DDR3L SDRAM Unbuffered DIMMs Based on 4Gb C-Die


Add to my manuals
51 Pages

advertisement

DDR3L SDRAM Unbuffered DIMMs Based on 4Gb C-Die | Manualzz

240pin DDR3L SDRAM Unbuffered DIMM

DDR3L SDRAM

Unbuffered DIMMs

Based on 4Gb C-Die

HMT425U6CFR6A

*SK hynix reserves the right to change products or specifications without notice.

Rev. 1.0 / Nov. 2014 1

Revision History

Revision No.

0.1

1.0

History

Initial Release

IDD Specification update

Draft Date

Aug. 2014

Nov. 2014

Remark

Rev. 1.0 / Nov. 2014 2

Description

SK hynix Unbuffered DDR3L SDRAM DIMMs (Unbuffered Double Data Rate Synchronous DRAM Dual In-

Line Memory Modules) are low power, high-speed operation memory modules that use DDR3L SDRAM devices. These Unbuffered SDRAM DIMMs are intended for use as main memory when installed in systems such as PCs and workstations.

Feature

• Power Supply: VDD=1.35V

(1.283V to 1.45V)

• VDDQ=1.35V

(1.283 to 1.45V)

• VDDSPD=3.0V to 3.6V

• Backward Compatible with 1.5V DDR3 Memory module

• 8 internal banks

• Data transfer rates: PC3-14900. PC3-12800, PC3-10600, PC3-8500

• Bi-directional Differential Data Strobe

• 8 bit pre-fetch

• Burst Length (BL) switch on-the-fly: BL 8 or BC (Burst Chop) 4

• Supports ECC error correction and detection

• On Die Termination (ODT) supported

• Temperature sensor with integrated SPD (Serial Presence Detect) EEPROM

• This product is in Compliance with the RoHS directive 

Ordering Information

Part Number

HMT425U6CFR6A-G7/H9/PB

Density Organization

2GB 256Mx64

Component Composition

256Mx16(H5TC4G63CFR)*4

# of ranks

FDHS

1 X

Rev. 1.0 / Nov. 2014 3

Key Parameters

MT/s

DDR3L-1066

DDR3L-1333

DDR3L-1600

DDR3L-1866

Grade

-G7

-H9

-PB

-Rd

tCK

(ns)

1.875

1.5

1.25

1.07

CAS

Latency

(tCK)

7

9

11

13

tRCD

(ns) tRP

(ns)

13.125

13.125

13.5

(13.125)*

13.5

(13.125)*

13.75

(13.125)*

13.75

(13.125)*

13.91

(13.125)*

13.91

(13.125)*

tRAS

(ns)

37.5

36

35

34

tRC

(ns)

50.625

49.5

(49.125)*

48.75

(48.125)*

47.91

(48.125)*

CL-tRCD-tRP

7-7-7

9-9-9

11-11-11

13-13-13

*

SK hynix DRAM devices support optional downbinning to CL11, CL9 and CL7. SPD setting is programmed to match.

Speed Grade

Frequency [Mbps]

CL9 CL10 CL11 CL12 CL13

Remark Grade

-G7

-H9

-PB

-RD

CL6

800

800

800

800

Address Table

CL7

1066

1066

1066

1066

CL8

1066

1066

1066

1066

1333

1333

1333

1333

1333

1333

1600

1600 1866

Refresh Method

Row Address

Column Address

Bank Address

Page Size

2GB(1Rx16)

8K/64ms

A0-A14

A0-A9

BA0-BA2

2KB

Rev. 1.0 / Nov. 2014 4

Pin Descriptions

Pin Name Description Pin Name Description

A0–A15

BA0–BA2

RAS

CAS

WE

S0–S1

CKE0–CKE1

SDRAM address bus

SDRAM bank select

SDRAM row address strobe

SDRAM column address strobe

SDRAM write enable

DIMM Rank Select Lines

SDRAM clock enable lines

ODT0–ODT1 On-die termination control lines

DQ0–DQ63 DIMM memory data bus

CB0–CB7

DQS0–DQS8

DIMM ECC check bits

SDRAM data strobes

(positive line of differential pair)

DQS0–DQS8

DM0–DM8

CK0–CK1

CK0–CK1

SDRAM data strobes

(negative line of differential pair)

SDRAM data masks/high data strobes

(x8-based x72 DIMMs)

SDRAM clocks

(positive line of differential pair)

SDRAM clocks

(negative line of differential pair)

SCL

SDA

SA0–SA2

V

DD*

V

DD

Q

*

V

REF

DQ

V

V

REF

V

V

-

CA

SS

DDSPD

NC

TEST

RESET

TT

RSVD

I

2

C serial bus clock for EEPROM

I

2

C serial bus data line for EEPROM

I

2

C slave address select for EEPROM

SDRAM core power supply

SDRAM I/O Driver power supply

SDRAM I/O reference supply

SDRAM command/address reference supply

Power supply return (ground)

Serial EEPROM positive power supply

Spare pins (no connect)

Memory bus analysis tools

(unused on memory DIMMS)

Set DRAMs to Known State

SDRAM I/O termination supply

Reserved for future use

-

*The V

DD

and V

DD

Q pins are tied common to a single power-plane on these designs

Rev. 1.0 / Nov. 2014 5

Input/Output Functional Descriptions

Symbol Type

CK0–CK1

CK0–CK1

CKE0–CKE1

S0–S1

RAS, CAS, WE SSTL

ODT0–ODT1 SSTL

V

REF

DQ

V

REF

CA

Supply

Supply

V

DD

Q

BA0–BA2

A0–A15

DQ0–DQ63,

CB0–CB7

DM0–DM8

V

DD

, V

SS

SSTL

SSTL

SSTL

Supply

SSTL

SSTL

SSTL

SSTL

Supply

Polarity

Differential crossing

Active High

Active Low

Function

CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK

(Both directions of crossing).

Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode.

Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks.

Active Low RAS, CAS, and WE (

ALONG WITH

S) define the command being entered.

Active High

When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming this function is enabled in the Mode Register 1 (MR1).

Reference voltage for SSTL15 I/O inputs.

Reference voltage for SSTL 15 command/address inputs.

Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, V

DD

Q shares the same power plane as V

DD

pins.

Selects which SDRAM bank of eight is activated.

During a Bank Activate command cycle, Address input defines the row address (RA0–RA15).

During a Read or Write command cycle, Address input defines the column address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to define which bank to precharge. A12(BC) is sampled during READ and

WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; LOW, burst chopped).

— Data and Check Bit Input/Output pins.

Active High

DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading.

Power and ground for the DDR3 SDRAM input buffers, and core logic. V

DD and V

DD

Q pins are tied to V

DD

/V

DD

Q planes on these modules.

Rev. 1.0 / Nov. 2014 6

Symbol

DQS0–DQS8

DQS0–DQS8

SA0–SA2

V

SDA

SCL

DDSPD

Type

SSTL

Supply

Polarity

Differential crossing

Function

Data strobe for input and output data.

These signals are tied at the system planar to either V

SS

or V

DDSPD

to configure the serial SPD EEPROM address range.

This bidirectional pin is used to transfer data into or out of the SPD

EEPROM. An external resistor may be connected from the SDA bus line to

V

DDSPD

to act as a pullup on the system board.

This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to V

DDSPD

to act as a pullup on the system board.

Power supply for SPD EEPROM. This supply is separate from the V

DD

/V

DD

Q power plane. EEPROM supply is operable from 3.0V to 3.6V.

