FGX-2220 INSTRUCTION MANUAL
INSTRUCTION MANUAL
ARBITRARY FUNCTION GENERATOR
FGX-2220
B71-0406-01
■ About Brands and Trademarks
“TEXIO” is the product brand name of our industrial electronic devices.
All company names and product names mentioned in this manual are the
trademark or the registered trademark of each company or group in each
country and region.
■ About the Instruction Manual
Permission from the copyright holder is needed to reprint the contents of this
manual, in whole or in part. Be aware that the product specifications and the
contents of this manual are subject to change for the purpose of improvement.
CONTENTS
USING THE PRODUCT SAFELY ·········································· Ⅰ -Ⅳ
1 GETTING STARTED ................................................................ 1
1-2. Panel Overview ................................................................. 2
1-3. Setting Up the function Generator ..................................... 6
2. QUICK REFERENCE .............................................................. 7
2-1. How to use the Digital Inputs ............................................. 7
2-2. How to use the Help Menu ................................................ 8
2-3. Selecting a Waveform ....................................................... 9
2-3-1. Square Wave ......................................................................................... 9
2-3-2. Ramp Wave ......................................................................................... 10
2-3-3. Sine Wave ........................................................................................... 10
2-4. Modulation ...................................................................... 10
2-4-1. AM ....................................................................................................... 10
2-4-2. FM ....................................................................................................... 11
2-4-3. FSK Modulation ................................................................................... 11
2-4-4. PM Modulation ..................................................................................... 12
2-4-5. SUM Modulation .................................................................................. 13
2-5. Sweep ............................................................................ 13
2-6. Burst .............................................................................. 14
2-7. ARB ................................................................................ 15
2-7-1. ARB–Add Built-In Waveform................................................................ 15
2-7-2. ARB- Add Point.................................................................................... 15
2-7-3. ARB- Add Line ..................................................................................... 15
2-7-4. ARB– Output Section........................................................................... 16
2-8. Utility Menu .................................................................... 16
2-8-1. Save .................................................................................................... 16
2-8-2. Recall ................................................................................................... 17
2-9. Frequency Counter ......................................................... 17
2-9-1. Frequency Counter .............................................................................. 17
2-10. Coupling ....................................................................... 17
2-10-1. Frequency Coupling ........................................................................... 17
2-10-2. Amplitude Coupling............................................................................ 18
2-11. Tracking ........................................................................ 18
2-12. Menu Tree .................................................................... 19
2-12-1. Waveform .......................................................................................... 19
2-12-2. ARB-Display ...................................................................................... 19
2-12-3. ARB-Edit ............................................................................................ 20
2-12-4. ARB- Built In ...................................................................................... 20
2-12-5. ARB-Save .......................................................................................... 21
2-12-6. ARB-Load .......................................................................................... 21
2-12-7. ARB-Output ....................................................................................... 22
2-12-8. MOD .................................................................................................. 22
2-12-9. SWEEP .............................................................................................. 23
2-12-10. SWEEP- More ................................................................................. 23
2-12-11. Burst- N Cycle.................................................................................. 24
2-12-12. Burst – Gate..................................................................................... 24
2-12-13. UTIL ................................................................................................. 25
2-12-14. CH1/CH2 ......................................................................................... 25
2-13. Default Settings ............................................................ 25
3. OPERATION ........................................................................ 27
3-1. Select a Waveform .......................................................... 27
3-1-1. Sine Wave ........................................................................................... 27
3-1-2. Square Wave ....................................................................................... 27
3-1-3. Setting the Pulse Width ....................................................................... 28
3-1-4. Setting a Ramp Waveform ................................................................... 30
3-1-5. Selecting a Noise Waveform................................................................ 31
3-1-6.Setting the Frequency ........................................................................... 32
3-1-7. Setting the Amplitude ........................................................................... 33
3-1-8. Setting the DC Offset ........................................................................... 34
4. MODULATION ...................................................................... 35
4-1. Amplitude Modulation (AM) ............................................. 35
4-1-1. Selecting AM Modulation ..................................................................... 36
4-1-2. AM Carrier Shape ................................................................................ 36
4-1-3. Carrier Frequency ................................................................................ 37
4-1-4. Modulating Wave Shape ...................................................................... 38
4-1-5. AM Frequency ..................................................................................... 39
4-1-6. Modulation Depth................................................................................. 40
4-1-7. Selecting the (AM) Modulation Source ................................................ 41
4-2. Frequency Modulation (FM) ............................................. 42
4-2-1. Selecting Frequency Modulation (FM) ................................................. 43
4-2-2. FMCarrier Shape ................................................................................. 43
4-2-3. FM Carrier Frequency .......................................................................... 43
4-2-4. FM Wave Shape .................................................................................. 45
4-2-5. FM Frequency...................................................................................... 46
4-2-6. Frequency Deviation ............................................................................ 47
4-2-7. Selecting (FM) Modulation Source....................................................... 48
4-3. Frequency Shift Keying (FSK) Modulation ........................ 49
4-3-1. Selecting FSK Modulation.................................................................... 50
4-3-2. FSK Carrier Shape .............................................................................. 50
4-3-3. FSK Carrier Frequency ........................................................................ 50
4-3-4. FSK Hop Frequency ............................................................................ 51
4-3-5. FSK Rate ............................................................................................. 53
4-3-6. FSK Source ......................................................................................... 54
4-4. Phase Modulation (PM) ................................................... 55
4-4-1. Selecting Phase Modulation (PM) ........................................................ 55
4-4-2. PM Carrier Waveform .......................................................................... 56
4-4-3. PM Carrier Frequency ......................................................................... 56
4-4-4. PM Wave Shape .................................................................................. 57
4-4-5. PM Frequency ..................................................................................... 58
4-4-6. Phase Deviation................................................................................... 59
4-4-7. Select the PM Source .......................................................................... 60
4-5. SUM modulation ............................................................. 61
4-5-1. Selecting SUM modulation................................................................... 61
4-5-2. SUM Carrier Waveform ....................................................................... 62
4-5-3. SUM Carrier Frequency ....................................................................... 62
4-5-4. SUM Waveform ................................................................................... 63
4-5-5. Modulating Waveform Frequency ........................................................ 64
4-5-6. SUM Amplitude .................................................................................... 65
4-5-7. Select the SUM Amplitude Source....................................................... 66
4-6. Frequency Sweep ........................................................... 67
4-6-1. Selecting Sweep Mode ........................................................................ 68
4-6-2. Setting Start and Stop Frequency ........................................................ 68
4-6-3. Center Frequency and Span ................................................................ 69
4-6-4. Sweep Mode ........................................................................................ 71
4-6-5. Sweep Time ......................................................................................... 72
4-6-6. Marker Frequency................................................................................ 73
4-6-7. Sweep Trigger Source ......................................................................... 74
4-7. Burst Mode ..................................................................... 75
4-7-1. Selecting Burst Mode ........................................................................... 75
4-7-2. Burst Modes......................................................................................... 76
4-7-3. Burst Frequency .................................................................................. 76
4-7-4. Burst Cycle/Burst Count ...................................................................... 77
4-7-5. Infinite Burst Count .............................................................................. 79
4-7-6. Burst Period ......................................................................................... 79
4-7-7. Burst Phase ......................................................................................... 80
4-7-8. Burst Trigger Source............................................................................ 82
4-7-9. Burst Delay .......................................................................................... 83
4-7-10. Burst Trigger Output .......................................................................... 84
5. SECONDARY SYSTEM FUNCTION SETTINGS .................... 86
5-1. Save and Recall .............................................................. 86
5-2. System and Settings ....................................................... 89
5-2-1. Viewing and Updating the Firmware .................................................... 89
5-2-2. Setting the Buzzer Sound .................................................................... 89
5-2-3. Frequency Counter .............................................................................. 90
5-3. Dual channel Settings ..................................................... 91
5-3-1. Frequency Coupling ............................................................................. 91
5-3-2. Amplitude Coupling.............................................................................. 92
5-3-3. Tracking ............................................................................................... 93
6. CHANNEL SETTINGS .......................................................... 94
6-1. Output Impedance........................................................... 94
6-2. Selecting the Output Phase ............................................. 95
6-3. Synchronizing the Phase .................................................
6-4. DSO Link ........................................................................
7. ARBITRARY WAVEFORMS ...................................................
7-1. Inserting Built-In Waveforms ...........................................
96
96
98
98
7-1-1. Create an AbsAtan Waveform ............................................................. 98
7-1-2. Built-in Waveform ................................................................................ 99
7-2. Display an Arbitrary Waveform .......................................100
7-2-1. Set the Horizontal Display Range ...................................................... 100
7-2-2. Set the Vertical Display Properties .................................................... 101
7-2-3. Page Navigation (Back Page) ............................................................ 103
7-2-4. Page Navigation (Next Page) ............................................................ 104
7-2-5. Display ............................................................................................... 106
7-3. Editing an Arbitrary Wavefrom ........................................106
7-3-1. Adding a Point to an Arbitrary Waveform ........................................... 106
7-3-2. Adding a Line to an Arbitrary Waveform ............................................ 108
7-3-3. Copy a Waveform .............................................................................. 110
7-3-4. Clear the Waveform ........................................................................... 111
7-3-5.ARB Protection ................................................................................... 113
7-4.Ouput an Arbitrary Waveform .......................................... 115
7-4-1. Ouput Arbitrary Waveform ................................................................. 115
7-5. Saving/Loading an Arbitrary Waveform ........................... 116
7-5-1. Saving a Waveform to Internal Memory ............................................. 116
7-5-2. Saving a Waveform to USB Memory ................................................. 118
7-5-3. Load a Waveform from Internal Memory ........................................... 120
7-5-4. Load a Waveform from USB .............................................................. 122
8. REMOTE INTERFACE .........................................................125
8-1. Establishing a Remote Connection .................................125
8-1-1. Configure USB interface .................................................................... 125
8-1-2. Remote control terminal connection .................................................. 125
8-1-3. Command Syntax .............................................................................. 126
8-2. Command List ................................................................130
8-3. System Commands ........................................................133
8-3-1. SYSTem:ERRor?............................................................................... 133
8-3-2. *IDN? ................................................................................................. 133
8-3-3. *RST .................................................................................................. 133
8-3-4. SYSTem:VERSion? ........................................................................... 134
8-3-5. *OPC ................................................................................................. 134
8-3-6. *OPC? ............................................................................................... 135
8-4. Status Register Commands ............................................135
8-4-1. *CLS .................................................................................................. 135
8-4-2. *ESE .................................................................................................. 135
8-4-3. *ESR? ................................................................................................ 136
8-4-4. *STB? ................................................................................................ 136
8-4-5. *SRE .................................................................................................. 137
8-5. System Remote Commands ...........................................137
8-5-1. SYSTem:LOCal ................................................................................. 137
8-5-2. SYSTem:REMote .............................................................................. 138
8-6. Apply Commands ...........................................................138
8-6-1. SOURce[1|2]:APPLy:SINusoid .......................................................... 139
8-6-2. SOURce[1|2]:APPLy:SQUare ............................................................ 140
8-6-3. SOURce[1|2]:APPLy:RAMP .............................................................. 140
8-6-4. SOURce[1|2]:APPLy:PULSe ............................................................. 141
8-6-5. SOURce[1|2]:APPLy:NOISe .............................................................. 141
8-6-6. SOURce[1|2]:APPLy:USER ............................................................... 142
8-6-7. SOURce[1|2]:APPLy? ........................................................................ 142
8-7. Output Commands .........................................................142
8-7-1. SOURce[1|2]:FUNCtion ..................................................................... 143
8-7-2. SOURce[1|2]:FREQuency ................................................................. 144
8-7-3. SOURce[1|2]:AMPlitude .................................................................... 145
8-7-4. SOURce[1|2]:DCOffset ...................................................................... 146
8-7-5. SOURce[1|2]:SQUare:DCYCle .......................................................... 147
8-7-6. SOURce[1|2]:RAMP:SYMMetry ......................................................... 147
8-7-7. OUTPut[1|2] ....................................................................................... 148
8-7-8. OUTPut[1|2]:LOAD ............................................................................ 149
8-7-9. SOURce[1|2]:VOLTage:UNIT ............................................................ 149
8-8. Pulse Configuration Commands......................................150
8-8-1. SOURce[1|2]:PULSe:PERiod ............................................................ 150
8-8-2. SOURce[1|2]:PULSe:WIDTh ............................................................. 151
8-9. Amplitude Modulation (AM) Commands ..........................152
8-9-1. AM Overview ..................................................................................... 152
8-9-2. SOURce[1|2]:AM:STATe ................................................................... 153
8-9-3. SOURce[1|2]:AM:SOURce ................................................................ 153
8-9-4. SOURce[1|2]:AM:INTernal:FUNCtion ................................................ 154
8-9-5. SOURce[1|2]:AM:INTernal:FREQuency ............................................ 154
8-9-6. SOURce[1|2]:AM:DEPTh ................................................................... 155
8-10. Frequency Modulation (FM) Commands ........................156
8-10-1. FM Overview.................................................................................... 156
8-10-2. SOURce[1|2]:FM:STATe ................................................................. 156
8-10-3. SOURce[1|2]:FM:SOURce .............................................................. 157
8-10-4. SOURce[1|2]:FM:INTernal:FUNCtion .............................................. 157
8-10-5. SOURce[1|2]:FM:INTernal:FREQuency .......................................... 158
8-10-6. SOURce[1|2]:FM:DEViation............................................................. 159
8-11. Frequency-Shift Keying (FSK) Commands ....................160
8-11-1. FSK Overview .................................................................................. 160
8-11-2. SOURce[1|2]:FSKey:STATe ............................................................ 160
8-11-3. SOURce[1|2]:FSKey:SOURce ......................................................... 161
8-11-4. SOURce[1|2]:FSKey:FREQuency ................................................... 161
8-11-5. SOURce[1|2]:FSKey:INTernal:RATE ............................................... 162
8-12. Phase Modulation (PM)Commands ...............................163
8-12-1. PM Overview ................................................................................... 163
8-12-2. SOURce[1|2]:PM:STATe ................................................................. 163
8-12-3. SOURce[1|2]:PM:SOURce .............................................................. 164
8-12-4. SOURce[1|2]:PM:INTernal:FUNction ............................................... 164
8-12-5. SOURce[1|2]:PM:INTernal:FREQuency .......................................... 165
8-12-6. SOURce[1|2]:PM:DEViation ............................................................ 166
8-13. SUM Modulation (SUM) Commands ..............................167
8-13-1. SUM Overview ................................................................................. 167
8-13-2. SOURce[1|2]:SUM:STATe ............................................................... 167
8-13-3. SOURce[1|2]:SUM:SOURce............................................................ 168
8-13-4. SOURce[1|2]:SUM:INTernal:FUNction ............................................ 168
8-13-5.SOURce[1|2]:SUM:INTernal:FREQuency......................................... 169
8-13-6. SOURce[1|2]:SUM:AMPL ................................................................ 169
8-14. Frequency Sweep Commands ......................................171
8-14-1. Sweep Overview .............................................................................. 171
8-14-2. SOURce[1|2]:SWEep:STATe .......................................................... 172
8-14-3. SOURce[1|2]:FREQuency:STARt .................................................... 172
8-14-4. SOURce[1|2]:FREQuency:STOP .................................................... 173
8-14-5. SOURce[1|2]:FREQuency:CENTer ................................................. 173
8-14-6. SOURce[1|2]:FREQuency:SPAN .................................................... 174
8-14-7. SOURce[1|2]:SWEep:SPACing ....................................................... 175
8-14-8. SOURce[1|2]:SWEep:TIME ............................................................. 175
8-14-9. SOURce[1|2]:SWEep:SOURce ....................................................... 176
8-14-10. SOURce[1|2]:MARKer:FREQuency ............................................... 177
8-14-11. SOURce[1|2]:MARKer ................................................................... 177
8-15. Burst Mode Commands ................................................178
8-15-1. Burst Mode Overview ...................................................................... 178
8-15-2. SOURce[1|2]:BURSt:STATe ............................................................ 179
8-15-3. SOURce[1|2]:BURSt:MODE ............................................................ 180
8-15-4. SOURce[1|2]:BURSt:NCYCles ........................................................ 180
8-15-5. SOURce[1|2]:BURSt:INTernal:PERiod ............................................ 181
8-15-6. SOURce[1|2]:BURSt:PHASe ........................................................... 182
8-15-7. SOURce[1|2]:BURSt:TRIGger:SOURce .......................................... 183
8-15-8. SOURce[1|2]:BURSt:TRIGger:DELay ............................................. 184
8-15-9. SOURce[1|2]:BURSt:TRIGger:SLOPe............................................. 184
8-15-10. SOURce[1|2]:BURSt:GATE:POLarity ............................................ 185
8-15-11. SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe ............................. 185
8-15-12. OUTPut[1|2]:TRIGger .................................................................... 186
8-15-13. SOURce[1|2]:BURSt:TRIGger:MANual ......................................... 187
8-16. Arbitrary Waveform Commands ....................................187
8-16-1. Arbitrary Waveform Overview .......................................................... 187
8-16-2. SOURce[1|2]:FUNCtion USER ........................................................ 188
8-16-3. SOURce[1|2]:DATA:DAC................................................................. 188
8-16-4. SOURce[1|2]:ARB:EDIT:COPY ....................................................... 189
8-16-5. SOURce[1|2]:ARB:EDIT:DELete ..................................................... 189
8-16-4. SOURce[1|2]:ARB:EDIT:DELete:ALL .............................................. 190
8-16-7. SOURce[1|2]:ARB:EDIT:POINt ....................................................... 190
8-16-8. SOURce[1|2]:ARB:EDIT:LINE ......................................................... 190
8-16-9. SOURce[1|2]:ARB:EDIT:PROTect .................................................. 191
8-16-10. SOURce[1|2]:ARB:EDIT:PROTect:ALL ......................................... 191
8-16-11. SOURce[1|2]:ARB:EDIT:UNProtect ............................................... 191
8-16-12. SOURce[1|2]:ARB:OUTPut ........................................................... 191
8-17. COUNTER Commands .................................................192
8-17-1. COUNTER:STATE .......................................................................... 192
8-17-2. COUNter:GATe ................................................................................ 192
8-17-3. COUNter:VALue? ............................................................................ 193
8-18. PHASE Commands ......................................................193
8-18-1. SOURce[1|2]:PHASe ....................................................................... 193
8-18-2. SOURce[1|2]:PHASe:SYNChronize ................................................ 194
8-19. COUPLE Commands ....................................................194
8-19-1.SOURce[1|2]:FREQuency:COUPle:MODE ...................................... 194
8-19-2. SOURce[1|2]:FREQuency:COUPle:OFFSet.................................... 194
8-19-3. SOURce[1|2]:FREQuency:COUPle:RATio ...................................... 195
8-19-4. SOURce[1|2]:AMPlitude:COUPle:STATe ........................................ 195
8-19-5. SOURce[1|2]:TRACk ....................................................................... 196
8-20. Save and Recall Commands .........................................196
8-20-1. *SAV ................................................................................................ 197
8-20-2. *RCL ................................................................................................ 197
8-20-3. MEMory:STATe:DELete .................................................................. 197
8-20-4. MEMory:STATe:DELete ALL ........................................................... 197
8-21. Error Messages ............................................................198
8-21-1.Command Error Codes ..................................................................... 198
8-21-2.Execution Errors ............................................................................... 199
8-21-3.Query Errors ..................................................................................... 204
8-21-4.Arbitrary Waveform Errors ................................................................ 204
8-22. SCPI Status Register ...................................................205
8-22-1. Register types .................................................................................. 205
8-22-2. FGX-2220 Status System ................................................................ 206
8-22-3. Questionable Status Register .......................................................... 207
8-22-4. Standard Event Status Registers ..................................................... 207
8-22-5. The Status Byte Register ................................................................. 208
8-22-6. Output Queue .................................................................................. 209
8-22-7. Error Queue ..................................................................................... 209
9. APPDENIX ..........................................................................210
9-1. FGX-2220 Specifications ................................................210
9-2. External Dimensions Figure ...........................................214
9-3. Usage Notes for FGX-2220 ............................................215
USING THE PRODUCT SAFELY
■ Preface
To use the product safely, read instruction manual to the end. Before using
this product, understand how to correctly use it. If you read the manuals but
you do not understand how to use it, ask us or your local dealer. After you
read the manuals, save it so that you can read it anytime as required.
■ Pictorial indication
The manuals and product show the warning and caution items required to
safely use the product. The following pictorial indication is provided.
Pictorial
indication
Some part of this product or the manuals may show this
pictorial indication.
In this case, if the product is
incorrectly used in that part, a serious danger may be
brought about on the user's body or the product. To use
the part with this pictorial indication, be sure to refer to the
manuals.
!
!
WARNING
If you use the product, ignoring this indication, you may get
killed or seriously injured. This indication shows that the
warning item to avoid the danger is provided.
CAUTION
If you incorrectly use the product, ignoring this indication,
you may get slightly injured or the product may be
damaged. This indication shows that the caution item to
avoid the danger is provided.
Please be informed that we are not responsible for any damages to the user or
to the third person, arising from malfunctions or other failures due to wrong use
of the product or incorrect operation, except such responsibility for damages as
required by law.
I
USING THE PRODUCT SAFELY
!
WARNING
!
CAUTION
■ Do not remove the product's covers and panels
Never remove the product's covers and panels for any purpose.
Otherwise, the user's electric shock or fire may be incurred.
■ Warning on using the product
Warning items given below are to avoid danger to user's body and life and
avoid the damage or deterioration of the product. Use the product, observing
the following warning and caution items.
■ Warning items on power supply
● Power supply voltage
The rated power supply voltages of the product are 100, 120, 220 and
240VAC. The rated power supply voltage for each product should be
confirmed by reading the label attached on the back of the product or by the
“rated” column shown in the instruction manual. The specification of power
cord attached to the products is rated to 125VAC for all products which are
designed to be used in the areas where commercial power supply voltage is
not higher than 125VAC. Accordingly, you must change the power cord if
you want to use the product at the power supply voltage higher than 125VAC.
If you use the product without changing power cord to 250VAC rated one,
electric shock or fire may be caused. When you used the product equipped
with power supply voltage switching system, please refer to the corresponding
chapter in the instruction manuals of each product.
● Power cord
(IMPORTANT)
The attached power cord set can be used for
this device only.
If the attached power cord is damaged, stop using the product and call us or
your local dealer. If the power cord is used without the damage being
removed, an electric shock or fire may be caused.
● Protective fuse
If an input protective fuse is blown, the product does not operate. For a
product with external fuse holder, the fuse may be replaced. As for how to
replace the fuse, refer to the corresponding chapter in the instruction
manual. If no fuse replacement procedures are indicated, the user is not
permitted to replace it. In such case, keep the case closed and consult us
or your local dealer. If the fuse is incorrectly replaced, a fire may occur.
II
USING THE PRODUCT SAFELY
■ Warning item on Grounding
If the product has the GND terminal on the front or rear panel surface, be sure
to ground the product to safely use it.
■ Warnings on Installation environment
● Operating temperature and humidity
Use the product within the operating temperature indicated in the “rating”
temperature column. If the product is used with the vents of the product
blocked or in high ambient temperatures, a fire may occur. Use the product
within the operating humidity indicated in the “rating” humidity column.
Watch out for condensation by a sharp humidity change such as transfer to a
room with a different humidity. Also, do not operate the product with wet
hands. Otherwise, an electric shock or fire may occur.
● Use in gas
Use in and around a place where an inflammable or explosive gas or steam is
generated or stored may result in an explosion and fire. Do not operate the
product in such an environment. Also, use in and around a place where a
corrosive gas is generated or spreading causes a serious damage to the
product. Do not operate the product in such an environment.
● Installation place
Do not insert metal and inflammable materials into the product from its vent
and spill water on it. Otherwise, electric shock or fire may occur.
■ Do not let foreign matter in
Do not insert metal and inflammable materials into the product from its vent
and spill water on it. Otherwise, electric shock or fire may occur.
■ Warning item on abnormality while in use
If smoke or fire is generated from the product while in use, stop using the
product, turn off the switch, and remove the power cord plug from the outlet.
After confirming that no other devices catch fire, ask us or your local dealer.
III
USING THE PRODUCT SAFELY
■ Input / Output terminals
Maximum input to terminal is specified to prevent the product from being
damaged. Do not supply input, exceeding the specifications that are indicated
in the "Rating" column in the instruction manual of the product. Also, do not
supply power to the output terminals from the outside. Otherwise, a product
failure is caused.
■ Calibration
Although the performance and specifications of the product are checked under
strict quality control during shipment from the factory, they may be deviated
more or less by deterioration of parts due to their aging or others.
It is recommended to periodically calibrate the product so that it is used with its
performance and specifications stable. For consultation about the product
calibration, ask us or your local dealer.
■ Daily Maintenance
When you clean off the dirt of the product covers, panels, and knobs, avoid
solvents such as thinner and benzene. Otherwise, the paint may peel off or
resin surface may be affected. To wipe off the covers, panels, and knobs, use
a soft cloth with neutral detergent in it.
During cleaning, be careful that water, detergents, or other foreign matters do
not get into the product.
If a liquid or metal gets into the product, an electric shock and fire are caused.
During cleaning, remove the power cord plug from the outlet.
Use the product correctly and safely, observing the above warning and caution
items. Because the instruction manual indicates caution items even in
individual items, observe those caution items to correctly use the product.
If you have questions or comments about the manuals, ask us or E-Mail us.
IV
1 GETTING STARTED
The Getting started chapter introduces the function generator’s main features,
appearance, set up procedure and power-up.
1-1. Main Features
Model name
Frequency bandwidth
FGX-2220
1μHz~20MHz
Performance
 DDS Function Generator series
 1μHz high frequency resolution maintained at full range
 20ppm frequency stability
 Arbitrary Waveform Capability
120 MSa/s sample rate
60 MSa/s repetition rate
4k-point waveform length
10 groups of 4k waveform memories
True waveform output to display
User-defined output section
DWR (Direct Waveform Reconstruction) capability
Waveform editing via PC
Features
 Sine, Square, Ramp, Pulse, Noise, standard waveforms
 Internal and external LIN/LOG sweep with marker output
 Int/Ext AM, FM, PM, FSK, SUM modulation
 Burst function with internal and external triggers without
marker output
 Store/recall 10 groups of setting memories
 Output overload protection
Interface
 USB interface as standard
 3.5 inch Color TFT LCD (320 X 240) graphical user
interface
 AWES (Arbitrary Waveform Editing Software) PC software
1
1-2. Panel Overview
Front Panel
LCD
Display
Arrow keys
Function keys, Scroll
Return key
Wheel
Output
Terminals

/

Channel
select key
Number pad
LCD Display
Function Keys
F1~F5
Return Key
Operation Keys
Operation keys
Output key
Power
switch
TFT color display, 320 x 240 resolution.
F1
Return
Activates functions which appear on the
right-hand side of the LCD display.
Goes back to the previous menu level.
Waveform
The waveform key is used to select a
type of waveform.
FREQ/Rate
The FREQ/Rate key is used to set the
frequency or sample rate.
AMP
DC Offset
UTIL
ARB
AMPL sets the waveform amplitude.
Sets the DC offset.
The UTIL key is used to access the
save and recall options, update and
view the firmware version, access the
calibration options, output impedance
settings and frequency meter.
ARB is used to set the arbitrary
waveform parameters.
2
The MOD, Sweep and Burst keys are
used to set the modulation, sweep and
burst settings and parameters.
MOD
Sweep
Burst
Preset Key
Output Key
Channel Select
Key
Preset
The preset key is used to recall a preset
state.
OUTPUT
The Output key is used to turn on or off
the waveform output.
The channel select key is used to
switch between the two output
channels.
CH1/CH2
OUTPUT
Output ports
CH1: Channel 1 output port
CH1
CH2: Channel 2 output port
50Ω
CH2
50Ω
Power Button
Turns the power on or off.
Arrow Keys
Used to select digits when editing
parameters.
Scroll Wheel
The scroll wheel is used to edit values
and parameters.
Decrease
Keypad
7
8
9
4
5
6
1
2
3
0
Increase
The digital keypad is used to enter
values and parameters. The keypad is
often used in conjunction with the arrow
keys and variable knob.
/
3
Rear Panel
Power socket input
USB Host port
Trigger Input
Fan
Input Terminals
USB Device port
Trigger
MOD
Trigger
Counter
Trigger
MOD
Trigger
Counter
IN
Trigger output
External trigger input. Used to receive
external trigger signals.
OUT
Trigger Output
IN
Marker output signal. Used for Sweep
and ARB mode only.
OUT
Fan
Fan.
Power Input
Socket
Power input: 100~240V AC
50~60Hz.
AC 100-240V
50-60Hz 25W MAX
USB Host
Host
USB type-A host port.
4
Device
USB Device Port
Counter Input
USB type-B device port is used to
connect the function generator to a PC
for remote control.
Trigger
MOD
Trigger
Counter
Trigger
MOD
Trigger
Counter
Frequency counter input.
IN
OUT
MOD Input
Modulation input terminal.
IN
OUT
Display
Status Tabs
Parameter
Windows
Soft Menu
Keys
Waveform
Display
Parameter
Windows
The Parameter display and edit window.
Status Tabs
Displays the current channel and setting status.
Waveform Display Used to display the waveform
Soft Menu Keys
The function keys (F1~F5) beside the Soft Menu keys
correspond to the soft keys.
5
1-3. Setting Up the function Generator
Background
Adjusting the
Handle
This section describes how to adjust the handle and
power up the function generator.
Pull out the handle
sideways and rotate it.
A F G -2 2 2 5
/
Place the FGX-2220
horizontally,
Or tilt the stand.
Place the handle
vertically to hand carry.
Power Up
1. Connect the power cord to the
socket on the rear panel.
2. Turn on the power switch on the
front panel.
3. When the power switch is turned on the screen
displays the loading screen.
The function generator is now ready to be used.
6


2. QUICK REFERENCE
This chapter describes the operation shortcuts, built-in help and factory default
settings. This chapter is to be used as a quick reference, for detailed explanations
on parameters, settings and limitations, please see the operation chapters
2-1. How to use the Digital Inputs
Background
The FGX-2220 has three main types of digital inputs:
the number pad, arrow keys and scroll wheel. The
following instructions will show you how to use the
digital inputs to edit parameters.
1. To select a menu item, press
the corresponding function
keys below (F1~F5). For
example the function key F1
corresponds to the Soft key
“Sine”.
