BENDIX BW1560 User's Manual

Add to my manuals
36 Pages

advertisement

BENDIX BW1560 User's Manual | Manualzz

®

Bendix

®

TU-FLO

®

600 Air Compressor

TU-FLO ® 600 AIR COMPRESSOR VERTICAL MOUNT TU-FLO ® 600 AIR COMPRESSOR FLANGE MOUNT

GENERAL

The function of the air compressor is to build up and maintain the air pressure required to operate air powered devices in air brake or air auxiliary systems.

DESCRIPTION

The Tu-Flo ® 600 compressor is a two cylinder reciprocating single stage compressor with a rated displacement of 14.5

cfm at 1250 rpm.

The Tu-Flo ® 600 compressor is constructed with a crankcase, block, and head assembly. The crankcase assemblies, in particular, are essentially the same as corresponding Tu-Flo ®

500 compressors. The block assembly includes the air inlet cavity, automatic inlet valves and unloader valves. Vertical mounting pads for governor mounting are included at each end of the block. The head assembly includes the discharge valves with discharge ports either on the side or top of the block.

All Tu-Flo ® 600 compressors are liquid cooled, both head and block, by coolant from the engine cooling system.

Various mounting and drive configurations are used as required by different vehicle and engine designs. See Fig. 1.

All Tu-Flo ® 600 compressors receive oil under pressure from the engine lubricating system for the lubrication of the internal parts. Fig. 2 shows a cross section of a typical

Tu-Flo ® 600 compressor and the oil flow therein.

Oil is forced through the oil passage in the crankshaft to each connecting rod journal. Oil is forced out at the journals and is thrown by centrifugal force against the cylinder walls and crankshaft main bearings, providing lubrication.

The wrist pins and wrist pin bushings are lubricated in two ways depending on the type connecting rod used. Some older compressors, and one current design use forged steel rifle drilled rods, through which oil is forced to the wrist pin bushings. Standard current design consists of a diecast aluminum or forged steel rod with an “oil catch-funnel” at the top of the rod and a short hole connecting to the wrist pin bushing. See Fig. 3.

1

FIGURE 1 - FLANGE CONFIGURATIONS

FIGURE 2 - TU-FLO ® 600 AIR COMPRESSOR SECTIONAL

VIEW

OLD DESIGN NEW DESIGN

WRIST

PIN

BUSHING

WRIST

PIN

BUSHING

PISTON WRIST

PIN LOCK WIRE

CAST IRON

PISTON

STEEL

CONNECTING

ROD

“CATCH FUNNEL”

TEFLON

PLUG

WRIST

PIN

OIL PASSAGE

DIE

CAST

PISTON

DIE CAST

CONNECTING

ROD

FIGURE 3 - TU-FLO ® 600 AIR COMPRESSOR PISTON/PIN

DESIGN

NAME PLATE

A name plate is attached to the crankcase of all compressors. It shows the piece number, type and serial number (Fig. 4). A name plate with a black background denotes a new compressor, whereas a name plate with a red background designates that the compressor is a factory reconditioned unit. All compressors are identified by the piece number which is the number to be used when reference is made to a particular compressor. The type and serial number is supplementary information.

2

FIGURE 4

DISCHARGE

VALVE

PISTON

TO RESERVOIR

INLET VALVE

UNLOADER

PLUNGER

INTAKE

STRAINER

OPERATION

GENERAL

All compressors run continuously while the engine is running, but actual compression of air is controlled by a governor which stops or starts the compression of air by loading or unloading the compressor in conjunction with its unloading mechanism. This is done when the air pressure in the system reaches the desired maximum or minimum pressures.

FIGURE 6

STROKE

TO GOVERNOR

COMPRESSION

NON-COMPRESSION (UNLOADED)

When the air pressure in the reservoir reaches the high pressure setting of the governor, the governor opens, allowing air to pass from the reservoir through the governor and into the cavity beneath the unloader pistons. This lifts the unloader pistons and plungers. The plungers move up and hold the inlet valves off their seats (Fig. 7).

DISCHARGE

VALVE

PISTON

TO RESERVOIR

INLET VALVE

UNLOADER

PLUNGER

INTAKE

STRAINER

TO GOVERNOR

STROKE

INTAKE

FIGURE 5

INTAKE AND COMPRESSION (LOADED)

During the down stroke of the piston, a slight vacuum created above the piston causes the inlet valve to move off its seat.

Atmospheric air is drawn in through the compressor intake, by the open inlet valve, and on top of the piston (Fig. 5). As the piston starts its upward stroke, the air that was drawn in on the down stroke is being compressed. Now, air pressure on top of the inlet valve plus the force of its spring, returns the inlet valve to its seat. The piston continues the upward stroke and compresses the air sufficiently to overcome the discharge valve spring and unseat the discharge valve. The compressed air then flows past the open discharge valve, into the discharge line and on to the reservoirs (Fig. 6).

As the piston reaches the top of its stroke and starts down, the discharge valve spring returns the discharge valve to its seat. This prevents the compressed air in the discharge line from returning to the cylinder bore as the intake and compression cycle is repeated.

DISCHARGE

VALVE

PISTON

FIGURE 7

STROKE

TO RESERVOIR

INLET VALVE

UNLOADER

PLUNGER

INTAKE

STRAINER

TO GOVERNOR

UNLOADING

With the inlet valves held off their seats by the unloader pistons and plungers, air is merely pumped back and forth between the two cylinders. When air is used from the reservoir and the pressure drops to low pressure setting of the governor, the governor closes and in doing so exhausts the air from beneath the unloader pistons. The unloader saddle spring forces the saddle, pistons and plungers down and the inlet valves return to their seats. Compression is then resumed.

3

Discharge

Line

Optional “Ping” Tank

Air Dryer

The Air Brake Charging System

supplies the compressed air for the braking system as well as other air accessories for the vehicle. The system usually consists of an air compressor, governor, discharge line, air dryer, and service reservoir.

Optional Bendix ® PuraGuard ® QC ™

Oil Coalescing Filter

Compressor

Governor

(Governor plus Synchro valve for the Bendix ® DuraFlo ™ 596

Compressor)

Service Reservoir

(Supply Reservoir)

Reservoir Drain

FIGURE 8A - SYSTEM DRAWING

COMPRESSOR & THE AIR BRAKE SYSTEM

GENERAL

The compressor is part of the total air brake system, more specifically, the charging portion of the air brake system. As a component in the overall system its condition, duty cycle, proper installation and operation will directly affect other components in the system.

Powered by the vehicle engine, the air compressor builds the air pressure for the air brake system. The air compressor is typically cooled by the engine coolant system, lubricated by the engine oil supply and has its inlet connected to the engine induction system.

As the atmospheric air is compressed, all the water vapor originally in the air is carried along into the air system, as well as a small amount of the lubricating oil as vapor. If an air dryer is not used to remove these contaminants prior to entering the air system, the majority, but not all, will condense in the reservoirs. The quantity of contaminants that reach the air system depends on several factors including installation, maintenance and contaminant handling devices in the system. These contaminants must either be eliminated prior to entering the air system or after they enter.

DUTY CYCLE

The duty cycle is the ratio of time the compressor spends building air to the total engine running time. Air compressors are designed to build air (run "loaded") up to 25% of the time. Higher duty cycles cause conditions that affect air brake charging system performance which may require additional maintenance. Factors that add to the duty cycle are: air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive leakage

4 from fittings, connections, lines, chambers or valves, etc.

Refer to Table A in the Troubleshooting section for a guide to various duty cycles and the consideration that must be given to maintenance of other components.

COMPRESSOR INSTALLATION

While the original compressor installation is usually completed by the vehicle manufacturer, conditions of operation and maintenance may require additional consideration. The following presents base guidelines.

DISCHARGE LINE

The discharge line allows the air, water-vapor and oil-vapor mixture to cool between the compressor and air dryer or reservoir. The typical size of a vehicle's discharge line, (see column 2 of Table A in the Troubleshooting section) assumes a compressor with a normal (less than 25%) duty cycle, operating in a temperate climate. See Bendix and/or other air dryer manufacturer guidelines as needed.

The discharge line must maintain a constant slope down from the compressor to the air dryer inlet fitting or reservoir to avoid low points where ice may form and block the flow. If, instead, ice blockages occur at the air dryer or reservoir inlet, insulation may be added here, or if the inlet fitting is a typical 90 degree fitting, it may be changed to a straight or

45 degree fitting. Shorter discharge line lengths or insulation may be required in cold climates.

While not all compressors and charging systems are equipped with a discharge line safety valve this component is recommended. The discharge line safety valve is installed in the cylinder head or close to the compressor discharge port and protects against over pressurizing the compressor in the event of a discharge line freezeup.

HOLE

THREAD

FIGURE 8B - DISCHARGE LINE SAFETY VALVE FIGURE 9 - SPONGE TYPE STRAINER

DISCHARGE LINE TEMPERATURE

When the temperature of the compressed air that enters the air dryer is within the normal range, the air dryer can remove most of the charging system oil. If the temperature of the compressed air is above the normal range, oil as oilvapor is able to pass through the air dryer and into the air system. Larger diameter discharge lines and/or longer discharge line lengths can help reduce the temperature.

The air dryer contains a filter that collects oil droplets, and a desiccant bed that removes almost all of the remaining water vapor. The compressed air is then passed to the air brake service (supply) reservoir. The oil droplets and the water collected are automatically purged when the governor reaches its "cut-out" setting.

For vehicles with accessories that are sensitive to small amounts of oil, we recommend installation of a Bendix ®

PuraGuard ® QC ™ oil coalescing filter, designed to minimize the amount of oil present.

AIR CLEANER MAINTENANCE

POLYURETHANE SPONGE STRAINER (FIG. 9)

Remove and wash all of the parts. The strainer element should be cleaned or replaced. If the element is cleaned, it should be washed in a commercial solvent or a detergent and water solution. The element should be saturated in clean engine oil then squeezed dry before replacing it in the strainer.

Be sure to replace the air strainer gasket if the entire air strainer is removed from the compressor intake.

DRY ELEMENT - PLEATED PAPER AIR STRAINER

(FIG. 10)

Remove the spring clips from either side of mounting baffle and remove the cover. Replace the pleated paper filter and remount the cleaned cover making sure the filter is in position. Be sure to replace the air strainer gasket if the entire air strainer is removed from the compressor intake.

NOTE: Some compressors are fitted with compressor intake adapters (Fig. 11) which allow the compressor intake to be connected to the engine air cleaner.

In this case, the compressor receives a supply of clean air from the engine air cleaner. When the engine air filter is changed, the compressor intake adapter should be checked.

If it is loose, remove the intake adapter, clean the strainer plate, if applicable, and replace the intake adapter gasket, and reinstall the adapter securely. Check line connections both at the compressor intake adapter and at the engine air cleaner. Inspect the connecting line for ruptures and replace it if necessary.