Rev. 1.0 / Nov. 2014 7

Pin Assignments

24

25

26

27

20

21

22

23

28

29

30

16

17

18

19

12

13

14

15

V

SS

DQ16

DQ17

V

SS

DQS2

DQS2

V

SS

DQ18

DQ8

DQ9

V

SS

DQS1

DQS1

V

SS

DQ10

DQ11

DQ19

V

SS

DQ24

5

6

7

8

9

2

3

4

Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240)

Pin

# x64

Non-ECC x72

ECC

Pin

#

1 V

REF

DQ V

REF

DQ 121

x64

Non-ECC

V

SS

x72

ECC

V

SS

Pin

#

61

x64

Non-ECC

A2

x72

ECC

A2

Pin

#

181

x64

Non-ECC

A1

x72

ECC

A1

10

V

DQ0

DQ1

V

SS

DQS0

DQS0

V

SS

SS

DQ2

DQ3

V

DQ0

DQ1

V

SS

DQS0 126

DQS0

V

SS

SS

DQ2

DQ3

122

123

124

125

127

128

129

130

DQ4

DQ5

V

SS

DM0

NC

V

SS

DQ6

DQ7

V

SS

DQ4

DQ5

V

DM0

NC

V

DQ6

DQ7

V

SS

SS

SS

62

63

64

65

66

67

68

69

70

V

V

DD

CK1

CK1

V

DD

V

DD

REF

NC

V

CA

DD

A10

V

DD

CK1

CK1

V

DD

V

DD

182

183

184

185

186

V

REF

CA 187

NC

V

DD

A10

188

189

190

V

V

V

DD

DD

CK0

CK0

V

DD

NC

A0

DD

BA1

2

V

V

DD

DD

CK0

CK0

V

DD

EVENT

V

A0

DD

BA1

2

11 V

SS

V

SS

131

DQ8 132

DQ9 133

V

SS

134

DQS1 135

DQS1 136

V

SS

137

DQ10 138

DQ11 139

V

SS

140 DQ20

DQ16 141 DQ21

DQ17 142

V

SS

143

DQS2 144

DQS2 145

V

SS

146

DQ18 147

DQ19 148

V

SS

149

DQ24 150

DQ12

DQ13

V

SS

DM1

NC

V

SS

DQ14

DQ15

V

SS

V

V

SS

DM2

NC

SS

DQ22

DQ23

V

SS

DQ28

DQ29

DQ12

DQ13

V

SS

DM1

NC

V

SS

DQ14

DQ15

V

SS

DQ20

DQ21

V

SS

DM2

NC

V

SS

DQ22

DQ23

V

SS

DQ28

DQ29

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

V

SS

DQ34

DQ35

V

SS

DQ40

V

DD

NC

V

SS

DQ32

DQ33

V

SS

DQS4

DQS4

BA0

2

V

DD

WE

CAS

V

DD

S1

ODT1

BA0

2

V

DD

WE

191

CAS

V

DD

S1 196

ODT1 197

192

193

194

195

V

DD

NC

198

199

V

SS

200

DQ32 201

DQ33 202

V

SS

203

DQS4 204

DQS4 205

V

SS

206

DQ34 207

DQ35 208

V

SS

209

DQ40 210

V

DD

V

DD

DQ36

DQ37

V

SS

DM4

NC

V

SS

DQ38

DQ39

RAS

S0

V

DD

ODT0

A13

V

DD

NC

V

SS

V

SS

DQ44

DQ45

DQ36

DQ37

V

SS

DM4

NC

V

SS

DQ38

DQ39

RAS

S0

V

DD

ODT0

A13

V

DD

NC

V

SS

V

SS

DQ44

DQ45

NC = No Connect; RFU = Reserved Future Use

1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.

2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored.

Rev. 1.0 / Nov. 2014 8

53

54

55

49

50

51

52

43

44

45

46

47

48

CKE0

V

DD

BA2

NC

V

DD

All

NC

V

SS

NC

NC

V

SS

NC

KEY

NC

39

40

41

42

35

36

37

38

Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240)

Pin

# x64

Non-ECC x72

ECC

Pin

# x64

Non-ECC x72

ECC

Pin

# x64

Non-ECC x72

ECC

Pin

# x64

Non-ECC x72

ECC

31

32

33

34

DQ25

V

SS

DQS3

DQS3

DQ25

V

SS

151

152

DQS3 153

DQS3 154

V

SS

DM3

NC

V

SS

V

DM3

NC

V

SS

SS

91

92

93

94

DQ41

V

SS

DQS5

DQS5

DQ41

V

SS

211

212

DQS5 213

DQS5 214

V

V

SS

DM5

NC

SS

V

SS

DM5

NC

V

SS

V

DQ26

DQ27

V

NC

NC

V

SS

SS

SS

NC

V

V

SS

DQ26

DQ27

SS

CB0

CB1

V

SS

155

156

157

158

159

160

161

DQS8 162

DQ30

DQ31

V

NC

NC

V

SS

SS

DM8

NC

DQ30

DQ31

V

V

SS

CB4

CB5

SS

DM8

NC

95

96

97

98

99

100

101

102

V

DQ42

DQ43

V

DQ48

DQ49

V

SS

SS

SS

DQS6

V

DQ42

DQ43

V

SS

SS

V

SS

215

216

217

218

DQ48 219

DQ49 220

221

DQS6 222

DQ46

DQ47

V

SS

DQ52

DQ53

V

SS

DM6

NC

DQ46

DQ47

V

SS

DQ52

DQ53

V

SS

DM6

NC

DQS8 163

V

SS

CB2

CB3

V

SS

NC

164

165

166

167

168

V

SS

NC

NC

V

SS

NC

Reset

V

SS

CB6

CB7

V

SS

NC

Reset

103

104

105

106

107

108

NC 169 CKE1/NC

CKE0 170 V

DD

KEY

CKE1/NC

V

DD

109

110

111

V

DD

171

BA2 172

NC 173

V

DD

174

All 175

NC

A14

V

DD

A12

A9

NC

A14

V

DD

A12

A9

112

113

114

115

116

DQS6

V

SS

DQ50

DQ51

V

SS

DQ56

DQ57

V

SS

DQS7

DQS7

V

SS

DQ58

DQ59

V

SS

DQS6 223

V

SS

224

DQ50 225

DQ51 226

V

SS

227

DQ56 228

DQ57 229

V

SS

230

DQS7 231

DQS7 232

V

SS

233

DQ58 234

V

SS

DQ54

DQ55

V

SS

DQ60

DQ61

V

SS

DM7

NC

V

SS

DQ62

DQ63

DQ59 235

V

SS

236 V

V

SS

DDSPD

NC

V

SS

DQ62

DQ63

V

SS

V

DDSPD

V

SS

DQ54

DQ55

V

SS

DQ60

DQ61

V

SS

DM7

56

A7

2

A7

2

176 V

DD

V

DD

117 SA0 SA0 237 SA1 SA1

57

58

59

V

DD

A5

2

A4

2

V

DD

A5

A4

2

2

177

178

179

A8

2

A6

2

V

DD

A8

2

A6

2

V

DD

118

119

120

SCL

SA2

V

TT

SCL

SA2

V

TT

238

239

240

SDA

V

V

SS

TT

SDA

V

V

SS

TT

60 V

DD

V

DD

180

A3

2

A3

2

NC = No Connect; RFU = Reserved Future Use

1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.

2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored.

Rev. 1.0 / Nov. 2014 9

On DIMM Thermal Sensor

The DDRL3 SDRAM DIMM temperature is monitored by integrated thermal sensor. The integrated thermal sensor comply with JEDEC “TSE2002av, Serial Presence Detect with Temperature Sensor”.

Connection of Thermal Sensor

EVENT

SCL

SDA

SA0

SA1

SA2

EVENT

SCL

SPD with

Integrated

SDA

TS

SA0

SA1

SA2

Temperature-to-Digital Conversion Performance

Parameter

Temperature Sensor Accuracy (Grade B)

Condition

Active Range,

75°C < T

A

< 95°C

Monitor Range,

40°C < T

A

< 125°C

-20°C < T

A

< 125°C

Resolution

-

-

Min

-

Typ Max

± 0.5

± 1.0

Unit

°C

± 1.0

0.25

± 2.0

± 2.0

± 3.0

°C

°C

°C

Rev. 1.0 / Nov. 2014 10

Functional Block Diagram

2GB, 256Mx64 Module(1Rank of x16)

S0

DQS0

DQS0

DM0

DQS1

DQS1

DM1

DQ0

DQ1

DQ2

DQ3

DQ4

DQ5

DQ6

DQ7

DQ8

DQ9

DQ10

DQ11

DQ12

DQ13

DQ14

DQ15

UDQS

UDQS

UDM

I/O 8

I/O 9

I/O 10

I/O 11

I/O 12

I/O 13

I/O 14

I/O 15

LDQS

LDQS

LDM

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

CS

D0

ZQ

DQS4

DQS4

DM4

DQS5

DQS5

DM5

DQ40

DQ41

DQ42

DQ43

DQ44

DQ45

DQ46

DQ47

DQ32

DQ33

DQ34

DQ35

DQ36

DQ37

DQ38

DQ39

UDQS

UDQS

UDM

I/O 8

I/O 9

I/O 10

I/O 11

I/O 12

I/O 13

I/O 14

I/O 15

LDQS

LDQS

LDM

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

CS

D2

ZQ

DQS2

DQS2

DM2

DQS3

DQS3

DM3

BA0–BA2

A0–A14

RAS

CAS

CKE0

WE

ODT0

CK0

CK0

RESET

Rev. 1.0 / Nov. 2014

DQ16

DQ17

DQ18

DQ19

DQ20

DQ21

DQ22

DQ23

DQ24

DQ25

DQ26

DQ27

DQ28

DQ29

DQ30

DQ31

CS

UDQS

UDQS

UDM

I/O 8

I/O 9

I/O 10

I/O 11

I/O 12

I/O 13

I/O 14

I/O 15

LDQS

LDQS

LDM

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

CS

ZQ

Serial PD

SCL

BA0–BA2: SDRAMs D0–D3

WP

A0 A1

A0–A14: SDRAMs D0–D3

RAS: SDRAMs D0–D3

CAS: SDRAMs D0–D3

CKE: SDRAMs D0–D3

V

DDSPD

V

DD

/V

DD

Q

WE: SDRAMs D0–D3

ODT: SDRAMs D0–D3

CK: SDRAMs D0–D3

CK: SDRAMs D0–D3

RESET:SDRAMs D0-D3

V

V

REF

REF

DQ

V

SS

CA

SA0 SA1

A2

SA2

DQS6

DQS6

DM6

DQS7

DQS7

DM7

DQ48

DQ49

DQ50

DQ51

DQ52

DQ53

DQ54

DQ55

DQ56

DQ57

DQ58

DQ59

DQ60

DQ61

DQ62

DQ63

CS

UDQS

UDQS

UDM

I/O 8

I/O 9

I/O 10

I/O 11

I/O 12

I/O 13

I/O 14

I/O 15

LDQS

LDQS

LDM

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

CS

ZQ

SDA

SPD

D0–D3

D0–D3

D0–D3

D0–D3

Notes:

1. DQ-to-I/O wiring is shown as recommended but may be changed.

2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown.

3. DQ,DM,DQS,DQS resistors;Refer to associated topology diagram.

4. Refer to the appropriate clock wiring topology under the DIMM wiring details section of this document.

5. The pair CK1 and CK1# is terminated in

75ohm but is not used on the module.

6. A15 is not routed on the module.

7. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is

240ohm+-1%

8. One SPD exists per module.

11

Absolute Maximum Ratings

Absolute Maximum DC Ratings

Absolute Maximum DC Ratings

Symbol

VDD

Parameter

Voltage on VDD pin relative to Vss

VDDQ Voltage on VDDQ pin relative to Vss

V

IN

, V

OUT

Voltage on any pin relative to Vss

T

STG

Notes:

Storage Temperature

Rating

- 0.4 V ~ 1.8 V

- 0.4 V ~ 1.8 V

- 0.4 V ~ 1.8 V

-55 to +100

Units

V

V

V o C

Notes

1, 3

1, 3

1

1, 2

1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than

0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.

DRAM Component Operating Temperature Range

Temperature Range

Symbol

T

OPER

Parameter

Normal Operating Temperature Range

Extended Temperature Range

Rating

0 to 85

85 to 95

Units

o o

Notes

C 1,2

C 1,3

Notes:

1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.

2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85 o

C under all operating conditions.

3. Some applications require operation of the DRAM in the Extended Temperature Range between 85 o

C and 95 o

C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range.

Please refer to the DIMM SPD for option availability b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the

Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b).

DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and/or the

DIMM SPD for tFEFI requirements in the Extended Temperature Range.

Rev. 1.0 / Nov. 2014 12

AC & DC Operating Conditions

Recommended DC Operating Conditions

Recommended DC Operating Conditions - DDR3L (1.35V) operation

Rating

Symbol Parameter

Typ.

1.35

Max.

1.45

Units Notes

VDD

Supply Voltage

Min.

1.283

V 1,2,3,4

VDDQ

Notes:

Supply Voltage for Output

1.283

1.35

1.45

V 1,2,3,4

1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a very long period of time (e.g., 1 sec).

2. If maximum limit is exceeded, input levels shall be governed by DDR3 specifications.

3. Under these supply voltages, the device operates to this DDR3L specification.

4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and

VDDQ are changed for DDR3 operation (see Figure 0).

Recommended DC Operating Conditions - - DDR3 (1.5V) operation

.

Rating

Symbol Parameter

Typ.

1.5

Max.

1.575

Units Notes

VDD

Supply Voltage

Min.

1.425

V 1,2,3

VDDQ

Notes:

Supply Voltage for Output

1.425

1.5

1.575

V 1,2,3

1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications.

2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device.

3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and

VDDQ are changed for DDR3L operation (see Figure 0).

Rev. 1.0 / Nov. 2014 13

Ta Tb Tc

CK,CK#

VDD, VDDQ (DDR3)

VDD, VDDQ (DDR3L)

Tmin = 10ns

Tmin = 10ns

Tmin = 200us tCKSRX

T = 500us

RESET#

Td

CKE

Tmin = 10ns

COMMAND

BA

READ

READ

ODT

RTT

READ

Te Tf Tg Th Ti Tj Tk

VALID tDLLK tIS

1) tXPR

MRS tMRD

MRS tMRD

MRS tMRD

MRS tMOD

ZQCL tZQinit

1) VALID tIS

MR2 MR3 MR1 MR0

Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW

VALID tIS

VALID

NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands.

TIME BREAK

Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3

DON’T CARE

Rev. 1.0 / Nov. 2014 14

AC & DC Input Measurement Levels

AC and DC Logic Input Levels for Single-Ended Signals

AC and DC Input Levels for Single-Ended Command and Address Signals

Single Ended AC and DC Input Levels for Command and Address

DDR3L-800/1066 DDR3L-1333/1600 DDR3L-1866

Symbol Parameter Unit Notes

Min Max Min Max Min Max

VIH.CA(DC90) DC input logic high Vref + 0.09

VDD Vref + 0.09

VDD

VIL.CA(DC90) DC input logic low VSS Vref - 0.09

VSS Vref - 0.09

VIH.CA(AC160) AC input logic high Vref + 0.160

Note2 Vref + 0.160

Note2

Vref - 0.09

V

VIL.CA(AC160) AC input logic low Note2 Vref - 0.160

Note2 Vref - 0.160

-

VIH.CA(AC135) AC Input logic high Vref + 0.135

Note2 Vref + 0.135

Note2 Vref + 0.135

Note2

VIL.CA(AC135) AC input logic low Note2 Vref - 0.135

Note2 Vref - 0.135

Vref + 0.09

VSS

-

Note2

VDD

-

Vref - 0.135

V

V

V

V

V

1

1

1,2,5

VIH.CA(AC125) AC Input logic high Vref + 0.125

Note2 V

VIL.CA(AC125) AC input logic low

V

RefCA(DC

)

Note2 Vref - 0.125

V

Reference Voltage for

0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V

ADD, CMD inputs

3,4

Notes:

1. For input only pins except RESET, Vref = VrefCA (DC).

2. Refer to "Overshoot and Undershoot Specifications" on page 28.

3. The ac peak noise on V

Ref

may not allow V

Ref

to deviate from V

RefCA(DC)

by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).

4. For reference: approx. VDD/2 +/- 13.5 mV

5. These levels apply for 1.35 volt (see table above) operation only. If the device is operated at 1.5V (table "Single

Ended AC and DC Input Levels for DQ and DM" on page 16), the respective levels in JESD79-3 (VIH/L.CA(DC100),

VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125) etc.) apply. The 1.5V levels (VIH/

L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125) etc.) do not apply when the device is operated in the 1.35 voltage range.

1,2,5

1,2,5

1,2,5

1,2,5

1,2,5

Rev. 1.0 / Nov. 2014 15

AC and DC Input Levels for Single-Ended Signals

DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066s specified in table below.

DDR3 SDRAM will also support corresponding tDS values (Table 43 and Table 50 in “DDR3L Device Operation”) as well as derating tables Table 46 in “DDR3L Device Operation” depending on Vih/Vil AC levels.

Single Ended AC and DC Input Levels for DQ and DM

DDR3L-800/1066 DDR3L-1333/1600 DDR3L-1866

Symbol Parameter Unit Notes

Min Max Min Max Min Max

VIH.DQ(DC90) DC input logic high Vref + 0.09

VIL.DQ(DC90) DC input logic low VSS

VDD

Vref - 0.09

Vref + 0.09

VSS

VDD

Vref - 0.09

VIH.DQ(AC160) AC input logic high Vref + 0.160

Note2

VIL.DQ(AC160) AC input logic low Note2 Vref - 0.160

-

-

-

-

VIH.DQ(AC135) AC Input logic high Vref + 0.135

Note2 Vref + 0.135

Note2

Vref + 0.09

VSS

-

-

-

VDD V

Vref - 0.09

V

-

-

-

1

1

V 1, 2, 5

V 1, 2, 5

V 1, 2, 5

VIL.DQ(AC135) AC input logic low

VIH.DQ(AC130) AC Input logic high

VIL.DQ(AC130) AC input logic low

Note2 Vref - 0.135

Note2 Vref - 0.135

-

-

-

Vref + 0.130

Note2

V

V

1, 2, 5

1, 2, 5

Note2 Vref - 0.130

V 1, 2, 5

V

RefDQ(DC

)

Reference Voltage for DQ, DM inputs

0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V

Notes:

1. Vref = VrefDQ (DC).

3, 4

2. Refer to "Overshoot and Undershoot Specifications" on page 28.

3. The ac peak noise on V

Ref

may not allow V

Ref

to deviate from V

RefDQ(DC)

by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV

4. For reference: approx. VDD/2 +/- 13.5 mV

5. These levels apply for 1.35 volt (table "Single Ended AC and DC Input Levels for Command and Address" on page 15) operation only. If the device is operated at 1.5V (table above), the respective levels in JESD79-3 (VIH/

L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) apply. The 1.5V levels (VIH/

L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) do not apply when the device is operated in the 1.35 voltage range.

Rev. 1.0 / Nov. 2014 16

Vref Tolerances

The dc-tolerance limits and ac-noise limits for the reference voltages

VRefCA

and V

RefDQ

are illustrated in figure below. It shows a valid reference voltage V

V

RefDQ

likewise).

Ref

(t) as a function of time. (V

Ref

stands for V

RefCA

and

V

Ref

(DC) is the linear average of V

Ref

(t) over a very long period of time (e.g. 1 sec). This average has to

meet the min/max requirements in the table "Differential AC and DC Input Levels" on page 19. Further-

more V

Ref

(t) may temporarily deviate from V

Ref (DC)

by no more than +/- 1% VDD.

voltage

VDD

V

Ref(DC)

V

Ref

ac-noise

V

Ref

(t)

V

Ref(DC)max

VDD/2

V

Ref(DC)min

VSS time

Illustration of V

Ref(DC)

tolerance and V

Ref

ac-noise limits

The voltage levels for setup and hold time measurements V

IH(AC) dent on V

Ref

.

, V

IH(DC)

, V

IL(AC)

, and V

IL(DC) are depen-

“V

Ref

” shall be understood as V

Ref(DC)

, as defined in figure above.

This clarifies that dc-variations of V

Ref

affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for V

Ref(DC)

deviations from the optimum position within the data-eye of the input signals.

This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V

Ref ac-noise. Timing and voltage effects due to ac-noise on V

Ref fied limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings.

up to the speci-

Rev. 1.0 / Nov. 2014 17

AC and DC Logic Input Levels for Differential Signals

Differential signal definition

t

DVAC

V

IL.DIFF.AC.MIN

V

IL.DIFF.MIN

0 half cycle

V

IL.DIFF.MAX

V

IL.DIFF.AC.MAX

t

DVAC time

Definition of differential ac-swing and “time above ac-level” t

DVAC

Rev. 1.0 / Nov. 2014 18

Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)

Differential AC and DC Input Levels

DDR3L-800, 1066, 1333, 1600

Symbol Parameter Unit Notes

Min Max

VIHdiff

VILdiff

VIHdiff (ac)

VILdiff (ac)

Differential input high

Differential input logic low

Differential input high ac

Differential input low ac

+ 0.180

Note 3

2 x (VIH (ac) - Vref)

Note 3

Note 3

- 0.180

Note 3

2 x (VIL (ac) - Vref)

V

V

V

V

Notes:

1. Used to define a differential signal slew-rate.

2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL

(ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here.

3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-

tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 28.

1

1

2

2

Allowed time before ringback

(tDVAC) for CK - CK and DQS - DQS

Slew Rate

[V/ns]

> 4.0

4.0

3.0

2.0

1.8

1.6

1.4

1.2

1.0

< 1.0

DDR3L-800/1066/1333/1600 tDVAC [ps]

@ |VIH/Ldiff

(ac)| = 320mV tDVAC [ps]

@ |VIH/Ldiff

(ac)| = 270mV

109

91

69

40

min

189

189

162 note note note

max

-

-

-

-

-

-

-

-

-

-

min

201

201

179

134

119

100

76

44 note note

max

-

-

-

-

-

-

-

-

-

62

37

5 note note

163

140

95

80

tDVAC [ps]

@ |VIH/Ldiff

(ac)| = 270mV min

163

max

-

-

-

-

-

-

-

-

-

DDR3L-1866 tDVAC [ps]

@ |VIH/Ldiff

(ac)| = 250mV min

168

168

147

105

91

74

52

22 note note

max

-

-

-

-

-

-

-

-

-

78

56

24 note note

176

154

111

97

tDVAC [ps]

@ |VIH/Ldiff

(ac)| = 260mV min

176

max

-

-

-

-

-

-

-

-

note : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.

Rev. 1.0 / Nov. 2014 19

Single-ended requirements for differential signals

Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) also has to comply with certain requirements for single-ended signals.

CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH

(ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle.

DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac)

/ VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition.

Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if

VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and CK.

VDD or VDDQ

VSEHmin

VSEH

VDD/2 or VDDQ/2

CK or DQS

VSELmax

VSEL

VSS or VSSQ time

Single-ended requirements for differential signals.

Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals.

Rev. 1.0 / Nov. 2014 20

Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU

DDR3L-800, 1066, 1333, 1600, 1866

Symbol Parameter Unit Notes

Min Max

VSEH

VSEL

Single-ended high level for strobes

Single-ended high level for Ck, CK

Single-ended low level for strobes

Single-ended low level for CK, CK

(VDD / 2) + 0.175

(VDD /2) + 0.175

Note 3

Note 3

Note 3

Note 3

(VDD / 2) - 0.175

(VDD / 2) - 0.175

V

V

V

V

Notes:

1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs.

2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.

3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limita-

tions for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 28.

1,2

1,2

1,2

1,2

Rev. 1.0 / Nov. 2014 21

Differential Input Cross Point Voltage

To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in table below. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS

Vix Definition

Cross point voltage for differential input signals (CK, DQS)

DDR3L-800, 1066, 1333, 1600, 1866

Symbol Parameter Unit Notes

Min Max

V

IX

(CK)

Differential Input Cross Point Voltage relative to VDD/2 for CK, CK

-150

-175

150

175 mV mV

V

IX

(DQS)

Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS

-150 150 mV 2

Notes:

1. Extended range for V

IX

is only allowed for clock and if single-ended clock input signals CK and CK are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK -

CK is larger than 3 V/ns.

2. The relation between Vix Min/Max and VSEL/VSEH should satisfy following.

(VDD/2) + Vix (Min) - VSEL  25mV 

VSEH - ((VDD/2) + Vix (Max))  25mV

2

1

Rev. 1.0 / Nov. 2014 22

Slew Rate Definitions for Single-Ended Input Signals

See 7.5 “Address / Command Setup, Hold and Derating” in “DDR3L Device Operation” for single-ended slew rate definitions for address and command signals.

See 7.6 “Data Setup, Hold and Slew Rate Derating” in “DDR3L Device Operation” for single-ended slew rate definition for data signals.

Slew Rate Definitions for Differential Input Signals

Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table and figure below.

Differential Input Slew Rate Definition

Measured

Description

Defined by

Min

Max

Differential input slew rate for rising edge

(CK-CK and DQS-DQS)

Differential input slew rate for falling edge

(CK-CK and DQS-DQS)

V

V

ILdiffmax

IHdiffmin

V

V

IHdiffmin

ILdiffmax

[V

[V

IHdiffmin

-V

IHdiffmin

Notes:

The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.

-V

ILdiffmax

] / DeltaTRdiff

ILdiffmax

] / DeltaTFdiff

Delta

TRdiff

V

IHdiffmin

0

V

ILdiffmax

Delta

TFdiff

Differential Input Slew Rate Definition for DQS, DQS and CK, CK

Rev. 1.0 / Nov. 2014 23

AC & DC Output Measurement Levels

Single Ended AC and DC Output Levels

Table below shows the output levels used for measurements of single ended signals.

Single-ended AC and DC Output Levels

Symbol

V

OH(DC)

V

OM(DC)

V

OL(DC)

V

OH(AC)

V

OL(AC)

Notes:

Parameter

DC output high measurement level (for IV curve linearity)

DC output mid measurement level (for IV curve linearity)

DC output low measurement level (for IV curve linearity)

AC output high measurement level (for output SR)

AC output low measurement level (for output SR)

DDR3L-800, 1066,

1333, 1600, 1866

0.8 x V

DDQ

0.5 x V

DDQ

0.2 x V

DDQ

V

TT

+ 0.1 x V

DDQ

V

TT

- 0.1 x V

DDQ

Unit

V

V

V

V

V

Notes

1

1

1. The swing of ±0.1 x V

DDQ

is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to V

TT

= V

DDQ

/ 2.

Differential AC and DC Output Levels

Table below shows the output levels used for measurements of single ended signals.

Differential AC and DC Output Levels

DDR3L-800, 1066,

Symbol

V

OHdiff (AC)

V

OLdiff (AC)

Notes:

Parameter

AC differential output high measurement level (for output SR)

AC differential output low measurement level (for output SR)

1333, 1600, 1866

+ 0.2 x V

DDQ

- 0.2 x V

DDQ

Unit

V

V

Notes

1

1

1. The swing of ±0.2 x V

DDQ

is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to V

TT

= V

DDQ

/2 at each of the differential outputs.

Rev. 1.0 / Nov. 2014 24

Single Ended Output Slew Rate

When the Reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V

OL(AC)

and V

OH(AC)

for single ended signals are shown in table and Figure below.

Single-ended Output slew Rate Definition

Measured

Description Defined by

From To

Single-ended output slew rate for rising edge

Single-ended output slew rate for falling edge

V

OL(AC)

V

OH(AC)

V

OH(AC)

V

OL(AC)

[V

OH(AC)

-V

OL(AC)

] / DeltaTRse

[V

OH(AC)

-V

OL(AC)

] / DeltaTFse

Notes:

1. Output slew rate is verified by design and characterisation, and may not be subject to production test.

Delta TRse

V

OH(AC)

V

V

Ol(AC)

Delta TFse

Single Ended Output slew Rate Definition

Output Slew Rate (single-ended)

Parameter

DDR3L-800 DDR3L-1066DDR3L-1333DDR3L-1600DDR3L-1866

Units

Symbol Min Max Min Max Min Max Min Max Min Max

Single-ended Output Slew Rate SRQse 1.75

5

1)

1.75

5

1)

1.75

5

1)

1.75

5

1)

1.75

5

1)

V/ns

Description: SR; Slew Rate

Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals

For Ron = RZQ/7 setting

Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.

Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low).

Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane switching into the opposite direction (i.e. from low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular maximum limite of 5 V/ns applies.

Rev. 1.0 / Nov. 2014 25

Differential Output Slew Rate

With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure below.

Differential Output Slew Rate Definition

Measured

Description Defined by

From To

Differential output slew rate for rising edge

Differential output slew rate for falling edge

Notes:

V

OLdiff (AC)

V

OHdiff (AC)

V

V

OHdiff (AC)

OLdiff (AC)

[V

[V

OHdiff (AC)

OHdiff (AC)

-V

-V

OLdiff (AC)

OLdiff (AC)

1. Output slew rate is verified by design and characterization, and may not be subject to production test.

] / DeltaTRdiff

] / DeltaTFdiff

Delta

TRdiff

V

OHdiff(AC)

O

V

OLdiff(AC)

Delta

TFdiff

Differential Output slew Rate Definition

Differential Output Slew Rate

Parameter

DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 DDR3L-1866

Units

Symbol Min Max Min Max Min Max Min Max Min Max

Differential Output Slew Rate SRQdiff 3.5

12 3.5

12

Description: SR; Slew Rate

Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals

For Ron = RZQ/7 setting

3.5

12 3.5

12 3.5

12 V/ns

Rev. 1.0 / Nov. 2014 26

Reference Load for AC Timing and Output Slew Rate

Figure Below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.

It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.

VDDQ

CK, CK

DUT

DQ

DQS

DQS

25 Ohm

VTT = VDDQ/2

Reference Load for AC Timing and Output Slew Rate

Rev. 1.0 / Nov. 2014 27

Overshoot and Undershoot Specifications

Address and Control Overshoot and Undershoot Specifications

AC Overshoot/Undershoot Specification for Address and Control Pins

Parameter

DDR3

L-800

DDR3 DDR3 DDR3 DDR3

L-1066 L-1333 L-1600 L-1866

Units

Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4

0.4

0.4

0.4

Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4

0.4

Maximum overshoot area above VDD (See Figure below) 0.67

0.5

0.4

0.4

0.4

0.4

V

V

0.4

0.33

0.28 V-ns

0.4

0.33

0.28 V-ns Maximum undershoot area below VSS (See Figure below) 0.67

0.5

(A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT)

See figure below for each parameter definition

Maximum Amplitude

Overshoot Area

Volts

(V)

VDD

VSS

Undershoot Area

Maximum Amplitude

Time (ns)

Address and Control Overshoot and Undershoot Definition

Rev. 1.0 / Nov. 2014 28

Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications

AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask

Parameter

DDR3

L-800

DDR3 DDR3 DDR3 DDR3

L-1066 L-1333 L-1600 L-1866

Units

Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4

0.4

0.4

0.4

0.4

V

Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4

0.4

0.4

0.4

0.4

V

Maximum overshoot area above VDD (See Figure below) 0.25

0.19

0.15

0.13

0.11 V-ns

Maximum undershoot area below VSS (See Figure below)

(CK,

CK

, DQ, DQS,

DQS

, DM)

0.25

0.19

0.15

0.13

0.11 V-ns

See figure below for each parameter definition

Maximum Amplitude

Overshoot Area

Volts

(V)

VDDQ

VSSQ

Undershoot Area

Maximum Amplitude

Time (ns)

Clock, Data, Strobe and Mask Overshoot and Undershoot Definition

Rev. 1.0 / Nov. 2014 29

Refresh parameters by device density

Refresh parameters by device density

Parameter

REF command ACT or

REF command time

RTT_Nom Setting

tRFC

512Mb

90

1Gb

110

2Gb

160

4Gb

260

8Gb Units Notes

350 ns

Average periodic refresh interval tREFI

0

C

 T

CASE

85

C 7.8

85

C

 T

CASE

95

C 3.9

7.8

3.9

7.8

3.9

7.8

3.9

7.8

3.9

us us

Notes:

1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this materia.

Rev. 1.0 / Nov. 2014 30

Standard Speed Bins

DDR3L SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.

DDR3L-800 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 36.

Speed Bin

CL - nRCD - nRP

Parameter

Internal read command to first data

Symbol

t

AA

min

DDR3L-800E

6-6-6 max

15 20

ACT to internal read or write delay time t

RCD

15 —

PRE command period t

RP

15 —

ACT to ACT or REF command period t

RC

52.5

ACT to PRE command period

CL = 6 CWL = 5

Supported CL Settings

Supported CWL Settings t

RAS t

CK(AVG)

37.5

2.5

6

5

9 * tREFI

3.3

Unit

ns ns ns ns ns ns n

CK n

CK

Notes

1,2,3

Rev. 1.0 / Nov. 2014 31

DDR3L-1066 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 36.

Speed Bin

CL - nRCD - nRP

Parameter Symbol

Internal read command to first data t

AA

ACT to internal read or write delay time t

RCD

min

13.125

13.125

DDR3L-1066F

7-7-7 max

20

PRE command period t

RP

ACT to ACT or REF command period t

RC

ACT to PRE command period t

RAS

CL = 6

CL = 7

CL = 8

CWL = 5

CWL = 6

CWL = 5

CWL = 6

CWL = 5

CWL = 6 t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

Supported CL Settings

Supported CWL Settings

13.125

50.625

37.5

2.5

1.875

1.875

Reserved

Reserved

Reserved

6, 7, 8

5, 6

9 * tREFI

3.3

< 2.5

< 2.5

Unit

ns ns ns ns ns ns ns ns ns ns ns n

CK n

CK

Note

1,2,3,6

1,2,3,4

4

1,2,3,4

4

1,2,3

Rev. 1.0 / Nov. 2014 32

DDR3L-1333 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 36.

Speed Bin

CL - nRCD - nRP

Parameter Symbol

Internal read command to first data t

AA

ACT to internal read or write delay time t

RCD

PRE command period t

RP

min

13.5

(13.125)

5,10

13.5

(13.125)

5,10

13.5

(13.125)

5,10

49.5

(49.125)

5,10

DDR3L-1333H

9-9-9 max

20

ACT to ACT or REF command period t

RC

ACT to PRE command period

CL = 6

CWL = 5

CWL = 6

CWL = 7

CWL = 5 t

RAS t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

36

2.5

9 * tREFI

CL = 7 CWL = 6 t

CK(AVG)

CL = 8

CL = 9

CL = 10

CWL = 7

CWL = 5

CWL = 6

CWL = 7

CWL = 5, 6

CWL = 7

CWL = 5, 6

CWL = 7 t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

Supported CL Settings

Supported CWL Settings

1.875

1.875

1.5

1.5

3.3

Reserved

Reserved

Reserved

< 2.5

(Optional)

5,10

Reserved

Reserved

< 2.5

Reserved

Reserved

<1.875

Reserved

(Optional)

6, 7, 8, 9, 10

<1.875

5, 6, 7

Unit

ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns n

CK n

CK

Note

1,2,3,7

1,2,3,4,7

4

4

1,2,3,4,7

1,2,3,4

4

1,2,3,7

1,2,3,4

4

1,2,3,4

4

1,2,3

5

Rev. 1.0 / Nov. 2014 33

DDR3L-1600 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 36.

Speed Bin

CL - nRCD - nRP

Parameter Symbol

Internal read command to first data t

AA

ACT to internal read or write delay time t

RCD

PRE command period t

RP

min

13.75

(13.125)

5,10

13.75

(13.125)

5,10

13.75

(13.125)

5,10

48.75

(48.125)

5,10

DDR3L-1600K

11-11-11 max

20

ACT to ACT or REF command period t

RC

ACT to PRE command period

CL = 6

CWL = 5

CWL = 6

CWL = 7

CWL = 5 t

RAS t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

CL = 7

CL = 8

CL = 9

CWL = 6

CWL = 7

CWL = 8

CWL = 5

CWL = 6

CWL = 7

CWL = 8

CWL = 5, 6

CWL = 7

CL = 10

CL = 11

CWL = 8

CWL = 5, 6

CWL = 7

CWL = 8

CWL = 5, 6,7

CWL = 8 t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

Supported CL Settings

Supported CWL Settings t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

35

2.5

1.875

1.875

1.5

1.5

1.25

9 * tREFI

3.3

Reserved

Reserved

Reserved

< 2.5

(Optional)

5,10

Reserved

Reserved

Reserved

< 2.5

Reserved

Reserved

Reserved

(Optional)

5,10

Reserved

Reserved

<1.875

<1.875

Reserved

Reserved

<1.5

5, 6, 7, 8, 9, 10, 11

5, 6, 7, 8

Rev. 1.0 / Nov. 2014

Unit

ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns n

CK n

CK ns ns ns

Note

1,2,3,8

1,2,3,4,8

4

4

1,2,3,4,8

1,2,3,4,8

4

4

1,2,3,8

1,2,3,4,8

1,2,3,4

4

1,2,3,4,8

1,2,3,4

4

1,2,3,8

1,2,3,4

4

1,2,3

34

DDR3L-1866 Speed Bins

For specific Notes See "Speed Bin Table Notes" on page 36.

Speed Bin

CL - nRCD - nRP

Parameter Symbol

Internal read command to first data t

AA

ACT to internal read or write delay time t

RCD

PRE command period t

RP

ACT to PRE command period t

RAS

ACT to ACT or PRE command period t

RC

CL = 6

CL = 7

CL = 8

CL = 9

CL = 10

CL = 11

CL = 12

CL = 13

CWL = 5

CWL = 6

CWL = 7,8,9

CWL = 5

CWL = 6

CWL = 7,8,9

CWL = 5

CWL = 6

CWL = 7

CWL = 8,9

CWL = 5, 6

CWL = 7

CWL = 8

CWL = 9

CWL = 5, 6

CWL = 7

CWL = 8

CWL = 5,6,7

CWL = 8

CWL = 9

CWL = 5,6,7,8

CWL = 9

CWL = 5,6,7,8

CWL = 9 t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG) t

CK(AVG)

Supported CL Settings

Supported CWL Settings

min

13.91

(13.125)

13.91

5,11

(13.125)

13.91

5,11

(13.125)

5,11

DDR3L-1866M

13-13-13 max

20

34 9 * tREFI

47.91

(47.125)

5,11

2.5

1.875

1.875

1.5

1.5

1.25

1.07

-

3.3

Reserved

Reserved

Reserved

< 2.5

Reserved

Reserved

< 2.5

Reserved

Reserved

Reserved

<1.875

Reserved

Reserved

Reserved

<1.875

Reserved

Reserved

<1.5

Reserved

Reserved

Reserved

Reserved

<1.25

6, 7, 8, 9, 10, 11, 13

5, 6, 7, 8, 9

Rev. 1.0 / Nov. 2014

Unit

ns ns ns ns ns ns n

CK n

CK ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Note

1,2,3,4,9

1,2,3,4,9

4

4

4

4

1,2,3,9

1,2,3,4,9

4

1,2,3,4,9

1,2,3,4

4

1,2,3,9

1,2,3,4,9

4

4

1,2,3,4,9

4

4

1,2,3,9

1,2,3,4,9

1,2,3,4

4

1, 2, 3

35

Speed Bin Table Notes

Absolute Specification (T

OPER

; V

DDQ

= V

DD

= 1.35V +0.100/- 0.067 V);

1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.

2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) =

3.0 ns should only be used for CL = 5 calculation.

3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.

4. ‘Reserved’ settings are not allowed. User must program a different value.

5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is supported.

6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.

7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.

8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.

9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.

10. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin

(Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to

DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin

(Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.

11. DDR3 SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns, tRCmin(byte

21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns +

13.125ns)

Rev. 1.0 / Nov. 2014 36

Environmental Parameters

Symbol

T

OPR

H

OPR

T

STG

H

STG

P

BAR

Parameter

Operating temperature (ambient)

Operating humidity (relative)

Storage temperature

Storage humidity (without condensation)

Barometric Pressure (operating & storage)

Rating

0 to +55

10 to 90

-50 to +100

5 to 95

105 to 69

Units Notes

o

C 3

% o

C

%

K Pascal

1

1

1, 2

Note

:

1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended periods may affect reliablility.

2. Up to 9850 ft.

3. The designer must meet the case temperature specifications for individual module components.

Rev. 1.0 / Nov. 2014 37

IDD and IDDQ Specification Parameters and Test Conditions

IDD and IDDQ Measurement Conditions

In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure below (Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements) shows the setup and test load for IDD and IDDQ measurements.

• IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R,

IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3L SDRAM under test tied together. Any IDDQ current is not included in IDD currents.

• IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all

VDDQ balls of the DDR3L SDRAM under test tied together. Any IDD current is not included in IDDQ currents.

Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in the Figure below (Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ

Measurement). In DRAM module application, IDDQ cannot be measured separately since VDD and

VDDQ are using on merged-power layer in Module PCB.

For IDD and IDDQ measurements, the following definitions apply:

• ”0” and “LOW” is defined as VIN <= V

ILAC(max).

• ”1” and “HIGH” is defined as VIN >= V

IHAC(max).

• “MID_LEVEL” is defined as inputs are VREF = VDD/2.

• Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1.

• Basic IDD and IDDQ Measurement Conditions are described in Table 2.

• Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10.

• IDD Measurements are done after properly initializing the DDR3L SDRAM. This includes but is not limited to setting 

RON = RZQ/7 (34 Ohm in MR1); 

Qoff = 0

B

(Output Buffer enabled in MR1); 

RTT_Nom = RZQ/6 (40 Ohm in MR1); 

RTT_Wr = RZQ/2 (120 Ohm in MR2); 

TDQS Feature disabled in MR1

• Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.

• Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}

• Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH}

Rev. 1.0 / Nov. 2014 38

I

DD

I

DDQ

(optional)

V

DD

RESET

CK/CK

CKE

CS

RAS, CAS, WE

A, BA

ODT

ZQ

V

SS

DDR3L

SDRAM

V

DDQ

DQS, DQS

DQ, DM,

TDQS, TDQS

R

TT

=

25 Ohm

V

DDQ

/2

V

SSQ

Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements

[Note: DIMM level Output test load condition may be different from above

Application specific memory channel environment

IDDQ

Test Load

Channel

IO Power

Simulation

IDDQ

Simulation

IDDQ

Simulation

Correction

Channel IO Power

Number

Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement

Rev. 1.0 / Nov. 2014 39

Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns

Symbol

t

CK

CL n

RCD n

RC n

RAS n

RP n

FAW

1KB page size

2KB page size n

RRD

1KB page size

2KB page size n

RFC

-512Mb n

RFC

-1 Gb n

RFC

- 2 Gb n

RFC

- 4 Gb n

RFC

- 8 Gb

DDR3L-1066

7-7-7

1.875

7

7

27

20

7

48

59

86

139

187

20

27

4

6

DDR3L-1333

9-9-9

1.5

9

9

33

24

9

60

74

107

174

234

20

30

4

5

DDR3L-1600

11-11-11

1.25

11

11

39

28

11

72

88

128

208

280

5

6

24

32

DDR3L-1866

13-13-13

1.07

13

13

45

32

13

85

103

150

243

328

5

6

26

33

Unit

nCK nCK nCK nCK ns nCK nCK nCK nCK nCK nCK nCK nCK nCK nCK

Table 2 -Basic IDD and IDDQ Measurement Conditions

Symbol

I

DD0

Description

Operating One Bank Active-Precharge Current

CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8 a)

; AL: 0; CS: High between ACT and

PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL;

DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Pattern Details: see Table 3.

Operating One Bank Active-Precharge Current

I

DD1

CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8 a)

; AL: 0; CS: High between ACT,

RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and

RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Pattern Details: see Table 4.

Rev. 1.0 / Nov. 2014 40

Symbol

I

DD2N

Description

Precharge Standby Current

CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Pattern Details: see Table 5.

Precharge Standby ODT Current

I

DD2NT

I

I

I

I

I

DD2P0

DD2P1

DD2Q

DD3N

DD3P

CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: toggling according to Table 6;

Pattern Details: see Table 6.

Precharge Power-Down Current Slow Exit

CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit c)

Precharge Power-Down Current Fast Exit

CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit c)

Precharge Quiet Standby Current

CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0

Active Standby Current

CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Pattern Details: see

Table 5.

Active Power-Down Current

CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: stable at 1; Command, Address, Bank

Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0

Rev. 1.0 / Nov. 2014 41

Symbol

I

DD4R

Description

Operating Burst Read Current

CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: High between RD; Command, Address,

Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open,

RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode

Registers b)

; ODT Signal: stable at 0; Pattern Details: see Table 7.

Operating Burst Write Current

I

I

DD4W

DD5B

CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8 a)

; AL: 0; CS: High between WR; Command, Address,

Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open,

WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode

Registers b)

; ODT Signal: stable at HIGH; Pattern Details: see Table 8.

Burst Refresh Current

CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8 a)

; AL: 0; CS: High between REF; Command,

Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0;

Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registers b)

;

ODT Signal: stable at 0; Pattern Details: see Table 9.

Self-Refresh Current: Normal Temperature Range

I

I

DD6

DD6ET

T

CASE

: 0 - 85 o

C; Auto Self-Refresh (ASR): Disabled d)

;Self-Refresh Temperature Range (SRT): Normal e)

; CKE:

Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8 a)

; AL: 0; CS, Command, Address, Bank

Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: MID_LEVEL

Self-Refresh Current: Extended Temperature Range

T

CASE

: 0 - 95 o

C; Auto Self-Refresh (ASR): Disabled d)

;Self-Refresh Temperature Range (SRT): Extended e)

;

CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8 a)

; AL: 0; CS, Command, Address, Bank

Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: MID_LEVEL

Rev. 1.0 / Nov. 2014 42

Symbol

I

DD7

Description

Operating Bank Interleave Read Current

CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8 a),f)

; AL: CL-1; CS:

High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table

10; Data IO: read data burst with different data between one burst and the next one according to Table 10;

DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registers b)

; ODT Signal: stable at 0; Pattern

Details: see Table 10.

a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B;

RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B

Rev. 1.0 / Nov. 2014 43

Table 3 - IDD0 Measurement-Loop Pattern a)

0

0

1,2

3,4

...

nRAS

...

1*nRC+0

1*nRC+1, 2

1*nRC+3, 4

...

1*nRC+nRAS

...

1 2*nRC

2 4*nRC

3 6*nRC

4 8*nRC

5 10*nRC

6 12*nRC

7 14*nRC

ACT 0 0 1 1 0 0 00 0 0 0

D, D 1 0 0 0 0 0 00 0 0

D, D 1 1 1 1 0 0 00 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary

PRE 0 0 1 0 0 0 00 0 0

0

0

PRE 0 0 1 0 0 0 00 0 0 repeat pattern 1...4 until 2*nRC - 1, truncate if necessary

0 repeat pattern 1...4 until nRC - 1, truncate if necessary

ACT

D, D

0

D, D 1

1

0

0

1

1

0

1

1

0

1

0

0

0

0

0

0

00

00

00

0

0

0

0

0

0

F

F

F repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary

F repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead

0

0

0

0

0

0

0

0 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.

b) DQ signals are MID-LEVEL.

Data b)

-

-

-

-

-

-

-

-

Rev. 1.0 / Nov. 2014 44

Table 4 - IDD1 Measurement-Loop Pattern a)

Data b)

0

0

1,2

3,4

...

nRCD

...

nRAS

...

1*nRC+0

1*nRC+1,2

1*nRC+3,4

...

1*nRC+nRCD

...

1*nRC+nRAS

...

1 2*nRC

2 4*nRC

3 6*nRC

4 8*nRC

5 10*nRC

6 12*nRC

7 14*nRC

ACT 0 0 1 1 0 0 00 0 0 0 0 -

D, D 1 0 0 0 0 0 00 0 0

D, D 1 1 1 1 0 0 00 0 repeat pattern 1...4 until nRCD - 1, truncate if necessary

0

RD 0 1 0 1 0 0 00 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary

PRE 0 0 1 0 0 0 00 0 0

0

0

0

0

0

0

0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary

ACT 0

D, D 1

0

0

1

0

1

0

0

0

0

0

00 0

00 0

0

0

F

F

0

0

D, D 1 1 1 1 0 0 00 0 0 F 0 repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary

-

-

00000000

-

-

-

-

RD 0 1 0 1 0 0 00 0 0 F 0 00110011 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary

0 PRE 0 0 1 0 0 0 00 0 0 F repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary repeat Sub-Loop 0, use BA[2:0] = 1 instead repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL.

Rev. 1.0 / Nov. 2014 45

Table 5 - IDD2N and IDD3N Measurement-Loop Pattern a)

0

0

1

2

3

1 4-7

2 8-11

3 12-15

4 16-19

5 20-23

6 24-17

7 28-31

D 1 0 0 0 0 0 0

D

D

D

1

1

1

0

1

1

0

1

1

0

1

1

0

0

0

0

0

0 repeat Sub-Loop 0, use BA[2:0] = 1 instead

0

0

0 repeat Sub-Loop 0, use BA[2:0] = 2 instead repeat Sub-Loop 0, use BA[2:0] = 3 instead repeat Sub-Loop 0, use BA[2:0] = 4 instead repeat Sub-Loop 0, use BA[2:0] = 5 instead repeat Sub-Loop 0, use BA[2:0] = 6 instead repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.

b) DQ signals are MID-LEVEL.

0

0

0

0

Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Pattern a)

0

0

0

0

0

0

F

F

0

0

0

0

Data b)

-

-

-

-

0

0

1

2

3

1 4-7

2 8-11

3 12-15

4 16-19

5 20-23

6 24-17

7 28-31

D 1 0 0 0 0 0 0 0

D

D

D

1

1

1

0

1

1

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4

0

0

0 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.

b) DQ signals are MID-LEVEL.

0

0

0

0

0

0

F

F

0

0

0

0

Data b)

-

-

-

-

Rev. 1.0 / Nov. 2014 46

Table 7 - IDD4R and IDDQ4R Measurement-Loop Pattern a)

Data b)

0

0

1

2,3

4

5

6,7

1 8-15

2 16-23

3 24-31

4 32-39

5 40-47

6 48-55

7 56-63

RD 0 1 0 1 0

D

D,D

RD

D

1

1

0

1

0

1

1

0

0

1

0

0

0

1

1

0

D,D 1 1 1 1 0 repeat Sub-Loop 0, but BA[2:0] = 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 0, but BA[2:0] = 3 repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 0, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 0, but BA[2:0] = 7

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

0 00000000

0

0

0 -

0 -

0 00110011

-

a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

Table 8 - IDD4W Measurement-Loop Pattern a)

Data b)

0

0

1

2,3

4

5

6,7

1 8-15

2 16-23

3 24-31

4 32-39

5 40-47

6 48-55

7 56-63

WR 0 1 0 0 1

D

D,D

WR

1

1

0

0

1

1

0

1

0

0

1

0

1

1

1

D

D,D

1

1

0

1

0

1

0

1

1

1 repeat Sub-Loop 0, but BA[2:0] = 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 0, but BA[2:0] = 3 repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 0, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 0, but BA[2:0] = 7

0

0

0

0

0

0

00

00

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

0

0

0

00000000

0 -

0 -

0 00110011

-

a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.

b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.

Rev. 1.0 / Nov. 2014 47

Table 9 - IDD5B Measurement-Loop Pattern a)

0

0

1 1.2

3,4

5...8

9...12

13...16

17...20

21...24

25...28

29...32

2 33...nRFC-1

REF 0 0 0 1 0 0 0 0 0

D, D 1 0 0 0 0

D, D 1 1 1 1 0 repeat cycles 1...4, but BA[2:0] = 1 repeat cycles 1...4, but BA[2:0] = 2 repeat cycles 1...4, but BA[2:0] = 3 repeat cycles 1...4, but BA[2:0] = 4 repeat cycles 1...4, but BA[2:0] = 5 repeat cycles 1...4, but BA[2:0] = 6

0

0

00

00

0

0 repeat cycles 1...4, but BA[2:0] = 7 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.

0

0 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.

b) DQ signals are MID-LEVEL.

0

0

F

0

0

0

Data b)

-

-

-

Rev. 1.0 / Nov. 2014 48

Table 10 - IDD7 Measurement-Loop Pattern a)

ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9

Data b)

0 0

1

2

...

nRRD nRRD+1

1 nRRD+2

...

2 2*nRRD

3 3*nRRD

4

4*nRRD

5 nFAW

6 nFAW+nRRD

7 nFAW+2*nRRD

8 nFAW+3*nRRD

9 nFAW+4*nRRD

10

11

2*nFAW+0

2*nFAW+1

2&nFAW+2

2*nFAW+nRRD

2*nFAW+nRRD+1

2&nFAW+nRRD+2

12 2*nFAW+2*nRRD

13 2*nFAW+3*nRRD

14 2*nFAW+4*nRRD

15 3*nFAW

16 3*nFAW+nRRD

17 3*nFAW+2*nRRD

18 3*nFAW+3*nRRD

19 3*nFAW+4*nRRD

ACT

RDA

D

0

0

1

0

1

0

1

0

0

1

1

0

0

0

0 repeat above D Command until nRRD - 1

ACT 0 0 1 1 0

RDA 0 1 0 1 0

0

0

0

1

1

00

00

00

00

00

00

0

1

0

0

1

0

0

0

0

0

0

0 D 1 0 0 0 0 1 repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3

D 1 0 0 0 0 3 00 0 0

Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 1, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6

F repeat Sub-Loop 1, but BA[2:0] = 7

D 1 0 0 0 0 7 00 0 0 F

Assert and repeat above D Command until 2* nFAW - 1, if necessary

F

F

F

0

0

0

ACT

RDA

D

0

0

1

0

1

0

1

0

0

1

1

0

0

0

0

0

0

0

00

00

00

Repeat above D Command until 2* nFAW + nRRD - 1

0

1

0

ACT

RDA

0

0

0

1

1

0

1

1

0

0

1

1

00

00

0

1

D 1 0 0 0 0 1 00 0

Repeat above D Command until 2* nFAW + 2* nRRD - 1

0

0

0

0

0

0

F

F

F

0

0

0 repeat Sub-Loop 10, but BA[2:0] = 2 repeat Sub-Loop 11, but BA[2:0] = 3

D 1 0 0 0 0 3 00 0 0 0

Assert and repeat above D Command until 3* nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 repeat Sub-Loop 11, but BA[2:0] = 5 repeat Sub-Loop 10, but BA[2:0] = 6 repeat Sub-Loop 11, but BA[2:0] = 7

D 1 0 0 0 0 7 00 0 0 0

Assert and repeat above D Command until 4* nFAW - 1, if necessary

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-

00000000

-

-

00110011

-

-

00110011

-

-

00000000

-

-

-

-

a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.

b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.

Rev. 1.0 / Nov. 2014 49

IDD Specifications (Tcase: 0 to 95

o

C)

* Module IDD values in the datasheet are only a calculation based on the component IDD spec.

The actual measurements may vary according to DQ loading cap.

2GB, 256M x 64 U-DIMM: HMT425U6CFR6A

Symbol

IDD0

IDD1

IDD2N

IDD2NT

IDD2P0

IDD2P1

IDD2Q

IDD3N

IDD3P

IDD4R

IDD4W

IDD5B

IDD6

IDD6ET

IDD7

DDR3L 1066

132

168

52

64

40

40

52

112

84

368

380

520

40

52

620

DDR3L 1333

136

172

56

68

40

40

52

120

88

428

440

520

40

52

700

DDR3L 1600

140

176

60

76

40

40

56

124

88

500

488

520

40

52

720

DDR3L 1866

152

188

68

92

44

44

64

136

92

568

568

540

48

80

740 mA mA mA mA mA mA mA

Unit

mA mA mA mA mA mA mA mA

note

Rev. 1.0 / Nov. 2014 50

Module Dimensions

256Mx64 - HMT425U6CFR6A

4 x 3.00 0.10

Min 1.45

2 x

2.30 0.10

5.175

47.00

DETAIL-A

Front

SPD

DETAIL-B

128.95

133.35

Back

71.00

2 x

Max R0.70

2.50 0.10

17.30

9.50

30.00

Side

2.51mm Max

Detail - A

Note

:

Rev. 1.0 / Nov. 2014

1.27±0.10

1.00

Detail - B

2.50

FULL R

5.00

0.3~1.0

Units: millimeters

51

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

Download PDF

advertisement

Table of contents