2. To edit a digital value, use
the arrow keys to move the
cursor to the digit that
needs to be edited.
3. Use the scroll wheel to edit
the parameter. Clockwise
increases the value, counter
clockwise decreases the
value.
4. Alternatively, the number pad
can be used to set the value of
a highlighted parameter.
7
8
9
4
5
6
1
2
3
0
7
/
2-2. How to use the Help Menu
Background
Every key and function has a detailed description in the
help menu.
1. Press UTIL
UTIL
2.
Press System (F3)
3. Press Help (F2)
System
F3
Help
F2
4. Use the scroll wheel to navigate
to a help item. Press Select to
choose the item.
Keypad
Provides help on any front panel
key that is pressed.
Create Arbitrary Provides help on creating arbitrary
Waveform
waveforms.
Modulation
Explains how to create Modulated
Function
waveforms.
Sweep Function Provides help on the Sweep
function.
Burst Function
Provides help on the Burst
function.
DSO Link
Provides help on DSO link.
5. For example, select item 4 to see help on the sweep
functions.
8
6. Use the scroll wheel to navigate the help information.
7. Press Return to return to the
Return
previous menu.
2-3. Selecting a Waveform
2-3-1. Square Wave
Example: Square wave, 3Vpp, 75% duty cycle, 1kHz.
Output:
1. Press Waveform and
Waveform
CH1
select Square (F2).
2. Press Duty (F1), 7 + 5 + Duty
%(F2).
Square
7
%
5
50Ω
Input: N/A
3. Press Freq/Rate, 1 +
FREQ/Rate
1
kHz
kHz (F4).
4. Press AMPL followed
by, 3 + VPP (F5).
AMPL
3
VPP
5. Press the Output key.
9
OUTPUT
2-3-2. Ramp Wave
Example: Ramp Wave, 5Vpp, 10kHz, 50% Symmetry.
Output:
1. Press the Waveform
Waveform
CH1
key, and select Ramp
(F4).
2.
Press SYM(F1), 5 + 0
SYM
50Ω
+%(F2).
Input: N/A
3. Press the Freq/Rate key FREQ/Rate
then 1 + 0 + kHz (F4).
4. Press the AMPL key
AMPL
then 5 +VPP (F5).
5. Press the Output key.
OUTPUT
Ramp
5
0
%
1
0
kHz
VPP
5
2-3-3. Sine Wave
Example: Sine Wave, 10Vpp,100kHz
Output:
1. Press the Waveform key
CH1
and select Sine (F1).
2. Press the Freq/Rate key,
followed by 1 + 0 +0 +
50Ω
kHz (F4).
Input: N/A
3. Press the AMPL key,
followed by 1 + 0 +VPP
(F5).
4. Press the output key.
Sine
Waveform
FREQ/Rate
1
0
AMPL
1
0
kHz
0
VPP
OUTPUT
2-4. Modulation
2-4-1. AM
Example: AM modulation. 100Hz modulating square wave. 1kHz Sine wave
carrier. 80% modulation depth.
Output:
1. Press the MOD key and MOD
AM
CH1
select AM (F1).
2. Press Waveform and
Waveform
Sine
select Sine (F1).
50Ω
Input: N/A
3. Press the Freq/Rate
key, followed by 1 + kHz
(F4).
4. Press the MOD key,
select AM (F1), Shape
(F4), Square (F2).
FREQ/Rate
MOD
10
AM
Shape
AM
AM Freq
Square
5. Press the MOD key,
select AM (F1), AM Freq
(F3).
6. Press 1 + 0 + 0 + Hz
(F2).
kHz
1
MOD
1
0
0
Hz
7. Press the MOD key,
select AM (F1), Depth
(F2).
8. Press 8 + 0 + % (F1).
AM
MOD
8
9. Press MOD, AM (F1),
Depth
%
0
AM
MOD
Source
Source (F1), INT (F1).
INT
10. Press the output key.
OUTPUT
2-4-2. FM
Example: FM modulation. 100Hz modulating square wave. 1kHz Sine wave
carrier. 100 Hz frequency deviation. Internal Source.
Output:
1. Press the MOD key and MOD
FM
CH1
select FM (F2).
2. Press Waveform and
Waveform
Sine
select Sine (F1).
50Ω
Input: N/A
3. Press the Freq/Rate
key, followed by 1 + kHz
(F4).
4. Press the MOD key,
select FM (F2), Shape
(F4), Square (F2).
FREQ/Rate
MOD
6.
7.
8.
9.
FM
Shape
FM
FM Freq
Square
5. Press the MOD key,
select FM (F2), FM Freq
(F3).
Press 1 + 0 + 0 + Hz
(F2).
Press the MOD key,
select FM (F2), Freq
Dev (F2).
Press 1 + 0 + 0 + Hz
(F3).
Press MOD, FM (F2),
Source (F1), INT (F1).
kHz
1
MOD
1
0
FM
MOD
1
Hz
0
0
MOD
Freq Dev
Hz
0
FM
Source
INT
10. Press the Output key.
OUTPUT
2-4-3. FSK Modulation
Example: FSK modulation. 100Hz Hop frequency. 1kHz Carrier wave. Sine
wave. 10 Hz Rate. Internal Source.
Output:
1. Press the MOD key and MOD
FSK
CH1
select FSK (F3).
2. Press Waveform and
Waveform
Sine
select Sine (F1).
50Ω
11
Input: N/A
3. Press the Freq/Rate
key, followed by 1 + kHz
(F4).
4. Press the MOD key,
select FSK (F3), FSK
Rate (F3).
5. Press 1 + 0 + Hz (F2).
FREQ/Rate
6. Press the MOD key,
select FSK (F3), Hop
Freq (F2).
7. Press 1 + 0 + 0 + Hz
(F3).
8. Press MOD, FSK (F3),
Source (F1), INT (F1).
FSK
MOD
1
kHz
1
Hz
0
FSK
MOD
1
FSK Rate
0
Hop Freq
Hz
0
FSK
MOD
Source
INT
9. Press the output key.
OUTPUT
2-4-4. PM Modulation
Example: PM modulation. 800Hz sinusoidal carrier wave. 15 kHz modulating
sine wave. 50˚ phase deviation. Internal Source.
Output:
1. Press Waveform and
Waveform
Sine
CH1
select Sine (F1).
2. Press the MOD key and MOD
PM
select PM (F4).
50Ω
Input: N/A
3. Press the Freq/Rate
FREQ/Rate
key, followed by 8 + 0 +
0 + Hz (F3).
4. Press the MOD key,
select PM (F4), Shape
(F4), Sine (F1).
MOD
5. Press MOD, then PM
MOD
(F4), PM Freq (F3).
6. Press 1 + 5 + kHz (F3).
1
5
12
0
PM
Shape
PM
PM Freq
5
kHz
PM
MOD
0
MOD
INT
10. Press the Output key.
0
Sine
7. Press MOD, PM (F4),
PM Dev (F2).
8. Press 5 + 0 + Degree
(F1).
9. Press MOD, PM (F4),
Source (F1), INT (F1).
8
OUTPUT
PM Dev
Degree
PM
Source
Hz
2-4-5. SUM Modulation
Example: SUM modulation. 100Hz modulating square wave, 1kHz sinusoidal
carrier wave, 50% SUM amplitude, internal source.
Output:
1. Press the MOD key,
MOD
SUM
CH1
then SUM (F5).
2. Press Waveform, and
Waveform
Sine
select Sine (F1).
50Ω
Input: N/A
3. Press Freq/Rate
FREQ/Rate
followed by 1 + kHz
(F4).
4. Press the MOD key,
SUM (F5), Shape (F4),
Square (F2).
MOD
SUM
Shape
SUM
SUM Freq
Square
5. Press the MOD key and
select SUM (F5), SUM
Freq (F3).
6. Press 1 + 0 + 0 + Hz
(F2).
7. Press the MOD key and
select SUM (F5), SUM
Ampl (F2).
8. Press 5 + 0 + % (F1).
kHz
1
MOD
1
0
SUM
MOD
5
9. Press MOD, SUM (F5),
Hz
0
SUM Ampl
%
0
SUM
MOD
Source
Source (F1), INT (F1).
INT
10. Press the Output key.
OUTPUT
2-5. Sweep
Example: Frequency Sweep. Start Frequency 10mHz, Stop frequency 1MHz.
Log sweep, 1 second sweep, Marker Frequency 550 Hz, Manual Trigger.
Output:
1. Press Sweep, Start (F3). MOD
START
CH1
50Ω
Input: N/A
2. Press 1 + 0 + mHz (F2).
1
3. Press Sweep, Stop (F4).
Sweep
4. Press 1 + MHz (F5).
1
5. Press Sweep, Type
Sweep
Type
Log
Sweep
More
SWP Time
(F2), Log (F2).
6. Press Sweep, More
(F5), SWP Time (F1).
7. Press 1 + SEC (F2).
13
1
mHz
0
Stop
MHz
SEC
8. Press Sweep, More
(F5), Marker (F4),
ON/OFF (F2), Freq (F1).
Sweep
More
ON/OFF
Freq
9. Press 5 + 5 + 0 + Hz
5
(F3).
10. Press the Output key.
OUTPUT
11. Press Sweep, Source
Sweep
(F1), Manual (F3),
Trigger (F1).
5
0
Source
Marker
Hz
Manual
Trigger
2-6. Burst
Example: Burst Mode, N-Cycle (Internally triggered), 1kHz burst frequency,
Burst count = 5, 10 ms Burst period, 0˚ burst phase, Internal trigger, 10 us
delay, rising edge trigger out
Output:
1. Press FREQ/Rate 1 kHz FREQ/Rate 1
kHz
CH1
(F4).
2. Press Burst, N Cycle
Burst
N Cycle
Cycles
(F1), Cycles (F1).
50Ω
Input: N/A
3. Press 5 + Cyc (F2).
4. Press Burst, N Cycle
(F1), Period (F4).
5. Press 1 +0 + msec (F2).
6. Press Burst, N Cycle
(F1), Phase (F3).
7. Press 0 + Degree (F2).
8. Press Burst, N Cycle
(F1), TRIG set (F5),
Delay (F4).
10. Press 1 + 0 + uSEC
(F2).
11. Press Burst, N Cycle
(F1), TRIG set (F5),
TRIG out (F5), ON/OFF
(F3), Rise (F1).
12. Press the Output key.
14
N Cycle
Burst
1
0
Period
mSEC
N Cycle
Burst
Phase
Degree
0
Burst
(F1), TRIG set (F5), INT
(F1).
9. Press Burst, N Cycle
Cyc
5
N Cycle
TRIG set
N Cycle
TRIG set
INT
Burst
Delay
1
0
uSEC
Burst
N Cycle
TRIG set
TRIG out
ON/OFF
Rise
OUTPUT
2-7. ARB
2-7-1. ARB–Add Built-In Waveform
Example: ARB Mode, Exponential Rise. Start 0, Length 100, Scale 327.
Output:
1. Press ARB, Built in (F3),
CH1
50Ω
ARB
Built in
Math
Select
Start
0
Length
1
0
0
Enter
3
2
7
Enter
Wave (F4), Math(F2),
use the scroll wheel to
select Exporise and
then press Select(F5).
2. Press Start (F1), 0 +
Wave
Return
Enter
Enter (F2), Return.
3. Press Length (F2), 100,
Enter (F2), Return.
Return
4. Press Scale (F3), 327,
Scale
Enter (F2), Return,
Done (F5).
Return
Done
2-7-2. ARB- Add Point
Example: ARB Mode, Add point, Address 40, data 300.
Output:
1. Press ARB, Edit (F2),
CH1
ARB
Edit
Point
Enter
Return
Point (F1), Address (F1)
Adress
50Ω
2. Press 4 + 0 + Enter (F2),
4
0
Return
3. Press Data (F2), 3+0+0,
Data
3
0
0
Enter
Enter (F2).
2-7-3. ARB- Add Line
Example: ARB Mode, Add line, Address:Data (10:30, 50:100)
Output:
1. Press ARB, Edit (F2),
CH1
Line (F2), Start ADD
(F1).
ARB
Edit
Line
Enter
Return
Start ADD
50Ω
2. Press 1 + 0 + Enter (F2),
Return.
15
1
0
3. Press Start Data (F2), 3
+ 0, Enter (F2), Return.
4. Press Stop ADD (F3), 5
Start Data
3
0
Enter
5
0
Enter
1
0
Return
Stop ADD
+ 0, Enter (F2), Return.
Return
5. Press Stop Data (F4), 1
+ 0 + 0, Enter (F2),
Return, Done (F5).
Stop Data
Enter
0
Return
Done
2-7-4. ARB– Output Section
Example: ARB Mode, Output ARB Waveform, Start 0, Length 1000.
Output:
1. Press ARB, Output (F4).
ARB
Output
2. Press Start (F1), 0 +
Start
0
CH1
50Ω
Enter
Enter (F2), Return.
Return
3. Press Length (F2), 1 + 0
Length
1
0
0
+ 0, Enter (F2), Return.
Enter
Return
2-8. Utility Menu
2-8-1. Save
Example: Save to Memory file #5.
1. Press UTIL, Memory
UTIL
Memory
(F1), Store (F1).
2. Choose a setting using
the scroll wheel and
press Done (F5).
16
Done
Store
2-8-2. Recall
Example: Recall Memory file #5.
1. Press UTIL, Memory
UTIL
Memory
Recall
(F1), Recall (F2).
2. Choose a setting using
the scroll wheel and
press Done (F5).
Done
2-9. Frequency Counter
2-9-1. Frequency Counter
Example: Turn on the frequency counter. Gate time: 1 second.
Output: N/A
1. Press UTIL, Counter
UTIL
Counter
Gate Time
1 Sec
(F5).
Input:
Trigger
MOD
2. Press Gate Time (F1),
and press 1 Sec (F3) to
choose a gate time of 1
second.
IN
OUT
Trigger
Counter
3. Connect the signal of interest to the Frequency
counter input on the rear panel.
2-10. Coupling
2-10-1. Frequency Coupling
Example: Frequency Coupling
1. Press UTIL, Dual Chan
UTIL
(F4) to enter the
coupling function.
2. Press Freq Cpl (F1) to
select the frequency
coupling function.
17
Freq Cpl
Dual Chan
3. Press Offset (F2). The
Offset
offset is the frequency
difference between CH1
and CH2. Use the
number keys or scroll
wheel to enter the offset.
2-10-2. Amplitude Coupling
Example: Amplitude Coupling
1. Press UTIL, Dual Chan
UTIL
Dual Chan
Ampl Cpl
On
(F4) to enter the
coupling function.
2. Press Ampl Cpl (F2),
ON (F1) to select the
amplitude coupling
function.
3. Couples the amplitude and offset between both
channels. Any changes in amplitude in the current
channel are reflected in the other channel.
2-11. Tracking
Example: Tracking
1. Press UTIL, Dual Chan
UTIL
Dual Chan
Tracking
On
(F4) to enter the
coupling function.
2. Press Tracking (F3), ON
(F2) to turn on the
tracking function.
3. When tracking is turned on, parameters such as
amplitude and frequency from the current channel are
mirrored on the other channel.
18
2-12. Menu Tree
Conventions
Use the menu trees as a handy reference for the function
generator functions and properties. The FGX-2220 menu
system is arranged in a hierarchical tree. Each
hierarchical level can be navigated with the operation or
soft menu keys. Pressing the Return key will return you
to the previous menu level.
2-12-1. Waveform
Waveform
Sine
Square
Pulse
Ramp
Duty
%
Width
nSEC
uSEC
mSEC
SEC
SYM
%
Noise
2-12-2. ARB-Display
ARB
Display
Horizon
Vertical
Start
Low
Clear
Enter
Clear
Enter
Length
High
Clear
Enter
Clear
Enter
Center
Center
Clear
Enter
Clear
Enter
Zoom in
Zoom out
Zoom in
Zoom out
Next Page
19
Back Page
Overview
2-12-3. ARB-Edit
ARB
Edit
Point
Line
Copy
Clear
Address
Start ADD
Start
Start
All
Clear
Enter
Clear
Enter
Clear
Enter
Clear
Enter
Done
Data
Start Data
Length
Length
Clear
Enter
Clear
Enter
Clear
Enter
Clear
Enter
Stop ADD
Paste To
Clear
Enter
Clear
Enter
Done
All
Stop Data
Done
Done
Clear
Enter
Protect
Start
Clear
Enter
Length
Clear
Enter
Done
Unprotect
Done
Done
2-12-4. ARB- Built In
ARB
Built in
Start
Length
Scale
Clear
Enter
Clear
Enter
Clear
Enter
20
Wave
Common
Math
Window
Engineer
Select
Done
2-12-5. ARB-Save
ARB
More
Save
Start
Length
Clear
Enter
Clear
Enter
Memory
USB
Done
Select
Select
New Folder
Enter Char
Back Space
Save
New File
Enter Char
Back Space
Save
2-12-6. ARB-Load
ARB
More
Load
Memory
USB
To
Select
Select
Clear
Enter
21
Done
2-12-7. ARB-Output
ARB
Output
Start
Length
Clear
Enter
Clear
Enter
2-12-8. MOD
MOD
AM
FM
FSK
PM
SUM
Source
Source
Source
Source
Source
Int
EXT
Int
EXT
Int
EXT
Int
EXT
Int
EXT
Depth
Freq Dev
Hop Freq
Phase Dev
SUM Ampl
%
uHz
mHz
Hz
kHz
MHz
uHz
mHz
Hz
kHz
MHz
Degree
%
PM Freq
SUM Freq
FM Freq
FSK Rate
mHz
Hz
kHz
mHz
Hz
kHz
mHz
Hz
kHz
mHz
Hz
kHz
MHz
Shape
Shape
Sine
Square
Triangle
UpRamp
DnRamp
Sine
Square
Triangle
UpRamp
DnRamp
AM Freq
mHz
Hz
kHz
Shape
Sine
Square
Triangle
UpRamp
DnRamp
Shape
Sine
Square
Triangle
UpRamp
DnRamp
22
2-12-9. SWEEP
SWEEP
Source
Type
Start
Stop
More
Int
EXT
Manual
Linear
Log
uHz
mHz
Hz
kHz
MHz
uHz
mHz
Hz
kHz
MHz
Go to the
Sweep More menu
Trigger
2-12-10. SWEEP- More
Sweep
More
SWP Time
Span
Center
Marker
mSEC
SEC
uHz
mHz
Hz
kHz
MHz
uHz
mHz
Hz
kHz
MHz
Freq
uHz
mHz
Hz
kHz
MHz
ON/OFF
23
2-12-11. Burst- N Cycle
Burst
N Cycle
Cycles
Infinite
Clear
Cyc
Phase
Period
TRIG Setup
Clear
Degree
uSEC
mSEC
SEC
Int
EXT
Rise
Fall
Manual
Trigger
Delay
nSEC
uSEC
mSEC
SEC
TRIG out
Rise
Fall
ON/OFF
2-12-12. Burst – Gate
Burst
Gate
Polarity
Phase
Pos
Neg
Clear
Degree
24
2-12-13. UTIL
UTIL
Memory
Cal.
System
Dual Chan
Counter
Store
Self Test
Software
Language
Freq Cpl
Gate Time
English
Version
Upgrade
Help
Off
Offset
Ratio
0.01 Sec
0.1 Sec
1 Sec
10 Sec
Done
Recall
Done
Select
Delete
Beep
Ampl Cpl
Done
Off
On
Delete All
Tracking
Done
Off
On
Inverted
S_Phase
2-12-14. CH1/CH2
CH1/ CH2
Load
Phase
DSO Link
50 OHM
High Z
Phase
Degree
CH1
CH2
CH3
CH4
Search
2-13. Default Settings
The Preset key is used to restore the default panel
settings.
Output Settings
Function
Sine Wave
Frequency
1kHz
Amplitude
3.000 Vpp
Offset
0.00V dc
Output units
Vpp
Output terminal
50Ω
25
Preset
Modulation
Carrier wave
1kHz sine wave
Modulation wave
100Hz sine wave
AM depth
100%
FM deviation
100Hz
FSK hop frequency
100Hz
FSK frequency
10Hz
PM phase deviation
180˚
SUM amplitude
50%
Modem status
Off
Start/Stop frequency
100Hz/1kHz
Sweep time
1s
Sweep type
Linear
Sweep status
Off
Burst frequency
1kHz
Ncycle
1
Burst period
10ms
Burst starting phase
0˚
Burst status
Off
Power off signal
On
Display mode
On
Error queue
Cleared
Memory settings
No change
Output
Off
Trigger
Trigger source
Internal (immediate)
Calibration
Calibration Menu
Restricted
Sweep
Burst
System Settings
26
3. OPERATION
The Operation chapter shows how to output basic waveform functions. For details
on modulation, sweep, burst and arbitrary waveforms, please see the Modulation
and Arbitrary waveform chapters on pages 35 and 98.
3-1. Select a Waveform
The FGX-2220 can output 5 standard waveforms: sine, square, pulse, ramp and
noise.
3-1-1. Sine Wave
Panel Operation
1. Press the Waveformkey.
2. Press F1 (Sine).
Waveform
Sine
F1
3-1-2. Square Wave
Panel Operation
1. Press the Waveform key.
2. Press F2 (Square) to create a
Waveform
Square
F2
Duty
F1
square waveform.
3. Press F1 (Duty). The Duty
parameter will be highlighted in
the parameter window.
27
4. Use the arrow keys and scroll
wheel or number pad to enter the
Duty range.
7
8
9
4
5
6
1
2
3
0
/
5. Press F2 (%) to select % units.
Range
%
Frequency
Duty Range
≤100kHz
1.0%~99.0%
100kHz~≤1MHz
10.0%~90.0%
>1MHz~25MHz
50% (Fixed)
F2
3-1-3. Setting the Pulse Width
Panel Operation
1. Press the Waveform key.
2. Press F3 (Pulse) to create a
pulse width waveform.
28
Waveform
Pulse
F3
3. Press F1 (Width). The Width
F1
Width
parameter will be highlighted in
the parameter window.
4. Use the arrow keys and scroll
wheel or number pad to enter the
pulse width.
7
8
9
4
5
6
1
2
3
0
5. Press F2~F5 choose the unit
range.
Range
/
~
nSEC
F2
Pulse Width
SEC
F5
20ns~1999.9s
Minimum Pulse Width
Note
Frequency ≤ 25MHz:
20ns pulse width.
Frequency ≤ 100 kHZ:
1/4096 duty cycle.
Frequency ≤ 25MHz:
20ns pulse width.
Resolution
Frequency ≤100 kHZ:
1/4096 duty cycle.
29
Rise time / Fall time approx.. 17ns(typ.)
Note
Note
Setting of the pulse width can be set up to 20ns, but it
is less than 100ns, not a square wave by the
specifications.
3-1-4. Setting a Ramp Waveform
Panel Operation
1. Press the Waveform key.
Waveform
2. Press F4 (Ramp) to create a
Ramp
F4
SYM
F1
ramp waveform.
3. Press F1 (SYM). The SYM
parameter will be highlighted in
the parameter window.
4. Use the arrow keys and scroll
wheel or number pad to enter the
symmetry percentage.
7
8
9
4
5
6
1
2
3
0
5. Press F2 (%) to choose % units.
Range
Symmetry
0%~100%
30
/
%
F2
3-1-5. Selecting a Noise Waveform
Panel Operation
1. Press the Waveform key.
2. Press F5 (Noise).
31
Waveform
Noise
F5
3-1-6.Setting the Frequency
Panel Operation
1. Press the FREQ/Rate key.
FREQ/Rate
2. The FREQ parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
frequency.
7
8
9
4
5
6
1
2
3
0
4. Choose a frequency unit by
pressing F1~F5.
Range
Sine wave
1μHz~25MHz
Square wave 1μHz~25MHz
Pulse wave
500μHz~25MHz
Ramp wave
1μHz~1MHz
32
/
~
uHz
MHz
F1
F5
3-1-7. Setting the Amplitude
Panel Operation
1. Press the AMPL key.
AMPL
2. The AMPL parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
amplitude.
7
8
9
4
5
6
1
2
3
0
4. Choose a unit type by pressing
F1~F5.
/
~
dBm
VPP
F1
F5
50Ω load
High Z
Range
1mVpp~10Vpp
2mVpp~20Vpp
Unit
Vpp, Vrms, dBm
33
3-1-8. Setting the DC Offset
Panel Operation
1. Press the DC Offset key.
DC Offset
2. The DC Offset parameter will become highlighted in
the parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
DC Offset.
7
8
9
4
5
6
1
2
3
0
4. Press F1 (mVDC) or F2 (VDC) to
choose a voltage range.
Range
/
mVDC
F1
50Ω load
High Z
±5Vpk
±10Vpk
34
VDC
F2
4. MODULATION
The FGX-2220 Series Arbitrary Function Generators are able to produce AM, FM,
FSK, PM and SUM modulated waveforms. Depending on the type of waveform
produced, different modulation parameters can be set. Only one modulation
mode can be active at any one time. The function generator also will not allow
sweep or burst mode to be used with AM/FM. Activating a modulation mode will
turn the previous modulation mode off.
4-1. Amplitude Modulation (AM)
An AM waveform is produced from a carrier waveform and a modulating waveform.
The amplitude of the modulated carrier waveform depends on the amplitude of the
modulating waveform. The FGX-2220 function generator can set the carrier
frequency, amplitude and offset as well as internal or external modulation sources.
35
4-1-1. Selecting AM Modulation
Panel Operation
1. Press the MOD key.
2. Press F1 (AM).
MOD
F1
AM
4-1-2. AM Carrier Shape
Background
Sine, square, ramp, pulse or arbitrary waveforms can be
used as the carrier shape. The default waveform shape
is set to sine. Noise is not available as a carrier shape.
Before the carrier shape can be selected, choose AM
modulation mode, see above.
Select a Standard 1. Press the Waveform key.
Carrier Shape
2. Press F1~F4 to choose the
carrier wave shape.
Waveform
~
Sine
F1
Ramp
F4
Select an Arbitrary 3. See the Arbitrary waveform quick Page 15
Waveform Carrier
reference or chapter to use an
Page 98
Shape.
arbitrary waveform.
Range
AM Carrier Shape
sine, square, Ramp,Pulse, arbitrary
waveform
36
4-1-3. Carrier Frequency
The maximum carrier frequency depends on the carrier shape selected. The
default carrier frequency for all carrier shapes is 1kHz.
Panel Operation
1. With a carrier waveform
FREQ/Rate
selected, press the FREQ/Rate
key.
2. The FREQ parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
carrier frequency.
7
8
9
4
5
6
1
2
3
0
4. Press F1~F5 to select the
frequency range.
Range
/
~
uHz
MHz
F1
F5
Carrier Shape
Carrier Frequency
Sine wave
1μHz~ 25MHz
Square wave
1μHz~25MHz
Ramp wave
1μHz~1MHz
Pulse wave
500uHz~25MHz
Default frequency
1 kHz
37
4-1-4. Modulating Wave Shape
The function generator can accept internal as well as external sources. The
FGX-2220 has sine, square, triangle, up ramp and down ramp modulating
waveform shapes. Sine waves are the default wave shape.
Panel Operation
1.
Press the MOD key.
MOD
2. Press F1 (AM).
3. Press F4 (Shape).
4. Press F1 ~ F5 to select the
waveform shape.
AM
F1
Shape
F4
~
Sine
F1
5. Press Return to return to the
Return
previous menu.
Note
Square wave
50% Duty cycle
UpRamp
100% Symmetry
Triangle
50% Symmetry
DnRamp
0% Symmetry
38
DnRamp
F5
4-1-5. AM Frequency
The frequency of the modulation waveform (AM Frequency) can be set from 2mHz
to 20kHz.
Panel Operation
1. Press the MOD key.
MOD
2. Press F1 (AM).
3. Press F3 (AM Freq)
AM
F1
AM Freq
F3
4. The AM Freq parameter will become highlighted in
the Waveform display area.
5. Use the arrow keys and scroll
wheel or number pad to enter the
AM frequency.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F3 to select the
frequency range.
Range
/
~
mHz
kHz
F1
F3
Modulation frequency
2mHz~20kHz
Default frequency
100Hz
39
4-1-6. Modulation Depth
Modulation depth is the ratio (as a percentage) of the unmodulated carrier
amplitude and the minimum amplitude deviation of the modulated waveform. In
other words, modulation depth is the maximum amplitude of the modulated
waveform compared to the carrier waveform as a percentage.
Panel Operation
1. Press the MOD key.
MOD
2. Press F1 (AM).
3. Press F2 (Depth).
AM
F1
Depth
F2
4. The AM Depth parameter will become highlighted in
the waveform display area.
5. Use the arrow keys and scroll
wheel or number pad to enter the
AM depth.
7
8
9
4
5
6
1
2
3
0
6. Press F1 (%) to choose % units.
Range
Depth
0%~120%
Default depth
100%
40
/
%
F1
Note
When the modulation depth is greater than 100%, the
output cannot exceed ±5VPeak (10kΩ load).
If an external modulation source is selected, modulation
depth is limited to ± 5V from the MOD INPUT terminal on
the rear panel. For example, if the modulation depth is
set to 100%, then the maximum amplitude is +5V, and
the minimum amplitude is -5V.
4-1-7. Selecting the (AM) Modulation Source
The function generator will accept an internal or external source for AM modulation.
The default source is internal.
Panel Operation
1. Press the MOD key.
MOD
2. Press F1 (AM).
3. Press F1 (Source).
AM
F1
Source
F1
~
4. Press F1 (INT) or F2 (EXT) to
select the modulation source.
5. Press Return to go back to the
INT
EXT
F1
F2
Return
previous menu.
External Source
Use the MOD INPUT terminal on the
rear panel when using an external
source.
Trigger
MOD
Trigger
Counter
IN
OUT
Note
If an external modulation source is selected, modulation
depth is limited to ± 5V from the MOD INPUT terminal on
the rear panel. For example, if modulation depth is set to
100%, then the maximum amplitude is +5V, and the
minimum amplitude is -5V.
41
4-2. Frequency Modulation (FM)
A FM waveform is produced from a carrier waveform and a modulating waveform.
The instantaneous frequency of the carrier waveform varies with the magnitude of
the modulating waveform. When using the FGX-2220 function generator, only one
type of modulated waveform can be created at any one time.
42
4-2-1. Selecting Frequency Modulation (FM)
When FM is selected, the modulated waveform depends on the carrier frequency,
the output amplitude and offset voltage.
Panel Operation
1. Press the MOD key.
MOD
2. Press F2 (FM).
F2
FM
4-2-2. FMCarrier Shape
Background
The default waveform shape is set to sine. Noise and
pulse waveforms cannot be used as a carrier wave.