FIGURE 10 - DRY ELEMENT STRAINER

5

FIGURE 11 - INLET ADAPTER

AIR LEAKAGE TESTS

Leakage past the discharge valves can be detected by removing the discharge line, applying shop air back through the discharge port and listening for escaping air. Also, the discharge valves and the unloader pistons can be checked for leakage by building up the air system until the governor cuts out, then stopping the engine. With the engine stopped, carefully listen for escaping air at the intake. To pin-point leakage if noted, squirt oil around the unloader pistons. If there is no noticeable leakage at the unloader pistons, the discharge valves may be leaking.

If the compressor does not function as described above, or leakage is excessive, it is recommended that it be returned to the nearest Bendix authorized distributor for a factory rebuilt compressor under the repair exchange plan. If this is not possible, the compressor can be repaired with genuine

Bendix parts in which case the following information should prove helpful.

REMOVING AND INSTALLING

REMOVING

These instructions are general and in some cases additional precautions must be taken.

Drain air brake system.

Drain engine cooling system, compressor cylinder head and block.

Disconnect all air lines, water and oil lines to and from compressor.

Remove compressor mounting bolts and compressor from engine.

Use a gear-puller to remove the gear or pulley from compressor crankshaft.

INSTALLATION

Clean oil supply line. Before connecting this line to the compressor run the engine briefly to be sure oil is flowing freely through the supply line.

Clean the oil return line or return passages through the brackets; these passages must be unrestricted so oil can return to the engine.

Prelubricate compressor cylinder walls, piston rings, and bearings with clean engine oil before assembling compressor.

Always use a new mounting gasket and be sure oil hole in gasket and compressor is properly aligned with oil supply line.

Inspect pulley or gear and associated parts for wear or damage. They must be a neat fit on compressor crankshaft.

Replace pulley or gear if worn or damaged.

Install pulley or gear on compressor crankshaft making sure it properly contacts the shaft and does not ride the key.

Tighten crankshaft nut to 65-70 ft. lbs. and install cotter pin.

Be sure the air cleaner is clean and properly installed. If the compressor intake is connected to either the engine air cleaner or supercharger, these connections must be tight with no leakage.

Clean or replace any damaged or dirty air or water lines which may be corroded, before connecting them to the compressor. Use a new discharge fitting gasket.

Align compressor drive and adjust proper belt tension.

Tighten mounting bolts securely and evenly.

After installation run compressor and check for air, oil, or water leaks at compressor connections. Also, check for noisy operation.

DISASSEMBLY

GENERAL

Clean compressor exterior of road dirt and grease using a good cleaning solvent. Before compressor is completely disassembled the following items should be marked to show their relationship when the compressor is assembled:

The cylinder block in relation to crankcase, end covers’ relation to crankcase, position of crankshaft in relation to crankcase, the cylinder head’s relation to the block.

A convenient method to indicate the above relationships is to use a metal scribe to mark the parts with numbers or lines. Do not use a marking method that can be wiped off or obliterated during rebuilding, such as chalk. Remove all compressor attachments such as governors, air strainers or inlet fittings, discharge fittings and pipe plugs.

CYLINDER HEAD

Remove the cylinder head cap screws and tap the head with a soft mallet to break the gasket seal. Remove the inlet valve springs from the head and inlet valves from their guides in the block. Remove inlet valve guides from around the inlet valve seats on the block taking care not to damage seats. Scrape off any gasket material from the cylinder head and block. Unscrew the discharge cap nuts from the head and remove the discharge valves and springs. Inspect the discharge valve seats for nicks, cracks, and excessive wear and remove and replace if necessary.

6

The discharge valve cap nuts should be inspected for wear and replaced if excessive peening has occurred. To determine if excessive peening has occurred, measure the discharge valve travel. Discharge valve travel must not exceed .046 inches (1.168 mm).

CRANKCASE BASE PLATE OR ADAPTER

Remove the cap screws securing the base plate or base adapter. Tap with soft mallet to break the gasket seal. Scrape off any gasket material from crankcase and plate or adapter.

CONNECTION ROD ASSEMBLIES

NOTE: Before removing the connecting rods, mark each connecting rod and its cap. Each connecting rod is matched to its own cap for proper bearing fit, and these parts must not be interchanged.

Straighten the prongs of the connecting rod bolt lock strap and remove the bolts and bearing caps. Push the piston with the connecting rods attached out the top of the cylinder block. Replace the bearing caps on their respective connecting rods. Remove the piston rings from the pistons.

If the pistons are to be removed from the connecting rods, remove the wrist pin lock wires and press the wrist pins from the pistons and connecting rods. If the wrist pins have teflon plugs, remove plugs, then press out the wrist pins.

If the pistons are removed from the rod, inspect the bronze wrist pin bushing. Press out and replace the bushing if it is excessively worn. (See inspection of parts.) Discard the piston rings and the connecting rod journal bearings. Discard the wrist pin bushings if they were removed (Fig. 13).

CRANKCASE (FIG. 14)

Remove end cover with oil seal, remove end cover gasket.

Replace oil seal after cleaning end cover.

Remove cap screws that hold opposite end cover to crankcase; remove end cover and its gasket. Some compressors have crankcases that have a shoulder for positioning the crankshaft. In these cases, the crankshaft must be removed through one particular end.

Press the crankshaft and ball bearings from the crankcase then press ball bearings from crankshaft. Many compressors will have sleeve type bearings in the crankcase or in the end cover. If the clearance between crankshaft journal and bearing exceeds .0065 in. (.165 mm) the sleeve bearing should be replaced with appropriate undersize.

BLOCK (FIG. 15)

If compressor is fitted with an air strainer, inlet elbow or governor, remove same.

Remove cap screws securing cylinder block to crankcase; separate crankcase and cylinder block and scrape off gasket.

Remove unloader spring, spring saddle and spring seat from cylinder block (Fig. 15).

Remove unloader guides and plungers and with the use of shop air blow unloader pistons out of cylinder block unloader piston bores.

Remove inlet valve guides; inlet valve seats can be removed, but only if they are worn or damaged and are being replaced. Unloader bore bushings should be inspected but not removed unless they are damaged.

PREVENTATIVE MAINTENANCE

Regularly scheduled maintenance is the single most important factor in maintaining the air brake charging system.

Refer to Table A in the Troubleshooting section for a guide to various considerations that must be given to the maintenance of the compressor and other related charging system components.

CLEANING AND INSPECTION OF PARTS

CLEANING

All parts should be cleaned thoroughly in mineral spirits before inspection.

FIGURE 12 - TU-FLO ® 600 AIR COMPRESSOR CYLINDER

HEAD

7

FIGURE 13 - TU-FLO ® 600 AIR COMPRESSOR CYLINDER BLOCK ASSEMBLY

FIGURE 14 - TU-FLO ® 600 AIR COMPRESSOR CRANK CASE ASSEMBLY

8

CYLINDER HEAD ASSEMBLY

Remove all carbon deposits from discharge cavities and all rust and scale from cooling cavities of cylinder head body.

Scrape all foreign matter from body surfaces and use air pressure to blow dirt particles from all cavities.

Discharge valves can be dressed by lapping them on a piece of fine crocus cloth on a flat surface, provided they are not excessively worn.

CYLINDER BLOCK

Clean carbon and dirt from inlet and unloader passages.

Use air pressure to blow carbon and dirt deposits from unloader passages.

Inlet valves, as in the case of discharge valves, not worn excessively can be cleaned by lapping them on a piece of fine crocus cloth on a flat surface.

LUBRICATION

Check the exterior of the compressor for the presence of oil seepage and refer to the TROUBLESHOOTING section for appropriate tests and corrective action.

OIL PASSING

All reciprocating compressors currently manufactured will pass a minimal amount of oil. Air dryers will remove the majority of oil prior to entrance into the air brake system.

For particularly oil sensitive systems the Bendix ® PuraGuard ®

QC ™ oil coalescing filter can be used in conjunction with a

Bendix air dryer.

If compressor oil passing is suspected, refer to the

TROUBLESHOOTING section and TABLE A for the symptoms and corrective action to be taken. In addition,

Bendix has developed the "Bendix Air System Inspection

Cup" or BASIC test to help substantiate suspected excessive oil passing. The steps to be followed when using the BASIC test are presented in APPENDIX A at the end of the

TROUBLESHOOTING section.

OIL PASSAGE

Clean thoroughly all oil passages through crankshaft, connecting rods, crankcase, end covers and base plate. If necessary, inspect passages with a wire and blow foreign matter out with air pressure.

FIGURE 15 - TU-FLO ® 600 AIR COMPRESSOR BLOCK ASSY

INSPECTION OF PARTS

CYLINDER HEAD BODY

Inspect cylinder head body for cracks or damage.

WATER-COOLED TYPE

Use air pressure to test water jackets of cylinder head and block for leakage. Replace unit if leakage is found.

DISCHARGE VALVES AND SEATS

If discharge valves are worn and grooved where they contact the seats, they should be replaced. If the discharge valve seats are worn excessively so that there is no longer enough metal left to reclaim them by lapping, the seats should be replaced.

DISCHARGE VALVE SPRING AND CAP NUTS

Replace all used discharge valve springs and cap nuts if cap nuts cannot be reclaimed.

CRANKCASE AND END COVERS

Check for cracks or broken lugs in crankcase and end covers. Also, check oil passages to make sure they are open and clean.

If an oil seal ring is used in the end cover, check fit of ring in ring groove. There should be .008 in. (.203 mm) to .015 in.

(.381 mm) clearance at the gap when placed in the end bore of the crankshaft. If the oil ring is worn thin or is damaged, it should be replaced. Inspect oil ring groove in end cover; if groove is worn excessively, replace end cover or machine groove for next oversize oil seal ring. If the crankshaft main bearings are installed in the end cover, check for excessive wear and flat spots; replace if necessary.

9

CYLINDER BLOCK

Check for cracks or broken lugs on cylinder block. Also check unloader bore bushings to be sure they are not worn, rusted or damaged. If these bushings are to be replaced, they can be removed by running a 1/8 in. pipe thread tap inside the bushing, then inserting a 1/8 in. pipe threaded rod and pulling the bushing straight up and out. Do not use an easy-out for removing these bushings.

INLET VALVES AND SEATS

If inlet valves are grooved or worn where they contact the seat, they should be replaced. If the inlet valve seats are worn or damaged so they cannot be reclaimed by facing, they should be replaced.

CYLINDER BORES

Cylinder bores which are scored or out of round by more than .002 in. (.051 mm) or tapered more than .003 in. (.076

mm) should be rebored or honed oversize. Oversize pistons are available in .010 in., .020 in., and .030 in. oversizes (Fig.

16).

Cylinder bores must be smooth, straight, and round.

Clearance between cast iron pistons and cylinder bores should be between .002 in. (.051 mm) minimum and .004

in. (.102 mm) maximum (Fig. 16).

FIGURE 16 - CHECKING CYLINDER BORE

PISTONS

Any of three different piston designs may be found in Tu-Flo ®

600 compressors as follows: three ring cast iron, three ring aluminum or five ring cast iron. If either of the three ring designs are found, it is recommended that the unit be updated to the current five ring design. Piece numbers of five ring piston, wrist pin maintenance kits and piston ring sets are shown in Fig. 17.

Size

Standard

.010”

Oversize

.020”

Oversize

.030”

Oversize

5 Ring

Piston

292529

292547

292548

292549

Wrist

Pin

292530

292530

292530

292530

Ring

Set

282525

282526

282527

*Piston Pin

Maint. Kit

289891

289892

289893

282528 289894

* Includes 1 piston, 1 wrist pin, and 2 pin buttons.

FIGURE 17

If the compressor has five ring pistons which are to be reused, they should be checked for scores, cracks or enlarged ring grooves; replace pistons if any of these conditions are found.

Measure each piston with a micrometer in relation to the cylinder bore diameter to be sure the clearance is between

.002 in. (.051 mm) minimum and .004 in. (.102 mm) maximum.

Check fit of wrist pins in pistons. Wrist pin clearance should be from .0000 in. to .0006 in. (.015 mm). Check fit of wrist pin in connecting rod bushing. This clearance should not exceed .0007 in. (.018 mm). Replace wrist pin bushings if excessive clearance is found. Wrist pin bushings should be reamed after being pressed into connecting rods. Replace used wrist pin lock wires. Compressors manufactured after

December, 1977, will have Teflon plugs in each end of the wrist pins instead of the lockwire. The Teflon plugs (piece number 292392) may be used instead of the lockwires on all compressors (see Fig. 3).

PISTON RINGS

Check fit of piston rings in piston ring grooves. Check ring gap with rings installed in cylinder bores. Refer to Fig. 18 for correct gap and groove clearance.

All rings must be located in their proper ring grooves as shown. The rings can be identified by the width and should be installed with the bevel or the pip mark (if any) toward the top of the piston as shown.

10

TU-FLO ® 500 & 600 AIR COMPRESSOR

CORRECT GROOVE

CLEARANCE

WIDE RING

NARROW

RING NARROW

INCHES M M

.0015

.038

WIDE

.0035”

.0015”

.002”

.004”

.002

.051

CORRECT GAP

CLEARANCE WITH

RING IN CYLINDER

.0035

.089

NARROW

WIDE

.0035

.015

.004

.102

.015

.381

FIGURE 18 - PISTON RING POSITIONS GAPS & GROOVE

CLEARANCE

CRANKSHAFT

Check crankshaft screw threads, keyways, tapered ends and all machined and ground surfaces for wear, scores, or damage. Crankshaft journals which are out of round more than .001 in. (.025 mm) must be reground. Bearing inserts are available in .010 in. (.254 mm), .020 in. (.508 mm), and

.030 in. (.762 mm) undersizes for reground crankshafts.

Main bearing journals must be maintained so bearings are snug fit. The oil seal ring groove or grooves in crankshafts fitted with oil seal rings must not be worn. The ring groove walls must have a good finish and they must be square.

Check to be sure the oil passages are open and clean through the crankshaft.

CONNECTING ROD BEARINGS

Check connecting rod bearings on crankshaft journals for proper fit. Used bearing inserts should be replaced.

Connecting rod caps are not interchangeable. The locking slots of the connecting rod and cap should be positioned adjacent to each other.

Clearance between the connecting rod journal and the connecting rod bearing must not be less than .0003 in. (.008

mm) or more than .0021 in. (.053 mm) after rebuilding.

MAIN BEARINGS

Check for wear or flat spots; if found, bearings should be replaced. If type with sleeve bearing, this bearing should be checked for scores and wear and replaced if necessary.

UNLOADER MECHANISM

Used unloader mechanism should be replaced by unloader kits (piece number 279615).

The new unloader pistons should be a loose sliding fit in the unloader piston bores of the cylinder block.

REPAIRS

DISCHARGE VALVES AND SEATS

If discharge valve seats merely show signs of slight wear, they can be dressed by using a lapping stone, grinding compound and grinding tool. Install new valve springs and re-dressed or new discharge valves.

To test for leakage past the discharge valves, apply about

100 pounds of air pressure through the cylinder head discharge port and apply soap suds at the discharge valves and seats. Leakage which will permit the formation of bubbles is permissible.

If excessive leakage is found, leave the air pressure applied, and with the use of a fibre or hardwood dowel and hammer, tap the discharge valves off their seats several times. This will help the valves to seat and should reduce any leakage.

With the air pressure still applied at the discharge port of the cylinder head, check for leakage at the discharge valve cap nuts. No leakage is permissible.

INLET VALVES AND SEATS

If inlet valve seats show sign of slight nicks or scratches, they can be redressed with a fine piece of emery cloth or by lapping with a lapping stone, grinding compound and grinding tool. If the seats are excessively damaged to the extent that they cannot be reclaimed, they should be replaced. The dimension from the top of the cylinder block to the inlet valve seat should not exceed .113 in. (2.870 mm) not be less than .101 in. (2.565 mm).

Slightly worn or scratched inlet valves can be reclaimed by lapping them on a piece of fine crocus cloth on a flat surface, but it is suggested that new inlet valves be installed.

ASSEMBLY

INSTALLING CYLINDER BLOCK

Position cylinder block gasket and block on crankcase according to markings made prior to disassembly. Using cap screws with lockwashers, secure cylinder block to crankcase at 220 to 250 inch pounds.

INSTALLING CRANKSHAFT

If the crankshaft is fitted with oil seal rings, install rings.

Position ball bearings and crankshaft in crankcase making sure the drive end of the crankshaft is positioned as marked before disassembly.

If one end of the crankcase is counterbored for holding a bearing, be sure the crankshaft is installed through the correct end of the crankcase.

Carefully press crankshaft and bearings into crankcase using arbor press.

11

Position a rear end cover gasket, when used, over the rear end of the crankcase, making sure the oil hole in the gasket lines up with the oil hole in the crankcase. Position the end cover oil seal ring, if used, in the groove in the end cover boss. The end cover should be positioned correctly in relation to the oil holes in the gasket and crankcase. As the end cover is positioned, the oil seal ring must be compressed as it is positioned in the crankshaft. Secure end cover to crankcase with cap screws and lock washers.

If the opposite end cover requires an oil seal which was removed on disassembly, a new seal should be pressed into end cover. Position new end cover gasket and carefully install end cover over crankshaft and to crankcase avoiding damage to the seal. Secure end cover with cap screw and lock washers (220-250 inch pounds).

INSTALLING PISTONS AND CONNECTING RODS

If new wrist pin bushings are to be used, they should be pressed into the connecting rods so that the oil hole in the bushing lines up with the one in the rod. The new bushings should then be reamed or honed to provide between .0002

in. (.005 mm) and .0007 in. (.018 mm) clearance on the wrist pin. Position connecting rod in piston and press in wrist pin so that lockwire hole in the pin aligns with

that of the piston. Install new lockwire through piston and wrist pin and lock same by snapping short end into lockwire hole at the bottom of the piston (Fig. 3). Teflon plugs in wrist pin ends may be used instead of the lockwires (Fig. 3).

Install piston rings in correct location with ring pip marks up

(Fig. 18). Stagger the position of the ring gaps.

Prelubricate piston, piston rings, wrist pin, and connecting rod bearings with clean engine oil before installing them in the compressor.

Remove connecting bolts and bearing cap from one connecting rod. Turn crankshaft so one of its connecting rod journals is in the downward, center position. Compress the rings in their respective grooves with a ring compression tool. Insert the connecting rod with piston through the top of the cylinder whose journal is down. Position and attach the bearing cap to the connecting rod making sure the bolt lock washers are properly positioned on the cap. Tighten connecting rod bolts (105-120 inch pounds) and bend the two new lock washer prongs up against the hex head of the bolt. Install the other connecting rod and piston in the same manner.

UNLOADING MECHANISM (FIG. 15)

The unloader pistons and their bores must be lubricated with special lubricant piece number 239379 (dimethyl polysiloxane) prior to installation. If new unloader kits are being installed, the pistons in the kit are already lubricated.

Install the unloader pistons in their bores with caution against cutting the o-rings or distorting the back-up rings.

Position unloader plungers in their guides and slip them in and over the tops of the pistons.

Install the unloader spring seat in the cylinder block; a small hole is drilled in the block for this purpose. Position the saddle between unloader piston guides so its forks are centered on the guides. Install the unloader spring making sure it seats over the spring seats both in the block and on the saddle.

Install inlet valve seats if they have been previously removed.

Position and install inlet valve guides, then drop inlet valves in their guides. There should be a loose sliding fit between guides and valves.

CYLINDER HEAD ASSEMBLY

If previously removed, the discharge valve seats should be installed. Drop discharge valves into their seats. Install discharge valve spring and cap nuts.

Place the inlet valve springs in the cylinder head. Use a small quantity of grease to hold them in place, just enough grease to keep the springs from falling out. Place cylinder head gasket on cylinder block. Carefully align cylinder head assembly on block and install cap screws. Torque to

175-225 inch pounds.

AIR STRAINER

If the compressor has its own air strainer, reassemble with new or cleaned element. Assemble to block with a new strainer gasket.

GOVERNOR

If compressor is type with pad mounted governor, install a properly functioning governor using a new governor gasket.

INSPECTION OF REBUILT UNIT

Check to be sure that covers, plugs or masking tape are used to protect all ports if compressor is not to be installed immediately.

Fit the end of all crankshafts with keys, nuts and cotter pins as required and then protect the ends against damage by wrapping with masking or friction tape.

The open bottom of engine lubricated compressors should be protected against the entrance of dirt during handling or storage, by installing a temporary cover over base.

TESTING REBUILT COMPRESSOR

In order to properly test a compressor under operating conditions, a test rack for correct mounting, cooling, lubricating and driving the compressor is necessary. Such tests are not compulsory if the unit has been carefully rebuilt by an experienced person.

12

FIGURE 19 - SPONGE TYPE AIR STRAINER EXPLODED VIEW

A compressor efficiency or build-up test can be run which is not too difficult. An engine lubricated compressor must be connected to an oil supply line of at least 15 pounds pressure during the test and an oil return line must be installed to keep the crankcase drained. The compressor (when tested) should be tested without a strainer.

To the discharge port of the compressor connect a reservoir or reservoirs whose volume plus the volume of the connecting line equals 1300 cubic inches. Run the compressor between 1700 and 1750 RPM. Elapsed time that the compressor takes to build up from 0 to 100 psi should be 36 seconds maximum. During the above test, the compressor should be checked for oil leakage and noisy operation.

TABULATED DATA

Number Cylinders 2

Bore Size

Stroke

Piston Displacement at

1250 RPM

Piston Displacement per

Revolution at 1250 RPM

2.75 in.

6.985 cm

1-11/16 in.

4.287 cm

Maximum Recommended Speed (RPM) 2400

Minimum Cooling Water Flow for 2.5 gal/min

Water-Cooled compressors at

Maximum Speed

9.46 liter/min

Horsepower Required at 1250 RPM

Against 100 psi

Minimum Oil Pressure Required at Engine Idling Speed

14.5 cfm

410.6 liter/min

20.0 cu. in.

327.74 cc

3.2

5 psi

Minimum Oil Pressure Required at Maximum Engine Governed Speed

15 psi

COMPRESSOR TROUBLESHOOTING

IMPORTANT: The troubleshooting contained in this section considers the compressor as an integrated component of the overall air brake charging system and assumes that an air dryer is in use. The troubleshooting presented will cover not only the compressor itself, but also other charging system devices as they relate to the compressor.

WARNING! PLEASE READ AND FOLLOW

THESE INSTRUCTIONS TO AVOID

PERSONAL INJURY OR DEATH:

When working on or around a vehicle, the following general precautions should be observed at all times.

1.

Park the vehicle on a level surface, apply the parking brakes, and always block the wheels.

Always wear safety glasses.

2.

Stop the engine and remove ignition key when working under or around the vehicle. When working in the engine compartment, the engine should be shut off and the ignition key should be removed. Where circumstances require that the engine be in operation, EXTREME CAUTION should be used to prevent personal injury resulting from contact with moving, rotating, leaking, heated or electrically charged components.

3.

Do not attempt to install, remove, disassemble or assemble a component until you have read and thoroughly understand the recommended procedures. Use only the proper tools and observe all precautions pertaining to use of those tools.

4.

If the work is being performed on the vehicle’s air brake system, or any auxiliary pressurized air systems, make certain to drain the air pressure from all reservoirs before beginning ANY work on the vehicle. If the vehicle is equipped with an

AD-IS ™ air dryer system or a dryer reservoir module, be sure to drain the purge reservoir.

13

5.

Following the vehicle manufacturer’s recommended procedures, deactivate the electrical system in a manner that safely removes all electrical power from the vehicle.

6.

Never exceed manufacturer’s recommended pressures.

7.

Never connect or disconnect a hose or line containing pressure; it may whip. Never remove a component or plug unless you are certain all system pressure has been depleted.

8.

Use only genuine Bendix ® replacement parts, components and kits. Replacement hardware, tubing, hose, fittings, etc. must be of equivalent size, type and strength as original equipment and be designed specifically for such applications and systems.

9.

Components with stripped threads or damaged parts should be replaced rather than repaired. Do not attempt repairs requiring machining or welding unless specifically stated and approved by the vehicle and component manufacturer.

10. Prior to returning the vehicle to service, make certain all components and systems are restored to their proper operating condition.

11. For vehicles with Antilock Traction Control (ATC), the ATC function must be disabled (ATC indicator lamp should be ON) prior to performing any vehicle maintenance where one or more wheels on a drive axle are lifted off the ground and moving.

14

This troubleshooting guide obsoletes and supersedes all previous published troubleshooting information relative to Bendix air compressors.

Advanced Troubleshooting Guide for Air Brake Compressors

*

The guide consists of an introduction to air brake charging system components, a table showing recommended vehicle maintenance schedules, and a troubleshooting symptom and remedy section with tests to diagnose most charging system problems.

INDEX

Page Number Symptom Symptom

Air

Air brake charging system:

Slow build (9.0) . . . . . . . . . . . . . . . . . 23 - 24

Doesn’t build air (10.0) . . . . . . . . . . . . . . . 25

Air dryer:

Doesn’t purge (14.0) . . . . . . . . . . . . . . . . . 26

Safety valve releases air (12.0) . . . . . . . . . 26

Compressor:

Constantly cycles (15.0) . . . . . . . . . . . . . . 26

Leaks air (16.0) . . . . . . . . . . . . . . . . . . . . . 27

Safety valve releases air (11.0) . . . . . . . . . 25

Noisy (18.0) . . . . . . . . . . . . . . . . . . . . . . . . 27

Reservoir:

Safety valve releases air (13.0) . . . . . . . . . 26

Page Number

Coolant

Compressor leaks coolant (17.0) . . . . . . . . . . 27

Engine

Oil consumption (6.0) . . . . . . . . . . . . . . . . . . . 23

Oil

Oil Test Card results (1.0) . . . . . . . . . . . . . . . . 18

Oil is present:

On the outside of the compressor (2.0) . . . 19

At the air dryer purge/exhaust or surrounding area (3.0) . . . . . . . . . . . 19

In the supply reservoir (4.0) . . . . . . . . 20 - 22

At the valves (5.0) . . . . . . . . . . . . . . . . . . . 22

At air dryer cartridge (7.0) . . . . . . . . . . . . . 23

In the ping tank or compressor discharge aftercooler (8.0) . . . . . . . . . . 23

Test Procedures

(1) Oil Leakage at Head Gasket . . . 28

(2) System Leakage . . . . . . . . . . . . 28

(3) Compressor Discharge and

Air Dryer Inlet Temperature . . . . 28

(4) Governor Malfunction . . . . . . . . 29

(5) Governor Control Line . . . . . . . . 29

(6) Compressor Unloader . . . . . . . . 29

BASIC Test Information . . . . . . 30-32

Maintenance & Usage Guidelines

Maintenance Schedule and

Usage Guidelines (Table A) . . 17

*This guide is only for vehicles that use desiccant air dryers.

15

Introduction to the Air Brake Charging System

Powered by the vehicle engine, the air compressor builds the air pressure for the air brake system. The air compressor is typically cooled by the engine coolant system and lubricated by the engine oil supply.

The compressor's unloader mechanism and governor

(along with a synchro valve for the Bendix ® DuraFlo ™

596 air compressor) control the brake system air pressure between a preset maximum and minimum pressure level by monitoring the pressure in the service

(or “supply”) reservoir. When the air pressure becomes greater than that of the preset “cut-out”, the governor controls the unloader mechanism of the compressor to stop the compressor from building air and also causes the air dryer to purge. As the service reservoir air pressure drops to the “cut-in” setting of the governor, the governor returns the compressor back to building air and the air dryer to air drying mode.

As the atmospheric air is compressed, all the water vapor originally in the air is carried along into the air system, as well as a small amount of the lubricating oil as vapor.

The duty cycle is the ratio of time the compressor spends building air to the total engine running time.

Air compressors are designed to build air (run “loaded”) up to 25% of the time. Higher duty cycles cause conditions that affect air brake charging system performance which may require additional maintenance. Factors that add to the duty cycle are: air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive leakage from fittings, connections, lines, chambers or valves, etc.

The discharge line allows the air, water-vapor and oil-vapor mixture to cool between the compressor and air dryer. The typical size of a vehicle's discharge line,

(see column 2 of Table A on page 17) assumes a compressor with a normal (less than 25%) duty cycle, operating in a temperate climate. See Bendix and/or other air dryer manufacturer guidelines as needed.

When the temperature of the compressed air that enters the air dryer is within the normal range, the air dryer can remove most of the charging system oil. If the temperature of the compressed air is above the normal range, oil as oil-vapor is able to pass through the air dryer and into the air system. Larger diameter discharge lines and/or longer discharge line lengths can help reduce the temperature.

The discharge line must maintain a constant slope down from the compressor to the air dryer inlet fitting to avoid low points where ice may form and block the flow. If, instead, ice blockages occur at the air dryer inlet, insulation may be added here, or if the inlet fitting is a typical 90 degree fitting, it may be changed to a straight or 45 degree fitting. For more information on how to help prevent discharge line freeze-ups, see

Bendix Bulletins TCH-08-21 and TCH-08-22 (see pages 33-35). Shorter discharge line lengths or insulation may be required in cold climates.

The air dryer contains a filter that collects oil droplets, and a desiccant bed that removes almost all of the remaining water vapor. The compressed air is then passed to the air brake service (supply) reservoir. The oil droplets and the water collected are automatically purged when the governor reaches its “cut-out” setting.

For vehicles with accessories that are sensitive to small amounts of oil, we recommended installation of a

Bendix ® PuraGuard ® system filter, designed to minimize the amount of oil present.

16

Discharge

Line

Optional “Ping” Tank

Air Dryer

The Air Brake Charging System

supplies the compressed air for the braking system as well as other air accessories for the vehicle. The system usually consists of an air compressor, governor, discharge line, air dryer, and service reservoir.

Optional Bendix ® PuraGuard ®

System Filter or PuraGuard ®

QC ™ Oil Coalescing Filter

Compressor

Governor

(Governor plus Synchro valve for the Bendix ® DuraFlo ™ 596 ™

Compressor)

Service Reservoir

(Supply Reservoir)

Reservoir Drain

Table A: Maintenance Schedule and Usage Guidelines

Regularly scheduled maintenance is the single most important factor in maintaining the air brake charging system.

Vehicle Used for:

Column 1

No. of

Axles

Typical

Compressors

Spec'd

Discharge

Line

I.D.

Column 2

Length

Column 3

Recommended

Air Dryer

Cartridge

Replacement 1

Column 4

Recommended

Reservoir

Drain

Schedule 2

Column 5

Acceptable

Reservoir

Oil Contents 3 at Regular

Drain Interval

Low Air Use

Compressor with less than 15% duty cycle e.g. Line haul single trailer w/o air suspension, air over hydraulic brakes.

Compressor with up to 25% duty cycle e.g. Line haul single trailer with air suspension, school bus.

5 or less

5 or less

1/2 in.

6 ft.

For oil carry-over control 4 suggested upgrades:

5/8 in. 9 ft.

1/2 in.

9 ft.

For oil carry-over control 4 suggested upgrades:

5/8 in. 12 ft.

Every 3

Years

Recommended

Every

Month -

Max of every 90 days

BASIC test acceptable range:

3 oil units per month.

See appendix

A.

High Air Use

Compressor with up to 25% duty cycle e.g. Double/triple trailer, open highway coach/RV, (most) pick-up & delivery, yard or terminal jockey, off-highway, construction, loggers, concrete mixer, dump truck, fire truck.

8 or less

1/2 in.

12 ft.

For oil carry-over control 4 suggested upgrades:

5/8 in. 15 ft.

Every 2

Years

For the

BASIC

Test Kit:

Order

Bendix

P/N

5013711

Compressor with up to 25% duty cycle e.g. City transit bus, refuse, bulk unloaders, low boys, urban region coach, central tire inflation.

12 or less

5/8 in.

12 ft.

For oil carry-over control 4 suggested upgrades:

3/4 in. 15 ft.

Every

Year

Every

Month

BASIC test acceptable range:

5 oil units per month.

See appendix

A.

Footnotes:

1 With increased air demand the air dryer cartridge needs to be replaced more often.

2 Use the drain valves to slowly drain all reservoirs to zero psi.

3 Allow the oil/water mixture to fully settle before measuring oil quantity.

4 To counter above normal temperatures at the air dryer inlet, (and resultant oil-vapor passing upstream in the air system) replace the discharge line with one of a larger diameter and/ or longer length. This helps reduce the air's temperature. If sufficient cooling occurs, the oil-vapor condenses and can be removed by the air dryer. Discharge line upgrades are not covered under warranty. Note: To help prevent discharge line freeze-ups, shorter discharge line lengths or insulation may be required in cold climates. (See Bendix Bulletins TCH-08-21 and TCH-08-22, included in Appendix B, for more information.)

5 For certain vehicles/applications, where turbo-charged inlet air is used, a smaller size compressor may be permissible.

Note: Compressor and/or air dryer upgrades are recommended in cases where duty cycle is greater than the normal range (for the examples above).

For Bendix ® Tu-Flo ® 550 and 750 compressors, unloader service is recommended every 250,000 miles.

17

Air Brake Charging System Troubleshooting

How to use this guide:

Find the symptom(s) that you see, then move to the right to find the possible causes (“What it may indicate”) and remedies (“What you should do”).

Review the warranty policy before performing any intrusive compressor maintenance. Unloader or cylinder head gasket replacement and resealing of the bottom cover plate are usually permitted under warranty. Follow all standard safety procedures when performing any maintenance.

Look for:

Normal - Charging system is working within normal range.

Check - Charging system needs further investigation.

WARNING! Please READ and follow these instructions to avoid personal injury or death:

When working on or around a vehicle, the following general precautions should be observed at all times.

1. Park the vehicle on a level surface, apply the parking brakes, and always block the wheels. Always wear safety glasses.

2. Stop the engine and remove ignition key when working under or around the vehicle. When working in the engine compartment, the engine should be shut off and the ignition key should be removed. Where circumstances require that the engine be in operation, EXTREME CAUTION should be used to prevent personal injury resulting from contact with moving, rotating, leaking, heated or electrically charged components.

3. Do not attempt to install, remove, disassemble or assemble a component until you have read and thoroughly understand the recommended procedures. Use only the proper tools and observe all precautions pertaining to use of those tools.

4. If the work is being performed on the vehicle’s air brake system, or any auxiliary pressurized air systems, make certain to drain the air pressure from all reservoirs before beginning ANY work on the vehicle. If the vehicle is equipped with an AD-IS ™ air dryer system or a dryer reservoir module, be sure to drain the purge reservoir.

5. Following the vehicle manufacturer’s recommended procedures, deactivate the electrical system in a manner that safely removes all electrical power from the vehicle.

6. Never exceed manufacturer’s recommended pressures.

7. Never connect or disconnect a hose or line containing pressure; it may whip. Never remove a component or plug unless you are certain all system pressure has been depleted.

8. Use only genuine Bendix ® replacement parts, components and kits. Replacement hardware, tubing, hose, fittings, etc.

must be of equivalent size, type and strength as original equipment and be designed specifically for such applications and systems.

9. Components with stripped threads or damaged parts should be replaced rather than repaired. Do not attempt repairs requiring machining or welding unless specifically stated and approved by the vehicle and component manufacturer.

10. Prior to returning the vehicle to service, make certain all components and systems are restored to their proper operating condition.

11. For vehicles with Antilock Traction Control (ATC), the ATC function must be disabled (ATC indicator lamp should be

ON) prior to performing any vehicle maintenance where one or more wheels on a drive axle are lifted off the ground and moving.

18

Symptom:

1.0 Oil Test Card

Results

What it may indicate:

Not a valid test.

û

What you should do:

Bendix

®

BASIC Test

ü

Discontinue using this test.

Do not use this card test to diagnose compressor "oil passing" issues. They are subjective and error prone. Use only the

Bendix Air System Inspection Cup (BASIC) test and the methods described in this guide for advanced troubleshooting.

The Bendix ® BASIC test should be the definitive method for judging excessive oil

fouling/oil passing. (See Appendix A, on page 30 for a flowchart and expanded explanation of the checklist used when conducting the BASIC test.)

Symptom:

2.0 Oil on the

Outside of the

Compressor

What it may indicate:

Engine and/or other accessories leaking onto compressor.

2.1 Oil leaking at compressor / engine connections:

(a)Leak at the front or rear (fuel pump, etc.) mounting flange.

(b)Leak at air inlet fitting.

(c)Leak at air discharge fitting.

(d)Loose/broken oil line fittings.

What you should do:

Find the source and repair. Return the vehicle to service.

ð

Repair or replace as necessary. If the mounting bolt torques are low, replace the gasket.

ð

Replace the fitting gasket. Inspect inlet hose and replace as necessary.

ð

Replace gasket or fitting as necessary to ensure good seal.

ð

Inspect and repair as necessary.

2.2 Oil leaking from compressor:

(a)Excessive leak at head gasket.

(b)Leak at bottom cover plate.

(c)Leak at internal rear flange gasket.

(d)Leak through crankcase.

(e)(If unable to tell source of leak.)

ð

Go to Test 1 on page 28.

ð

Reseal bottom cover plate using RTV silicone sealant.

ð

Replace compressor.

ð

Replace compressor.

ð

Clean compressor and check periodically.

(a)

ð

(c)

ð

Head gasket and rear flange gasket locations.

(c)

3.0 Oil at air dryer purge/exhaust or surrounding area

Air brake charging system functioning normally.

ð

Air dryers remove water and oil from the air brake charging system.

Check that regular maintenance is being performed. Return the vehicle to service.

An optional kit (Bendix piece number

5011327 for the Bendix ® AD-IS ™ or AD-IP ™ air dryers, or 5003838 for the Bendix ®

AD-9 ™ air dryer) is available to redirect the air dryer exhaust.

19

Symptom: What it may indicate: What you should do:

4.0 Oil in Supply or

Service Reservoir

(air dryer installed)

(If a maintained Bendix ®

PuraGuard ® system filter or Bendix ® PuraGuard ®

QC ™ oil coalescing filter is installed, call

1-800-AIR-BRAKE

(1-800-247-2725) and speak to a Tech Team member.)

Maintenance

(a) If air brake charging system maintenance has not been performed.

That is, reservoir(s) have not been drained per the schedule in Table

A on page 17, Column 4 and/or the air dryer maintenance has not been performed as in Column 3.

(b) If the vehicle maintenance has

been performed as recommended in Table A on page 17, some oil in the reservoirs is normal.

See Table A, on page 17, for maintenance schedule information.

(a)

Drain all air tanks (reservoirs) into the Bendix ® BASIC test cup. (Bendix kit P/N 5013711).

ð Drain all air tanks and check vehicle at next service interval using the Bendix ® BASIC test. See Table A on page 17, column 3 and 4, for recommended service schedule.

ð Drain all air tanks into Bendix ® BASIC test cup (Bendix Air System Inspection Cup).

If less than one unit of reservoir contents is found, the vehicle can be returned to service. Note: If more than one oil unit of water (or a cloudy emulsion mixture) is present, change the vehicle's air dryer, check for air system leakage (Test

2, on page 28), stop inspection and check again at the next service interval.

See the BASIC test kit for full details.

If less than one "oil unit" of water (or water/ cloudy emulsion mixture) is present, use the BASIC cup chart on the label of the cup to determine if the amount of oil found is within the acceptable level.

ð If within the normal range, return the vehicle to service. For vehicles with accessories that are sensitive to small amounts of oil, consider a Bendix ®

PuraGuard ® QC ™ oil coalescing filter.

ð If outside the normal range go to

Symptom 4.0(c).

Also see the Table A on page 17, column

3 for recommended air dryer cartridge replacement schedule.

20

Duty cycle too high

(c) Air brake system leakage.

(d) Compressor may be undersized for the application.

The duty cycle is the ratio of time the compressor spends building air to total engine running time. Air compressors are designed to build air (to "run loaded") up to 25% of the time. Higher duty cycles cause conditions that affect air brake charging system performance which may require additional maintenance. Factors that add to the duty cycle are: air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive leakage from fittings, connections, lines, chambers or valves, etc.

ð

Go to Test 2 on page 28.

ð

See Table A, column 1, on page 17 for recommended compressor sizes.

ð

If the compressor is "too small" for the vehicle's role (for example, where a vehicle's use has changed or service conditions exceed the original vehicle or engine OE spec's) then upgrade the compressor. Note: The costs incurred (e.g.

installing a larger capacity compressor, etc.) are not covered under original compressor warranty.

ð

If the compressor is correct for the vehicle, go to Symptom 4.0 (e).

Symptom: What it may indicate: What you should do:

4.0 Oil in Supply or Service

Reservoir*

(air dryer installed)

(continued)

(e)

Temperature

(g)

(e) Air compressor discharge and/or air dryer inlet temperature too high.

(f) Insufficient coolant flow.

(f)

ð

Check temperature as outlined in Test 3 on page 28. If temperatures are normal go to 4.0(h).

ð

Inspect coolant line. Replace as necessary

(I.D. is 1/2").

ð

Inspect the coolant lines for kinks and restrictions and fittings for restrictions.

Replace as necessary.

ð

Verify coolant lines go from engine block to compressor and back to the water pump.

Repair as necessary.

Testing the temperature at the discharge fitting.

(g)

Inspecting the coolant hoses.

(g) Restricted discharge line.

Kinked discharge line shown.

(h)

ð

If discharge line is restricted or more than

1/16" carbon build up is found, replace the discharge line. See Table A, column 2, on page 17 for recommended size. Replace as necessary.

ð

The discharge line must maintain a

constant slope down from the compressor to the air dryer inlet fitting to avoid low points where ice may form and block the flow. If, instead, ice blockages occur at the air dryer inlet, insulation may be added here, or if the inlet fitting is a typical 90 degree fitting, it may be changed to a straight or 45 degree fitting. For more information on how to help prevent discharge line freeze-ups, see Bendix Bulletins

TCH-08-21 and TCH-08-22 (Appendix B).

Shorter discharge line lengths or insulation may be required in cold climates.

Other

(h) Restricted air inlet (not enough air to compressor).

ð

Check compressor air inlet line for restrictions, brittleness, soft or sagging hose conditions etc. Repair as necessary.

Inlet line size is 3/4 ID. Maximum restriction requirement for compressors is

25 inches of water.

ð

Check the engine air filter and service if necessary (if possible, check the air filter usage indicator).

Partly collapsed inlet line shown.

*If a maintained Bendix ® PuraGuard ® system filter or Bendix ® PuraGuard ® QC ™ oil coalescing filter is installed, call 1-800-AIR-BRAKE (1-800-247-2725) and speak to a Tech Team member.

21

22

Symptom: What it may indicate: What you should do:

4.0 Oil in Supply or Service

Reservoir*

(air dryer installed)

(continued)

Other (cont.)

(i) Poorly filtered inlet air (poor air quality to compressor).

ð Check for leaking, damaged or defective compressor air inlet components (e.g.

induction line, fittings, gaskets, filter bodies, etc.). Repair inlet components as needed.

Note: Dirt ingestion will damage compressor and is not covered under warranty.

Inspect the engine air cleaner.

(j) Governor malfunction or setting.

(k) Compressor malfunction.

Crankcase Flooding

Consider installing a compressor bottom drain kit

(where available) in cases of chronic oil passing where all other operating conditions have been investigated. Bendix compressors are designed to have a 'dry' sump and the presence of excess oil in the crankcase can lead to oil carryover.

ð Go to Test 4 on page 29.

ð If you found excessive oil present in the service reservoir in step 4.0 (b) above and you did not find any issues in steps 4.0 (c) through 4.0 (j) above, the compressor may be passing oil.

Replace compressor. If still under warranty, follow normal warranty process.

Note: After replacing a compressor, residual oil may take a considerable period of time to be flushed from the air brake system.

*If a maintained Bendix ® PuraGuard ® system filter or Bendix ® PuraGuard ® QC ™ oil coalescing filter is installed, call 1-800-AIR-BRAKE (1-800-247-2725) and speak to a Tech Team member.

5.0 Oil present at valves (e.g. at exhaust, or seen during servicing).

Air brake system valves are required to tolerate a light coating of oil.

ð

A small amount of oil does not affect SAE

J2024** compliant valves.

ð

Check that regular maintenance is being performed and that the amount of oil in the air tanks (reservoirs) is within the acceptable range shown on the Bendix ®

BASIC test cup (see also column 5 of Table

A on page 17). Return the vehicle to service.

For oil-sensitive systems, see page 16.

** SAE J2024 outlines tests all air brake system pneumatic components need to be able to pass, including minimum levels of tolerance to contamination.

Genuine

Bendix valves are all SAE

J2024 compliant.

Symptom: What it may indicate: What you should do:

6.0 Excessive oil consumption in engine.

7.0 Oil present at air dryer cartridge during maintenance.

8.0 Oil in ping tank or compressor discharge aftercooler.

A problem with engine or other engine accessory.

The engine service manual has more information.

ð See engine service manual.

Air brake charging system is functioning normally.

Oil shown leaking from an air dryer cartridge.

Air brake charging system is functioning normally.

ð

Air dryers remove water and oil from the air brake charging system. A small amount of oil is normal. Check that regular maintenance is being performed and that the amount of oil in the air tanks

(reservoirs) is within the acceptable range shown by the BASIC Test (see also column

5 of Table A on page 17). Replace the air dryer cartridge as needed and return the vehicle to service.

ð Follow vehicle O.E. maintenance recommendation for these components.

9.0 Air brake charging system seems slow to build pressure.

(a) Air brake charging system functioning normally.

(b) Air brake system leakage.

(c) Compressor may be undersized for the application.

ð

Using dash gauges, verify that the compressor builds air system pressure from 85-100 psi in 40 seconds or less with engine at full governed rpm. Return the vehicle to service.

ð

Go to Test 2 on page 28.

ð

See Table A, column 1, on page 17 for some typical compressor applications. If the compressor is "too small" for the vehicle's role, for example, where a vehicle's use has changed, then upgrade the compressor. Note: The costs incurred

(e.g. installing a larger capacity compressor, etc.) are not covered under original compressor warranty.

ð

Go to Test 6 on page 29.

(d) Compressor unloader mechanism malfunction.

(e) Damaged compressor head gasket.

ð

An air leak at the head gasket may indicate a downstream restriction such as a freeze-up or carbon blockage and/or could indicate a defective or missing safety valve. Find blockage (go to 9.0(f) for details.) and then replace the compressor.

Do not re-use the safety valve without testing. See Symptom 12.0(a).

23

24

Symptom:

9.0 Air brake charging system seems slow to build pressure.

(continued)

Dash gauges.

(g)

Partly collapsed inlet line shown.

What it may indicate: What you should do:

(f) Restricted discharge line.

(f)

Kinked discharge line shown.

(g) Restricted air inlet (not enough air to compressor).

ð

If discharge line is restricted:

ð

By more than 1/16" carbon build up, replace the discharge line (see Table A, column 2, on page 17 for recommended size) and go to Test 3 on page 28.

ð

By other restrictions (e.g. kinks).

Replace the discharge line. See Table A, column 2, on page 17 for recommended size. Retest for air build. Return vehicle to service or, if problem persists, go to 9.0(a).

ð

The discharge line must maintain a

constant slope down from the compressor to the air dryer inlet fitting to avoid low points where ice may form and block the flow. If, instead, ice blockages occur at the air dryer inlet, insulation may be added here, or if the inlet fitting is a typical 90 degree fitting, it may be changed to a straight or 45 degree fitting. For more information on how to help prevent discharge line freeze-ups, see

Bendix Bulletins TCH-08-21 and

TCH-08-22 (Appendix B). Shorter discharge line lengths or insulation may be required in cold climates.

ð

Check compressor air inlet line for restrictions, brittleness, soft or sagging hose conditions etc. Repair as necessary.

Refer to vehicle manufacturer’s guidelines for inlet line size.

ð

Check the engine air filter and service if necessary (if possible, check the air filter usage indicator).

(h) Poorly filtered inlet air (poor air quality to compressor).

(i) Compressor malfunction.

ð Check for leaking, damaged or defective compressor air inlet components (e.g.

induction line, fittings, gaskets, filter bodies, etc.). Repair inlet components as needed. Note: Dirt ingestion will damage compressor and is not covered under warranty.

ð Replace the compressor only after making certain that none of the preceding conditions, 9.0 (a) through 9.0 (h), exist.

Symptom:

10.0 Air charging system doesn’t build air.

11.0 Compressor safety valve releases air

(Compressor builds too much air).

ð

What it may indicate:

(a) Governor malfunction*.

(b) Restricted discharge line.

(c) Air dryer heater malfunction: exhaust port frozen open.

(d) Compressor malfunction.

What you should do:

ð

Go to Test 4 on page 29.

ð

See 9.0(f).

ð

Replace air dryer heater.

ð

Replace the compressor only after making certain the preceding conditions do not exist.

* Note: For the Bendix ® DuraFlo ™ 596 air compressor, not only the governor, but also the SV-1 ™ synchro valve used would need to be tested. See Bulletin TCH-001-048.

(a) Restricted discharge line.

Damaged discharge line shown.

(b) Downstream air brake system check valves or lines may be blocked or damaged.

ð If discharge line is restricted:

ð By more than 1/16" carbon build up, replace the discharge line (see Table A, column 2, on page 17 for recommended size) and go to Test 3 on page 28.

ð By other restrictions (e.g. kinks).

Replace the discharge line. See Table A, column 2, on page 17 for recommended size.

ð The discharge line must maintain a

constant slope down from the compressor to the air dryer inlet fitting to avoid low points where ice may form and block the flow. If, instead, ice blockages occur at the air dryer inlet, insulation may be added here, or if the inlet fitting is a typical 90 degree fitting, it may be changed to a straight or 45 degree fitting. For more information on how to help prevent discharge line freeze-ups, see Bendix Bulletins TCH-

08-21 and TCH-08-22 (Appendix B).

Shorter discharge line lengths or insulation may be required in cold climates.

ð Inspect air lines and verify check valves are operating properly.

(c) Air dryer lines incorrectly installed.

(d) Compressor safety valve malfunction.

(e) Compressor unloader mechanism malfunction.

ð Ensure discharge line is installed into the inlet of the air dryer and delivery is routed to the service reservoir.

ð Verify relief pressure is 250 psi. Replace if defective.

ð Go to Test 6 on page 29.

(f) Governor malfunction.

ð Go to Test 4 on page 29.

25

26

Symptom:

12.0 Air dryer safety valve releases air.

Technician removes governor.

13.0 Reservoir safety valve releases air

14.0 Air dryer doesn’t purge.

(Never hear exhaust from air dryer.)

15.0 Compressor constantly cycles

(compressor remains unloaded for a very short time.)

What it may indicate:

(a) Restriction between air dryer and reservoir.

(b) Air dryer safety valve malfunction.

(c) Air dryer maintenance not performed.

(d) Air dryer malfunction.

What you should do:

ð

Inspect delivery lines to reservoir for restrictions and repair as needed.

ð

Verify relief pressure is at vehicle or component manufacturer specifications.

Replace if defective.

ð

See Maintenance Schedule and Usage

Guidelines (Table A, column 3, on page

17).

ð

Verify operation of air dryer. Follow vehicle

O.E. maintenance recommendations and component Service Data information.

ð

Go to Test 5 on page 29.

(e) Improper governor control line installation to the reservoir.

(f) Governor malfunction.

(a) Reservoir safety valve malfunction.

(b) Governor malfunction.

(b) Compressor unloader mechanism malfunction.

(c) Air dryer purge valve or delivery check valve malfunction.

(d) Air brake system leakage.

ð

Go to Test 4 on page 29.

ð Verify relief pressure is at vehicle or component manufacturer's specifications

(typically 150 psi). Replace if defective.

ð Go to Test 4 on page 29.

ð Go to Test 6 on page 29.

(c) Compressor unloader mechanism malfunction.

(a) Air dryer malfunction.

(b) Governor malfunction.

(c) Air brake system leakage.

(d) Improper governor control line installation to the reservoir.

(a) Air brake charging system maintenance not performed.

ð

Verify operation of air dryer. Follow vehicle

O.E. maintenance recommendations.

ð

Go to Test 4 on page 29.

ð

Go to Test 2 on page 28.

ð

Go to Test 5 on page 29.

ð Available reservoir capacity may be reduced by build up of water etc. Drain and perform routine maintenance per

Table A, columns 3 & 4, on page 17.

ð Go to Test 6 on page 29.

ð Verify operation of air dryer. Follow vehicle

O.E. maintenance recommendations and component Service Data information.

ð Go to Test 2 on page 28.

Symptom:

16.0 Compressor leaks air

Testing for leaks with soap solution.

What it may indicate:

(a) Compressor leaks air at connections or ports.

(b) Compressor unloader mechanism malfunction.

What you should do:

ð

Check for leaking, damaged or defective compressor fittings, gaskets, etc. Repair or replace as necessary.

ð

Go to Test 6 on page 29.

(c) Damaged compressor head gasket.

ð

Head gasket location

ð

An air leak at the head gasket may indicate a downstream restriction such as a freezeup or carbon blockage and/or could indicate a defective or missing safety valve. Find blockage (go to 9.0(f) for details.) and then replace the compressor.

Do not re-use the safety valve without testing. See Symptom 12.0(a).

17.0 Compressor leaks coolant

18.0 Noisy compressor

(Multi-cylinder compressors only)

(a) Improperly installed plugs or coolant line fittings.

(b) Damaged compressor head gasket.

(c) Porous compressor head casting.

(a) Damaged compressor.

ð Inspect for loose or over-torqued fittings.

Reseal and tighten loose fittings and plugs as necessary. If overtorqued fittings and plugs have cracked ports in the head, replace the compressor.

ð An air leak at the head gasket may indicate a downstream restriction such as a freezeup or carbon blockage and/or could indicate a defective or missing safety valve. Find blockage (go to 9.0(f) for details.) and then replace the compressor.

Do not re-use the safety valve without testing. See Symptom 12.0(a).

ð If casting porosity is detected, replace the compressor.

ð Replace the compressor.

Other Miscellaneous Areas to Consider

This guide attempts to cover most compressor system problems. Here are some rare sources of problems not covered in this guide:

• Turbocharger leakage. Lubricating oil from leaking turbocharger seals can enter the air compressor intake and give misleading symptoms.

• Where a compressor does not have a safety valve installed, if a partial or complete discharge line blockage has occurred, damage can occur to the connecting rod bearings. Damage of this kind may not be detected and could lead to compressor problems at a later date.

27

Test 1: Excessive Oil Leakage at the

Head Gasket

Tests

Exterior leaks at the head gasket are not a sign that oil is being passed into the air charging system. Oil weepage at the head gasket does not prevent the compressor from building air.

Observe the amount of weepage from the head gasket.

If the oil is only around the cylinder head area, it is acceptable (return the vehicle to service), but, if the oil weepage extends down to the nameplate area of the compressor, the gasket can be replaced.

LOOK

FOR

WEEPAGE

28

Test 2: Air Brake System and Accessory Leakage

Inspect for air leaks when working on a vehicle and repair them promptly.

Park the vehicle on level ground and chock wheels.

Build system pressure to governor cut-out and allow the pressure to stabilize for one minute.

Step 1: Observe the dash gauges for two additional minutes without the service brakes applied.

Step 2: Apply the service brakes and allow the pressure to stabilize. Continue holding for two minutes (you may use a block of wood to hold the pedal in position.) Observe the dash gauges.

If you see any noticeable decrease of the dash air gauge readings (i.e. more than 4 psi, plus two psi for each additional trailer) during either two minute test, repair the leaks and repeat this test to confirm that they have been repaired.

Air leaks can also be found in the charging system, parking brakes, and/or other components - inspect and repair as necessary.

Test 3: Air Compressor Discharge

Temperature and Air Dryer Inlet

Temperature*

Caution: The temperatures used in this test are not normal vehicle conditions.

Above normal temperatures can cause oil (as vapor) to pass through the air dryer into the air brake system.

This test is run with the engine at normal operating temperature, with engine at max. rpm.

If available, a dyno may be used.

1.

Allow the compressor to build the air system pressure to governor cut-in.

2.

Pump the brakes to bring the dash gauge pressure to 90 psi.

3.

Allow the compressor to build pressure from

95 to 105 psi gauge pressure and maintain this pressure range by cycling the brakes for five (5) minutes.

T1

T2

Discharge Line

(* Note that only vehicles that have passed Test 2 would be candidates for this test.)

4.

Then, while maintaining max rpm and pressure range, measure and record the

surface temperature of the fittings:

ð at the compressor discharge port. (T1).

ð at the air dryer inlet fitting. (T2).

Use a touch probe thermocouple for measuring the temperature.

5.

See table below.

6.

Retest before returning the vehicle to service.

T1

Compressor Air Dryer

Discharge Inlet

Fitting Fitting under

360°F under

360°F over

360°F

T2

Action

under Temperatures are within

200°F normal range for this test, check other symptoms. Go to 4.0 (h).

over This could indicate a discharge

200°F line problem (e.g. restriction).

Call 1-800-AIR-BRAKE

(1-800-247-2725) and speak with our Tech Team.

__ Compressor is running hot.

Check coolant 4(f) and/or discharge line 4(g).

Tests (continued)

Test 4: Governor Malfunction

1.

Inspect control lines to and from the governor for restrictions (e.g. collapsed or kinked).

Repair as necessary.

2.

Using a calibrated external gauge in the supply reservoir, service reservoir, or reservoir port of the D-2 ™ governor, verify cut-in and cutout pressures are within vehicle OEM specification.

3.

If the governor is malfunctioning, replace it.

Test 5: Governor Control Line

1. Ensure that the governor control line from the reservoir is located at or near the top of the reservoir. (This line, if located near the bottom of the reservoir, can become blocked or restricted by the reservoir contents e.g. water or ice.)

2. Perform proper reservoir drain intervals and air dryer cartridge maintenance per

Maintenance Schedule and Usage Guidelines

(Table A on page 17).

3. Return the vehicle to service.

Test 6: Compressor Unloader Leakage

Bendix ® Compressors: Park vehicle, chock wheels, and follow all standard safety procedures.

Remove the governor and install a fitting to the unloader port. Add a section of air hose (min 1 ft long for a 1/2" diameter line) and a gauge to the fitting followed by a shut-off valve and an air source (shop air or small air tank). Open the shut off and charge the unloader port by allowing air pressure to enter the hose and unload the compressor. Shut off the air supply and observe the gauge. A steady reading indicates no leakage at the unloader port, but a falling reading shows that the unloader mechanism is leaking and needs to be serviced.

29

Appendix A: Information about the BASIC Test Kit (Bendix P/N 5013711)

Service writer records info - including the number of days since all air tanks were drained - and f ills out symptom checklist. Technician inspects items.

days

Bendix

®

Air System Inspection Cup

(BASIC) Test Information

START BASIC TEST

Park vehicle on LEVEL ground.

Chock wheels, drain air from system.

Drain contents of tanks into

ALL

BASIC cup air

Is there less than one unit of liquid?

NO

Is there more than one unit of:

• water, or

• cloudy emulsion mixture?

YES

YES

NO, only oil.

Is this a transit vehicle, bulk unloader, or has more than 5 axles?

NO, this is a low air use vehicle.

Vehicle OK.

Return vehicle to service.

Cloudy emulsion mixture

END TEST

YES, this is a high air use vehicle.

YES

Is this vehicle being re-tested (after water, etc. was found last time?)

NO

High

High

Find the point on the label where the number of oil units meets the number of days* since the vehicle's air tanks were last drained.

High

Is the point above the HIGH Air Use line on the cup?

NO

YES

Low

Find the point on the label where the number of oil units meets the number of days* since the vehicle's air tanks were last drained.

Is the point above the LOW Air Use line on the cup?

NO

YES

Low

Go to the

Advanced

Troubleshooting

Guide to find reason(s) for presence of water

END TEST

Change air dryer cartridge**

Test for air leakage

Use Test 2:

Air Leakage

Low

Re-test with the

BASIC Test after

30 days***

Test for air leakage

Use Test 2:

Air Leakage

Compressor

Does the vehicle have excessive air leakage?

YES

Repair leaks and return vehicle to service

END TEST

NO

Was the number of days since last draining known?

NO (did not know when last drained)

Re-test with the

BASIC Test after

30 days***

YES, number of days was known (30 - 90 days)

END TEST

Replace the Compressor. If under warranty, follow standard procedures.

If, after a compressor was already replaced, the vehicle fails the

BASIC test again, do not replace the compressor**** - use the

Advanced Troubleshooting Guide to investigate the cause(s).

END TEST

Vehicle OK.

Return vehicle to service.

END TEST

END TEST

* If the number of days since the air tanks were drained is unknown - use the 30 day line.

** Note: Typical air dryer cartridge replacement schedule is every

3 yrs/ 300K miles for low air use vehicles and every year/100K miles for high air use vehicles.

*** To get an accurate reading for the amount of oil collected during a 30 day period, ask the customer not to drain the air tanks before returning. (Note that 30-90 days is the recommended air tank drain schedule for vehicles equipped with a Bendix air dryer that are properly maintained.) If, in cold weather conditions, the 30 day air tank drain schedule is longer than the customer's usual draining interval, the customer must determine, based on its experience with the vehicle, whether to participate now, or wait for warmer weather. See the cold weather tips in Bulletins TCH-008-21 and TCH-008-22 (included on pages 33-35 of this document).

****Note: After replacing a compressor, residual oil may take a considerable period of time to be flushed from the air brake system.

30

Appendix A continued: Information about the BASIC Test Kit (Bendix P/N 5013711)

Filling in the Checklist for the Bendix

®

Air System Inspection Cup (BASIC) Test

Note: Follow all standard safety precautions. For vehicles using a desiccant air dryer.

The Service Writer fills out these fields with information gained from the customer

Number of Days Since Air Tanks Were Last Drained: ________ Date: ___________Vehicle #: ____________

Engine SN __________________________ Vehicle Used for: _______________Typical Load:________ (lbs.)

No. of Axles: ____ (tractor) ____ (trailer) No. of Lift Axles: ____ Technician’s Name: ____________________

The Service Writer also checks off any complaints that the customer makes to help the Technician in investigating.

Customer’s Complaint

Checklist for Technician

Have you confirmed complaint?

(Please check all that apply)

“Relay valve q leaks oil / q malfunctions” . . . . . . . q no q yes *

“Dash valve q leaks oil / q malfunctions” . . . . . . .

q no q yes * q “Air dryer leaks oil” . . . . . . . . . . . . . . . . . . . . . . .

q no q yes * q “Governor malfunction” . . . . . . . . . . . . . . . . . . . .

q no q yes * q “Oil in gladhands” . . . . . . . . . . . . . . . . . . . . . . . .

q no q yes * how much oil did you find? ________________________________ q “Oil on ground or vehicle exterior” . . . . . . . . . . .

q no q yes * amount described: ______________________________________ q

“Short air dryer cartridge life” replaces every: ______________ q miles, q kms, or q months q “Oil in air tanks” amount described:_______________________

We will measure amount currently found when we get to step B of the test.

q “Excessive engine oil loss” amount described: ______________

Is the engine leaking oil? . . . . . . . . . . . . . . . . . . . . .

q no q yes *

Is the compressor leaking oil? . . . . . . . . . . . . . . . . .

q no q yes * q Other complaint:

______________________________________ q

No customer complaint.

The Technician checks boxes for any of the complaints that can be confirmed.

*

Note: A confirmed complaint above does NOT mean that the compressor must be replaced.

The full BASIC test below will investigate the facts.

BASIC test starts here:

STEP A

- Select one: q

This is a low air use vehicle: Line haul (single trailer) with 5 or less axles, or q

This is a high air use vehicle: Garbage truck, transit bus, bulk unloader, or line haul with 6 or more axles.

Then go to Step B.

The Technician selects the air use category for the vehicle. This decided which of the two acceptance lines on the cup will be used for the test below.

STEP B

- Measure the Charging System Contents

1. Park and chock vehicle on level ground. Drain the air system by pumping the service brakes.

2. Completely drain ALL the air tanks into a single BASIC cup.

3. If there is less than one unit of contents total, end the test now and return the vehicle to service. Vehicle passes.

4.

If more than one oil unit of water (or a cloudy emulsion mixture)

is found:

(a) Change the vehicle’s air dryer cartridge

- see Footnote 1,

(b) Conduct the 4 minute leakage test (Step D),

(c) STOP the inspection, and check the vehicle

again after 30 days - see Footnote 2.

STOP

+ CK.

Otherwise, go to Step C.

Oil

Units

For an accurate test, the contents of all the air tanks on the vehicle should be used.

Note for returning vehicles that are being retested after a water/cloudy emulsion mixture was found last time and the air

dryer cartridge replaced: If more than one oil unit of water or a cloudy emulsion mixture is found again, stop the BASIC test and consult the air dryer's Service Data sheet troubleshooting section.

Footnote 1: Note: Typical air dryer cartridge replacement schedule is every 3 yrs/ 300K miles for low air use vehicles and every year/100K miles for high air use vehicles.

Footnote 2: To get an accurate reading for the amount of oil collected during a 30 day period, ask the customer not to drain the air tanks before returning. (Note that 30-90 days is the recommended air tank drain schedule for vehicles equipped with a Bendix air dryer that are properly maintained.) If, in cold weather conditions, the 30 day air tank drain schedule is longer than the customer's usual draining interval, the customer must determine, based on its experience with the vehicle, whether to participate now, or wait for warmer weather. See the cold weather tips in

Bulletins TCH-008-21 and TCH-008-22 (included in Appendix B of the advanced troubleshooting guide).

31

Appendix A continued: Information about the BASIC Test Kit (Bendix P/N 5013711)

Filling in the Checklist for the Bendix

®

Air System Inspection Cup (BASIC) Test

Note: Follow all standard safety precautions. For vehicles using a desiccant air dryer.

STEP C

- How to Use the BASIC Test 1. Record days since air tanks were last drained.

2. Record amount of oil found:

3. Action to take

The Technician uses the chart (label) on the BASIC test cup to help decide the action to take, based on the amount of oil found. Use the lower acceptance line for low air use vehicles, and upper line for high air use vehicles (from Step A).

_________ days _________ units

If number of days is:

30-60 days (high air if oil level is at or below acceptance line for number of days

è use) or

30-90 days (low air use)

è if oil level is above acceptance line for number of days

è if oil level is at or below

30-day acceptance line

è

Otherwise . . .

è

(if the number of days is unknown, or outside the limits above) if oil level is above 30-day acceptance line

è

System OK.

STOP

Return to service.

TEST

Go to Step D

System OK.

Return to service.

Stop inspection.

Test again after 30 days.

See Footnote 2.

STOP

TEST

STOP

+ CK.

Acceptance

Lines

BASIC Test Example

An oil level of 4 units in a sixty-day period is within the acceptance area (at or below the line) for both low and high air use vehicles. Return the vehicle to service.

The Technician looks for the point where the number of days since the air tanks were drained meets the oil level. If it is at or below the (low or high use) acceptance line, the vehicle has passed the test. If the point is above the line we go to the leakage test.

Sixty days since last air tank draining

X

STEP D - Air Brake System Leakage Test

Park the vehicle on level ground and chock wheels. Build system pressure to governor cut-out and allow the pressure to stabilize for one minute.

1: Observe the dash gauges for two additional minutes without the service brakes applied.

2: Apply service brakes for two minutes (allow pressure to stabilize) and observe the dash gauges.

If you see any noticeable decrease of the dash air gauge readings repair leaks. Repeat this test to confirm that air leaks have been repaired and return vehicle to service. Please repeat BASIC test at next service interval. Note: Air leaks can also be found in the charging system, parking brakes, and/or other components - inspect and repair as necessary.

If no air leakage was detected, and if you are conducting this test after completing Step C, go to Step E.

STEP E

- If no air leakage was detected in Step D

Replace the compressor.

Note: If the compressor is within warranty period, please follow standard warranty procedures. Attach the completed checklist to warranty claim.

Oil

Level

Decision point

Air leakage is the number one cause of compressors having to pump excessive amounts of air, in turn run too hot and pass oil vapor along into the system. Here the Technician conducts a four-minute test to see if leakage is a problem with the vehicle being tested.

The Technician only reaches

Step E if the amount of oil found, for the amount of time since the air tanks were last drained exceeds the acceptance level, AND the vehicle passes the four-minute leakage test (no noticeable leakage was detected).

32

Appendix B

Technical

Bulletin

Bulletin No.: TCH-008-021 Effective Date: 11/1/92 Page: 1 of 2

Subject:

Air Brake System - Cold Weather Operation Tips

As the cold weather approaches, operators and fleets alike begin to look to their vehicles with an eye toward “winterization”, and particularly what can be done to guard against air system freeze-up. Here are some basic “Tips” for operation in the cold weather.

Engine Idling

Avoid idling the engine for long periods of time! In addition to the fact that most engine manufacturers warn that long idle times are detrimental to engine life, winter idling is a big factor in compressor discharge line freeze-up. Discharge line freeze-ups account for a significant number of compressor failures each year. The discharge line recommendations under “Discharge Lines” are important for all vehicles but are especially so when some periods of extended engine idling can not be avoided.

Discharge Lines

The discharge line should slope downward form the compressor discharge port without forming water traps, kinks, or restrictions. Cross-overs from one side of the frame rail to the other, if required, should occur as close as possible to the compressor. Fitting extensions must be avoided.

Recommended discharge line lengths and inside diameters are dependent on the vehicle application and are as follows.

Typical P&D, School Bus and Line Haul

The maximum discharge line length is 16 feet.

Length

6.0-9.5 ft.

9.5-12 ft.

12-16 ft.

I.D. Min.

½ in.

½ in.

5/8 in.

Other Requirements

None

Last 3 feet, including fitting at the end of the discharge line, must be insulated with ½ inch thick closed cell polyethylene pipe insulation.

Last 3 feet, including fitting at the end of the discharge line, must be insulated with ½ inch thick closed cell polyethylene pipe insulation.

If the discharge line length must be less than 6 feet or greater than 16 feet, contact your local

Bendix representative.

33

Bulletin No.: TCH-008-021

Appendix B: Continued

Effective Date: 11/1/92 Page: 2 of 2

High Duty Cycle Vehicles (City Transit Coaches, Refuse Haulers, Etc.)

The maximum discharge line length is 16 feet.

Length I.D. min.

Other Requirements

10-16 ft.

½ in.

None

If the discharge line length must be less than 10 feet or greater than 16 feet, contact your local Bendix representative.

System Leakage

Check the air brake system for excessive air leakage using the Bendix “Dual System Air Brake Test and Check List” (BW1279). Excessive system leakage causes the compressor to “pump” more air and also more moisture into the brake system.

Reservoir Draining (System Without Air Dryer)

Routine reservoir draining is the most basic step (although not completely effective) in reducing the possibility of freeze-up. All reservoirs in a brake system can accumulate water and other contamination and must be drained! The best practice is to drain all reservoirs daily. When draining reservoirs; turn the ENGINE OFF and drain ALL AIR from the reservoir, better still, open the drain cocks on all reservoirs and leave them open over night to assure all contamination is drained (reference Service

Data Sheet SD-04-400 for Bendix Reservoirs). If automatic drain valves are installed, check their operation before the weather turns cold (reference Service Data Sheet SD-03-2501 for Bendix ®

DV-2 ™ Automatic Drain Valves). It should be noted that, while the need for daily reservoir draining is eliminated through the use of an automatic drain valve, periodic manual draining is still required.

Alcohol Evaporator or Injector Systems

Check for proper operation of these systems by monitoring alcohol consumption for a few days

(Reference Service Data Sheet SD-08-2301 for the Bendix Alcohol Evaporator). Too little means the system is not receiving adequate protection and too much simply wastes alcohol. As a general guide, these systems should consume approximately 1 to 2 ounces of alcohol per hour of compressor loaded time (compressing air). City pick-up and delivery vehicles will operate with the compressors loaded (compressing air) more while compressors on highway vehicles will be loaded less. These figures are approximate and assume that air system leakage is within the limits of the Bendix “Dual

System Air Brake Test and Check List” (BW1279). Last but not least, begin using alcohol several weeks prior to freezing weather to ensure that the system is completely protected. Use only methanol alcohol, such as Bendix “Air Guard”, in evaporators or injectors.

Air Dryers

Make certain air brake system leakage is within the limits stated in BW1279. Check the operation and function of the air dryer using the appropriate Service Data Sheet for the air dryer.

AD-9 ™ Air Dryer

AD-4 ™ Air Dryer

AD-2 ™ Air Dryer

AD-IP ™ Air Dryer

AD-SP ™ Air Dryer

Trailer System-Guard ™ Air Dryer

Service Data Sheet SD-08-2412

Service Data Sheet SD-08-2407

Service Data Sheet SD-08-2403

Service Data Sheet SD-08-2414

Service Data Sheet SD-08-2415

Service Data Sheet SD-08-2416

34

Appendix B: Continued

Technical

Bulletin

Bulletin No.: TCH-008-022 Effective Date: 1/1/1994 Page: 1 of 1

Subject:

Additional Cold Weather Operation Tips for the Air Brake System

Last year we published Bulletin PRO-08-21 which provided some guidelines for “winterizing” a vehicle air brake system. Here are some additional suggestions for making cold weather vehicle operation just a little more bearable.

Thawing Frozen Air Lines

The old saying; “Prevention is the best medicine” truly applies here! Each year this activity accounts for an untold amount of unnecessary labor and component replacement. Here are some Do’s and

Don’ts for prevention and thawing.

Do’s

1. Do maintain freeze prevention devices to prevent road calls. Don’t let evaporators or injectors run out of methanol alcohol or protection will be degraded. Check the air dryer for proper operation and change the desiccant when needed.

2. Do thaw out frozen air lines and valves by placing the vehicle in a warmed building. This is the only method for thawing that will not cause damage to the air system or its components.

3. Do use dummy hose couplings on the tractor and trailer.

4. Do check for sections of air line that could form water traps. Look for “drooping” lines.

Don’ts

1. Do not apply an open flame to air lines and valves. Beyond causing damage to the internal nonmetallic parts of valves and melting or burning non-metallic air lines. WARNING: THIS

PRACTICE IS UNSAFE AND CAN RESULT IN VEHICLE FIRE!

2. Do not introduce (pour) fluids into air brake lines or hose couplings (“glad hands”). Some fluids used can cause immediate and severe damage to rubber components. Even methanol alcohol, which is used in Alcohol Evaporators and Injectors, should not be poured into air lines. Fluids poured into the system wash lubricants out of valves, collect in brake chambers and valves and can cause malfunction. Loss of lubricant can affect valve operating characteristics, accelerate wear and cause premature replacement.

3. Do not park a vehicle outside after thawing its air system indoors. Condensation will form in the system and freeze again. Place the vehicle in operation when it is removed to the outdoors.

Supporting Air and Electrical Lines

Make certain tie wraps are replaced and support brackets are re-assembled if removed during routine maintenance. These items prevent the weight of ice and snow accumulations from breaking or disconnecting air lines and wires.

Automatic Drain Valves (System without Air Dryer)

As we stated last year, routine reservoir draining is the most basic step (although not completely effective) in reducing the possibility of freeze-up. While automatic drain valves relieve the operator of draining reservoirs on a daily basis, these valves MUST be routinely checked for proper operation.

Don’t overlook them until they fail and a road call is required.

35

36

BW 1560 © 2004 Bendix Commercial Vehicle Systems LLC All rights reserved. 9/2004 Printed in U.S.A.

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement