8]

and 80-ball WLCSP packages in 0.43 mm and 0.33 mm

[8]

heights. The 124-BGA package

Table 58. Package Dimensions

Spec ID#

PKG_1

Package

124-BGA

Description

124-BGA, 9 mm  9 mm  1 mm height with 0.65-mm pitch

PKG_2 80-WLCSP 80-WLCSP, 3.7 mm  3.2 mm  0.43 mm height with 0.35-mm pitch

PKG_3 Thin 80-WLCSP Thin 80 -WLCSP, 3.7 mm  3.3 mm  0.33mm height with 0.35-mm pitch

Package Drawing Number

001-97718

002-20310

002-23411

Table 59. Package Characteristics

Parameter

T

JA

T

JC

T

JA

T

JC

T

A

T

J

T

JA

T

JC

Description

Operating ambient temperature

Operating junction temperature

Package 

JA

(124-BGA)

Package 

JC

(124-BGA)

Package 

JA

(80-WLCSP)

Package 

JC

(80-WLCSP)

Package 

JA

(Thin 80-WLCSP)

Package 

JC

(Thin 80-WLCSP)

Table 60. Solder Reflow Peak Temperature

Package

All

Conditions

Maximum Peak Temperature

260 °C

Table 61. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package

124-BGA

80-WLCSP Packages

Min

–40

–40

Typ

25

36.2

15

20.4

0.2

20.4

0.2

Max

85

100

Maximum Time at Peak Temperature

30 seconds

MSL

MSL 3

MSL 1

Unit

°C

°C

°C/watt

°C/watt

°C/watt

°C/watt

°C/watt

°C/watt

Note

8. The 124-BGA and Thin 80-WLCSP packages are in the process of qualification.

Document Number: 002-21414 Rev. *O Page 68 of 77

Figure 19. 124-BGA 9.0 × 9.0 ×1.0 mm

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Document Number: 002-21414 Rev. *O

001-97718 *B

Page 69 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 20. 80-Ball WLCSP 3.676 × 3.190 × 0.467 mm

DIMENSIONS

Øb eD eE

E

D1

E 1 n

A

A 1

D

SYMBOL

MIN.

NOM.

MAX.

0.387

0.122

0.427

3.676 BSC

3.190 BSC

3.031 BSC

0.467

0.182

2.450 BSC

80

0.188

0.218

0.303 BSC

0.248

0.350 BSC

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.

002-20310 *A

Document Number: 002-21414 Rev. *O Page 70 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Figure 21. Thin 80-Ball WLCSP 3.676 × 3.190 × 0.33 mm

6

6

7

5

SYMBOL eE

SD

SE

N

Øb eD

E

D1

E1

MD

ME

A

A1

D

MIN

-

0.081

0.1035

DIMENSIONS

NOM

-

-

3.676 BSC

3.190 BSC

3.031 BSC

2.450 BSC

11

15

80

0.1150

0.303 BSC

0.350 BSC

0.00 BSC

0.00 BSC

MAX

0.33

-

0.1265

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2.

SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.

3.

"e" REPRESENTS THE SOLDER BALL GRID PITCH.

4.

SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX

SIZE MD X ME.

5.

DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A

PLANE PARALLEL TO DATUM C.

6.

"SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND

DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,

"SD" OR "SE" = 0.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,

"SD" = eD/2 AND "SE" = eE/2.

7.

A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK,

METALIZED MARK, INDENTATION OR OTHER MEANS.

8.

JEDEC SPECIFICATION NO. REF. : N/A

002-23411 **

Document Number: 002-21414 Rev. *O Page 71 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Acronyms

CMOS

CMRR

CPU

CRC

CSD

EMI

ESD

ETM

FIFO

FLL

FPU

CSX

DAC

DAP

DES

DMA

DNL

DSI

DU

ECC

ECO

EEPROM

Acronym

3DES

ADC

AES

AHB

AMUX

AMUXBUS

API

Arm

®

BGA

BOD

CAD

CCO

CM0+

CM4

CMAC

Description triple DES (data encryption standard) analog-to-digital converter advanced encryption standard

AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus analog multiplexer analog multiplexer bus application programming interface advanced RISC machine, a CPU architecture ball grid array brown-out detect computer aided design current controlled oscillator

Cortex-M0+, an Arm CPU

Cortex-M4, an Arm CPU cipher-based message authentication code complementary metal-oxide-semiconductor, a process technology for IC fabrication common-mode rejection ratio central processing unit cyclic redundancy check, an error-checking protocol

CapSense Sigma-Delta

Cypress mutual capacitance sensing method. See also CSD digital-to-analog converter, see also IDAC, VDAC debug access port data encryption standard direct memory access, see also TD differential nonlinearity, see also INL digital system interconnect data unit elliptic curve cryptography external crystal oscillator electrically erasable programmable read-only memory electromagnetic interference electrostatic discharge embedded trace macrocell first-in, first-out frequency locked loop floating-point unit

Document Number: 002-21414 Rev. *O

Acronym

FS

GND

GPIO

INL

IoT

IPC

IRQ

IDAC

IDE

ILO

IMO

HMAC

HSIOM

I/O

I

2

C, or IIC

I

2

S

IC

ISR

JTAG

LCD

LIN

Msps

MTB

MUL

NC

NMI

LP

LS

LUT

LVD

LVTTL

MAC

M-CSP

MCU

MCWDT

MISO

MMIO

MOSI

MPU

MSL

Description full-speed

Ground general-purpose input/output, applies to a PSoC pin

Hash-based message authentication code high-speed I/O matrix input/output, see also GPIO, DIO, SIO, USBIO

Inter-Integrated Circuit, a communications protocol inter-IC sound integrated circuit current DAC, see also DAC, VDAC integrated development environment internal low-speed oscillator, see also IMO internal main oscillator, see also ILO integral nonlinearity, see also DNL internet of things inter-processor communication interrupt request interrupt service routine

Joint Test Action Group liquid crystal display

Local Interconnect Network, a communications protocol low power low-speed lookup table low-voltage detect, see also LVI low-voltage transistor-transistor logic multiply-accumulate molded chip scale package microcontroller unit multi-counter watchdog timer master-in slave-out memory-mapped input output master-out slave-in memory protection unit moisture sensitivity level million samples per second micro trace buffer multiplier no connect nonmaskable interrupt

Page 72 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

SPI

SRAM

SROM

SRSS

SWD

SWJ

RTC

RX

S/H

SAR

SARMUX

SCB

SFlash

SHA

SINAD

SNR

SOF

PSRR

PWM

QD

QSPI

RAM

RISC

RMS

ROM

Acronym

NVIC

OTP

OVT

PASS

PCB

PCM

PDM

PHY

PICU

PLL

PMIC

POR

PPU

PRNG

PSoC

®

RSA

Description nested vectored interrupt controller one-time programmable overvoltage tolerant programmable analog subsystem printed circuit board pulse code modulation pulse density modulation physical layer port interrupt control unit phase-locked loop power management integrated circuit power-on reset peripheral protection unit pseudo random number generator

Programmable System-on-Chip™ power supply rejection ratio pulse-width modulator quadrature decoder quad serial peripheral interface random-access memory reduced-instruction-set computing root-mean-square read-only memory

Rivest–Shamir–Adleman, a public-key cryptography algorithm real-time clock receive sample and hold successive approximation register

SAR ADC multiplexer bus serial communication block supervisory flash secure hash algorithm signal to noise and distortion ratio signal-to-noise ration start of frame

Serial Peripheral Interface, a communications protocol static random access memory supervisory read-only memory system resources subsystem serial wire debug, a test protocol serial wire JTAG

Document Number: 002-21414 Rev. *O

UART

UDB

ULP

USB

WCO

WDT

WIC

WLCSP

XIP

XRES

Acronym

SWO

SWV

TCPWM

TDM

TQFP

TRM

TRNG

TX

Description single wire output serial-wire viewer timer, counter, pulse-width modulator time division multiplexed thin quad flat package technical reference manual true random number generator transmit

Universal Asynchronous Transmitter Receiver, a communications protocol universal digital block ultra-low power

Universal Serial Bus watch crystal oscillator watchdog timer wakeup interrupt controller wafer level chip scale package execute-in-place external reset input pin

Page 73 of 77

Document Conventions

khr kHz k  ksps

LSB

Mbps

MHz

M 

Msps

µA

µF

Symbol

°C dB fF

Hz

KB kbps

Unit of Measure

Table 62. Unit of Measure degrees Celsius decibel

Unit of Measure femto farad hertz

1024 bytes kilobits per second kilohour kilohertz kilo ohm kilosamples per second least significant bit megabits per second megahertz mega-ohm megasamples per second microampere microfarad

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Table 62. Unit of Measure (continued) mV nA ns nV

 pF

Symbol

µH

µs

µV

µW mA ms ppm ps s sps sqrtHz

V microhenry microsecond microvolt microwatt milliampere millisecond millivolt nanoampere

Unit of Measure nanosecond nanovolt ohm picofarad parts per million picosecond second samples per second square root of hertz volt

Document Number: 002-21414 Rev. *O Page 74 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Revision History

Description Title: PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet

Document Number: 002-21414

Revision

**

ECN

5896512

Submission

Date

09/27/2017 New datasheet

*A 5956122

*B 5974156

Description of Change

11/03/2017 Corrected typo in Development Support .

11/29/2017

Updated Table 5 .

Updated SID84 description and conditions.

Updated Table 13 .

Updated max value for SID223.

Updated min and max values of SID432R.

Updated Table 39 .

Updated Revision History

*C

*D

*E

*F

*G

*H

*I

*J

6065337

6190455

6215538

6221434

6658244

6757930

6842918

6898008

02/10/2018

05/29/2018

06/26/2018

09/08/2018

09/20/2019

12/20/2019

03/31/2020

06/22/2020

Updated Active CPU power consumption in 32-bit Dual Core CPU Subsystem .

Updated Table 5 , Table 6 , Table 16 , Table 21 , Table 32 , and Table 35 .

Updated min value for SID4B and SID291.

Updated Fixed UART AC specifications.

Updated SID190 and removed SID194.

Removed SID226.

Updated max value for SID234.

Updated Revision History .

Corrected typo in the block diagram.

Updated 80-ball WLCSP package diagram.

Updated Features and Ordering Information .

Updated IMO Clock Source : Corrected the IMO tolerance and locking information and

TCPWM and PLL description errors.

Updated Packaging : Added Thin 80-WLCSP package dimension and package diagram.

Updated Table 39 , Table 40 , and Table 42 .

Removed Preliminary document status.

Corrected units usage throughout the document.

Added note explaining Fc for the SID.TCPWM.4 parameter.

Updated Features , CPU , Flash , ILO Clock Source , Watchdog Timer (WDT) , Serial Communication Blocks (SCB) , Ordering Information , Packaging , and Acronyms .

Removed “Errata” section.

Updated package diagram (spec 001-97718 *A to *B) in Packaging .

Updated Figure 2 .

Added a note in Table 2 .

Updated Table 5 , Table 6 through Table 8 , Table 15 , Table 18 , Table 21 , Table 30 , Table 32 , and Table 36 .

Updated the title.

Updated

Ordering Information .

Added UDB in Acronyms

.

Updated

Features

.

Updated

Blocks and Functionality

and Functional Description .

Updated

Pinouts and

Power Supply Considerations .

Updated

Features

.

Updated Functional Description .

Updated

Pinouts .

Updated PSoC 6 MPN Decoder .

Updated

Development Ecosystem

, GPIO

, and

LCD sections.

Added

External Crystal Oscillators .

Updated Errata

Document Number: 002-21414 Rev. *O Page 75 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Description Title: PSoC 6 MCU: CY8C61x6, CY8C61x7 Datasheet

Document Number: 002-21414

*K

*L

7004924

7094508

11/09/2020

02/26/2021

Updated

Flexible Clocking Options

, Block Diagram

,

CPUs ,

Clock System , and SID431.

Updated

Universal Digital Blocks (UDBs) ,

UDB Port Adapter Specifications Conditions.

Added

InterProcessor Communication (IPC)

.

Updated

Analog Subsystem

diagram.

Updated the XRES bullet in Reset

, updated SID15 Description and Conditions, and

Power-on-Reset specifications table.

Updated

ModusToolbox Software .

Updated

Clocking Diagram

.

Removed Secure Boot information.

Updated

Security Built into Platform Architecture ,

PSoC 6 MCU Resources ,

Protection

Units , and

Boot Code

.

Updated

Power Supply Considerations .

Added footnote to TMCLK_SOC specs.

Updated

Opamp Specifications

.

Updated SID7A conditions, SID7C Description, SID7D description, and SID8 conditions.

Added spec SID468 - SID474, and SID468A - SID474A.

Updated Audio Spec SID408.

Updated

Ordering Information .

Integrated ECO erratum into External Crystal Oscillators

. Added

ECO Usage Guidelines

table.

Added

Table 12 and

Figure 16 .

Updated conditions for SID316 and updated description of SID319.

Changed BLE references to Bluetooth LE.

Updated Security terminology to Infineon standards.

Removed the Errata section; incorporated errata into the GPIO, ADC, and CapSense sections.

*M

*N

*O

7173987

7508678

7785319

06/30/2021

12/14/2021

10/31/2022

Added opamp graphs ( Figure 17 and Figure 18

).

Corrected typo in

Figure 12 and

Figure 14

.

Added note regarding unused USB pins in USB Full-Speed Device Interface ,

Power Supply

Considerations

, and

Pinouts .

Updated SIDC1 description.

Updated

Figure 16 and added related footnote.

Updated details/conditions for SID7A.

Updated SID325U, SID328, and SID329 description.

Added device identification and revision information in Features .

Added spec SID415 and SID304P.

Added footnote "Guaranteed by design, not production tested" for specs SID402 - SID412.

Updated

Clock System

and PLL

specifications.

Updated

Protection Units

.

Document Number: 002-21414 Rev. *O Page 76 of 77

PSoC 6 MCU: CY8C61x6,

CY8C61x7 Datasheet

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations .

Products

Arm

®

Cortex

®

Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Memory

Microcontrollers

PSoC

Power Management ICs

Touch Sensing

USB Controllers

Wireless Connectivity cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/memory cypress.com/mcu cypress.com/psoc cypress.com/pmic cypress.com/touch cypress.com/usb cypress.com/wireless

PSoC

®

Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training

| Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2017-2022. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the

Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE

OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING

CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security

Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk

Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of

Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-21414 Rev. *O Revised October 31, 2022 Page 77 of 77

advertisement

Related manuals

advertisement

Table of contents