FGX-2220 INSTRUCTION MANUAL


Add to my manuals
229 Pages

advertisement

FGX-2220 INSTRUCTION MANUAL | Manualzz

INSTRUCTION MANUAL

ARBITRARY FUNCTION GENERATOR

FGX-2220

B71-0406-01

About Brands and Trademarks

“TEXIO” is the product brand name of our industrial electronic devices.

All company names and product names mentioned in this manual are the trademark or the registered trademark of each company or group in each country and region.

About the Instruction Manual

Permission from the copyright holder is needed to reprint the contents of this manual, in whole or in part. Be aware that the product specifications and the contents of this manual are subject to change for the purpose of improvement.

CONTENTS

USING THE PRODUCT SAFELY ·········································· Ⅰ -Ⅳ

1 GETTING STARTED ................................................................ 1

1-2. Panel Overview ................................................................. 2

1-3. Setting Up the function Generator ..................................... 6

2. QUICK REFERENCE .............................................................. 7

2-1. How to use the Digital Inputs ............................................. 7

2-2. How to use the Help Menu ................................................ 8

2-3. Selecting a Waveform ....................................................... 9

2-3-1. Square Wave ......................................................................................... 9

2-3-2. Ramp Wave ......................................................................................... 10

2-3-3. Sine Wave ........................................................................................... 10

2-4. Modulation ...................................................................... 10

2-4-1. AM ....................................................................................................... 10

2-4-2. FM ....................................................................................................... 11

2-4-3. FSK Modulation ................................................................................... 11

2-4-4. PM Modulation ..................................................................................... 12

2-4-5. SUM Modulation .................................................................................. 13

2-5. Sweep ............................................................................ 13

2-6. Burst .............................................................................. 14

2-7. ARB ................................................................................ 15

2-7-1. ARB –Add Built-In Waveform................................................................ 15

2-7-2. ARB- Add Point .................................................................................... 15

2-7-3. ARB- Add Line ..................................................................................... 15

2-7-4. ARB

– Output Section ........................................................................... 16

2-8. Utility Menu .................................................................... 16

2-8-1. Save .................................................................................................... 16

2-8-2. Recall ................................................................................................... 17

2-9. Frequency Counter ......................................................... 17

2-9-1. Frequency Counter .............................................................................. 17

2-10. Coupling ....................................................................... 17

2-10-1. Frequency Coupling ........................................................................... 17

2-10-2. Amplitude Coupling ............................................................................ 18

2-11. Tracking ........................................................................ 18

2-12. Menu Tree .................................................................... 19

2-12-1. Waveform .......................................................................................... 19

2-12-2. ARB-Display ...................................................................................... 19

2-12-3. ARB-Edit ............................................................................................ 20

2-12-4. ARB- Built In ...................................................................................... 20

2-12-5. ARB-Save .......................................................................................... 21

2-12-6. ARB-Load .......................................................................................... 21

2-12-7. ARB-Output ....................................................................................... 22

2-12-8. MOD .................................................................................................. 22

2-12-9. SWEEP .............................................................................................. 23

2-12-10. SWEEP- More ................................................................................. 23

2-12-11. Burst- N Cycle .................................................................................. 24

2-12-12. Burst – Gate ..................................................................................... 24

2-12-13. UTIL ................................................................................................. 25

2-12-14. CH1/CH2 ......................................................................................... 25

2-13. Default Settings ............................................................ 25

3. OPERATION ........................................................................ 27

3-1. Select a Waveform .......................................................... 27

3-1-1. Sine Wave ........................................................................................... 27

3-1-2. Square Wave ....................................................................................... 27

3-1-3. Setting the Pulse Width ....................................................................... 28

3-1-4. Setting a Ramp Waveform ................................................................... 30

3-1-5. Selecting a Noise Waveform................................................................ 31

3-1-6.Setting the Frequency ........................................................................... 32

3-1-7. Setting the Amplitude ........................................................................... 33

3-1-8. Setting the DC Offset ........................................................................... 34

4. MODULATION ...................................................................... 35

4-1. Amplitude Modulation (AM) ............................................. 35

4-1-1. Selecting AM Modulation ..................................................................... 36

4-1-2. AM Carrier Shape ................................................................................ 36

4-1-3. Carrier Frequency ................................................................................ 37

4-1-4. Modulating Wave Shape ...................................................................... 38

4-1-5. AM Frequency ..................................................................................... 39

4-1-6. Modulation Depth ................................................................................. 40

4-1-7. Selecting the (AM) Modulation Source ................................................ 41

4-2. Frequency Modulation (FM) ............................................. 42

4-2-1. Selecting Frequency Modulation (FM) ................................................. 43

4-2-2. FMCarrier Shape ................................................................................. 43

4-2-3. FM Carrier Frequency .......................................................................... 43

4-2-4. FM Wave Shape .................................................................................. 45

4-2-5. FM Frequency ...................................................................................... 46

4-2-6. Frequency Deviation ............................................................................ 47

4-2-7. Selecting (FM) Modulation Source ....................................................... 48

4-3. Frequency Shift Keying (FSK) Modulation ........................ 49

4-3-1. Selecting FSK Modulation.................................................................... 50

4-3-2. FSK Carrier Shape .............................................................................. 50

4-3-3. FSK Carrier Frequency ........................................................................ 50

4-3-4. FSK Hop Frequency ............................................................................ 51

4-3-5. FSK Rate ............................................................................................. 53

4-3-6. FSK Source ......................................................................................... 54

4-4. Phase Modulation (PM) ................................................... 55

4-4-1. Selecting Phase Modulation (PM) ........................................................ 55

4-4-2. PM Carrier Waveform .......................................................................... 56

4-4-3. PM Carrier Frequency ......................................................................... 56

4-4-4. PM Wave Shape .................................................................................. 57

4-4-5. PM Frequency ..................................................................................... 58

4-4-6. Phase Deviation ................................................................................... 59

4-4-7. Select the PM Source .......................................................................... 60

4-5. SUM modulation ............................................................. 61

4-5-1. Selecting SUM modulation................................................................... 61

4-5-2. SUM Carrier Waveform ....................................................................... 62

4-5-3. SUM Carrier Frequency ....................................................................... 62

4-5-4. SUM Waveform ................................................................................... 63

4-5-5. Modulating Waveform Frequency ........................................................ 64

4-5-6. SUM Amplitude .................................................................................... 65

4-5-7. Select the SUM Amplitude Source ....................................................... 66

4-6. Frequency Sweep ........................................................... 67

4-6-1. Selecting Sweep Mode ........................................................................ 68

4-6-2. Setting Start and Stop Frequency ........................................................ 68

4-6-3. Center Frequency and Span ................................................................ 69

4-6-4. Sweep Mode ........................................................................................ 71

4-6-5. Sweep Time ......................................................................................... 72

4-6-6. Marker Frequency ................................................................................ 73

4-6-7. Sweep Trigger Source ......................................................................... 74

4-7. Burst Mode ..................................................................... 75

4-7-1. Selecting Burst Mode ........................................................................... 75

4-7-2. Burst Modes......................................................................................... 76

4-7-3. Burst Frequency .................................................................................. 76

4-7-4. Burst Cycle/Burst Count ...................................................................... 77

4-7-5. Infinite Burst Count .............................................................................. 79

4-7-6. Burst Period ......................................................................................... 79

4-7-7. Burst Phase ......................................................................................... 80

4-7-8. Burst Trigger Source ............................................................................ 82

4-7-9. Burst Delay .......................................................................................... 83

4-7-10. Burst Trigger Output .......................................................................... 84

5. SECONDARY SYSTEM FUNCTION SETTINGS .................... 86

5-1. Save and Recall .............................................................. 86

5-2. System and Settings ....................................................... 89

5-2-1. Viewing and Updating the Firmware .................................................... 89

5-2-2. Setting the Buzzer Sound .................................................................... 89

5-2-3. Frequency Counter .............................................................................. 90

5-3. Dual channel Settings ..................................................... 91

5-3-1. Frequency Coupling ............................................................................. 91

5-3-2. Amplitude Coupling .............................................................................. 92

5-3-3. Tracking ............................................................................................... 93

6. CHANNEL SETTINGS .......................................................... 94

6-1. Output Impedance........................................................... 94

6-2. Selecting the Output Phase ............................................. 95

6-3. Synchronizing the Phase ................................................. 96

6-4. DSO Link ........................................................................ 96

7. ARBITRARY WAVEFORMS ................................................... 98

7-1. Inserting Built-In Waveforms ........................................... 98

7-1-1. Create an AbsAtan Waveform ............................................................. 98

7-1-2. Built-in Waveform ................................................................................ 99

7-2. Display an Arbitrary Waveform .......................................100

7-2-1. Set the Horizontal Display Range ...................................................... 100

7-2-2. Set the Vertical Display Properties .................................................... 101

7-2-3. Page Navigation (Back Page) ............................................................ 103

7-2-4. Page Navigation (Next Page) ............................................................ 104

7-2-5. Display ............................................................................................... 106

7-3. Editing an Arbitrary Wavefrom ........................................106

7-3-1. Adding a Point to an Arbitrary Waveform ........................................... 106

7-3-2. Adding a Line to an Arbitrary Waveform ............................................ 108

7-3-3. Copy a Waveform .............................................................................. 110

7-3-4. Clear the Waveform ........................................................................... 111

7-3-5.ARB Protection ................................................................................... 113

7-4.Ouput an Arbitrary Waveform .......................................... 115

7-4-1. Ouput Arbitrary Waveform ................................................................. 115

7-5. Saving/Loading an Arbitrary Waveform ........................... 116

7-5-1. Saving a Waveform to Internal Memory ............................................. 116

7-5-2. Saving a Waveform to USB Memory ................................................. 118

7-5-3. Load a Waveform from Internal Memory ........................................... 120

7-5-4. Load a Waveform from USB .............................................................. 122

8. REMOTE INTERFACE .........................................................125

8-1. Establishing a Remote Connection .................................125

8-1-1. Configure USB interface .................................................................... 125

8-1-2. Remote control terminal connection .................................................. 125

8-1-3. Command Syntax .............................................................................. 126

8-2. Command List ................................................................130

8-3. System Commands ........................................................133

8-3-1. SYSTem:ERRor? ............................................................................... 133

8-3-2. *IDN? ................................................................................................. 133

8-3-3. *RST .................................................................................................. 133

8-3-4. SYSTem:VERSion? ........................................................................... 134

8-3-5. *OPC ................................................................................................. 134

8-3-6. *OPC? ............................................................................................... 135

8-4. Status Register Commands ............................................135

8-4-1. *CLS .................................................................................................. 135

8-4-2. *ESE .................................................................................................. 135

8-4-3. *ESR? ................................................................................................ 136

8-4-4. *STB? ................................................................................................ 136

8-4-5. *SRE .................................................................................................. 137

8-5. System Remote Commands ...........................................137

8-5-1. SYSTem:LOCal ................................................................................. 137

8-5-2. SYSTem:REMote .............................................................................. 138

8-6. Apply Commands ...........................................................138

8-6-1. SOURce[1|2]:APPLy:SINusoid .......................................................... 139

8-6-2. SOURce[1|2]:APPLy:SQUare ............................................................ 140

8-6-3. SOURce[1|2]:APPLy:RAMP .............................................................. 140

8-6-4. SOURce[1|2]:APPLy:PULSe ............................................................. 141

8-6-5. SOURce[1|2]:APPLy:NOISe .............................................................. 141

8-6-6. SOURce[1|2]:APPLy:USER ............................................................... 142

8-6-7. SOURce[1|2]:APPLy? ........................................................................ 142

8-7. Output Commands .........................................................142

8-7-1. SOURce[1|2]:FUNCtion ..................................................................... 143

8-7-2. SOURce[1|2]:FREQuency ................................................................. 144

8-7-3. SOURce[1|2]:AMPlitude .................................................................... 145

8-7-4. SOURce[1|2]:DCOffset ...................................................................... 146

8-7-5. SOURce[1|2]:SQUare:DCYCle .......................................................... 147

8-7-6. SOURce[1|2]:RAMP:SYMMetry ......................................................... 147

8-7-7. OUTPut[1|2] ....................................................................................... 148

8-7-8. OUTPut[1|2]:LOAD ............................................................................ 149

8-7-9. SOURce[1|2]:VOLTage:UNIT ............................................................ 149

8-8. Pulse Configuration Commands......................................150

8-8-1. SOURce[1|2]:PULSe:PERiod ............................................................ 150

8-8-2. SOURce[1|2]:PULSe:WIDTh ............................................................. 151

8-9. Amplitude Modulation (AM) Commands ..........................152

8-9-1. AM Overview ..................................................................................... 152

8-9-2. SOURce[1|2]:AM:STATe ................................................................... 153

8-9-3. SOURce[1|2]:AM:SOURce ................................................................ 153

8-9-4. SOURce[1|2]:AM:INTernal:FUNCtion ................................................ 154

8-9-5. SOURce[1|2]:AM:INTernal:FREQuency ............................................ 154

8-9-6. SOURce[1|2]:AM:DEPTh ................................................................... 155

8-10. Frequency Modulation (FM) Commands ........................156

8-10-1. FM Overview .................................................................................... 156

8-10-2. SOURce[1|2]:FM:STATe ................................................................. 156

8-10-3. SOURce[1|2]:FM:SOURce .............................................................. 157

8-10-4. SOURce[1|2]:FM:INTernal:FUNCtion .............................................. 157

8-10-5. SOURce[1|2]:FM:INTernal:FREQuency .......................................... 158

8-10-6. SOURce[1|2]:FM:DEViation ............................................................. 159

8-11. Frequency-Shift Keying (FSK) Commands ....................160

8-11-1. FSK Overview .................................................................................. 160

8-11-2. SOURce[1|2]:FSKey:STATe ............................................................ 160

8-11-3. SOURce[1|2]:FSKey:SOURce ......................................................... 161

8-11-4. SOURce[1|2]:FSKey:FREQuency ................................................... 161

8-11-5. SOURce[1|2]:FSKey:INTernal:RATE ............................................... 162

8-12. Phase Modulation (PM)Commands ...............................163

8-12-1. PM Overview ................................................................................... 163

8-12-2. SOURce[1|2]:PM:STATe ................................................................. 163

8-12-3. SOURce[1|2]:PM:SOURce .............................................................. 164

8-12-4. SOURce[1|2]:PM:INTernal:FUNction ............................................... 164

8-12-5. SOURce[1|2]:PM:INTernal:FREQuency .......................................... 165

8-12-6. SOURce[1|2]:PM:DEViation ............................................................ 166

8-13. SUM Modulation (SUM) Commands ..............................167

8-13-1. SUM Overview ................................................................................. 167

8-13-2. SOURce[1|2]:SUM:STATe ............................................................... 167

8-13-3. SOURce[1|2]:SUM:SOURce ............................................................ 168

8-13-4. SOURce[1|2]:SUM:INTernal:FUNction ............................................ 168

8-13-5.SOURce[1|2]:SUM:INTernal:FREQuency ......................................... 169

8-13-6. SOURce[1|2]:SUM:AMPL ................................................................ 169

8-14. Frequency Sweep Commands ......................................171

8-14-1. Sweep Overview .............................................................................. 171

8-14-2. SOURce[1|2]:SWEep:STATe .......................................................... 172

8-14-3. SOURce[1|2]:FREQuency:STARt .................................................... 172

8-14-4. SOURce[1|2]:FREQuency:STOP .................................................... 173

8-14-5. SOURce[1|2]:FREQuency:CENTer ................................................. 173

8-14-6. SOURce[1|2]:FREQuency:SPAN .................................................... 174

8-14-7. SOURce[1|2]:SWEep:SPACing ....................................................... 175

8-14-8. SOURce[1|2]:SWEep:TIME ............................................................. 175

8-14-9. SOURce[1|2]:SWEep:SOURce ....................................................... 176

8-14-10. SOURce[1|2]:MARKer:FREQuency ............................................... 177

8-14-11. SOURce[1|2]:MARKer ................................................................... 177

8-15. Burst Mode Commands ................................................178

8-15-1. Burst Mode Overview ...................................................................... 178

8-15-2. SOURce[1|2]:BURSt:STATe ............................................................ 179

8-15-3. SOURce[1|2]:BURSt:MODE ............................................................ 180

8-15-4. SOURce[1|2]:BURSt:NCYCles ........................................................ 180

8-15-5. SOURce[1|2]:BURSt:INTernal:PERiod ............................................ 181

8-15-6. SOURce[1|2]:BURSt:PHASe ........................................................... 182

8-15-7. SOURce[1|2]:BURSt:TRIGger:SOURce .......................................... 183

8-15-8. SOURce[1|2]:BURSt:TRIGger:DELay ............................................. 184

8-15-9. SOURce[1|2]:BURSt:TRIGger:SLOPe............................................. 184

8-15-10. SOURce[1|2]:BURSt:GATE:POLarity ............................................ 185

8-15-11. SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe ............................. 185

8-15-12. OUTPut[1|2]:TRIGger .................................................................... 186

8-15-13. SOURce[1|2]:BURSt:TRIGger:MANual ......................................... 187

8-16. Arbitrary Waveform Commands ....................................187

8-16-1. Arbitrary Waveform Overview .......................................................... 187

8-16-2. SOURce[1|2]:FUNCtion USER ........................................................ 188

8-16-3. SOURce[1|2]:DATA:DAC ................................................................. 188

8-16-4. SOURce[1|2]:ARB:EDIT:COPY ....................................................... 189

8-16-5. SOURce[1|2]:ARB:EDIT:DELete ..................................................... 189

8-16-4. SOURce[1|2]:ARB:EDIT:DELete:ALL .............................................. 190

8-16-7. SOURce[1|2]:ARB:EDIT:POINt ....................................................... 190

8-16-8. SOURce[1|2]:ARB:EDIT:LINE ......................................................... 190

8-16-9. SOURce[1|2]:ARB:EDIT:PROTect .................................................. 191

8-16-10. SOURce[1|2]:ARB:EDIT:PROTect:ALL ......................................... 191

8-16-11. SOURce[1|2]:ARB:EDIT:UNProtect ............................................... 191

8-16-12. SOURce[1|2]:ARB:OUTPut ........................................................... 191

8-17. COUNTER Commands .................................................192

8-17-1. COUNTER:STATE .......................................................................... 192

8-17-2. COUNter:GATe ................................................................................ 192

8-17-3. COUNter:VALue? ............................................................................ 193

8-18. PHASE Commands ......................................................193

8-18-1. SOURce[1|2]:PHASe ....................................................................... 193

8-18-2. SOURce[1|2]:PHASe:SYNChronize ................................................ 194

8-19. COUPLE Commands ....................................................194

8-19-1.SOURce[1|2]:FREQuency:COUPle:MODE ...................................... 194

8-19-2. SOURce[1|2]:FREQuency:COUPle:OFFSet .................................... 194

8-19-3. SOURce[1|2]:FREQuency:COUPle:RATio ...................................... 195

8-19-4. SOURce[1|2]:AMPlitude:COUPle:STATe ........................................ 195

8-19-5. SOURce[1|2]:TRACk ....................................................................... 196

8-20. Save and Recall Commands .........................................196

8-20-1. *SAV ................................................................................................ 197

8-20-2. *RCL ................................................................................................ 197

8-20-3. MEMory:STATe:DELete .................................................................. 197

8-20-4. MEMory:STATe:DELete ALL ........................................................... 197

8-21. Error Messages ............................................................198

8-21-1.Command Error Codes ..................................................................... 198

8-21-2.Execution Errors ............................................................................... 199

8-21-3.Query Errors ..................................................................................... 204

8-21-4.Arbitrary Waveform Errors ................................................................ 204

8-22. SCPI Status Register ...................................................205

8-22-1. Register types .................................................................................. 205

8-22-2. FGX-2220 Status System ................................................................ 206

8-22-3. Questionable Status Register .......................................................... 207

8-22-4. Standard Event Status Registers ..................................................... 207

8-22-5. The Status Byte Register ................................................................. 208

8-22-6. Output Queue .................................................................................. 209

8-22-7. Error Queue ..................................................................................... 209

9. APPDENIX ..........................................................................210

9-1. FGX-2220 Specifications ................................................210

9-2. External Dimensions Figure ...........................................214

9-3. Usage Notes for FGX-2220 ............................................215

USING THE PRODUCT SAFELY

Preface

To use the product safely, read instruction manual to the end. Before using this product, understand how to correctly use it. If you read the manuals but you do not understand how to use it, ask us or your local dealer. After you read the manuals, save it so that you can read it anytime as required.

Pictorial indication

The manuals and product show the warning and caution items required to safely use the product. The following pictorial indication is provided .

Pictorial

indication

Some part of this product or the manuals may show this pictorial indication. In this case, if the product is incorrectly used in that part, a serious danger may be brought about on the user's body or the product. To use the part with this pictorial indication, be sure to refer to the manuals.

!

WARNING

If you use the product, ignoring this indication, you may get killed or seriously injured. This indication shows that the warning item to avoid the danger is provided.

!

CAUTION

If you incorrectly use the product, ignoring this indication, you may get slightly injured or the product may be damaged. This indication shows that the caution item to avoid the danger is provided.

Please be informed that we are not responsible for any damages to the user or to the third person, arising from malfunctions or other failures due to wrong use of the product or incorrect operation, except such responsibility for damages as required by law.

I

USING THE PRODUCT SAFELY

!

WARNING

!

CAUTION

Do not remove the product's covers and panels

Never remove the product's covers and panels for any purpose.

Otherwise, the user's electric shock or fire may be incurred.

Warning on using the product

Warning items given below are to avoid danger to user's body and life and avoid the damage or deterioration of the product. Use the product, observing the following warning and caution items.

Warning items on power supply

Power supply voltage

The rated power supply voltages of the product are 100, 120, 220 and

240VAC. The rated power supply voltage for each product should be confirmed by reading the label attached on the back of the product or by the

“rated” column shown in the instruction manual. The specification of power cord attached to the products is rated to 125VAC for all products which are designed to be used in the areas where commercial power supply voltage is not higher than 125VAC. Accordingly, you must change the power cord if you want to use the product at the power supply voltage higher than 125VAC.

If you use the product without changing power cord to 250VAC rated one, electric shock or fire may be caused. When you used the product equipped with power supply voltage switching system, please refer to the corresponding chapter in the instruction manuals of each product.

Power cord

(IMPORTANT) The attached power cord set can be used for this device only.

If the attached power cord is damaged, stop using the product and call us or your local dealer. If the power cord is used without the damage being removed, an electric shock or fire may be caused.

Protective fuse

If an input protective fuse is blown, the product does not operate. For a product with external fuse holder, the fuse may be replaced. As for how to replace the fuse, refer to the corresponding chapter in the instruction manual. If no fuse replacement procedures are indicated, the user is not permitted to replace it. In such case, keep the case closed and consult us or your local dealer. If the fuse is incorrectly replaced, a fire may occur.

II

USING THE PRODUCT SAFELY

Warning item on Grounding

If the product has the GND terminal on the front or rear panel surface, be sure to ground the product to safely use it.

Warnings on Installation environment

Operating temperature and humidity

Use the product within the oper ating temperature indicated in the “rating” temperature column. If the product is used with the vents of the product blocked or in high ambient temperatures, a fire may occur. Use the product within the operating humidity indicated in the “rating” humidity column.

Watch out for condensation by a sharp humidity change such as transfer to a room with a different humidity. Also, do not operate the product with wet hands. Otherwise, an electric shock or fire may occur.

Use in gas

Use in and around a place where an inflammable or explosive gas or steam is generated or stored may result in an explosion and fire. Do not operate the product in such an environment. Also, use in and around a place where a corrosive gas is generated or spreading causes a serious damage to the product. Do not operate the product in such an environment.

Installation place

Do not insert metal and inflammable materials into the product from its vent and spill water on it. Otherwise, electric shock or fire may occur.

Do not let foreign matter in

Do not insert metal and inflammable materials into the product from its vent and spill water on it. Otherwise, electric shock or fire may occur.

Warning item on abnormality while in use

If smoke or fire is generated from the product while in use, stop using the product, turn off the switch, and remove the power cord plug from the outlet.

After confirming that no other devices catch fire, ask us or your local dealer.

III

USING THE PRODUCT SAFELY

Input / Output terminals

Maximum input to terminal is specified to prevent the product from being damaged. Do not supply input, exceeding the specifications that are indicated in the "Rating" column in the instruction manual of the product. Also, do not supply power to the output terminals from the outside. Otherwise, a product failure is caused.

■ Calibration

Although the performance and specifications of the product are checked under strict quality control during shipment from the factory, they may be deviated more or less by deterioration of parts due to their aging or others.

It is recommended to periodically calibrate the product so that it is used with its performance and specifications stable. For consultation about the product calibration, ask us or your local dealer.

■ Daily Maintenance

When you clean off the dirt of the product covers, panels, and knobs, avoid solvents such as thinner and benzene. Otherwise, the paint may peel off or resin surface may be affected. To wipe off the covers, panels, and knobs, use a soft cloth with neutral detergent in it.

During cleaning, be careful that water, detergents, or other foreign matters do not get into the product.

If a liquid or metal gets into the product, an electric shock and fire are caused.

During cleaning, remove the power cord plug from the outlet.

Use the product correctly and safely, observing the above warning and caution items. Because the instruction manual indicates caution items even in individual items, observe those caution items to correctly use the product.

If you have questions or comments about the manuals, ask us or E-Mail us.

IV

1 GETTING STARTED

Th e Getting started chapter introduces the function generator’s main features, appearance, set up procedure and power-up.

1-1. Main Features

Model name

FGX-2220

Performance

Features

Interface

Frequency bandwidth

1μHz~20MHz

DDS Function Generator series

1μHz high frequency resolution maintained at full range

20ppm frequency stability

Arbitrary Waveform Capability

120 MSa/s sample rate

60 MSa/s repetition rate

4k-point waveform length

10 groups of 4k waveform memories

True waveform output to display

User-defined output section

DWR (Direct Waveform Reconstruction) capability

Waveform editing via PC

Sine, Square, Ramp, Pulse, Noise, standard waveforms

Internal and external LIN/LOG sweep with marker output

Int/Ext AM, FM, PM, FSK, SUM modulation

Burst function with internal and external triggers without marker output

Store/recall 10 groups of setting memories

Output overload protection

USB interface as standard

3.5 inch Color TFT LCD (320 X 240) graphical user interface

AWES (Arbitrary Waveform Editing Software) PC software

1

1-2. Panel Overview

Front Panel

LCD

Display

Function keys, Scroll

Return key Wheel

Arrow keys

Output

Terminals

/

Channel select key

LCD Display

Function Keys

F1~F5

Number pad Operation keys Output key

Power switch

TFT color display, 320 x 240 resolution.

F1

Activates functions which appear on the right-hand side of the LCD display.

Return Key

Return

Goes back to the previous menu level.

Operation Keys

Waveform

The waveform key is used to select a type of waveform.

FREQ/Rate

The FREQ/Rate key is used to set the frequency or sample rate.

AMPL sets the waveform amplitude.

AMP

Sets the DC offset.

DC Offset

UTIL

The UTIL key is used to access the save and recall options, update and view the firmware version, access the calibration options, output impedance settings and frequency meter.

ARB

ARB is used to set the arbitrary waveform parameters.

2

Preset Key

Output Key

Channel Select

Key

Output ports

MOD

The MOD, Sweep and Burst keys are used to set the modulation, sweep and burst settings and parameters.

Sweep

Burst

Preset

The preset key is used to recall a preset state.

OUTPUT

CH1/CH2

The Output key is used to turn on or off the waveform output.

The channel select key is used to switch between the two output channels.

OUTPUT

CH1

CH1: Channel 1 output port

CH2: Channel 2 output port

50 Ω

CH2

Power Button

50 Ω

Turns the power on or off.

Arrow Keys

Scroll Wheel

Keypad

7

4

1

0

8

5

2

Used to select digits when editing parameters.

The scroll wheel is used to edit values and parameters.

9

6

3

/

Decrease Increase

The digital keypad is used to enter values and parameters. The keypad is often used in conjunction with the arrow keys and variable knob.

3

Rear Panel

Power socket input Fan Input Terminals

USB Host port

Trigger Input

IN

USB Device port

Trigger MOD

Trigger output

External trigger input. Used to receive external trigger signals.

Trigger Output

OUT

Trigger

Trigger

IN

Counter

MOD Marker output signal. Used for Sweep and ARB mode only.

Fan

OUT

Trigger Counter

Fan.

Power Input

Socket

USB Host

Power input: 100~240V AC

50~60Hz.

AC 100-240V

50-60Hz 25W MAX

Host USB type-A host port.

4

USB Device Port

Counter Input

IN

Device

Trigger

USB type-B device port is used to connect the function generator to a PC for remote control.

MOD Frequency counter input.

MOD Input

OUT

Trigger

Trigger

IN

Counter

MOD Modulation input terminal.

OUT

Trigger Counter

Display

Status Tabs

Parameter

Windows

Soft Menu

Keys

Waveform

Display

Parameter

Windows

Status Tabs

The Parameter display and edit window.

Displays the current channel and setting status.

Waveform Display Used to display the waveform

Soft Menu Keys The function keys (F1~F5) beside the Soft Menu keys correspond to the soft keys.

5

1-3. Setting Up the function Generator

Background

Adjusting the

Handle

This section describes how to adjust the handle and power up the function generator.

Pull out the handle sideways and rotate it.

A F G -2 2 2 5

/ 

Place the FGX-2220 horizontally,

Or tilt the stand.

Place the handle vertically to hand carry.

Power Up 1. Connect the power cord to the socket on the rear panel.

2. Turn on the power switch on the front panel.

3. When the power switch is turned on the screen displays the loading screen.

The function generator is now ready to be used.

6

2. QUICK REFERENCE

This chapter describes the operation shortcuts, built-in help and factory default settings. This chapter is to be used as a quick reference, for detailed explanations on parameters, settings and limitations, please see the operation chapters

2-1. How to use the Digital Input

s

Background The FGX-2220 has three main types of digital inputs: the number pad, arrow keys and scroll wheel. The following instructions will show you how to use the digital inputs to edit parameters.

1. To select a menu item, press the corresponding function keys below (F1~F5). For example the function key F1 corresponds to the Soft key

“Sine”.

2. To edit a digital value, use the arrow keys to move the cursor to the digit that needs to be edited.

3. Use the scroll wheel to edit the parameter. Clockwise increases the value, counter clockwise decreases the value.

4. Alternatively, the number pad can be used to set the value of a highlighted parameter. 4 5 6

1 2 3

0 /

7

2-2. How to use the Help Menu

Background Every key and function has a detailed description in the help menu.

1. Press UTIL

UTIL

2. Press System (F3)

System F3

3. Press Help (F2)

Help F2

4. Use the scroll wheel to navigate to a help item. Press Select to choose the item.

Keypad Provides help on any front panel key that is pressed.

Provides help on creating arbitrary Create Arbitrary

Waveform

Modulation waveforms.

Explains how to create Modulated

Function waveforms.

Sweep Function Provides help on the Sweep function.

Burst Function Provides help on the Burst

DSO Link function.

Provides help on DSO link.

5. For example, select item 4 to see help on the sweep functions.

8

6. Use the scroll wheel to navigate the help information.

7. Press Return to return to the previous menu.

2-3. Selecting a Waveform

2-3-1. Square Wave

Example: Square wave, 3Vpp, 75% duty cycle, 1kHz.

Output:

CH1

1. Press Waveform and select Square (F2).

Waveform

2. Press Duty (F1), 7 + 5 +

%(F2).

Duty

50 Ω

Input: N/A 3. Press Freq/Rate, 1 + kHz (F4).

FREQ/Rate

4. Press AMPL followed by, 3 + VPP (F5).

AMPL

1

3

Return

Square

7 5 kHz

VPP

%

5. Press the Output key. OUTPUT

9

2-3-2. Ramp Wave

Example: Ramp Wave, 5Vpp, 10kHz, 50% Symmetry.

Output:

CH1

1. Press the Waveform key, and select Ramp

(F4).

Waveform

50 Ω

2. Press SYM(F1), 5 + 0

+%(F2).

SYM

Input: N/A

FREQ/Rate

3. Press the Freq/Rate key then 1 + 0 + kHz (F4).

4. Press the AMPL key then 5 +VPP (F5).

5. Press the Output key.

AMPL

OUTPUT

Ramp

5

1

5

0

0

VPP

% kHz

2-3-3. Sine Wave

Example: Sine Wave, 10Vpp,100kHz

Output:

CH1

1. Press the Waveform key and select Sine (F1).

50 Ω

Input: N/A

2. Press the Freq/Rate key, followed by 1 + 0 +0 + kHz (F4).

3. Press the AMPL key, followed by 1 + 0 +VPP

Waveform

FREQ/Rate

AMPL

(F5).

4. Press the output key. OUTPUT

1

1

Sine

0

0

2-4. Modulation

0

VPP kHz

2-4-1. AM

Example: AM modulation. 100Hz modulating square wave. 1kHz Sine wave carrier. 80% modulation depth.

Output:

CH1

1. Press the MOD key and select AM (F1).

MOD AM

2. Press Waveform and select Sine (F1).

Waveform Sine

50 Ω

Input: N/A 3. Press the Freq/Rate key, followed by 1 + kHz

(F4).

FREQ/Rate

1 kHz

4. Press the MOD key, select AM (F1), Shape

(F4), Square (F2).

MOD

Square

AM Shape

MOD AM AM Freq

5. Press the MOD key, select AM (F1), AM Freq

(F3).

6. Press 1 + 0 + 0 + Hz

(F2).

1 0 0

Hz

10

7. Press the MOD key, select AM (F1), Depth

(F2).

8. Press 8 + 0 + % (F1).

8

MOD

0

AM

%

Depth

9. Press MOD, AM (F1),

Source (F1), INT (F1).

MOD AM Source

10. Press the output key.

INT

OUTPUT

2-4-2. FM

Example: FM modulation. 100Hz modulating square wave. 1kHz Sine wave carrier. 100 Hz frequency deviation. Internal Source.

Output:

CH1

1. Press the MOD key and select FM (F2).

MOD

2. Press Waveform and select Sine (F1).

Waveform

50 Ω

Input: N/A 3. Press the Freq/Rate key, followed by 1 + kHz

(F4).

FREQ/Rate

4. Press the MOD key, select FM (F2), Shape

(F4), Square (F2).

MOD

Square

1

FM

Sine

FM kHz

Shape

MOD FM FM Freq

5. Press the MOD key, select FM (F2), FM Freq

(F3).

6. Press 1 + 0 + 0 + Hz

(F2).

1 0 0

Hz

7. Press the MOD key, select FM (F2), Freq

Dev (F2).

MOD FM Freq Dev

1 0 0

Hz

8. Press 1 + 0 + 0 + Hz

(F3).

9. Press MOD, FM (F2),

Source (F1), INT (F1).

MOD FM Source

10. Press the Output key.

INT

OUTPUT

2-4-3. FSK Modulation

Example: FSK modulation. 100Hz Hop frequency. 1kHz Carrier wave. Sine wave. 10 Hz Rate. Internal Source.

Output:

CH1

1. Press the MOD key and select FSK (F3).

MOD FSK

2. Press Waveform and select Sine (F1).

Waveform Sine

50 Ω

11

Input: N/A 3. Press the Freq/Rate key, followed by 1 + kHz

(F4).

FREQ/Rate

4. Press the MOD key, select FSK (F3), FSK

MOD

Rate (F3).

5. Press 1 + 0 + Hz (F2).

1 0

1

FSK

Hz kHz

FSK Rate

6. Press the MOD key, select FSK (F3), Hop

Freq (F2).

7. Press 1 + 0 + 0 + Hz

(F3).

8. Press MOD, FSK (F3),

Source (F1), INT (F1).

1

MOD

MOD

0 0

FSK

FSK

Hop Freq

Hz

Source

9. Press the output key.

INT

OUTPUT

2-4-4. PM Modulation

Example: PM modulation. 800Hz sinusoidal carrier wave. 15 kHz modulating sine wave. 50˚ phase deviation. Internal Source.

Output:

CH1

1. Press Waveform and select Sine (F1).

Waveform Sine

2. Press the MOD key and select PM (F4).

MOD PM

50 Ω

Input: N/A 3. Press the Freq/Rate key, followed by 8 + 0 +

0 + Hz (F3).

FREQ/Rate

8 0 0

Hz

4. Press the MOD key, select PM (F4), Shape

(F4), Sine (F1).

MOD

Sine

PM Shape

5. Press MOD, then PM

(F4), PM Freq (F3).

MOD

6. Press 1 + 5 + kHz (F3).

1 5

PM kHz

PM Freq

MOD PM PM Dev

7. Press MOD, PM (F4),

PM Dev (F2).

8. Press 5 + 0 + Degree

(F1).

9. Press MOD, PM (F4),

Source (F1), INT (F1).

5

MOD

0

Degree

PM Source

10. Press the Output key.

INT

OUTPUT

12

2-4-5. SUM Modulation

Example: SUM modulation. 100Hz modulating square wave, 1kHz sinusoidal carrier wave, 50% SUM amplitude, internal source.

Output:

CH1

1. Press the MOD key, then SUM (F5).

MOD SUM

2. Press Waveform, and select Sine (F1).

Waveform Sine

50 Ω

Input: N/A

FREQ/Rate

1 kHz

3. Press Freq/Rate followed by 1 + kHz

(F4).

4. Press the MOD key,

SUM (F5), Shape (F4),

Square (F2).

MOD

Square

SUM Shape

5. Press the MOD key and select SUM (F5), SUM

Freq (F3).

MOD SUM SUM Freq

6. Press 1 + 0 + 0 + Hz

(F2).

7. Press the MOD key and select SUM (F5), SUM

Ampl (F2).

8. Press 5 + 0 + % (F1).

1

5

MOD

0

0

0

SUM

%

Hz

SUM Ampl

9. Press MOD, SUM (F5),

Source (F1), INT (F1).

MOD SUM Source

10. Press the Output key.

INT

OUTPUT

2-5. Sweep

Example: Frequency Sweep. Start Frequency 10mHz, Stop frequency 1MHz.

Log sweep, 1 second sweep, Marker Frequency 550 Hz, Manual Trigger.

Output:

CH1

1. Press Sweep, Start (F3).

MOD START

2. Press 1 + 0 + mHz (F2).

1 0 mHz

50 Ω

3. Press Sweep, Stop (F4).

Sweep Stop

Input: N/A 4. Press 1 + MHz (F5).

1

Sweep

MHz

Type Log

5. Press Sweep, Type

(F2), Log (F2).

6. Press Sweep, More

(F5), SWP Time (F1).

7. Press 1 + SEC (F2).

Sweep

1

SEC

More SWP Time

13

8. Press Sweep, More

(F5), Marker (F4),

ON/OFF (F2), Freq (F1).

Sweep

ON/OFF

More

Freq

Marker

9. Press 5 + 5 + 0 + Hz

(F3).

10. Press the Output key.

5 5 0

Hz

11. Press Sweep, Source

(F1), Manual (F3),

Trigger (F1).

OUTPUT

Sweep Source

Trigger

Manual

2-6. Burst

Example: Burst Mode, N-Cycle (Internally triggered), 1kHz burst frequency,

Burst count = 5, 10 ms Burst period, 0˚ burst phase, Internal trigger, 10 us delay, rising edge trigger out

Output:

CH1

1. Press FREQ/Rate 1 kHz

(F4).

FREQ/Rate

1 kHz

2. Press Burst, N Cycle

(F1), Cycles (F1).

Burst N Cycle Cycles

50 Ω

Input: N/A 3. Press 5 + Cyc (F2).

5

Cyc

4. Press Burst, N Cycle

(F1), Period (F4).

5. Press 1 +0 + msec (F2).

1

Burst

0

N Cycle mSEC

Period

6. Press Burst, N Cycle

(F1), Phase (F3).

Burst N Cycle

7. Press 0 + Degree (F2).

0

Degree

8. Press Burst, N Cycle

(F1), TRIG set (F5), INT

(F1).

Burst

INT

N Cycle

9. Press Burst, N Cycle

(F1), TRIG set (F5),

Delay (F4).

Burst

Delay

N Cycle

10. Press 1 + 0 + uSEC

(F2).

1 0 uSEC

Phase

TRIG set

TRIG set

Burst N Cycle TRIG set

11. Press Burst, N Cycle

(F1), TRIG set (F5),

TRIG out (F5), ON/OFF

(F3), Rise (F1).

12. Press the Output key.

TRIG out

OUTPUT

ON/OFF Rise

14

2-7. ARB

2-7-1. ARB –Add Built-In Waveform

Example: ARB Mode, Exponential Rise. Start 0, Length 100, Scale 327.

Output:

CH1

Output:

CH1

50 Ω

Built in

Select

Wave

2. Press Start (F1), 0 +

Enter (F2), Return.

Start

0

3. Press Length (F2), 100,

Enter (F2), Return.

Length

Return

1

4. Press Scale (F3), 327,

Enter (F2), Return,

Done (F5).

Scale

Return

3

Done

0

2

Enter

0

7

2-7-2. ARB- Add Point

Example: ARB Mode, Add point, Address 40, data 300.

Return

Enter

Enter

50 Ω

1. Press ARB, Built in (F3),

Wave (F4), Math(F2), use the scroll wheel to select Exporise and then press Select(F5).

ARB

Math

1. Press ARB, Edit (F2),

Point (F1), Address (F1)

ARB

Adress

Edit

2. Press 4 + 0 + Enter (F2),

Return

4 0

Enter

Point

Return

3. Press Data (F2), 3+0+0,

Enter (F2).

2-7-3. ARB- Add Line

Data

3

Example: ARB Mode, Add line, Address:Data (10:30, 50:100)

0 0

Output:

CH1

50 Ω

1. Press ARB, Edit (F2),

Line (F2), Start ADD

(F1).

2. Press 1 + 0 + Enter (F2),

Return.

1

15

ARB

Start ADD

Edit

0

Enter

Line

Enter

Return

3. Press Start Data (F2), 3

+ 0, Enter (F2), Return.

Start Data

Return

3 0

Enter

4. Press Stop ADD (F3), 5

+ 0, Enter (F2), Return.

Stop ADD

Return

5 0

Enter

5. Press Stop Data (F4), 1

+ 0 + 0, Enter (F2),

Return, Done (F5).

Stop Data

Enter

2-7-4. ARB – Output Section

1 0

Return

0

Done

Example: ARB Mode, Output ARB Waveform, Start 0, Length 1000.

Output:

CH1

1. Press ARB, Output (F4).

ARB Output

50 Ω

2. Press Start (F1), 0 +

Enter (F2), Return.

Start

Return

0

2-8. Utility Menu

2-8-1. Save

3. Press Length (F2), 1 + 0

+ 0, Enter (F2), Return.

Length

Enter

Example: Save to Memory file #5.

Enter

1 0

Return

0

UTIL Memory Store

1. Press UTIL, Memory

(F1), Store (F1).

2. Choose a setting using the scroll wheel and press Done (F5).

Done

16

2-8-2. Recall

Example: Recall Memory file #5.

1. Press UTIL, Memory

(F1), Recall (F2).

2. Choose a setting using the scroll wheel and press Done (F5).

UTIL Memory Recall

Done

2-9. Frequency Counter

2-9-1. Frequency Counter

Example: Turn on the frequency counter. Gate time: 1 second.

Output: N/A 1. Press UTIL, Counter

(F5).

UTIL Counter

Input:

Trigger

IN

MOD 2. Press Gate Time (F1), and press 1 Sec (F3) to choose a gate time of 1 second.

Gate Time 1 Sec

OUT

Trigger Counter

3. Connect the signal of interest to the Frequency counter input on the rear panel.

2-10. Coupling

2-10-1. Frequency Coupling

Example: Frequency Coupling

1. Press UTIL, Dual Chan

(F4) to enter the coupling function.

UTIL Dual Chan

2. Press Freq Cpl (F1) to select the frequency coupling function.

Freq Cpl

17

3. Press Offset (F2). The offset is the frequency difference between CH1 and CH2. Use the number keys or scroll wheel to enter the offset.

Offset

2-10-2. Amplitude Coupling

Example: Amplitude Coupling

1. Press UTIL, Dual Chan

(F4) to enter the coupling function.

2. Press Ampl Cpl (F2),

ON (F1) to select the amplitude coupling function.

UTIL Dual Chan

Ampl Cpl On

2-11. Tracking

Example: Tracking

3. Couples the amplitude and offset between both channels. Any changes in amplitude in the current channel are reflected in the other channel.

1. Press UTIL, Dual Chan

(F4) to enter the coupling function.

UTIL Dual Chan

2. Press Tracking (F3), ON

(F2) to turn on the tracking function.

Tracking On

3. When tracking is turned on, parameters such as amplitude and frequency from the current channel are mirrored on the other channel.

18

2-12. Menu Tree

Conventions Use the menu trees as a handy reference for the function generator functions and properties. The FGX-2220 menu system is arranged in a hierarchical tree. Each hierarchical level can be navigated with the operation or soft menu keys. Pressing the Return key will return you to the previous menu level.

2-12-1. Waveform

Waveform

Sine Square

Duty

%

Pulse

Width nSEC uSEC mSEC

SEC

2-12-2. ARB-Display

ARB

Display

Ramp

SYM

%

Noise

Horizon Vertical

Start

Clear

Enter

Length

Clear

Enter

Center

Clear

Enter

Zoom in

Zoom out

Low

Clear

Enter

High

Clear

Enter

Center

Clear

Enter

Zoom in

Zoom out

Next Page Back Page Overview

19

2-12-3. ARB-Edit

ARB

Edit

Point Line Copy

Address

Clear

Enter

Data

Clear

Enter

Start ADD

Clear

Enter

Start Data

Clear

Enter

Stop ADD

Clear

Enter

Stop Data

Clear

Enter

Done

2-12-4. ARB- Built In

Start

Clear

Enter

Length

Clear

Enter

Paste To

Clear

Enter

Done

ARB

Clear

Start

Clear

Enter

Length

Clear

Enter

Done

All

Done

Protect

All

Done

Start

Clear

Enter

Length

Clear

Enter

Done

Unprotect

Done

Built in

Start

Clear

Enter

Length

Clear

Enter

Scale

Clear

Enter

Wave

Common

Math

Window

Engineer

Select

Done

20

2-12-5. ARB-Save

ARB

More

Save

Start

Clear

Enter

2-12-6. ARB-Load

Length

Clear

Enter

Memory

Select

USB

Select

New Folder

Enter Char

Back Space

Save

New File

Enter Char

Back Space

Save

Done

ARB

More

Load

Memory

Select

USB

Select

To

Clear

Enter

Done

21

2-12-7. ARB-Output

2-12-8. MOD

ARB

Output

Start

Clear

Enter

Length

Clear

Enter

MOD

AM

Source

Int

EXT

Depth

%

AM Freq mHz

Hz kHz

Shape

Sine

Square

Triangle

UpRamp

DnRamp

FM FSK PM SUM

Source

Int

EXT

Freq Dev uHz mHz

Hz kHz

MHz

FM Freq mHz

Hz kHz

Shape

Sine

Square

Triangle

UpRamp

DnRamp

Source

Int

EXT

Hop Freq uHz mHz

Hz kHz

MHz

FSK Rate mHz

Hz kHz

MHz

Source

Int

EXT

Phase Dev

Degree

PM Freq mHz

Hz kHz

Shape

Sine

Square

Triangle

UpRamp

DnRamp

Source

Int

EXT

SUM Ampl

%

SUM Freq mHz

Hz kHz

Shape

Sine

Square

Triangle

UpRamp

DnRamp

22

2-12-9. SWEEP

SWEEP

Source

Int

EXT

Manual

Trigger

Type

Linear

Log

Start uHz mHz

Hz kHz

MHz

Stop uHz mHz

Hz kHz

MHz

More

Go to the

Sweep -

More menu

2-12-10. SWEEP- More

Sweep

More

SWP Time mSEC

SEC

Span uHz mHz

Hz kHz

MHz

Center uHz mHz

Hz kHz

MHz

Marker

Freq uHz mHz

Hz kHz

MHz

ON/OFF

23

2-12-11. Burst- N Cycle

Burst

N Cycle

Cycles

Clear

Cyc

Infinite Phase

Clear

Degree

Period TRIG Setup uSEC mSEC

SEC

Int

EXT

Rise

Fall

Manual

Trigger

Delay nSEC uSEC mSEC

SEC

TRIG out

Rise

Fall

ON/OFF

2-12-12. Burst – Gate

Burst

Gate

Polarity

Pos

Neg

Phase

Clear

Degree

24

2-12-13. UTIL

UTIL

Memory Cal.

System Dual Chan Counter

Store

Done

Recall

Done

Delete

Done

Delete All

Done

2-12-14. CH1/CH2

Self Test

Software

Version

Upgrade

Language

English

Help

Select

Beep

Freq Cpl

Off

Offset

Ratio

Ampl Cpl

Off

On

Tracking

Off

On

Inverted

S_Phase

Gate Time

0.01 Sec

0.1 Sec

1 Sec

10 Sec

CH1/ CH2

Load

50 OHM

High Z

Phase

Phase

Degree

DSO Link

CH1

CH2

CH3

CH4

Search

2-13. Default Settings

The Preset key is used to restore the default panel settings.

Output Settings Function

Frequency

Amplitude

Offset

Output units

Output terminal

Sine Wave

1kHz

3.000 Vpp

0.00V dc

Vpp

50Ω

Preset

25

Modulation

Sweep

Carrier wave

Modulation wave

AM depth

FM deviation

FSK hop frequency

FSK frequency

PM phase deviation

SUM amplitude

Modem status

Start/Stop frequency

Sweep time

Sweep type

Sweep status

Burst Burst frequency

Ncycle

Burst period

Burst starting phase

Burst status

System Settings Power off signal

Display mode

Error queue

Trigger

Calibration

Memory settings

Output

Trigger source

Calibration Menu

1kHz sine wave

100Hz sine wave

100%

100Hz

100Hz

10Hz

180˚

50%

Off

100Hz/1kHz

1s

Linear

Off

1kHz

1

10ms

Off

On

On

Cleared

No change

Off

Internal (immediate)

Restricted

26

3. OPERATION

The Operation chapter shows how to output basic waveform functions. For details on modulation, sweep, burst and arbitrary waveforms, please see the Modulation

and Arbitrary waveform chapters on pages 35 and 98.

3-1. Select a Waveform

The FGX-2220 can output 5 standard waveforms: sine, square, pulse, ramp and noise.

3-1-1. Sine Wave

Panel Operation 1. Press the Waveformkey.

2. Press F1 (Sine).

Waveform

Sine F1

3-1-2. Square Wave

Panel Operation 1. Press the Waveform key.

Waveform

2. Press F2 (Square) to create a square waveform.

3. Press F1 (Duty). The Duty parameter will be highlighted in the parameter window.

Square F2

Duty F1

27

Range

4. Use the arrow keys and scroll wheel or number pad to enter the

Duty range.

7

4

1

0

8

5

2

9

6

3

/

5. Press F2 (%) to select % units.

Frequency

≤100kHz

100k Hz~≤1MHz

>1MHz~25MHz

%

Duty Range

1.0%~99.0%

10.0%~90.0%

50% (Fixed)

F2

3-1-3. Setting the Pulse Width

Panel Operation 1. Press the Waveform key.

2. Press F3 (Pulse) to create a pulse width waveform.

Waveform

Pulse F3

28

3. Press F1 (Width). The Width parameter will be highlighted in the parameter window.

Width F1

Range

Note

4. Use the arrow keys and scroll wheel or number pad to enter the pulse width.

7

4

1

8

5

2

9

6

3

0 /

5. Press F2~F5 choose the unit range.

Pulse Width nSEC

F2

20ns~1999.9s

~

Minimum Pulse Width

SEC

F5

Frequency ≤ 25MHz:

20ns pulse width.

Frequency

≤ 100 kHZ:

1/4096 duty cycle.

Resolution Frequency ≤ 25MHz:

20ns pulse width.

Frequency

≤100 kHZ:

1/4096 duty cycle.

29

Rise time / Fall time approx.. 17ns(typ.)

Note

Note

Setting of the pulse width can be set up to 20ns, but it is less than 100ns, not a square wave by the specifications.

3-1-4. Setting a Ramp Waveform

Panel Operation 1. Press the Waveform key.

2. Press F4 (Ramp) to create a ramp waveform.

3. Press F1 (SYM). The SYM parameter will be highlighted in the parameter window.

Waveform

Ramp F4

SYM F1

Range

4. Use the arrow keys and scroll wheel or number pad to enter the symmetry percentage.

7

4

1

0

8

5

2

9

6

3

/

5. Press F2 (%) to choose % units.

Symmetry 0%~100%

% F2

30

3-1-5. Selecting a Noise Waveform

Panel Operation 1. Press the Waveform key.

2. Press F5 (Noise).

Waveform

Noise F5

31

3-1-6.Setting the Frequency

Panel Operation 1. Press the FREQ/Rate key.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

Range

3. Use the arrow keys and scroll wheel or number pad to enter the frequency.

7

4

1

0

8

5

2

9

6

3

/

4. Choose a frequency unit by pressing F1~F5. uHz

F1

~

Sine wave 1μHz~25MHz

Square wave 1μHz~25MHz

Pulse wave 500μHz~25MHz

Ramp wave 1μHz~1MHz

MHz

F5

32

3-1-7. Setting the Amplitude

Panel Operation 1. Press the AMPL key.

AMPL

2. The AMPL parameter will become highlighted in the parameter window.

3. Use the arrow keys and scroll wheel or number pad to enter the amplitude.

7

4

1

4. Choose a unit type by pressing

F1~F5.

Range

Unit

50

Ω load

1mVpp~10Vpp

Vpp, Vrms, dBm

8

5

2

9

6

3

0 /

~ dBm VPP

F1

High Z

F5

2mVpp~20Vpp

33

3-1-8. Setting the DC Offset

Panel Operation 1. Press the DC Offset key.

DC Offset

2. The DC Offset parameter will become highlighted in the parameter window.

3. Use the arrow keys and scroll wheel or number pad to enter the

DC Offset.

7

4

1

0

8

5

2

9

6

3

/

4. Press F1 (mVDC) or F2 (VDC) to choose a voltage range.

50

Ω load mVDC

F1

High Z

Range ±5Vpk ±10Vpk

VDC

F2

34

4. MODULATION

The FGX-2220 Series Arbitrary Function Generators are able to produce AM, FM,

FSK, PM and SUM modulated waveforms. Depending on the type of waveform produced, different modulation parameters can be set. Only one modulation mode can be active at any one time. The function generator also will not allow sweep or burst mode to be used with AM/FM. Activating a modulation mode will turn the previous modulation mode off.

4-1. Amplitude Modulation (AM)

An AM waveform is produced from a carrier waveform and a modulating waveform.

The amplitude of the modulated carrier waveform depends on the amplitude of the modulating waveform. The FGX-2220 function generator can set the carrier frequency, amplitude and offset as well as internal or external modulation sources.

35

4-1-1. Selecting AM Modulation

Panel Operation 1. Press the MOD key.

2. Press F1 (AM).

MOD

AM F1

4-1-2. AM Carrier Shape

Background Sine, square, ramp, pulse or arbitrary waveforms can be used as the carrier shape. The default waveform shape is set to sine. Noise is not available as a carrier shape.

Before the carrier shape can be selected, choose AM modulation mode, see above.

Select a Standard

Carrier Shape

1. Press the Waveform key.

2. Press F1~F4 to choose the carrier wave shape.

Waveform

Sine

F1

~

Ramp

F4

Select an Arbitrary

Waveform Carrier

Shape.

3. See the Arbitrary waveform quick

Page 15

reference or chapter to use an arbitrary waveform.

Page 98

Range AM Carrier Shape sine, square, Ramp,Pulse, arbitrary waveform

36

4-1-3. Carrier Frequency

The maximum carrier frequency depends on the carrier shape selected. The default carrier frequency for all carrier shapes is 1kHz.

Panel Operation 1. With a carrier waveform selected, press the FREQ/Rate key.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

Range

3. Use the arrow keys and scroll wheel or number pad to enter the carrier frequency.

7

4

1

0

8

5

2

9

6

3

/

Carrier Shape

~

4. Press F1~F5 to select the frequency range. uHz

F1

Carrier Frequency

Sine wave

Square wave

Ramp wave

1μHz~ 25MHz

1μHz~25MHz

1μHz~1MHz

Pulse wave

Default frequency

500uHz~25MHz

1 kHz

MHz

F5

37

4-1-4. Modulating Wave Shape

The function generator can accept internal as well as external sources. The

FGX-2220 has sine, square, triangle, up ramp and down ramp modulating waveform shapes. Sine waves are the default wave shape.

Panel Operation

Note

1. Press the MOD key.

MOD

2. Press F1 (AM).

AM F1

3.

4.

Press F4 (Shape).

Press F1 ~ F5 to select the waveform shape.

Shape F4

Sine

F1

~

DnRamp

F5

5. Press Return to return to the previous menu.

Square wave

UpRamp

Triangle

DnRamp

Return

50% Duty cycle

100% Symmetry

50% Symmetry

0% Symmetry

38

4-1-5. AM Frequency

The frequency of the modulation waveform (AM Frequency) can be set from 2mHz to 20kHz.

Panel Operation 1. Press the MOD key.

2. Press F1 (AM).

3. Press F3 (AM Freq)

MOD

AM

AM Freq

F1

F3

4. The AM Freq parameter will become highlighted in the Waveform display area.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the

AM frequency.

7

4

1

0

8

5

2

9

6

3

/

6. Press F1~F3 to select the frequency range. mHz

F1

~

Modulation frequency 2mHz~20kHz

Default frequency 100Hz kHz

F3

39

4-1-6. Modulation Depth

Modulation depth is the ratio (as a percentage) of the unmodulated carrier amplitude and the minimum amplitude deviation of the modulated waveform. In other words, modulation depth is the maximum amplitude of the modulated waveform compared to the carrier waveform as a percentage.

Panel Operation 1. Press the MOD key.

2. Press F1 (AM).

3. Press F2 (Depth).

MOD

AM

Depth

F1

F2

4. The AM Depth parameter will become highlighted in the waveform display area.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the

AM depth.

7

4

1

0

8

5

2

9

6

3

/

6. Press F1 (%) to choose % units.

Depth

Default depth

0%~120%

100%

% F1

40

Note When the modulation depth is greater than 100%, the output cannot exceed ±5VPeak (10k Ω load).

If an external modulation source is selected, modulation depth is limited to ± 5V from the MOD INPUT terminal on the rear panel. For example, if the modulation depth is set to 100%, then the maximum amplitude is +5V, and the minimum amplitude is -5V.

4-1-7. Selecting the (AM) Modulation Source

The function generator will accept an internal or external source for AM modulation.

The default source is internal.

Panel Operation 1. Press the MOD key.

2. Press F1 (AM).

MOD

AM F1

3.

4.

Press F1 (Source).

Press F1 (INT) or F2 (EXT) to select the modulation source.

Source

INT

F1

~

F1

EXT

F2

5. Press Return to go back to the previous menu.

Return

Trigger MOD

External Source Use the MOD INPUT terminal on the rear panel when using an external source.

IN

Note

OUT

Trigger Counter

If an external modulation source is selected, modulation depth is limited to ± 5V from the MOD INPUT terminal on the rear panel. For example, if modulation depth is set to

100%, then the maximum amplitude is +5V, and the minimum amplitude is -5V.

41

4-2. Frequency Modulation (FM)

A FM waveform is produced from a carrier waveform and a modulating waveform.

The instantaneous frequency of the carrier waveform varies with the magnitude of the modulating waveform. When using the FGX-2220 function generator, only one type of modulated waveform can be created at any one time.

42

4-2-1. Selecting Frequency Modulation (FM)

When FM is selected, the modulated waveform depends on the carrier frequency, the output amplitude and offset voltage.

Panel Operation 1. Press the MOD key.

MOD

2. Press F2 (FM).

FM F2

4-2-2. FMCarrier Shape

Background The default waveform shape is set to sine. Noise and pulse waveforms cannot be used as a carrier wave.

Panel Operation

Range

1. Press the Waveform key.

Waveform

Carrier Shape

~

2. Press F1~F4 to select the carrier shape.

Sine

F1

Sine, Square, Ramp.

Ramp

F4

4-2-3. FM Carrier Frequency

When using the FGX-2220 function generator, the carrier frequency must be equal to or greater than the frequency deviation. If the frequency deviation is set to value greater than the carrier frequency, the deviation is set to the maximum allowed.

The maximum frequency of the carrier wave depends on the waveform shape chosen.

43

Panel Operation 1. To select the carrier frequency, press the FREQ/Rate key.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

Range

3. Use the arrow keys and scroll wheel or number pad to enter the carrier frequency.

7

4

1

0

8

5

2

9

6

3

/

Carrier Shape

Sine

Square

Ramp

Default frequency

~

4. Press F1~F5 to select the frequency unit. uHz

F1

Carrier Frequency

1 μHz~25MH

1μHz~15MHz

1μHz~1MHz

1kHz

MHz

F5

44

4-2-4. FM Wave Shape

The function generator can accept internal as well as external sources. The

FGX-2220 has sine, square, triangle, positive and negative ramps (UpRamp,

DnRamp) as the internal modulating waveform shapes. Sine is the default wave shape.

Background

Range

1. Select MOD.

MOD

2. Press F2 (FM).

FM F2

3.

4.

Press F4 (Shape).

Press F1 ~ F5 to select the waveform shape.

Shape F4

Sine

F1

~

DnRamp

F5

5. Press Return to return to the previous menu.

Square wave

UpRamp

Triangle

DnRamp

Return

50% Duty cycle

100% Symmetry

50% Symmetry

0% Symmetry

45

4-2-5. FM Frequency

The frequency of the modulation waveform (FM Frequency) can be set from 2mHz to 20kHz.

Panel Operation 1. Press the MOD key.

MOD

2. Press F2 (FM).

FM F2

3. Press F3 (FM Freq).

FM Freq F3

4. The FM Freq parameter will become highlighted in waveform display panel.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the

FM frequency.

7

4

1

0

8

5

2

9

6

3

/

6. Press F1~F3 to select the frequency unit. mHz

F1

Modulation frequency 2mHz~20kHz

~

Default frequency 100Hz kHz

F3

46

4-2-6. Frequency Deviation

The frequency deviation is the peak frequency deviation from the carrier wave and the modulated wave.

Panel Operation 1. Press the MOD key.

2. Press F2 (FM).

3. Press F2 (Freq Dev).

MOD

FM

Freq Dev

F2

F2

4. The Freq Dev parameter will become highlighted in the waveform display panel.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the frequency deviation.

7

4

1

0

8

5

2

9

6

3

/

Frequency Deviation

Default depth

~

6. Press F1~ F5 to choose the frequency units. uHz

F1

DC~25MHz

DC~15MHz(square)

DC~1MHz (Ramp)

100Hz

MHz

F5

47

4-2-7. Selecting (FM) Modulation Source

The function generator will accept an internal or external source for FM modulation.

The default source is internal.

Panel Operation 1. Press the MOD key.

2. Press F2 (FM).

3. Press F1 (Source).

MOD

FM F2

4. To select the source, press F1

(Internal) or F2 (External).

Source

INT

F1

~

F1

EXT

F2

5. Press Return to return to the previous menu.

Return

Trigger MOD

External Source Use the MOD INPUT terminal on the rear panel when using an external source.

IN

Note

OUT

Trigger Counter

If an external modulating source is selected, the frequency deviation is limited to the ± 5V MOD INPUT terminal on the rear panel. The frequency deviation is proportional to the signal level of the modulation in voltage. For example, if the modulation in voltage is +5V, then the frequency deviation would be equal to the set frequency deviation. Lower signal levels reduce the frequency deviation while negative voltage levels produce frequency deviations with frequencies below the carrier waveform.

48

4-3. Frequency Shift Keying (FSK) Modulation

Frequency Shift Keying Modulation is used to shift the frequency output of the function generator between two preset frequencies (carrier frequency, hop frequency). The frequency at which the carrier and hop frequency shift is determined by the internal rate generator or the voltage level from the Trigger

INPUT terminal on the rear panel.

Only one modulation mode can be used at once. When FSK modulation is enabled, any other modulation modes will be disabled. Sweep and Burst also cannot be used with FSK modulation. Enabling FSK will disable Sweep or Burst mode.

49

4-3-1. Selecting FSK Modulation

When using FSK mode, the output waveform uses the default settings for carrier frequency, amplitude and offset voltage.

Panel Operation 1. Press the MOD key.

2. Press F3 (FSK).

MOD

FSK F3

4-3-2. FSK Carrier Shape

Background The default waveform shape is set to sine. Noise waveforms cannot be used as carrier waves.

Panel Operation 1. Press the Waveform key.

Waveform

2. Press F1~F4 to choose the carrier wave shape.

Carrier Shape

Sine

~

Ramp

F1 F4

Sine, Square, Pulse, Ramp Range

4-3-3. FSK Carrier Frequency

The maximum carrier frequency depends on the carrier shape. The default carrier frequency for all carrier shapes is 1kHz. The voltage level of the Trigger INPUT signal controls the output frequency when EXT is selected. When the Trigger

INPUT signal is logically low the carrier frequency is output and when the signal is logically high, the hop frequency is output.

50

Panel Operation 1. Press the FREQ/Rate key to select the carrier frequency.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

3. Use the arrow keys and scroll wheel or number pad to enter the carrier frequency.

7

4

1

8

5

2

9

6

3

0 /

Range Carrier Shape

~

4. Press F1~F5 to select the FSK frequency units. uHz

F1

Carrier Frequency

Sine wave

Square wave

Ramp wave

Pulse wave

1μHz~25MHz

1μHz~15MHz

1μHz~1MHz

500 μHz~15MHz

Default frequency 1kHz

4-3-4. FSK Hop Frequency

MHz

F5

The default Hop frequency for all waveform shapes is 100 Hz. A square wave with a duty cycle of 50% is used for the internal modulation waveform. The voltage level of the Trigger INPUT signal controls the output frequency when EXT is selected.

When the Trigger INPUT signal is logically low the carrier frequency is output and when the signal is logically high, the hop frequency is output.

Panel Operation 1. Press the MOD key.

2. Press F3 (FSK).

MOD

FSK F3

3. Press F2 (Hop Freq).

Hop Freq F2

51

4. The Hop Freq parameter will become highlighted in the Waveform Display area.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the hop frequency.

7

4

1

0

8

5

2

9

6

3

/

Waveform

~

6. Press F1~F5 to select the frequency range. uHz

F1

Carrier Frequency

Sine wave

Square wave

Ramp wave

Pulse wave

1μHz~25MHz

1μHz~15MHz

1μHz~1MHz

500μHz~15MHz

Default frequency 100Hz

MHz

F5

52

4-3-5. FSK Rate

FSK Rate function is used to determine rate at which the output frequency changes between the carrier and hop frequencies. The FSK Rate function only applies to internal FSK sources.

Panel Operation 1. Select the MOD key.

2. Press F3 (FSK).

3. Press F3 (FSK Rate).

MOD

FSK

FSK Rate

F3

F3

4. The FSK Rate parameter will become highlighted in the waveform display area.

Range

Note

5. The arrow keys and scroll wheel or number pad to enter the FSK rate.

1

7

4

8

5

9

6

2 3

0 /

6. Press F1~F4 to select the frequency unit.

FSK Rate mHz

F1

2mHz~100kHz

~

Default 10Hz kHz

F4

If an external source is selected, FSK Rate settings are ignored.

53

4-3-6. FSK Source

The FGX-2220 accepts internal and external FSK sources, with internal as the default source. When the FSK source is set to internal, the FSK rate is configured using the FSK Rate function. When an external source is selected the FSK rate is equal to the frequency of the Trigger INPUT signal on the rear panel.

Panel Operation 1. Press the MOD key.

2. Press F3 (FSK).

3. Press F1 (Source).

Note

MOD

FSK F3

4. Press F1 (Internal) or F2

(External) to select the FSK source.

Source

INT

F1

~

F1

EXT

F2

5. Press Return to return to the previous menu.

Return

Note that the Trigger INPUT terminal cannot configure edge polarity.

54

4-4. Phase Modulation (PM)

The phase deviation of the carrier waveform deviates from a reference phase value in proportion to changes in the modulating waveform.

Only one mode of modulation can be enabled at any one time. If PM is enabled, any other modulation mode will be disabled. Likewise, burst and sweep modes cannot be used with PM and will be disabled when PM is enabled.

4-4-1. Selecting Phase Modulation (PM)

When selecting PM, the current setting of the carrier frequency, the amplitude modulation frequency, output, and offset voltage must be considered.

Panel Operation 1. Press the MOD key.

MOD

2. Press F4 (PM).

PM F4

55

4-4-2. PM Carrier Waveform

Background PM uses a sine wave as default. Noise and Pulse waveform cannot be used with phase modulation.

Panel Operation 1. Press the Waveform key.

Waveform

Range

2. Press F1 ~ F4 to select the waveform.

Carrier Waveform

Sine

~

Ramp

F1 F4

Sine wave, Square wave, ramp wave.

4-4-3. PM Carrier Frequency

Selects the maxium carrier frequency for the carrier wavefrom. The default carrier frequency is 1kHz.

Panel Operation 1. Press the FREQ/Rate key to select the carrier frequency.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

Range

3. Use the arrow keys and scroll wheel or number pad to enter the carrier frequency.

7

4

1

8

5

2

9

6

3

0 /

4. Press F1~F5 to select the frequency unit.

Carrier Wave

Sine wave

Square wave

Ramp wave

Default frequency uHz

F1

~

MHz

F5

Carrier Frequency

1

μHz~25MH

1μHz~15MHz

1μHz~1MHz

1 kHz

56

4-4-4. PM Wave Shape

The function generator can accept internal or external sources. The internal sources can include sine, square, triangle, up ramp and down ramp. The default wave shape is sine.

Panel Operation

Range

1. Select the MOD key.

MOD

2. Press F4 (PM).

PM F4

3.

4.

Press F4 (Shape).

Press F1~F5 to select a waveform shape.

Shape F4

Sine

F1

~

DnRamp

F5

5. Press Return to return to the previous menu.

Waveform

Square wave

Up Ramp

Triangle

Dn Ramp

Return

50% Duty Cycle

100% Symmetry

50% Symmetry

0% Symmetry

57

4-4-5. PM Frequency

The frequency of the modulation waveform (PM Frequency) can be set from 2mHz to 20kHz.

Panel Operation 1. Press the MOD key.

MOD

2. Press F4 (PM).

PM F4

3. Press F3 (PM Freq).

PM Freq F3

4. The PM Freq parameter will become highlighted in the Waveform Display area.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the

PM frequency.

7

4

1

0

8

5

2

9

6

3

/

6. Press F1~F3 to select the frequency unit range. mHz

F1

Modulation frequency 2mHz~20kHz

~

Default frequency 100Hz kHz

F3

58

4-4-6. Phase Deviation

The maximum phase deviation depends on the the carrier wave frequency and the modulated waveform.

Panel operation 1. Press the MOD key.

2. Press F4 (PM).

3. Press F2 (Phase Dev).

MOD

PM

Phase Dev

F4

F2

4. The Phase Dev parameter will become highlighted in the waveform display area.

Range

5. Use the arrow keys and scroll wheel or number pad to enter the phase deviation.

7

4

1

0

8

5

2

9

6

3

/

6. Press F1 to select the phase units.

Phase deviation/shift

Defualt phase

0~360°

180°

Degree F1

59

4-4-7. Select the PM Source

The function generator excepts internal or external sources for phase modulation.

The default source is internal.

Panel Operation 1. Press the MOD key.

2. Press F4 (PM).

3. Press F1 (Source).

MOD

PM F4

4. Press F1 (INT) or F2 (EXT) to select the source.

Source

INT

F1

~

F1

EXT

F2

5. Press return to return to the previous menu.

Return

Trigger MOD

External Source Use the MOD INPUT terminal on the rear panel when using an external source.

IN

Note

OUT

Trigger Counter

If the modulation source is set to external, the phase deviation is controlled by the ±5V MOD INPUT terminal on the rear panel. For example, if the modulation voltage is +5V, then the phase deviation is equal to the phase deviation setting. If the modulation voltage is less than

+5V, then the phase deviation will be less than the phase deviation setting.

60

4-5. SUM modulation

Sum modulation adds a modulating signal to a carrier wave. Typically, sum modulation is used to add noise to a carrier wave. The modulating signal is added as a percentage of the carrier amplitude.

If SUM is enabled, any other modulation mode will be disabled. Likewise, burst and sweep modes cannot be used with SUM and will be disabled when SUM is enabled.

4-5-1. Selecting SUM modulation

For SUM modulation, the modulated waveform amplitude and offset is determined by the carrier wave.

Panel Operation 1. Press the MOD key.

MOD

2. Press F5 (SUM).

SUM F5

61

4-5-2. SUM Carrier Waveform

Background

The SUM carrier waveform is a sinewave by default.

Panel Operation

Range

1. Press the Waveform key.

Waveform

2. Press F1~F5 to select the carrier waveform.

Carrier Waveform

Sine

~

Noise

F1 F5

Sine, square, pulse, ramp and noise wave.

4-5-3. SUM Carrier Frequency

The maximum carrier frequency depends on the selected carrier waveform. The default carrier frequency is 1kHz.

Panel Operation 1. Press the FREQ/Rate key to select the carrier frequency.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

3. Use the arrow keys and scroll wheel or number pad to enter the frequency.

7

4

1

0

8

5

2

9

6

3

/

4. Press F1 ~ F5 to select the frequency units. uHz

F1

~

MHz

F5

62

Range Carrier Waveform

Sine wave

Square wave

Pulse wave

Ramp wave

Default frequency

4-5-4. SUM Waveform

Carrier Frequency

1 μHz~25MH

1μHz~25MHz

500 μHz~25MHz

1μHz~1MHz

1 kHz

The function generator can accept internal and external sources. The FGX-2220 includes sine, square, triangle, UpRamp and DnRamp as internal sources. The default waveform is sine.

Panel Operation

Range

1. Press the MOD key.

MOD

2. Press F5 (SUM).

SUM F5

3. Press F4 (Shape). Shape F4

4. Press F1~F5 to select the source waveform.

Sine

F1

~

DnRamp

F5

5. Press Return to return to the previous menu.

Square wave

Up ramp

Triangle

Down ramp

Return

50% Duty cycle

100% Symmetry

50% Symmetry

0% Symmetry

63

4-5-5. Modulating Waveform Frequency

The frequency of the modulating waveform (SUM Frequency) can be set from

2mHz to 20kHz.

Panel Operation 1. Press the MOD key.

MOD

2. Press F5 (SUM).

SUM F5

3. Press F3 (SUM Freq).

SUM Freq F3

4. The SUM Freq parameter will become highlighted in the waveform display area.

64

5. Use the arrow keys and scroll wheel or number pad to enter the

SUM frequency.

7

4

1

8

5

2

9

6

3

0 /

Range

6. Press F1~F3 to select the frequency units.

Modulating range mHz

F1

2mHz~20kHz

~

Default frequency 100Hz

4-5-6. SUM Amplitude

kHz

F3

The SUM amplitude is the offset (in percent relative to the carrier) of the signal that is added to the carrier.

Panel Operation 1. Press the MOD key.

2. Press F5 (SUM).

3. Press F2 (SUM Ampl).

MOD

SUM

SUM Ampl

F5

F2

4. In the waveform display area, the SUM Ampl will be highlighted.

65

5. Use the arrow keys and scroll wheel or number pad to enter the

SUM amplitude.

7

4

1

0

8

5

2

9

6

3

/

Range

6. Press F1 to select the percentage unit.

Sum amplitude

Default amplitude

4-5-7. Select the SUM Amplitude Source

0~100%

50%

% F1

The signal generator can accept internal or external sources for the SUM amplitude modulation.

Panel Operation 1. Press the MOD key.

2. Press F5 (SUM).

3. Press F1 (Source).

MOD

SUM F5

4. Press F1 (INT) or F2 (EXT) to select the source.

Source

INT

F1

~

F1

EXT

F2

5. Press Return to return to the previous menu.

Return

Trigger MOD

External Source Use the MOD INPUT terminal on the rear panel when using an external source.

IN

Note

OUT

Trigger Counter

If an external modulation source is selected, the SUM amplitude is controlled by the ± 5V from the MOD INPUT terminal on the rear panel. For example, if the SUM amplitude is set to 50%, then the maximum amplitude

(150% of the carrier ) will be at +5V, and the minimum amplitude (50% of the carrier) will be at -5V.

66

4-6. Frequency Sweep

The function generator can perform a sweep for sine, square or ramp waveforms, but not noise, and pulse. When Sweep mode is enabled, Burst or any other modulation modes will be disabled. When sweep is enabled, burst mode is automatically disabled.

In Sweep mode the function generator will sweep from a start frequency to a stop frequency over a number of designated steps. The step spacing of the sweep can linear or logarithmic. The function generator can also sweep up or sweep down in frequency. If manual or external sources are used, the function generator can be used to output a single sweep.

67

4-6-1. Selecting Sweep Mode

The Sweep button is used to output a sweep. If no settings have been configured, the default settings for output amplitude, offset and frequency are used.

4-6-2. Setting Start and Stop Frequency

Sweep

The start and stop frequencies define the upper and lower sweep limits. The function generator will sweep from the start through to the stop frequency and cycle back to the start frequency. The sweep is phase continuous over the full range sweep range (1μHz-25MHz).

Panel Operation 1. Press the SWEEP key.

2. Press F3 (Start) or F4 (Stop) to selelect the start or stop frequency.

Sweep

Start

F3

~

Stop

F4

3. The Start or Stop parameter will become highlighted in the waveform display area.

Start

Stop

4. Use the arrow keys and scroll wheel or number pad to enter the

Stop/Start frequency.

7

4

1

0

8

5

2

9

6

3

/

68

Range

5. Press F1~F5 to select the

Start/Stop frequency units.

Sweep Range uHz

~

MHz

F1

1μHz~25MHz (Sine wave)

F5

1μHz~1MHz (Ramp wave)

1μHz~15MHz (Square wave)

Start - Default

Stop - Default

100Hz

1kHz

Note To sweep from low to high frequencies, set the start frequency less than the stop frequency.

To sweep from high to low frequencies, set the start frequency greater than the stop frequency.

When marker is off, the SYNC signal is a square wave with a duty cycle of 50%. At the start of the sweep, the

SYNC signal is at a TTL low level that rises to a TTL high level at the frequency midpoint. The frequency of the

SYNC signal is equal to the sweep time.

When marker is on, at the start of the sweep, the SYNC signal is at a TTL high level that drops to a TTL low level at the marker. The SYNC signal is output from the mark output terminal.

4-6-3. Center Frequency and Span

A center frequency and span can be set to determine the upper and lower sweep limits (start/stop).

Panel Operation 1. Press the SWEEP key.

Sweep

2. Press F5 (More).

More

3. Press F2 (Span) or F3 (Center) to select the span or center.

Span

F2

~

F5

Center

F3

4. The Span or Center parameters will become highlighted in the waveform display area.

69

Span

Center

Range

5. Use the arrow keys and scroll wheel or number pad to enter the

Span/Center frequency.

7

4

1

8

5

2

9

6

3

0 /

6. Press F1~F5 to select the

Start/Stop frequency units. uHz

F1

~

MHz

F5

Center frequency 1μHz~25MHz (sine wave)

1μHz~1MHz (Ramp wave)

1μHz~15MHz (square wave)

Span frequency DC~25MHz

Default center

Default span

(sine wave)

DC ~1MHz (Ramp wave)

1μHz~15MHz (square wave)

550Hz

900Hz

70

Note To sweep from low to high frequencies, set a positive span.To sweep from high to low frequencies, set a negative span.

When marker is off, the SYNC signal is a square wave with a duty cycle of 50%. At the start of the sweep, the

SYNC signal is at a TTL low level that rises to a TTL high level at the frequency midpoint. The frequency of the

SYNC signal is equal to the sweep time.

When marker is on, at the start of the sweep, the SYNC signal is at a TTL high level that drops to a TTL low level at the marker. The SYNC signal is output from the mark output terminal.

4-6-4. Sweep Mode

Sweep mode is used to select between linear or logarithmic sweeping. Linear sweeping is the default setting.

Panel Operation 1. Press the SWEEP key.

2. Press F2 (Type).

Sweep

3. To select linear or logarithmic sweep, press F1 (Linear) or F2

(Log).

4. Press Return to return to the previous menu.

Type

Linear

F1

~

F2

Log

F2

Return

71

4-6-5. Sweep Time

The sweep time is used to determine how long it takes to perform a sweep from the start to stop frequencies. The function generator automatically determines the number of discrete frequencies used in the scan depending on the length of the scan.

Panel Operation 1. Press the SWEEP key.

Sweep

2. Press F5 (More).

More F5

3. Press F1 (SWP Time).

SWP Time F1

4. The Time parameter will become highlighted in the waveform display area.

Range

5. Use the selector keys and scroll wheel or number pad to enter the

Sweep time.

7

4

1

8

5

2

9

6

3

0 /

6. Press F1~F2 to select the time unit.

Sweep time

Default time

1ms ~ 500s

1s mSEC

F1

~

SEC

F2

72

4-6-6. Marker Frequency

The marker frequency is the frequency at which the marker signal goes low (The marker signal is high at the start of each sweep). The marker signal is output from the Trigger OUT terminal on the rear panel. The default is 550 Hz.

Panel Operation 1. Press the SWEEP key.

Sweep

2. Press F5 (More).

More F5

3. Press F4 (Marker) Marker F4

4. Press F2 (ON/OFF) to toggle the marker on or off.

ON/OFF F2

5. Press F1 (Freq) to select the marker frequency.

Freq F1

6. The Marker parameter will become highlighted in the waveform display area.

7. Use the arrow keys and scroll wheel or number pad to enter the frequency.

7

4

1

0

8

5

2

9

6

3

/

8. Press F1~F5 to select the frequency unit. uHz

F1

~

73

MHz

F5

Range

Note

Frequency

1μHz~25MHz(Sine wave)

1μHz~1MHz (Ramp wave)

1μHz~15MHz (square wave)

Default 550Hz

The marker frequency must be set to a value between the start and stop frequencies. If no value is set, the marker frequency is set to the average of the start and stop frequencies.

Marker mode will override SYNC mode settings when sweep mode is active.

4-6-7. Sweep Trigger Source

In sweep mode the function generator will sweep each time a trigger signal is received. After a sweep output has completed, the function generator outputs the start frequency and waits for a trigger signal before completing the sweep. The default trigger source is internal.

Panel Operation 1. Press the SWEEP key.

Sweep

2. Press F1 (Source).

3. To select the trigger source, press F1 (Internal), F2 (External) or F3 (Manual).

Source

INT

F1

~

F1

Manual

F3

Note

4. Press Return to return to the previous menu.

Return

Using the Internal source will produce a continuous sweep using the sweep time settings.

With an external source, a sweep is output each time a trigger pulse (TTL) is received from the Trigger IN terminal on the rear panel.

The trigger period must be equal to or greater than the sweep time plus 1ms.

5. If manual is selected, press F1

(Trigger) to manually start each sweep.

Trigger F1

74

4-7. Burst Mode

The function generator can create a waveform burst with a designated number of cycles. Burst mode supports sine, square and ramp waveforms.

4-7-1. Selecting Burst Mode

When burst mode is selected, any modulation or sweep modes will be automatically disabled. If no settings have been configured, the default settings for output amplitude, offset and frequency are used.

Burst

75

4-7-2. Burst Modes

Burst mode can be configured using Triggered (N Cycle mode) or Gated mode.

Using N Cycle/Triggered mode, each time the function generator receives a trigger, the function generator will output a specified number of waveform cycles (burst).

After the burst, the function generator will wait for the next trigger before outputting another burst. N Cycle is the default Burst mode. Triggered mode can use internal or external triggers.

The alternative to using a specified number of cycles, Gated mode uses the external trigger to turn on or off the output. When the Trigger INPUT signal is high, waveforms are continuously output. When the Trigger INPUT signal goes low, the waveforms will stop being output after the last waveform completes its period. The voltage level of the output will remain equal to the starting phase of the burst waveforms, ready for the signal to go high again.

Burst Mode

Triggered (Int)

Burst Count Burst Period Phase

Available Available Available

Trigger Source

Immediate

Triggered (Ext) Available

Gated pulse (Ext) Not used

Not used

Not used

Available

Available

EXT, Bus

Unused

Panel Operation

Note

1. Press the Burst key.

Burst

2. To select either N Cycle (F1) or

Gate (F2).

N Cycle

~

Gate

F1 F2

In gate mode, burst count, burst cycle, trigger source will be ignored, Also trigger source will be only in the external trigger signal.

4-7-3. Burst Frequency

In the N Cycle and Gated modes, the waveform frequency sets the repetition rate of the burst waveforms. In N-Cycle mode, the burst is output at the waveform frequency for the number of cycles set. In Gated mode the waveform frequency is output while the trigger is high. Burst mode supports sine, square or ramp waveforms.

Panel Operation 1. Press the FREQ/Rate key.

FREQ/Rate

2. The FREQ parameter will become highlighted in the parameter window.

76

3. Use the arrow keys and scroll wheel or number pad to enter the frequency.

7

4

1

8

5

2

9

6

3

Range

Note

0 /

4. Press F1~F5 to select the frequency unit. uHz

~

MHz

F1 F5

Frequency

Freqency – Ramp

Default

1uHz~25MHz

1uHz~1MHz

1kHz

Waveform frequency and burst period are not the same.

The burst period is the time between the bursts in

N-Cycle mode.

4-7-4. Burst Cycle/Burst Count

The burst cycle (burst count) is used to define the number of cycles that are output for a burst waveform. Burst cycle is only used with N-cycle mode (internal, external or manual source). The default burst cycle is 1.

Panel Operation 1. Press the Burst key.

Burst

2. Press F1 (N Cycle).

N Cycle F1

3. Press F1 (Cycles).

Cycles F1

4. The Cycles parameter will become highlighted in the

Waveform Display area.

77

Range

Note

5. Use the arrow keys and scroll wheel or number pad to enter the number of cycles.

7

4

1

0

8

5

2

9

6

3

/

6. Press F2 to select the Cyc unit.

Cyc F2

Cycles 1~65535

Burst cycles are continuously output when the internal trigger is selected. The burst period determines the rate of bursts and the time between bursts.

Burst cycle must be less than the product of the burst period and wave frequency.

Burst Cycle < (Burst Period x Wave Frequency)

If the burst cycle exceeds the above conditions, the burst period will be automatically increased to satisfy the above conditions.

If gated burst mode is selected, burst cycle is ignored.

Though, if the burst cycle is changed remotely whilst in gated mode, the new burst cycle is remembered when used next.

78

4-7-5. Infinite Burst Count

Panel Operation 1. Press the Burst key.

2. Press F1 (N Cycle).

Note

Burst

N Cycle F1

3. Press F2 (Infinite).

Infinite

Infinite burst is only available when using manual triggering.

F2

4-7-6. Burst Period

The burst period is used to determine the time between the start of one burst and the start of the next burst. It is only used for internally triggered bursts.

Panel Operation 1. Press the Burst key.

2. Press F1 (N Cycle).

3. Press F4 (Period).

Burst

N Cycle F1

Period F4

4. The Period parameter will become highlighted in the

Waveform Display area.

79

5. Use the arrow keys and scroll wheel or number pad to enter period time.

7

4

1

8

5

2

9

6

3

Range

Note

0 /

6. Press F1~F3 to choose the period time unit. uSEC

~

SEC

F1 F3

Period time

Default

1ms~500s

10ms

Burst period is only applicable for internal triggers. Burst period settings are ignored when using gated burst mode or for external and manual triggers.

The burst period must be large enough to satisfied the condition below:

Burst Period>Burst Count/Wave frequency + 200ns.

4-7-7. Burst Phase

Burst Phase defines the starting phase of the burst wavefor m. The default is 0˚.

Panel Operation 1. Press the Burst key.

2. Press F1 (N Cycle).

Burst

N Cycle F1

3. Press F3 (Phase).

Phase F3

80

4. The Phase parameter will become highlighted in the

Waveform Display area.

Range

Note

5. Use the arrow keys and scroll wheel or number pad to enter the phase.

7

4

1

0

8

5

2

9

6

3

/

6. Press F2 (Degreee) to select the phase unit.

Degree F2

Phase

Default

-360 ˚~+360˚

When using sine, square, triangle or ramp waveforms, 0˚ is the point where the waveforms are at zero volts.

0˚ is the starting point of a waveform. For sine, square or

Triangle, Ramp waveforms, 0˚ is at 0 volts (assuming there is no DC offset).

Burst Phase is used for both N cycle and Gated burst modes. In gated burst mode, when the Trigger INPUT signal goes low the output is stopped after the current waveform is finished. The voltage output level will remain equal to the voltage at the starting burst phase.

81

4-7-8. Burst Trigger Source

Each time the function generator receives a trigger in triggered burst (N-Cycle) mode, a waveform burst is output. The number of waveforms in each burst is designated by the burst cycle (burst count). When a burst has completed, the function generator waits for the next trigger. Internal source is the default triggered burst (N-cycle) mode on power up.

Panel Operation 1. Press the Burst key.

2. Press F1 (N Cycle).

Burst

N Cycle F1

3. Press F5 (TRIG set).

4. Choose a trigger type by pressing F1 (INT), F2 (EXT) or

F3 (Manual).

TRIG set

INT

F1

~

F5

Manual

F3

Manual Triggering If a manual source is selected, the

Trigger softkey (F1) must be pressed each time to output a burst.

Trigger F1

82

Note When the internal trigger source is chosen, the burst is output continuously at a rate defined by the burst period setting. The interval between bursts is defined by the burst period.

When the external trigger is selected the function generator will receive a trigger signal (TTL) from the

Trigger INPUT terminal on the rear panel. Each time the trigger is received, a burst is output (with the defined number of cycles). If a trigger signal is received during a burst, it is ignored.

When using the manual or external trigger only the burst phase and burst cycle/count are applicable, the burst period is not used.

A time delay can be inserted after each trigger, before the start of a burst.

4-7-9. Burst Delay

Panel Operation 1. Press the Burst key.

Burst

2. Press F1 (N Cycle).

N Cycle F1

3. Press F5 (TRIG set).

TRIG set F5

4. Press F4 (Delay).

Delay F4

5. The Delay parameter will become highlighted in the

Waveform Display area.

83

6. Use the selector keys and scroll wheel or number pad to enter period time.

7

4

8

5

2

9

6

3 1

0 /

Range

7. Press F1~F4 to choose the delay time unit.

Delay time nSEC

F1

0s~655350nS

~

SEC

F4

Default

4-7-10. Burst Trigger Output

0s

The Trig Out terminal on the rear panel can be used for burst or sweep modes to output a rising edge TTL compatible trigger signal. By default the trigger signal is rising edge. The trigger signal is output at the start of each burst.

Panel Operation 1. Press the Burst key.

2. Press F1 (N Cycle).

Note

Burst

N Cycle F1

3. Press F5 (TRIG set).

TRIG set F5

4. Press F5 (TRIG out).

TRIG out F5

5. Press F3 (ON/OFF) to toggle

Trigger out ON/OFF.

ON/OFF F3

6. Select F1 (Rise) or F2 (Fall) edge trigger.

Rise

~

Fall

F1 F2

When the internal trigger is selected, a square wave with a 50% duty cycle is output at the beginning of each burst.

Trig Out cannot be used with manual triggering and will be disabled if manual triggering is set.

For manual triggering, a pulse is output (>1us) from the

Trig Out connector at the start of each burst.

84

85

5. SECONDARY SYSTEM FUNCTION SETTINGS

The secondary system functions are used to store and recall settings, view help files, view the software version, update the firmware, set the buzzer.

5-1. Save and Recall

The FGX-2220 has non-volatile memory to store instrument state and ARB data.

There are 10 memory files numbered 0~9. Each memory file can either store arbitrary waveform data (ARB), settings or both. When data (ARB or Setting data) is stored in a memory file, the data will be shown in red. If a file has no data, it will be shown in blue.

Save/Recall

Properties

ARB

Rate

Frequency

Length

Display horizontal

Display vertical

Output Start

Output length

Setting

 Functions

Waveform

Frequency

Pulse Width

Square wave Duty

Ramp Symmetry

Amplitude

Amplitude unit

Offset

Modulation type

Beep setting

Impedance

Main output

Sweep

Source

Type

Marker

Time

Start frequency

86

 AM

Source

Shape

Depth

AM frequency

FM

Source

Shape

Deviation

FM frequency

FSK

Source

Shape

Rate

Hop frequency

 PM

Source

Shape

Phase deviation

Stop frequency

Center frequency

Span frequency

Marker frequency

 Frequency

 Burst Type

Source

Trigger out

Type

Cycles

Phase

Period

Delay

Panel Operation 1. Press the UTIL key.

2. Press F1 (Memory).

UTIL

Memory F1

3. Use the scroll wheel to highlight a memory file number.

4. Choose a file operation:

Press F1 to store a file, press F2 to recall a file, or press F3 to delete a file.

Store

Recall

Delete

87

F1

F2

F3

Range

5. Use the scroll wheel to highlight the data type.

ARB, Setting or ARB+Setting

6. Press F5 (Done) to choose the data type.

Memory file

Data type

Done F5

Memory0 ~ Memory9

ARB, Setting, ARB+Setting

Delete All

7. Press F5 (Done) to confirm the operation.

Done

8. To delete all the files for

Memory0~Memory9, press F4.

Delete All

9. Press F1 (Done) to confirm the deletion of all files.

Done

F5

F4

F1

88

5-2. System and Settings

There are a number of miscellaneous settings and firmware settings that can be configured.

5-2-1. Viewing and Updating the Firmware

View Version 1. Press the UTIL key.

UTIL

2. Press F2 (Cal.).

Cal.

F2

3. Press F2 (Software).

Software F2

4. Press F1 (Version) to view the firmware version.

Version

The version information will be shown on screen:

Instrument, Version, FPGA Revision

F1

Update Firmware 5. To update the firmware, insert a

USB flash drive with a firmware file in the USB host drive. Press

F2 (Upgrade).

Upgrade F2

6. Use the scroll wheel to highlight the firmware file. Press

F1(Select)

Select F1

Note

The firmware file (*.bin) must be located in a directory, directly off the USB root directory.

5-2-2. Setting the Buzzer Sound

Background Turns the beeper on or off.

Panel Operation 1. Press the UTIL key.

2. Press F3 (System).

89

UTIL

System F3

3. PressF3 (Beep) to toggle the buzzer sound on or off.

Beep

4. Press F1(ON) or Press

F2(OFF)

ON

F1

~

5-2-3. Frequency Counter

Example: Turn on the frequency counter. Gate time: 1 second.

F3

OFF

F2

Output: N/A

Input:

Trigger

IN

1. Press UTIL, F5 (Counter).

UTIL Counter

MOD

2. Press F1 (Gate Time), and press

F3 (1 Sec) to choose a gate time of 1 second.

Gate Time 1 Sec

OUT

Trigger Counter

3. Connect the signal of interest to the Frequency counter input on the rear panel.

4. Input a 1kHz square wave signal into the Counter input on the rear panel. Set the gate time to 1S.

90

5-3. Dual channel Settings

5-3-1. Frequency Coupling

1. Press UTIL, F4 (Dual Chan) to enter the coupling function.

UTIL Dual Chan

2. Press F1 (Freq Cpl) to select the frequency coupling function.

Freq Cpl F1

3. Press F2 (Offset). The offset is the frequency difference between

CH1 and CH2. Use the number keys or scroll wheel to enter the offset.

Offset

There are two different coupling modes. They are calculated as follows:

Offset=CH2-CH1

Ratio=CH2/CH1

4. Input an offset value of 1kHz.

Press F1~ F5 to select the units. uHz

F1

~

F1

MHz

F5

The frequency of channel 2 becomes 2kHz (CH2=CH1 +

Offset).

91

5. Change the frequency coupling mode to Ratio. Set the ratio to 2.

The frequency of CH2 automatically changes accordingly to match the ratio (CH2=CH1*Ratio).

5-3-2. Amplitude Coupling

1. The following assumes that the amplitude has already been set to 4Vpp with a DC offset of 1Vdc.

2. Press UTIL, F4 (Dual Chan) to enter the coupling function.

UTIL Dual Chan

3. Press F2 (Ampl Cpl), F1 (ON) to select the amplitude coupling function.

Ampl Cpl On

4. The amplitude and offset between both channel is coupled. Any changes in amplitude in the current channel is reflected in the other channel.

92

5-3-3. Tracking

1. The method for outputting a square wave has been previously described. Use this method to output a

2kHz squarewave from CH1 with an amplitude of

5Vpp and a DC offset of 1Vdc.

2. Press UTIL, F4 (Dual Chan) to enter the coupling function.

3. Press F3 (Tracking), F2 (On) to turn on the tracking function.

UTIL Dual Chan

Tracking On

4. When tracking is turned on, parameters such as amplitude and frequency from the current channel are mirrored on the other channel.

93

6. CHANNEL SETTINGS

The channel settings chapter shows how to set the output impedance, output phase and DSO connection settings.

6-1. Output Impedance

Background The FGX-2220 has selectable output impedances: 50Ω or high impedance. The default output impedance is

50Ω. The output impedances are to be used as a reference only. If the actual load impedance is different to that specified, then the actual amplitude and offset will vary accordingly.

Panel Operation

Note

1. Press the CH1/CH2 key. CH1/CH2

The load function can only be used if the ARB, MOD,

SWEEP or BURST functions are not active.

2. Press F1 (Load).

Load F1

3. Select F1 (50 OHM) or F2 (High

Z) to select the output impedance.

50 OHM

~

F1

High Z

F2

94

6-2. Selecting the Output Phase

Panel operation

Note

1. Press the CH1/CH2 key. CH1/CH2

The phase function can only be used if the ARB, MOD,

SWEEP or BURST functions are not active.

2. Press F4 (Phase) and then press F1 (Phase)

Phase F4

Phase F1

3. The Phase parameter in the parameter window will become highlighted.

4. Use the arrow keys and scroll wheel or number pad to enter the output phase.

7

4

1

0

8

5

2

9

6

3

/

5. Press F5 (Degree).

Degree F5

95

6-3. Synchronizing the Phase

Background Synchronizes both the outputs on the FGX-2220.

Panel Operation 1. Press the CH1/CH2 key. CH1/CH2

2. Press F4 (Phase).

Phase F4

3. Press F2 (S_Phase) to synchronize the phase of the channels.

S_Phase F2

6-4. DSO Link

Background DSO Link enables the FGX-2220 to receive lossless data from a DCS-7500A Series DSO to create ARB data.

Connect the FGX-2220 USB host port to the DCS-7500A ’s USB B device port.

Panel Operation 1. Press the CH1/CH2 key. CH1/ CH2

2. Press F5 (DSO Link).

DSO Link F5

Load

3. Press F1 (Search).

96

Phase

DSO Link

Search F1

4. The “DCS Find” will be displayed.

Load

GDS-XXXXFind!

Phase

5. To select a DSO channel, Press

F2 (CH1), F3 (CH2), F4 (CH3) or

F5 (CH4). The acquired data can then be displayed.

DSO Link

~

CH1

F2

CH4

F5

Display

Edit

Built in

Output

More

97

7. ARBITRARY WAVEFORMS

The FGX-2220 can create user-defined arbitrary waveforms with a sample rate of

120MHz. Each waveform can include up to 4k of data points with a vertical range of

±511.

7-1. Inserting Built-In Waveforms

The FGX-2220 includes 66 common waveforms, such as math waveforms, windowing functions and engineering waveforms.

7-1-1. Create an AbsAtan Waveform

Panel Operation 1. Press the ARB key.

ARB

2. Press F3(Built in).

Built in F3

3. Press F4(Wave).

Wave F4

4. Press F1(Common).

Common F1

5. Use the scroll wheel to select “AbsAtan” from the built-in Common waveforms.

Common

Math

A b s a ta n

A b s s in h a rf

A tta lt

D iric _ o d d

H a rv e r c o s in e

N _ p u ls e

R e c tp u ls

Ab s s in

Am p a lt

D iric _ e v e n

G a u s p u ls

H a rv e r s in e

N e g r a m p

R o u n d h a rf

Window

Engineer

Select

6. Press F5(Select) to select AbsAtan waveform

Select F5

7. Press F1(Start) and set the start position of the AbsAtan waveform.

Start F1

98

8. You can also change the length and scale of the waveform by pressing F2(Length) or F3(Scale).

Length

Scale

F2

F3

9. Press F5 (Done) to complete the operation

Done F5

10. Press return to return to the previous menu.

Return

Below an Absatan wave created at start:0, Length: 33,

Scale: 511

7-1-2. Built-in Waveform

COMMON

Math

Window

Engineer

Absatan

Attalt

Abssin Abssinharf Ampalt

Diric_even Diric_odd

Harvercosin Harversine N_pulse

Gauspuls

Negramp

Rectpuls

Stair_ud

Tripuls

Roundharf Sawtoot

Stair_up Stepwsp

Sinetra

Trapezia

Arccos

Arcsin

Cosh

Expofall

Lorentz

Arccot

Arcsinh

Arccsc

Arctan

Cot Csc

Exporise Gauss

Sec Sech

Arcsec

Arctanh

Dlorentz

Ln

Sinec

Sinh Sqrt

Barthannwin Bartlett

Tan Tanh

Blackman Bohmanwin

Cherbyshev Flattopwin Hamming Hann

Hanning Kaiser Triang Tukeywin

Airy

Legendre

Bessel

Neumann

Betainc Gamma

99

7-2. Display an Arbitrary Waveform

7-2-1. Set the Horizontal Display Range

The horizontal window bounds can be set in one of two ways: Using a start point and length, or a center point and length.

Panel Operation 1. Press the ARB key.

2. Press F1 (Display) to enter the display menu.

3. Press F1 (Horizon) to enter the horizontal menu.

ARB

Display F1

Horizon F1

Using a Start Point 4. Press F1( Start)

Start F1

5. The H_From parameter will become highlighted.

6. Use the arrow keys and scroll wheel or number pad to enter the

H_From value.

7

4

1

0

8

5

2

9

6

3

/

7. Press Clear ( F1) to cancel.

Clear

Enter

F1

F2

8. Press F2 (Enter) to save the settings.

9. Press Return to return to the previous menu.

Setting the Length 10. Repeat steps 4~9 for Length

(F2).

Using a Center

Point

11. Repeat steps 4~9 for Center

(F3).

100

Return

Length

Center

F2

F3

Zoom in

Zoom out

12. To zoom into the arbitrary waveform, press F4 (Zoom In).

The Zoom In function will reduce the length by half each time the function is used. The minimum allowable length is 3.

Zoom In F4

13. To zoom out from the center point of the waveform, press F5 (Zoom out). The Zoom out function will increase the length by 2. The maximum allowable length is

4096.

Zoom out F5

Below, an arbitrary waveform has a start of 0, length of 200 and is centered at 100.

7-2-2. Set the Vertical Display Properties

Like the horizontal properties, the vertical display properties of the waveform display can be created in two ways: Setting high and low values, or setting the center point.

Panel Operation 1. Press the ARB key.

ARB

2. Press F1 (Display).

Display F1

3. Press F2 (Vertical).

Vertical F2

101

Setting the Low

Point

4. Press F1 (Low).

Low F1

5. The V_Low parameter will become highlighted.

6. Use the arrow keys and scroll wheel or number pad to enter the

V_Low value.

7

4

1

0

8

5

2

9

6

3

/

7. Press Clear (F1) to cancel.

Clear F1

8. Press F2 (Enter) to save the settings.

9. Press Return to return to the previous menu.

Setting the High

Point

10. Repeat steps 4~9 for V_High

(F2).

Enter

Return

High

Setting the Center

Point

11. Repeat steps 4~9 for Center

(F3).

Zoom

Center

12. To zoom in from the center of the arbitrary waveform, press F4

(Zoom in). The Zoom in function will reduce the length by half each time the function is used.

The minimum allowable vertical low is -2, and the minimum vertical high is 2.

Zoom in

13. To zoom out of the waveform, press F5 (Zoom out). The Zoom out function will increase the length by 2. The Vertical low maximum can be set to -511 and the vertical high maximum can be set to +511.

Zoom out

102

F2

F2

F3

F4

F5

Below, the AbsAtan wave is with a vertical low of -511, a vertical high 511 and a center of 0.

7-2-3. Page Navigation (Back Page)

Background When viewing the waveform, the display window can be moved forward and backward using the Next/Back Page functions.

Panel Operation 1. Press the ARB key.

ARB

2. Press F1 (Display).

Display F1

3. Press F4 (Back Page) to move the display window one view length backward.

Back Page F4

H_From* = H_From - Length

Center*= Center

– Length

*Length until 0

Below, shows the display after Back Page has been pressed.

H_From: 200  0

Length: 200

Center:300 100

103

7-2-4. Page Navigation (Next Page)

Background When viewing the waveform, the display window can be moved forward and backward using the Next/Back Page functions.

Panel Operation 1. Press the ARB key.

ARB

2. Press F1 (Display).

Display F1

3. Press F3 (Next Page) to move the display window one view length forward.

Next Page F3

104

H_From*=H_From + Length

Center=Center + Length

*H_From +Length ≤ 4096

Below, shows the display after Next Page has been pressed.

H_From: 0  200

Length: 200

Center:100 300

105

7-2-5. Display

Panel Operation 1. Press the ARB key.

ARB

2. Press F1 (Display).

Display F1

To make the display window cover the whole waveform, press

F5 (Overview).

Horizontal: 0~4095

Vertical: 511~ -511

Overview F5

Below shows the display after Overview has been selected.

H_From: 0  0

Length: 4004096

Center:200 2048

Vertical low/high: ±511

7-3. Editing an Arbitrary Wavefrom

7-3-1. Adding a Point to an Arbitrary Waveform

Background The FGX-2220 has a powerful editing function that allows you to create points or lines anywhere on the waveform.

Panel Operation 1. Press the ARB key.

ARB

106

2. Press F2 (Edit).

Edit F2

3. Press F1 (Point).

Point F1

4. Press F1 (Address).

Address

5. The Address parameter becomes highlighted.

F1

6. Use the arrow keys and scroll wheel or number pad to enter the

Address value.

7

4

1

0

8

5

2 3

/

9

6

7. Press F2 (Enter) to save the settings.

8. Press Return to return to the previous menu.

Enter

Return

F2

9. Press F2 (Data).

Data

10. The Data parameter will become highlighted.

F2

11. Use the selector keys and scroll wheel or number pad to enter a

Data value.

7

4

1

0

8

5

2

9

6

3

/

12. Press F2 (Enter) to save the settings.

13. Press Return to return to the previous menu.

Enter

Return

F2

14. Press return again to go back to the ARB menu.

107

Return

In the following figure the edited address is shown in red.

Address 100,Data 200

7-3-2. Adding a Line to an Arbitrary Waveform

Background The FGX-2220 has a powerful editing function that allows you to create points or lines anywhere on the waveform.

Panel Operation 1. Press the ARB key.

ARB

2. Press F2 (Edit).

Edit F2

3. Press F2 (Line).

Line F2

4. Press F1 (Start ADD).

Start ADD F1

5. The Start Address parameter will be highlighted in red.

108

6. Use the arrowkeys keys and scroll wheel or number pad to enter the start address.

7

4

1

0

8

5

2

9

6

3

/

7. Press F2 (Enter) to save the settings.

8. Press Return to return to the previous menu.

Enter

Return

F2

9. Repeat steps 4~8 for Start Data (F2), Stop Address

(F3) and Stop Data (F4).

10. Press F5 (Done) to confirm the line edit.

Done F5

11. Press Return to return to the previous menu.

Return

The red line was created below with the following properties:

Start Address: 0, Start Data: 0

Stop Address: 32, Stop Data: 0

109

7-3-3. Copy a Waveform

Panel Operation 1. Press the ARB key.

ARB

2. Press F2 (Edit).

Edit F2

3. Press F3 (Copy).

Copy F3

4. Press F1 (Start).

Start F1

5. The Copy From properties will become highlighted in red.

6. The the arrow keys and scroll wheel or number pad to enter the

Copy From address.

7

4

1

0

8

5

2

9

6

3

/

7. Press F2 (Enter) to save the settings.

8. Press Return to return to the previous menu.

Enter

Return

F2

9. Repeat steps 4~8 for Length (F2) and Paste To (F3).

10. Press F5 (Done) to confirm the selection.

Done F5

11. Press Return to return to the previous menu.

Return

A section of the waveform from points 0~33 was copied to points 50~83:

Copy From: 0

Length: 33

To: 50

110

7-3-4. Clear the Waveform

Panel Operation 1. Press the ARB key.

ARB

2. Press F2 (Edit).

Edit F2

3. Press F4 (Clear).

Clear F4

4. Press F1 (Start).

Start F1

5. The Clear From properties will become highlighted in red.

6. Use the arrow keys and scroll wheel or number pad to enter the

Clear From address.

7

4

1

0

8

5

2

9

6

3

/

7. Press F2 (Enter) to save the settings.

Enter F2

8. Press Return to return to the previous menu.

Return

111

Delete All

9. Repeat steps 4~8 for Length

(F2).

10. Press F3 (Done) to clear the selected section of the arbitrary waveform.

11. Press F4 (ALL) to delete the whole waveform.

Length

Done

ALL

F2

F3

F4

12. Press F1 (Done) again to confirm the deletion.

Done

13. Press Return return to the previous menu.

Clear From: 20, Length: 33.

Return

F1

The same area after being cleared:

112

The result after the whole waveform is deleted:

7-3-5.ARB Protection

The protection function designates an area of the arbitrary waveform that cannot be altered.

Panel Operation 1. Press the ARB key.

ARB

2. Press F2 (Edit).

Edit F2

3. Press F5 (Protect).

Protect F5

4. Press F2 (Start).

Start F2

5. The Protect Start properties will become highlighted in red.

6. Use the arrow keys and scroll wheel or number pad to enter the

Protect Start address.

7

4

1

0

8

5

2

9

6

3

/

7. Press F2 (Enter) to save the settings.

113

Enter F2

Protect All

Unprotect All

8. Press Return to return to the previous menu.

9. Repeat steps 4~8 for Length

(F3).

10. Press F4 (Done) to confirm the protected area.

Return

Length

Done

F3

F4

11. Press F1 (ALL) to protect the whole waveform.

12. Press F1 (Done) to confirm.

ALL F1

Done F1

13. Press F5 (Unprotect) to unprotect the whole waveform.

Unprotect F5

14. Press F1 (Done) to confirm.

Done F1

15. The waveform background will return back to black.

The property “Protect Off” be will grayed out.

Below, the protected areas of the waveform are shown with an orange background:

Start:0, Length: 100.

114

7-4.Ouput an Arbitrary Waveform

The arbitrary waveform generator can output up to 4k points (2~4096).

7-4-1. Ouput Arbitrary Waveform

Panel Operation 1. Press the ARB key.

ARB

2. Press F4 (Output).

Output F4

3. Press F1 (Start).

Start F1

4. The Start property will become highlighted in red.

5. Use the arrow keys and scroll wheel or number pad to enter the

Start address.

7

4

1

0

8

5

2

9

6

3

/

6. Press F2 (Enter) to confirm the start point.

Enter F2

7. Press Return to return to the previous menu.

Return

115

8. Repeat steps 4~7 for Length

(F2).

Length

9. Press Return to return to the previous menu.

Return

The front panel terminal will output the following waveform.

Start 0,Length 500

F2

7-5. Saving/Loading an Arbitrary Waveform

The FGX-2220 can save and load arbitrary waveforms from 10 internal memory slots. Arbitrary waveforms can also be saved and loaded from a USB memory stick.

7-5-1. Saving a Waveform to Internal Memory

Panel Operation 1. Press the ARB key.

ARB

2. Press F5 (More).

More F5

3. Press F1 (Save).

Save F1

4. Press F1 (Start).

Start F1

5. The Start property will become highlighted in red.

116

6. Use the arrow keys and scroll wheel or number pad to enter the

Start address.

7

4

1

0

8

5

2

9

6

3

/

7. Press F2 (Enter) to confirm the start point.

8. Press Return to return to the previous menu.

Enter

Return

F2

9. Repeat steps 4~8 for Length

(F2).

10. Press F3 (Memory).

Length F2

Memory F3

11. Select a memory file using the scroll wheel.

Memory0~Memory9

12. Press F1 (Select) to save the selected memory file.

Select F1

13. Press Return to return to the previous menu.

Return

Below the file Memory0 is selected using the scroll wheel.

117

7-5-2. Saving a Waveform to USB Memory

Panel Operation 1. Press the ARB key.

ARB

2. Press F5 (More).

More F5

3. Press F1 (Save).

Save F1

4. Press F1 (Start).

Start F1

5. The Start propery will become highlighted in red.

6. Use the arrow keys and scroll wheel or number pad to enter the

Start address.

7

4

1

0

8

5

2

9

6

3

/

7. Press F2 (Enter) to confirm the start point.

Enter F2

8. Press Return to return to the previous menu.

Return

9. Repeat steps 4~8 for Length

(F2).

10. Press F4 (USB).

Length

USB

F2

F4

11. Use the scroll wheel to navigate the file system.

12. Press Select to select directories or files.

Select

Create a Folder 1. Press F2 (New Folder).

F1

New Folder F1

118

2. The text editor will appear with a default folder name of “NEW_FOL”.

New Folder:

NEW_FOL

A B C D E F G H I J K L M

N

1

O

2

P Q

3 4

R S T U V W X Y Z

5 6 7 8 9 0

_

-

3. Use the scroll wheel to move the cursor.

4. Use F1 (Enter Char) or F2

(Backspace) to create a folder name.

Enter Char

~

Backspace

F1 F2

5. Press F5 (Save) to save the folder name.

Save F5

Create a New File 1. Press F3 (New File). New File F3

2. The text editor will appear with a default file name of

“NEW_FIL”.

New File(CSV):

NEW_FIL

A

N O

1

B C D E F G H I

2

P

3

Q

4

R

5

S

6

T

7

U

8

V

9

J

W

0

K

X

L

Y

_

M

Z

-

119

3. Use the scroll wheel to move the cursor.

4. Use F1 (Enter Char) or F2

(Backspace) to create a file name.

Enter Char

~

Backspace

F1 F2

5. Press F5 (Save) to save the file name.

Save F5

Below the folder, BIN, has been created in the root directory.

7-5-3. Load a Waveform from Internal Memory

Panel Operation 1. Press the ARBkey.

2. Press F5 (More).

3. Press F2 (Load).

4. Press F1 (Memory).

ARB

More F5

Load

Memory

F2

F1

120

5. Use the scroll whell to choose a memory file.

6. Press Select to load the selected memory file.

Select F1

7. Press F3 (To) to choose the starting point for the loaded waveform.

To F3

8. The Load To parameter will become highlighted in red.

9. Use the selector keys and scroll wheel or number pad to enter the starting point.

7

4

1

0

8

5

2

9

6

3

/

10. Press F2(Enter) to confirm the start point.

11. Press Return to return to the previous menu.

Enter

Return

F2

12. Press F4(Done).

Done F4

Below the file Memory0 is selected using the scroll wheel loaded to position 0.

121

7-5-4. Load a Waveform from USB

Panel Operation 1. Press the ARB key.

2. Press F5 (More).

3. Press F2 (Load).

4. Press F2 (USB).

ARB

More F5

Load F2

USB F2

122

5. Use the scroll wheel to choose a file name.

6. Press F1 (Select) to select the file to load.

Select F1

7. Press F3 (To) to choose the starting point for the loaded waveform.

To F3

8. The Load To property will become highlighted in red.

9. Use the arrow keys and scroll wheel or number pad to enter the starting point.

7

4

1

0

8

5

2

9

6

3

/

10. Press F2(Enter) to confirm the

Start point.

Enter F2

11. Press F4(Done).

Done F4

Below the file FGX.CSV is selected using the scroll wheel loaded to position 0.

123

124

8. REMOTE INTERFACE

8-1. Establishing a Remote Connection

The FGX-2220 supports USB remote connections.

8-1-1. Configure USB interface

USB configuration PC side connector Type A, host

FGX-2220 side connector Type B, slave

Speed

Class

1.1/2.0 (full speed)

USB-CDC

Panel Operation 1. Connect the USB cable to the rear panel USB B (slave) port.

2. When the PC requests for the USB driver, select

XXXXXXX.inf included in the software package or download the driver from our website, www.texio.co.jp

3. If the PC can not recognize the new hardware due to the security, Please go to update the driver from the

“Other device” in the Device Manager.

8-1-2. Remote control terminal connection

Terminal application

Functionality check

Invoke the terminal application such as MTTTY

(Multi-Threaded TTY) or PuTTY. For USB, set the COM port, baud rate, stop bit, data bit, and parity accordingly.

To check the COM port No, see the Device Manager in the PC. For Windows , Control panel → System →

Hardware tab.

Run this query command via the terminal.

*idn?

This should return the Manufacturer, Model number,

Serial number, and Firmware version in the following format.

TEXIO, FGX-2220, SN:XXXXXXXX,Vm.mm

Note: ^j or ^m can be used as the terminal character when using a terminal program.

125

PC Software

Display

The proprietary PC software, downloadable from our website, can be used for remote control.

When a remote connection is established all panel keys are locked bar F5.

1. Press REM/LOCK (F5) to return the function generator to local mode.

REM/LOCK F5

8-1-3. Command Syntax

Compatible standard

IEEE488-19992 (fully compatible)

 SCPI, 1994 (partially compatible)

Command Tree The SCPI standard is an ASCII based standard that defines the command syntax and structure for programmable instruments.

Commands are based on a hierarchical tree structure.

Each command keyword is a node on the command tree with the first keyword as the root node. Each sub node is separated with a colon.

Shown below is a section of the SOURce[1|2] root node and the :PM and :PULSe sub nodes.

Root node :SOURce[1|2]

2 nd node

:PM

:PULSe

3 rd node SOURCE Shape

126

:PERiod :WIDTh

Command types Commands can be separated in to three distinc types, simple commands, compound commands and queries.

Simple A single command with/without a parameter

Example *OPC

Compound

Example

Query

Example

Two or more commands separated by a colon (:) with/without a parameter

SOURce1:PULSe:WIDTh

A query is a simple or compound command followed by a question mark (?). A parameter (data) is returned. The maximum or minimum value for a parameter can also be queried where applicable.

SOURce1:FREQuency?

SOURce1:FREQuency? MIN

Command forms Commands and queries have two different forms, long and short. The command syntax is written with the short form of the command in capitals and the remainder (long form) in lower case.

long long

SOURce1:DCOffset

short short

The commands can be written in capitals or lower-case, just so long as the short or long forms are complete. An incomplete command will not be recognized.

Below are examples of correctly written commands:

LONG SOURce1:DCOffset

SOURCE1:DCOFFSET source1:dcoffset

SHORT SOUR1:DCO sour1:dco

Command Format SOURce1:DCOffset < offset>LF 1: command header

1 2 3 4 2: single space

3: parameter

4: message terminator

127

Square Brackets

[ ]

Braces {}

Angled Brackets

<>

Bars |

Parameters

Commands that contain squares brackets indicate that the contents are optional. The function of the command is the same with or without the square bracketed items.

Brackets are not sent with the command.

For example, the frequency query below can use any of the following 3 forms:

SOURce1:FREQuency? [MINimum|MAXimum]

SOURce1:FREQuency? MAXimum

SOURce1:FREQuency? MINimum

SOURce1:FREQuency?

Commands that contain braces indicate one item within the braces must be chosen. Braces are not sent with the command.

Angle brackets are used to indicate that a value must be specified for the parameter. See the parameter description below for details. Angled brackets are not sent with the command.

Bars are used to separate multiple parameter choices in the command format.

Type

<Boolean>

Description

Boolean logic

Example

0, 1/ON,OFF

<NR1>

<NR2>

<NR3>

<NRf>

<NRf+>

<Numeric>

<aard>

<discrete> integers 0, 1, 2, 3 decimal numbers 0.1, 3.14, 8.5 floating point 4.5e-1, 8.25e+1 any of NR1, 2, 3 1, 1.5, 4.5e-1

1, 1.5, 4.5e-1

MAX, MIN,

NRf type with a suffix including

MINimum,

MAXimum or

DEFault parameters.

Arbitrary ASCII characters.

Discrete ASCII character parameters

IMM, EXT, MAN

128

Message terminators

Note

Command

Separators

<frequency>

<peak deviation in Hz>

NRf+ type including frequency unit suffixes.

1 KHZ, 1.0 HZ,

ΜHZ

<rate in Hz>

<amplitude> NRf+ type including voltage peak to peak.

VPP

<offset>

<seconds>

NRf+ type including volt unit suffixes.

V

NRf+ type including time unit suffixes.

NS, S MS US

NRf type N/A <percent>

<depth in percent>

LF CR

LF

EOI line feed code (new line) and carriage return. line feed code (new line)

IEEE-488 EOI (End-Or-Identify)

^j or ^m should be used when using a terminal program.

Space

Colon (:)

Semicolon (;)

Colon +

Semicolon (:;)

A space is used to separate a parameter from a keyword/command header.

A colon is used to separate keywords on each node.

A semi colon is used to separate subcommands that have the same node level.

For example:

SOURce[1|2]:DCOffset?

SOURce[1|2]:OUTPut?

SOURce1:DCOffset?;OUTPut?

A colon and semicolon can be used to combine commands from different node levels.

For example:

SOURce1:PM:SOURce?

SOURce:PULSe:WIDTh?

SOURce1:PM:SOURce?:;SOURc e:PULSe:WIDTh?

129

Comma (,) When a command uses multiple parameters, a comma is used to separate the parameters.

For example:

SOURce:APPLy:SQUare 10KHZ,

2.0 VPP, -1V

8-2. Command List

8-3-1. SYSTem:ERRor? ............................................................................... 133

8-3-2. *IDN? ................................................................................................. 133

8-3-3. *RST .................................................................................................. 133

8-3-4. SYSTem:VERSion? ........................................................................... 134

8-3-5. *OPC ................................................................................................. 134

8-3-6. *OPC? ............................................................................................... 135

8-4-1. *CLS .................................................................................................. 135

8-4-2. *ESE .................................................................................................. 135

8-4-3. *ESR? ................................................................................................ 136

8-4-4. *STB? ................................................................................................ 136

8-4-5. *SRE .................................................................................................. 137

8-5-1. SYSTem:LOCal ................................................................................. 137

8-5-2. SYSTem:REMote .............................................................................. 138

8-6-1. SOURce[1|2]:APPLy:SINusoid .......................................................... 139

8-6-2. SOURce[1|2]:APPLy:SQUare ............................................................ 140

8-6-3. SOURce[1|2]:APPLy:RAMP .............................................................. 140

8-6-4. SOURce[1|2]:APPLy:PULSe ............................................................. 141

8-6-5. SOURce[1|2]:APPLy:NOISe .............................................................. 141

8-6-6. SOURce[1|2]:APPLy:USER ............................................................... 142

8-6-7. SOURce[1|2]:APPLy? ........................................................................ 142

8-7-1. SOURce[1|2]:FUNCtion ..................................................................... 143

8-7-2. SOURce[1|2]:FREQuency ................................................................. 144

8-7-3. SOURce[1|2]:AMPlitude .................................................................... 145

8-7-4. SOURce[1|2]:DCOffset ...................................................................... 146

8-7-5. SOURce[1|2]:SQUare:DCYCle .......................................................... 147

8-7-6. SOURce[1|2]:RAMP:SYMMetry ......................................................... 147

8-7-7. OUTPut[1|2] ....................................................................................... 148

8-7-8. OUTPut[1|2]:LOAD ............................................................................ 149

8-7-9. SOURce[1|2]:VOLTage:UNIT ............................................................ 149

8-8-1. SOURce[1|2]:PULSe:PERiod ............................................................ 150

8-8-2. SOURce[1|2]:PULSe:WIDTh ............................................................. 151

8-9-1. AM Overview ..................................................................................... 152

8-9-2. SOURce[1|2]:AM:STATe ................................................................... 153

8-9-3. SOURce[1|2]:AM:SOURce ................................................................ 153

8-9-4. SOURce[1|2]:AM:INTernal:FUNCtion ................................................ 154

8-9-5. SOURce[1|2]:AM:INTernal:FREQuency ............................................ 154

8-9-6. SOURce[1|2]:AM:DEPTh ................................................................... 155

8-10-1. FM Overview .................................................................................... 156

8-10-2. SOURce[1|2]:FM:STATe ................................................................. 156

8-10-3. SOURce[1|2]:FM:SOURce .............................................................. 157

130

8-10-4. SOURce[1|2]:FM:INTernal:FUNCtion .............................................. 157

8-10-5. SOURce[1|2]:FM:INTernal:FREQuency .......................................... 158

8-10-6. SOURce[1|2]:FM:DEViation ............................................................. 159

8-11-1. FSK Overview .................................................................................. 160

8-11-2. SOURce[1|2]:FSKey:STATe ............................................................ 160

8-11-3. SOURce[1|2]:FSKey:SOURce ......................................................... 161

8-11-4. SOURce[1|2]:FSKey:FREQuency ................................................... 161

8-11-5. SOURce[1|2]:FSKey:INTernal:RATE ............................................... 162

8-12-1. PM Overview ................................................................................... 163

8-12-2. SOURce[1|2]:PM:STATe ................................................................. 163

8-12-3. SOURce[1|2]:PM:SOURce .............................................................. 164

8-12-4. SOURce[1|2]:PM:INTernal:FUNction ............................................... 164

8-12-5. SOURce[1|2]:PM:INTernal:FREQuency .......................................... 165

8-12-6. SOURce[1|2]:PM:DEViation ............................................................ 166

8-13-1. SUM Overview ................................................................................. 167

8-13-2. SOURce[1|2]:SUM:STATe ............................................................... 167

8-13-3. SOURce[1|2]:SUM:SOURce ............................................................ 168

8-13-4. SOURce[1|2]:SUM:INTernal:FUNction ............................................ 168

8-13-5.SOURce[1|2]:SUM:INTernal:FREQuency ......................................... 169

8-13-6. SOURce[1|2]:SUM:AMPL ................................................................ 169

8-14-1. Sweep Overview .............................................................................. 171

8-14-2. SOURce[1|2]:SWEep:STATe .......................................................... 172

8-14-3. SOURce[1|2]:FREQuency:STARt .................................................... 172

8-14-4. SOURce[1|2]:FREQuency:STOP .................................................... 173

8-14-5. SOURce[1|2]:FREQuency:CENTer ................................................. 173

8-14-6. SOURce[1|2]:FREQuency:SPAN .................................................... 174

8-14-7. SOURce[1|2]:SWEep:SPACing ....................................................... 175

8-14-8. SOURce[1|2]:SWEep:TIME ............................................................. 175

8-14-9. SOURce[1|2]:SWEep:SOURce ....................................................... 176

8-14-10. SOURce[1|2]:MARKer:FREQuency ............................................... 177

8-14-11. SOURce[1|2]:MARKer ................................................................... 177

8-15-1. Burst Mode Overview ...................................................................... 178

8-15-2. SOURce[1|2]:BURSt:STATe ............................................................ 179

8-15-3. SOURce[1|2]:BURSt:MODE ............................................................ 180

8-15-4. SOURce[1|2]:BURSt:NCYCles ........................................................ 180

8-15-5. SOURce[1|2]:BURSt:INTernal:PERiod ............................................ 181

8-15-6. SOURce[1|2]:BURSt:PHASe ........................................................... 182

8-15-7. SOURce[1|2]:BURSt:TRIGger:SOURce .......................................... 183

8-15-8. SOURce[1|2]:BURSt:TRIGger:DELay ............................................. 184

8-15-9. SOURce[1|2]:BURSt:TRIGger:SLOPe............................................. 184

8-15-10. SOURce[1|2]:BURSt:GATE:POLarity ............................................ 185

8-15-11. SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe ............................. 185

8-15-12. OUTPut[1|2]:TRIGger .................................................................... 186

8-15-13. SOURce[1|2]:BURSt:TRIGger:MANual ......................................... 187

8-16-1. Arbitrary Waveform Overview .......................................................... 187

8-16-2. SOURce[1|2]:FUNCtion USER ........................................................ 188

8-16-3. SOURce[1|2]:DATA:DAC ................................................................. 188

8-16-4. SOURce[1|2]:ARB:EDIT:COPY ....................................................... 189

8-16-5. SOURce[1|2]:ARB:EDIT:DELete ..................................................... 189

8-16-4. SOURce[1|2]:ARB:EDIT:DELete:ALL .............................................. 190

131

8-16-7. SOURce[1|2]:ARB:EDIT:POINt ....................................................... 190

8-16-8. SOURce[1|2]:ARB:EDIT:LINE ......................................................... 190

8-16-9. SOURce[1|2]:ARB:EDIT:PROTect .................................................. 191

8-16-10. SOURce[1|2]:ARB:EDIT:PROTect:ALL ......................................... 191

8-16-11. SOURce[1|2]:ARB:EDIT:UNProtect ............................................... 191

8-16-12. SOURce[1|2]:ARB:OUTPut ........................................................... 191

8-17-1. COUNTER:STATE .......................................................................... 192

8-17-2. COUNter:GATe ................................................................................ 192

8-17-3. COUNter:VALue? ............................................................................ 193

8-18-1. SOURce[1|2]:PHASe ....................................................................... 193

8-18-2. SOURce[1|2]:PHASe:SYNChronize ................................................ 194

8-19-1.SOURce[1|2]:FREQuency:COUPle:MODE ...................................... 194

8-19-2. SOURce[1|2]:FREQuency:COUPle:OFFSet .................................... 194

8-19-3. SOURce[1|2]:FREQuency:COUPle:RATio ...................................... 195

8-19-4. SOURce[1|2]:AMPlitude:COUPle:STATe ........................................ 195

8-19-5. SOURce[1|2]:TRACk ....................................................................... 196

8-20-1. *SAV ................................................................................................ 197

8-20-2. *RCL ................................................................................................ 197

8-20-3. MEMory:STATe:DELete .................................................................. 197

8-20-4. MEMory:STATe:DELete ALL ........................................................... 197

132

8-3. System Commands

8-3-1. SYSTem:ERRor?

Description

Query Syntax

Return parameter <string1><CR+LF> Returns an error code and strings.

<string2>

Example

Query

Reads an error from the error queue. See page 209 for details

regarding the error queue.

SYSTem:ERRor?

SYSTem:ERRor?

-138 <CR+LF>Suffix not allowed

Returns an error code and string.

Include CR, LF code.

8-3-2. *IDN?

Description

Query

Returns the function generator manufacturer, model number, serial number and firmware version number in the following format:

Query Syntax

TEXIO,FGX-2220,SN:XXXXXXXX,Vm.mm

*IDN?

Return parameter <string>

Example *IDN?

TEXIO,FGX-2220,SN:XXXXXXXX,Vm.mm

Returns the identification of the function generator.

8-3-3. *RST

Description

Note

Syntax

Set

Reset the function generator to its factory default state.

Note the *RST command will not delete instrument save states in memory.

*RST

133

8-3-4. SYSTem:VERSion?

Description

Query Syntax

Query

Performs a system version query. Returns a string with the instrument, firmware version, FPGA revision

SYSTem:VERSion?

Return parameter <string1><CR+LF><CR+LF> Model & Firmware Version

<string2><CR+LF><CR+LF> FPGA Version

<string3><CR+LF><CR+LF> Serial Number

<string4> Mode

Example SYST:VERS?

>FGX-2220 Version-x.xx_xxxx

>

>FPGA:xxxxxxxx

>

>SN: xxxxxxxx

>

>MODE:Plant Pattern

>

Returns the versions ,SN , MODE.

8-3-5. *OPC

Description

Note

Syntax

Set

This command sets the Operation Complete Bit (bit 0) of the

Standard Event Status Register after the function generator has completed all pending operations. For the FGX-2220, the

*OPC command is used to indicate when a sweep or burst has completed.

Before the OPC bit is set, other commands may be executed.

*OPC

134

8-3-6. *OPC?

Description

Note

Query

Returns the OPC bit to the output buffer when all pending operations have completed. I.e. when the OPC bit is set.

Commands cannot be executed until the *OPC? query has completed.

Query Syntax *OPC?

Return parameter 1

Example *OPC?

1

Returns a “1” when all pending operations are complete.

8-4. Status Register Commands

8-4-1. *CLS

Description

Set

The *CLS command clears all the event registers, the error queue and cancels an *OPC command.

*CLS Syntax

8-4-2. *ESE

Description

Note

Set

The Standard Event Status Enable command determines which events in the Standard Event Status Event register can set the Event Summary Bit (ESB) of the Status Byte register.

Any bit positions set to 1 enable the corresponding event. Any enabled events set bit 5 (ESB) of the Status Byte register.

The *CLS command clears the event register, but not the enable register.

*ESE <enable value>

<enable value> 0~255

Syntax

Parameter

Example

Query Syntax

*ESE 20

Sets a bit weight of 20 (bits 2 and 4).

*ESE?

135

Return Parameter Bit

0

1

2

3

Example *ESE?

4

Register

Not used

Not used

Error Queue

Bit

4

5

6

Questionable Data 7

Bit 2 is set.

8-4-3. *ESR?

Register

Message Available

Standard Event

Master Summary

Not used

Description

Query

Reads and clears the Standard Event Status Register. The bit weight of the standard event status register is returned.

Note

Query Syntax

The *CLS will also clear the standard event status register.

*ESR?

Return Parameter Bit

0

1

2

3

Register

Operation

Complete

Not Used

Query Error

Device Error

Bit

4

5

6

7

Register

Execution Error

Command Error

Not Used

Power On

Query Example *ESR?

5

Returns the bit weight of the standard event status register

(bit 0 and 2).

8-4-4. *STB?

Description

Note

Syntax

Reads the Status byte condition register.

Bit 6, the master summary bit, is not cleared.

*STB?

Query

136

8-4-5. *SRE

Description

Note

Set

The Service Request Enable Command determines which events in the Status Byte Register are allowed to set the MSS

(Master summary bit). Any bit that is set to “1” can cause the

MSS bit to be set.

The *CLS command clears the status byte event register, but not the enable register.

*SRE <enable value>

<enable value> 0~255

Syntax

Parameter

Example

Query Syntax

*SRE 12

Sets a bit weight of 12 (bits 2 and 3) for the service request enable register.

*SRE?

Return Parameter Bit

0

1

2

3

Query Example *SRE?

12

Register

Not used

Not used

Error Queue

Bit

4

5

6

Questionable Data 7

Register

Message Available

Standard Event

Master Summary

Not used

Returns the bit weight of the status byte enable register.

8-5. System Remote Commands

8-5-1. SYSTem:LOCal

Description

Syntax

Example

Set

Sets the function generator to local mode. In local mode, all front panel keys are operational.

SYSTem:LOCal

SYST:LOC

137

8-5-2. SYSTem:REMote

Description

Syntax

Example

Set

Disables the front panel keys and puts the function generator into remote mode

SYSTem:REMote

SYST:REM

8-6. Apply Commands

The APPLy command has 5 different types of outputs (Sine, Square, Ramp,

Pulse, Noise, ). The command is the quickest, easiest way to output waveforms remotely. Frequency, amplitude and offset can be specified for each function.

As only basic parameters can be set with the Apply command, other parameters use the instrument default values.

The Apply command will set the trigger source to immediate and disable burst, modulation and sweep modes. Turns on the output commandOUTPut[1|2] ON.

The termination setting will not be changed.

As the frequency, amplitude and offset parameters are in nested square brackets, amplitude can only be specified if the frequency has been specified and offset can only be specified if amplitude has been set. For the example:

SOURce[1|2]:APPLy:SINusoid [<frequency> [,<amplitude> [,<offset>] ]]

Output Frequency For the output frequency, MINimum, MAXimum and DEFault can be used. The default frequency for all functions is set to 1 kHz. The maximum and minimum frequency depends on the function used. If a frequency output that is out of range is specified, the max/min frequency will be used instead. A

“Data out range error will be generated” from the remote terminal.

138

Output Amplitude

When setting the amplitude, MINimum, MAXimum and

DEFault can be used. The range depends on the function b eing used and the output termination (50Ω or high impedance). The default amplitude for all functions is 100 mVpp (50Ω).

If the amplitude has been set and the output termination is changed from 50Ω to high impedance, the amplitude will double. Changing the output termination from high impedance to 50Ω will half the amplitude.

Vrms, dBm or Vpp units can be used to specify the output unit to use with the current command. The VOLT:UNIT command can be used to set the units when no unit is specified with the

Apply command. If the output termination is set to high impedance, dBm units cannot be used. The units will default to Vpp.

The output amplitude can be affected by the function and unit chosen. Vpp and Vrms or dBm values may have different maximum values due to differences such as crest factor. For example, a 5Vrms square wave must be adjusted to 3.536

Vrms for a sine wave.

DC Offset voltage The offset parameter can be set to MINimum, MAXimum or

DEFault. The default offset is 0 volts. The offset is limited by the output amplitude as shown below.

|Voffset| < Vmax – Vpp/2

If the output specified is out of range, the maximum offset will be set.

The offset is also determined by the output termination (50Ω or high impedance). If the offset has been set and the output termination has changed from 50Ω to high impedance, the offset will double. Changing the output termination from high impedance to 50Ω will half the offset.

8-6-1. SOURce[1|2]:APPLy:SINusoid

Description

Syntax

Set

Outputs a sine wave from the selected channel when the command has executed. Frequency, amplitude and offset can also be set.

SOURce[1|2]:APPLy:SINusoid [<frequency> [,<amplitude>

[,<offset>] ]]

139

Parameter <frequency>

1μHz~25MHz

<amplitude> 1mVpp~10Vpp

(50Ω) (3.536 Vrms)

<offset> -4.99V

~4.99V (50Ω)

SOUR1:APPL:SIN 2KHZ,MAX,MAX Example

Sets frequency to 2kHz and sets the amplitude and offset to the maximum.

8-6-2. SOURce[1|2]:APPLy:SQUare

Description

Syntax

Parameter

Set

Outputs a square wave from the selected channel when the command has executed. Frequency, amplitude and offset can also be set. The duty cycle is set to 50%.

SOURce[1|2]:APPLy:SQUare [<frequency> [,<amplitude>

[,<offset>] ]]

<frequency>

1μHz~25MHz

<amplitude>

<offset>

1mVpp~10Vpp

(50Ω)

-4.99V

~4.99V (50Ω)

SOUR1:APPL:SQU 2KHZ,MAX,MAX Example

Sets frequency to 2kHz and sets the amplitude and offset to the maximum.

8-6-3. SOURce[1|2]:APPLy:RAMP

Description

Set

Outputs a ramp wave from the selected channel when the command has executed. Frequency, amplitude and offset can also be set. The symmetry is set to 50%.

Syntax

Parameter

Example

SOURce[1|2]:APPLy:RAMP [<frequency> [,<amplitude>

[,<offset>] ]]

<frequency> 1μHz~1MHz

<amplitude> 1mVpp~10Vpp (50Ω)

<offset> -4.99V

~4.99V (50Ω)

SOUR1:APPL:RAMP 2KHZ,MAX,MAX

Sets frequency to 2kHz and sets the amplitude and offset to the maximum.

140

8-6-4. SOURce[1|2]:APPLy:PULSe

Description

Set

Outputs a pulse waveform from the selected channel when the command has executed. Frequency, amplitude and offset can also be set.

Note

Syntax

Parameter

The PW settings from the SOURce[1|2]:PULS: WIDT command are preserved. Edge and pulse width may be adjusted to supported levels.

Repetition rates will be approximated from the frequency. For accurate repetition rates, the period should be adjusted using the SOURce[1|2]:PULS:PER command

SOUR[1|2]:APPLy:PULSe [<frequency> [,<amplitude>

[,<offset>] ]]

<frequency> 500μHz~25MHz

<amplitude> 1mVpp~10Vpp

(50Ω)

<offset> -4.99V

~4.99V (50Ω)

SOUR1:APPL:PULS 1KHZ,MIN,MAX Example

Sets frequency to 1kHz and sets the amplitude to minimum and the and offset to the maximum.

8-6-5. SOURce[1|2]:APPLy:NOISe

Description

Note

Syntax

Parameter

Example

Set

Outputs Gaussian noise. Amplitude and offset can also be set.

Frequency cannot be used with the noise function; however a value (or DEFault) must be specified. The frequency is remembered for the next function used.

SOURce[1|2]:APPLy:NOISe [<frequency|DEFault>

[,<amplitude> [,<offset>] ]]

<frequency> Not applicable

<amplitude> 1mVpp~10Vpp (50

Ω)

<offset> -4.99V

~4.99V (50Ω)

SOUR1:APPL:NOIS DEF, 3.0, 1.0

Sets the amplitude to 3 volts with an offset of 1 volt.

141

8-6-6. SOURce[1|2]:APPLy:USER

Description

Note

Set

Outputs an arbitrary waveform from the selected channel. The output is that specified from the FUNC:USER command.

Frequency and amplitude cannot be used with the DC function; however a value (or DEFault) must be specified. The values are remembered for the next function used.

Syntax

Parameter

Example

SOURce[1|2]:APPLy:USER [<frequency> [,<amplitude>

[,<offset>] ]]

<frequency> 1 μHz~60MHz

<amplitude> 1mVpp~10Vpp

(50Ω)

<offset> -4.99V~4.99

V (50Ω)

SOUR1:APPL:USER

8-6-7. SOURce[1|2]:APPLy?

Description

Note

Syntax

Query

Outputs a string with the current settings.

The string can be passed back appended to the Apply

Command.

SOURce[1|2]:APPLy?

Return Parameter <string>

Example SOUR1:APPL?

Function, frequency, amplitude, offset

SIN +5.0000000000000E+03,+3.0000E+00,-2.50E+00

Returns a string with the current function and parameters,

Sine, 5kHz, 3 Vpp, -2.5V offset.

8-7. Output Commands

Unlike the Apply commands, the Output commands are low level commands to program the function generator.

This section describes the low-level commands used to program the function generator. Although the APPLy command provides the most straightforward method to program the function generator, the low-level commands give you more flexibility to change individual parameters.

142

8-7-1. SOURce[1|2]:FUNCtion

Set

Query

Description The FUNCtion command selects and outputs the selected output.

The User parameter outputs an arbitrary waveform previously set by the SOURce[1|2]:FUNC:USER command.

Note If the function mode is changed and the current frequency setting is not supported by the new mode, the frequency setting will be altered to next highest value.

Vpp and Vrms or dBm amplitude values may have different maximum values due to differences such as crest factor. For example, if a 5Vrms square wave is changed to a sinewave, then the Vrms is automatically adjusted to 3.536.

The modulation, burst and sweep modes can only be used with some of the basic waveforms. If a mode is not supported, the conflicting mode will be disabled. See the table below.

Sine Square Ramp Pulse Noise ARB

AM

     

FM

     

PM

     

FSK

     

SUM

     

SWEEP      

BURST      

Syntax

Example

SOURce[1|2]:FUNCtion {SINusoid|SQUare|RAMP|

PULSe|NOISe| USER}

SOUR1:FUNC SIN

Sets the output as a sine function.

Query Syntax SOURce[1|2]:FUNCtion?

Return

Parameter

SIN, SQU, RAMP, PULS,

NOIS, USER

Returns the current output type.

Example SOUR1:FUNC?

SIN

Current output is sine.

143

8-7-2. SOURce[1|2]:FREQuency

Description

Note

Set

Query

The SOURce[1|2]:FREQuency command sets the output freuquency for the selected channel. The query command returns the current frequency setting.

The maximum and minimum frequency depends on the function mode.

Sine, Square

Ramp

Pulse

1μHz~25MHz

1μHz~1MHz

500

μHz~25MHz

Noise

User

Not applicable

1μHz~60MHz

If the function mode is changed and the current frequency setting is not supported by the new mode, the frequency setting will be altered to next highest value.

The duty cycle of square waveforms depends on the frequency settings.

1.0% to 99.0%(

frequency≤100 KHz)

10% to 90% (100 K

Hz ≤ frequency ≤1MHz)

50% (frequency

≤ 25 MHz)

If the frequency is changed and the set duty cycle cannot support the new frequency, the highest duty cycle available at that frequency will be used. A “settings conflict” error will result from the above scenario.

Syntax SOURce[1|2]:FREQuency

{<frequency>|MINimum|MAXimum}

SOUR1:FREQ MAX Example

Query Syntax

Sets the frequency to the maximum for the current mode.

SOURce[1|2]:FREQuency?

Return Parameter <NR3>

Example

Returns the frequency for the current mode.

SOUR1:FREQ? MAX

+1.0000000000000E+06

The maximum frequency that can be set for the current function is 1MHz.

144

8-7-3. SOURce[1|2]:AMPlitude

Description

Note

Set

Query

The SOURce[1|2]:AMPLitude command sets the output amplitude for the selected channel. The query command returns the current amplitude settings.

The maximum and minimum amplitude depends on the output termination. The default amplitude for all functions is 100 mVpp (50Ω). If the amplitude has been set and the output termination is changed from 50Ω to high impedance, the amplitude will double. Changing the output termination from high impedance to 50Ω will half the amplitude.

The offset and amplitude are related by the following equation.

|Voffset| < Vmax

– Vpp/2

Syntax

Example

If the output termination is set to high impedance, dBm units cannot be used. The units will default to Vpp.

The output amplitude can be affected by the function and unit chosen. Vpp and Vrms or dBm values may have different maximum values due to differences such as crest factor. For example, a 5Vrms square wave must be adjusted to 3.536

Vrms for a sine wave.

The amplitude units can be explicitly used each time the

SOURce[1|2]:AMPlitude command is used. Alternatively, the

VOLT:UNIT command can be used to set the amplitude units for all commands.

SOURce[1|2]:AMPlitude {< amplitude>

|MINimum|MAXimum}

SOUR1:AMP MAX

Sets the amplitude to the maximum for the current mode.

Query Syntax SOURce[1|2]:AMPlitude? {MINimum|MAXimum}

Return

Parameter

<NR3> Returns the amplitude for the current mode.

Example SOUR1:AMP? MAX

+5.0000E+00

The maximum amplitude that can be set for the current function is 5 volts.

145

8-7-4. SOURce[1|2]:DCOffset

Description

Note

Set

Query

Sets or queries the DC offset for the current mode.

The offset parameter can be set to MINimum, MAXimum or

DEFault. The default offset is 0 volts. The offset is limited by the output amplitude as shown below.

|Voffset| < Vmax

– Vpp/2

Syntax

Example

If the output specified is out of range, the maximum offset will be set.

The offset is also determined by the output termination (

50Ω or high impedance). If the offset has been set and the output termination has changed from 50Ω to high impedance, the offset will double. Changing the output termination from high impedance to 50Ω will half the offset.

SOURce[1|2]:DCOffset {< offset> |MINimum|MAXimum}

SOUR1:DCO MAX

Sets the offset to the maximum for the current mode.

Query Syntax SOURce[1|2]:DCOffset? {MINimum|MAXimum}

Return

Parameter

<NR3> Returns the offset for the current mode.

Example SOUR1:DCO?

+3.0000E+00

The offset for the current mode is set to +3 volts.

146

8-7-5. SOURce[1|2]:SQUare:DCYCle

Description

Note

Set

Query

Sets or queries the duty cycle for square waves only. The setting is remembered if the function mode is changed. The default duty cycle is 50%.

The duty cycle of square waveforms depend on the frequency settings.

1.0% to 99.0%( frequency≤100 KHz)

10% to 90% (100 K Hz ≤ frequency ≤1MHz)

50% (frequency ≤ 25 MHz)

If the frequency is changed and the set duty cycle cannot support the new frequency, the highest duty cycle available at that frequency will be used. A “settings conflict” error will result from the above scenario.

Syntax

Example

For square waveforms, the Apply command and AM/FM modulation modes ignore the duty cycle settings.

SOURce[1|2]:SQUare:DCYCle {< percent>

|MINimum|MAXimum}

SOUR1:SQU:DCYC MAX

Sets the duty cycle to the highest possible for the current frequency.

Query Syntax SOURce[1|2]:SQUare:DCYCle? {MINimum|MAXimum}

Return

Parameter

<NR3> Returns the duty cycle as a percentage.

Example SOUR1:SQU:DCYC?

+5.00E+01

The duty cycle is set 50%.

8-7-6. SOURce[1|2]:RAMP:SYMMetry

Description

Set

Query

Sets or queries the symmetry for ramp waves only. The setting is remembered if the function mode is changed. The default symmetry is 50%.

147

Note

Syntax

For ramp waveforms, the Apply command and AM/FM modulation modes ignore the current symmetry settings.

SOURce[1|2]:RAMP:SYMMetry {< percent>

|MINimum|MAXimum}

Example SOUR1:RAMP:SYMM MAX

Sets the symmetry to the 100%.

Query Syntax SOURce[1|2]:RAMP:SYMMetry? {MINimum|MAXimum}

Return

Parameter

Example

<NR3> Returns the symmetry as a percentage.

SOUR1:RAMP:SYMMetry?

+1.0000E+02

The symmetry is set as 100%.

8-7-7. OUTPut[1|2]

Description

Note

Set

Query

Enables/Disables or queries the front panel output from the selected channel. The default is set to off.

If the output is overloaded by an external voltage, the output will turn off and an error message will be displayed. The overload must first be removed before the output can be turned on again with output command.

Using the Apply command automatically sets the front panel output to on.

OUTPut[1|2] {OFF|ON}

OUTP1 ON

Turns the channel 1 output on.

Syntax

Example

Query Syntax OUTPut[1|2]?

Return

Parameter

Example

1

0

OUTP1?

1

ON

OFF

The channel 1 output is currently on.

148

8-7-8. OUTPut[1|2]:LOAD

Return

Parameter

Example

DEF Default

INF

OUTP1:LOAD?

INFinity

DEF

The output termination for channel 1 is set to 50Ω.

8-7-9. SOURce[1|2]:VOLTage:UNIT

Description

Note

Set

Query

Sets or queries the output termination. Two impedance settings can be chosen, D

EFault (50Ω) and INFinity (high impedance >10 kΩ).

The output termination is to be used as a reference only. If the output termination is set

50Ω but the actual load impedance is not 50Ω, then the amplitude and offset will not be correct.

If the amplitude has been set and the output termination is changed from 50Ω to high impedance, the amplitude will double. Changing the output termination from high impedance to 50Ω will half the amplitude.

If the output termination is set to high impedance, dBm units cannot be used. The units will default to Vpp.

OUTPut[1|2]:LOAD {DEFault|INFinity} Syntax

Example OUTP1:LOAD DEF

Sets the channel 1 output termination to

50Ω.

Query Syntax OUTPut[1|2]:LOAD?

Description

Note

Set

Query

Sets or queries the output amplitude units. There are three types of units: VPP, VRMS and DBM.

The units set with the VOLTage:UNIT command will be used as the default unit for all amplitude units unless a different unit is specifically used for a command.

If the output termination is set to high impedance, dBm units cannot be used. The Units will automatically default to Vpp.

149

Syntax SOURce[1|2]:VOLTage:UNIT {VPP|VRMS|DBM}

Example SOUR1:VOLT:UNIT VPP

Sets the amplitude units to Vpp.

Query Syntax SOURce[1|2]:VOLTage:UNIT?

Return

Parameter

VPP

VRMS

DBM

Vpp

Vrms dBm

Example SOUR1:VOLT:UNIT?

VPP

The amplitude units are set to Vpp.

8-8. Pulse Configuration Commands

The pulse chapter is used to control and output pulse waveforms. Unlike the

APPLy command, low level control is possible including setting the rise time, fall time, period and pulse width.

Period

90%

90%

Pulse Width 50% 50%

10% 10%

Rise time Fall time

8-8-1. SOURce[1|2]:PULSe:PERiod

Description

Note

Set

Query

Sets or queries the pulse period. The default period is 1 ms.

The pulse period must be greater than the pulse width and edge time(1.6x) combined.

Pulse Width + (1.6 * Edge Time) < Period

If the edge time or pulse width are too great, they will automatically be reduced to fit the period by the function generator.

The PULSe:PERiod function will change the period for all

150

Syntax functions, not just for the pulse waveforms. If a different function is chosen and the current period is out of range, the period will be automatically adjusted to suit the new function.

SOURce[1|2]:PULSe:PERiod

{<seconds>|MINimum|MAXimum}

Example SOUR1:PULS:PER MIN

Sets the period to the minimum time allowed.

Query Syntax SOURce[1|2]:PULSe:PERiod? [MINimum|MAXimum]

Return

Parameter

Example

<seconds> 40ns~2000s

SOUR1:PULS:PER?

+1.0000E+01

The period is set to 10 seconds.

8-8-2. SOURce[1|2]:PULSe:WIDTh

Description

Set

Query

Sets or queries the pulse width. The default pulse width is

100us.

The minimum pulse width is affected by the period time. If the period is over 20 or 200 seconds, then the minimum pulse width is 1us and 10us, respectively.

Pulse width is defined as the time from the rising to falling edges (at a threshold of 50%).

Note

Syntax

The pulse width cannot be less than the edge time times 1.6.

Pulse Width > 1.6 * Edge Time

The pulse width must be less than the period minus the edge time (x1.6).

Pulse Width < Period

– (1.6 *Edge Time)

SOURce[1|2]:PULSe:WIDTh

{<seconds>|MINimum|MAXimum}

Example SOUR1:PULS:WIDT MAX

Sets the pulse width to the maximum allowed.

Query Syntax SOURce[1|2]:PULSe:WIDTh? [MINimum|MAXimum]

Return

Parameter

<seconds> 20 ns ~ 1999.9 seconds

151

Example SOUR1:PULS:WIDT? MIN

+8.0000E-09

The pulse width is set to 8 nanoseconds.

8-9. Amplitude Modulation (AM) Commands

8-9-1. AM Overview

To successfully create an AM waveform, the following commands must be executed in order.

Enable AM

Modulation

1. Turn on AM modulation using the SOURce[1|2]:

AM:STAT ON command

Configure Carrier 2. Use the APPLy command to select a carrier waveform.

Alternatively the equivalent FUNC, FREQ, AMPl, and

DCOffs commands can be used to create a carrier waveform with a designated frequency, amplitude and offset.

Select Modulation

Source

3. Select an internal or external modulation source using the SOURce[1|2]:AM:SOUR command.

Select Shape

Set Modulating

Frequency

4. Use the SOURce[1|2]:AM:INT:FUNC command to select

5. a sine, square, upramp, dnramp or triangle modulating waveshape. For internal sources only.

Set the modulating frequency using the SOURce[1|2]:

AM:INT:FREQ command. For internal sources only.

Set Modulation

Depth

6. Set the modulation depth using the SOURce[1|2]:

AM:DEPT command.

152

8-9-2. SOURce[1|2]:AM:STATe

Description

Note

Syntax

Example

Query Syntax

Return Parameter 0

Set

Query

Sets or disables AM modulation. By default AM modulation is disabled. AM modulation must be enabled before setting other parameters.

Burst or sweep mode will be disabled if AM modulation is enabled. As only one modulation is allowed at any one time, other modulation modes will be disabled when AM modulation is enabled.

SOURce[1|2]:AM:STATe {OFF|ON}

SOUR1:AM:STAT ON

Enables AM modulation.

SOURce[1|2]:AM:STATe?

Disabled (OFF)

Example

1 Enabled (ON)

SOUR1:AM:STAT?

1

AM modulation mode is currently enabled.

8-9-3. SOURce[1|2]:AM:SOURce

Description

Set

Query

Sets or queries the modulation source as internal or external.

Internal is the default modulation source.

Note If an external modulation source is selected, modulation depth is limited to ± 5V from the MOD INPUT terminal on the rear panel. For example, if modulation depth is set to 100%, then the maximum amplitude is +5V, and the minimum amplitude is -5V.

SOURce[1|2]:AM:SOURce {INTernal|EXTernal} Syntax

Example SOUR1:AM:SOUR EXT

Sets the modulation source to external.

Query Syntax SOURce[1|2]:AM:SOURce?

Return Parameter INT Internal

EXT External

153

Example SOUR1:AM:SOUR?

INT

The modulation source is set to internal.

8-9-4. SOURce[1|2]:AM:INTernal:FUNCtion

Description

Set

Query

Sets the shape of the modulating waveform from sine, square, triangle, upramp and dnramp. The default shape is sine.

Note

Syntax

Square and triangle waveforms have a 50% duty cycle.

Upramp and dnramp have a symmetry of 100% and 0%, respectively.

SOURce[1|2]:AM:INTernal:FUNCtion

{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}

SOUR1:AM:INT:FUNC SIN Example

Query Syntax

Sets the AM modulating wave shape to sine.

SOURce[1|2]:AM:INTernal:FUNCtion?

Return Parameter SIN

Example

SQU

TRI

SIN

Sine

Square

Triangle

SOUR1:AM:INT:FUNC?

UPRAMP Upramp

DNRAMP Dnramp

The shape for the modulating waveform is Sine.

8-9-5. SOURce[1|2]:AM:INTernal:FREQuency

Description

Syntax

Set

Query

Sets the frequency of the internal modulating waveform only.

The default frequency is 100Hz.

SOURce[1|2]:AM:INTernal:FREQuency

{<frequency>|MINimum|MAXimum}

Parameter

Example

<frequency> 2 mHz~ 20 kHz

SOUR1:AM:INT:FREQ +1.0000E+02

Sets the modulating frequency to 100Hz.

154

Query Syntax SOURce[1|2]:AM:INTernal:FREQuency?

[MINimum|MAXimum]

Return Parameter <NR3> Returns the frequency in Hz.

Example SOUR1:AM:INT:FREQ? MIN

+1.0000E+02

Returns the minimum frequency allowed.

8-9-6. SOURce[1|2]:AM:DEPTh

Description

Note

Syntax

Set

Query

Sets or queries the modulation depth for internal sources only. The default is 100%.

The function generator will not output more than ±5V, regardless of the modulation depth.

The modulation depth of an external source is controlled using the ±5V MOD INPUT terminal on the rear panel, and not the SOURce[1|2]:AM:DEPTh command.

SOURce[1|2]:AM:DEPTh {<depth in percent>

|MINimum|MAXimum}

<depth in percent> 0~120% Parameter

Example

Query Syntax

SOUR1:AM:DEPT 50

Sets the modulation depth to 50%.

SOURce[1|2]:AM:DEPTh? [MINimum|MAXimum]

Return Parameter <NR3> Return the modulation depth as a percentage.

Example SOUR1:AM:DEPT?

+1.0000E+02

The modulation depth is 100%.

155

8-10. Frequency Modulation (FM) Commands

8-10-1. FM Overview

The following is an overview of the steps required to generate an FM waveform.

Enable FM

Modulation

Configure Carrier

1. Turn on FM modulation using the SOURce[1|2]: FM:STAT

ON command.

2. Use the APPLy command to select a carrier waveform.

Alternatively, the FUNC, FREQ, AMPl, and DCOffs

Select Modulation

Source

3. Select an internal or external modulation source using the

SOURce[1|2]:FM:SOUR command.

Select shape commands can be used to create a carrier waveform with a designated frequency, amplitude and offset.

4. Use the SOURce[1|2]:FM:INT:FUNC command to select a sine, square, upramp, dnramp or triangle modulating waveshape. For internal sources only.

Set Modulating

Frequency

5. Set the modulating frequency using the SOURce[1|2]:

FM:INT:FREQ command. For internal sources only.

Set Peak

Frequency

Deviation

6. Use the SOURce[1|2]:FM:DEV command to set the frequency deviation.

8-10-2. SOURce[1|2]:FM:STATe

Description

Note

Syntax

Set

Query

Sets or disables FM modulation. By default FM modulation is disabled. FM modulation must be enabled before setting other parameters.

Burst or sweep mode will be disabled if FM modulation is enabled. As only one modulation is allowed at any one time, other modulation modes will be disabled when FM modulation is enabled.

SOUR[1|2]:FM:STATe {OFF|ON}

SOUR1:FM:STAT ON Example

Enables FM modulation.

156

Query Syntax SOURce[1|2]:FM:STATe?

Return Parameter 0 Disabled (OFF)

Example

1 Enabled (ON)

SOUR1:FM:STAT?

1

FM modulation mode is currently enabled.

8-10-3. SOURce[1|2]:FM:SOURce

Description

Note

Set

Query

Sets or queries the modulation source as internal or external.

Internal is the default modulation source.

If an external modulation source is selected, modulation depth is limited to ± 5V from the MOD INPUT terminal on the rear panel. For example, if modulation depth is set to 100%, then the maximum amplitude is +5V, and the minimum amplitude is -5V.

SOURce[1|2]:FM:SOURce {INTernal|EXTernal} Syntax

Example

Query Syntax

SOUR1:FM:SOUR EXT

Sets the modulation source to external.

SOURce[1|2]:FM:SOURce?

Return Parameter INT

EXT

Internal

External

Example SOUR1:FM:SOUR?

INT

The modulation source is set to internal.

8-10-4. SOURce[1|2]:FM:INTernal:FUNCtion

Description

Set

Query

Sets the shape of the modulating waveform from sine, square, triangle, upramp and dnramp. The default shape is sine.

157

Note

Syntax

Square and triangle waveforms have a 50% duty cycle.

Upramp and dnramp have a symmetry of 100% and 0%, respectively.

SOURce[1|2]:FM:INTernal:FUNCtion

{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}

Example

Query Syntax

SOUR1:FM:INT:FUNC SIN

Sets the FM modulating wave shape to sine.

SOURce[1|2]:FM:INTernal:FUNCtion?

Return Parameter SIN

SQU

TRI

Sine

Square

Triangle

UPRAMP

DNRAMP

Upramp

Dnramp

Example SOUR1:FM:INT:FUNC?

SIN

The shape for the modulating waveform is Sine.

8-10-5. SOURce[1|2]:FM:INTernal:FREQuency

Description

Syntax

Set

Query

Sets the frequency of the internal modulating waveform only.

The default frequency is 10Hz.

SOURce[1|2]:FM:INTernal:FREQuency

{<frequency>|MINimum|MAXimum}

Parameter

Example

Query Syntax

<frequency> 2 mHz~ 20 kHz

SOUR1:FM:INT:FREQ 100

Sets the modulating frequency to 100Hz.

SOURce[1|2]:FM:INTernal:FREQuency?

[MINimum|MAXimum]

Return Parameter <NR3>

Example

Returns the frequency in Hz.

SOUR1:FM:INT:FREQ? MAX

+2.0000E+04

Returns the maximum frequency allowed.

158

8-10-6. SOURce[1|2]:FM:DEViation

Description

Note

Syntax

Parameter

Set

Query

Sets or queries the peak frequency deviation of the modulating waveform from the carrier waveform. The default peak deviation is 100Hz.

The frequency deviation of external sources is controlled using the ±5V MOD INPUT terminal on the rear panel. A positive signal (>0~+5V) will increase the deviation (up to the set frequency deviation), whilst a negative voltage will reduce the deviation.

The relationship of peak deviation to modulating frequency and carrier frequency is shown below.

Peak deviation = modulating frequency – carrier frequency.

The carrier frequency must be greater than or equal to the peak deviation frequency. The sum of the deviation and carrier frequency must not exceed the maximum frequency for a specific carrier shape. If an out of range deviation is set for any of the above conditions, the deviation will be automatically adjusted to the maximum value allowed and an

“out of range” error will be generated.

For square wave carrier waveforms, the deviation may cause the duty cycle frequency boundary to be exceeded. In these conditions the duty cycle will be adjusted to the maximum allowed and a “settings conflict” error will be generated.

SOURce[1|2]:FM:DEViation {<peak deviation in

Hz>|MINimum|MAXimum}

<peak deviation in Hz> DC~25MHz

Example

Query Syntax

DC~15MHz(square)

DC~1MHz (Ramp)

SOUR1:FM:DEV MAX

Sets the frequency deviation to the maximum value allowed.

SOURce[1|2]:FM:DEViation? [MINimum|MAXimum]

Return Parameter <NR3>

Example

Returns the frequency deviation in

Hz.

SOURce[1|2]:FM:DEViation? MAX

+1.0000E+01

Returns the maximum frequency deviation allowed.

159

8-11. Frequency-Shift Keying (FSK) Commands

8-11-1. FSK Overview

The following is an overview of the steps required to generate an FSK modulated waveform.

Enable FSK

Modulation

Configure Carrier

Select FSK

Source

Select FSK HOP

Frequency

1. Turn on FSK modulation using the SOURce[1|2]:

FSK:STAT ON command.

2. Use the APPLy command to select a carrier waveform.

Alternatively, the FUNC, FREQ, AMPl, and DCOffs commands can be used to create a carrier waveform with a designated frequency, amplitude and offset.

3. Select an internal or external modulation source using the

SOURce[1|2]:FSK:SOUR command.

4. Set the hop frequency using the SOURce[1|2]:FSK:FREQ command.

Set FSK Rate 5. Use the SOURce[1|2]: FSK:INT:RATE command to set the FSK rate. The FSK rate can only be set for internal sources.

8-11-2. SOURce[1|2]:FSKey:STATe

Description

Note

Set

Query

Turns FSK Modulation on or off. By default FSK modulation is off.

Burst or sweep mode will be disabled if FSK modulation is enabled. As only one modulation is allowed at any one time, other modulation modes will be disabled when FSK modulation is enabled.

SOURce[1|2]:FSKey:STATe {OFF|ON} Syntax

Example SOUR1:FSK:STAT ON

Query Syntax

Enables FSK modulation

SOURce[1|2]:FSKey:STATe?

Return Parameter 0 Disabled (OFF)

1 Enabled (ON)

160

Example SOUR1:FSK:STAT?

1

FSK modulation is currently enabled.

8-11-3. SOURce[1|2]:FSKey:SOURce

Description

Note

Set

Query

Sets or queries the FSK source as internal or external.

Internal is the default source.

If an external FSK source is selected, FSK rate is controlled by the Trigger INPUT terminal on the rear panel.

SOURce[1|2]:FSKey:SOURce {INTernal|EXTernal} Syntax

Example

Query Syntax

SOUR1:FSK:SOUR EXT

Sets the FSK source to external.

SOURce[1|2]:FSKey:SOURce?

Return Parameter INT

EXT

Internal

External

Example SOUR1:FSK:SOUR?

INT

The FSK source is set to internal.

8-11-4. SOURce[1|2]:FSKey:FREQuency

Description

Note

Syntax

Parameter

Set

Query

Sets the FSK hop frequency. The default hop frequency is set to 100Hz.

For FSK, the modulating waveform is a square wave with a duty cycle of 50%.

SOURce[1|2]:FSKey:FREQuency

{<frequency>|MINimum|MAXimum}

<frequency>

1 μHz~25MHz(sine)

1

μHz~15MHz(Square、Pulse)

1 μHz~1MHz(Ramp)

161

Example

Query Syntax

SOUR1:FSK:FREQ +1.0000E+02

Sets the FSK hop frequency to to 100Hz.

SOURce[1|2]:FSKey:FREQuency? [MINimum|MAXimum]

Return Parameter <NR3>

Example

Returns the frequency in Hz.

SOUR1:FSK:FREQ? MAX

+2.5000E+06

Returns the maximum hop frequency allowed.

8-11-5. SOURce[1|2]:FSKey:INTernal:RATE

Description

Note

Set

Query

Sets or queries the FSK rate for internal sources only.

External sources will ignore this command.

Syntax

Parameter

Example

Query Syntax

SOURce[1|2]:FSKey:INTernal:RATE {<rate in Hz>

|MINimum|MAXimum}

<rate in Hz> 2 mHz~100 kHz

SOUR1:FSK:INT:RATE MAX

Sets the rate to the maximum (100kHz).

SOURce[1|2]:FSKey:INTernal:RATE?

[MINimum|MAXimum]

Return Parameter <NR3>

Example

Returns the FSK rate in Hz.

SOUR1:FSK:INT:RATE? MAX

+1.0000E+05

Returns the maximum FSK rate allowed.

162

8-12. Phase Modulation (PM)Commands

8-12-1. PM Overview

The following is an overview of the steps required to generate a PM modulated waveform.

Enable PM

Modulation

1. Turn on PM modulation using the SOURce[1|2]:

PM:STATe ON command.

Configure Carrier 2. Use the APPLy command to select a carrier waveform.

Alternatively, the FUNC, FREQ, AMPl, and DCOffs commands can be used to create a carrier waveform with a designated frequency, amplitude and offset.

Select Modulation

Source 3. Select an internal or external modulation source using the

SOURce[1|2]:PM:SOUR command.

Select Shape

4. Use the SOURce[1|2]: PM:INT:FUNC command to select a sine, square, upramp, dnramp or triangle modulating waveshape. For internal sources only.

Select Modulating

Frequency

5. Set the modulating frequency using the

SOURce[1|2]:PM:INT:FREQ command. For internal sources only.

Set DEViation

6. Use the SOURce[1|2]:PM:DEV command to set the phase

DEViation.

8-12-2. SOURce[1|2]:PM:STATe

Description

Note

Syntax

Example

Set

Query

Turns PM Modulation on or off. By default PM modulation is off.

Burst or sweep mode will be disabled if PM modulation is enabled. As only one modulation is allowed at any one time, other modulation modes will be disabled when PM modulation is enabled.

SOURce[1|2]:PM:STATe {OFF|ON}

SOUR1:PM:STAT ON

Enables PM modulation

163

Query Syntax SOURce[1|2]:PM:STATe?

Return Parameter 0 Disabled (OFF)

Example

1 Enabled (ON)

SOUR1:PM:STAT?

1

PM modulation is currently enabled.

8-12-3. SOURce[1|2]:PM:SOURce

Description

Set

Query

Sets or queries the PM source as internal or external. Internal is the default source.

Note If an external PM source is selected, the phase modulation is controlled by the MOD INPUT terminal on the rear panel.

SOURce[1|2]:PM:SOURce {INTernal|EXTernal} Syntax

Example

Query Syntax

SOUR1:PM:SOUR EXT

Sets the PM source to external.

SOURce[1|2]:PM:SOURce?

Return Parameter INT

EXT

Example

Internal

External

SOUR1:PM:SOUR?

INT

The PM source is set to internal.

8-12-4. SOURce[1|2]:PM:INTernal:FUNction

Description

Note

Syntax

Set

Query

Sets the shape of the modulating waveform from sine, square, triangle, upramp and dnramp. The default shape is sine.

Square and triangle waveforms have a 50% duty cycle.

Upramp and dnramp have a symmetry to 100% and 0%, respectively. .

SOURce[1|2]:PM:INTernal:FUNction

{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}

164

Example

Query Syntax

SOUR1:PM:INT:FUN SIN

Sets the PM modulating wave shape to sine. .

SOURce[1|2]:PM:INTernal:FUNction?

Return Parameter SIN

SQU

Example

TRI

Sine

Square

Triangle

SOUR1:PM:INT:FUNC?

SIN

UPRAMP

DNRAMP

Upramp

Dnramp

The shape for the modulating waveform is Sine.

8-12-5. SOURce[1|2]:PM:INTernal:FREQuency

Description

Set

Query

Sets the modulating waveform frequency for internal sources.

The default frequency is set to 100Hz.

Syntax

Parameter

Example

Query Syntax

SOURce[1|2]:PM:INTernal:FREQuency

{<frequency>|MINimum|MAXimum}

<frequency> 2 mHz~ 20 kHz

SOUR1:PM:INT:FREQ MAX

Sets the frequency to the maximum value.

SOURce[1|2]:PM:INTernal:FREQuency?

Return Parameter <NR3>

Example

Returns the frequency in Hz.

SOUR1:PM:INT:FREQ? MAX

+2.0000E+04

Returns the modulating frequency. (20kHz)

165

8-12-6. SOURce[1|2]:PM:DEViation

Description

Note

Syntax

Parameter

Example

Query Syntax

Set

Query

Sets or queries the phase deviation of the modulating waveform from the carrier waveform. The default phase deviation is 180°.

For external sources, the phase deviation is controlled by the

±5V MOD Input terminal on the rear panel. If the phase deviation is set to 180 degrees, then +5V represents a deviation of 180 degrees. A lower input voltage will decrease the set phase deviation.

SOURce[1|2]:PM:DEViation {< phase>|minimum

|maximum}

<percent> 0°~360°

SOUR1:PM:DEViation +3.0000E+01

Sets the deviation to 30°.

SOURce[1|2]:PM:DEViation?

Return Parameter <NR3>

Example

Returns the deviation .

SOUR1:PM:DEViation?

+3.0000E+01

The current deviation is 30°.

166

8-13. SUM Modulation (SUM) Commands

8-13-1. SUM Overview

The following is an overview of the steps required to generate a SUM modulated waveform.

Enable SUM

Modulation

1. Turn on SUM modulation using the SOURce[1|2]:

SUM:STATe ON command.

Configure Carrier 2. Use the APPLy command to select a carrier waveform.

Alternatively, the FUNC, FREQ, AMPl, and DCOffs commands can be used to create a carrier waveform with a designated frequency, amplitude and offset.

Select Modulation

Source

3. Select an internal or external modulation source using the

SOURce[1|2]:SUM:SOUR command.

Select Shape 4. Use the SOURce[1|2]: SUM:INT:FUNC command to select a sine, square, upramp, dnramp or triangle modulating waveshape. For internal sources only.

Select Modulating

5. Set the modulating frequency using the

SOURce[1|2]:SUM:INT:FREQ command. For internal

Frequency sources only.

Set AMPL

6. Use the SOURce[1|2]:SUM:AMPL command to set the modulating amplitude.

8-13-2. SOURce[1|2]:SUM:STATe

Description

Note

Syntax

Example

Set

Query

Turns SUM Modulation on or off. By default SUM modulation is off.

Burst or sweep mode will be disabled if SUM modulation is enabled. As only one modulation is allowed at any one time, other modulation modes will be disabled when SUM modulation is enabled.

SOURce[1|2]:SUM:STATe {OFF|ON}

SOUR1:SUM:STAT ON

Enables SUM modulation

167

Query Syntax SOURce[1|2]:SUM:STATe?

Return Parameter 0 Disabled (OFF)

Example

1 Enabled (ON)

SOUR1:SUM:STAT?

ON

SUM modulation is currently enabled.

8-13-3. SOURce[1|2]:SUM:SOURce

Description

Note

Syntax

Example

Query Syntax

Set

Query

Sets or queries the SUM source as internal or external.

Internal is the default source.

If an external SUM source is selected, the amplitude is controlled by the MOD INPUT terminal on the rear panel.

SOURce[1|2]:SUM:SOURce {INTernal|EXTernal}

SOUR1:SUM:SOUR EXT

Sets the SUM source to external.

SOURce[1|2]:SUM:SOURce?

Return Parameter INT

EXT

Example

Internal

External

SOUR1:SUM:SOUR?

INT

The SUM source is set to internal.

8-13-4. SOURce[1|2]:SUM:INTernal:FUNction

Description

Note

Set

Query

Sets the shape of the modulating waveform from sine, square, triangle, upramp and dnramp. The default shape is sine.

Square and triangle waveforms have a 50% duty cycle.

Upramp and dnramp have a symmetry to 100% and 0%, respectively. .

168

Syntax

Example

Query Syntax

SOURce[1|2]:SUM:INTernal:FUNction

{SINusoid|SQUare|TRIangle|UPRamp|DNRamp}

SOUR1:SUM:INT:FUN SIN

Sets the SUM modulating wave shape to sine.

SOURce[1|2]:SUM:INTernal:FUNction?

Return Parameter SIN

SQU

Example

TRI

Sine

Square

Triangle

SOUR1:SUM:INT:FUNC?

UPRAMP

DNRAMP

Upramp

Dnramp

SIN

The shape for the modulating waveform is Sine.

8-13-5.SOURce[1|2]:SUM:INTernal:FREQuency

Description

Set

Query

Sets the modulating waveform frequency for internal sources.

The default frequency is set to 100Hz.

Syntax SOURce[1|2]:SUM:INTernal:FREQuency

{<frequency>|MINimum|MAXimum}

<frequency> 2 mHz~ 20 kHz Parameter

Example

Query Syntax

SOUR1:SUM:INT:FREQ MAX

Sets the frequency to the maximum value.

SOURce[1|2]:SUM:INTernal:FREQuency?

Return Parameter <NR3> Returns the frequency in Hz.

Example SOUR1:SUM:INT:FREQ? MAX

+2.0000E+04

Returns the modulating frequency (20kHz).

8-13-6. SOURce[1|2]:SUM:AMPL

Description

Set

Query

Sets or queries the amplitude of the modulating waveform from the carrier waveform. The default phase amplitude is

50%.

169

Note

Syntax

Parameter

If an external SUM source is selected, the amplitude of the modulated waveform is controlled using the ±5V MOD

INPUT terminal on the rear panel. A positive signal (>0~+5V) will increase the AMPLitude (up to the set amplitude), whilst a negative voltage will reduce the amplitude.

SOURce[1|2]:SUM:AMPL{< percent>|minimum

|maximum}

<percent

>

0%~100%

SOUR1:SUM:AMPLitude +3.0000E+01

Sets the amplitude to 30%.

SOURce[1|2]:SUM:AMPLitude?

Example

Query Syntax

Return Parameter <NR3> Returns the amplitude .

Example SOUR1:SUM:AMPLitude?

+3.0000E+01

The current amplitude is 30%.

170

8-14. Frequency Sweep Commands

8-14-1. Sweep Overview

Below shows the order in which commands must be executed to perform a sweep.

Enable Sweep

Mode

Select waveform shape, amplitude and offset

1. Turn on Sweep mode modulation using the

SOURce[1|2]: SWE:STAT ON command.

2. Use the APPLy command to select the waveform shape.

Alternatively, the FUNC, FREQ, AMPl, and DCOffs commands can be used to create a waveform with a designated frequency, amplitude and offset.

Select Sweep

Boundaries

3. Set the frequency boundaries by setting start and stop frequencies or by setting a center frequency with a span.

Start~Stop Use the SOURce[1|2]:FREQ:STAR and

SOURce[1|2]:FREQ:STOP to set the start and stop frequencies. To sweep up or down, set the stop frequency higher or lower than the start frequency.

Span Use the SOURce[1|2]:FREQ:CENT and

SOURce[1|2]:FREQ:SPAN commands to set the center frequency and the frequency span. To sweep up or down, set the span as positive or negative.

4. Choose Linear or Logarithmic spacing using the

SOURce[1|2]:SWE:SPAC command.

Select Sweep

Mode

Select Sweep

Time

Select the sweep trigger source

Select the marker frequency

5. Choose the sweep time using the

SOURce[1|2]:SWE:TIME command.

6. Select an internal or external sweep trigger source using the SOURce[1|2]:SOUR command.

7. To output a marker frequency from the trigger out, use

The SOURce[1|2]:MARK:FREQ command. To enable marker frequency output, use the SOURce[1|2]:MARK

ON command.

The marker frequency can be set to a value within the sweep span.

171

8-14-2. SOURce[1|2]:SWEep:STATe

Description

Note

Syntax

Example

Query Syntax

Set

Query

Sets or disables Sweep mode. By default Sweep is disabled.

Sweep modulation must be enabled before setting other parameters.

Any modulation modes or Burst mode will be disabled if sweep mode is enabled.

SOURce[1|2]:SWEep:STATe {OFF|ON}

SOUR1:SWE:STAT ON

Enables sweep mode.

SOURce[1|2]:SWEep:STATe?

Return Parameter 0

Example

Disabled (OFF)

1 Enabled (ON)

SOUR1:SWE:STAT?

1

Sweep mode is currently enabled.

8-14-3. SOURce[1|2]:FREQuency:STARt

Description

Note

Syntax

Parameter

Example

Query Syntax

Set

Query

Sets the start frequency of the sweep. 100Hz is the default start frequency.

To sweep up or down, set the stop frequency higher or lower than the start frequency.

SOURce[1|2]:FREQuency:STARt

{<frequency>|MINimum|MAXimum}

<frequency> 1μHz~ 25MHz

1μHz~ 15MHz(Square)

1μHz~ 1MHz (Ramp)

SOUR1:FREQ:STAR +2.0000E+03

Sets the start frequency to 2kHz.

SOURce[1|2]:FREQuency:STARt? [MINimum|

MAXimum]

Return Parameter <NR3> Returns the start frequency in Hz.

172

Example SOUR1:FREQ:STAR? MAX

+8.0000E+0

Returns the maximum start frequency allowed.

8-14-4. SOURce[1|2]:FREQuency:STOP

Description

Set

Query

Sets the stop frequency of the sweep. 1 kHz is the default start frequency.

Note

Syntax

Parameter

To sweep up or down, set the stop frequency higher or lower than the start frequency.

SOURce[1|2]:FREQuency:STOP

{<frequency>|MINimum|MAXimum}

<frequency>

1μHz~ 25MHz

1μHz~ 15MHz(Square)

1μHz~ 1MHz (Ramp)

SOUR1:FREQ:STOP +2.0000E+03 Example

Query Syntax

Sets the stop frequency to 2kHz.

SOURce[1|2]:FREQuency:STOP? [MINimum|

MAXimum]

Return Parameter <NR3>

Example

Returns the stop frequency in Hz.

SOUR1:FREQ:STOP? MAX

+8.0000E+00

Returns the maximum stop frequency allowed.

8-14-5. SOURce[1|2]:FREQuency:CENTer

Description

Set

Query

Sets and queries the center frequency of the sweep. 550 Hz is the default center frequency.

Note

Syntax

The maximum center frequency depends on the sweep span and maximum frequency: max center freq = max freq

– span/2

SOURce[1|2]:FREQuency:CENTer {<frequency>

|MINimum|MAXimum}

173

Parameter

Example

Query Syntax

<frequency> 450Hz~ 25MHz

450Hz~ 15MHz(Square)

450Hz~ 1MHz (Ramp)

SOUR1:FREQ:CENT +2.0000E+03

Sets the center frequency to 2kHz.

SOURce[1|2]:FREQuency:CENTer? [MINimum|

MAXimum]

Return Parameter <NR3>

Example

Returns the stop frequency in Hz.

SOUR1:FREQ:CENT? MAX

+8.0000E+00

Returns the maximum center frequency allowed, depending on the span.

8-14-6. SOURce[1|2]:FREQuency:SPAN

Description

Set

Query

Sets and queries the frequency span of the sweep. 900 Hz is the default frequency span. The span frequency is equal to the stop-start frequencies.

Note

Syntax

Parameter

To sweep up or down, set the span as positive or negative.

The maximum span frequency has a relationship to the center frequency and maximum frequency: max freq span= 2(max freq

– center freq)

SOURce[1|2]:FREQuency:SPAN

{<frequency>|MINimum|MAXimum}

<frequency> 1

μHz~ 25MHz

1μHz~ 15MHz(Square)

1μHz~ 1MHz (Ramp)

SOUR1:FREQ:SPAN +2.0000E+03 Example

Query Syntax

Sets the frequency span to 2kHz.

SOURce[1|2]:FREQuency:SPAN? [MINimum|

MAXimum]

Return Parameter <NR3> Returns the frequency span in Hz.

174

Example SOUR1:FREQ:SPAN?

+2.0000E+03

Returns the frequency span for the current sweep.

8-14-7. SOURce[1|2]:SWEep:SPACing

Description

Syntax

Example

Query Syntax

Set

Query

Sets linear or logarithmic sweep spacing. The default spacing is linear.

SOURce[1|2]:SWEep:SPACing {LINear|LOGarithmic}

SOUR1:SWE:SPAC LIN

Sets the spacing to linear.

SOURce[1|2]:SWEep:SPACing?

Return Parameter LIN

LOG

Example

Linear spacing

Logarithmic spacing

SOUR1:SWE:SPAC?

LIN

The spacing is currently set as linear.

8-14-8. SOURce[1|2]:SWEep:TIME

Description

Set

Query

Sets or queries the sweep time. The default sweep time is 1 second.

Note

Syntax

Parameter

Example

The function generator automatically determines the number of frequency points that are used for the sweep based on the sweep time.

SOURce[1|2]:SWEep:TIME

{<seconds>|MINimum|MAXimum}

<seconds> 1 ms ~ 500 s

SOUR1:SWE:TIME +1.0000E+00

Sets the sweep time to 1 second.

175

Query Syntax SOURce[1|2]:SWEep:TIME? {<seconds>|

MINimum|MAXimum}

Return Parameter <NR3> Returns sweep time in seconds.

Example SOUR1:SWE:TIME?

+2.0000E+01

Returns the sweep time (20 seconds).

8-14-9. SOURce[1|2]:SWEep:SOURce

Description

Note

Syntax

Set

Query

Sets or queries the trigger source as immediate (internal), external or manual. Immediate (internal) is the default trigger source. IMMediate will constantly output a swept waveform.

EXTernal will output a swept waveform after each external trigger pulse. Manual will ouput a swept waveform after the trigger softkey is pressed.

If the APPLy command was used to create the waveform shape, the source is automatically set to IMMediate.

The *OPC/*OPC? command/query can be used to signal the end of the sweep.

SOURce[1|2]: SWEep:SOURce {IMMediate|EXTernal|

MANual}

SOUR1: SWE:SOUR EXT

Sets the sweep source to external.

SOURce[1|2]: SWEep:SOURce?

Example

Query Syntax

Return Parameter IMM

EXT

Example

MANual

Immediate

External

Manual

SOUR1:SWE:SOUR?

IMM

The sweep source is set to immediate.

176

8-14-10. SOURce[1|2]:MARKer:FREQuency

Description

Note

Syntax

Set

Query

Sets or queries the marker frequency. The default marker frequency is 550 Hz. The marker frequency is used to output a trigger out signal from the trigger terminal on the rear panel.

The marker frequency must be between the start and stop frequencies. If the marker frequency is set to a value that is out of the range, the marker frequency will be set to the center frequency and a “settings conflict” error will be generated.

SOURce[1|2]:MARKer:FREQuency

{<frequency>|MINimum|MAXimum}

Parameter

Example

Query Syntax

SOUR1:MARK:FREQ +1.0000E+03

Sets the marker frequency to 1 kHz.

SOURce[1|2]:MARKer:FREQuency? [MINimum|

MAXimum]

Return Parameter <NR3>

Example

Returns the marker frequency in Hz.

SOUR1:MARK:FREQ? MAX

+1.0000E+03

Returns the marker frequency (1 kHz).

8-14-11. SOURce[1|2]:MARKer

Description

Note

Syntax

Example

Set

Query

Turns the marker frequency on or off. The default is off.

MARKer ON The SYNC signal goes logically high at the start of each sweep and goes low at the marker frequency.

MARKer OFF The SYNC terminal outputs a square wave with a 50% duty cycle at the start of each sweep.

SOURce[1|2]:MARKer {OFF|ON}

SOUR1:MARK ON

Enables the marker frequency.

177

Query Syntax SOURce[1|2]:MARKer?

Return Parameter 0

1

Example

Disabled

Enabled

SOUR1:MARK?

1

The marker frequency is enabled.

8-15. Burst Mode Commands

8-15-1. Burst Mode Overview

Burst mode can be configured to use an internal trigger (N Cycle mode) or an external trigger (Gate mode) using the Trigger INPUT terminal on the rear panel.

Using N Cycle mode, each time the function generator receives a trigger, the function generator will output a specified number of waveform cycles (burst). After the burst, the function generator will wait for the next trigger before outputting another burst. N Cycle is the default Burst mode.

The alternative to using a specified number of cycles, Gate mode uses the external trigger to turn on or off the output. When the Trigger INPUT signal is high*, waveforms are continuously output (creating a burst). When the Trigger

INPUT signal goes low*, the waveforms will stop being output after the last waveform completes its period. The voltage level of the output will remain equal to the starting phase of the burst waveforms, ready for the signal to go high* again.

*assuming the Trigger polarity is not inverted.

Only one burst mode can be used at any one time. The burst mode depends on the source of the trigger (internal, external, manual) and the source of the burst.

Function

Burst Mode & Source

Triggered

– IMMediate, BUS

N Cycle*

Available

Triggered - EXTernal, MANual Available

Gated pulse - IMMediate Unused

*burst count

Cycle

Available

Unused

Unused

Phase

Available

Available

Available

178

The following is an overview of the steps required to generate a burst waveform.

Enable Burst

Mode

Configuration

1. Turn on Burst mode using the

SOURce[1|2]:BURS:STAT ON command.

2. Use the APPLy command to select a sine, square, ramp, pulse burst waveform*. Alternatively, the FUNC, FREQ,

AMPl, and DCOffs commands can be used to create the burst waveform* with a designated frequency, amplitude and offset.

Choose

Triggered/Gated

Mode

Set Burst Count

Set the burst period

Set Burst Starting

Phase

Select the trigger

*2 mHz minimum for internally triggered bursts.

3. Use the SOURce[1|2]: BURS:MODE command to select from triggered or gated burst modes.

4. Use the SOURce[1|2]:BURS:NCYC command to set the burst count. This command is only for triggered burst mode only.

5. Use the SOURce[1|2]:BURS:INT:PER command to set the burst period/cycle. This command is only applicable for triggered burst mode (internal trigger).

6. Use the SOURce[1|2]:BURS:PHAS command to set the burst starting phase.

7. Use the SOURce[1|2]:BURS:TRIG:SOUR command to select the trigger source for triggered burst mode only.

8-15-2. SOURce[1|2]:BURSt:STATe

Description

Note

Syntax

Example

Set

Query

Turns burst mode on or off. By default burst mode is turned off.

When burst mode is turned on, sweep and any modulation modes are disabled.

SOURce[1|2]:BURSt:STATe {OFF|ON}

SOUR1:BURS:STAT ON

Turns burst mode on.

179

Query Syntax SOURce[1|2]:BURSt:STATe?

Return Parameter 0

1

Example

Disabled

Enabled

SOUR1:BURS:STAT?

0

Burst mode is off.

8-15-3. SOURce[1|2]:BURSt:MODE

Description

Note

Set

Query

Sets or queries the burst mode as gated or triggered. The default burst mode is triggered.

The burst count, period, trigger source and any manual trigger commands are ignored in gated burst mode.

SOURce[1|2]:BURSt:MODE {TRIGgered|GATed} Syntax

Example

Query Syntax

SOUR1:BURS:MODE TRIG

Sets the burst mode to triggered.

SOURce[1|2]:BURSt:MODE?

Return Parameter TRIG Triggered mode

GAT Gated mode

Example SOUR1:BURS:MODE?

TRIG

The current burst mode is triggered.

8-15-4. SOURce[1|2]:BURSt:NCYCles

Description

Set

Query

Sets or queries the number of cycles (burst count) in triggered burst mode. The default number of cycles is 1. The burst count is ignored in gated mode.

180

Note

Syntax

If the trigger source is set to immediate, the product of the burst period and waveform frequency must be greater than the burst count:

Burst Period X Waveform frequency > burst count

If the burst count is too large, the burst period will automatically be increased and a “Settings conflict” error will be generated.

Only sine and square waves are allowed infinite burst above

25 MHz.

SOURce[1|2]:BURSt:NCYCles{< # cycles>

|INFinity|MINimum |MAXimum}

<# cycles> 1~65535 cycles.

INFinity Sets the number to continuous.

Parameter

Example

Query Syntax

MINimum

SOUR1:BURS:NCYCl INF

Sets the number of burst cycles to continuous (infinite).

SOURce[1|2]:BURSt:NCYCles? [MINimum|MAXimum]

Return Parameter <NR3>

INF

Sets the number to minimum allowed.

MAXimum Sets the number to maximum allowed.

Returns the number of cycles.

INF is returned if the number of cycles is continuous.

Example SOUR1:BURS:NCYC?

+1.0000E+02

The burst cycles are set to 100.

8-15-5. SOURce[1|2]:BURSt:INTernal:PERiod

Description

Set

Query

Sets or queries the burst period. Burst period settings are only applicable when the trigger is set to immediate. The default burst period is 10ms.

During manual triggering, external triggering or Gate burst mode, the burst period settings are ignored.

181

Note

Syntax

The burst period must be long enough to output the designated number of cycles for a selected frequency.

Burst period > burst count/(waveform frequency + 200 ns)

If the period is too short, it is automatically increased so that a burst can be continuously output. A “data out of range” error will also be generated.

SOURce[1|2]:BURSt:INTernal:PERiod

{<seconds>|MINimum|MAXimum}

Parameter

Example

Query Syntax

<seconds > 1 ms ~ 500 seconds

SOUR1:BURS:INT:PER +1.0000E+01

Sets the period to 10 seconds.

SOURce[1|2]:BURSt:INTernal:PERiod?

[MINimum|MAXimum]

Return Parameter <NR3>

Example

Returns the burst period in seconds.

SOUR1:BURS:INT:PER?

+1.0000E+01

The burst period is 10 seconds.

8-15-6. SOURce[1|2]:BURSt:PHASe

Description

Set

Query

Sets or queries the starting phase for the burst. The default phase is 0 degrees. At 0 degrees, sine square and ramp waveforms are at 0 volts.

In gated burst mode, waveforms are continuously output

(burst) when the Trig signal is true. The voltage level at the starting phase is used to determine the voltage level of the signal in-between bursts.

Note

Syntax

The phase command is not used with pulse waveforms.

SOURce[1|2]:BURSt:PHASe

{<angle>|MINimum|MAXimum}

<angle> -360 ~ 360 degrees Parameter

Example

Query Syntax

SOUR1:BURS:PHAS MAX

Sets the phase to 360 degrees.

SOURce[1|2]:BURSt:PHASe? [MINimum|MAXimum]

Return Parameter <NR3> Returns the phase angle in degrees.

182

Example SOUR1:BURS:PHAS?

+1.2000E+02

The burst phase is 120 degrees.

8-15-7. SOURce[1|2]:BURSt:TRIGger:SOURce

Description

Note

Syntax

Set

Query

Sets or queries the trigger source for triggered burst mode. In trigged burst mode, a waveform burst is output each time a trigger signal is received and the number of cycles is determined by the burst count.

There are three trigger sources for triggered burst mode:

Immediate A burst is output at a set frequency determined by the burst period.

External

Manual

EXTernal will output a burst waveform after each external trigger pulse. Any additional trigger pulse signals before the end of the burst are ignored.

Manual triggering will output a burst waveform after the trigger softkey is pressed.

If the APPLy command was used, the source is automatically set to IMMediate.

The *OPC/*OPC? command/query can be used to signal the end of the burst.

SOURce[1|2]:BURSt:TRIGger:SOURce

{IMMediate|EXTernal|MANual}

Example

Query Syntax

SOUR1:BURS:TRIG:SOUR EXT

Sets the burst trigger source to external.

SOURce[1|2]:BURSt:TRIGger:SOURce?

Return Parameter IMM

EXT

Example

MANual

Immediate

External

Manual

SOUR1:BURS:TRIG:SOUR?

IMM

The burst trigger source is set to immediate.

183

8-15-8. SOURce[1|2]:BURSt:TRIGger:DELay

Description

Set

Query

The DELay command is used to insert a delay (in seconds) before a burst is output. The delay starts after a trigger is received. The default delay is 0 seconds.

Syntax SOURce[1|2]: BURSt:TRIGger:DELay

{<seconds>|MINimum|MAXimum}

<seconds> 0~655350 nS Parameter

Example

Query Syntax

SOUR1:BURS:TRIG:DEL +1.0000E+01

Sets the trigger delay to 10 seconds.

SOURce[1|2]:BURSt:TRIGger:DELay?

[MINimum|MAXimum]

Return Parameter <NRf> Delay in seconds

Example SOUR1:BURS:TRIG:DEL ?

+1.0000E+01

The trigger delay is 10 seconds.

8-15-9. SOURce[1|2]:BURSt:TRIGger:SLOPe

Description

Syntax

Set

Query

Sets or queries the trigger edge for externally triggered bursts from the Trigger INPUT terminal on the rear panel. By default the trigger is rising edge (Positive).

SOURce[1|2]:BURSt:TRIGger:SLOPe

{POSitive|NEGative}

Parameter

Example

Query Syntax

POSitive rising edge

NEGative falling edge

SOUR1:BURS:TRIG:SLOP NEG

Sets the trigger slope to negative.

SOURce[1|2]:BURSt:TRIGger:SLOPe?

Return Parameter POS

NEG rising edge falling edge

184

Example SOUR1:BURS:TRIG:SLOP ?

NEG

The trigger slope is negative.

8-15-10. SOURce[1|2]:BURSt:GATE:POLarity

Description

Syntax

Parameter

Example

Query Syntax

Set

Query

In gated mode, the function generator will output a waveform continuously while the external trigger receives logically true signal from the Trigger INPUT terminal. Normally a signal is logically true when it is high. The logical level can be inverted so that a low signal is considered true.

SOURce[1|2]:BURSt:GATE:POLarity

{NORMal|INVertes}

NORMal Logically high

INVertes Logically low

SOUR1:BURS:GATE:POL INV

Sets the state to logically low (inverted).

SOURce[1|2]:BURSt:GATE:POLarity?

Return Parameter NORM

INV

Example

Normal(High) logical level

Inverted (low) logical level

SOUR1:BURS:GATE:POL?

INV

The true state is inverted(logically low).

8-15-11. SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe

Description

Set

Query

Sets or queries the trigger edge of the trigger output signal.

The signal is output from the trigger out terminal on the rear panel. The default trigger output slope is positive.

Immediate 50% duty cycle square wave is output at the start of each burst.

External

Gated mode

Trigger output disabled.

Trigger output disabled.

185

Syntax

Manual A >1 ms pulse is output at the start of each burst.

SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe

{POSitive|NEGative}

Parameter

Example

Query Syntax

POSitive

NEGative

Return Parameter POS

NEG

Rising edge.

Falling edge.

SOUR1:BURS:OUTP:TRIG:SLOP POS

Sets the trigger output signal slope to positive (rising edge).

SOURce[1|2]:BURSt:OUTPut:TRIGger:SLOPe?

Rising edge.

Falling edge.

Example SOUR1:BURS:OUTP:TRIG:SLOP?

POS

The trigger output signal slope to positive.

8-15-12. OUTPut[1|2]:TRIGger

Description

Syntax

Parameter

Example

Query Syntax

Return Parameter 0

1

Set

Query

Sets or queries the trigger output signal on or off. By default the signal is disabled. When enabled, a TTL compatible square wave is output.

OUTPut[1|2]:TRIGger {OFF|ON}

OFF

ON

Turns the output off.

Turns the output on.

OUTP1:TRIG ON

Turns the output on.

OUTPut[1|2]:TRIGger?

Disabled

Enabled

Query Example OUTP1:TRIG?

1

The trigger output is enabled.

186

8-15-13. SOURce[1|2]:BURSt:TRIGger:MANual

Description

Syntax

Example

Set

This command is used to manually trigger a burst waveform when the source trigger is set to manual for the selected channel. This command is the equivalent of pressing the trigger soft-key on the front panel for manual triggering.

SOURce[1|2]:BURSt:TRIGger:MANual

SOUR1:BURS:TRIG:MAN

. Manually triggers the burst waveform.

8-16. Arbitrary Waveform Commands

8-16-1. Arbitrary Waveform Overview

Use the steps below to output an arbitrary waveform over the remote interface.

Output Arbitrary

Waveform

1. Use the SOURce[1|2]:FUNCtion USER command to output the arbitrary waveform currently selected in memory.

Select Waveform

Frequency, amplitude and offset

Load Waveform

Data

Set Waveform

Rate

2. Use the APPLy command to select frequency, amplitude and DC offset. Alternatively, the FUNC,

FREQ, AMPl, and DCOffs commands can be used.

3. Waveform data (1 to 4096 points per waveform) can be downloaded into volatile memory using the

DATA:DAC command. Binary integer or decimal integer values in the range of ± 511 can be used.

4. The waveform rate is the product of the number of points in the waveform and the waveform frequency.

Rate = Hz × # points

Range: Rate:

Frequency: 60MHz

# points:

120MHz

1~4096

187

8-16-2. SOURce[1|2]:FUNCtion USER

Description

Syntax

Set

Use the SOURce[1|2]:FUNCtion USER command to output the arbitrary waveform currently selected in memory. The waveform is output with the current frequency, amplitude and offset settings.

SOURce[1|2]:FUNCtion USER

Example SOUR1:FUNC USER

Selects and outputs the current waveform in memory.

8-16-3. SOURce[1|2]:DATA:DAC

Description

Set

The SOURce[1|2]:DATA:DAC command is used to download binary or decimal integer values into memory using the

IEEE-488.2 binary block format or as an ordered list of values.

Note

The integer values (±511) correspond to the maximum and minimum peak amplitudes of the waveform. For instance, for a waveform with an amplitude of 5Vpp (0 offset), the value

511is the equivalent of 2.5 Volts. If the integer values do not span the full output range, the peak amplitude will be limited.

Syntax

Parameter

The IEEE-488.2 binary block format is comprised of three parts:

# 7 2097152 1. Initialization character (#)

1 2 3

2. Digit length (in ASCII) of the number of bytes

3. Number of bytes

IEEE 488.2 uses two bytes to represent waveform data (16 bit integer). Therefore the number of bytes is always twice the number of data points.

SOURce[1|2]:DATA:DAC VOLATILE, <start>{<binary

block>|<value>, <value>, . . . }

<start>

<binary block>

Start address of the arbitrary waveform

<value> Decimal or integer values ±511

188

Example SOUR1:DATA:DAC VOLATILE, #216 Binary Data

The command above downloads 5 data values (stored in 16 bytes) using the binary block format.

SOUR1:DATA:DAC VOLATILE, 1000, 511, 200, 0, -200,

-511

Downloads the data values (511, 200, 0, -200, -511) to address 1000.

8-16-4. SOURce[1|2]:ARB:EDIT:COPY

Description

Syntax

Set

Copies a segment of a waveform to a specific starting address.

SOURce[1|2]:ARB:EDIT:COPY

[<start>[,<length>[,<paste>]]]

Parameter <start>

<length>

<paste>

Start address: 0~4095

1 ~ 4096

Paste address: 0~4095

Example SOUR1:ARB:EDIT:COPY 1000, 256, 1257

Copies 256 data values starting at address 1000 and copies them to address 1257.

8-16-5. SOURce[1|2]:ARB:EDIT:DELete

Description

Note

Syntax

Parameter

Example

Set

Deletes a segment of a waveform from memory. The segment is defined by a starting address and length.

A waveform/waveform segment cannot be deleted when output.

SOURce[1|2]:ARB:EDIT:DELete [<STARt>[,<LENGth>]]

<STARt>

<LENGth>

Start address: 0~4095

1 ~ 4096

SOURce1:ARB:EDIT:DEL 1000, 256

Deletes a section of 256 data points from the waveform starting at address 1000.

189

8-16-4. SOURce[1|2]:ARB:EDIT:DELete:ALL

Description

Note

Syntax

Set

Deletes all user-defined waveforms from non-volatile memory and the current waveform in volatile memory.

A waveform cannot be deleted when output.

SOURce[1|2]:ARB:EDIT:DELete:ALL

Example SOUR1:ARB:EDIT:DEL:ALL

Deletes all user waveforms from memory.

8-16-7. SOURce[1|2]:ARB:EDIT:POINt

Description

Note

Description

Note

Syntax

Parameter

Set

Edit a point on the arbitrary waveform.

A waveform/waveform segment cannot be deleted when output.

SOURce[1|2]:ARB:EDIT:POINt [<address> [, <data>]] Syntax

Parameter <address>

<data>

Address of data point: 0~4095

Value data: ± 511

SOUR1:ARB:EDIT:POIN 1000, 511 Example

Creates a point on the arbitrary waveform at address 1000 with the highest amplitude.

8-16-8. SOURce[1|2]:ARB:EDIT:LINE

Set

Edit a line on the arbitrary waveform. The line is created with a starting address and data point and a finishing address and data point.

A waveform/waveform segment cannot be deleted when output.

SOURce[1|2]:ARB:EDIT:LINE

[<address1>[,<data>[,<address2>[,<data2>]]]]

<addrress1> Address of data point1: 0~4095

<data1> Value data2: ± 511

<address2> Address of data point2: 0~4095

<data2> Value data2: ± 511

190

Example SOUR1:ARB:EDIT:LINE 40, 50, 100, 50

Creates a line on the arbitrary waveform at 40,50 to 100,50.

8-16-9. SOURce[1|2]:ARB:EDIT:PROTect

Description

Syntax

Set

Protects a segment of the arbitrary waveform from deletion or editing.

SOURce[1|2]:ARB:EDIT:PROTect [<STARt>[,<LENGth>]

Parameter <STARt> Start address: 0~4095

<LENGth> 1 ~ 4096

SOUR1:ARB:EDIT:PROT 40, 50 Example

Protects a segment of the waveform from address 40 for 50 data points.

8-16-10. SOURce[1|2]:ARB:EDIT:PROTect:ALL

Description

Syntax

Set

Protects the arbitrary waveform currently in non-volatile memory/ currently being output.

SOURce[1|2]:ARB:EDIT:PROTect:ALL

Example SOUR1:ARB:EDIT:PROT:ALL

8-16-11. SOURce[1|2]:ARB:EDIT:UNProtect

Description

Set

Uprotects the arbitrary waveform currently in non-volatile memory/currently being output.

SOURce[1|2]:ARB:EDIT:UNProtect Syntax

Example SOUR1:ARB:EDIT:UNP

8-16-12. SOURce[1|2]:ARB:OUTPut

Description

Syntax

Set

Output the current arbitrary waveform in volatile memory. A specified start and length can also be designated.

SOURce[1|2]:ARB:OUTPut [<STARt>[,<LENGth>]]

191

Parameter <STARt> Start address*: 0~4096

<LENGth> Length*: 0 ~ 4096

* Start + Length ≤ currently output arbitrary waveform

SOUR1:ARB:OUTP 20 200 Example

Outputs the current arbitrary waveform in memory.

8-17. COUNTER Commands

The frequency counter function can be turned on remotely to control the frequency counter.

8-17-1. COUNTER:STATE

Description

Set

Query

Turns the frequency counter function on or off.

COUNter:STATe {ON|OFF} Syntax

Example COUNter:STATe ON

Query Syntax

Turns the frequency counter on

COUNter:STATe?

Return Parameter 1 ON

Example

0 OFF

COUNter:STATe?

1

Turns on the frequency counter.

8-17-2. COUNter:GATe

Description

Syntax

Example

Syntax

Set

Query

Sets the gate time for the frequency counter.

COUNter:GATe {0.01|0.1|1|10}

COUNter:GATe 1

Sets the gate time to 1S.

COUNter:GATe? {max|min}

192

Example COUNter:GATe?

1

Returns the gate time: 1S.

8-17-3. COUNter:VALue?

Description

Set

Query

Returns the current value from the frequency counter.

Syntax

Example

COUNter:VALue?

COUNter:VALue?

+5.00E+02

Returns the frequency as 500Hz.

8-18. PHASE Commands

The phase command remotely controls the phase and channel synchronization.

8-18-1. SOURce[1|2]:PHASe

Description

Syntax

Parameter

Set

Query

Sets the phase.

SOURce[1|2]:PHASe {<phase>|<MIN>|<MAX>} phase min

-180~180

Sets the phase to the minimum value.

Example max Sets the phase to the maxium value.

SOURce1:PHASe 25

Query Syntax

Sets the phase of channel 1 to 25°.

SOURce[1|2]:PHASe? {MAX|MIN}

Return Parameter phase

Example

Returns the current phase.

SOURce1:PHASe?

26

Returns the phase of channel 1 as 26°.

193

8-18-2. SOURce[1|2]:PHASe:SYNChronize

Description

Syntax

Set

Sychronizes the phase of channel 1 and channel 2. SOURce1 or SOURce2 has not effect on this command.

SOURce[1|2]:PHASe:SYNChronize

Example SOURce1:PHASe:SYNChronize

Synchronizes the phase of channel 1 and channel 2.

8-19. COUPLE Commands

The Couple commands can be used to remotely set the frequency coupling and amplitude coupling.

8-19-1.SOURce[1|2]:FREQuency:COUPle:MODE

Description

Syntax

Example

Query Syntax

Set the frequency coupling mode.

SOURce[1|2]:FREQuency:COUPle:MODE

{Off|Offset|Ratio}

Set

Query

SOURce1:FREQuency:COUPle:MODE Offset

Sets the frequency coupling mode to offset.

SOURce[1|2]:FREQuency:COUPle:MODE

Return Parameter Off Disables frequency coupling.

Offset Set frequency coupling to offset mode.

Example

Ratio Sets frequency coupling to ratio mode.

SOURce1:FREQuency:COUPle:MODE

Off

Frequency coupling is turned off.

8-19-2. SOURce[1|2]:FREQuency:COUPle:OFFSet

Description

Set

Query

Sets the offset frequency when the frequency coupling mode is set to offset.

SOURce[1|2]:FREQuency:COUPle:OFFSet {frequency} Syntax

194

Example

Syntax

Example

SOURce1:FREQuency:COUPle:OFFSet 2khz

Sets the offset frequency to 2kHz (the frequency of CH2 minus CH1 is 2kHz).

SOURce[1|2]:FREQuency:COUPle:OFFSet?

SOURce1:FREQuency:COUPle:OFFSet?

+2.0000E+03

The offset of channel 2 from channel 1 is 2kHz.

8-19-3. SOURce[1|2]:FREQuency:COUPle:RATio

Description

Syntax

Set

Query

Sets the frequency coupling ratio when frequency coupling is set to ratio mode.

SOURce[1|2]:FREQuency:COUPle:RATio {ratio}

SOURce1:FREQuency:COUPle:RATio 2 Example

Query Syntax

Set the CH2 to CH1 frequency ratio to 2.

SOURce[1|2]:FREQuency:COUPle:RATio?

Example SOURce1:FREQuency:COUPle:RATio?

+2.0000E+00

Returns the CH2 to CH1 frequency ratio as 2.

8-19-4. SOURce[1|2]:AMPlitude:COUPle:STATe

Description Enables or disables the amplitude coupling.

Set

Query

Syntax

Example

Description

Query Syntax

SOURce[1|2]:AMPlitude:COUPle:STATe {ON|Off}

SOURce1:AMPlitude:COUPle:STATe on

Turns amplitude coupling on.

SOURce[1|2]:AMPlitude:COUPle:STATe?

Return Parameter 1 ON

0 Off

195

Example SOURce1:AMPlitude:COUPle:STATe?

1

Amplitude coupling has been enabled.

8-19-5. SOURce[1|2]:TRACk

Description

Set

Query

Turns tracking on or off.

SOURce[1|2]:TRACk {ON|OFF|INVerted} Syntax

Example SOURce1:TRACk ON

Turns tracking on. Channel 2 will “track” the changes of channel 1.

Query Syntax SOURce[1|2]:TRACk?

Return Parameter ON ON

Example

OFF

INV

OFF

INVerted

SOURce1:TRACk?

ON

Channel tracking is turned on.

8-20. Save and Recall Commands

Up to 10 different instrument states can be stored to non-volatile memory

(memory locations 0~9).

196

8-20-1. *SAV

Description

Note

Syntax

Example

Set

Saves the current instrument state to a specified save slot.

When a state is saved, all the current instrument settings, functions and waveforms are also saved.

The *SAV comma nd doesn’t save waveforms in non-volatile memory, only the instrument state.

The *RST command will not delete saved instrument states from memory.

*SAV {0|1|2|3|4|5|6|7|8|9}

*SAV 0

Save the instrument state to memory location 0.

8-20-2. *RCL

Description

Set

Recall previously saved instrument states from memory locations 0~9.

*RCL {0|1|2|3|4|5|6|7|8|9} Syntax

Example *RCL 0

Recall instrument state from memory location 0.

8-20-3. MEMory:STATe:DELete

Description

Syntax

Set

Delete memory from a specified memory location.

MEMory:STATe:DELete {0|1|2|3|4|5|6|7|8|9}

Example MEM:STAT:DEL 0

Delete instrument state from memory location 0.

8-20-4. MEMory:STATe:DELete ALL

Description

Syntax

Example

Set

Delete memory from all memory locations, 0~9.

MEMory:STATe:DELete ALL

MEM:STAT:DEL ALL

Deletes all the instrument states from memory locations 0~9.

197

8-21. Error Messages

The FGX-2220 has a number of specific error codes. Use the SYSTem:ERRor command to recall the error codes. For more information regarding the error queue.

8-21-1.Command Error Codes

-101 Invalid character

An invalid character was used in the command string. Example:

#, $, %.

-102 Syntax error

SOURce1:AM:DEPTh MIN%

Invalid syntax was used in the command string. Example: An unexpected character may have been encountered, like an unexpected space.

SOURce1:APPL:SQUare , 1

-103 Invalid separator

An invalid separator was used in the command string. Example: a space, comma or colon was incorrectly used.

APPL:SIN 1 1000 OR SOURce1:APPL:SQUare

-108 Parameter not allowed

The command received more parameters than were expected.

Example: An extra (not needed) parameter was added to a command

SOURce1:APPL? 10

-109 Missing parameter

The command received less parameters than expected.

Example: A required parameter was omitted.

SOURce1:APPL:SQUare .

-112 Program mnemonic too long

A command header contains more than 12 characters:

OUTP:SYNCHRONIZATION ON

-113 Undefined header

An undefined header was encountered. The header is syntactically correct. Example: the header contains a character mistake.

SOUR1:AMM:DEPT MIN

-123 Exponent too large

Numeric exponent exceeds 32,000. Example:

SOURce[1|2]:BURSt:NCYCles 1E34000

-124 Too many digits

The mantissa (excluding leading 0’s) contains more than 255 digits.

-128 Numeric data not allowed

An unexpected numeric character was received in the command. Example: a numeric parameter is used instead of a character string.

SOURce1:BURSt:MODE 123

198

-131 Invalid suffix

An invalid suffix was used. Example: An unknown or incorrect suffix may have been used with a parameter.

SOURce1:SWEep:TIME 0.5 SECS

-138 Suffix not allowed

A suffix was used where none were expected. Example: Using a suffix when not allowed.

SOURce1:BURSt: NCYCles 12 CYC

-148 Character data not allowed

A parameter was used in the command where not allowed.

Example: A discrete parameter was used where a numeric parameter was expected.

SOUR1:MARK:FREQ ON

-158 String data not allowed

An unexpected character string was used where none were expected. Example: A character string is used instead of a valid parameter.

SOURce1:SWEep:SPACing ’TEN’

-161 Invalid block data

Invalid block data was received. Example: The number of bytes sent with the DATA:DAC command doesn’t correlate to the number of bytes specified in the block header.

-168 Block data not allowed

Block data was received where block data is not allowed.

Example:

SOURce1:BURSt: NCYCles #10

-170~178 expression errors

Example: The mathematical expression used was not valid.

8-21-2.Execution Errors

-211 Trigger ignored

A trigger was received but ignored. Example: Triggers will be ignored until the function that can use a trigger is enabled

(burst, sweep, etc.).

-223 Too much data

Data was received that contained too much data. Example: An arbitrary waveform with over 4096 points cannot be used.

-221 Settings conflict; turned off infinite burst to allow immediate trigger source

Example: Infinite burst is disabled when an immediate trigger source is selected. Burst count set to 65535 cycles.

-221 Settings conflict; infinite burst changed trigger source to MANual

Example: The trigger source is changed to immediate from manual when infinite burst mode is selected.

-221 Settings conflict; burst period increased to fit entire burst

Example: The function generator automatically increases the burst period to allow for the burst count or frequency.

199

-221 Settings conflict; burst count reduced

Example: The burst count is reduced to allow for the waveform frequency if the burst period is at it’s maximum.

-221 Settings conflict; trigger delay reduced to fit entire burst

Example: The trigger delay is reduced to allow the current period and burst count.

-221 Settings conflict;triggered burst not available for noise

Example: Triggered burst cannot be used with noise.

-221 Settings conflict;amplitude units changed to Vpp due to high-Z load

Example: If a high impedance load is used, dBm units cannot be used. The units are automatically set to Vpp.

-221 Settings conflict;trigger output disabled by trigger external

Example: The trigger output terminal is disabled when an external trigger source is selected.

-221 Settings conflict;trigger output connector used by FSK

Example: The trigger output terminal cannot be used in FSK mode.

-221 Settings conflict;trigger output connector used by burst gate

Example: The trigger output terminal cannot be used in gated burst mode.

-221 Settings conflict;trigger output connector used by trigger external

Example: The trigger output connector is disabled when the trigger source is set to external.

-221 Settings conflict;frequency reduced for pulse function

Example: When the function is changed to pulse, the output frequency is automatically reduced if over range.

-221 Settings conflict;frequency reduced for ramp function

Example: When the function is changed to ramp, the output frequency is automatically reduced if over range.

-221 Settings conflict;frequency made compatible with burst mode

Example: When the function is changed to burst, the output frequency is automatically adjusted if over range.

-221 Settings conflict;frequency made compatible with FM

Example: When the function is changed to FM, the frequency is automatically adjusted to suit the FM settings.

-221 Settings conflict;burst turned off by selection of other mode or modulation

Example: Burst mode is disabled when sweep or a modulation mode is enabled.

-221 Settings conflict;FSK turned off by selection of other mode or modulation

Example: FSK mode is disabled when burst, sweep or a modulation mode is enabled.

-221 Settings conflict;FM turned off by selection of other mode or modulation

Example: FM mode is disabled when burst, sweep or a modulation mode is enabled.

-221 Settings conflict;AM turned off by selection of other mode or modulation

Example: AM mode is disabled when burst, sweep or a modulation mode is enabled.

200

-221 Settings conflict; sweep turned off by selection of other mode or modulation

Example: Sweep mode is disabled when burst or a modulation mode is enabled.

-221 Settings conflict;not able to modulate this function

Example: A modulated waveform cannot be generated with dc voltage, noise or pulse waveforms.

-221 Settings conflict;not able to sweep this function

Example: A swept waveform cannot be generated with dc voltage, noise or pulse waveforms.

-221 Settings conflict;not able to burst this function

Example: A burst waveform cannot be generated with the dc voltage function.

-221 Settings conflict;not able to modulate noise, modulation turned off

Example: A waveform cannot be modulated using the noise function.

-221 Settings conflict;not able to sweep pulse, sweep turned off

Example: A waveform cannot be swept using the pulse function.

-221 Settings conflict;not able to modulate dc, modulation turned off

Example: A waveform cannot be modulated using the dc voltage function.

-221 Settings conflict;not able to sweep dc, modulation turned off

Example: A waveform cannot be swept using the dc voltage function.

-221 Settings conflict;not able to burst dc, burst turned off

Example: The burst function cannot be used with the dc voltage function.

-221 Settings conflict;not able to sweep noise, sweep turned off

Example: A waveform cannot be swept using the noise function.

-221 Settings conflict;pulse width decreased due to period

Example: The pulse width has been adjusted to suit the period settings.

-221 Settings conflict;amplitude changed due to function

Example: The amplitude (VRM / dBm) has been adjusted to suit the selected function. For the FGX-2220, a typical square wave has a much higher amplitude (5V Vrms) compared to a sine wave (~3.54) due to crest factor.

-221 Settings conflict;offset changed on exit from dc function

Example: The offset level is adjusted on exit from a DC function.

-221 Settings conflict;FM deviation cannot exceed carrier

Example: The deviation cannot be set higher than the carrier frequency

-221 Settings conflict;FM deviation exceeds max frequency

Example: If the FM deviation and carrier frequency combined exceeds the maximum frequency plus 100 kHz, the deviation is automatically adjusted.

-221 Settings conflict;frequency forced duty cycle change

Example: If the frequency is changed and the current duty cannot be supported at the new frequency, the duty will be automatically adjusted.

201

-221 Settings conflict;offset changed due to amplitude

Example: The offset is not a valid offset value, it is automatically adjusted, considering the amplitude.

|offset|≤ max amplitude – Vpp/2

-221 Settings conflict;amplitude changed due to offset

Example: The amplitude is not a valid value, it is automatically adjusted, considering the offset.

Vpp ≤ 2X (max amplitude -|offset|)

-221 Settings conflict;low level changed due to high level

Example: The low level value was set too high. The low level is set 1 mV less than the high level.

-221 Settings conflict;high level changed due to low level

Example: The high level value was set too low. The high level is set 1 mV greater than the low level.

-222 Data out of range;value clipped to upper limit

Example: The parameter was set out of range. The parameter is automatically set to the maximum value allowed.

SOURce[1|2]:FREQuency 25.1MHz.

-222 Data out of range;value clipped to lower limit

Example: The parameter was set out of range. The parameter is automatically set to the minimum value allowed.

SOURce[1|2]:FREQuency 0.1μHz.

-222 Data out of range;period; value clipped to ...

Example: If the period was set to a value out of range, it is automatically set to an upper or lower limit.

-222 Data out of range;frequency; value clipped to ...

Example: If the frequency was set to a value out of range, it is automatically set to an upper or lower limit.

-222 Data out of range;user frequency; value clipped to upper limit

Example: If the frequency is set to a value out of range for an arbitrary waveform using, SOURce[1|2]: APPL: USER or

SOURce[1|2]: FUNC:USER, it is automatically set to the upper limit.

-222 Data out of range;ramp frequency; value clipped to upper limit

Example: If the frequency is set to a value out of range for a ramp waveform using, SOURce[1|2]: APPL: RAMP or

SOURce[1|2]:FUNC:RAMP, it is automatically set to the upper limit.

-222 Data out of range;pulse frequency; value clipped to upper limit

Example: If the frequency is set to a value out of range for a pulse waveform using, SOURce[1|2]: APPL:PULS or

SOURce[1|2]:FUNC:PULS, it is automatically set to the upper limit.

-222 Data out of range;burst period; value clipped to ...

Example: If the burst period was set to a value out of range, it is automatically set to an upper or lower limit.

222 Data out of range;burst count; value clipped to ...

Example: If the burst count was set to a value out of range, it is automatically set to an upper or lower limit.

202

-222 Data out of range; burst period limited by length of burst; value clipped to upper limit

Example: The burst period must be greater than burst count divided by the frequency + 200 ns. The burst period is adjusted to satisfy these conditions. burst period > 200 ns + (burst count/burst frequency).

-222 Data out of range; burst count limited by length of burst; value clipped to lower limit

Example: The burst count must be less than burst period * the waveform frequency when the the trigger source is set to immediate (SOURce[1|2]: TRIG:SOUR IMM). The burst count is automatically set to the lower limit.

-222 Data out of range;amplitude; value clipped to ...

Example: If the amplitude was set to a value out of range, it is automatically set to an upper or lower limit.

-222 Data out of range;offset; value clipped to ...

Example: If the offset was set to a value out of range, it is automatically set to an upper or lower limit.

-222 Data out of range;frequency in burst mode; value clipped to ...

Example: If the frequency was set to a value out of range in burst mode. The burst frequency is automatically set to an upper or lower limit, taking the burst period into account.

-222 Data out of range;frequency in FM; value clipped to ...

Example: The carrier frequency is limited by the frequency deviation (SOURce[1|2]: FM:DEV). The carrier frequency is automatically adjusted to be less than or equal to the frequency deviation.

-222 Data out of range;marker confined to sweep span; value clipped to ...

Example: The marker frequency is set to a value outside the start or stop frequencies. The marker frequency is automatically adjusted to either the start or stop frequency (whichever is closer to the set value).

-222 Data out of range;FM deviation; value clipped to ...

Example: The frequency deviation is outside of range. The deviation is automatically adjusted to an upper or lower limit, depending on the frequency.

-222 Data out of range;trigger delay; value clipped to upper limit

Example: The trigger delay was set to a value out of range. The trigger delay has been adjusted to the maximum (655350 nseconds).

-222 Data out of range; trigger delay limited by length of burst; value clipped to upper limit

Example: The trigger delay and the burst cycle time combined must be less than the burst period.

203

-222 Data out of range;duty cycle; value clipped to ...

Example: The duty cycle is limited depending on the frequency.

Duty Cycle

50%

10%~90%

Frequency

> 25MHz

100 KHz ~ 1MHz

1%~99% < 100KHz

-222 Data out of range; duty cycle limited by frequency; value clipped to upper limit

Example: The duty cycle is limited depending on the frequency.

When the frequency is greater than 50 MHz, the duty cycle is automatically limited to 50%.

-313 Calibration memory lost;memory corruption detected

Indicates that a fault (check sum error) has occurred with the non-volatile memory that stores the calibration data.

-314 Save/recall memory lost;memory corruption detected

Indicates that a fault (check sum error) has occurred with the non-volatile memory that stores the save/recall files.

-315 Configuration memory lost;memory corruption detected

Indicates that a fault (check sum error) has occurred with the non-volatile memory that stores the configuration settings.

-350 Queue overflow

Indicates that the error queue is full (over 20 messages generated, and not yet read). No more messages will be stored until the queue is empty. The queue can be cleared by reading each message, using the *CLS command or restarting the function generator.

8-21-3.Query Errors

-410 Query INTERRUPTED

Indicates that a command was received but the data in the output buffer from a previous command was lost.

-420 Query UNTERMINATED

The function generator is ready to return data, however there was no data in the output buffer. For example: Using the APPLy command.

-430 Query DEADLOCKED

Indicates that a command generates more data than the output buffer can receive and the input buffer is full. The command will fin ish execution, though all the data won’t be kept.

8-21-4.Arbitrary Waveform Errors

-770 Nonvolatile arb waveform memory corruption detected

Indicates that a fault (check sum error) has occurred with the non-volatile memory that stores the arbitrary waveform data.

-781 Not enough memory to store new arb waveform; bad sectors

204

Indicates that a fault (bad sectors) has occurred with the non-volatile memory that stores the arbitrary waveform data.

Resulting in not enough memory to store arbitrary data.

-787 Not able to delete the currently selected active arb waveform

Example: The currently selected waveform is being output and cannot be deleted.

800 Block length must be even

Example: As block data (DATA:DAC VOLATILE) uses two bytes to store each data point, there must be an even number or bytes for a data block.

8-22. SCPI Status Register

The status registers are used to record and determine the status of the function generator. The function generator has a number of register groups:

Questionable Status Registers

Standard Event Status Registers

Status Byte Register

As well as the output and error queues.

Each register group is divided into three types of registers: condition registers, event registers and enable registers.

8-22-1. Register types

Condition Register The condition registers indicate the state of the function generator in real time. The condition registers are not triggered. I.e., the bits in the condition register change in real time with the instrument status. Reading a condition register will not clear it. The condition registers cannot be cleared or set.

Event Register The Event Registers indicate if an event has been triggered in the condition registers. The event registers are latched and will remain set unless the *CLS command is used. Reading an event register will not clear it.

Enable Register The Enable register determines which status event(s) are enabled. Any status events that are not enabled are ignored.

Enabled events are used to summarize the status of that register group.

205

8-22-2. FGX-2220 Status System

Questionable Status Register

Condition Event Enable

0 Volt Ovld

1

2

3

4 Over Temp

5 Loop Unlock

6

7 Ext Mod Ovld

8 Cal Error

9 External Ref

10

11

12

13

14

15

11

12

13

14

7

8

9

10

15 bit

5

6

3

4

0

1

2

<1>

<2>

<4>

<8>

<16>

<32>

<64>

<128>

<256>

<512>

<1024>

<2048>

<4096>

<8192>

<16384>

NOT USED weight

+

OR

Output Buffer

1

20

Standard Event Register

0 Operation Complete

1

2 Query Error

3 Device Error

4 Execution Error

5 Command Error

6

7 Power On

Event Enable

6

7

4

5 bit

2

3

0

1

<1>

<2>

<4>

<8>

<16>

<32>

<64>

<128> weight

+

OR

Error Queue

1

20

Status Byte Register

Condition Enable

2

3

0

1

4

5

6

7 bit

<1>

<2>

<4>

<8>

<16>

<32>

<128> weight

Summary Bit (RQS)

+

OR

206

8-22-3. Questionable Status Register

Description

Bit Summary

The Questionable Status Registers will show if any faults or errors have occurred.

Register Bit Bit Weight

Voltage overload

Over temperature

0

4

1

16

Loop unlock

Ext Mod Overload

Cal Error

5

7

8

9

32

128

256

512 External Reference

8-22-4. Standard Event Status Registers

Description

Notes

Bit Summary

Error Bits

The Standard Event Status Registers indicate when the *OPC command has been executed or whether any programming errors have occurred.

The Standard Event Status Enable register is cleared when the *ESE 0 command is used.

The Standard Event Status Event register is cleared when the

*CLS command or the *ESR? command is used.

Register

Operation complete bit

Query Error

Device Error

Bit

0

2

3

Bit Weight

1

4

8

Execution Error

Command Error

Power On

Operation complete

4

5

16

32

7 128

The operation complete bit is set when all selected pending operations are complete.

This bit is set in response to the *OPC command.

Query Error The Query Error bit is set when there is an error reading the Output Queue. This can be caused by trying to read the Output Queue when there is no data present.

Device Error The Device Dependent Error indicates a failure of the self-test, calibration, memory or other device dependent error.

207

Execution Error The Execution bit indicates an execution error has occurred.

Command

Error

Power On

The Command Error bit is set when a syntax error has occurred.

Power has been reset.

8-22-5. The Status Byte Register

Description

Notes

Bit Summary

Status Bits

The Status Byte register consolidates the status events of all the status registers. The Status Byte register can be read with the *STB? query or a serial poll and can be cleared with the

*CLS command.

Clearing the events in any of the status registers will clear the corresponding bit in the Status Byte register.

The Status byte enable register is cleared when the *SRE 0 command is used.

The Status Byte Condition register is cleared when the *CLS command is used.

Register Bit Bit Weight

Error Queue

Questionable Data

2

3

4

8

Message Available

Standard Event

4

5

16

32

Master Summary /

Request Service

Error Queue

6 64

There are error message(s) waiting in the error queue.

Questionable data

The Questionable bit is set when an

“enabled” questionable event has occurred.

Message

Available

The Message Available bit is set when there is outstanding data in the Output

Queue. Reading all messages in the output queue will clear the message available bit.

Standard Event The Event Status bit is set if an “enabled” event in the Standard Event Status Event

Register has occurred.

208

Master

Summary/

Service Request bit

The Master Summary Status is used with the *STB? query. When the *STB? query is read the MSS bit is not cleared.

The Request Service bit is cleared when it is polled during a serial poll.

8-22-6. Output Queue

Description The Output queue stores output messages in a FIFO buffer until read. If the Output Queue has data, the MAV bit in the

Status Byte Register is set.

8-22-7. Error Queue

Description The error queue is queried using the SYSTem:ERRor? command. The Error queue will set the “Error Queue“ bit in the status byte register if there are any error messages in the error queue. If the error queue is full the last message will generate a “Queue overflow” error and additional errors will not be stored. If the error queue is empty, “No error” will be returned.

Error messages are stored in the error queue in a first-in-first-out order. The errors messages are character strings that can contain up to 255 characters.

209

9. APPDENIX

9-1. FGX-2220 Specifications

The specifications apply when the function generator is powered on for at least 30 minutes under +18°C~+28°C.

FGX-2220 models

Waveforms

Repetition

Rate

Sine, Square, Ramp, Pulse, Noise, ARB

Arbitrary Functions

Sample Rate 120 MSa/s

60MHz

4k points Waveform

Length

Amplitude

Resolution

10 bits

4k points Non-Volatile

Memory

Frequency Characteristics

Range

Resolution

Accuracy

Sine

Square

Ramp

Stability

Aging

Tolerance

Output Characteristics

Amplitude Range

1uHz~25MHz

1uHz~25MHz

1MHz

1uHz

Offset

Accuracy

Resolution

Flatness

Units

Range

Accuracy

Waveform Output Impedance

±20 ppm

±1 ppm, per 1 year

≤1 mHz

1mVpp to 10 Vpp (into 50Ω)

2mVpp to 20 Vpp (open-circuit)

1mVpp to 5 Vpp (into 50Ω) for 20MHz-25MHz

2mVpp to 10 Vpp (open-circuit) for

20MHz-25MHz

±2% of setting ±1 mVpp (at 1 kHz)

1mV or 3 digits

±1% (0.1dB) ≤100kHz

±3% (0.3 dB) ≤5MHz

±5% (0.4 dB) ≤12MHz

±10%(0.9dB) ≤25MHz

(sine wave relative to 1kHz)

Vpp, Vrms, dBm

±5 Vpk ac +dc (into 50Ω)

±10Vpk ac +dc (Open circuit)

±2.5 Vpk ac +dc (into 50Ω) for 20MHz-25MHz

±5Vpk ac +dc (Open circuit) for

20MHz-25MHz

2% of setting + 10mV+ 0.5% of amplitude

50Ω typical (fixed)

> 10MΩ (output disabled)

210

Protection Short-circuit protected

Overload relay automatically disables main output

Sine wave

Characteristics

Harmonic distortion

≤-55 dBc DC ~ 200kHz,

≤-50 dBc 200kHz ~ 1MHz,

≤-35 dBc 1MHz ~ 5MHz,

≤-30 dBc 5MHz ~ 25MHz,

Square wave

Characteristics

Rise/Fall Time

≤25ns at maximum output.

(into 50

Ω load)

Overshoot 5%

Asymmetry

Variable duty

Cycle

Ramp Characteristics

Linearity

Variable

Symmetry

1% of period +5 ns

1.0% to 99.0% ≤100kHz

10% to 9

0% ≤ 1MHz

50% ≤ 25MHz

< 0.1% of peak output

0% to 100% (0.1% Resolution)

Ampl > 0.1Vpp

Ampl > 0.1Vpp

Ampl > 0.1Vpp

Ampl > 0.1Vpp

Pulse

Characteristics

Period 40ns~2000s

Pulse Width 20ns~1999.9s

Overshoot

Jitter

AM Modulation

Carrier

Waveforms

<5%

20ppm +10ns

Sine, Square, Ramp, Pulse,Arb

Sine, Square, Triangle,Upramp, Dnramp Modulating

Waveforms

Modulating

Frequency

2mHz to 20kHz (Int), DC to 20kHz (Ext)

Depth

Source

FM Modulation

Carrier

0% to 120.0%

Internal / External

Sine, Square, Ramp,

Waveforms

Modulating

Waveforms

Modulating

Sine, Square, Triangle,Upramp, Dnramp

2mHz to 20kHz (Int),DC to 20kHz (Ext)

Frequency

Peak Deviation DC to Max Frequency

Sweep

Source

Waveforms

Internal / External

Sine, Square, Ramp,

Type Linear or Logarithmic

Start/Stop Freq 1uHz to Max Frequency

211

FSK

Sweep Time 1ms to 500s

Source Internal / External/Manual

Sine, Square, Ramp,Pulse Carrier

Waveforms

Modulating

Waveforms

50% duty cycle square

2mHz to 100 kHz (INT) ,DC to 100 kHz(EXT) Modulation

Rate

Frequency

Range

Source

Carrier

1uHz to Max Frequency

Internal / External

Sine, Square, Ramp

PM

SUM

Waveforms

Modulating

Waveforms

Modulation

Frequency

Phase deviation

Source

Sine, Square, Triangle,Upramp, Dnramp

2mHz to 20kHz (Int),DC to 20kHz (Ext)

0˚ to 360˚

Carrier

Waveforms

Modulating

Internal / External

Sine, Square, Ramp,Pulse,Noise

Sine, Square, Triangle,Upramp,Dnramp

Waveforms

Modulation 2mHz to 20kHz (Int),DC to 20kHz (Ext)

Frequency

SUM Depth 0% to 100.0%

Source Internal / External

External Trigger Input

Type

Input Level

Slope

For FSK, Burst, Sweep

TTL Compatibility

Rising or Falling(Selectable)

Pulse Width >100ns

Input Impedance 10k Ω,DC coupled

External Modulation Input

Type

Voltage Range

Input Impedance

Frequency

For AM, FM, PM, SUM

±5V full scale

10kΩ

DC to 20kHz

Trigger Output

Type

Level

For Burst, Sweep, Arb

TTL Compatible into 50 Ω

>450ns Pulse Width

Maximum Rate 1MHz

Fan-out

Impedance

≥4 TTL Load

50

Ω Typical

212

Dual Channel Function

Phase

Track

Coupling

CH1

-

180˚ ~180˚

-

CH2

180˚ ~ 180˚

Synchronize phase Synchronize phase

CH2=CH1

Frequency(Ratio or

Difference)

Amplitude & DC

Offset

CH1=CH2

Frequency(Ratio or

Difference)

Amplitude & DC

Offset

Burst

Dsolink

Trigger Delay

Waveforms

Frequency

Sine, Square, Ramp

1uHz~25MHz

Burst Count 1 to 65535 cycles or Infinite

Start/Stop Phase -360 to +360

Internal Period

Gate Source

1ms to 500s

External Trigger

Trigger Source Single, External or Internal Rate

N-Cycle, Infinite 0s to 655350ns

Frequency Counter

Range

Accuracy

Time Base

5Hz to 150MHz

Time Base accuracy±1count

±20ppm (23˚C ±5˚C) after 30 minutes warm up

The maximum resolution is:

Save/Recall

Interface

Display

Resolution

100nHz for 1Hz, 0.1Hz for 100MHz.

Input Impedance 1kΩ/1pf

Sensitivity 35mVrms ~ 30Vms (5Hz to 150MHz)

10 Groups of Setting Memories

USB (Host&Device)

TFT (320 x 240 dots)

General Specifications

Power Source AC100~240V, 50~60Hz

Power 25 W (Max)

Consumption

Operating

Environment

Temperature to satisfy the specification :

18 ~ 28˚C

Operating temperature :0 ~ 40˚C

Relative Humidity: <

80%, 0 ~ 40˚C

Installation category: CAT II

Operating

Altitude

Storage

Temperature

Dimensions

Weight

Accessories

-

2000 Meters

10~70˚C, Humidity: ≤70%

266(W) x 107(H) x 293(D) mm

Approx. 2.5kg

GTL-101× 2

CD (user manual + software) ×1

Power cord×1

213

9-2. External Dimensions Figure

214

9-3. Usage Notes for FGX-2220

At the time of change of the setting by hand operation and external controls in this instrument, the waiting time in the following table until the next control and the next operation is enabled is required.

If you want a continuous set and query, please put the weights.

Panel

Preset

Recall

Waveform

ARB

FREQ

AMPL

Offset

OUTPUT

MOD

Sweep

Burst

INT/EXT

Other

Command

SOUR[1|2]:APPL

SOUR[1|2]:FUNC

SOUR[1|2]:FREQ

SOUR[1|2]:AMP

SOUR[1|2]:DCO

OUTP[1|2]

SOUR[1|2]:AM

SOUR[1|2]:FM

SOUR[1|2]:FSK

SOUR[1|2]:PM

SOUR[1|2]:SUM

SOUR[1|2]:SWE

SOUR[1|2]:BURS

SOUR[1|2]: **:SOUR

Setting Commands

Setting

Apply

Function

Frequency

Amplitude

DC Offset

OUTPUT ON/OFF

Modulation

Sweep mode

Burst mode

Input modulation

Other setting

Wait time(typ)

1500ms

500ms

200ms

100ms

100ms

100ms

1000ms

1000ms

1000ms

200ms

100ms

Common Commands SCPI command 0ms

215

7F Towa Fudosan Shin Yokohama Bldg.

2-18-7, Shin Yokohama, Kohoku-ku,Yokohama, Kanagawa, 222-0033 Japan http://www.texio.co.jp/

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement

Table of contents