Panel Operation
1. Press the Waveform key.
Waveform
2. Press F1~F4 to select the carrier
shape.
Range
~
Sine
F1
Carrier Shape
Ramp
F4
Sine, Square, Ramp.
4-2-3. FM Carrier Frequency
When using the FGX-2220 function generator, the carrier frequency must be equal
to or greater than the frequency deviation. If the frequency deviation is set to value
greater than the carrier frequency, the deviation is set to the maximum allowed.
The maximum frequency of the carrier wave depends on the waveform shape
chosen.
43
Panel Operation
1. To select the carrier frequency,
FREQ/Rate
press the FREQ/Rate key.
2. The FREQ parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
carrier frequency.
7
8
9
4
5
6
1
2
3
0
4. Press F1~F5 to select the
frequency unit.
Range
/
~
uHz
MHz
F1
F5
Carrier Shape
Carrier Frequency
Sine
1μHz~25MH
Square
1μHz~15MHz
Ramp
1μHz~1MHz
Default frequency
1kHz
44
4-2-4. FM Wave Shape
The function generator can accept internal as well as external sources. The
FGX-2220 has sine, square, triangle, positive and negative ramps (UpRamp,
DnRamp) as the internal modulating waveform shapes. Sine is the default wave
shape.
Background
1. Select MOD.
MOD
2. Press F2 (FM).
3. Press F4 (Shape).
4. Press F1 ~ F5 to select the
waveform shape.
FM
F2
Shape
F4
~
Sine
F1
5. Press Return to return to the
Return
previous menu.
Range
Square wave
50% Duty cycle
UpRamp
100% Symmetry
Triangle
50% Symmetry
DnRamp
0% Symmetry
45
DnRamp
F5
4-2-5. FM Frequency
The frequency of the modulation waveform (FM Frequency) can be set from 2mHz
to 20kHz.
Panel Operation
1. Press the MOD key.
MOD
2. Press F2 (FM).
3. Press F3 (FM Freq).
FM
F2
FM Freq
F3
4. The FM Freq parameter will become highlighted in
waveform display panel.
5. Use the arrow keys and scroll
wheel or number pad to enter the
FM frequency.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F3 to select the
frequency unit.
Range
/
~
mHz
kHz
F1
F3
Modulation frequency
2mHz~20kHz
Default frequency
100Hz
46
4-2-6. Frequency Deviation
The frequency deviation is the peak frequency deviation from the carrier wave and
the modulated wave.
Panel Operation
1. Press the MOD key.
MOD
2. Press F2 (FM).
3. Press F2 (Freq Dev).
FM
F2
Freq Dev
F2
4. The Freq Dev parameter will become highlighted in
the waveform display panel.
5. Use the arrow keys and scroll
wheel or number pad to enter the
frequency deviation.
7
8
9
4
5
6
1
2
3
0
6. Press F1~ F5 to choose the
frequency units.
Range
Frequency Deviation
/
~
uHz
MHz
F1
F5
DC~25MHz
DC~15MHz(square)
DC~1MHz (Ramp)
Default depth
100Hz
47
4-2-7. Selecting (FM) Modulation Source
The function generator will accept an internal or external source for FM modulation.
The default source is internal.
Panel Operation
1. Press the MOD key.
MOD
2. Press F2 (FM).
3. Press F1 (Source).
FM
F2
Source
F1
~
4. To select the source, press F1
(Internal) or F2 (External).
5. Press Return to return to the
INT
EXT
F1
F2
Return
previous menu.
External Source
Use the MOD INPUT terminal on the
rear panel when using an external
source.
Trigger
MOD
Trigger
Counter
IN
OUT
Note
If an external modulating source is selected, the
frequency deviation is limited to the ± 5V MOD INPUT
terminal on the rear panel. The frequency deviation is
proportional to the signal level of the modulation in
voltage. For example, if the modulation in voltage is +5V,
then the frequency deviation would be equal to the set
frequency deviation. Lower signal levels reduce the
frequency deviation while negative voltage levels
produce frequency deviations with frequencies below the
carrier waveform.
48
4-3. Frequency Shift Keying (FSK) Modulation
Frequency Shift Keying Modulation is used to shift the frequency output of the
function generator between two preset frequencies (carrier frequency, hop
frequency). The frequency at which the carrier and hop frequency shift is
determined by the internal rate generator or the voltage level from the Trigger
INPUT terminal on the rear panel.
Only one modulation mode can be used at once. When FSK modulation is enabled,
any other modulation modes will be disabled. Sweep and Burst also cannot be
used with FSK modulation. Enabling FSK will disable Sweep or Burst mode.
49
4-3-1. Selecting FSK Modulation
When using FSK mode, the output waveform uses the default settings for carrier
frequency, amplitude and offset voltage.
Panel Operation
1. Press the MOD key.
MOD
2. Press F3 (FSK).
FSK
F3
4-3-2. FSK Carrier Shape
Background
The default waveform shape is set to sine. Noise
waveforms cannot be used as carrier waves.
Panel Operation
1. Press the Waveform key.
Waveform
2. Press F1~F4 to choose the
carrier wave shape.
Range
Carrier Shape
~
Sine
F1
Ramp
F4
Sine, Square, Pulse, Ramp
4-3-3. FSK Carrier Frequency
The maximum carrier frequency depends on the carrier shape. The default carrier
frequency for all carrier shapes is 1kHz. The voltage level of the Trigger INPUT
signal controls the output frequency when EXT is selected. When the Trigger
INPUT signal is logically low the carrier frequency is output and when the signal is
logically high, the hop frequency is output.
50
Panel Operation
1. Press the FREQ/Rate key to
FREQ/Rate
select the carrier frequency.
2. The FREQ parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
carrier frequency.
7
8
9
4
5
6
1
2
3
0
4. Press F1~F5 to select the FSK
frequency units.
Range
/
~
uHz
MHz
F1
F5
Carrier Shape
Carrier Frequency
Sine wave
1μHz~25MHz
Square wave
1μHz~15MHz
Ramp wave
1μHz~1MHz
Pulse wave
500μHz~15MHz
Default frequency
1kHz
4-3-4. FSK Hop Frequency
The default Hop frequency for all waveform shapes is 100 Hz. A square wave with
a duty cycle of 50% is used for the internal modulation waveform. The voltage level
of the Trigger INPUT signal controls the output frequency when EXT is selected.
When the Trigger INPUT signal is logically low the carrier frequency is output and
when the signal is logically high, the hop frequency is output.
Panel Operation
1. Press the MOD key.
MOD
2. Press F3 (FSK).
FSK
F3
Hop Freq
F2
3. Press F2 (Hop Freq).
51
4. The Hop Freq parameter will become highlighted in
the Waveform Display area.
5. Use the arrow keys and scroll
wheel or number pad to enter the
hop frequency.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F5 to select the
frequency range.
Range
/
~
uHz
MHz
F1
F5
Waveform
Carrier Frequency
Sine wave
1μHz~25MHz
Square wave
1μHz~15MHz
Ramp wave
1μHz~1MHz
Pulse wave
500μHz~15MHz
Default frequency
100Hz
52
4-3-5. FSK Rate
FSK Rate function is used to determine rate at which the output frequency changes
between the carrier and hop frequencies. The FSK Rate function only applies to
internal FSK sources.
Panel Operation
1. Select the MOD key.
MOD
2. Press F3 (FSK).
FSK
F3
FSK Rate
F3
3. Press F3 (FSK Rate).
4. The FSK Rate parameter will become highlighted in
the waveform display area.
5. The arrow keys and scroll wheel
or number pad to enter the FSK
rate.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F4 to select the
frequency unit.
Range
Note
/
~
mHz
kHz
F1
F4
FSK Rate
2mHz~100kHz
Default
10Hz
If an external source is selected, FSK Rate settings are
ignored.
53
4-3-6. FSK Source
The FGX-2220 accepts internal and external FSK sources, with internal as the
default source. When the FSK source is set to internal, the FSK rate is configured
using the FSK Rate function. When an external source is selected the FSK rate is
equal to the frequency of the Trigger INPUT signal on the rear panel.
Panel Operation
1. Press the MOD key.
MOD
2. Press F3 (FSK).
FSK
F3
Source
F1
3. Press F1 (Source).
4. Press F1 (Internal) or F2
(External) to select the FSK
source.
5. Press Return to return to the
~
INT
F1
EXT
F2
Return
previous menu.
Note
Note that the Trigger INPUT terminal cannot configure
edge polarity.
54
4-4. Phase Modulation (PM)
The phase deviation of the carrier waveform deviates from a reference phase value
in proportion to changes in the modulating waveform.
Only one mode of modulation can be enabled at any one time. If PM is enabled,
any other modulation mode will be disabled. Likewise, burst and sweep modes
cannot be used with PM and will be disabled when PM is enabled.
4-4-1. Selecting Phase Modulation (PM)
When selecting PM, the current setting of the carrier frequency, the amplitude
modulation frequency, output, and offset voltage must be considered.
Panel Operation
1. Press the MOD key.
2. Press F4 (PM).
MOD
PM
55
F4
4-4-2. PM Carrier Waveform
Background
PM uses a sine wave as default. Noise and Pulse
waveform cannot be used with phase modulation.
Panel Operation
1. Press the Waveform key.
Waveform
~
2. Press F1 ~ F4 to select the
Sine
waveform.
Range
Ramp
F1
Carrier Waveform
F4
Sine wave, Square wave,
ramp wave.
4-4-3. PM Carrier Frequency
Selects the maxium carrier frequency for the carrier wavefrom. The default carrier
frequency is 1kHz.
Panel Operation
1. Press the FREQ/Rate key to
FREQ/Rate
select the carrier frequency.
2. The FREQ parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
carrier frequency.
7
8
9
4
5
6
1
2
3
0
4. Press F1~F5 to select the
frequency unit.
/
~
uHz
MHz
F1
F5
Range
Carrier Wave
Carrier Frequency
Sine wave
1μHz~25MH
Square wave
1μHz~15MHz
Ramp wave
1μHz~1MHz
Default frequency
1 kHz
56
4-4-4. PM Wave Shape
The function generator can accept internal or external sources. The internal
sources can include sine, square, triangle, up ramp and down ramp. The default
wave shape is sine.
Panel Operation
1. Select the MOD key.
MOD
2. Press F4 (PM).
3. Press F4 (Shape).
PM
F4
Shape
F4
~
4. Press F1~F5 to select a
Sine
waveform shape.
F1
5. Press Return to return to the
Return
previous menu.
Range
Waveform
Square wave
50% Duty Cycle
Up Ramp
100% Symmetry
Triangle
50% Symmetry
Dn Ramp
0% Symmetry
57
DnRamp
F5
4-4-5. PM Frequency
The frequency of the modulation waveform (PM Frequency) can be set from 2mHz
to 20kHz.
Panel Operation
1. Press the MOD key.
MOD
2. Press F4 (PM).
3. Press F3 (PM Freq).
PM
F4
PM Freq
F3
4. The PM Freq parameter will become highlighted in
the Waveform Display area.
5. Use the arrow keys and scroll
wheel or number pad to enter the
PM frequency.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F3 to select the
frequency unit range.
Range
/
~
mHz
kHz
F1
F3
Modulation frequency
2mHz~20kHz
Default frequency
100Hz
58
4-4-6. Phase Deviation
The maximum phase deviation depends on the the carrier wave frequency and the
modulated waveform.
Panel operation
1. Press the MOD key.
MOD
2. Press F4 (PM).
3. Press F2 (Phase Dev).
PM
F4
Phase Dev
F2
4. The Phase Dev parameter will become highlighted in
the waveform display area.
5. Use the arrow keys and scroll
wheel or number pad to enter the
phase deviation.
7
8
9
4
5
6
1
2
3
0
6. Press F1 to select the phase
units.
Range
Phase deviation/shift
0~360°
Defualt phase
180°
59
Degree
/
F1
4-4-7. Select the PM Source
The function generator excepts internal or external sources for phase modulation.
The default source is internal.
Panel Operation
1. Press the MOD key.
MOD
2. Press F4 (PM).
3. Press F1 (Source).
PM
F4
Source
F1
~
4. Press F1 (INT) or F2 (EXT) to
select the source.
5. Press return to return to the
INT
EXT
F1
F2
Return
previous menu.
External Source
Use the MOD INPUT terminal on the
rear panel when using an external
source.
Trigger
MOD
Trigger
Counter
IN
OUT
Note
If the modulation source is set to external, the phase
deviation is controlled by the ±5V MOD INPUT terminal
on the rear panel. For example, if the modulation voltage
is +5V, then the phase deviation is equal to the phase
deviation setting. If the modulation voltage is less than
+5V, then the phase deviation will be less than the phase
deviation setting.
60
4-5. SUM modulation
Sum modulation adds a modulating signal to a carrier wave. Typically, sum
modulation is used to add noise to a carrier wave. The modulating signal is added
as a percentage of the carrier amplitude.
If SUM is enabled, any other modulation mode will be disabled. Likewise, burst and
sweep modes cannot be used with SUM and will be disabled when SUM is
enabled.
4-5-1. Selecting SUM modulation
For SUM modulation, the modulated waveform amplitude and offset is determined
by the carrier wave.
Panel Operation
1. Press the MOD key.
MOD
2. Press F5 (SUM).
SUM
61
F5
4-5-2. SUM Carrier Waveform
Background
Panel Operation
The SUM carrier waveform is a sinewave by default.
1. Press the Waveform key.
Waveform
~
2. Press F1~F5 to select the carrier
waveform.
Range
Carrier Waveform
Sine
Noise
F1
F5
Sine, square, pulse, ramp
and noise wave.
4-5-3. SUM Carrier Frequency
The maximum carrier frequency depends on the selected carrier waveform. The
default carrier frequency is 1kHz.
Panel Operation
1. Press the FREQ/Rate key to
FREQ/Rate
select the carrier frequency.
2. The FREQ parameter will become highlighted in the
parameter window.
3. Use the arrow keys and scroll
wheel or number pad to enter the
frequency.
7
8
9
4
5
6
1
2
3
0
4. Press F1 ~ F5 to select the
frequency units.
62
/
~
uHz
MHz
F1
F5
Range
Carrier Waveform
Carrier Frequency
Sine wave
1μHz~25MH
Square wave
1μHz~25MHz
Pulse wave
500μHz~25MHz
Ramp wave
1μHz~1MHz
Default frequency
1 kHz
4-5-4. SUM Waveform
The function generator can accept internal and external sources. The FGX-2220
includes sine, square, triangle, UpRamp and DnRamp as internal sources. The
default waveform is sine.
Panel Operation
1. Press the MOD key.
MOD
2. Press F5 (SUM).
SUM
F5
Shape
F4
3. Press F4 (Shape).
4. Press F1~F5 to select the source
waveform.
~
Sine
F1
5. Press Return to return to the
Return
previous menu.
Range
Square wave
50% Duty cycle
Up ramp
100% Symmetry
Triangle
50% Symmetry
Down ramp
0% Symmetry
63
DnRamp
F5
4-5-5. Modulating Waveform Frequency
The frequency of the modulating waveform (SUM Frequency) can be set from
2mHz to 20kHz.
Panel Operation
1. Press the MOD key.
MOD
2. Press F5 (SUM).
SUM
F5
SUM Freq
F3
3. Press F3 (SUM Freq).
4. The SUM Freq parameter will become highlighted in
the waveform display area.
64
5. Use the arrow keys and scroll
wheel or number pad to enter the
SUM frequency.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F3 to select the
frequency units.
Range
/
~
mHz
kHz
F1
F3
Modulating range
2mHz~20kHz
Default frequency
100Hz
4-5-6. SUM Amplitude
The SUM amplitude is the offset (in percent relative to the carrier) of the signal that
is added to the carrier.
Panel Operation
1. Press the MOD key.
MOD
2. Press F5 (SUM).
SUM
F5
SUM Ampl
F2
3. Press F2 (SUM Ampl).
4. In the waveform display area, the SUM Ampl will be
highlighted.
65
5. Use the arrow keys and scroll
wheel or number pad to enter the
SUM amplitude.
7
8
9
4
5
6
1
2
3
0
/
6. Press F1 to select the
F1
%
percentage unit.
Range
Sum amplitude
0~100%
Default amplitude
50%
4-5-7. Select the SUM Amplitude Source
The signal generator can accept internal or external sources for the SUM amplitude
modulation.
Panel Operation
1. Press the MOD key.
MOD
2. Press F5 (SUM).
SUM
F5
Source
F1
3. Press F1 (Source).
~
4. Press F1 (INT) or F2 (EXT) to
select the source.
5. Press Return to return to the
INT
EXT
F1
F2
Return
previous menu.
External Source
Use the MOD INPUT terminal on the
rear panel when using an external
source.
Trigger
MOD
Trigger
Counter
IN
OUT
Note
If an external modulation source is selected, the SUM
amplitude is controlled by the ± 5V from the MOD INPUT
terminal on the rear panel. For example, if the SUM
amplitude is set to 50%, then the maximum amplitude
(150% of the carrier ) will be at +5V, and the minimum
amplitude (50% of the carrier) will be at -5V.
66
4-6. Frequency Sweep
The function generator can perform a sweep for sine, square or ramp waveforms,
but not noise, and pulse. When Sweep mode is enabled, Burst or any other
modulation modes will be disabled. When sweep is enabled, burst mode is
automatically disabled.
In Sweep mode the function generator will sweep from a start frequency to a stop
frequency over a number of designated steps. The step spacing of the sweep can
linear or logarithmic. The function generator can also sweep up or sweep down in
frequency. If manual or external sources are used, the function generator can be
used to output a single sweep.
67
4-6-1. Selecting Sweep Mode
The Sweep button is used to output a sweep. If no
settings have been configured, the default settings for
output amplitude, offset and frequency are used.
Sweep
4-6-2. Setting Start and Stop Frequency
The start and stop frequencies define the upper and lower sweep limits. The
function generator will sweep from the start through to the stop frequency and cycle
back to the start frequency. The sweep is phase continuous over the full range
sweep range (1μHz-25MHz).
Panel Operation
1. Press the SWEEP key.
Sweep
~
2. Press F3 (Start) or F4 (Stop) to
selelect the start or stop
frequency.
Start
Stop
F3
F4
3. The Start or Stop parameter will become highlighted
in the waveform display area.
Start
Stop
4. Use the arrow keys and scroll
wheel or number pad to enter the
Stop/Start frequency.
7
8
9
4
5
6
1
2
3
0
68
/
5. Press F1~F5 to select the
Start/Stop frequency units.
Range
~
uHz
MHz
F1
F5
1μHz~25MHz (Sine wave)
Sweep Range
1μHz~1MHz (Ramp wave)
1μHz~15MHz (Square wave)
Note
Start - Default
100Hz
Stop - Default
1kHz
To sweep from low to high frequencies, set the start
frequency less than the stop frequency.
To sweep from high to low frequencies, set the start
frequency greater than the stop frequency.
When marker is off, the SYNC signal is a square wave
with a duty cycle of 50%. At the start of the sweep, the
SYNC signal is at a TTL low level that rises to a TTL high
level at the frequency midpoint. The frequency of the
SYNC signal is equal to the sweep time.
When marker is on, at the start of the sweep, the SYNC
signal is at a TTL high level that drops to a TTL low level
at the marker. The SYNC signal is output from the mark
output terminal.
4-6-3. Center Frequency and Span
A center frequency and span can be set to determine the upper and lower sweep
limits (start/stop).
Panel Operation
1. Press the SWEEP key.
Sweep
2. Press F5 (More).
More
3. Press F2 (Span) or F3 (Center) to
Span
select the span or center.
F5
~
F2
4. The Span or Center parameters will become
highlighted in the waveform display area.
69
Center
F3
Span
Center
5. Use the arrow keys and scroll
wheel or number pad to enter the
Span/Center frequency.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F5 to select the
Start/Stop frequency units.
/
~
uHz
MHz
F1
F5
Range
Center frequency
1μHz~25MHz (sine wave)
1μHz~1MHz (Ramp wave)
1μHz~15MHz (square wave)
Span frequency
DC~25MHz
(sine wave)
DC ~1MHz (Ramp wave)
1μHz~15MHz (square wave)
Default center
550Hz
Default span
900Hz
70
Note
To sweep from low to high frequencies, set a positive
span.To sweep from high to low frequencies, set a
negative span.
When marker is off, the SYNC signal is a square wave
with a duty cycle of 50%. At the start of the sweep, the
SYNC signal is at a TTL low level that rises to a TTL high
level at the frequency midpoint. The frequency of the
SYNC signal is equal to the sweep time.
When marker is on, at the start of the sweep, the SYNC
signal is at a TTL high level that drops to a TTL low level
at the marker. The SYNC signal is output from the mark
output terminal.
4-6-4. Sweep Mode
Sweep mode is used to select between linear or logarithmic sweeping. Linear
sweeping is the default setting.
Panel Operation
1. Press the SWEEP key.
Sweep
2. Press F2 (Type).
Type
3. To select linear or logarithmic
Linear
sweep, press F1 (Linear) or F2
(Log).
4. Press Return to return to the
previous menu.
71
F2
~
F1
Return
Log
F2
4-6-5. Sweep Time
The sweep time is used to determine how long it takes to perform a sweep from the
start to stop frequencies. The function generator automatically determines the
number of discrete frequencies used in the scan depending on the length of the
scan.
Panel Operation
1. Press the SWEEP key.
Sweep
2. Press F5 (More).
3. Press F1 (SWP Time).
More
F5
SWP Time
F1
4. The Time parameter will become highlighted in the
waveform display area.
5. Use the selector keys and scroll
wheel or number pad to enter the
Sweep time.
7
8
9
4
5
6
1
2
3
0
6. Press F1~F2 to select the time
unit.
/
~
mSEC
SEC
F1
F2
Range
Sweep time
1ms ~ 500s
Default time
1s
72
4-6-6. Marker Frequency
The marker frequency is the frequency at which the marker signal goes low (The
marker signal is high at the start of each sweep). The marker signal is output from
the Trigger OUT terminal on the rear panel. The default is 550 Hz.
Panel Operation
1. Press the SWEEP key.
Sweep
2. Press F5 (More).
More
F5
Marker
F4
ON/OFF
F2
Freq
F1
3. Press F4 (Marker)
4. Press F2 (ON/OFF) to toggle the
marker on or off.
5. Press F1 (Freq) to select the
marker frequency.
6. The Marker parameter will become highlighted in the
waveform display area.
7. Use the arrow keys and scroll
wheel or number pad to enter the
frequency.
7
8
9
4
5
6
1
2
3
0
8. Press F1~F5 to select the
frequency unit.
73
/
~
uHz
MHz
F1
F5
Range
1μHz~25MHz(Sine wave)
Frequency
1μHz~1MHz (Ramp wave)
1μHz~15MHz (square wave)
Default
Note
550Hz
The marker frequency must be set to a value between
the start and stop frequencies. If no value is set, the
marker frequency is set to the average of the start and
stop frequencies.
Marker mode will override SYNC mode settings when
sweep mode is active.
4-6-7. Sweep Trigger Source
In sweep mode the function generator will sweep each time a trigger signal is
received. After a sweep output has completed, the function generator outputs the
start frequency and waits for a trigger signal before completing the sweep. The
default trigger source is internal.
Panel Operation
1. Press the SWEEP key.
Sweep
2. Press F1 (Source).
Source
3. To select the trigger source,
press F1 (Internal), F2 (External)
or F3 (Manual).
4. Press Return to return to the
F1
~
INT
Manual
F1
F3
Return
previous menu.
Note
Using the Internal source will produce a continuous
sweep using the sweep time settings.
With an external source, a sweep is output each time a
trigger pulse (TTL) is received from the Trigger IN
terminal on the rear panel.
The trigger period must be equal to or greater than the
sweep time plus 1ms.
5. If manual is selected, press F1
(Trigger) to manually start each
sweep.
74
Trigger
F1
4-7. Burst Mode
The function generator can create a waveform burst with a designated number of
cycles. Burst mode supports sine, square and ramp waveforms.
4-7-1. Selecting Burst Mode
When burst mode is selected, any modulation or sweep
modes will be automatically disabled. If no settings have
been configured, the default settings for output
amplitude, offset and frequency are used.
75
Burst
4-7-2. Burst Modes
Burst mode can be configured using Triggered (N Cycle mode) or Gated mode.
Using N Cycle/Triggered mode, each time the function generator receives a trigger,
the function generator will output a specified number of waveform cycles (burst).
After the burst, the function generator will wait for the next trigger before outputting
another burst. N Cycle is the default Burst mode. Triggered mode can use internal
or external triggers.
The alternative to using a specified number of cycles, Gated mode uses the
external trigger to turn on or off the output. When the Trigger INPUT signal is high,
waveforms are continuously output. When the Trigger INPUT signal goes low, the
waveforms will stop being output after the last waveform completes its period. The
voltage level of the output will remain equal to the starting phase of the burst
waveforms, ready for the signal to go high again.
Burst Mode
Burst Count
Burst Period Phase
Trigger Source
Triggered (Int)
Available
Available
Available
Immediate
Triggered (Ext)
Available
Not used
Available
EXT, Bus
Gated pulse (Ext) Not used
Not used
Available
Unused
Panel Operation
1. Press the Burst key.
2. To select either N Cycle (F1) or
Gate (F2).
Note
Burst
~
N Cycle
F1
Gate
F2
In gate mode, burst count, burst cycle, trigger source will
be ignored, Also trigger source will be only in the external
trigger signal.
4-7-3. Burst Frequency
In the N Cycle and Gated modes, the waveform frequency sets the repetition rate
of the burst waveforms. In N-Cycle mode, the burst is output at the waveform
frequency for the number of cycles set. In Gated mode the waveform frequency is
output while the trigger is high. Burst mode supports sine, square or ramp
waveforms.
Panel Operation
1. Press the FREQ/Rate key.
FREQ/Rate
2. The FREQ parameter will become highlighted in the
parameter window.
76
3. Use the arrow keys and scroll
wheel or number pad to enter the
frequency.
7
8
9
4
5
6
1
2
3
0
4. Press F1~F5 to select the
frequency unit.
Range
Note
/
~
uHz
MHz
F1
F5
Frequency
1uHz~25MHz
Freqency – Ramp
1uHz~1MHz
Default
1kHz
Waveform frequency and burst period are not the same.
The burst period is the time between the bursts in
N-Cycle mode.
4-7-4. Burst Cycle/Burst Count
The burst cycle (burst count) is used to define the number of cycles that are output
for a burst waveform. Burst cycle is only used with N-cycle mode (internal, external
or manual source). The default burst cycle is 1.
Panel Operation
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
3. Press F1 (Cycles).
Cycles
F1
4. The Cycles parameter will become highlighted in the
Waveform Display area.
77
5. Use the arrow keys and scroll
wheel or number pad to enter the
number of cycles.
7
8
9
4
5
6
1
2
3
0
6. Press F2 to select the Cyc unit.
Range
Note
Cycles
/
Cyc
F2
1~65535
Burst cycles are continuously output when the internal
trigger is selected. The burst period determines the rate
of bursts and the time between bursts.
Burst cycle must be less than the product of the burst
period and wave frequency.
Burst Cycle < (Burst Period x Wave Frequency)
If the burst cycle exceeds the above conditions, the burst
period will be automatically increased to satisfy the
above conditions.
If gated burst mode is selected, burst cycle is ignored.
Though, if the burst cycle is changed remotely whilst in
gated mode, the new burst cycle is remembered when
used next.
78
4-7-5. Infinite Burst Count
Panel Operation
Note
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
3. Press F2 (Infinite).
Infinite
F2
Infinite burst is only available when using manual
triggering.
4-7-6. Burst Period
The burst period is used to determine the time between the start of one burst and
the start of the next burst. It is only used for internally triggered bursts.
Panel Operation
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
Period
F4
3. Press F4 (Period).
4. The Period parameter will become highlighted in the
Waveform Display area.
79
5. Use the arrow keys and scroll
wheel or number pad to enter
period time.
7
8
9
4
5
6
1
2
3
0
~
6. Press F1~F3 to choose the
uSEC
period time unit.
Range
Note
/
SEC
F1
Period time
1ms~500s
Default
10ms
F3
Burst period is only applicable for internal triggers. Burst
period settings are ignored when using gated burst mode
or for external and manual triggers.
The burst period must be large enough to satisfied the
condition below:
Burst Period>Burst Count/Wave frequency + 200ns.
4-7-7. Burst Phase
Burst Phase defines the starting phase of the burst waveform. The default is 0˚.
Panel Operation
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
Phase
F3
3. Press F3 (Phase).
80
4. The Phase parameter will become highlighted in the
Waveform Display area.
5. Use the arrow keys and scroll
wheel or number pad to enter the
phase.
7
8
9
4
5
6
1
2
3
0
6. Press F2 (Degreee) to select the
Degree
/
F2
phase unit.
Range
Note
Phase
-360˚~+360˚
Default
0˚
When using sine, square, triangle or ramp waveforms, 0˚
is the point where the waveforms are at zero volts.
0˚ is the starting point of a waveform. For sine, square or
Triangle, Ramp waveforms, 0˚ is at 0 volts (assuming
there is no DC offset).
Burst Phase is used for both N cycle and Gated burst
modes. In gated burst mode, when the Trigger INPUT
signal goes low the output is stopped after the current
waveform is finished. The voltage output level will remain
equal to the voltage at the starting burst phase.
81
4-7-8. Burst Trigger Source
Each time the function generator receives a trigger in triggered burst (N-Cycle)
mode, a waveform burst is output. The number of waveforms in each burst is
designated by the burst cycle (burst count). When a burst has completed, the
function generator waits for the next trigger. Internal source is the default triggered
burst (N-cycle) mode on power up.
Panel Operation
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
3. Press F5 (TRIG set).
TRIG set
F5
4. Choose a trigger type by
pressing F1 (INT), F2 (EXT) or
F3 (Manual).
Manual Triggering If a manual source is selected, the
Trigger softkey (F1) must be pressed
each time to output a burst.
82
~
INT
Manual
F1
Trigger
F3
F1
Note
When the internal trigger source is chosen, the burst is
output continuously at a rate defined by the burst period
setting. The interval between bursts is defined by the
burst period.
When the external trigger is selected the function
generator will receive a trigger signal (TTL) from the
Trigger INPUT terminal on the rear panel. Each time the
trigger is received, a burst is output (with the defined
number of cycles). If a trigger signal is received during a
burst, it is ignored.
When using the manual or external trigger only the burst
phase and burst cycle/count are applicable, the burst
period is not used.
A time delay can be inserted after each trigger, before the
start of a burst.
4-7-9. Burst Delay
Panel Operation
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
3. Press F5 (TRIG set).
TRIG set
F5
Delay
F4
4. Press F4 (Delay).
5. The Delay parameter will become highlighted in the
Waveform Display area.
83
6. Use the selector keys and scroll
wheel or number pad to enter
period time.
7
8
9
4
5
6
1
2
3
0
7. Press F1~F4 to choose the delay
time unit.
Range
/
nSEC
~
SEC
F1
Delay time
0s~655350nS
Default
0s
F4
4-7-10. Burst Trigger Output
The Trig Out terminal on the rear panel can be used for burst or sweep modes to
output a rising edge TTL compatible trigger signal. By default the trigger signal is
rising edge. The trigger signal is output at the start of each burst.
Panel Operation
1. Press the Burst key.
Burst
2. Press F1 (N Cycle).
N Cycle
F1
3. Press F5 (TRIG set).
TRIG set
F5
4. Press F5 (TRIG out).
TRIG out
F5
5. Press F3 (ON/OFF) to toggle
ON/OFF
F3
Trigger out ON/OFF.
6. Select F1 (Rise) or F2 (Fall) edge
trigger.
Note
~
Rise
F1
Fall
F2
When the internal trigger is selected, a square wave with
a 50% duty cycle is output at the beginning of each burst.
Trig Out cannot be used with manual triggering and will
be disabled if manual triggering is set.
For manual triggering, a pulse is output (>1us) from the
Trig Out connector at the start of each burst.
84
85
5. SECONDARY SYSTEM FUNCTION SETTINGS
The secondary system functions are used to store and recall settings, view help
files, view the software version, update the firmware, set the buzzer.
5-1. Save and Recall
The FGX-2220 has non-volatile memory to store instrument state and ARB data.
There are 10 memory files numbered 0~9. Each memory file can either store
arbitrary waveform data (ARB), settings or both. When data (ARB or Setting data)
is stored in a memory file, the data will be shown in red. If a file has no data, it will
be shown in blue.
Save/Recall
Properties
ARB
 Rate
 Display vertical
 Frequency
 Output Start
 Length
 Output length
 Display horizontal
Setting
 Functions
 AM
 Waveform
 Source
 Frequency
 Shape
 Pulse Width
 Depth
 Square wave Duty
 AM frequency
 Ramp Symmetry
 FM
 Amplitude
 Source
 Amplitude unit
 Shape
 Offset
 Deviation
 Modulation type
 Beep setting
 FM frequency
 FSK
 Impedance
 Source
 Main output
 Shape
 Sweep
 Rate
 Source
 Hop frequency
 Type
 PM
 Marker
 Source
 Time
 Shape
 Start frequency
 Phase deviation
86
 Stop frequency
 Center frequency
 Frequency
 Burst Type
 Span frequency
 Source
 Marker frequency
 Trigger out
 Type
 Cycles
 Phase
 Period
 Delay
Panel Operation
1. Press the UTIL key.
UTIL
2. Press F1 (Memory).
Memory
F1
Store
F1
Recall
F2
Delete
F3
3. Use the scroll wheel to highlight a
memory file number.
4. Choose a file operation:
Press F1 to store a file, press F2
to recall a file, or press F3 to
delete a file.
87
5. Use the scroll wheel to highlight
the data type.
ARB, Setting or ARB+Setting
6. Press F5 (Done) to choose the
Done
F5
data type.
Range
Memory file
Memory0 ~ Memory9
Data type
ARB, Setting, ARB+Setting
7. Press F5 (Done) to confirm the
Done
F5
Delete All
F4
Done
F1
operation.
Delete All
8. To delete all the files for
Memory0~Memory9, press F4.
9. Press F1 (Done) to confirm the
deletion of all files.
88
5-2. System and Settings
There are a number of miscellaneous settings and firmware settings that can be
configured.
5-2-1. Viewing and Updating the Firmware
View Version
1. Press the UTIL key.
UTIL
2. Press F2 (Cal.).
Cal.
F2
3. Press F2 (Software).
Software
F2
4. Press F1 (Version) to view the
Version
F1
firmware version.
The version information will be shown on screen:
Instrument, Version, FPGA Revision
Update Firmware 5. To update the firmware, insert a
USB flash drive with a firmware
file in the USB host drive. Press
F2 (Upgrade).
Upgrade
F2
Select
F1
6. Use the scroll wheel to highlight
the firmware file. Press
F1(Select)
Note
The firmware file (*.bin) must be located in a directory,
directly off the USB root directory.
5-2-2. Setting the Buzzer Sound
Background
Turns the beeper on or off.
Panel Operation
1. Press the UTIL key.
UTIL
2. Press F3 (System).
System
89
F3
3. PressF3 (Beep) to toggle the
F3
Beep
buzzer sound on or off.
4. Press F1(ON) or Press
F2(OFF)
~
ON
OFF
F1
F2
5-2-3. Frequency Counter
Example: Turn on the frequency counter. Gate time: 1 second.
Output: N/A
1. Press UTIL, F5 (Counter).
Input:
Trigger
MOD
2. Press F1 (Gate Time), and press
UTIL
Counter
Gate Time
1 Sec
F3 (1 Sec) to choose a gate
time of 1 second.
IN
3. Connect the signal of interest to the Frequency
OUT
Trigger
Counter
counter input on the rear panel.
4. Input a 1kHz square wave signal into the Counter
input on the rear panel. Set the gate time to 1S.
90
5-3. Dual channel Settings
5-3-1. Frequency Coupling
1. Press UTIL, F4 (Dual Chan) to
UTIL
Dual Chan
enter the coupling function.
2. Press F1 (Freq Cpl) to select the
Freq Cpl
F1
Offset
F1
frequency coupling function.
3. Press F2 (Offset). The offset is
the frequency difference between
CH1 and CH2. Use the number
keys or scroll wheel to enter the
offset.
There are two different coupling
modes. They are calculated as
follows:
Offset=CH2-CH1
Ratio=CH2/CH1
4. Input an offset value of 1kHz.
Press F1~ F5 to select the units.
~
uHz
MHz
F1
F5
The frequency of channel 2 becomes 2kHz (CH2=CH1 +
Offset).
91
5. Change the frequency coupling mode to Ratio. Set
the ratio to 2.
The frequency of CH2 automatically changes
accordingly to match the ratio (CH2=CH1*Ratio).
5-3-2. Amplitude Coupling
1. The following assumes that the amplitude has
already been set to 4Vpp with a DC offset of 1Vdc.
2. Press UTIL, F4 (Dual Chan) to
UTIL
Dual Chan
Ampl Cpl
On
enter the coupling function.
3. Press F2 (Ampl Cpl), F1 (ON) to
select the amplitude coupling
function.
4. The amplitude and offset between both channel is
coupled. Any changes in amplitude in the current
channel is reflected in the other channel.
92
5-3-3. Tracking
1. The method for outputting a square wave has been
previously described. Use this method to output a
2kHz squarewave from CH1 with an amplitude of
5Vpp and a DC offset of 1Vdc.
2. Press UTIL, F4 (Dual Chan) to
UTIL
Dual Chan
Tracking
On
enter the coupling function.
3. Press F3 (Tracking), F2 (On) to
turn on the tracking function.
4. When tracking is turned on, parameters such as
amplitude and frequency from the current channel are
mirrored on the other channel.
93
6. CHANNEL SETTINGS
The channel settings chapter shows how to set the output impedance, output
phase and DSO connection settings.
6-1. Output Impedance
Background
The FGX-2220 has selectable output impedances: 50Ω
or high impedance. The default output impedance is
50Ω. The output impedances are to be used as a
reference only. If the actual load impedance is different to
that specified, then the actual amplitude and offset will
vary accordingly.
Panel Operation
1. Press the CH1/CH2 key.
Note
The load function can only be used if the ARB, MOD,
SWEEP or BURST functions are not active.
2. Press F1 (Load).
3. Select F1 (50 OHM) or F2 (High
Z) to select the output
impedance.
94
CH1/CH2
F1
Load
~
50 OHM
F1
High Z
F2
6-2. Selecting the Output Phase
Panel operation
1. Press the CH1/CH2 key.
Note
The phase function can only be used if the ARB, MOD,
SWEEP or BURST functions are not active.
2. Press F4 (Phase) and then
CH1/CH2
Phase
F4
Phase
F1
press F1 (Phase)
3. The Phase parameter in the parameter window will
become highlighted.
4. Use the arrow keys and scroll
wheel or number pad to enter the
output phase.
7
8
9
4
5
6
1
2
3
0
5. Press F5 (Degree).
95
Degree
/
F5
6-3. Synchronizing the Phase
Background
Synchronizes both the outputs on the FGX-2220.
Panel Operation
1. Press the CH1/CH2 key.
2. Press F4 (Phase).
3. Press F2 (S_Phase) to
CH1/CH2
Phase
F4
S_Phase
F2
synchronize the phase of the
channels.
6-4. DSO Link
Background
DSO Link enables the FGX-2220 to receive lossless data
from a DCS-7500A Series DSO to create ARB data.
Connect the FGX-2220 USB host
port to the DCS-7500A’s USB B
device port.
Panel Operation
1. Press the CH1/CH2 key.
2. Press F5 (DSO Link).
→
CH1/ CH2
DSO Link
F5
Load
Phase
DSO Link
3. Press F1 (Search).
96
Search
F1
4. The “DCS Find” will be displayed.
Load
GDS-XXXXFind!
Phase
DSO Link
5. To select a DSO channel, Press
F2 (CH1), F3 (CH2), F4 (CH3) or
F5 (CH4). The acquired data can
then be displayed.
~
CH1
CH4
F2
F5
Display
Edit
Built in
Output
More
97
7. ARBITRARY WAVEFORMS
The FGX-2220 can create user-defined arbitrary waveforms with a sample rate of
120MHz. Each waveform can include up to 4k of data points with a vertical range of
±511.
7-1. Inserting Built-In Waveforms
The FGX-2220 includes 66 common waveforms, such as math waveforms,
windowing functions and engineering waveforms.
7-1-1. Create an AbsAtan Waveform
Panel Operation
1. Press the ARB key.
ARB
2. Press F3(Built in).
Built in
F3
3. Press F4(Wave).
Wave
F4
Common
F1
4. Press F1(Common).
5. Use the scroll wheel to select “AbsAtan” from the
built-in Common waveforms.
Common
Math
A b s a ta n
A b s s in h a rf
A tta lt
D iric _ o d d
H a rv e r c o s in e
N _ p u ls e
R e c tp u ls
A b s s in
A m p a lt
D iric _ e v e n
G a u s p u ls
H a rv e r s in e
Negr am p
R o u n d h a rf
6. Press F5(Select) to select AbsAtan
Window
Engineer
Select
Select
F5
Start
F1
waveform
7. Press F1(Start) and set the start
position of the AbsAtan waveform.
98
8. You can also change the length
and scale of the waveform by
pressing F2(Length) or F3(Scale).
9. Press F5 (Done) to complete the
Length
F2
Scale
F3
Done
F5
operation
10. Press return to return to the
Return
previous menu.
Below an Absatan wave created at start:0, Length: 33,
Scale: 511
7-1-2. Built-in Waveform
COMMON
Math
Window
Engineer
Absatan
Attalt
Harvercosin
Rectpuls
Stair_ud
Tripuls
Arccos
Arcsin
Cosh
Expofall
Lorentz
Sinh
Barthannwin
Cherbyshev
Hanning
Airy
Legendre
Abssin
Diric_even
Harversine
Roundharf
Stair_up
Abssinharf
Diric_odd
N_pulse
Sawtoot
Stepwsp
Ampalt
Gauspuls
Negramp
Sinetra
Trapezia
Arccot
Arcsinh
Cot
Exporise
Sec
Sqrt
Bartlett
Flattopwin
Kaiser
Bessel
Neumann
Arccsc
Arctan
Csc
Gauss
Sech
Tan
Blackman
Hamming
Triang
Betainc
Arcsec
Arctanh
Dlorentz
Ln
Sinec
Tanh
Bohmanwin
Hann
Tukeywin
Gamma
99
7-2. Display an Arbitrary Waveform
7-2-1. Set the Horizontal Display Range
The horizontal window bounds can be set in one of two ways: Using a start point
and length, or a center point and length.
Panel Operation
1. Press the ARB key.
2. Press F1 (Display) to enter the
ARB
Display
F1
Horizon
F1
Start
F1
display menu.
3. Press F1 (Horizon) to enter the
horizontal menu.
Using a Start Point 4. Press F1( Start)
5. The H_From parameter will become highlighted.
6. Use the arrow keys and scroll
wheel or number pad to enter the
H_From value.
7
8
9
4
5
6
1
2
3
0
/
7. Press Clear ( F1) to cancel.
Clear
F1
8. Press F2 (Enter) to save the
Enter
F2
settings.
9. Press Return to return to the
Return
previous menu.
Setting the Length 10. Repeat steps 4~9 for Length
(F2).
Length
F2
Using a Center
Point
Center
F3
11. Repeat steps 4~9 for Center
(F3).
100
Zoom in
12. To zoom into the arbitrary
Zoom In
F4
Zoom out
F5
waveform, press F4 (Zoom In).
The Zoom In function will reduce
the length by half each time the
function is used. The minimum
allowable length is 3.
Zoom out
13. To zoom out from the center point
of the waveform, press F5 (Zoom
out). The Zoom out function will
increase the length by 2. The
maximum allowable length is
4096.
Below, an arbitrary waveform has a start of 0, length
of 200 and is centered at 100.
7-2-2. Set the Vertical Display Properties
Like the horizontal properties, the vertical display properties of the waveform
display can be created in two ways: Setting high and low values, or setting the
center point.
Panel Operation
1. Press the ARB key.
ARB
2. Press F1 (Display).
Display
F1
3. Press F2 (Vertical).
Vertical
F2
101
Setting the Low
Point
4. Press F1 (Low).
F1
Low
5. The V_Low parameter will become highlighted.
6. Use the arrow keys and scroll
wheel or number pad to enter the
V_Low value.
7
8
9
4
5
6
1
2
3
0
/
7. Press Clear (F1) to cancel.
Clear
F1
8. Press F2 (Enter) to save the
Enter
F2
settings.
9. Press Return to return to the
Return
previous menu.
Setting the High
Point
10. Repeat steps 4~9 for V_High
Setting the Center 11. Repeat steps 4~9 for Center
Point
(F3).
Zoom
High
F2
Center
F3
Zoom in
F4
Zoom out
F5
(F2).
12. To zoom in from the center of the
arbitrary waveform, press F4
(Zoom in). The Zoom in function
will reduce the length by half
each time the function is used.
The minimum allowable vertical
low is -2, and the minimum
vertical high is 2.
13. To zoom out of the waveform,
press F5 (Zoom out). The Zoom
out function will increase the
length by 2. The Vertical low
maximum can be set to -511 and
the vertical high maximum can be
set to +511.
102
Below, the AbsAtan wave is with a vertical low of -511,
a vertical high 511 and a center of 0.
7-2-3. Page Navigation (Back Page)
Background
When viewing the waveform, the display window can be
moved forward and backward using the Next/Back Page
functions.
Panel Operation
1. Press the ARB key.
ARB
2. Press F1 (Display).
Display
F1
Back Page
F4
3. Press F4 (Back Page) to move
the display window one view
length backward.
H_From* = H_From - Length
Center*= Center – Length
*Length until 0
Below, shows the display after Back Page has been
pressed.
H_From: 200  0
Length: 200
Center:300 100
103
7-2-4. Page Navigation (Next Page)
Background
When viewing the waveform, the display window can be
moved forward and backward using the Next/Back Page
functions.
Panel Operation
1. Press the ARB key.
ARB
2. Press F1 (Display).
Display
F1
Next Page
F3
3. Press F3 (Next Page) to move
the display window one view
length forward.
104
H_From*=H_From + Length
Center=Center + Length
*H_From +Length ≤ 4096
Below, shows the display after Next Page has been
pressed.
H_From: 0  200
Length: 200
Center:100 300
105
7-2-5. Display
Panel Operation
1. Press the ARB key.
ARB
2. Press F1 (Display).
Display
F1
Overview
F5
To make the display window
cover the whole waveform, press
F5 (Overview).
Horizontal: 0~4095
Vertical: 511~ -511
Below shows the display after Overview has been
selected.
H_From: 0  0
Length: 4004096
Center:200 2048
Vertical low/high: ±511
7-3. Editing an Arbitrary Wavefrom
7-3-1. Adding a Point to an Arbitrary Waveform
Background
The FGX-2220 has a powerful editing function that allows
you to create points or lines anywhere on the waveform.
Panel Operation
1. Press the ARB key.
106
ARB
2. Press F2 (Edit).
Edit
F2
3. Press F1 (Point).
Point
F1
Address
F1
4. Press F1 (Address).
5. The Address parameter becomes highlighted.
6. Use the arrow keys and scroll
wheel or number pad to enter the
Address value.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to save the
/
F2
Enter
settings.
8. Press Return to return to the
Return
previous menu.
9. Press F2 (Data).
F2
Data
10. The Data parameter will become highlighted.
11. Use the selector keys and scroll
wheel or number pad to enter a
Data value.
7
8
9
4
5
6
1
2
3
0
12. Press F2 (Enter) to save the
/
Enter
settings.
13. Press Return to return to the
Return
previous menu.
14. Press return again to go back to
the ARB menu.
107
Return
F2
In the following figure the edited address is shown in
red.
Address 100,Data 200
7-3-2. Adding a Line to an Arbitrary Waveform
Background
The FGX-2220 has a powerful editing function that allows
you to create points or lines anywhere on the waveform.
Panel Operation
1. Press the ARB key.
ARB
2. Press F2 (Edit).
Edit
F2
3. Press F2 (Line).
Line
F2
Start ADD
F1
4. Press F1 (Start ADD).
5. The Start Address parameter will be highlighted in
red.
108
6. Use the arrowkeys keys and
scroll wheel or number pad to
enter the start address.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to save the
/
Enter
F2
settings.
8. Press Return to return to the
Return
previous menu.
9. Repeat steps 4~8 for Start Data (F2), Stop Address
(F3) and Stop Data (F4).
10. Press F5 (Done) to confirm the
Done
F5
line edit.
11. Press Return to return to the
Return
previous menu.
The red line was created below with the following
properties:
Start Address: 0, Start Data: 0
Stop Address: 32, Stop Data: 0
109
7-3-3. Copy a Waveform
Panel Operation
1. Press the ARB key.
ARB
2. Press F2 (Edit).
Edit
F2
3. Press F3 (Copy).
Copy
F3
4. Press F1 (Start).
Start
F1
5. The Copy From properties will become highlighted in
red.
6. The the arrow keys and scroll
wheel or number pad to enter the
Copy From address.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to save the
/
Enter
F2
settings.
8. Press Return to return to the
Return
previous menu.
9. Repeat steps 4~8 for Length (F2) and Paste To (F3).
10. Press F5 (Done) to confirm the
Done
F5
selection.
11. Press Return to return to the
Return
previous menu.
A section of the waveform from points 0~33 was
copied to points 50~83:
Copy From: 0
Length: 33
To: 50
110
7-3-4. Clear the Waveform
Panel Operation
1. Press the ARB key.
ARB
2. Press F2 (Edit).
Edit
F2
3. Press F4 (Clear).
Clear
F4
4. Press F1 (Start).
Start
F1
5. The Clear From properties will become highlighted in
red.
6. Use the arrow keys and scroll
wheel or number pad to enter the
Clear From address.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to save the
/
Enter
settings.
8. Press Return to return to the
previous menu.
111
Return
F2
9. Repeat steps 4~8 for Length
Length
F2
Done
F3
ALL
F4
Done
F1
(F2).
10. Press F3 (Done) to clear the
selected section of the arbitrary
waveform.
Delete All
11. Press F4 (ALL) to delete the
whole waveform.
12. Press F1 (Done) again to confirm
the deletion.
13. Press Return return to the
previous menu.
Clear From: 20, Length: 33.
The same area after being cleared:
112
Return
The result after the whole waveform is deleted:
7-3-5.ARB Protection
The protection function designates an area of the arbitrary waveform that cannot
be altered.
Panel Operation
1. Press the ARB key.
ARB
2. Press F2 (Edit).
Edit
F2
Protect
F5
Start
F2
3. Press F5 (Protect).
4. Press F2 (Start).
5. The Protect Start properties will become highlighted
in red.
6. Use the arrow keys and scroll
wheel or number pad to enter the
Protect Start address.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to save the
settings.
113
/
Enter
F2
8. Press Return to return to the
Return
previous menu.
9. Repeat steps 4~8 for Length
Length
F3
Done
F4
ALL
F1
Done
F1
Unprotect
F5
Done
F1
(F3).
10. Press F4 (Done) to confirm the
protected area.
Protect All
11. Press F1 (ALL) to protect the
whole waveform.
12. Press F1 (Done) to confirm.
Unprotect All
13. Press F5 (Unprotect) to unprotect
the whole waveform.
14. Press F1 (Done) to confirm.
15. The waveform background will return back to black.
The property “Protect Off” be will grayed out.
Below, the protected areas of the waveform are
shown with an orange background:
Start:0, Length: 100.
114
7-4.Ouput an Arbitrary Waveform
The arbitrary waveform generator can output up to 4k points (2~4096).
7-4-1. Ouput Arbitrary Waveform
Panel Operation
1. Press the ARB key.
ARB
2. Press F4 (Output).
Output
F4
Start
F1
3. Press F1 (Start).
4. The Start property will become highlighted in red.
5. Use the arrow keys and scroll
wheel or number pad to enter the
Start address.
7
8
9
4
5
6
1
2
3
0
6. Press F2 (Enter) to confirm the
/
Enter
start point.
7. Press Return to return to the
previous menu.
115
Return
F2
8. Repeat steps 4~7 for Length
Length
F2
(F2).
9. Press Return to return to the
Return
previous menu.
The front panel terminal will output the following
waveform.
Start 0,Length 500
7-5. Saving/Loading an Arbitrary Waveform
The FGX-2220 can save and load arbitrary waveforms from 10 internal memory
slots. Arbitrary waveforms can also be saved and loaded from a USB memory
stick.
7-5-1. Saving a Waveform to Internal Memory
Panel Operation
1. Press the ARB key.
ARB
2. Press F5 (More).
More
F5
3. Press F1 (Save).
Save
F1
4. Press F1 (Start).
Start
F1
5. The Start property will become highlighted in red.
116
6. Use the arrow keys and scroll
wheel or number pad to enter the
Start address.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to confirm the
/
Enter
F2
start point.
8. Press Return to return to the
Return
previous menu.
9. Repeat steps 4~8 for Length
Length
F2
Memory
F3
Select
F1
(F2).
10. Press F3 (Memory).
11. Select a memory file using the
scroll wheel.
Memory0~Memory9
12. Press F1 (Select) to save the
selected
memory file.
13. Press Return to return to the
Return
previous menu.
Below the file Memory0 is selected using the scroll
wheel.
117
7-5-2. Saving a Waveform to USB Memory
Panel Operation
1. Press the ARB key.
ARB
2. Press F5 (More).
More
F5
3. Press F1 (Save).
Save
F1
4. Press F1 (Start).
Start
F1
5. The Start propery will become highlighted in red.
6. Use the arrow keys and scroll
wheel or number pad to enter the
Start address.
7
8
9
4
5
6
1
2
3
0
7. Press F2 (Enter) to confirm the
/
Enter
F2
start point.
8. Press Return to return to the
Return
previous menu.
9. Repeat steps 4~8 for Length
Length
F2
USB
F4
Select
F1
New Folder
F1
(F2).
10. Press F4 (USB).
11. Use the scroll wheel to navigate
the file system.
12. Press Select to select directories
or files.
Create a Folder
1. Press F2 (New Folder).
118
2. The text editor will appear with a default folder name
of “NEW_FOL”.
New Folder:
NEW_FOL
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
1
2
3
4
5
6
7
8
9
0
_
-
3. Use the scroll wheel to move the
cursor.
~
4. Use F1 (Enter Char) or F2
Enter Char
(Backspace) to create a folder
name.
Backspace
F1
5. Press F5 (Save) to save the
F2
Save
F5
New File
F3
folder name.
Create a New File 1. Press F3 (New File).
2. The text editor will appear with a default file name of
“NEW_FIL”.
New File(CSV):
NEW_FIL
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
1
2
3
4
5
6
7
8
9
0
_
-
119
3. Use the scroll wheel to move the
cursor.
4. Use F1 (Enter Char) or F2
(Backspace) to create a file
name.
5. Press F5 (Save) to save the file
~
Enter Char
Backspace
F1
Save
F2
F5
name.
Below the folder, BIN, has been created in the root
directory.
7-5-3. Load a Waveform from Internal Memory
Panel Operation
1. Press the ARBkey.
ARB
2. Press F5 (More).
More
F5
3. Press F2 (Load).
Load
F2
Memory
F1
4. Press F1 (Memory).
120
5. Use the scroll whell to choose a
memory file.
6. Press Select to load the selected
Select
F1
To
F3
memory file.
7. Press F3 (To) to choose the
starting point for the loaded
waveform.
8.
The Load To parameter will become highlighted in
red.
9. Use the selector keys and scroll
wheel or number pad to enter the
starting point.
7
8
9
4
5
6
1
2
3
0
10. Press F2(Enter) to confirm the
/
Enter
F2
start point.
11. Press Return to return to the
Return
previous menu.
12. Press F4(Done).
Done
F4
Below the file Memory0 is selected using the scroll wheel
loaded to position 0.
121
7-5-4. Load a Waveform from USB
Panel Operation
1. Press the ARB key.
ARB
2. Press F5 (More).
More
F5
3. Press F2 (Load).
Load
F2
4. Press F2 (USB).
USB
F2
122
5. Use the scroll wheel to choose a
file name.
6. Press F1 (Select) to select the
Select
F1
To
F3
file to load.
7. Press F3 (To) to choose the
starting point for the loaded
waveform.
8.
The Load To property will become highlighted in red.
9. Use the arrow keys and scroll
wheel or number pad to enter the
starting point.
7
8
9
4
5
6
1
2
3
0
10. Press F2(Enter) to confirm the
/
Enter
F2
Done
F4
Start point.
11. Press F4(Done).
Below the file FGX.CSV is selected using the scroll
wheel loaded to position 0.
123
124
8. REMOTE INTERFACE
8-1. Establishing a Remote Connection
The FGX-2220 supports USB remote connections.
8-1-1. Configure USB interface
USB configuration PC side connector
Panel Operation
Type A, host
FGX-2220 side connector
Type B, slave
Speed
1.1/2.0 (full speed)
Class
USB-CDC
1. Connect the USB cable to the
rear panel USB B (slave) port.
2. When the PC requests for the USB driver, select
XXXXXXX.inf included in the software package or
download the driver from our website,
www.texio.co.jp
3. If the PC can not recognize the new hardware due to
the security, Please go to update the driver from the
“Other device” in the Device Manager.
8-1-2. Remote control terminal connection
Terminal
application
Invoke the terminal application such as MTTTY
(Multi-Threaded TTY) or PuTTY. For USB, set the COM
port, baud rate, stop bit, data bit, and parity accordingly.
To check the COM port No, see the Device Manager in
the PC. For Windows, Control panel → System →
Hardware tab.
Functionality
check
Run this query command via the terminal.
*idn?
This should return the Manufacturer, Model number,
Serial number, and Firmware version in the following
format.
TEXIO, FGX-2220, SN:XXXXXXXX,Vm.mm
Note: ^j or ^m can be used as the terminal character
when using a terminal program.
125
PC Software
The proprietary PC software, downloadable from our
website, can be used for remote control.
Display
When a remote connection is established all panel keys
are locked bar F5.
1. Press REM/LOCK (F5) to return
F5
REM/LOCK
the function generator to local
mode.
8-1-3. Command Syntax
Compatible
standard
 IEEE488-19992 (fully compatible)
Command Tree
The SCPI standard is an ASCII based standard that
defines the command syntax and structure for
programmable instruments.
 SCPI, 1994 (partially compatible)
Commands are based on a hierarchical tree structure.
Each command keyword is a node on the command tree
with the first keyword as the root node. Each sub node is
separated with a colon.
Shown below is a section of the SOURce[1|2]
and the :PM and :PULSe sub nodes.
Root node
:SOURce[1|2]
2nd node
3rd node
root node
:PULSe
:PM
SOURCE
Shape
126
:PERiod
:WIDTh
Command types
Command forms
Commands can be separated in to three distinc types,
simple commands, compound commands and queries.
Simple
A single command with/without a
parameter
Example
*OPC
Compound
Two or more commands separated by
a colon (:) with/without a parameter
Example
SOURce1:PULSe:WIDTh
Query
A query is a simple or compound
command followed by a question
mark (?). A parameter (data) is
returned. The maximum or minimum
value for a parameter can also be
queried where applicable.
Example
SOURce1:FREQuency?
SOURce1:FREQuency? MIN
Commands and queries have two different forms, long
and short. The command syntax is written with the short
form of the command in capitals and the remainder (long
form) in lower case.
long
long
SOURce1:DCOffset
short
short
The commands can be written in capitals or lower-case,
just so long as the short or long forms are complete. An
incomplete command will not be recognized.
Below are examples of correctly written commands:
LONG
SOURce1:DCOffset
SOURCE1:DCOFFSET
source1:dcoffset
SHORT SOUR1:DCO
sour1:dco
Command Format SOURce1:DCOffset < offset>LF 1: command header
1
2
3
4 2: single space
3: parameter
4: message terminator
127
Square Brackets
[]
Commands that contain squares brackets indicate that
the contents are optional. The function of the command
is the same with or without the square bracketed items.
Brackets are not sent with the command.
For example, the frequency query below can use any of
the following 3 forms:
SOURce1:FREQuency? [MINimum|MAXimum]
SOURce1:FREQuency? MAXimum
SOURce1:FREQuency? MINimum
SOURce1:FREQuency?
Braces {}
Commands that contain braces indicate one item within
the braces must be chosen. Braces are not sent with the
command.
Angled Brackets
<>
Angle brackets are used to indicate that a value must be
specified for the parameter. See the parameter
description below for details. Angled brackets are not
sent with the command.
Bars |
Bars are used to separate multiple parameter choices in
the command format.
Parameters
Type
Description
Example
<Boolean>
Boolean logic
0, 1/ON,OFF
<NR1>
integers
0, 1, 2, 3
<NR2>
decimal numbers
0.1, 3.14, 8.5
<NR3>
floating point
4.5e-1, 8.25e+1
<NRf>
any of NR1, 2, 3
1, 1.5, 4.5e-1
<NRf+>
<Numeric>
NRf type with a
suffix including
MINimum,
MAXimum or
DEFault
parameters.
1, 1.5, 4.5e-1
<aard>
Arbitrary ASCII
characters.
<discrete>
Discrete ASCII
character
parameters
128
MAX, MIN,
IMM, EXT, MAN
<frequency>
NRf+ type including 1 KHZ, 1.0 HZ,
frequency unit
ΜHZ
<peak deviation
suffixes.
in Hz>
<rate in Hz>
Message
terminators
Note
Command
Separators
<amplitude>
NRf+ type including VPP
voltage peak to
peak.
<offset>
NRf+ type including V
volt unit suffixes.
<seconds>
NRf+ type including NS, S MS US
time unit suffixes.
<percent>
<depth in
percent>
NRf type
LF CR
line feed code (new line) and carriage
return.
LF
line feed code (new line)
EOI
IEEE-488 EOI (End-Or-Identify)
N/A
^j or ^m should be used when using a terminal program.
Space
A space is used to separate a
parameter from a keyword/command
header.
Colon (:)
A colon is used to separate keywords
on each node.
Semicolon (;)
A semi colon is used to separate
subcommands that have the same
node level.
For example:
SOURce[1|2]:DCOffset?
SOURce[1|2]:OUTPut?
SOURce1:DCOffset?;OUTPut?
Colon +
Semicolon (:;)
A colon and semicolon can be used to
combine commands from different
node levels.
For example:
SOURce1:PM:SOURce?
SOURce:PULSe:WIDTh?
SOURce1:PM:SOURce?:;SOURc
e:PULSe:WIDTh?
129
Comma (,)
When a command uses multiple
parameters, a comma is used to
separate the parameters.
For example:
SOURce:APPLy:SQUare 10KHZ,
2.0 VPP, -1V
8-2. Command List
8-3-1. SYSTem:ERRor?............................................................................... 133
8-3-2. *IDN? ................................................................................................. 133
8-3-3. *RST .................................................................................................. 133
8-3-4. SYSTem:VERSion? ........................................................................... 134
8-3-5. *OPC ................................................................................................. 134
8-3-6. *OPC? ............................................................................................... 135
8-4-1. *CLS .................................................................................................. 135
8-4-2. *ESE .................................................................................................. 135
8-4-3. *ESR? ................................................................................................ 136
8-4-4. *STB? ................................................................................................ 136
8-4-5. *SRE .................................................................................................. 137
8-5-1. SYSTem:LOCal ................................................................................. 137
8-5-2. SYSTem:REMote .............................................................................. 138
8-6-1. SOURce[1|2]:APPLy:SINusoid .......................................................... 139
8-6-2. SOURce[1|2]:APPLy:SQUare ............................................................ 140
8-6-3. SOURce[1|2]:APPLy:RAMP .............................................................. 140
8-6-4. SOURce[1|2]:APPLy:PULSe ............................................................. 141
8-6-5. SOURce[1|2]:APPLy:NOISe .............................................................. 141
8-6-6. SOURce[1|2]:APPLy:USER ............................................................... 142
8-6-7. SOURce[1|2]:APPLy? ........................................................................ 142
8-7-1. SOURce[1|2]:FUNCtion ..................................................................... 143
8-7-2. SOURce[1|2]:FREQuency ................................................................. 144
8-7-3. SOURce[1|2]:AMPlitude .................................................................... 145
8-7-4. SOURce[1|2]:DCOffset ...................................................................... 146
8-7-5. SOURce[1|2]:SQUare:DCYCle .......................................................... 147
8-7-6. SOURce[1|2]:RAMP:SYMMetry ......................................................... 147
8-7-7. OUTPut[1|2] ....................................................................................... 148
8-7-8. OUTPut[1|2]:LOAD ............................................................................ 149
8-7-9. SOURce[1|2]:VOLTage:UNIT ............................................................ 149
8-8-1. SOURce[1|2]:PULSe:PERiod ............................................................ 150
8-8-2. SOURce[1|2]:PULSe:WIDTh ............................................................. 151
8-9-1. AM Overview ..................................................................................... 152
8-9-2. SOURce[1|2]:AM:STATe ................................................................... 153
8-9-3. SOURce[1|2]:AM:SOURce ................................................................ 153
8-9-4. SOURce[1|2]:AM:INTernal:FUNCtion ................................................ 154
8-9-5. SOURce[1|2]:AM:INTernal:FREQuency ............................................ 154
8-9-6. SOURce[1|2]:AM:DEPTh ................................................................... 155
8-10-1. FM Overview.................................................................................... 156
8-10-2. SOURce[1|2]:FM:STATe ................................................................. 156
8-10-3. SOURce[1|2]:FM:SOURce .............................................................. 157
130
8-10-4. SOURce[1|2]:FM:INTernal:FUNCtion .............................................. 157
8-10-5. SOURce[1|2]:FM:INTernal:FREQuency .......................................... 158
8-10-6. SOURce[1|2]:FM:DEViation............................................................. 159
8-11-1. FSK Overview .................................................................................. 160
8-11-2. SOURce[1|2]:FSKey:STATe ............................................................ 160
8-11-3. SOURce[1|2]:FSKey:SOURce ......................................................... 161
8-11-4. SOURce[1|2]:FSKey:FREQuency ................................................... 161
8-11-5. SOURce[1|2]:FSKey:INTernal:RATE ............................................... 162
8-12-1. PM Overview ................................................................................... 163
8-12-2. SOURce[1|2]:PM:STATe ................................................................. 163
8-12-3. SOURce[1|2]:PM:SOURce .............................................................. 164
8-12-4. SOURce[1|2]:PM:INTernal:FUNction ............................................... 164
8-12-5. SOURce[1|2]:PM:INTernal:FREQuency .......................................... 165
8-12-6. SOURce[1|2]:PM:DEViation ............................................................ 166
8-13-1. SUM Overview ................................................................................. 167
8-13-2. SOURce[1|2]:SUM:STATe ............................................................... 167
8-13-3. SOURce[1|2]:SUM:SOURce............................................................ 168
8-13-4. SOURce[1|2]:SUM:INTernal:FUNction ............................................ 168
8-13-5.SOURce[1|2]:SUM:INTernal:FREQuency......................................... 169
8-13-6. SOURce[1|2]:SUM:AMPL ................................................................ 169
8-14-1. Sweep Overview .............................................................................. 171
8-14-2. SOURce[1|2]:SWEep:STATe .......................................................... 172
8-14-3. SOURce[1|2]:FREQuency:STARt .................................................... 172
8-14-4. SOURce[1|2]:FREQuency:STOP .................................................... 173
8-14-5. SOURce[1|2]:FREQuency:CENTer ................................................. 173
8-14-6. SOURce[1|2]:FREQuency:SPAN .................................................... 174
8-14-7. SOURce[1|2]:SWEep:SPACing ....................................................... 175
8-14-8. SOURce[1|2]:SWEep:TIME ............................................................. 175
8-14-9. SOURce[1|2]:SWEep:SOURce ....................................................... 176
8-14-10. SOURce[1|2]:MARKer:FREQuency ............................................... 177
8-14-11. SOURce[1|2]:MARKer ................................................................... 177
8-15-1. Burst Mode Overview ...................................................................... 178
8-15-2. SOURce[1|2]:BURSt:STATe ............................................................ 179
8-15-3. SOURce[1|2]:BURSt:MODE ............................................................ 180
8-15-4. SOURce[1|2]:BURSt:NCYCles ........................................................ 180
8-15-5. SOURce[1|2]:BURSt:INTernal:PERiod ............................................ 181
8-15-6. SOURce[1|2]:BURSt:PHASe ........................................................... 182
8-15-7. SOURce[1|2]:BURSt:TRIGger:SOURce .......................................... 183
8-15-8. SOURce[1|2]:BURSt:TRIGger:DELay ............................................. 184
8-15-9. SOURce[1|2]:BURSt:TRIGger:SLOPe............................................. 184
8-15-10. SOURce[1|2]:BURSt:GATE:POLarity ............................................ 185
8-15-11. SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe ............................. 185
8-15-12. OUTPut[1|2]:TRIGger .................................................................... 186
8-15-13. SOURce[1|2]:BURSt:TRIGger:MANual ......................................... 187
8-16-1. Arbitrary Waveform Overview .......................................................... 187
8-16-2. SOURce[1|2]:FUNCtion USER ........................................................ 188
8-16-3. SOURce[1|2]:DATA:DAC................................................................. 188
8-16-4. SOURce[1|2]:ARB:EDIT:COPY ....................................................... 189
8-16-5. SOURce[1|2]:ARB:EDIT:DELete ..................................................... 189
8-16-4. SOURce[1|2]:ARB:EDIT:DELete:ALL .............................................. 190
131
8-16-7. SOURce[1|2]:ARB:EDIT:POINt ....................................................... 190
8-16-8. SOURce[1|2]:ARB:EDIT:LINE ......................................................... 190
8-16-9. SOURce[1|2]:ARB:EDIT:PROTect .................................................. 191
8-16-10. SOURce[1|2]:ARB:EDIT:PROTect:ALL ......................................... 191
8-16-11. SOURce[1|2]:ARB:EDIT:UNProtect ............................................... 191
8-16-12. SOURce[1|2]:ARB:OUTPut ........................................................... 191
8-17-1. COUNTER:STATE .......................................................................... 192
8-17-2. COUNter:GATe ................................................................................ 192
8-17-3. COUNter:VALue? ............................................................................ 193
8-18-1. SOURce[1|2]:PHASe ....................................................................... 193
8-18-2. SOURce[1|2]:PHASe:SYNChronize ................................................ 194
8-19-1.SOURce[1|2]:FREQuency:COUPle:MODE ...................................... 194
8-19-2. SOURce[1|2]:FREQuency:COUPle:OFFSet.................................... 194
8-19-3. SOURce[1|2]:FREQuency:COUPle:RATio ...................................... 195
8-19-4. SOURce[1|2]:AMPlitude:COUPle:STATe ........................................ 195
8-19-5. SOURce[1|2]:TRACk ....................................................................... 196
8-20-1. *SAV ................................................................................................ 197
8-20-2. *RCL ................................................................................................ 197
8-20-3. MEMory:STATe:DELete .................................................................. 197
8-20-4. MEMory:STATe:DELete ALL ........................................................... 197
132
8-3. System Commands
8-3-1. SYSTem:ERRor?
Query
Description
Reads an error from the error queue. See page 209 for details
regarding the error queue.
Query Syntax
SYSTem:ERRor?
Return parameter <string1><CR+LF> Returns an error code and strings.
<string2>
Example
SYSTem:ERRor?
-138 <CR+LF>Suffix not allowed
Returns an error code and string.
Include CR, LF code.
8-3-2. *IDN?
Query
Description
Returns the function generator manufacturer, model number,
serial number and firmware version number in the following
format:
TEXIO,FGX-2220,SN:XXXXXXXX,Vm.mm
Query Syntax
*IDN?
Return parameter <string>
Example
*IDN?
TEXIO,FGX-2220,SN:XXXXXXXX,Vm.mm
Returns the identification of the function generator.
8-3-3. *RST
Set
Description
Reset the function generator to its factory default state.
Note
Note the *RST command will not delete instrument save
states in memory.
Syntax
*RST
133
8-3-4. SYSTem:VERSion?
Query
Description
Performs a system version query. Returns a string with the
instrument, firmware version, FPGA revision
Query Syntax
SYSTem:VERSion?
Return parameter <string1><CR+LF><CR+LF> Model & Firmware Version
<string2><CR+LF><CR+LF> FPGA Version
<string3><CR+LF><CR+LF> Serial Number
<string4>
Example
Mode
SYST:VERS?
>FGX-2220
Version-x.xx_xxxx
>
>FPGA:xxxxxxxx
>
>SN: xxxxxxxx
>
>MODE:Plant Pattern
>
Returns the versions ,SN , MODE.
8-3-5. *OPC
Set
Description
This command sets the Operation Complete Bit (bit 0) of the
Standard Event Status Register after the function generator
has completed all pending operations. For the FGX-2220, the
*OPC command is used to indicate when a sweep or burst
has completed.
Note
Before the OPC bit is set, other commands may be executed.
Syntax
*OPC
134
8-3-6. *OPC?
Query
Description
Returns the OPC bit to the output buffer when all pending
operations have completed. I.e. when the OPC bit is set.
Note
Commands cannot be executed until the *OPC? query has
completed.
Query Syntax
*OPC?
Return parameter 1
Example
*OPC?
1
Returns a “1” when all pending operations are complete.
8-4. Status Register Commands
8-4-1. *CLS
Set
Description
The *CLS command clears all the event registers, the error
queue and cancels an *OPC command.
Syntax
*CLS
8-4-2. *ESE
Set
Description
The Standard Event Status Enable command determines
which events in the Standard Event Status Event register can
set the Event Summary Bit (ESB) of the Status Byte register.
Any bit positions set to 1 enable the corresponding event. Any
enabled events set bit 5 (ESB) of the Status Byte register.
Note
The *CLS command clears the event register, but not the
enable register.
Syntax
Parameter
*ESE <enable value>
<enable value> 0~255
Example
*ESE 20
Sets a bit weight of 20 (bits 2 and 4).
Query Syntax
*ESE?
135
Return Parameter Bit
0
Example
Register
Not used
Bit
4
Register
Message Available
1
Not used
5
Standard Event
2
Error Queue
6
Master Summary
3
Questionable Data 7
Not used
*ESE?
4
Bit 2 is set.
8-4-3. *ESR?
Query
Description
Reads and clears the Standard Event Status Register. The bit
weight of the standard event status register is returned.
Note
The *CLS will also clear the standard event status register.
Query Syntax
*ESR?
Return Parameter Bit
0
Query Example
Bit
4
Register
Execution Error
1
Register
Operation
Complete
Not Used
5
Command Error
2
Query Error
6
Not Used
3
Device Error
7
Power On
*ESR?
5
Returns the bit weight of the standard event status register
(bit 0 and 2).
8-4-4. *STB?
Query
Description
Reads the Status byte condition register.
Note
Bit 6, the master summary bit, is not cleared.
Syntax
*STB?
136
8-4-5. *SRE
Set
Description
The Service Request Enable Command determines which
events in the Status Byte Register are allowed to set the MSS
(Master summary bit). Any bit that is set to “1” can cause the
MSS bit to be set.
Note
The *CLS command clears the status byte event register, but
not the enable register.
Syntax
Parameter
*SRE <enable value>
<enable value> 0~255
Example
*SRE 12
Sets a bit weight of 12 (bits 2 and 3) for the service request
enable register.
Query Syntax
*SRE?
Return Parameter Bit
0
Query Example
Register
Not used
Bit
4
Register
Message Available
1
Not used
5
Standard Event
2
Error Queue
6
Master Summary
3
Questionable Data 7
Not used
*SRE?
12
Returns the bit weight of the status byte enable register.
8-5. System Remote Commands
8-5-1. SYSTem:LOCal
Set
Description
Sets the function generator to local mode. In local mode, all
front panel keys are operational.
Syntax
SYSTem:LOCal
Example
SYST:LOC
137
8-5-2. SYSTem:REMote
Set
Description
Disables the front panel keys and puts the function generator
into remote mode
Syntax
SYSTem:REMote
Example
SYST:REM
8-6. Apply Commands
The APPLy command has 5 different types of outputs (Sine, Square, Ramp,
Pulse, Noise, ). The command is the quickest, easiest way to output waveforms
remotely. Frequency, amplitude and offset can be specified for each function.
As only basic parameters can be set with the Apply command, other parameters
use the instrument default values.
The Apply command will set the trigger source to immediate and disable burst,
modulation and sweep modes. Turns on the output commandOUTPut[1|2] ON.
The termination setting will not be changed.
As the frequency, amplitude and offset parameters are in nested square brackets,
amplitude can only be specified if the frequency has been specified and offset can
only be specified if amplitude has been set. For the example:
SOURce[1|2]:APPLy:SINusoid [<frequency> [,<amplitude> [,<offset>] ]]
Output Frequency For the output frequency, MINimum, MAXimum and DEFault
can be used. The default frequency for all functions is set to 1
kHz. The maximum and minimum frequency depends on the
function used. If a frequency output that is out of range is
specified, the max/min frequency will be used instead. A
“Data out range error will be generated” from the remote
terminal.
138
When setting the amplitude, MINimum, MAXimum and
Output Amplitude DEFault can be used. The range depends on the function
being used and the output termination (50Ω or high
impedance). The default amplitude for all functions is 100
mVpp (50Ω).
If the amplitude has been set and the output termination is
changed from 50Ω to high impedance, the amplitude will
double. Changing the output termination from high impedance
to 50Ω will half the amplitude.
Vrms, dBm or Vpp units can be used to specify the output unit
to use with the current command. The VOLT:UNIT command
can be used to set the units when no unit is specified with the
Apply command. If the output termination is set to high
impedance, dBm units cannot be used. The units will default
to Vpp.
The output amplitude can be affected by the function and unit
chosen. Vpp and Vrms or dBm values may have different
maximum values due to differences such as crest factor. For
example, a 5Vrms square wave must be adjusted to 3.536
Vrms for a sine wave.
DC Offset voltage The offset parameter can be set to MINimum, MAXimum or
DEFault. The default offset is 0 volts. The offset is limited by
the output amplitude as shown below.
|Voffset| < Vmax – Vpp/2
If the output specified is out of range, the maximum offset will
be set.
The offset is also determined by the output termination (50Ω
or high impedance). If the offset has been set and the output
termination has changed from 50Ω to high impedance, the
offset will double. Changing the output termination from high
impedance to 50Ω will half the offset.
8-6-1. SOURce[1|2]:APPLy:SINusoid
Set
Description
Syntax
Outputs a sine wave from the selected channel when the
command has executed. Frequency, amplitude and offset can
also be set.
SOURce[1|2]:APPLy:SINusoid [<frequency> [,<amplitude>
[,<offset>] ]]
139
Parameter
Example
<frequency>
1μHz~25MHz
<amplitude>
1mVpp~10Vpp (50Ω) (3.536 Vrms)
<offset>
-4.99V~4.99V (50Ω)
SOUR1:APPL:SIN 2KHZ,MAX,MAX
Sets frequency to 2kHz and sets the amplitude and offset to
the maximum.
8-6-2. SOURce[1|2]:APPLy:SQUare
Set
Description
Syntax
Parameter
Example
Outputs a square wave from the selected channel when the
command has executed. Frequency, amplitude and offset can
also be set. The duty cycle is set to 50%.
SOURce[1|2]:APPLy:SQUare [<frequency> [,<amplitude>
[,<offset>] ]]
<frequency>
1μHz~25MHz
<amplitude>
1mVpp~10Vpp (50Ω)
<offset>
-4.99V~4.99V (50Ω)
SOUR1:APPL:SQU 2KHZ,MAX,MAX
Sets frequency to 2kHz and sets the amplitude and offset to
the maximum.
8-6-3. SOURce[1|2]:APPLy:RAMP
Set
Description
Outputs a ramp wave from the selected channel when the
command has executed. Frequency, amplitude and offset can
also be set. The symmetry is set to 50%.
Syntax
SOURce[1|2]:APPLy:RAMP [<frequency> [,<amplitude>
[,<offset>] ]]
Parameter
<frequency>
1μHz~1MHz
<amplitude>
1mVpp~10Vpp (50Ω)
<offset>
-4.99V~4.99V (50Ω)
Example
SOUR1:APPL:RAMP 2KHZ,MAX,MAX
Sets frequency to 2kHz and sets the amplitude and offset to
the maximum.
140
8-6-4. SOURce[1|2]:APPLy:PULSe
Set
Description
Outputs a pulse waveform from the selected channel when
the command has executed. Frequency, amplitude and offset
can also be set.
Note
The PW settings from the SOURce[1|2]:PULS: WIDT
command are preserved. Edge and pulse width may be
adjusted to supported levels.
Repetition rates will be approximated from the frequency. For
accurate repetition rates, the period should be adjusted using
the SOURce[1|2]:PULS:PER command
Syntax
SOUR[1|2]:APPLy:PULSe [<frequency> [,<amplitude>
[,<offset>] ]]
Parameter
<frequency>
500μHz~25MHz
<amplitude>
1mVpp~10Vpp (50Ω)
<offset>
-4.99V~4.99V (50Ω)
Example
SOUR1:APPL:PULS 1KHZ,MIN,MAX
Sets frequency to 1kHz and sets the amplitude to minimum
and the and offset to the maximum.
8-6-5. SOURce[1|2]:APPLy:NOISe
Set
Description
Outputs Gaussian noise. Amplitude and offset can also be
set.
Note
Frequency cannot be used with the noise function; however a
value (or DEFault) must be specified. The frequency is
remembered for the next function used.
Syntax
SOURce[1|2]:APPLy:NOISe [<frequency|DEFault>
[,<amplitude> [,<offset>] ]]
Parameter
<frequency>
Not applicable
<amplitude>
1mVpp~10Vpp (50Ω)
<offset>
-4.99V~4.99V (50Ω)
Example
SOUR1:APPL:NOIS DEF, 3.0, 1.0
Sets the amplitude to 3 volts with an offset of 1 volt.
141
8-6-6. SOURce[1|2]:APPLy:USER
Set
Description
Outputs an arbitrary waveform from the selected channel. The
output is that specified from the FUNC:USER command.
Note
Frequency and amplitude cannot be used with the DC
function; however a value (or DEFault) must be specified. The
values are remembered for the next function used.
Syntax
SOURce[1|2]:APPLy:USER [<frequency> [,<amplitude>
[,<offset>] ]]
Parameter
<frequency>
1μHz~60MHz
<amplitude>
1mVpp~10Vpp (50Ω)
<offset>
-4.99V~4.99V (50Ω)
Example
SOUR1:APPL:USER
8-6-7. SOURce[1|2]:APPLy?
Query
Description
Outputs a string with the current settings.
Note
The string can be passed back appended to the Apply
Command.
Syntax
SOURce[1|2]:APPLy?
Return Parameter <string>
Example
Function, frequency, amplitude, offset
SOUR1:APPL?
SIN +5.0000000000000E+03,+3.0000E+00,-2.50E+00
Returns a string with the current function and parameters,
Sine, 5kHz, 3 Vpp, -2.5V offset.
8-7. Output Commands
Unlike the Apply commands, the Output commands are low level commands to
program the function generator.
This section describes the low-level commands used to program the function
generator. Although the APPLy command provides the most straightforward
method to program the function generator, the low-level commands give you
more flexibility to change individual parameters.
142
8-7-1. SOURce[1|2]:FUNCtion
Set
Query
Description
The FUNCtion command selects and outputs the selected output.
The User parameter outputs an arbitrary waveform previously set
by the SOURce[1|2]:FUNC:USER command.
Note
If the function mode is changed and the current frequency setting
is not supported by the new mode, the frequency setting will be
altered to next highest value.
Vpp and Vrms or dBm amplitude values may have different
maximum values due to differences such as crest factor. For
example, if a 5Vrms square wave is changed to a sinewave, then
the Vrms is automatically adjusted to 3.536.
The modulation, burst and sweep modes can only be used with
some of the basic waveforms. If a mode is not supported, the
conflicting mode will be disabled. See the table below.
Sine
Square Ramp Pulse
Noise
ARB
AM






FM






PM






FSK







SWEEP 
BURST 















SUM
Syntax
SOURce[1|2]:FUNCtion {SINusoid|SQUare|RAMP|
PULSe|NOISe| USER}
Example
SOUR1:FUNC SIN
Sets the output as a sine function.
Query Syntax SOURce[1|2]:FUNCtion?
Return
Parameter
SIN, SQU, RAMP, PULS,
NOIS, USER
Example
SOUR1:FUNC?
Returns the current output type.
SIN
Current output is sine.
143
8-7-2. SOURce[1|2]:FREQuency
Set
Query
Description
The SOURce[1|2]:FREQuency command sets the output
freuquency for the selected channel. The query
command returns the current frequency setting.
Note
The maximum and minimum frequency depends on the
function mode.
Sine, Square
Ramp
1μHz~25MHz
Pulse
500μHz~25MHz
Noise
Not applicable
User
1μHz~60MHz
1μHz~1MHz
If the function mode is changed and the current frequency
setting is not supported by the new mode, the frequency
setting will be altered to next highest value.
The duty cycle of square waveforms depends on the
frequency settings.
1.0% to 99.0%(frequency≤100 KHz)
10% to 90% (100 KHz ≤ frequency ≤1MHz)
50% (frequency ≤ 25 MHz)
If the frequency is changed and the set duty cycle cannot
support the new frequency, the highest duty cycle available
at that frequency will be used. A “settings conflict” error will
result from the above scenario.
Syntax
SOURce[1|2]:FREQuency
{<frequency>|MINimum|MAXimum}
Example
SOUR1:FREQ MAX
Sets the frequency to the maximum for the current mode.
Query Syntax
SOURce[1|2]:FREQuency?
Return Parameter
<NR3>
Example
SOUR1:FREQ? MAX
Returns the frequency for the current mode.
+1.0000000000000E+06
The maximum frequency that can be set for the current
function is 1MHz.
144
8-7-3. SOURce[1|2]:AMPlitude
Set
Query
Description
The SOURce[1|2]:AMPLitude command sets the output
amplitude for the selected channel. The query command
returns the current amplitude settings.
Note
The maximum and minimum amplitude depends on the output
termination. The default amplitude for all functions is 100
mVpp (50Ω). If the amplitude has been set and the output
termination is changed from 50Ω to high impedance, the
amplitude will double. Changing the output termination from
high impedance to 50Ω will half the amplitude.
The offset and amplitude are related by the following
equation.
|Voffset| < Vmax – Vpp/2
If the output termination is set to high impedance, dBm units
cannot be used. The units will default to Vpp.
The output amplitude can be affected by the function and unit
chosen. Vpp and Vrms or dBm values may have different
maximum values due to differences such as crest factor. For
example, a 5Vrms square wave must be adjusted to 3.536
Vrms for a sine wave.
The amplitude units can be explicitly used each time the
SOURce[1|2]:AMPlitude command is used. Alternatively, the
VOLT:UNIT command can be used to set the amplitude units
for all commands.
Syntax
SOURce[1|2]:AMPlitude {< amplitude>
|MINimum|MAXimum}
Example
SOUR1:AMP MAX
Sets the amplitude to the maximum for the current mode.
Query Syntax
SOURce[1|2]:AMPlitude? {MINimum|MAXimum}
Return
Parameter
<NR3>
Example
SOUR1:AMP? MAX
Returns the amplitude for the current mode.
+5.0000E+00
The maximum amplitude that can be set for the current
function is 5 volts.
145
8-7-4. SOURce[1|2]:DCOffset
Set
Query
Description
Note
Sets or queries the DC offset for the current mode.
The offset parameter can be set to MINimum, MAXimum or
DEFault. The default offset is 0 volts. The offset is limited by
the output amplitude as shown below.
|Voffset| < Vmax – Vpp/2
If the output specified is out of range, the maximum offset will
be set.
The offset is also determined by the output termination (50Ω
or high impedance). If the offset has been set and the output
termination has changed from 50Ω to high impedance, the
offset will double. Changing the output termination from high
impedance to 50Ω will half the offset.
Syntax
SOURce[1|2]:DCOffset {< offset> |MINimum|MAXimum}
Example
SOUR1:DCO MAX
Sets the offset to the maximum for the current mode.
Query Syntax
SOURce[1|2]:DCOffset? {MINimum|MAXimum}
Return
Parameter
<NR3>
Example
SOUR1:DCO?
Returns the offset for the current mode.
+3.0000E+00
The offset for the current mode is set to +3 volts.
146
8-7-5. SOURce[1|2]:SQUare:DCYCle
Set
Query
Description
Sets or queries the duty cycle for square waves only. The
setting is remembered if the function mode is changed. The
default duty cycle is 50%.
Note
The duty cycle of square waveforms depend on the frequency
settings.
1.0% to 99.0%(frequency≤100 KHz)
10% to 90% (100 KHz ≤ frequency ≤1MHz)
50% (frequency ≤ 25 MHz)
If the frequency is changed and the set duty cycle cannot
support the new frequency, the highest duty cycle available at
that frequency will be used. A “settings conflict” error will
result from the above scenario.
For square waveforms, the Apply command and AM/FM
modulation modes ignore the duty cycle settings.
Syntax
SOURce[1|2]:SQUare:DCYCle {< percent>
|MINimum|MAXimum}
Example
SOUR1:SQU:DCYC MAX
Sets the duty cycle to the highest possible for the current
frequency.
Query Syntax
SOURce[1|2]:SQUare:DCYCle? {MINimum|MAXimum}
Return
Parameter
<NR3>
Example
SOUR1:SQU:DCYC?
Returns the duty cycle as a percentage.
+5.00E+01
The duty cycle is set 50%.
8-7-6. SOURce[1|2]:RAMP:SYMMetry
Set
Query
Description
Sets or queries the symmetry for ramp waves only. The
setting is remembered if the function mode is changed. The
default symmetry is 50%.
147
Note
For ramp waveforms, the Apply command and AM/FM
modulation modes ignore the current symmetry settings.
Syntax
SOURce[1|2]:RAMP:SYMMetry {< percent>
|MINimum|MAXimum}
Example
SOUR1:RAMP:SYMM MAX
Sets the symmetry to the 100%.
Query Syntax
SOURce[1|2]:RAMP:SYMMetry? {MINimum|MAXimum}
Return
Parameter
<NR3>
Example
SOUR1:RAMP:SYMMetry?
Returns the symmetry as a percentage.
+1.0000E+02
The symmetry is set as 100%.
8-7-7. OUTPut[1|2]
Set
Query
Description
Enables/Disables or queries the front panel output from the
selected channel. The default is set to off.
Note
If the output is overloaded by an external voltage, the output
will turn off and an error message will be displayed. The
overload must first be removed before the output can be
turned on again with output command.
Using the Apply command automatically sets the front panel
output to on.
Syntax
OUTPut[1|2] {OFF|ON}
Example
OUTP1 ON
Turns the channel 1 output on.
Query Syntax
OUTPut[1|2]?
Return
Parameter
1
ON
0
OFF
Example
OUTP1?
1
The channel 1 output is currently on.
148
8-7-8. OUTPut[1|2]:LOAD
Set
Query
Description
Sets or queries the output termination. Two impedance
settings can be chosen, DEFault (50Ω) and INFinity (high
impedance >10 kΩ).
The output termination is to be used as a reference only. If the
output termination is set 50Ω but the actual load impedance is
not 50Ω, then the amplitude and offset will not be correct.
Note
If the amplitude has been set and the output termination is
changed from 50Ω to high impedance, the amplitude will
double. Changing the output termination from high impedance
to 50Ω will half the amplitude.
If the output termination is set to high impedance, dBm units
cannot be used. The units will default to Vpp.
Syntax
OUTPut[1|2]:LOAD {DEFault|INFinity}
Example
OUTP1:LOAD DEF
Sets the channel 1 output termination to 50Ω.
Query Syntax
OUTPut[1|2]:LOAD?
Return
Parameter
DEF
Default
INF
INFinity
Example
OUTP1:LOAD?
DEF
The output termination for channel 1 is set to 50Ω.
8-7-9. SOURce[1|2]:VOLTage:UNIT
Set
Query
Description
Sets or queries the output amplitude units. There are three
types of units: VPP, VRMS and DBM.
Note
The units set with the VOLTage:UNIT command will be used
as the default unit for all amplitude units unless a different unit
is specifically used for a command.
If the output termination is set to high impedance, dBm units
cannot be used. The Units will automatically default to Vpp.
149
Syntax
SOURce[1|2]:VOLTage:UNIT {VPP|VRMS|DBM}
Example
SOUR1:VOLT:UNIT VPP
Sets the amplitude units to Vpp.
Query Syntax
SOURce[1|2]:VOLTage:UNIT?
Return
Parameter
VPP
Vpp
VRMS
Vrms
DBM
dBm
SOUR1:VOLT:UNIT?
Example
VPP
The amplitude units are set to Vpp.
8-8. Pulse Configuration Commands
The pulse chapter is used to control and output pulse waveforms. Unlike the
APPLy command, low level control is possible including setting the rise time, fall
time, period and pulse width.
Period
90%
50%
90%
Pulse Width
50%
10%
10%
Rise time
Fall time
8-8-1. SOURce[1|2]:PULSe:PERiod
Set
Query
Description
Sets or queries the pulse period. The default period is 1 ms.
Note
The pulse period must be greater than the pulse width and
edge time(1.6x) combined.
Pulse Width + (1.6 * Edge Time) < Period
If the edge time or pulse width are too great, they will
automatically be reduced to fit the period by the function
generator.
The PULSe:PERiod function will change the period for all
150
functions, not just for the pulse waveforms. If a different
function is chosen and the current period is out of range, the
period will be automatically adjusted to suit the new function.
Syntax
SOURce[1|2]:PULSe:PERiod
{<seconds>|MINimum|MAXimum}
Example
SOUR1:PULS:PER MIN
Sets the period to the minimum time allowed.
Query Syntax
SOURce[1|2]:PULSe:PERiod? [MINimum|MAXimum]
Return
Parameter
<seconds>
Example
SOUR1:PULS:PER?
40ns~2000s
+1.0000E+01
The period is set to 10 seconds.
8-8-2. SOURce[1|2]:PULSe:WIDTh
Set
Query
Description
Sets or queries the pulse width.
100us.
The default pulse width is
The minimum pulse width is affected by the period time. If the
period is over 20 or 200 seconds, then the minimum pulse
width is 1us and 10us, respectively.
Pulse width is defined as the time from the rising to falling
edges (at a threshold of 50%).
Note
The pulse width cannot be less than the edge time times 1.6.
Pulse Width > 1.6 * Edge Time
The pulse width must be less than the period minus the edge
time (x1.6).
Pulse Width < Period – (1.6 *Edge Time)
Syntax
SOURce[1|2]:PULSe:WIDTh
{<seconds>|MINimum|MAXimum}
Example
SOUR1:PULS:WIDT MAX
Sets the pulse width to the maximum allowed.
Query Syntax
SOURce[1|2]:PULSe:WIDTh? [MINimum|MAXimum]
Return
Parameter
<seconds>
20 ns ~ 1999.9 seconds
151
Example
SOUR1:PULS:WIDT? MIN
+8.0000E-09
The pulse width is set to 8 nanoseconds.
8-9. Amplitude Modulation (AM) Commands
8-9-1. AM Overview
To successfully create an AM waveform, the following commands must be
executed in order.
Enable AM
Modulation
1. Turn on AM modulation using the SOURce[1|2]:
AM:STAT ON command
Configure Carrier 2. Use the APPLy command to select a carrier waveform.
Alternatively the equivalent FUNC, FREQ, AMPl, and
DCOffs commands can be used to create a carrier
waveform with a designated frequency, amplitude and
offset.
Select Modulation
Source
Select Shape
Set Modulating
Frequency
3. Select an internal or external modulation source using
the SOURce[1|2]:AM:SOUR command.
4. Use the SOURce[1|2]:AM:INT:FUNC command to select
a sine, square, upramp, dnramp or triangle modulating
waveshape. For internal sources only.
5. Set the modulating frequency using the SOURce[1|2]:
AM:INT:FREQ command. For internal sources only.
Set Modulation
Depth
6. Set the modulation depth using the SOURce[1|2]:
AM:DEPT command.
152
8-9-2. SOURce[1|2]:AM:STATe
Set
Query
Description
Sets or disables AM modulation. By default AM modulation is
disabled. AM modulation must be enabled before setting
other parameters.
Note
Burst or sweep mode will be disabled if AM modulation is
enabled. As only one modulation is allowed at any one time,
other modulation modes will be disabled when AM modulation
is enabled.
Syntax
SOURce[1|2]:AM:STATe {OFF|ON}
Example
SOUR1:AM:STAT ON
Enables AM modulation.
Query Syntax
SOURce[1|2]:AM:STATe?
Return Parameter 0
1
Example
Disabled (OFF)
Enabled (ON)
SOUR1:AM:STAT?
1
AM modulation mode is currently enabled.
8-9-3. SOURce[1|2]:AM:SOURce
Set
Query
Description
Sets or queries the modulation source as internal or external.
Internal is the default modulation source.
Note
If an external modulation source is selected, modulation depth
is limited to ± 5V from the MOD INPUT terminal on the rear
panel. For example, if modulation depth is set to 100%, then
the maximum amplitude is +5V, and the minimum amplitude
is -5V.
Syntax
SOURce[1|2]:AM:SOURce {INTernal|EXTernal}
Example
SOUR1:AM:SOUR EXT
Sets the modulation source to external.
Query Syntax
SOURce[1|2]:AM:SOURce?
Return Parameter INT
EXT
Internal
External
153
Example
SOUR1:AM:SOUR?
INT
The modulation source is set to internal.
8-9-4. SOURce[1|2]:AM:INTernal:FUNCtion
Set
Query
Description
Sets the shape of the modulating waveform from sine,
square, triangle, upramp and dnramp. The default shape is
sine.
Note
Square and triangle waveforms have a 50% duty cycle.
Upramp and dnramp have a symmetry of 100% and 0%,
respectively.
Syntax
SOURce[1|2]:AM:INTernal:FUNCtion
{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}
Example
SOUR1:AM:INT:FUNC SIN
Sets the AM modulating wave shape to sine.
Query Syntax
SOURce[1|2]:AM:INTernal:FUNCtion?
Return Parameter SIN
Example
Sine
UPRAMP
Upramp
SQU
Square
DNRAMP
Dnramp
TRI
Triangle
SOUR1:AM:INT:FUNC?
SIN
The shape for the modulating waveform is Sine.
8-9-5. SOURce[1|2]:AM:INTernal:FREQuency
Set
Query
Description
Sets the frequency of the internal modulating waveform only.
The default frequency is 100Hz.
Syntax
SOURce[1|2]:AM:INTernal:FREQuency
{<frequency>|MINimum|MAXimum}
Parameter
<frequency>
Example
SOUR1:AM:INT:FREQ +1.0000E+02
2 mHz~ 20 kHz
Sets the modulating frequency to 100Hz.
154
Query Syntax
SOURce[1|2]:AM:INTernal:FREQuency?
[MINimum|MAXimum]
Return Parameter <NR3>
Example
Returns the frequency in Hz.
SOUR1:AM:INT:FREQ? MIN
+1.0000E+02
Returns the minimum frequency allowed.
8-9-6. SOURce[1|2]:AM:DEPTh
Set
Query
Description
Sets or queries the modulation depth for internal sources
only. The default is 100%.
Note
The function generator will not output more than ±5V,
regardless of the modulation depth.
The modulation depth of an external source is controlled
using the ±5V MOD INPUT terminal on the rear panel, and
not the SOURce[1|2]:AM:DEPTh command.
Syntax
SOURce[1|2]:AM:DEPTh {<depth in percent>
|MINimum|MAXimum}
Parameter
<depth in percent>
Example
SOUR1:AM:DEPT 50
0~120%
Sets the modulation depth to 50%.
Query Syntax
SOURce[1|2]:AM:DEPTh? [MINimum|MAXimum]
Return Parameter <NR3>
Example
Return the modulation depth as a
percentage.
SOUR1:AM:DEPT?
+1.0000E+02
The modulation depth is 100%.
155
8-10. Frequency Modulation (FM) Commands
8-10-1. FM Overview
The following is an overview of the steps required to generate an FM waveform.
Enable FM
Modulation
1. Turn on FM modulation using the SOURce[1|2]: FM:STAT
ON command.
Configure Carrier
Select Modulation
Source
2. Use the APPLy command to select a carrier waveform.
Alternatively, the FUNC, FREQ, AMPl, and DCOffs
commands can be used to create a carrier waveform with
a designated frequency, amplitude and offset.
3. Select an internal or external modulation source using the
SOURce[1|2]:FM:SOUR command.
Select shape
4. Use the SOURce[1|2]:FM:INT:FUNC command to select a
sine, square, upramp, dnramp or triangle modulating
waveshape. For internal sources only.
Set Modulating
Frequency
5. Set the modulating frequency using the SOURce[1|2]:
FM:INT:FREQ command. For internal sources only.
6. Use the SOURce[1|2]:FM:DEV command to set the
Set Peak
Frequency
Deviation
frequency deviation.
8-10-2. SOURce[1|2]:FM:STATe
Set
Query
Description
Sets or disables FM modulation. By default FM modulation is
disabled. FM modulation must be enabled before setting other
parameters.
Note
Burst or sweep mode will be disabled if FM modulation is
enabled. As only one modulation is allowed at any one time,
other modulation modes will be disabled when FM modulation
is enabled.
Syntax
SOUR[1|2]:FM:STATe {OFF|ON}
Example
SOUR1:FM:STAT ON
Enables FM modulation.
156
Query Syntax
SOURce[1|2]:FM:STATe?
Return Parameter 0
1
Example
Disabled (OFF)
Enabled (ON)
SOUR1:FM:STAT?
1
FM modulation mode is currently enabled.
8-10-3. SOURce[1|2]:FM:SOURce
Set
Query
Description
Sets or queries the modulation source as internal or external.
Internal is the default modulation source.
Note
If an external modulation source is selected, modulation depth
is limited to ± 5V from the MOD INPUT terminal on the rear
panel. For example, if modulation depth is set to 100%, then
the maximum amplitude is +5V, and the minimum amplitude
is -5V.
Syntax
SOURce[1|2]:FM:SOURce {INTernal|EXTernal}
Example
SOUR1:FM:SOUR EXT
Sets the modulation source to external.
Query Syntax
SOURce[1|2]:FM:SOURce?
Return Parameter INT
EXT
Example
Internal
External
SOUR1:FM:SOUR?
INT
The modulation source is set to internal.
8-10-4. SOURce[1|2]:FM:INTernal:FUNCtion
Set
Query
Description
Sets the shape of the modulating waveform from sine,
square, triangle, upramp and dnramp. The default shape is
sine.
157
Note
Square and triangle waveforms have a 50% duty cycle.
Upramp and dnramp have a symmetry of 100% and 0%,
respectively.
Syntax
SOURce[1|2]:FM:INTernal:FUNCtion
{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}
Example
SOUR1:FM:INT:FUNC SIN
Sets the FM modulating wave shape to sine.
Query Syntax
SOURce[1|2]:FM:INTernal:FUNCtion?
Return Parameter SIN
Example
Sine
UPRAMP
Upramp
SQU
Square
DNRAMP
Dnramp
TRI
Triangle
SOUR1:FM:INT:FUNC?
SIN
The shape for the modulating waveform is Sine.
8-10-5. SOURce[1|2]:FM:INTernal:FREQuency
Set
Query
Description
Sets the frequency of the internal modulating waveform only.
The default frequency is 10Hz.
Syntax
SOURce[1|2]:FM:INTernal:FREQuency
{<frequency>|MINimum|MAXimum}
Parameter
<frequency>
Example
SOUR1:FM:INT:FREQ
2 mHz~ 20 kHz
100
Sets the modulating frequency to 100Hz.
Query Syntax
SOURce[1|2]:FM:INTernal:FREQuency?
[MINimum|MAXimum]
Return Parameter <NR3>
Example
Returns the frequency in Hz.
SOUR1:FM:INT:FREQ? MAX
+2.0000E+04
Returns the maximum frequency allowed.
158
8-10-6. SOURce[1|2]:FM:DEViation
Set
Query
Description
Sets or queries the peak frequency deviation of the
modulating waveform from the carrier waveform. The default
peak deviation is 100Hz.
The frequency deviation of external sources is controlled
using the ±5V MOD INPUT terminal on the rear panel. A
positive signal (>0~+5V) will increase the deviation (up to the
set frequency deviation), whilst a negative voltage will reduce
the deviation.
Note
The relationship of peak deviation to modulating frequency
and carrier frequency is shown below.
Peak deviation = modulating frequency – carrier frequency.
The carrier frequency must be greater than or equal to the
peak deviation frequency. The sum of the deviation and
carrier frequency must not exceed the maximum frequency
for a specific carrier shape. If an out of range deviation is set
for any of the above conditions, the deviation will be
automatically adjusted to the maximum value allowed and an
“out of range” error will be generated.
For square wave carrier waveforms, the deviation may cause
the duty cycle frequency boundary to be exceeded. In these
conditions the duty cycle will be adjusted to the maximum
allowed and a “settings conflict” error will be generated.
Syntax
SOURce[1|2]:FM:DEViation {<peak deviation in
Hz>|MINimum|MAXimum}
Parameter
<peak deviation in Hz>
DC~25MHz
DC~15MHz(square)
DC~1MHz (Ramp)
Example
SOUR1:FM:DEV MAX
Sets the frequency deviation to the maximum value allowed.
Query Syntax
SOURce[1|2]:FM:DEViation? [MINimum|MAXimum]
Return Parameter <NR3>
Example
Returns the frequency deviation in
Hz.
SOURce[1|2]:FM:DEViation? MAX
+1.0000E+01
Returns the maximum frequency deviation allowed.
159
8-11. Frequency-Shift Keying (FSK) Commands
8-11-1. FSK Overview
The following is an overview of the steps required to generate an FSK modulated
waveform.
Enable FSK
Modulation
1. Turn on FSK modulation using the SOURce[1|2]:
FSK:STAT ON command.
Configure Carrier
2. Use the APPLy command to select a carrier waveform.
Alternatively, the FUNC, FREQ, AMPl, and DCOffs
commands can be used to create a carrier waveform with
a designated frequency, amplitude and offset.
Select FSK
Source
3. Select an internal or external modulation source using the
SOURce[1|2]:FSK:SOUR command.
Select FSK HOP 4. Set the hop frequency using the SOURce[1|2]:FSK:FREQ
Frequency
command.
Set FSK Rate
5. Use the SOURce[1|2]: FSK:INT:RATE command to set
the FSK rate. The FSK rate can only be set for internal
sources.
8-11-2. SOURce[1|2]:FSKey:STATe
Set
Query
Description
Turns FSK Modulation on or off. By default FSK modulation is
off.
Note
Burst or sweep mode will be disabled if FSK modulation is
enabled. As only one modulation is allowed at any one time,
other modulation modes will be disabled when FSK
modulation is enabled.
Syntax
SOURce[1|2]:FSKey:STATe {OFF|ON}
Example
SOUR1:FSK:STAT ON
Enables FSK modulation
Query Syntax
SOURce[1|2]:FSKey:STATe?
Return Parameter 0
1
Disabled (OFF)
Enabled (ON)
160
Example
SOUR1:FSK:STAT?
1
FSK modulation is currently enabled.
8-11-3. SOURce[1|2]:FSKey:SOURce
Set
Query
Description
Sets or queries the FSK source as internal or external.
Internal is the default source.
Note
If an external FSK source is selected, FSK rate is controlled
by the Trigger INPUT terminal on the rear panel.
Syntax
SOURce[1|2]:FSKey:SOURce {INTernal|EXTernal}
Example
SOUR1:FSK:SOUR EXT
Sets the FSK source to external.
Query Syntax
SOURce[1|2]:FSKey:SOURce?
Return Parameter INT
EXT
Example
Internal
External
SOUR1:FSK:SOUR?
INT
The FSK source is set to internal.
8-11-4. SOURce[1|2]:FSKey:FREQuency
Set
Query
Description
Sets the FSK hop frequency. The default hop frequency is set
to 100Hz.
Note
For FSK, the modulating waveform is a square wave with a
duty cycle of 50%.
Syntax
SOURce[1|2]:FSKey:FREQuency
{<frequency>|MINimum|MAXimum}
Parameter
<frequency> 1 μHz~25MHz(sine)
1 μHz~15MHz(Square、Pulse)
1 μHz~1MHz(Ramp)
161
Example
SOUR1:FSK:FREQ +1.0000E+02
Sets the FSK hop frequency to to 100Hz.
Query Syntax
SOURce[1|2]:FSKey:FREQuency? [MINimum|MAXimum]
Return Parameter <NR3>
Example
Returns the frequency in Hz.
SOUR1:FSK:FREQ? MAX
+2.5000E+06
Returns the maximum hop frequency allowed.
8-11-5. SOURce[1|2]:FSKey:INTernal:RATE
Set
Query
Description
Sets or queries the FSK rate for internal sources only.
Note
External sources will ignore this command.
Syntax
SOURce[1|2]:FSKey:INTernal:RATE {<rate in Hz>
|MINimum|MAXimum}
Parameter
<rate in Hz> 2 mHz~100 kHz
Example
SOUR1:FSK:INT:RATE MAX
Sets the rate to the maximum (100kHz).
Query Syntax
SOURce[1|2]:FSKey:INTernal:RATE?
[MINimum|MAXimum]
Return Parameter <NR3>
Example
Returns the FSK rate in Hz.
SOUR1:FSK:INT:RATE? MAX
+1.0000E+05
Returns the maximum FSK rate allowed.
162
8-12. Phase Modulation (PM)Commands
8-12-1. PM Overview
The following is an overview of the steps required to generate a PM modulated
waveform.
Enable PM
Modulation
1. Turn on PM modulation using the SOURce[1|2]:
PM:STATe ON command.
Configure Carrier 2. Use the APPLy command to select a carrier waveform.
Alternatively, the FUNC, FREQ, AMPl, and DCOffs
commands can be used to create a carrier waveform with
a designated frequency, amplitude and offset.
Select Modulation
Source
3. Select an internal or external modulation source using the
SOURce[1|2]:PM:SOUR command.
Select Shape
4. Use the SOURce[1|2]: PM:INT:FUNC command to select
a sine, square, upramp, dnramp or triangle modulating
waveshape. For internal sources only.
Select Modulating 5. Set the modulating frequency using the
SOURce[1|2]:PM:INT:FREQ command. For internal
Frequency
sources only.
Set DEViation
6. Use the SOURce[1|2]:PM:DEV command to set the phase
DEViation.
8-12-2. SOURce[1|2]:PM:STATe
Set
Query
Description
Turns PM Modulation on or off. By default PM modulation is
off.
Note
Burst or sweep mode will be disabled if PM modulation is
enabled. As only one modulation is allowed at any one time,
other modulation modes will be disabled when PM
modulation is enabled.
Syntax
SOURce[1|2]:PM:STATe {OFF|ON}
Example
SOUR1:PM:STAT ON
Enables PM modulation
163
Query Syntax
SOURce[1|2]:PM:STATe?
Return Parameter 0
1
Example
Disabled (OFF)
Enabled (ON)
SOUR1:PM:STAT?
1
PM modulation is currently enabled.
8-12-3. SOURce[1|2]:PM:SOURce
Set
Query
Description
Sets or queries the PM source as internal or external. Internal
is the default source.
Note
If an external PM source is selected, the phase modulation is
controlled by the MOD INPUT terminal on the rear panel.
Syntax
SOURce[1|2]:PM:SOURce {INTernal|EXTernal}
Example
SOUR1:PM:SOUR EXT
Sets the PM source to external.
Query Syntax
SOURce[1|2]:PM:SOURce?
Return Parameter INT
EXT
Example
Internal
External
SOUR1:PM:SOUR?
INT
The PM source is set to internal.
8-12-4. SOURce[1|2]:PM:INTernal:FUNction
Set
Query
Description
Sets the shape of the modulating waveform from sine,
square, triangle, upramp and dnramp. The default shape is
sine.
Note
Square and triangle waveforms have a 50% duty cycle.
Upramp and dnramp have a symmetry to 100% and 0%,
respectively. .
Syntax
SOURce[1|2]:PM:INTernal:FUNction
{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}
164
Example
SOUR1:PM:INT:FUN SIN
Sets the PM modulating wave shape to sine. .
Query Syntax
SOURce[1|2]:PM:INTernal:FUNction?
Return Parameter SIN
Example
Sine
UPRAMP
Upramp
SQU
Square
DNRAMP
Dnramp
TRI
Triangle
SOUR1:PM:INT:FUNC?
SIN
The shape for the modulating waveform is Sine.
8-12-5. SOURce[1|2]:PM:INTernal:FREQuency
Set
Query
Description
Sets the modulating waveform frequency for internal sources.
The default frequency is set to 100Hz.
Syntax
SOURce[1|2]:PM:INTernal:FREQuency
{<frequency>|MINimum|MAXimum}
Parameter
<frequency>
Example
SOUR1:PM:INT:FREQ MAX
2 mHz~ 20 kHz
Sets the frequency to the maximum value.
Query Syntax
SOURce[1|2]:PM:INTernal:FREQuency?
Return Parameter <NR3>
Example
Returns the frequency in Hz.
SOUR1:PM:INT:FREQ? MAX
+2.0000E+04
Returns the modulating frequency. (20kHz)
165
8-12-6. SOURce[1|2]:PM:DEViation
Set
Query
Description
Sets or queries the phase deviation of the modulating
waveform from the carrier waveform. The default phase
deviation is 180°.
Note
For external sources, the phase deviation is controlled by the
±5V MOD Input terminal on the rear panel. If the phase
deviation is set to 180 degrees, then +5V represents a
deviation of 180 degrees. A lower input voltage will decrease
the set phase deviation.
Syntax
SOURce[1|2]:PM:DEViation {< phase>|minimum
|maximum}
Parameter
<percent>
Example
SOUR1:PM:DEViation +3.0000E+01
0°~360°
Sets the deviation to 30°.
Query Syntax
SOURce[1|2]:PM:DEViation?
Return Parameter <NR3>
Example
Returns the deviation .
SOUR1:PM:DEViation?
+3.0000E+01
The current deviation is 30°.
166
8-13. SUM Modulation (SUM) Commands
8-13-1. SUM Overview
The following is an overview of the steps required to generate a SUM modulated
waveform.
Enable SUM
Modulation
1. Turn on SUM modulation using the SOURce[1|2]:
SUM:STATe ON command.
Configure Carrier 2. Use the APPLy command to select a carrier waveform.
Alternatively, the FUNC, FREQ, AMPl, and DCOffs
commands can be used to create a carrier waveform with
a designated frequency, amplitude and offset.
Select Modulation 3. Select an internal or external modulation source using the
SOURce[1|2]:SUM:SOUR command.
Source
Select Shape
4. Use the SOURce[1|2]: SUM:INT:FUNC command to
select a sine, square, upramp, dnramp or triangle
modulating waveshape. For internal sources only.
5. Set the modulating frequency using the
Select Modulating
Frequency
Set AMPL
SOURce[1|2]:SUM:INT:FREQ command. For internal
sources only.
6. Use the SOURce[1|2]:SUM:AMPL command to set the
modulating amplitude.
8-13-2. SOURce[1|2]:SUM:STATe
Set
Query
Description
Turns SUM Modulation on or off. By default SUM modulation
is off.
Note
Burst or sweep mode will be disabled if SUM modulation is
enabled. As only one modulation is allowed at any one time,
other modulation modes will be disabled when SUM
modulation is enabled.
Syntax
SOURce[1|2]:SUM:STATe {OFF|ON}
Example
SOUR1:SUM:STAT ON
Enables SUM modulation
167
Query Syntax
SOURce[1|2]:SUM:STATe?
Return Parameter 0
1
Example
Disabled (OFF)
Enabled (ON)
SOUR1:SUM:STAT?
ON
SUM modulation is currently enabled.
8-13-3. SOURce[1|2]:SUM:SOURce
Set
Query
Description
Sets or queries the SUM source as internal or external.
Internal is the default source.
Note
If an external SUM source is selected, the amplitude is
controlled by the MOD INPUT terminal on the rear panel.
Syntax
SOURce[1|2]:SUM:SOURce {INTernal|EXTernal}
Example
SOUR1:SUM:SOUR EXT
Sets the SUM source to external.
Query Syntax
SOURce[1|2]:SUM:SOURce?
Return Parameter INT
EXT
Example
Internal
External
SOUR1:SUM:SOUR?
INT
The SUM source is set to internal.
8-13-4. SOURce[1|2]:SUM:INTernal:FUNction
Set
Query
Description
Sets the shape of the modulating waveform from sine,
square, triangle, upramp and dnramp. The default shape is
sine.
Note
Square and triangle waveforms have a 50% duty cycle.
Upramp and dnramp have a symmetry to 100% and 0%,
respectively. .
168
Syntax
SOURce[1|2]:SUM:INTernal:FUNction
{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}
Example
SOUR1:SUM:INT:FUN SIN
Sets the SUM modulating wave shape to sine.
Query Syntax
SOURce[1|2]:SUM:INTernal:FUNction?
Return Parameter SIN
Example
Sine
UPRAMP
Upramp
SQU
Square
DNRAMP
Dnramp
TRI
Triangle
SOUR1:SUM:INT:FUNC?
SIN
The shape for the modulating waveform is Sine.
8-13-5.SOURce[1|2]:SUM:INTernal:FREQuency
Set
Query
Description
Sets the modulating waveform frequency for internal sources.
The default frequency is set to 100Hz.
Syntax
SOURce[1|2]:SUM:INTernal:FREQuency
{<frequency>|MINimum|MAXimum}
Parameter
<frequency> 2 mHz~ 20 kHz
Example
SOUR1:SUM:INT:FREQ MAX
Sets the frequency to the maximum value.
Query Syntax
SOURce[1|2]:SUM:INTernal:FREQuency?
Return Parameter <NR3>
Example
Returns the frequency in Hz.
SOUR1:SUM:INT:FREQ? MAX
+2.0000E+04
Returns the modulating frequency (20kHz).
8-13-6. SOURce[1|2]:SUM:AMPL
Set
Query
Description
Sets or queries the amplitude of the modulating waveform
from the carrier waveform. The default phase amplitude is
50%.
169
Note
If an external SUM source is selected, the amplitude of the
modulated waveform is controlled using the ±5V MOD
INPUT terminal on the rear panel. A positive signal (>0~+5V)
will increase the AMPLitude (up to the set amplitude), whilst a
negative voltage will reduce the amplitude.
Syntax
SOURce[1|2]:SUM:AMPL{< percent>|minimum
|maximum}
Parameter
<percent 0%~100%
>
Example
SOUR1:SUM:AMPLitude +3.0000E+01
Sets the amplitude to 30%.
Query Syntax
SOURce[1|2]:SUM:AMPLitude?
Return Parameter <NR3>
Example
Returns the amplitude .
SOUR1:SUM:AMPLitude?
+3.0000E+01
The current amplitude is 30%.
170
8-14. Frequency Sweep Commands
8-14-1. Sweep Overview
Below shows the order in which commands must be executed to perform a
sweep.
Enable Sweep
Mode
Select waveform
shape, amplitude
and offset
Select Sweep
Boundaries
1. Turn on Sweep mode modulation using the
SOURce[1|2]: SWE:STAT ON command.
2. Use the APPLy command to select the waveform shape.
Alternatively, the FUNC, FREQ, AMPl, and DCOffs
commands can be used to create a waveform with a
designated frequency, amplitude and offset.
3. Set the frequency boundaries by setting start and stop
frequencies or by setting a center frequency with a span.
Start~Stop Use the SOURce[1|2]:FREQ:STAR and
SOURce[1|2]:FREQ:STOP to set the start
and stop frequencies. To sweep up or
down, set the stop frequency higher or
lower than the start frequency.
Span
Select Sweep
Mode
Select Sweep
Time
Use the SOURce[1|2]:FREQ:CENT and
SOURce[1|2]:FREQ:SPAN commands to
set the center frequency and the frequency
span. To sweep up or down, set the span
as positive or negative.
4. Choose Linear or Logarithmic spacing using the
SOURce[1|2]:SWE:SPAC command.
5. Choose the sweep time using the
SOURce[1|2]:SWE:TIME command.
Select the sweep
trigger source
6. Select an internal or external sweep trigger source using
the SOURce[1|2]:SOUR command.
Select the marker
frequency
7. To output a marker frequency from the trigger out, use
The SOURce[1|2]:MARK:FREQ command. To enable
marker frequency output, use the SOURce[1|2]:MARK
ON command.
The marker frequency can be set to a value within the sweep
span.
171
8-14-2. SOURce[1|2]:SWEep:STATe
Set
Query
Description
Sets or disables Sweep mode. By default Sweep is disabled.
Sweep modulation must be enabled before setting other
parameters.
Note
Any modulation modes or Burst mode will be disabled if
sweep mode is enabled.
Syntax
SOURce[1|2]:SWEep:STATe {OFF|ON}
Example
SOUR1:SWE:STAT ON
Enables sweep mode.
Query Syntax
SOURce[1|2]:SWEep:STATe?
Return Parameter 0
1
Example
Disabled (OFF)
Enabled (ON)
SOUR1:SWE:STAT?
1
Sweep mode is currently enabled.
8-14-3. SOURce[1|2]:FREQuency:STARt
Set
Query
Description
Sets the start frequency of the sweep.
start frequency.
100Hz is the default
Note
To sweep up or down, set the stop frequency higher or lower
than the start frequency.
Syntax
SOURce[1|2]:FREQuency:STARt
{<frequency>|MINimum|MAXimum}
Parameter
<frequency> 1μHz~ 25MHz
1μHz~ 15MHz(Square)
1μHz~ 1MHz (Ramp)
Example
SOUR1:FREQ:STAR +2.0000E+03
Sets the start frequency to 2kHz.
Query Syntax
SOURce[1|2]:FREQuency:STARt?
MAXimum]
Return Parameter <NR3>
[MINimum|
Returns the start frequency in Hz.
172
Example
SOUR1:FREQ:STAR? MAX
+8.0000E+0
Returns the maximum start frequency allowed.
8-14-4. SOURce[1|2]:FREQuency:STOP
Set
Query
Description
Sets the stop frequency of the sweep.
start frequency.
1 kHz is the default
Note
To sweep up or down, set the stop frequency higher or lower
than the start frequency.
Syntax
SOURce[1|2]:FREQuency:STOP
{<frequency>|MINimum|MAXimum}
Parameter
<frequency> 1μHz~ 25MHz
1μHz~ 15MHz(Square)
1μHz~ 1MHz (Ramp)
Example
SOUR1:FREQ:STOP +2.0000E+03
Sets the stop frequency to 2kHz.
Query Syntax
SOURce[1|2]:FREQuency:STOP?
MAXimum]
Return Parameter <NR3>
Example
[MINimum|
Returns the stop frequency in Hz.
SOUR1:FREQ:STOP? MAX
+8.0000E+00
Returns the maximum stop frequency allowed.
8-14-5. SOURce[1|2]:FREQuency:CENTer
Set
Query
Description
Sets and queries the center frequency of the sweep.
is the default center frequency.
Note
The maximum center frequency depends on the sweep span
and maximum frequency:
max center freq = max freq – span/2
Syntax
SOURce[1|2]:FREQuency:CENTer {<frequency>
|MINimum|MAXimum}
173
550 Hz
Parameter
<frequency> 450Hz~ 25MHz
450Hz~ 15MHz(Square)
450Hz~ 1MHz (Ramp)
Example
SOUR1:FREQ:CENT +2.0000E+03
Sets the center frequency to 2kHz.
Query Syntax
SOURce[1|2]:FREQuency:CENTer?
MAXimum]
Return Parameter <NR3>
Example
[MINimum|
Returns the stop frequency in Hz.
SOUR1:FREQ:CENT? MAX
+8.0000E+00
Returns the maximum center frequency allowed, depending
on the span.
8-14-6. SOURce[1|2]:FREQuency:SPAN
Set
Query
Description
Sets and queries the frequency span of the sweep. 900 Hz
is the default frequency span. The span frequency is equal to
the stop-start frequencies.
Note
To sweep up or down, set the span as positive or negative.
The maximum span frequency has a relationship to the center
frequency and maximum frequency:
max freq span= 2(max freq – center freq)
Syntax
SOURce[1|2]:FREQuency:SPAN
{<frequency>|MINimum|MAXimum}
Parameter
<frequency> 1μHz~ 25MHz
1μHz~ 15MHz(Square)
1μHz~ 1MHz (Ramp)
Example
SOUR1:FREQ:SPAN +2.0000E+03
Sets the frequency span to 2kHz.
Query Syntax
SOURce[1|2]:FREQuency:SPAN?
MAXimum]
Return Parameter <NR3>
[MINimum|
Returns the frequency span in Hz.
174
Example
SOUR1:FREQ:SPAN?
+2.0000E+03
Returns the frequency span for the current sweep.
8-14-7. SOURce[1|2]:SWEep:SPACing
Set
Query
Description
Sets linear or logarithmic sweep spacing. The default spacing
is linear.
Syntax
SOURce[1|2]:SWEep:SPACing {LINear|LOGarithmic}
Example
SOUR1:SWE:SPAC LIN
Sets the spacing to linear.
Query Syntax
SOURce[1|2]:SWEep:SPACing?
Return Parameter LIN
LOG
Example
Linear spacing
Logarithmic spacing
SOUR1:SWE:SPAC?
LIN
The spacing is currently set as linear.
8-14-8. SOURce[1|2]:SWEep:TIME
Set
Query
Description
Sets or queries the sweep time. The default sweep time is 1
second.
Note
The function generator automatically determines the number
of frequency points that are used for the sweep based on the
sweep time.
Syntax
SOURce[1|2]:SWEep:TIME
{<seconds>|MINimum|MAXimum}
Parameter
<seconds>
Example
SOUR1:SWE:TIME +1.0000E+00
1 ms ~ 500 s
Sets the sweep time to 1 second.
175
Query Syntax
SOURce[1|2]:SWEep:TIME? {<seconds>|
MINimum|MAXimum}
Return Parameter <NR3>
Example
Returns sweep time in seconds.
SOUR1:SWE:TIME?
+2.0000E+01
Returns the sweep time (20 seconds).
8-14-9. SOURce[1|2]:SWEep:SOURce
Set
Query
Description
Sets or queries the trigger source as immediate (internal),
external or manual. Immediate (internal) is the default trigger
source. IMMediate will constantly output a swept waveform.
EXTernal will output a swept waveform after each external
trigger pulse. Manual will ouput a swept waveform after the
trigger softkey is pressed.
Note
If the APPLy command was used to create the waveform
shape, the source is automatically set to IMMediate.
The *OPC/*OPC? command/query can be used to signal the
end of the sweep.
Syntax
SOURce[1|2]: SWEep:SOURce {IMMediate|EXTernal|
MANual}
Example
SOUR1: SWE:SOUR EXT
Sets the sweep source to external.
Query Syntax
SOURce[1|2]: SWEep:SOURce?
Return Parameter IMM
Example
Immediate
EXT
External
MANual
Manual
SOUR1:SWE:SOUR?
IMM
The sweep source is set to immediate.
176
8-14-10. SOURce[1|2]:MARKer:FREQuency
Set
Query
Description
Sets or queries the marker frequency. The default marker
frequency is 550 Hz. The marker frequency is used to output
a trigger out signal from the trigger terminal on the rear panel.
Note
The marker frequency must be between the start and stop
frequencies. If the marker frequency is set to a value that is
out of the range, the marker frequency will be set to the center
frequency and a “settings conflict” error will be generated.
Syntax
SOURce[1|2]:MARKer:FREQuency
{<frequency>|MINimum|MAXimum}
<frequency> 1μHz ~ 25 MHz
1 μHz ~ 1 MHz (Ramp)
Parameter
Example
SOUR1:MARK:FREQ +1.0000E+03
Sets the marker frequency to 1 kHz.
Query Syntax
SOURce[1|2]:MARKer:FREQuency? [MINimum|
MAXimum]
Return Parameter <NR3>
Example
Returns the marker frequency in Hz.
SOUR1:MARK:FREQ? MAX
+1.0000E+03
Returns the marker frequency (1 kHz).
8-14-11. SOURce[1|2]:MARKer
Set
Query
Description
Turns the marker frequency on or off. The default is off.
Note
MARKer ON
The SYNC signal goes logically high at the
start of each sweep and goes low at the
marker frequency.
MARKer OFF
The SYNC terminal outputs a square wave
with a 50% duty cycle at the start of each
sweep.
Syntax
SOURce[1|2]:MARKer {OFF|ON}
Example
SOUR1:MARK ON
Enables the marker frequency.
177
Query Syntax
SOURce[1|2]:MARKer?
Return Parameter 0
Disabled
1
Enabled
Example
SOUR1:MARK?
1
The marker frequency is enabled.
8-15. Burst Mode Commands
8-15-1. Burst Mode Overview
Burst mode can be configured to use an internal trigger (N Cycle mode) or an
external trigger (Gate mode) using the Trigger INPUT terminal on the rear panel.
Using N Cycle mode, each time the function generator receives a trigger, the
function generator will output a specified number of waveform cycles (burst). After
the burst, the function generator will wait for the next trigger before outputting
another burst. N Cycle is the default Burst mode.
The alternative to using a specified number of cycles, Gate mode uses the
external trigger to turn on or off the output. When the Trigger INPUT signal is
high*, waveforms are continuously output (creating a burst). When the Trigger
INPUT signal goes low*, the waveforms will stop being output after the last
waveform completes its period. The voltage level of the output will remain equal to
the starting phase of the burst waveforms, ready for the signal to go high* again.
*assuming the Trigger polarity is not inverted.
Only one burst mode can be used at any one time. The burst mode depends on
the source of the trigger (internal, external, manual) and the source of the burst.
Function
Burst Mode & Source
N Cycle*
Cycle
Phase
Triggered – IMMediate, BUS
Available
Available
Available
Triggered - EXTernal, MANual
Available
Unused
Available
Gated pulse - IMMediate
Unused
Unused
Available
*burst count
178
The following is an overview of the steps required to generate a burst waveform.
Enable Burst
Mode
1. Turn on Burst mode using the
SOURce[1|2]:BURS:STAT ON command.
Configuration
2. Use the APPLy command to select a sine, square, ramp,
pulse burst waveform*. Alternatively, the FUNC, FREQ,
AMPl, and DCOffs commands can be used to create the
burst waveform* with a designated frequency, amplitude
and offset.
*2 mHz minimum for internally triggered bursts.
Choose
Triggered/Gated
Mode
Set Burst Count
3. Use the SOURce[1|2]: BURS:MODE command to select
from triggered or gated burst modes.
4. Use the SOURce[1|2]:BURS:NCYC command to set the
burst count. This command is only for triggered burst
mode only.
Set the burst
period
5. Use the SOURce[1|2]:BURS:INT:PER command to set
the burst period/cycle. This command is only applicable
for triggered burst mode (internal trigger).
Set Burst Starting
Phase
6. Use the SOURce[1|2]:BURS:PHAS command to set the
burst starting phase.
Select the trigger
7. Use the SOURce[1|2]:BURS:TRIG:SOUR command to
select the trigger source for triggered burst mode only.
8-15-2. SOURce[1|2]:BURSt:STATe
Set
Query
Description
Turns burst mode on or off. By default
off.
Note
When burst mode is turned on, sweep and any modulation
modes are disabled.
Syntax
SOURce[1|2]:BURSt:STATe {OFF|ON}
Example
SOUR1:BURS:STAT ON
Turns burst mode on.
179
burst mode is turned
Query Syntax
SOURce[1|2]:BURSt:STATe?
Return Parameter 0
Disabled
1
Enabled
Example
SOUR1:BURS:STAT?
0
Burst mode is off.
8-15-3. SOURce[1|2]:BURSt:MODE
Set
Query
Description
Sets or queries the burst mode as gated or triggered. The
default burst mode is triggered.
Note
The burst count, period, trigger source and any manual trigger
commands are ignored in gated burst mode.
Syntax
SOURce[1|2]:BURSt:MODE {TRIGgered|GATed}
Example
SOUR1:BURS:MODE TRIG
Sets the burst mode to triggered.
Query Syntax
SOURce[1|2]:BURSt:MODE?
Return Parameter TRIG
GAT
Example
Triggered mode
Gated mode
SOUR1:BURS:MODE?
TRIG
The current burst mode is triggered.
8-15-4. SOURce[1|2]:BURSt:NCYCles
Set
Query
Description
Sets or queries the number of cycles (burst count) in triggered
burst mode. The default number of cycles is 1. The burst
count is ignored in gated mode.
180
Note
If the trigger source is set to immediate, the product of the
burst period and waveform frequency must be greater than
the burst count:
Burst Period X Waveform frequency > burst count
If the burst count is too large, the burst period will
automatically be increased and a “Settings conflict” error will
be generated.
Only sine and square waves are allowed infinite burst above
25 MHz.
Syntax
SOURce[1|2]:BURSt:NCYCles{< # cycles>
|INFinity|MINimum |MAXimum}
Parameter
<# cycles>
1~65535 cycles.
INFinity
Sets the number to continuous.
MINimum
Sets the number to minimum allowed.
MAXimum
Sets the number to maximum allowed.
Example
SOUR1:BURS:NCYCl INF
Sets the number of burst cycles to continuous (infinite).
Query Syntax
SOURce[1|2]:BURSt:NCYCles? [MINimum|MAXimum]
Return Parameter <NR3>
INF
Example
Returns the number of cycles.
INF is returned if the number of cycles is
continuous.
SOUR1:BURS:NCYC?
+1.0000E+02
The burst cycles are set to 100.
8-15-5. SOURce[1|2]:BURSt:INTernal:PERiod
Set
Query
Description
Sets or queries the burst period. Burst period settings are only
applicable when the trigger is set to immediate. The default
burst period is 10ms.
During manual triggering, external triggering or Gate burst
mode, the burst period settings are ignored.
181
Note
The burst period must be long enough to output the
designated number of cycles for a selected frequency.
Burst period > burst count/(waveform frequency + 200 ns)
If the period is too short, it is automatically increased so that a
burst can be continuously output. A “data out of range” error
will also be generated.
Syntax
SOURce[1|2]:BURSt:INTernal:PERiod
{<seconds>|MINimum|MAXimum}
Parameter
<seconds >
Example
SOUR1:BURS:INT:PER +1.0000E+01
1 ms ~ 500 seconds
Sets the period to 10 seconds.
Query Syntax
SOURce[1|2]:BURSt:INTernal:PERiod?
[MINimum|MAXimum]
Return Parameter <NR3>
Example
Returns the burst period in seconds.
SOUR1:BURS:INT:PER?
+1.0000E+01
The burst period is 10 seconds.
8-15-6. SOURce[1|2]:BURSt:PHASe
Set
Query
Description
Sets or queries the starting phase for the burst. The default
phase is 0 degrees. At 0 degrees, sine square and ramp
waveforms are at 0 volts.
In gated burst mode, waveforms are continuously output
(burst) when the Trig signal is true. The voltage level at the
starting phase is used to determine the voltage level of the
signal in-between bursts.
Note
The phase command is not used with pulse waveforms.
Syntax
SOURce[1|2]:BURSt:PHASe
{<angle>|MINimum|MAXimum}
Parameter
<angle>
Example
SOUR1:BURS:PHAS MAX
-360 ~ 360 degrees
Sets the phase to 360 degrees.
Query Syntax
SOURce[1|2]:BURSt:PHASe? [MINimum|MAXimum]
Return Parameter <NR3>
Returns the phase angle in degrees.
182
Example
SOUR1:BURS:PHAS?
+1.2000E+02
The burst phase is 120 degrees.
8-15-7. SOURce[1|2]:BURSt:TRIGger:SOURce
Set
Query
Description
Sets or queries the trigger source for triggered burst mode. In
trigged burst mode, a waveform burst is output each time a
trigger signal is received and the number of cycles is
determined by the burst count.
There are three trigger sources for triggered burst mode:
Note
Immediate
A burst is output at a set frequency
determined by the burst period.
External
EXTernal will output a burst waveform after
each external trigger pulse. Any additional
trigger pulse signals before the end of the
burst are ignored.
Manual
Manual triggering will output a burst
waveform after the trigger softkey is
pressed.
If the APPLy command was used, the source is automatically
set to IMMediate.
The *OPC/*OPC? command/query can be used to signal the
end of the burst.
Syntax
SOURce[1|2]:BURSt:TRIGger:SOURce
{IMMediate|EXTernal|MANual}
Example
SOUR1:BURS:TRIG:SOUR EXT
Sets the burst trigger source to external.
Query Syntax
SOURce[1|2]:BURSt:TRIGger:SOURce?
Return Parameter IMM
Example
Immediate
EXT
External
MANual
Manual
SOUR1:BURS:TRIG:SOUR?
IMM
The burst trigger source is set to immediate.
183
8-15-8. SOURce[1|2]:BURSt:TRIGger:DELay
Set
Query
Description
The DELay command is used to insert a delay (in seconds)
before a burst is output. The delay starts after a trigger is
received. The default delay is 0 seconds.
Syntax
SOURce[1|2]: BURSt:TRIGger:DELay
{<seconds>|MINimum|MAXimum}
Parameter
<seconds>
Example
SOUR1:BURS:TRIG:DEL
0~655350 nS
+1.0000E+01
Sets the trigger delay to 10 seconds.
Query Syntax
SOURce[1|2]:BURSt:TRIGger:DELay?
[MINimum|MAXimum]
Return Parameter <NRf>
Example
Delay in seconds
SOUR1:BURS:TRIG:DEL ?
+1.0000E+01
The trigger delay is 10 seconds.
8-15-9. SOURce[1|2]:BURSt:TRIGger:SLOPe
Set
Query
Description
Sets or queries the trigger edge for externally triggered bursts
from the Trigger INPUT terminal on the rear panel. By default
the trigger is rising edge (Positive).
Syntax
SOURce[1|2]:BURSt:TRIGger:SLOPe
{POSitive|NEGative}
Parameter
POSitive
rising edge
NEGative
falling edge
Example
SOUR1:BURS:TRIG:SLOP NEG
Sets the trigger slope to negative.
Query Syntax
SOURce[1|2]:BURSt:TRIGger:SLOPe?
Return Parameter POS
rising edge
NEG
falling edge
184
Example
SOUR1:BURS:TRIG:SLOP ?
NEG
The trigger slope is negative.
8-15-10. SOURce[1|2]:BURSt:GATE:POLarity
Set
Query
Description
In gated mode, the function generator will output a waveform
continuously while the external trigger receives logically true
signal from the Trigger INPUT terminal. Normally a signal is
logically true when it is high. The logical level can be inverted
so that a low signal is considered true.
Syntax
SOURce[1|2]:BURSt:GATE:POLarity
{NORMal|INVertes}
Parameter
NORMal
Logically high
INVertes
Logically low
Example
SOUR1:BURS:GATE:POL INV
Sets the state to logically low (inverted).
Query Syntax
SOURce[1|2]:BURSt:GATE:POLarity?
Return Parameter NORM
INV
Example
Normal(High) logical level
Inverted (low) logical level
SOUR1:BURS:GATE:POL?
INV
The true state is inverted(logically low).
8-15-11. SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe
Set
Query
Description
Sets or queries the trigger edge of the trigger output signal.
The signal is output from the trigger out terminal on the rear
panel. The default trigger output slope is positive.
Immediate
50% duty cycle square wave is output at
the start of each burst.
External
Trigger output disabled.
Gated mode
Trigger output disabled.
185
Manual
A >1 ms pulse is output at the start of each
burst.
Syntax
SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe
{POSitive|NEGative}
Parameter
POSitive
Rising edge.
NEGative
Falling edge.
Example
SOUR1:BURS:OUTP:TRIG:SLOP POS
Sets the trigger output signal slope to positive (rising edge).
Query Syntax
SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe?
Return Parameter POS
Rising edge.
NEG
Falling edge.
Example
SOUR1:BURS:OUTP:TRIG:SLOP?
POS
The trigger output signal slope to positive.
8-15-12. OUTPut[1|2]:TRIGger
Set
Query
Description
Sets or queries the trigger output signal on or off. By default
the signal is disabled. When enabled, a TTL compatible
square wave is output.
Syntax
OUTPut[1|2]:TRIGger {OFF|ON}
Parameter
OFF
Turns the output off.
ON
Turns the output on.
Example
OUTP1:TRIG ON
Turns the output on.
Query Syntax
OUTPut[1|2]:TRIGger?
Return Parameter 0
Disabled
1
Enabled
Query Example
OUTP1:TRIG?
1
The trigger output is enabled.
186
8-15-13. SOURce[1|2]:BURSt:TRIGger:MANual
Set
Description
This command is used to manually trigger a burst waveform
when the source trigger is set to manual for the selected
channel. This command is the equivalent of pressing the
trigger soft-key on the front panel for manual triggering.
Syntax
SOURce[1|2]:BURSt:TRIGger:MANual
Example
SOUR1:BURS:TRIG:MAN
. Manually triggers the burst waveform.
8-16. Arbitrary Waveform Commands
8-16-1. Arbitrary Waveform Overview
Use the steps below to output an arbitrary waveform over the remote interface.
Output Arbitrary
Waveform
1. Use the SOURce[1|2]:FUNCtion USER command to
output the arbitrary waveform currently selected in
memory.
Select Waveform
Frequency,
amplitude and
offset
2. Use the APPLy command to select frequency,
amplitude and DC offset. Alternatively, the FUNC,
FREQ, AMPl, and DCOffs commands can be used.
Load Waveform
Data
3. Waveform data (1 to 4096 points per waveform) can
be downloaded into volatile memory using the
DATA:DAC command. Binary integer or decimal
integer values in the range of ± 511 can be used.
Set Waveform
Rate
4. The waveform rate is the product of the number of
points in the waveform and the waveform frequency.
Rate = Hz × # points
Range:
Rate:
120MHz
Frequency: 60MHz
# points:
1~4096
187
8-16-2. SOURce[1|2]:FUNCtion USER
Set
Description
Use the SOURce[1|2]:FUNCtion USER command to output
the arbitrary waveform currently selected in memory. The
waveform is output with the current frequency, amplitude
and offset settings.
Syntax
SOURce[1|2]:FUNCtion USER
Example
SOUR1:FUNC USER
Selects and outputs the current waveform in memory.
8-16-3. SOURce[1|2]:DATA:DAC
Set
Description
Note
The SOURce[1|2]:DATA:DAC command is used to download
binary or decimal integer values into memory using the
IEEE-488.2 binary block format or as an ordered list of values.
The integer values (±511) correspond to the maximum and
minimum peak amplitudes of the waveform. For instance, for
a waveform with an amplitude of 5Vpp (0 offset), the value
511is the equivalent of 2.5 Volts. If the integer values do not
span the full output range, the peak amplitude will be limited.
The IEEE-488.2 binary block format is comprised of three
parts:
1. Initialization character (#)
# 7 2097152
12
2.
3
3.
Digit length (in ASCII) of the
number of bytes
Number of bytes
IEEE 488.2 uses two bytes to represent waveform data (16 bit
integer). Therefore the number of bytes is always twice the
number of data points.
Syntax
SOURce[1|2]:DATA:DAC VOLATILE, <start>,{<binary
block>|<value>, <value>, . . . }
Parameter
<start>
Start address of the arbitrary waveform
<binary block>
<value>
Decimal or integer values ±511
188
Example
SOUR1:DATA:DAC VOLATILE, #216 Binary Data
The command above downloads 5 data values (stored in 16
bytes) using the binary block format.
SOUR1:DATA:DAC VOLATILE, 1000, 511, 200, 0, -200,
-511
Downloads the data values (511, 200, 0, -200, -511) to
address 1000.
8-16-4. SOURce[1|2]:ARB:EDIT:COPY
Set
Description
Copies a segment of a waveform to a specific starting
address.
Syntax
SOURce[1|2]:ARB:EDIT:COPY
[<start>[,<length>[,<paste>]]]
Parameter
<start>
Start address: 0~4095
<length>
1 ~ 4096
<paste>
Paste address: 0~4095
Example
SOUR1:ARB:EDIT:COPY 1000, 256, 1257
Copies 256 data values starting at address 1000 and copies
them to address 1257.
8-16-5. SOURce[1|2]:ARB:EDIT:DELete
Set
Description
Deletes a segment of a waveform from memory. The segment
is defined by a starting address and length.
Note
A waveform/waveform segment cannot be deleted when
output.
Syntax
SOURce[1|2]:ARB:EDIT:DELete [<STARt>[,<LENGth>]]
Parameter
<STARt>
Start address: 0~4095
<LENGth>
1 ~ 4096
Example
SOURce1:ARB:EDIT:DEL 1000, 256
Deletes a section of 256 data points from the waveform
starting at address 1000.
189
8-16-4. SOURce[1|2]:ARB:EDIT:DELete:ALL
Set
Description
Deletes all user-defined waveforms from non-volatile memory
and the current waveform in volatile memory.
Note
A waveform cannot be deleted when output.
Syntax
SOURce[1|2]:ARB:EDIT:DELete:ALL
Example
SOUR1:ARB:EDIT:DEL:ALL
Deletes all user waveforms from memory.
8-16-7. SOURce[1|2]:ARB:EDIT:POINt
Set
Description
Edit a point on the arbitrary waveform.
Note
A waveform/waveform segment cannot be deleted when
output.
Syntax
SOURce[1|2]:ARB:EDIT:POINt [<address> [, <data>]]
Parameter
<address>
Address of data point: 0~4095
<data>
Value data: ± 511
Example
SOUR1:ARB:EDIT:POIN 1000, 511
Creates a point on the arbitrary waveform at address 1000
with the highest amplitude.
8-16-8. SOURce[1|2]:ARB:EDIT:LINE
Set
Description
Edit a line on the arbitrary waveform. The line is created with
a starting address and data point and a finishing address and
data point.
Note
A waveform/waveform segment cannot be deleted when
output.
Syntax
SOURce[1|2]:ARB:EDIT:LINE
[<address1>[,<data>[,<address2>[,<data2>]]]]
Parameter
<addrress1> Address of data point1: 0~4095
<data1>
Value data2: ± 511
<address2>
Address of data point2: 0~4095
<data2>
Value data2: ± 511
190
Example
SOUR1:ARB:EDIT:LINE 40, 50, 100, 50
Creates a line on the arbitrary waveform at 40,50 to 100,50.
8-16-9. SOURce[1|2]:ARB:EDIT:PROTect
Set
Description
Protects a segment of the arbitrary waveform from deletion or
editing.
Syntax
SOURce[1|2]:ARB:EDIT:PROTect [<STARt>[,<LENGth>]
Parameter
<STARt>
Start address: 0~4095
<LENGth>
1 ~ 4096
Example
SOUR1:ARB:EDIT:PROT 40, 50
Protects a segment of the waveform from address 40 for 50
data points.
8-16-10. SOURce[1|2]:ARB:EDIT:PROTect:ALL
Set
Description
Protects the arbitrary waveform currently in non-volatile
memory/ currently being output.
Syntax
SOURce[1|2]:ARB:EDIT:PROTect:ALL
Example
SOUR1:ARB:EDIT:PROT:ALL
8-16-11. SOURce[1|2]:ARB:EDIT:UNProtect
Set
Description
Uprotects the arbitrary waveform currently in non-volatile
memory/currently being output.
Syntax
SOURce[1|2]:ARB:EDIT:UNProtect
Example
SOUR1:ARB:EDIT:UNP
8-16-12. SOURce[1|2]:ARB:OUTPut
Set
Description
Output the current arbitrary waveform in volatile memory. A
specified start and length can also be designated.
Syntax
SOURce[1|2]:ARB:OUTPut [<STARt>[,<LENGth>]]
191
Parameter
<STARt>
Start address*: 0~4096
<LENGth>
Length*: 0 ~ 4096
* Start + Length ≤ currently output arbitrary waveform
Example
SOUR1:ARB:OUTP 20 200
Outputs the current arbitrary waveform in memory.
8-17. COUNTER Commands
The frequency counter function can be turned on remotely to control the
frequency counter.
8-17-1. COUNTER:STATE
Set
Query
Description
Turns the frequency counter function on or off.
Syntax
COUNter:STATe {ON|OFF}
Example
COUNter:STATe
ON
Turns the frequency counter on
Query Syntax
COUNter:STATe?
Return Parameter 1
0
Example
ON
OFF
COUNter:STATe?
1
Turns on the frequency counter.
8-17-2. COUNter:GATe
Set
Query
Description
Sets the gate time for the frequency counter.
Syntax
COUNter:GATe {0.01|0.1|1|10}
Example
COUNter:GATe
1
Sets the gate time to 1S.
Syntax
COUNter:GATe? {max|min}
192
Example
COUNter:GATe?
1
Returns the gate time: 1S.
8-17-3. COUNter:VALue?
Set
Query
Description
Returns the current value from the frequency counter.
Syntax
COUNter:VALue?
Example
COUNter:VALue?
+5.00E+02
Returns the frequency as 500Hz.
8-18. PHASE Commands
The phase command remotely controls the phase and channel synchronization.
8-18-1. SOURce[1|2]:PHASe
Set
Query
Description
Sets the phase.
Syntax
SOURce[1|2]:PHASe
Parameter
phase
-180~180
min
Sets the phase to the minimum value.
max
Sets the phase to the maxium value.
Example
SOURce1:PHASe
{<phase>|<MIN>|<MAX>}
25
Sets the phase of channel 1 to 25°.
Query Syntax
SOURce[1|2]:PHASe? {MAX|MIN}
Return Parameter phase
Example
Returns the current phase.
SOURce1:PHASe?
26
Returns the phase of channel 1 as 26°.
193
8-18-2. SOURce[1|2]:PHASe:SYNChronize
Set
Description
Sychronizes the phase of channel 1 and channel 2. SOURce1
or SOURce2 has not effect on this command.
Syntax
SOURce[1|2]:PHASe:SYNChronize
Example
SOURce1:PHASe:SYNChronize
Synchronizes the phase of channel 1 and channel 2.
8-19. COUPLE Commands
The Couple commands can be used to remotely set the frequency coupling and
amplitude coupling.
8-19-1.SOURce[1|2]:FREQuency:COUPle:MODE
Set
Query
Description
Set the frequency coupling mode.
Syntax
SOURce[1|2]:FREQuency:COUPle:MODE
{Off|Offset|Ratio}
Example
SOURce1:FREQuency:COUPle:MODE Offset
Sets the frequency coupling mode to offset.
Query Syntax
SOURce[1|2]:FREQuency:COUPle:MODE?
Return Parameter Off
Example
Disables frequency coupling.
Offset
Set frequency coupling to offset mode.
Ratio
Sets frequency coupling to ratio mode.
SOURce1:FREQuency:COUPle:MODE?
Off
Frequency coupling is turned off.
8-19-2. SOURce[1|2]:FREQuency:COUPle:OFFSet
Set
Query
Description
Sets the offset frequency when the frequency coupling mode
is set to offset.
Syntax
SOURce[1|2]:FREQuency:COUPle:OFFSet {frequency}
194
Example
SOURce1:FREQuency:COUPle:OFFSet 2khz
Sets the offset frequency to 2kHz (the frequency of CH2
minus CH1 is 2kHz).
Syntax
SOURce[1|2]:FREQuency:COUPle:OFFSet?
Example
SOURce1:FREQuency:COUPle:OFFSet?
+2.0000E+03
The offset of channel 2 from channel 1 is 2kHz.
8-19-3. SOURce[1|2]:FREQuency:COUPle:RATio
Set
Query
Description
Sets the frequency coupling ratio when frequency coupling is
set to ratio mode.
Syntax
SOURce[1|2]:FREQuency:COUPle:RATio {ratio}
Example
SOURce1:FREQuency:COUPle:RATio 2
Set the CH2 to CH1 frequency ratio to 2.
Query Syntax
SOURce[1|2]:FREQuency:COUPle:RATio?
Example
SOURce1:FREQuency:COUPle:RATio?
+2.0000E+00
Returns the CH2 to CH1 frequency ratio as 2.
8-19-4. SOURce[1|2]:AMPlitude:COUPle:STATe
Set
Query
Description
Enables or disables the amplitude coupling.
Syntax
SOURce[1|2]:AMPlitude:COUPle:STATe {ON|Off}
Example
SOURce1:AMPlitude:COUPle:STATe on
Description
Turns amplitude coupling on.
Query Syntax
SOURce[1|2]:AMPlitude:COUPle:STATe?
Return Parameter 1
ON
0
Off
195
Example
SOURce1:AMPlitude:COUPle:STATe?
1
Amplitude coupling has been enabled.
8-19-5. SOURce[1|2]:TRACk
Set
Query
Description
Turns tracking on or off.
Syntax
SOURce[1|2]:TRACk {ON|OFF|INVerted}
Example
SOURce1:TRACk ON
Turns tracking on. Channel 2 will “track” the changes of
channel 1.
Query Syntax
SOURce[1|2]:TRACk?
Return Parameter ON
Example
ON
OFF
OFF
INV
INVerted
SOURce1:TRACk?
ON
Channel tracking is turned on.
8-20. Save and Recall Commands
Up to 10 different instrument states can be stored to non-volatile memory
(memory locations 0~9).
196
8-20-1. *SAV
Set
Description
Saves the current instrument state to a specified save slot.
When a state is saved, all the current instrument settings,
functions and waveforms are also saved.
Note
The *SAV command doesn’t save waveforms in non-volatile
memory, only the instrument state.
The *RST command will not delete saved instrument states
from memory.
Syntax
*SAV {0|1|2|3|4|5|6|7|8|9}
Example
*SAV 0
Save the instrument state to memory location 0.
8-20-2. *RCL
Set
Description
Recall previously saved instrument states from memory
locations 0~9.
Syntax
*RCL {0|1|2|3|4|5|6|7|8|9}
Example
*RCL 0
Recall instrument state from memory location 0.
8-20-3. MEMory:STATe:DELete
Set
Description
Delete memory from a specified memory location.
Syntax
MEMory:STATe:DELete {0|1|2|3|4|5|6|7|8|9}
Example
MEM:STAT:DEL 0
Delete instrument state from memory location 0.
8-20-4. MEMory:STATe:DELete ALL
Set
Description
Delete memory from all memory locations, 0~9.
Syntax
MEMory:STATe:DELete ALL
Example
MEM:STAT:DEL ALL
Deletes all the instrument states from memory locations 0~9.
197
8-21. Error Messages
The FGX-2220 has a number of specific error codes. Use the SYSTem:ERRor
command to recall the error codes. For more information regarding the error
queue.
8-21-1.Command Error Codes
-101 Invalid character
An invalid character was used in the command string. Example:
#, $, %.
SOURce1:AM:DEPTh MIN%
-102 Syntax error
Invalid syntax was used in the command string. Example: An
unexpected character may have been encountered, like an
unexpected space.
SOURce1:APPL:SQUare , 1
-103 Invalid separator
An invalid separator was used in the command string. Example:
a space, comma or colon was incorrectly used.
APPL:SIN 1 1000
OR SOURce1:APPL:SQUare
-108 Parameter not allowed
The command received more parameters than were expected.
Example: An extra (not needed) parameter was added to a
command
SOURce1:APPL? 10
-109 Missing parameter
The command received less parameters than expected.
Example: A required parameter was omitted.
SOURce1:APPL:SQUare .
-112 Program mnemonic too long
A command header contains more than 12 characters:
OUTP:SYNCHRONIZATION ON
-113 Undefined header
An undefined header was encountered. The header is
syntactically correct. Example: the header contains a character
mistake.
SOUR1:AMM:DEPT MIN
-123 Exponent too large
Numeric exponent exceeds 32,000. Example:
SOURce[1|2]:BURSt:NCYCles 1E34000
-124 Too many digits
The mantissa (excluding leading 0’s) contains more than 255
digits.
-128 Numeric data not allowed
An unexpected numeric character was received in the
command. Example: a numeric parameter is used instead of a
character string.
SOURce1:BURSt:MODE 123
198
-131 Invalid suffix
An invalid suffix was used. Example: An unknown or incorrect
suffix may have been used with a parameter.
SOURce1:SWEep:TIME 0.5 SECS
-138 Suffix not allowed
A suffix was used where none were expected. Example: Using
a suffix when not allowed.
SOURce1:BURSt: NCYCles 12 CYC
-148 Character data not allowed
A parameter was used in the command where not allowed.
Example: A discrete parameter was used where a numeric
parameter was expected.
SOUR1:MARK:FREQ ON
-158 String data not allowed
An unexpected character string was used where none were
expected. Example: A character string is used instead of a valid
parameter.
SOURce1:SWEep:SPACing ’TEN’
-161 Invalid block data
Invalid block data was received. Example: The number of bytes
sent with the DATA:DAC command doesn’t correlate to the
number of bytes specified in the block header.
-168 Block data not allowed
Block data was received where block data is not allowed.
Example:
SOURce1:BURSt: NCYCles #10
-170~178 expression errors
Example: The mathematical expression used was not valid.
8-21-2.Execution Errors
-211 Trigger ignored
A trigger was received but ignored. Example: Triggers will be
ignored until the function that can use a trigger is enabled
(burst, sweep, etc.).
-223 Too much data
Data was received that contained too much data. Example: An
arbitrary waveform with over 4096 points cannot be used.
-221 Settings conflict; turned off infinite burst to allow immediate trigger source
Example: Infinite burst is disabled when an immediate trigger
source is selected. Burst count set to 65535 cycles.
-221 Settings conflict; infinite burst changed trigger source to MANual
Example: The trigger source is changed to immediate from
manual when infinite burst mode is selected.
-221 Settings conflict; burst period increased to fit entire burst
Example: The function generator automatically increases the
burst period to allow for the burst count or frequency.
199
-221 Settings conflict; burst count reduced
Example: The burst count is reduced to allow for the waveform
frequency if the burst period is at it’s maximum.
-221 Settings conflict; trigger delay reduced to fit entire burst
Example: The trigger delay is reduced to allow the current
period and burst count.
-221 Settings conflict;triggered burst not available for noise
Example: Triggered burst cannot be used with noise.
-221 Settings conflict;amplitude units changed to Vpp due to high-Z load
Example: If a high impedance load is used, dBm units cannot be
used. The units are automatically set to Vpp.
-221 Settings conflict;trigger output disabled by trigger external
Example: The trigger output terminal is disabled when an
external trigger source is selected.
-221 Settings conflict;trigger output connector used by FSK
Example: The trigger output terminal cannot be used in FSK
mode.
-221 Settings conflict;trigger output connector used by burst gate
Example: The trigger output terminal cannot be used in gated
burst mode.
-221 Settings conflict;trigger output connector used by trigger external
Example: The trigger output connector is disabled when the
trigger source is set to external.
-221 Settings conflict;frequency reduced for pulse function
Example: When the function is changed to pulse, the output
frequency is automatically reduced if over range.
-221 Settings conflict;frequency reduced for ramp function
Example: When the function is changed to ramp, the output
frequency is automatically reduced if over range.
-221 Settings conflict;frequency made compatible with burst mode
Example: When the function is changed to burst, the output
frequency is automatically adjusted if over range.
-221 Settings conflict;frequency made compatible with FM
Example: When the function is changed to FM, the frequency is
automatically adjusted to suit the FM settings.
-221 Settings conflict;burst turned off by selection of other mode or modulation
Example: Burst mode is disabled when sweep or a modulation
mode is enabled.
-221 Settings conflict;FSK turned off by selection of other mode or modulation
Example: FSK mode is disabled when burst, sweep or a
modulation mode is enabled.
-221 Settings conflict;FM turned off by selection of other mode or modulation
Example: FM mode is disabled when burst, sweep or a
modulation mode is enabled.
-221 Settings conflict;AM turned off by selection of other mode or modulation
Example: AM mode is disabled when burst, sweep or a
modulation mode is enabled.
200
-221 Settings conflict; sweep turned off by selection of other mode or modulation
Example: Sweep mode is disabled when burst or a modulation
mode is enabled.
-221 Settings conflict;not able to modulate this function
Example: A modulated waveform cannot be generated with dc
voltage, noise or pulse waveforms.
-221 Settings conflict;not able to sweep this function
Example: A swept waveform cannot be generated with dc
voltage, noise or pulse waveforms.
-221 Settings conflict;not able to burst this function
Example: A burst waveform cannot be generated with the dc
voltage function.
-221 Settings conflict;not able to modulate noise, modulation turned off
Example: A waveform cannot be modulated using the noise
function.
-221 Settings conflict;not able to sweep pulse, sweep turned off
Example: A waveform cannot be swept using the pulse function.
-221 Settings conflict;not able to modulate dc, modulation turned off
Example: A waveform cannot be modulated using the dc
voltage function.
-221 Settings conflict;not able to sweep dc, modulation turned off
Example: A waveform cannot be swept using the dc voltage
function.
-221 Settings conflict;not able to burst dc, burst turned off
Example: The burst function cannot be used with the dc voltage
function.
-221 Settings conflict;not able to sweep noise, sweep turned off
Example: A waveform cannot be swept using the noise function.
-221 Settings conflict;pulse width decreased due to period
Example: The pulse width has been adjusted to suit the period
settings.
-221 Settings conflict;amplitude changed due to function
Example: The amplitude (VRM / dBm) has been adjusted to suit
the selected function. For the FGX-2220, a typical square wave
has a much higher amplitude (5V Vrms) compared to a sine
wave (~3.54) due to crest factor.
-221 Settings conflict;offset changed on exit from dc function
Example: The offset level is adjusted on exit from a DC function.
-221 Settings conflict;FM deviation cannot exceed carrier
Example: The deviation cannot be set higher than the carrier
frequency
-221 Settings conflict;FM deviation exceeds max frequency
Example: If the FM deviation and carrier frequency combined
exceeds the maximum frequency plus 100 kHz, the deviation is
automatically adjusted.
-221 Settings conflict;frequency forced duty cycle change
Example: If the frequency is changed and the current duty
cannot be supported at the new frequency, the duty will be
automatically adjusted.
201
-221 Settings conflict;offset changed due to amplitude
Example: The offset is not a valid offset value,
it is
automatically adjusted, considering the amplitude.
|offset|≤ max amplitude – Vpp/2
-221 Settings conflict;amplitude changed due to offset
Example: The amplitude is not a valid value, it is automatically
adjusted, considering the offset.
Vpp ≤ 2X (max amplitude -|offset|)
-221 Settings conflict;low level changed due to high level
Example: The low level value was set too high. The low level is
set 1 mV less than the high level.
-221 Settings conflict;high level changed due to low level
Example: The high level value was set too low. The high level is
set 1 mV greater than the low level.
-222 Data out of range;value clipped to upper limit
Example: The parameter was set out of range. The parameter is
automatically set to the maximum value allowed.
SOURce[1|2]:FREQuency 25.1MHz.
-222 Data out of range;value clipped to lower limit
Example: The parameter was set out of range. The parameter is
automatically set to the minimum value allowed.
SOURce[1|2]:FREQuency 0.1μHz.
-222 Data out of range;period; value clipped to ...
Example: If the period was set to a value out of range, it is
automatically set to an upper or lower limit.
-222 Data out of range;frequency; value clipped to ...
Example: If the frequency was set to a value out of range, it is
automatically set to an upper or lower limit.
-222 Data out of range;user frequency; value clipped to upper limit
Example: If the frequency is set to a value out of range for an
arbitrary waveform using, SOURce[1|2]: APPL: USER or
SOURce[1|2]: FUNC:USER, it is automatically set to the upper
limit.
-222 Data out of range;ramp frequency; value clipped to upper limit
Example: If the frequency is set to a value out of range for a
ramp waveform using, SOURce[1|2]: APPL: RAMP or
SOURce[1|2]:FUNC:RAMP, it is automatically set to the upper
limit.
-222 Data out of range;pulse frequency; value clipped to upper limit
Example: If the frequency is set to a value out of range for a
pulse waveform using, SOURce[1|2]: APPL:PULS or
SOURce[1|2]:FUNC:PULS, it is automatically set to the upper
limit.
-222 Data out of range;burst period; value clipped to ...
Example: If the burst period was set to a value out of range, it is
automatically set to an upper or lower limit.
222 Data out of range;burst count; value clipped to ...
Example: If the burst count was set to a value out of range, it is
automatically set to an upper or lower limit.
202
-222 Data out of range; burst period limited by length of burst; value clipped to
upper limit
Example: The burst period must be greater than burst count
divided by the frequency + 200 ns. The burst period is adjusted
to satisfy these conditions.
burst period > 200 ns + (burst count/burst frequency).
-222 Data out of range; burst count limited by length of burst; value clipped to
lower limit
Example: The burst count must be less than burst period * the
waveform frequency when the the trigger source is set to
immediate (SOURce[1|2]: TRIG:SOUR IMM). The burst count is
automatically set to the lower limit.
-222 Data out of range;amplitude; value clipped to ...
Example: If the amplitude was set to a value out of range, it is
automatically set to an upper or lower limit.
-222 Data out of range;offset; value clipped to ...
Example: If the offset was set to a value out of range, it is
automatically set to an upper or lower limit.
-222 Data out of range;frequency in burst mode; value clipped to ...
Example: If the frequency was set to a value out of range in
burst mode. The burst frequency is automatically set to an
upper or lower limit, taking the burst period into account.
-222 Data out of range;frequency in FM; value clipped to ...
Example: The carrier frequency is limited by the frequency
deviation (SOURce[1|2]: FM:DEV). The carrier frequency is
automatically adjusted to be less than or equal to the frequency
deviation.
-222 Data out of range;marker confined to sweep span; value clipped to ...
Example: The marker frequency is set to a value outside the
start or stop frequencies. The marker frequency is automatically
adjusted to either the start or stop frequency (whichever is
closer to the set value).
-222 Data out of range;FM deviation; value clipped to ...
Example: The frequency deviation is outside of range. The
deviation is automatically adjusted to an upper or lower limit,
depending on the frequency.
-222 Data out of range;trigger delay; value clipped to upper limit
Example: The trigger delay was set to a value out of range. The
trigger delay has been adjusted to the maximum (655350
nseconds).
-222 Data out of range; trigger delay limited by length of burst; value clipped to
upper limit
Example: The trigger delay and the burst cycle time combined
must be less than the burst period.
203
-222 Data out of range;duty cycle; value clipped to ...
Example: The duty cycle is limited depending on the frequency.
Duty Cycle
Frequency
50%
> 25MHz
10%~90%
100 KHz ~ 1MHz
1%~99%
< 100KHz
-222 Data out of range; duty cycle limited by frequency; value clipped to upper
limit
Example: The duty cycle is limited depending on the frequency.
When the frequency is greater than 50 MHz, the duty cycle is
automatically limited to 50%.
-313 Calibration memory lost;memory corruption detected
Indicates that a fault (check sum error) has occurred with the
non-volatile memory that stores the calibration data.
-314 Save/recall memory lost;memory corruption detected
Indicates that a fault (check sum error) has occurred with the
non-volatile memory that stores the save/recall files.
-315 Configuration memory lost;memory corruption detected
Indicates that a fault (check sum error) has occurred with the
non-volatile memory that stores the configuration settings.
-350 Queue overflow
Indicates that the error queue is full (over 20 messages
generated, and not yet read). No more messages will be stored
until the queue is empty. The queue can be cleared by reading
each message, using the *CLS command or restarting the
function generator.
8-21-3.Query Errors
-410 Query INTERRUPTED
Indicates that a command was received but the data in the
output buffer from a previous command was lost.
-420 Query UNTERMINATED
The function generator is ready to return data, however there
was no data in the output buffer. For example: Using the APPLy
command.
-430 Query DEADLOCKED
Indicates that a command generates more data than the output
buffer can receive and the input buffer is full. The command will
finish execution, though all the data won’t be kept.
8-21-4.Arbitrary Waveform Errors
-770 Nonvolatile arb waveform memory corruption detected
Indicates that a fault (check sum error) has occurred with the
non-volatile memory that stores the arbitrary waveform data.
-781 Not enough memory to store new arb waveform; bad sectors
204
Indicates that a fault (bad sectors) has occurred with the
non-volatile memory that stores the arbitrary waveform data.
Resulting in not enough memory to store arbitrary data.
-787 Not able to delete the currently selected active arb waveform
Example: The currently selected waveform is being output and
cannot be deleted.
800 Block length must be even
Example: As block data (DATA:DAC VOLATILE) uses two
bytes to store each data point, there must be an even number or
bytes for a data block.
8-22. SCPI Status Register
The status registers are used to record and determine the status of the function
generator. The function generator has a number of register groups:
Questionable Status Registers
Standard Event Status Registers
Status Byte Register
As well as the output and error queues.
Each register group is divided into three types of registers: condition registers,
event registers and enable registers.
8-22-1. Register types
Condition Register The condition registers indicate the state of the function
generator in real time. The condition registers are not
triggered. I.e., the bits in the condition register change in real
time with the instrument status. Reading a condition register
will not clear it. The condition registers cannot be cleared or
set.
Event Register
The Event Registers indicate if an event has been triggered in
the condition registers. The event registers are latched and
will remain set unless the *CLS command is used. Reading
an event register will not clear it.
Enable Register
The Enable register determines which status event(s) are
enabled. Any status events that are not enabled are ignored.
Enabled events are used to summarize the status of that
register group.
205
8-22-2. FGX-2220 Status System
Questionable Status Register
Condition
Event
Enable
0 Volt Ovld
1
2
3
4 Over Temp
5 Loop Unlock
6
7 Ext Mod Ovld
8 Cal Error
9 External Ref
10
11
12
13
14
15
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
bit
<1>
<2>
<4>
<8>
<16>
<32>
<64>
<128>
<256>
<512>
<1024>
<2048>
<4096>
<8192>
<16384>
NOT USED
weight
Error Queue
+
OR
1
20
Status Byte Register
Condition Enable
Output Buffer
0
1
2
3
4
5
6
7
bit
1
20
<128>
weight
Summary Bit (RQS)
Standard Event Register
0 Operation Complete
1
2 Query Error
3 Device Error
4 Execution Error
5 Command Error
6
7 Power On
<1>
<2>
<4>
<8>
<16>
<32>
Event
Enable
0
1
2
3
4
5
6
7
bit
<1>
<2>
<4>
<8>
<16>
<32>
<64>
<128>
weight
+
OR
206
+
OR
8-22-3. Questionable Status Register
Description
The Questionable Status Registers will show if any faults or
errors have occurred.
Bit Summary
Register
Bit
Bit Weight
Voltage overload
0
1
Over temperature
4
16
Loop unlock
5
32
Ext Mod Overload
7
128
Cal Error
8
256
External Reference
9
512
8-22-4. Standard Event Status Registers
Description
The Standard Event Status Registers indicate when the *OPC
command has been executed or whether any programming
errors have occurred.
Notes
The Standard Event Status Enable register is cleared when
the *ESE 0 command is used.
The Standard Event Status Event register is cleared when the
*CLS command or the *ESR? command is used.
Bit Summary
Error Bits
Register
Bit
Bit Weight
Operation complete bit
0
1
Query Error
2
4
Device Error
3
8
Execution Error
4
16
Command Error
5
32
Power On
7
128
Operation
complete
The operation complete bit is set when all
selected pending operations are complete.
This bit is set in response to the *OPC
command.
Query Error
The Query Error bit is set when there is an
error reading the Output Queue. This can be
caused by trying to read the Output Queue
when there is no data present.
Device Error
The Device Dependent Error indicates a
failure of the self-test, calibration, memory or
other device dependent error.
207
Execution Error The Execution bit indicates an execution
error has occurred.
Command
Error
The Command Error bit is set when a syntax
error has occurred.
Power On
Power has been reset.
8-22-5. The Status Byte Register
Description
The Status Byte register consolidates the status events of all
the status registers. The Status Byte register can be read with
the *STB? query or a serial poll and can be cleared with the
*CLS command.
Clearing the events in any of the status registers will clear the
corresponding bit in the Status Byte register.
Notes
The Status byte enable register is cleared when the *SRE 0
command is used.
The Status Byte Condition register is cleared when the *CLS
command is used.
Bit Summary
Status Bits
Register
Bit
Bit Weight
Error Queue
2
4
Questionable Data
3
8
Message Available
4
16
Standard Event
5
32
Master Summary /
Request Service
6
64
Error Queue
There are error message(s) waiting in the
error queue.
Questionable
data
The Questionable bit is set when an
“enabled” questionable event has occurred.
Message
Available
The Message Available bit is set when
there is outstanding data in the Output
Queue. Reading all messages in the output
queue will clear the message available bit.
Standard Event
The Event Status bit is set if an “enabled”
event in the Standard Event Status Event
Register has occurred.
208
Master
The Master Summary Status is used with
Summary/
the *STB? query. When the *STB? query is
Service Request read the MSS bit is not cleared.
bit
The Request Service bit is cleared when it
is polled during a serial poll.
8-22-6. Output Queue
Description
The Output queue stores output messages in a FIFO buffer
until read. If the Output Queue has data, the MAV bit in the
Status Byte Register is set.
8-22-7. Error Queue
Description
The error queue is queried using the SYSTem:ERRor?
command. The Error queue will set the “Error Queue“ bit in
the status byte register if there are any error messages in the
error queue. If the error queue is full the last message will
generate a “Queue overflow” error and additional errors will
not be stored. If the error queue is empty, “No error” will be
returned.
Error messages are stored in the error queue in a
first-in-first-out order. The errors messages are character
strings that can contain up to 255 characters.
209
9. APPDENIX
9-1. FGX-2220 Specifications
The specifications apply when the function generator is powered on for at least 30
minutes under +18°C~+28°C.
FGX-2220 models
Waveforms
Sine, Square, Ramp, Pulse, Noise, ARB
Arbitrary Functions
Sample Rate 120 MSa/s
Repetition
60MHz
Rate
Waveform
4k points
Length
Amplitude
10 bits
Resolution
Non-Volatile
4k points
Memory
Frequency Characteristics
Range
Sine
1uHz~25MHz
Square
1uHz~25MHz
Ramp
1MHz
Resolution
1uHz
Accuracy
Stability
Aging
Tolerance
Output Characteristics
Amplitude
Range
Accuracy
Resolution
Flatness
Offset
Units
Range
Accuracy
Waveform Output Impedance
±20 ppm
±1 ppm, per 1 year
≤1 mHz
1mVpp to 10 Vpp (into 50Ω)
2mVpp to 20 Vpp (open-circuit)
1mVpp to 5 Vpp (into 50Ω) for 20MHz-25MHz
2mVpp to 10 Vpp (open-circuit) for
20MHz-25MHz
±2% of setting ±1 mVpp (at 1 kHz)
1mV or 3 digits
±1% (0.1dB) ≤100kHz
±3% (0.3 dB) ≤5MHz
±5% (0.4 dB) ≤12MHz
±10%(0.9dB) ≤25MHz
(sine wave relative to 1kHz)
Vpp, Vrms, dBm
±5 Vpk ac +dc (into 50Ω)
±10Vpk ac +dc (Open circuit)
±2.5 Vpk ac +dc (into 50Ω) for 20MHz-25MHz
±5Vpk ac +dc (Open circuit) for
20MHz-25MHz
2% of setting + 10mV+ 0.5% of amplitude
50Ω typical (fixed)
> 10MΩ (output disabled)
210
Protection
Short-circuit protected
Overload relay automatically disables main
output
Harmonic
distortion
≤-55 dBc DC ~ 200kHz,
≤-50 dBc 200kHz ~ 1MHz,
≤-35 dBc 1MHz ~ 5MHz,
≤-30 dBc 5MHz ~ 25MHz,
Sine wave
Characteristics
Ampl > 0.1Vpp
Ampl > 0.1Vpp
Ampl > 0.1Vpp
Ampl > 0.1Vpp
Square wave
Characteristics
Rise/Fall Time ≤25ns at maximum output.
(into 50 Ω load)
Overshoot
5%
Asymmetry
1% of period +5 ns
Variable duty 1.0% to 99.0% ≤100kHz
Cycle
10% to 90% ≤ 1MHz
50% ≤ 25MHz
Ramp Characteristics
Linearity
< 0.1% of peak output
Variable
0% to 100% (0.1% Resolution)
Symmetry
Pulse
Characteristics
Period
40ns~2000s
Pulse Width
20ns~1999.9s
Overshoot
<5%
Jitter
20ppm +10ns
AM Modulation
Carrier
Sine, Square, Ramp, Pulse,Arb
Waveforms
Modulating
Sine, Square, Triangle,Upramp, Dnramp
Waveforms
Modulating
2mHz to 20kHz (Int), DC to 20kHz (Ext)
Frequency
Depth
0% to 120.0%
Source
Internal / External
FM Modulation
Carrier
Sine, Square, Ramp,
Waveforms
Modulating
Sine, Square, Triangle,Upramp, Dnramp
Waveforms
Modulating
2mHz to 20kHz (Int),DC to 20kHz (Ext)
Frequency
Peak Deviation DC to Max Frequency
Source
Internal / External
Sweep
Waveforms
Sine, Square, Ramp,
Type
Linear or Logarithmic
Start/Stop Freq 1uHz to Max Frequency
211
Sweep Time
Source
1ms to 500s
Internal / External/Manual
Carrier
Waveforms
Modulating
Waveforms
Modulation
Rate
Frequency
Range
Source
Sine, Square, Ramp,Pulse
Carrier
Waveforms
Modulating
Waveforms
Modulation
Frequency
Phase
deviation
Source
Sine, Square, Ramp
FSK
50% duty cycle square
2mHz to 100 kHz (INT) ,DC to 100 kHz(EXT)
1uHz to Max Frequency
Internal / External
PM
Sine, Square, Triangle,Upramp, Dnramp
2mHz to 20kHz (Int),DC to 20kHz (Ext)
0˚ to 360˚
Internal / External
SUM
Carrier
Sine, Square, Ramp,Pulse,Noise
Waveforms
Modulating
Sine, Square, Triangle,Upramp,Dnramp
Waveforms
Modulation
2mHz to 20kHz (Int),DC to 20kHz (Ext)
Frequency
SUM Depth
0% to 100.0%
Source
Internal / External
External Trigger Input
Type
For FSK, Burst, Sweep
Input Level
TTL Compatibility
Slope
Rising or Falling(Selectable)
Pulse Width
>100ns
Input Impedance 10kΩ,DC coupled
External Modulation Input
Type
For AM, FM, PM, SUM
Voltage Range
±5V full scale
Input Impedance 10kΩ
Frequency
DC to 20kHz
Trigger Output
Type
For Burst, Sweep, Arb
Level
TTL Compatible into 50Ω
Pulse Width
>450ns
Maximum Rate 1MHz
Fan-out
≥4 TTL Load
Impedance
50Ω Typical
212
Dual Channel Function
Phase
Track
Coupling
Dsolink
CH1
-180˚ ~180˚
Synchronize phase
CH2=CH1
Frequency(Ratio or
Difference)
Amplitude & DC
Offset
√
CH2
-180˚ ~ 180˚
Synchronize phase
CH1=CH2
Frequency(Ratio or
Difference)
Amplitude & DC
Offset
√
Burst
Waveforms
Frequency
Burst Count
Start/Stop Phase
Internal Period
Gate Source
Trigger Source
Trigger Delay
N-Cycle, Infinite
Frequency Counter
Range
Accuracy
Time Base
Sine, Square, Ramp
1uHz~25MHz
1 to 65535 cycles or Infinite
-360 to +360
1ms to 500s
External Trigger
Single, External or Internal Rate
0s to 655350ns
5Hz to 150MHz
Time Base accuracy±1count
±20ppm (23˚C ±5˚C) after 30 minutes warm
up
Resolution
The maximum resolution is:
100nHz for 1Hz, 0.1Hz for 100MHz.
Input Impedance 1kΩ/1pf
Sensitivity
35mVrms ~ 30Vms (5Hz to 150MHz)
Save/Recall
10 Groups of Setting Memories
Interface
USB (Host&Device)
Display
TFT (320 x 240 dots)
General Specifications
Power Source
AC100~240V, 50~60Hz
Power
25 W (Max)
Consumption
Operating
Temperature to satisfy the specification :
Environment
18 ~ 28˚C
Operating temperature :0 ~ 40˚C
Relative Humidity: < 80%, 0 ~ 40˚C
Installation category: CAT II
Operating
2000 Meters
Altitude
Storage
-10~70˚C, Humidity: ≤70%
Temperature
Dimensions
266(W) x 107(H) x 293(D) mm
Weight
Approx. 2.5kg
Accessories
GTL-101× 2
CD (user manual + software) ×1
Power cord×1
213
9-2. External Dimensions Figure
214
9-3. Usage Notes for FGX-2220
At the time of change of the setting by hand operation and external controls in this
instrument, the waiting time in the following table until the next control and the next
operation is enabled is required.
If you want a continuous set and query, please put the weights.
Panel
Preset
Recall
Waveform
ARB
FREQ
AMPL
Offset
OUTPUT
MOD
Sweep
Burst
INT/EXT
Other
Command
SOUR[1|2]:APPL
Setting
Apply
SOUR[1|2]:FUNC
Function
SOUR[1|2]:FREQ
SOUR[1|2]:AMP
SOUR[1|2]:DCO
OUTP[1|2]
SOUR[1|2]:AM
SOUR[1|2]:FM
SOUR[1|2]:FSK
SOUR[1|2]:PM
SOUR[1|2]:SUM
SOUR[1|2]:SWE
SOUR[1|2]:BURS
SOUR[1|2]:**:SOUR
Setting Commands
Common Commands
Frequency
Amplitude
DC Offset
OUTPUT ON/OFF
Modulation
200ms
100ms
100ms
100ms
1000ms
Sweep mode
Burst mode
Input modulation
Other setting
SCPI command
1000ms
1000ms
200ms
100ms
0ms
215
Wait time(typ)
1500ms
500ms
7F Towa Fudosan Shin Yokohama Bldg.
2-18-7, Shin Yokohama, Kohoku-ku,Yokohama, Kanagawa, 222-0033 Japan
http://www.texio.co.jp/
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertisement