STMicroelectronics STDES-VRECTFD User Manual

Add to My manuals
63 Pages

advertisement

STMicroelectronics STDES-VRECTFD User Manual | Manualzz

UM2975

User manual

How to use the 15 kW three-level three-phase Vienna rectifier with digital control for power factor correction

Introduction

The STDES-VRECTFD reference design represents a complete solution for high-power, three-phase active front end (AFE) rectifier applications based on the three-level Vienna topology.

This reference design topology is mostly used for DC fast charging applications related to industrial and electric vehicles.

It features full digital control. The embedded STM32G474RET3 mixed-signal high-performance microcontroller provides the full control of the power factor (PF), the DC voltage, and the auxiliary task to manage the protections and the soft start-up procedure.

The high-bandwidth continuous conduction mode (CCM) current regulation allows the maximum power quality in terms of total harmonic distortion (THD) and power factor (PF).

Figure 1. DC charging station

UM2975 - Rev 1 - January 2022

For further information contact your local STMicroelectronics sales office.

www.st.com

Figure 2. STDES-VRECTFD reference design - power board

UM2975

Fully assembled board developed for performance evaluation only, not available for sale

Figure 3. STDES-VRECTFD reference design - control board

Fully assembled board developed for performance evaluation only, not available for sale

The high switching frequency of the SiC MOSFETs (70 kHz) and the multilevel structure allow an efficiency of almost 99% as well as the optimization of passive power components in terms of size and cost.

The high efficiency rectifier is designed for several end applications such as electric vehicle (EV), industrial battery chargers, and industrial equipment, which requires a very high PF and low THD.

The STDES-VRECTFD is a fully assembled kit developed for performance evaluation only, not available for sale.

UM2975 - Rev 1 page 2/63

UM2975

Getting started

1

1.1

Caution:

Getting started

Safety information

This reference design is intended for demonstration purposes only and is not for domestic or industrial installations.

Danger: The high-voltage levels used to operate the reference design can cause serious injury, electrical shock, and even death.

This reference design is intended for use by experienced power electronics professionals who understand the necessary precautions against potential dangers and risks while operating this board, even when it is not powered. The qualified personnel must be familiar with the installation, use, and maintenance of power electrical systems. During operation, do not touch the board as some of its components could reach a very high temperature.

1.2

Block diagram

Figure 4. STDES-VRECTFD block diagram

1.3

Features

Three-phase, three-level AC-DC power converter

– Nominal rate for DC voltage: 800 V

DC

– Nominal rate for AC voltage: 400 V

AC

at 50 Hz

– Maximum power: 15 kW

– Power factor: >0.99

– Inrush current control and soft start-up

– THD lower than 5% at nominal operation

UM2975 - Rev 1 page 3/63

1.4

1.5

1.5.1

UM2975

Main characteristics

Power section based on SiC MOSFETs and SiC diodes:

– High frequency operation (70 kHz)

– High efficiency: >98.6%

– Passive element weight and size reduction

Control section based on the STM32G474RET3 microcontroller:

– Control and monitoring interfaces: SWD–UART, I²C and DACs

– 64-pin digital power connector

– LED status as UI

– Four integrated high-performance op-amps for additional features

Main characteristics

Description

Three-phase input voltage

AC line frequency

Maximum output power

Output voltage

Power factor

Total harmonic distortion

Switching frequency

Symbol

V

AC

Hz

Table 1. Main characteristics

Min.

208

47

Typ.

Max.

480

63

Unit

V

ACLL

Hz

P

OUTmax

V

DC

PF

THDi f sw

15

7

800

>0.99

<5

70 kW

V

-

% kHz

Comments

V

AC

= 230 V

RMS

I

AC

= 21 V

RMS

V

AC

= 110 V

RMS

I

AC

= 21 V

RMS

From 20% of load

From 20% of load

Description

HVDC overvoltage protection

HVCAP overvoltage protection

AC overcurrent protection

Table 2. Protection characteristics

Symbol

V

DCovp

V

CAPovp

I

ACovp

Min.

Reference design description

Power board

The figure below shows the power board of the STDES-VRECTFD reference design.

Typ.

900

Max.

500

30

V

V

A

Unit

UM2975 - Rev 1 page 4/63

UM2975

Reference design description

Figure 5. STDES-VRECTFD reference design - power board

The following figure shows the main sections of the power board.

Figure 6. STDES-VRECTFD power board sections

1.5.2

1.5.2.1

Power stage

Boost inductor

Boost inductors represent the energy storage elements that allow the PFC operation of the converter. This is obtained by controlling the inductor current and using a proper conduction pattern in the power device section.

UM2975 - Rev 1 page 5/63

1.5.2.2

UM2975

Reference design description

Continuous conduction mode (CCM) performs the PFC operation of this reference design. The inductance is related to several parameters: the desired current ripple, the available converter voltage levels, the switching frequency, and the rated DC-AC operation voltages.

DC voltage

Switching frequency

Rated AC voltage

Max. ripple current

Boost inductance

Parameter

Table 3. Boost inductor parameters

V

0 fsw

V

AC

Δ iLppmax

V

AC

Symbol

800

70

230

10

470-6

Value

V kHz

V

RMS

%

H

Unit

Passive current limiter NTC

Figure 7. Three and four-wire connections

Figure 8. Focus on the STDES-VRECTFD NTC

UM2975 - Rev 1 page 6/63

Figure 9. STDES-VRECTFD NTC specifications

UM2975

Reference design description

1.5.2.3

1.5.2.3.1

Sensing

AC current

An isolated sensor measures the AC input current. It represents the boost inductor current to be controlled for the proper operation of the power converter. Hall sensors are taken into consideration. A conditioning circuit allows obtaining the correct value for the ADCs. The circuit shown below is replicated for each phase.

Figure 10. AC current sensing block diagram

1.5.2.3.2

AC voltage

The three-phase AC voltages are obtained using a two-stage sensor circuit. The first part represents an isolated op-amp that allows measuring the HV through a voltage divider with an isolation barrier.

Isol-Op-AMP output is limited in volts and is scaled with a second stage of op-amps with a proper gain and bias.

This circuit allows measuring an AC voltage referenced by a virtual or grid neutral point. The circuit is replicated for each phase.

UM2975 - Rev 1 page 7/63

Figure 11. AC voltage sensing block diagram

UM2975

Reference design description

1.5.2.3.3

DC current

An isolated sensor measures the DC output current. Hall sensors are taken into consideration. A conditioning circuit allows obtaining the correct value for the ADCs.

Figure 12. DC current sensing block diagram

1.5.2.3.4

DC voltage

The DC voltages are obtained using two-stage sensing. The total DC bus voltage is split exploiting two voltage dividers. Both voltages are needed to obtain the monitoring of each capacitor to avoid overvoltage, offering independent DC voltages for the control.

UM2975 - Rev 1 page 8/63

Figure 13. DC voltage sensing block diagram

UM2975

Reference design description

1.5.3

Control board

The figure below shows the control board of the STDES-VRECTFD reference design.

Figure 14. STDES-VRECTFD reference design - control board

The following figure shows the main sections of the control board.

UM2975 - Rev 1 page 9/63

UM2975 - Rev 1

Figure 15. STDES-VRECTFD control board sections

UM2975

Reference design description

Figure 16. STDES-VRECTFD MCU pin assignment page 10/63

1.6

UM2975

Power factor correction (PFC) benefits

Power factor correction (PFC) benefits

The figure below highlights the PFC benefits in terms of rest factor and power factor.

Figure 17. PFC benefits

1.7

Converter operation

The figure below shows the current paths of the Vienna topology. To simplify the scheme, we considered the single phase representation.

Figure 18. Switching paths of the Vienna topology

UM2975 - Rev 1 page 11/63

2

2.1

2.2

UM2975

How to use the STDES-VRECTFD reference design

How to use the STDES-VRECTFD reference design

System setup

To use the STDES-VRECTFD , you need:

• a programmable AC emulator or a programmable AC source; a DC electronic load; a power analyzer; a digital oscilloscope.

You can test the STDES-VRECTFD up to 15 kW at 230 V

AC

RMS and 6 kW at 110 V

AC

RMS in a frequency between 47 and 63 Hz.

How to connect the reference design

To operate the reference design power converter properly, consider the operating limits shown below.

Description

Three-phase input voltage range

Line frequency range

Maximum output power at 230 V

AC

Voltage limit of the bulk capacitors

Table 4. Operation condition limits

Value

208-400

47-63

15

500

V

AC

Hz kW

V

Unit

UM2975 - Rev 1 page 12/63

UM2975

MCU programming and debugging

Step 1.

Connect the power board as shown in the figure below.

The figure below shows the three-phase connection sequence (A-B-C). The neutral connection is optional. The polarity influences the DC load connection.

Figure 19. STDES-VRECTFD connection

2.3

Step 2.

Connect an external fan to manage the thermal dissipation.

The auxiliary power supply can be externally provided.

MCU programming and debugging

You can program and debug the microcontroller unit (MCU) through different tools.

UM2975 - Rev 1 page 13/63

UM2975

MCU programming and debugging

Step 1.

Use ST-LINK/V2 and a 20- to 10-pin JTAG adapter to connect the platform to the PC.

Figure 20. ST-LINK/V2 and adapter

Figure 21. ST-LINK/V2 connected to the control board

UM2975 - Rev 1

Step 2.

Select the main.c file in the project/Application/User path.

page 14/63

UM2975

MCU programming and debugging

Step 3.

Click on the [ Download and debug ] button to start programming and debugging.

Figure 22. IAR EWARM program procedure

Step 4.

Click on the [ Run ] button to start the code execution.

Figure 23. IAR EWARM debug procedure

2.3.1

Power supply section

The power supply needs two different input voltages. An embedded SMPS, based on the VIPER26 family, provides self-powering from the DC-link.

As shown in the figure below, you can select either an internal or external supply voltage. Specific LEDs allow identifying the selected configuration.

UM2975 - Rev 1 page 15/63

Figure 24. Example of power supply configuration

UM2975

Preliminary test procedure

2.3.2

Driver section

The driving section configuration is related to the power switch technology. In this case, we considered the SiC power MOSFETs. The figure below shows this specific configuration.

Figure 25. Example of driver configuration

2.4

2.4.1

Preliminary test procedure

AC sensing

To verify the proper operation of the AC sensing (

Figure 26 ), analyze the test points for voltages ( Figure 27

) and currents (

Figure 28 ).

UM2975 - Rev 1 page 16/63

Figure 26. AC sensing section

UM2975

Preliminary test procedure

Figure 27. AC voltage sensing test procedure

UM2975 - Rev 1 page 17/63

Figure 28. AC grid current sensing test procedure

UM2975

Preliminary test procedure

2.4.2

DC sensing

To verify the proper operation of the DC sensing, analyze the test points for voltages ( Figure 29

) and currents

( Figure 30

).

Figure 29. DC voltage sensing test procedure

UM2975 - Rev 1 page 18/63

Figure 30. DC current sensing test procedure

UM2975

Preliminary test procedure

2.4.3

AC connection

Check that the STDES-VRECTFD AC main connection is in line with the figure below.

A three-phase sequence (ABC) is mandatory for the proper operation of the power converter.

Figure 31. AC connection and sequence

2.4.4

DC connection

The figure below shows the output DC connection. Ensure to apply the correct polarity.

UM2975 - Rev 1 page 19/63

Figure 32. DC side load connection

UM2975

Startup procedure

2.5

Startup procedure

After connection and debugging initialization, you can perform the startup procedure.

An embedded finite state machine handles this procedure. It consists of different states that perform a preliminary check of the converter and the precharge of the capacitor. Then the burst operation boosts the output voltage.

The STDES-VRECTFD reference design allows managing the complete startup procedure.

However, a controlled step-by-step procedure is available. It is useful during the preliminary test or after hardware/sw modification.

Figure 33. Startup procedure

2.5.1

Controlled startup procedure

The AC power supply is slowly increased to verify the procedure step step-by-step as shown below.

UM2975 - Rev 1 page 20/63

UM2975 - Rev 1

UM2975

Startup procedure

N

N

N

N

N

N

START

Start

Plug

Control Board

Y

Connect

12V & 7V Power Supply

(No Power)

Y

Connect

AC (A-B-C-N) cables

(No Power)

Y

Connect

Load cables

(No Power)

Y

Check

“No Load” (E-Load disabled)

Y

Power On

12V & 7V Power Supply (PS)

Y

BLED “WAIT” HW Error

Figure 34. Connection and power-on procedure

BLED “WAIT”

N

Enable | Increase AC source

Y

Achieved

VACrms_plug?

(i.e.>10Vpk)

Y

BLED “IDLE” Error

N

N

BLED “INIT”

Y

Increase AC source

Y

Vout >= VDCinrush

Y

BLED

“START”

N

Error

N

N

BLED “IDLE”

Y

Increase AC source

Y

Achieved

VACrms_min?

(i.e.>30Vpk)

Y

BLED “INIT” Error

START

This procedure takes the ICL NTCs into consideration.

Figure 35. STDES- VRECTFD ICL NTCs

N

N

BLED

“START”

Y

Increase AC source

Y

Vout >= VDCinrush

Y

BLED “RUN”

N

Error

RUN

1. Turn Off (AC)

2. Turn Off (PS)

3. Disconnect Load

Error/Fault

The procedure consists of the following steps.

page 21/63

UM2975 - Rev 1

UM2975

Startup procedure

1.

FSM Wait : PWM signals are in IDLE state, configured in low state, to force all the MOSFETs in off state.

The AC main voltage is already under monitoring. This state is maintained until AC main reaches a lower

AC voltage threshold ( OK_Plug_ACSource ), that is 30 V

AC

. After that, an internal timeout ( TO_IDLE ) is activated to prevent power converter connection during the first-phase synchronization procedure. FSM moves on to FSM Idle .

Figure 36. FSM_Wait block diagram

DPC_VAC_MIN

Threshold

- Power

ON

Wait

N

Status_Plug_ACSource

==

OK_Plug_ACSource

Y

DPC_TO_Set(TO_IDLE,TO_IDLE_Tick)

==

TO_OUT_OK

N

Y - Idle ack

IDLE

STOP

2.

FSM Idle : after TO_IDLE time elapses, wait for the AC mains to reach the uvAC value ( OK_SOURCE ).

After checking the load current, a new timeout is set ( TO_INIT ) to prevent PLL instability. FSM moves to

FSM_Init .

Figure 37. FSM_Idle block diagram

TO_IDLE

Expired

DPC_VAC_PK_UV

Overcome

DPC_NO_LOAD_CURR +-

DPC_NO_LOAD_DELTA_CURR %

Not Overcome

Idle ack IDLE

N

DPC_TO_Check

=

TO_OUT_TOOK

Y

Status_Source

=

OK_SOURCE

N

Y

Status_Load

=

NO_LOAD

N

Y Init ack

INIT

STOP page 22/63

UM2975 - Rev 1

UM2975

Startup procedure

3.

FSM_Init : handles the inrush current control. If the grid voltage is correct, the status source is equal to

OK_SOURCE . The bulk capacitors are at low voltage and the inrush current must be limited. For this reason, during this state, the inrush relays are considered in series with a high resistance. On the basis of their values, the inrush is completed. The state machine state is still maintained to stabilize the output voltage according to the grid amplitude. After a configurable time, the FSM moves to start state ( FSM_Start ).

Figure 38. FSM_Init block diagram

DPC_VAC_PK_UV

Overcome

DPC_NO_LOAD_CURR +-

DPC_NO_LOAD_DELTA_CURR %

Not Overcome

Init ack INIT

Status_Source

=

OK_SOURCE

Progress

Start

Error

Inrush

Progress

Complete

Start ack

START

STOP

4.

FSM_Start : is related to the burst mode operation of the power converter. During this procedure, the PWM is activated. The pulse sequence at a fixed duty cycle allows boosting the input voltage and increasing the

DC output voltage at a reference voltage. The state machine then moves to FSM_Run state.

Figure 39. FSM_Start block diagram

Progress

- Start ack

START

Start

Error

Burst

Progress

Complete

- Run ack

RUN

STOP

5.

FSM_Run : if the startup procedure is completed without any issue, FSM_Start manages the PFC operation of the power converter. The burst operation still maintains the DC voltage. If a DC load occurs, the PFC modulation and the control loop are activated to handle the load power demand.

Figure 40. FSM_Run block diagram

- Run ack

RUN

DPC_FLT_Faulterror_Check()

True

False

Status_Source==OK_SOURCE &&

PLL_Status==PLL_SYNC

False

True

Status_Load

PFC

Error

BURST

Error

STOP page 23/63

2.5.2

UM2975

Startup procedure

Direct startup procedure

The finite state machine manages a direct startup procedure. The AC source takes the nominal voltage into consideration. The inrush current limitation and the burst mode operation must be completed after the DC load connection.

UM2975 - Rev 1 page 24/63

3

3.1

3.1.1

UM2975

Control

Control

The voltage-oriented control allows controlling the PFC behavior of the converter in the dq-axis synchronous reference frame.

Reference frame

3-axis stationary reference frame (abc)

2-axis stationary reference frame (αβ)

2-axis synchronous reference frame (dq)

Table 5. Control strategy comparison

Pros

Simple implementation with PI

Avoids effort in the reference transformation

Best results with the PR regulator (no analog)

Best choice for the analog version

Use two regulators instead of three

Simple implementation with PI

Best results with the PR regulator (no analog)

Zero steady state error (DC reference)

Use of a simple PI (simple structure of the regulator)

Low bandwidth is allowed (robust)

Best in transient (first order behavior)

Cons

Poor in transient

Phase shifting (lag)

Needs three regulators (three-phase)

Necessary high bandwidth (noise)

Steady state error

Poor in transient

Phase shifting (lag)

Digital version only

Necessary high bandwidth (noise)

Effort frame transformation

Digital version only

Necessary high bandwidth (noise)

Implementation

Control strategy

This reference design power converter can be represented as a second order dynamic system, which consists of inductors and capacitors. The theoretical different dynamic behavior of this two-system element allows considering two fully decoupling first order systems. For this reason, a current control and a voltage control are taken into account.

V dc

*

V dc

+

Voltage

Controller

I d

*

+

-

I d

Outer Loop

I q

*

+

-

I q

Figure 41. Cascaded control

Id

Controller

V d

*

I d

I q

Iq

Controller

V q

*

ωL

ωL

V d

-

+

+

-

+

-

V q

‘’Decoupling’’ Inner Loop

V d

** dq

αβ

V

αβ

*

Space

Vector

MODULATOR

V q

**

I d dq i abc

I q abc

θ PLL

V d

V q dq abc

Vabc

L i

3-Phases

Current control strategy

A continuous conduction mode controls the reference design current.

UM2975 - Rev 1 page 25/63

Figure 42. Continuous conduction mode in current control

UM2975

Control strategy

Figure 43. Current decoupling control of the reference design converter model

UM2975 - Rev 1 page 26/63

Figure 44. CDC

UM2975

Control strategy

3.1.2

Voltage control strategy

The outer loop of the PFC operation is a voltage control.

Figure 45. Converter DC side model

UM2975 - Rev 1

The figure below shows the closed loop representation of the above model.

page 27/63

Figure 46. Voltage control diagram

UM2975

Phase locked loop

3.2

Phase locked loop

In converter control, the PI regulators are usually used. This kind of regulator gets the best results when using a

DC reference term.

Figure 47. PLL internal regulator loop

Figure 48. PLL in AC main voltage

UM2975 - Rev 1 page 28/63

4

UM2975

Software implementation

Software implementation

The STM32G474RET3 MCU controls the STDES-VRECTFD .

The firmware package is based on the STM32Cube ecosystem. Starting from the STM32CubeMX , all the peripherals and pins used are activated and configured according to the basic project.

The application firmware is supported and tested using STM32CubeIDE , IAR, and Keil development environments.

After the development, the MCU can be programmed through the IDE or STM32CubeProgrammer .

To monitor and control the application, you can use a GUI based on STM32CubeMonitor .

The firmware described in this documentation development is based on the STM32CubeG4 firmware package v1.3.0.

Figure 49. STM32Cube ecosystem development flow

An extensive range of generic and specific firmware modules is available to support the digital power conversion.

The figure below shows the generic development flow to get the power conversion used for the STDES-

VRECTFD firmware development.

Figure 50. DPC development flow

UM2975 - Rev 1

This workflow starts from power conversion requirements. This information is then reinterpreted in the application specs that contain information linked to the MCU peripheral and the DPC application configuration.

On the basis of this information, an STM32CubeMX project, properly configured and initialized, is provided. Then, the needed DPC module is included and configured.

page 29/63

UM2975

Configuration files

The STM32CubeMX generates the development IDE project. The MCU is directly flashed through the IDE or

STM32CubeProgrammer . At the end of this operation, the DPC application is tested and debugged through

STM32CubeMonitor . The digital power converter firmware is then released, if compliant, and the DPC is adapted.

The STDES-VRECTFD reference design power converter allows managing the energy flow. The figure below shows the algorithm schematic diagram of the implementation in the AC-DC rectifier application.

Figure 51. AC-DC rectifier application

The figure below shows the basic representation of the execution flow. A current decoupling control well fitted for this application is used. This allows managing the energy flow in terms of AC current.

Figure 52. Simplified execution task of the control in AC-DC

4.1

Configuration files

The STDES-VRECTFD power converter configuration is based on two main configuration files.

UM2975 - Rev 1 page 30/63

Figure 53. STDES-VRECTFD configuration files

UM2975

Configuration files

The “DPC_application_conf” header file contains the application specific DEFINE (that is the ADC gain factor PI regulator gain, FSM configuration, control reference value, etc.).

The “DPC_Lib_conf” header file contains the configuration parameters linked to the MCU peripheral configuration.

UM2975 - Rev 1 page 31/63

5

5.1

Measurements

Startup procedure

Figure 54. Startup procedure

UM2975

Measurements

5.2

PFC operation

Figure 55. PFC operation

UM2975 - Rev 1 page 32/63

5.3

Step load

Figure 56. Step load

UM2975

Step load

5.4

Power factor, efficiency, and THDi

The table below shows the power factor (PF column), efficiency (n column), and THD (THDi column).

Table 6. STDES-VRECTFD power factor, efficiency, and THDi

VAC

LN

[Vrms] IAC [Arms] V

DC

[V] I

DC

[A] P

DC

[kW] S

1.64

1.24

1

AC

[kVA] P

1.1360

AC

[kW]

1.0277

n [%] PF f sw

[kHz] THDi [%]

97.53

0.922

18.24

3.03

4.46

5.92

7.39

2.49

3.73

4.99

6.23

2

3

4

5

2.0984

3.0839

4.0919

5.1078

2.0353

3.0403

4.0593

5.0801

98.32

0.949

98.493 0.976

98.618 0.986

98.569 0.991

13.72

9.72

6.46

4.87

230

8.85

10.27

11.82

13.29

14.77

16.21

17.76

19.29

20.74

22.26

800

7.47

8.67

9.97

10.94

14.96

16.2

6

7

8

11.21

9

12.44

10

11

12

13

17.39

14

18.66

15

6.110

7.096

8.1639

9.1716

10.1935

11.186

12.27

13.30

14.31

15.357

6.0877

7.0759

8.1456

9.1547

10.1778

98.08

0.998

11.1719

12.26

13.29

14.29

15.345

98.491 0.994

98.461 0.995

98.34

98.25

0.997

97.99

97.86

97.74

0.997

0.998

0.999

0.999

97.59

0.999

97.49

0.999

70

4.57

3.69

3.29

3.07

2.50

2.42

2.31

1.99

2.01

2.01

UM2975 - Rev 1 page 33/63

UM2975 - Rev 1

UM2975

Power factor, efficiency, and THDi

Figure 57. STDES-VRECTFD power factor plot

1

0.95

0.9

0.85

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Power [kW]

Figure 58. STDES-VRECTFD efficiency plot

99

98.5

98

97.5

97

20

15

10

5

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Power [kW]

Figure 59. STDES-VRECTFD THDi plot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Power [kW]

page 34/63

6 Schematic diagrams

Figure 60. STDES-VRECTFD circuit schematic - power board (1 of 11)

CENTRO_BUS

1

JP60

Jp_pcb

2

BUS_N

1

JP61

Jp_pcb

2

+

C235

15uF 450V

R264 27k 0.1%

R261

C230

3,3nF/200V

51k 0.1%

R262

51k 0.1%

D62

C

C

A

A

STTH1L06A

+ C239

R263

15uF/35V

10 0.1%

BUS_N

TRANSFORMER FLAT COMPACT

T1

4 7 A

6

2

9

8

D61

C

STPS2H100A

C231

560uF 16V

+

C236

10uF/50V

C

D63 BUS_N

A

STPS1150A

1 10

D64

A

STPS2L60A

C

C238 +

680uF/10V

D65

STPS1150A

U34

BUS_N

C232

TBD

C237

TBD

L7 TBD

+ C233

TBD

VDD_7V_INT

+ C234

TBD

VDD_12V_INT

7

FB

C240

N.M.

R265

10.2k 0.1%

C242

VIPER26HD

C241

100nF/50V

220pF/100V

R266

110k 0.1%

R267

27k 0.1%

BUS_N

BUS_N

VDD_7V_EXT

JP55

Con2

1

2

1

2

C222

10uF/50V

C223

Rled4

470nF/50V

1k

D54 LED RED

Figure 61. STDES-VRECTFD circuit schematic - power board (2 of 11)

J11

Dev3

VDD_5V

VDD_7V_INT

Rled1 1k

VDD_7V

2

F49

1

30Ohm@100MHz

C219

1

U30

VIN

470nF/50V

LD29080DT50R

VOUT

3

C218

10uF/50V

Rled2 1k

VDD_5V

F50

2 1

30Ohm@100MHz

C220

470nF/50V

1

U31

LD29080S33R

VIN VOUT

3

C221

10uF/50V

D66 LED RED

D53

LED RED

VDD_3.3V

Rled3 1k

D67

LED RED

VDD_5V_EXT_DRIVER

JP57

Con2

1

2

1

2

R258 750

D56

LED RED

JP56

Con2

1

2

1

2

VDD_12V_EXT

C224 C225

10uF/50V

Rled5 1k

470nF/50V

D55

LED RED

VDD_5V_DRIVER

JP58

3JP_pcb

VDD_3.3V_DRIVER

VDD_DRIVER

VDD_12V F51

2 1

30Ohm@100MHz

1

U32

VIN

C226

470nF/50V LD29080DT50R

VOUT

3

C227

10uF/50V

VDD_5V_INT_DRIVER

R259 750

D59 LED RED

VDD_5V_DRIVER F52

2 1

30Ohm@100MHz

C228

470nF/50V

1

U33

LD29080S33R

VIN VOUT

3

C229

10uF/50V

VDD_3.3V_DRIVER

R260 750

D60 LED RED

VDD_5V_EXT_DRIVER

JP59

3JP_pcb

VDD_5V_INT_DRIVER

VDD_5V_DRIVER

J12

Dev3

Rled6

VDD_12V_INT VDD_12V

1k Rled7 1k

D57 LED RED D58 LED RED

1

TW6

1

CON1

TW11

CON1

1

TW7

1

CON1

TW12

CON1

1

TW8

1

CON1

TW13

CON1

1

TW9

1

CON1

TW14

CON1

1

TW10

1

CON1

TW15

CON1

Figure 62. STDES-VRECTFD circuit schematic - power board (3 of 11)

TestPoint_Ring

TP91

V_line_A

L4

TestPoint_Ring

TP92

VnA

D47

STPSC20H12WL

D48

STPSC20H12WL

D49

STPSC20H12WL

2

SCTW35N65G2V

GND_ISO_Q1

3 3

SCTW35N65G2V

2

Q8

Q9

TestPoint_Ring

TP93

V_line_B

L5

TP95

TestPoint_Ring

VnB 2

GATE1_L

SCTW35N65G2V

GND_ISO_Q2

GATE1_R

SCTW35N65G2V

Q10

3 3

Q11

2

TestPoint_Ring

TP96

V_line_C

L6

TestPoint_Ring

TP97

VnC

2

GATE2_L

SCTW35N65G2V

3

GATE2_R

GND_ISO_Q3

SCTW35N65G2V

3 2

Q13

Q12

D50

STPSC20H12WL

D51

STPSC20H12WL

D52

STPSC20H12WL

GATE3_L

GATE3_R

C207

100nF 630V

C210

100nF 630V

C211

100nF 630V

C213

100nF 630V

C216

100nF 630V

TestPoint_Ring

TP94

CENTRO_BUS

CENTRO_BUS

C217

100nF 630V

TestPoint_Ring

TP98

BUS_N_OUT

BUS_P

CENTRO_BUS

TestPoint_Ring

TP90

R252

240k

R253

240k

+ C208

470uF 500V

+ C209

470uF 500V

R254

240k

R255

240k

R256

240k

C214

+

470uF 500V

C215

+

470uF 500V

C212

100nF

C244

1nF 3kV

R257

240k

BUS_P

BUS_N

BUS_N

3

J10

2

1

Con3_32A

1

TW1

CON1

1

TW2

CON1

1

TW3

CON1

1

TW4

CON1

1

Heat sink

TW5

CON1

Figure 63. STDES-VRECTFD circuit schematic - power board (4 of 11)

VDD_12V

1

C145

2.2uF/50V

F39

2

30Ohm @100MHz

C146

470nF/50V

L11

IND

R202

1k

DC2

+VOUT

COM

-VOUT

7

6

5

2

1

VIN-

VIN+

R12P22005D

A

D17

LED RED

C

VDD_12V

1

C170

2.2uF/50V

F43

2

30Ohm @100MHz

C171

470nF/50V

L10

IND

R226

1k

DC3

2

1

VIN-

VIN+

R12P22005D

+VOUT

COM

-VOUT

7

6

5

A

D30

LED RED

C

2

JP13

1

Jp_pcb

Q2

2STF1360

TP60

TestPoint_Ring

VH_Q1_L

C128

2.2uF/50V

R180 1k

JP15

Jp_pcb

2

JP19

Jp_pcb

1

C137

2.2uF/50V

2

JP25

Jp_pcb

1

D7

TZMB20-GS08

D11

TZMB3V3-GS08

JP23

Jp_pcb

C132

2.2uF/50V

C133

1nF/50V

JP21

Jp_pcb

C138

2.2uF/50V

C129

100nF/25V

TP67

TestPoint_Ring

GND_ISO_Q1

C139

1nF/50V

C140

100nF/25V

TP68

TestPoint_Ring

VL_Q1_L

2

JP27

1

Jp_pcb

Q4

2STF1360

TP70

TestPoint_Ring

VH_Q2_L

C153

2.2uF/50V

R205

1k

JP30

Jp_pcb

2

JP32

Jp_pcb

1

D21

TZMB20-GS08

C154

2.2uF/50V

C155

1nF/50V

C156

100nF/25V

TP74

TestPoint_Ring

GND_ISO_Q2

D27

TZMB3V3-GS08

C166

2.2uF/50V

JP37

Jp_pcb

JP35

Jp_pcb

C167

2.2uF/50V

C168

1nF/50V

C169

100nF/25V

TP78

Tes tPoint_Ring

2

JP39

Jp_pcb

1

VL_Q2_L

VDD_DRIVER

J4

Con3

2

PWM_INP_Q1_AS

JP17

VDD_DRIVER

3JP_pcb

TP100

30Ohm @100MHz

1 2

F38

C124

TP62

1uF/25V

TestPoint_Ring

C125 C243

100nF/16V

1nF

R186

100

R196

N.M.

C136

220pF/50V

3

4

1

2

U25

VDD

IN+

IN-

GND

GNDISO

GOFF

GON

VH

6

5

8

7

STGAP2SiCS

TestPoint_Ring

VL_Q1_L

R187 0

R190 0

VH_Q1_L

R185 12

R194 22

GND_ISO_Q1

VDD_DRIVER

PWM_INP_Q2_AS

TestPoint_Ring

30Ohm @100MHz

1 2

F41

C151

TP72 1uF/25V

C152

100nF/16V

C246

1nF

VDD_DRIVER

J6

Con3

2

JP29

3JP_pcb

TestPoint_Ring

TP101

R207

R213

N.M.

100

C158

220pF/50V

3

4

1

2

U26

VDD

IN+

IN-

GND

8

GNDISO 7

GOFF

GON

VH

6

5

STGAP2SiCS

VL_Q2_L

R208 0

R209 12

R211 0

VH_Q2_L

R212 22

GND_ISO_Q2

R191

N.M.

R201

47k

D12

TZMB20-GS08

TP64

TestPoint_Ring

PROBE2

1 2

Current_ProbE

R198

N.M.

GATE1_L

D15

TZMB3V3-GS08

C149

N.M.

R214

N.M.

TP73

R216

47k

D23

TZMB20-GS08

R215

N.M.

C164

D26

TZMB3V3-GS08 N.M.

TestPoint_Ring

PROBE3

1 2

Current_ProbE

GATE2_L

2

JP14

Jp_pcb

Q3

2STF1360

1

TP61

Tes tPoint_Ring

VH_Q1_R

C126

2.2uF/50V

R181

1k

JP16

Jp_pcb

VDD_12V

C150

2.2uF/50V

1

F40

2

C147

470nF/50V

30Ohm @100MHz

L12

IND

DC1

+VOUT

COM

-VOUT

7

6

5

2

1

VIN-

VIN+

R12P22005D

R203

1k

A

D18

LED RED

C

2

JP20

Jp_pcb

1

C141

2.2uF/50V

D8

TZMB20-GS08

2

JP26

Jp_pcb

1

C130

2.2uF/50V

C131

1nF/50V

C134

100nF/25V

TP66

TestPoint_Ring

GND_ISO_Q1

D13

TZMB3V3-GS08

JP24

Jp_pcb

JP22

Jp_pcb

C142

2.2uF/50V

C143

1nF/50V

C144

100nF/25V

TP69

TestPoint_Ring

VL_Q1_R

VDD_12V

C176

2.2uF/50V

1

F44

2

30Ohm @100MHz

C177

470nF/50V

DC4

2

1

VIN-

VIN+

R12P22005D

+VOUT

COM

-VOUT

7

6

5

L13

IND

R227

1k

A

D32

LED RED

C

VDD_DRIVER

VDD_DRIVER

30Ohm @100MHz

1 2

PWM_INP_Q1_DS

JP18

F37

TP63

C123

1uF/25V

R188

100

C127

100nF/16V

TestPoint_Ring

C245

1nF

J5

Con3

2

3JP_pcb

Tes tPoint_Ring

TP99

R197

N.M.

C135

220pF/50V

2

3

4

1

U24

VDD

IN+

IN-

GND

8

GNDISO 7

GOFF

GON

VH

6

5

STGAP2SiCS

VL_Q1_R

R189

0

R192

0

VH_Q1_R

R184

12

R193

22

R200

47k

TP65

TestPoint_Ring

PROBE1

1 2

Current_ProbE

R195

N.M.

D14

TZMB20-GS08

R199

N.M.

D16

TZMB3V3-GS08

C148

N.M.

GND_ISO_Q1

GND_ISO_Q1

GATE1_R

2

JP28

Jp_pcb

Q5

2STF1360

1

TP71

TestPoint_Ring

VH_Q2_R

C157

2.2uF/50V

C173

2.2uF/50V

2

2

JP34

Jp_pcb

JP40

Jp_pcb

1

1

R206 1k

JP31

Jp_pcb

D24

TZMB20-GS08

D28

TZMB3V3-GS08

JP38

Jp_pcb

JP36

Jp_pcb

C161

2.2uF/50V

C162

1nF/50V

C163

100nF/25V

TP77

TestPoint_Ring

GND_ISO_Q2

C174

2.2uF/50V

C172

1nF/50V

C175

100nF/25V

TP79

TestPoint_Ring

VL_Q2_R

VDD_DRIVER

J7

Con3

2

VDD_DRIVER

PWM_INP_Q2_DS

TestPoint_Ring

TP75

F42

C159

1uF/25V

JP33

30Ohm @100MHz

1 2

R217

100

3JP_pcb

TP102

TestPoint_Ring

R222

N.M.

C160

100nF/16V

1nF

C247

C165

220pF/50V

3

4

1

2

U27

VDD

IN+

IN-

GND

GNDISO 7

GOFF

GON

VH

6

5

STGAP2SiCS

VL_Q2_R

R218

0

R220

VH_Q2_R

0

R219

12

R221

22

R225 47k

TP76

Tes tPoint_Ring

PROBE4

1 2

Current_ProbE

R223

N.M.

D29

TZMB20-GS08

R224

N.M.

D31

TZMB3V3-GS08

C178

N.M.

GND_ISO_Q2

GND_ISO_Q2

GATE2_R

1

C198

2.2uF/50V

F47

2

30Ohm @100MHz

C199

470nF/50V

DC5

+VOUT

COM

-VOUT

7

6

5

2

1

VIN-

VIN+

R12P22005D

L9

IND

R250

1k

A

D44

LED RED

C

C181

2.2uF/50V

R229

1k

JP43

Jp_pcb

D35

TZMB20-GS08

2

JP46

Jp_pcb

1

C195

2.2uF/50V

D41

TZMB3V3-GS08

JP50

Jp_pcb

2

JP52

Jp_pcb

1

2

JP41

Jp_pcb

Q6

2STF1360

1

C182

2.2uF/50V

C183

1nF/50V

TP80

TestPoint_Ring

VH_Q3_L

C184

100nF/25V

TP84

TestPoint_Ring

GND_ISO_Q3

JP49

Jp_pcb

C196

2.2uF/50V

C193

1nF/50V

C197

100nF/25V

TP88

TestPoint_Ring

VL_Q3_L

VDD_DRIVER

J8

Con3

2

VDD_DRIVER

30Ohm @100MHz

1 2

F45

C179

PWM_INP_Q3_AS

1uF/25V

TP82

TestPoint_Ring

C180

100nF/16V

C248

1nF

R231

JP44

3JP_pcb

TestPoint_Ring

TP103

100

C187

R237

N.M.

220pF/50V

3

4

1

2

U28

VDD

IN+

IN-

GND

8

GNDISO 7

GOFF

GON

VH

6

5

STGAP2SiCS

VL_Q3_L

R232

R235

0

VH_Q3_L

0

R233

12

R236

22

GND_ISO_Q3

R240

47k

TP83

TestPoint_Ring

PROBE5

1 2

R238

N.M.

D37

TZMB20-GS08

R239

N.M.

Current_ProbE

D39

TZMB3V3-GS08

C194

N.M.

GATE3_L

C204

2.2uF/50V

F48

1 2

VDD_12V

30Ohm @100MHz

C205

470nF/50V

DC6

+VOUT

COM

-VOUT

7

6

5

2

1

VIN-

VIN+

R12P22005D

L14

IND

R251

1k

A

D46

LED RED

C

2

JP42

Jp_pcb

Q7

2STF1360

1 TP81

TestPoint_Ring

VH_Q3_R

C188

2.2uF/50V

R230

1k

JP45

Jp_pcb

2

JP48

Jp_pcb

1

C200

2.2uF/50V

D38

TZMB20-GS08

D42

TZMB3V3-GS08

JP53

Jp_pcb

2

JP54

Jp_pcb

1

C189

2.2uF/50V

C190

1nF/50V

C191

100nF/25V TP87

Tes tPoint_Ring

GND_ISO_Q3

JP51

Jp_pcb

C201

2.2uF/50V

C202

1nF/50V

C203

100nF/25V

TP89

TestPoint_Ring

VL_Q3_R

VDD_DRIVER

J9

Con3

2

VDD_DRIVER

30Ohm @100MHz

1 2

F46

C185

TP85

1uF/25V

PWM_INP_Q3_DS

Tes tPoint_Ring

JP47

R241

100

3JP_pcb

TP104

Tes tPoint_Ring

R247

N.M.

C186

C249

100nF/16V 1nF

C192

220pF/50V

3

4

1

2

U29

VDD

IN+

GNDISO 7

6

GON

VH

5

STGAP2SiCS

VL_Q3_R

R242

0

R245

VH_Q3_R

0

R243

12

R246

22

R249 47k

TP86

TestPoint_Ring

PROBE6

1 2

Current_ProbE

R244

N.M.

R248

N.M.

D43

TZMB20-GS08

D45

TZMB3V3-GS08

C206

N.M.

GATE3_R

GND_ISO_Q3

GND_ISO_Q3

Figure 64. STDES-VRECTFD circuit schematic - power board (5 of 11)

J3

Con3_32A

1

V_AC_A

2

V_AC_B

3 V_AC_C

TP55

TestPoint_Ring

F34

TP56

TestPoint_Ring

30A

F35

TP57

TestPoint_Ring

30A

F36

JP12

Con2

1

2

1

2

Earth

TP58

30A

TestPoint_Ring

TP59 TestPoint_Ring

Neutral

RT1

5 Ohms

RT2

5 Ohms

RT3

5 Ohms

3

2

1

LCM1

6

5

4

3Phase_Cm_Choke N.M.

C107

N.M.

C114

N.M.

C108

N.M.

C109

N.M.

C115

N.M.

C110

N.M.

1

1

L1

L2

1

L3

N.M.

2

N.M.

2

N.M.

2

C111

68 nF

C112

68 nF

C113

68 nF

3

1

2

LCM2

6

4

5

3Phase_Cm_Choke N.M.

R172

N.M.

R170

N.M.

R171

N.M.

R173

N.M.

R174

N.M.

R175

N.M.

R176

N.M.

Neutral

R177

N.M.

R178

N.M.

C116

N.M.

C117

N.M.

C118

N.M.

C119

N.M.

C120

N.M.

C121

N.M.

R179

N.M.

1

C122

2

N.M.

V_line_A_IN_LEM

V_line_B_IN_LEM

V_line_C_IN_LEM

CENTRO_BUS

C93

1nF/16V

BUS_P

R142 1M

R143 1M

R144 1M

R148

1.6k

GND_MEAS_DC

C87

1uF/25V

R153

1.6k

5V_MEAS_DC

Figure 65. STDES-VRECTFD circuit schematic - power board (6 of 11)

VDD_5V

VDD_5V

TP49

F26

TestPoint_Ring

F27

TP50

30Ohm@100MHz 30Ohm@100MHz F28

30Ohm@100MHz TestPoint_Ring

C88

100nF/16V

GND_MEAS_DC

C89

4.7u/25V

C90

100nF/16V

C91

100nF/16V

C92

1uF/25V

GND_MEAS_DC

1

2

3

4

U21

VDD1

VINP

VINN

GND1

VDD2

VOUTP

VOUTN

GND2

AMC1301DWVR

8

7

6

5

R146

0

R151

0

R147

10.5k

R154

10.5k

R145 16.9k

3

+

2

-

V+

U14A

1

V-

TSV912IDT

R149

0

C94

N.M.

5

+

6

-

U14B

7

TSV912IDT

GND_MEAS_DC

TP51

TestPoint_Ring

R150

0

R152 N.M.

V_bus_up

R155

16.9k

BUS_N

R156

1M

C101

1nF/16V

R157 1M C95

1uF/25V

R158

1M

C96

100nF/16V

GND_MEAS_DC

R162

1.6k

R168

1.6k

GND_MEAS_DC

1

2

3

4

U22

VDD1

VINP

VINN

GND1

VDD2

VOUTP

VOUTN

GND2

AMC1301DWVR

8

7

6

5

GND_MEAS_DC

GND_MEAS_DC

5V_MEAS_DC

30Ohm@100MHz

F29

TP52

TestPoint_Ring

VDD_5V

30Ohm@100MHz

F30

C97

4.7u/25V

C98

100nF/16V

R160

0

R165

0

CENTRO_BUS

1

JP11

Jp_pcb

2

GND_MEAS_DC

VDD_5V

30Ohm@100MHz

F31

TP53

TestPoint_Ring

R161

10.5k

R166

10.5k

R159 16.9k

C99

100nF/16V

C100

1uF/25V

TP54

TestPoint_Ring

3

+

2

-

V+

U15A

1

V-

TSV912IDT

R163

0

C102

N.M.

R169

16.9k

5

6

+

-

U15B

7

TSV912IDT

R164

0

R167 N.M.

V_bus_down

VDD_5V

C103

1uF/25V

F32

30Ohm@100MHz

C104

100nF/16V

U23 F33

1

+Vi +Vo

7 1 2

2

-Vi -Vo

DCH010505SN7

5

30Ohm@100MHz

C105

100nF/16V

5V_MEAS_DC

C106

1uF/25V

GND_MEAS_DC

Figure 66. STDES-VRECTFD circuit schematic - power board (7 of 11)

VDD_5V

C82

1uF/25V

F25

30Ohm@100MHz

10

LEM4

LTSR 15-NP

5V Ref

C83

9

0 OUT

100nF/16V

7

8

R128 N.M.

R129 10k

TestPoint_Ring

VDD_5V

TP46

BUS_N

F24

30Ohm@100MHz

R134

10k

R127 10k

C80

1uF/25V

3

2

-

+

V+

U13A

1

V-

TSV914IDT

C81

100nF/16V

R131

0

R137

10k

TP44

TestPoint_Ring

C84

N.M.

5

6

-

+

U13B

7

TSV914IDT

R130

R132

9.1k

24k

10

9

-

+

U13C

8

TSV914IDT

24k

R136

R138 9.1k

BUS_N_OUT

VDD_5V VDD_DC2.5V

TP47

TestPoint_Ring

C85

R139 7.5k

R141

12

13

-

+

U13D

100nF/16V

7.5k

14

TSV914IDT

R140

0

C86

N.M.

VDD_DC2.5V

R133

0

TP45

TP48

TestPoint_Ring

TestPoint_Ring

R135

N.M.

Oout

Figure 67. STDES-VRECTFD circuit schematic - power board (8 of 11)

+3.3V

VDD_5V

VDD_3.3V

+5V

VlineC.S

VlineB.S

VlineA.S

Oout

V_bus_up

V_bus_down

OinA_LEM

VDD_12V

NULL_2

NULL_1

VDD_7V

PWM_INP_Q1_AS

PWM_INP_Q2_AS

PWM_INP_Q3_AS

PWM_INP_Q1_DS

PWM_INP_Q2_DS

PWM_INP_Q3_DS

FAN

ZVD_C

ZVD_B

ZVD_A

PWM_1

PWM_5

PWM_9

PWM_2

PWM_6

PWM_10

GPIO_2/COMP_2_OUT/GP_PWM_2

GPIO_4/EEV_1

GPIO_5/DAC_1/COMP_4

GPIO_9/EEV_3

GPIO_7/DAC_3/OP-AMP_1_OUT/SPI_MISO

ADC_1/DIFF_ADC_1+

ADC_2/DIFF_ADC_1-/OP-AMP_2+

ADC_3/DIFF_ADC_2+/OP-AMP_2_OUT

ADC_4/DIFF_ADC_2-/OP-AMP_2-

ADC_5

ADC_6/OP-AMP_1-

COMP_2/ADC_12/OP-AMP_1+

OinB_LEM

OinC_LEM

TEMP

ADC_7

ADC_8

ADC_9

+3.3V_iso

USART_TX

NULL_1

CAN_TX

SMBus_SCL

SMBus_SDA

+5V

FAULT_1

PWM_1

PWM_3

PWM_5

PWM_7

PWM_9

PWM_11

GPIO_2/COMP_2_OUT/GP_PWM_2

GPIO_4/EEV_1

GPIO_5/DAC_1/COMP_4

GPIO_7/DAC_3/OP-AMP_1_OUT/SPI_MISO

ADC_1/DIFF_ADC_1+

ADC_2/DIFF_ADC_1-/OP-AMP_2+

ADC_3/DIFF_ADC_2+/OP-AMP_2_OUT

ADC_4/DIFF_ADC_2-/OP-AMP_2-

ADC_5

ADC_6/OP-AMP_1-

COMP_2/ADC_12/OP-AMP_1+

ADC_7

ADC_8

ADC_9

ADC_10

COMP_1/ADC_11/SPI_MOSI

COMP_3

J2

10A

11A

12A

13A

14A

15A

16A

17A

18A

19A

20A

21A

5A

6A

7A

8A

9A

1A

2A

3A

4A

22A

23A

24A

25A

26A

27A

28A

29A

30A

31A

32A

8A

9A

10A

11A

12A

13A

14A

15A

16A

17A

18A

19A

20A

21A

22A

23A

24A

1A

2A

3A

4A

5A

6A

7A

25A

26A

27A

28A

29A

30A

31A

32A

.\Digital Power Connector

10B

11B

12B

13B

14B

15B

16B

17B

18B

19B

20B

21B

5B

6B

7B

8B

9B

1B

2B

3B

4B

22B

23B

24B

25B

26B

27B

28B

29B

30B

31B

32B

13B

14B

15B

16B

17B

18B

19B

20B

21B

22B

23B

24B

25B

26B

27B

28B

29B

30B

31B

32B

8B

9B

10B

11B

12B

1B

2B

3B

4B

5B

6B

7B

GND

USART_RX

CAN_RX

SMBus_SMBA

NULL_2

GND_iso

+3.3V

GPIO_1/COMP_3_OUT/GP_PWM_1/EEV_4

PWM_2

PWM_4

PWM_6

PWM_8

PWM_10

PWM_12

GPIO_3/COMP_1_OUT/FAULT_2

GPIO_6/DAC_2/SPI_SCLK

GPIO_8/EEV_2

GPIO_10/DAC_4

A_VDD

GND

GND

TestPoint_Ring

TP41

Figure 68. STDES-VRECTFD circuit schematic - power board (9 of 11)

R122 5.6k

D4

LED RED

VDD_12V

1

2

J1

1

2

Con2

TP42 R123

5.1k

R121

C77

100nF/16V

1

470

U20

NC

2

3

GND1

5

GND

VOUT VCC

STLM20W87F

4

TP40

TestPoint_Ring

C78

100nF/16V

VDD_5V

TP43

TestPoint_Ring

TestPoint_Ring

Q1

STS6NF20V

4

R124

22

FAN R125

10k

C79

100nF/16V

TEMP

R126

33k

V_line_A

R60 1M

R64

1M

R65 1M

C41

1nF/16V

R66 2k

TP25

5V_MEAS_AC

1

F12

30Ohm@100MHz

2

C36 C37

1uF/25V

100nF/16V

TestPoint_Ring

GND_MEAS_AC

VDD_5V

F11

30Ohm@100MHz

C38

C39

4.7u/25V 100nF/16V

GND_MEAS_AC

1

2

3

4

U16

VDD1

VINP

VINN

GND1

VDD2

VOUTP

VOUTN

GND2

AMC1301DWVR

8

7

6

5

R68

2k

GND_MEAS_AC

GND_MEAS_AC

Figure 69. STDES-VRECTFD circuit schematic - power board (10 of 11)

VDD_5V

0

0

F10

30Ohm@100MHz

TP22

TestPoint_Ring

C31

100nF/16V

C32

1uF/25V

3

2

+

-

V+

U7A

1

R57

V-

TSV912IDT 0

C33

N.M.

5

+

6

-

U7B

7

TSV912IDT

TP23

TestPoint_Ring

R59

36k 0.1%

R61 69.8k 0.1%

ZVD_A

VDD_5V

R55

27k 0,1%

R63 13.3k 0.1% C35

100nF/16V

10

9

-

+

U8C

8

TSV914IDT

R62

0

TP24

TestPoint_Ring

VDD_BIAS_A

C34

N.M.

R69

0

VDD_5V

VDD_BIAS_A

F13

30Ohm@100MHz

C40

100nF/16V

R70

12.4k

R67 10k

C42 C43

100nF/16V

1uF/25V

3

+

2

-

V+

U8A

1

R71

0

R73

0

R74

10k

C44

N.M.

R76

8.06k

TP26

5

+

U8B

6

-

7

TSV914IDT

TestPoint_Ring

R72

0

TP27

TestPoint_Ring

R75 N.M.

VlineA.S

1

1

JP1

Jp_pcb

JP2

2 12

13

-

+

U8D

2

14

1

TSV914IDT

JP3

2

Jp_pcb Jp_pcb

V_line_B

R82

1M

R86 1M

R87 1M

C55

1nF/16V

R88 2k

VDD_5V

5V_MEAS_AC

F16

1

30Ohm@100MHz

2

C50 C51

1uF/25V 100nF/16V

TestPoint_Ring

TP31

GND_MEAS_AC

F15

30Ohm@100MHz

C52 C53

4.7u/25V 100nF/16V

GND_MEAS_AC

U17

VDD1

VINP

VINN

GND1

VDD2

VOUTP

VOUTN

GND2

AMC1301DWVR

8

7

6

5

R90

1

2

3

4

2k

GND_MEAS_AC

GND_MEAS_AC

VDD_5V

0

0

F14

30Ohm@100MHz

TP28

TestPoint_Ring

C45

100nF/16V

C46

1uF/25V

3

+

2

-

V+

U9A

1

V-

TSV912IDT

R80

0

C47

N.M.

5

+

6

-

U9B

7

TSV912IDT

TP29

TestPoint_Ring

R81

36k 0.1%

R83 69.8k 0.1%

ZVD_B

R91

0

VDD_5V

VDD_BIAS_B

F17

30Ohm@100MHz

C54

100nF/16V

R92

12.4k

R89

10k

C56

100nF/16V

C57

1uF/25V

3

2

+

-

V+

U10A

1

R93

0

R95

0

R96

10k

C58

N.M.

R98

8.06k

TP32

TestPoint_Ring

5

6

+

-

U10B

7

TSV914IDT

R94

0

TP33

TestPoint_Ring

R97

N.M.

VlineB.S

VDD_5V

R77 27k 0,1%

R85 13.3k 0.1%

C49

100nF/16V

10

9

-

+

U10C

8

TSV914IDT

R84

0

TP30

TestPoint_Ring

VDD_BIAS_B

C48

N.M.

1

JP4

Jp_pcb

2 12

13

+

-

U10D

1

JP5

2

14

1

TSV914IDT

JP6

2

Jp_pcb Jp_pcb

V_line_C

R104 1M

R108

1M

R109 1M

C74

1nF/16V

R110 2k

TP37

VDD_5V

5V_MEAS_AC

F21

1 2

30Ohm@100MHz C68

1uF/25V

TestPoint_Ring

F22

30Ohm@100MHz

C69

100nF/16V

GND_MEAS_AC

GND_MEAS_AC C70 C71

4.7u/25V 100nF/16V

1

2

3

4

U19

VDD1

VINP

VINN

GND1

VDD2

VOUTP

VOUTN

GND2

8

7

6

5

AMC1301DWVR

R112

2k

GND_MEAS_AC

GND_MEAS_AC

VDD_5V

R100

R101

0

0

F20

30Ohm@100MHz

TP34

TestPoint_Ring

C63

100nF/16V

C64

1uF/25V

3

+

2

-

V+

U11A

1

V-

TSV912IDT

R102

0

C65

N.M.

5

6

+

-

U11B

7

TSV912IDT

TP35

TestPoint_Ring

R103

36k 0.1%

R105

69.8k 0.1%

ZVD_C

VDD_5V

VDD_BIAS_C

R113

0

R117

0

C72 100nF/16V

R114

12.4k

R118

10k

F23

30Ohm@100MHz

TP38

TestPoint_Ring

R111

10k

C73

100nF/16V

3

2

+

-

V+

U12A

1

V-

TSV914IDT

C75

1uF/25V

R115

0

C76

N.M.

R120

8.06k

5

6

-

U12B

+

7

TSV914IDT

R116

0

TP39

TestPoint_Ring

R119

N.M.

VlineC.S

VDD_5V

R99

27k 0,1%

R107

13.3k 0.1%

C67

100nF/16V

10

+

9

-

U12C

8

TSV914IDT

TP36

TestPoint_Ring

VDD_BIAS_C

R106

0

C66

N.M.

1

1

JP8

Jp_pcb

JP9

2 12

2

U12D

+

13

14

-

1

TSV914IDT

JP10

2

Jp_pcb Jp_pcb

VDD_5V

C59

1uF/25V

F18

30Ohm@100MHz

C60

100nF/16V

U18 F19

1

2

+Vi

-Vi

+Vo

-Vo

DCH010505SN7

7 1 2

5

30Ohm@100MHz

C61

100nF/16V

5V_MEAS_AC

C62

1uF/25V

GND_MEAS_AC

Neutral

1

JP7

Jp_pcb

2

GND_MEAS_AC

VDD_5V

F3

2 1

C5

30Ohm@100MHz

1uF/25V

C6

100nF/16V

10

LEM1

LTSR 15-NP

5V Ref

9

0 OUT

7

8

V_line_A_IN_LEM V_line_A

R4

N.M.

Figure 70. STDES-VRECTFD circuit schematic - power board (11 of 11)

VDD_5V

VDD_5V

F1

30Ohm@100MHz

C7

1uF/25V

R5 10k

R13

10k

R7

10k

3

2

-

+

V+

U2A

1

V-

TSV912IDT

TP7

TestPoint_Ring

R16

10k

C8

100nF/16V

R8

0

C10

N.M.

5

+

6

-

U2B

7

TSV912IDT

TP?

VDD_A2.5V

TestPoint_Ring

R9

0

VDD_5V

F2

30Ohm@100MHz

C3 1uF/25V

3

2

-

+

U1A

V+

C4

1

100nF/16V

VTSV914IDT

A

D1

N.M.

C

R17

0

R10

0

TP1

TP2

TestPoint_Ring

R1 7.5k

C2

R3

100nF/16V

7.5k

12

13

U1D

+

-

TSV914IDT

14

R2

0 C1

TestPoint_Ring

N.M.

VDD_A2.5V

TP4

C9

N.M.

TestPoint_Ring

5

6

+

U1B

7

-

TSV914IDT

TP5

TestPoint_Ring

R6 10k

R11

4.12k

R18

10

9

-

+

U1C

8

TSV914IDT

R15

1.65k

10k

VDD_A2.5V

TP6

R12

0

TestPoint_Ring

OinA_LEM

R14 N.M.

VDD_5V

F6

1 2

C18

30Ohm@100MHz

1uF/25V

C16

100nF/16V

10

LEM2

LTSR 15-NP

5V Ref

9

0 OUT

7

8

V_line_B_IN_LEM

R24

N.M.

V_line_B

VDD_5V

F4

30Ohm@100MHz

C13

1uF/25V

C14

100nF/16V

R22 10k

R25

10k

R31

10k

3

2

-

+

TP14

TestPoint_Ring

R34

10k

V+

U4A

1

V-

TSV912IDT

R26

0

C20

N.M.

VDD_5V

5

6

-

+

U4B

7

TSV912IDT

TP10

VDD_B2.5V

TestPoint_Ring

R27

0

F5

30Ohm@100MHz

C15 1uF/25V

3

2

-

+

C17

V+

U3A

1

100nF/16V

A

D2

V-

TSV914IDT

N.M.

C

R35

0

TP9

TestPoint_Ring

VDD_5V

C12 R21 7.5k

100nF/16V

R19

7.5k

U3D

12

13

-

+

TSV914IDT

14

R20

0

TP8

TestPoint_Ring

C11

VDD_B2.5V

N.M.

R28

0

TP11

TestPoint_Ring

C19

N.M.

5

6

-

+

U3B

7

TSV914IDT

TP12

TestPoint_Ring

R23

10k

R29

4.12k

R36

10

9

-

+

U3C

8

TSV914IDT

R33

1.65k

10k

VDD_B2.5V

TP13

TestPoint_Ring

R30

0

R32 N.M.

OinB_LEM

VDD_5V

F9

1 2

C26

30Ohm@100MHz

1uF/25V

C27

100nF/16V

10

LEM3

LTSR 15-NP

5V

9

0

Ref

OUT

7

8

R42

N.M.

V_line_C_IN_LEM V_line_C

VDD_5V

F7

30Ohm@100MHz

C23

1uF/25V R40 10k

R43

10k

R49

10k

3

2

-

+

TP21

TestPoint_Ring

R52

10k

V+

U6A

1

V-

TSV912IDT

C24

100nF/16V

R44

0

C30

N.M.

VDD_5V

5

6

-

+

U6B

7

TSV912IDT

TP17

VDD_C2.5V

TestPoint_Ring

R46

0

F8

30Ohm@100MHz

C25 1uF/25V

3

2

-

+

V+

C28

U5A

1

100nF/16V

D3

A

V-

TSV914IDT

N.M.

C

R53

0

R45

0

TP16

TestPoint_Ring

VDD_5V

C22

R39

R37

7.5k

7.5k

12

13

U5D

-

+

TSV914IDT

14

100nF/16V

R38

0

TP15

TestPoint_Ring

C21

N.M.

VDD_C2.5V

TP18

C29

N.M.

TestPoint_Ring

5

6

-

+

U5B

7

TSV914IDT

TP19

TestPoint_Ring

R41 10k

R47

4.12k

R54

10

9

U5C

-

+

8

TSV914IDT

R51

10k

1.65k

VDD_C2.5V

R48

0

TP20

TestPoint_Ring

R50 N.M.

OinC_LEM

VDD_5V_INT

VDD_5V_EXT

VDD_5V_USB

1

2

3

JP2

6

5

4

STRIP_2X3

VDD_5V

R17

1k

D2

GREEN

VDD_5V

N.M.

R26

VDD_5V

R40

N.M.

N.M.

R27

OinC_LEM

OinB_LEM

OinA_LEM

R41

VDD_3.3V

1

CN56

VDD SWDIO

SWCLK

9

GND RST

Jtag_SWD_Adapter

10

T_SWDIO

T_SWCLK

R127

T_NRST

0

U22

3

1

2

T_SWDIO

T_SWCLK

ESDALC6V1-1M2

1

D10

2

ESDAL

T_NRST

SMAJ5.0A-TR

N.M.

N.M.

R22

N.M.

N.M.

N.M.

R31

R34

R36

VDD_5V

F3

30Ohm@100MHz

R43

N.M.

C35

1uF/25V

C37

100nF/16V

3

2

+

V+

U6A

1

-

V-

TSV912IDT

C45

100nF/16V

5

6

+

-

U6B

7

TSV912IDT

C36

100nF/16V VDD_5V

R29

R25

N.M.

N.M.

R42

N.M.

AC_FAULT

Figure 71. STDES-VRECTFD circuit schematic - control board

VDD_3.3V

R46

1k

D7

RED

VDD_5V

VDD_3.3V

1

VIN

TP14

ZVD_A

R39

1k

D4

GREEN

TestPoint

TP18

ZVD_C

R50

1k

D9

GREEN

TestPoint

FAN

VOUT

3

C133

10uF/25V

TP17

ZVD_B

R45

1k

D5

GREEN

TestPoint

TP20

VDD_3.3V_REG

USB2 microUSB

VDD = 1.71 V to 3.6 V pag6 AN5093

VDD_3.3V_INT

JP1

3JP_pcb

VDD_3.3V

VDD_3.3V_REG

V

D+

4

5

1

3

UART TTL (3,3V)

J2

1

4

VDD_3.3V

USART2_TXUART_TX

UART_RXUSART2_RX

CON4

STATUS_LED

TP19

TestPoint

LED1

A2

C1

4

1

3

2

LSG T676

R51

C2

R53

A1

1k

1k

VDD_5V_USB

D3

SMAJ5.0A-TR

VDD_3.3V

OinA_LEM

R210k C1

100nF/16V

AGND

OinB_LEM

R410k C5

100nF/16V

AGND

OinC_LEM

R1010k

V_bus_up

AGND

R1310k C15

220nF/50V

AGND

V_bus_down

R1610k

IA+_uC

IB+_uC

IC+_uC

V_bus_up_uC

V_bus_down_uC

AGND

Oout

TEMP

R1910k

R12510k C135

220nF/50V

AGND

Oout_uC

AGND

TEMP_uC

USART2_RX

USART2_TX

ZVD_B

ZVD_C

R2310k C38

100pF/50V

R3010k

ZVD_A

C43

S1

R1260

R1340

VlineA.S

VlineA.S_uC

te_fsm4jsma

R12810k

R5

USR_BTN

VlineB.S

VlineC.S

VDD_3.3V

AGND

R12910k

R13010k

C138

100nF/16V

AGND

C139

100nF/16V

AGND

U4

VlineB.S_uC

VlineC.S_uC

R8

10k

10k

STM32G474RET3

C7

100nF/16V

14

17

PA2_COMP2_INM

PA3_COMP2_INP

COMP

PWM || FREE || HRTIM

PA8_TIM1_CH1/HRTIM1_CHA1

PA11_TIM1_CH1N/HRTIM1_CHB2

PA10_TIM1_CH3/HRTIM1_CHB1

PC10_TIM8_CH1N

44

52

PC7_TIM8_CH2/HRTIM1_CHF2

39

PC6

PC10

PC7

PC8

TP26

TestPoint

V_bus_up_uC

VlineC.S_uC

10

23

26

AGND

TP27

TestPoint

TEMP_uC

IA+_uC

IB+_uC

VlineA.S_uC

VlineB.S_uC

RELAY

C140

100pF/50V

8

33

9

57

51

49

50

56

58

55

OCP_B

OCP_A

5

6

PC2_ADC2_IN8(IB+)

PB2_ADC2_IN12(IC-)

HRTIM || FREE

PC9/HRTIM1_CHE2

PWM || FREE

PC0_ADC1_IN6(VC)

PB11_ADC1_IN14(VN)

PB0_ADC3_IN12_EX_TEMP

PB1_ADC3_IN1(IO)

ZVD

NULL

PB10

PC13/GPIO_IN

30

2

PD2_GPIO_EXTI2(ZVD-C)

PB4_SYS_JTRST

SWIM || USART

PA15-SYS_JTDI/USART2_RX

PA13-SYS_JTMS-SWDIO

PB3_SYS_JTDO_SWO/USART2_TX

OSC

PC15_OSC32_OUT-GPIO_EXTI15(OCP-B)

PF0_OSC_IN-GPIO_EXTI0(OCP-C)

PF1_OSC_OUT-GPIO_EXTI1(GROUNDFault)

POWER

DAC

RST

PA4_DAC1_OUT1

PA5_DAC1_OUT2 dac2

I2C

PB7_i2C1_SDA

PB8_BOOT0/i2C1_SCl

20

PG10-NRST

7

46

62

53

54

34

36

LED_1

LED_2

37

STATUS_LED

41

PA12

PC12

USR_BTN

DAC1

DAC2

DAC3

FAN

R4410k

TP13

TestPoint

TP15

TestPoint

BOOT0

T_NRST

TP21

TestPoint

AGND

VDD_3.3V

JP7

3JP_pcb

S2

AGND

VDD_3.3V

AVDD_3.3V

te_fsm4jsma

L1

VDD_3.3V

WE-CBF

AGND

C61

100nF/16V

AGND

C62

100nF/16V

AGND

AGND

C58

AVDD_3.3V

AGND

R56

1k

TestPoint

D12

GREEN

R1350

AGND

100nF/16V

PA8

TP1

TestPoint

TP6

TestPoint

PA9

C20

100pF/50V

TB_HS

TP9

TestPoint

VDD_5V i2C_SDA i2C_SCL

TA_HS

PA10

C30

100pF/50V

TC_HS

3

4

1

2

J1 i2C

TP2

TestPoint

PC6

C12

100pF/50V

TA_LS

TP7

TestPoint

PC7

C21

100pF/50V

TB_LS

TP10

TestPoint

PC8

C31

100pF/50V

TC_LS

TP25

TestPoint

TP3

TestPoint

PA11

TA_LX

TP8

TestPoint

PA12 TB_LX

TP11

TestPoint

PB9

TC_LX

TP22

LED_1

R131

1k

TestPoint

D13

GREEN

TP24

LED_2

R133

1k

TestPoint

D15

GREEN

TP4

TestPoint

PC10

TA_RX

TP5

TestPoint

PC11

C24

100pF/50V

TB_RX

TP12

TestPoint

PC12

TC_RX

VDD_5V

F1

30Ohm@100MHz

VDD_5V

C6

100nF/16V

R6

N.M.

R12

N.M.

OinC_LEM

R15

N.M.

C2

1uF/25V

3

2

+

V+

U2A

1

-

V-

TSV912IDT

5

6

U2B

+

7

-

TSV912IDT

C3

100nF/16V

VDD_5V

R9

R7

N.M.

N.M.

R14

N.M.

OCP_A

VDD_5V

F2

30Ohm@100MHz

VDD_5V

C34

100nF/16V

R20

N.M.

R28

N.M.

OinB_LEM

R38

N.M.

C27

1uF/25V

5

6

3

2

+

V+

U5A

1

-

V-

TSV912IDT

+

-

U5B

7

TSV912IDT

C28

100nF/16V

VDD_5V

R24

R21

N.M.

N.M.

R33

N.M.

OCP_B

VDD_5V

C55

100nF/16V

R48

N.M.

C47

1uF/25V

R52

N.M.

OinA_LEM

R55

N.M.

3

2

+

V+

U9A

1

-

V-

TSV912IDT

5

6

+

-

U9B

7

TSV912IDT

VDD_5V

F4

30Ohm@100MHz

N.M.

R54

N.M.

C48

100nF/16V

R49

VDD_5V

R47

N.M.

OCP_C

VDD_5V

C66

100nF/16V

R57

N.M.

R60

N.M.

I_DC

R62

N.M.

3

2

5

6

VDD_5V

F5

30Ohm@100MHz

+

C64

1uF/25V

V+

U10A

1

-

V-

TSV912IDT

+

U10B

7

-

TSV912IDT

C65

100nF/16V

VDD_5V

R58

N.M.

R59

N.M.

R61

N.M.

OCP_DC

GPIO_9/EEV_3

VDD_5V_INT

VDD_12V_INT

PWM_INP_Q1_L

PWM_INP_Q2_UP

+3.3V_iso

USART_TX

CAN_TX

SMBus_SDA

FAULT_1

TA_HS

TB_LX

TB_HS

TC_LX

TC_HS

FAN

ZVD_C

ZVD_A

VlineA.S

TEMP

ADC_10

COMP_1/ADC_11/SPI_MOSI

COMP_3

P1

1A

3A

1A

3A

1B

3B

1B

3B

10A

11A

12A

13A

15A

6A

7A

8A

9A

8A

9A

10A

12A

18A

23A

26A

27A

30A

32A

17A

18A

19A

20A

21A

22A

23A

24A

26A

27A

28A

29A

30A

31A

32A

Digital Power Connector

15B

17B

18B

20B

21B

22B

23B

24B

25B

26B

27B

28B

29B

30B

31B

32B

6B

8B

6B

11B

12B

15B

18B

23B

25B

26B

27B

28B

30B

31B

32B

USART_RX

NULL_2 NULL_2 VDD_7V

VDD_3.3V_INT

TA_RX

PWM_INP_Q1_R

PWM_INP_Q1_DOWN

PWM_INP_Q2_R

TC_LS

PWM_INP_Q2_DOWN

PWM_INP_Q3_R

GPIO_3/COMP_1_OUT/FAULT_2

RELAY

A_VDD

GND

AGND

GND_iso

GND

7

UM2975

Bill of materials

Bill of materials

Item Q.ty

1 1

2 1

Ref.

Table 8. Power board

Table 9. Control board

Table 7. STDES-VRECTFD bill of materials

-

-

Part/value Description

Power board

Manufacturer

ST

Control board ST

Order code

Not available for separate sale

Not available for separate sale

1

2

3

4

5

6

Item

28

1

2

5

50

1

Q.ty

Table 8. Power board bill of materials

Ref.

C1, C9, C10,

C11, C19, C20,

C21, C29, C30,

C33, C34, C44,

C47, C48, C58,

C65, C66, C76,

C84, C86, C94,

C102, C148,

C149, C164,

C178, C194,

C206

Part/value

SMD 0603

(1608)

C240

C8, C14

C41, C55, C74,

C93, C101

Description

Multilayer ceramic capacitors (not mounted)

SMD 0805

(2012)

100 nF, SMD

0603 (1608), 16

V, ±10 %

Multilayer ceramic capacitor (not mounted)

Multilayer ceramic capacitors (not mounted)

1 nF, SMD 0603

(1608), 25 V,

±10 %

Multilayer ceramic capacitors

C2, C4, C6,

C12, C16, C17,

C22, C24, C27,

C28, C31, C35,

C37, C39, C40,

C42, C45, C49,

C51, C53, C54,

C56, C60, C61,

C63, C67, C69,

C71, C72, C73,

C77, C78, C79,

C81, C83, C85,

C88, C90, C91,

C96, C98, C99,

C104, C105,

C125, C127,

C152, C160,

C180, C186

100 nF, SMD

0603 (1608), 25

V, ±10 %

Multilayer ceramic capacitors

C7

1 µF, SMD 0603

(1608), 440

V

AC

, ±20 %

Multilayer ceramic capacitor (not mounted)

-

-

Manufacturer

Wurth

Elektronik

Wurth

Elektronik

Wurth

Elektronik

Wurth

Elektronik

-

-

Order code

885012206046

885012006044

885012206046

885012206076

UM2975 - Rev 1 page 45/63

UM2975 - Rev 1

UM2975

Bill of materials

7

8

9

10

11

12

13

14

15

Item

33

5

10

6

30

12

12

6

12

Q.ty

C131, C133,

C139, C143,

C155, C162,

C168, C172,

C183, C190,

C193, C202

C135, C136,

C158, C165,

C187, C192

C146, C147,

C171, C177,

C199, C205,

C219, C220,

C223, C225,

C226, C228

C126, C128,

C130, C132,

C137, C138,

C141, C142,

C145, C150,

C153, C154,

C157, C161,

C166, C167,

C170, C173,

C174, C176,

C181, C182,

C188, C189,

C195, C196,

C198, C200,

C201, C204

C129, C134,

C140, C144,

C156, C163,

C169, C175,

C184, C191,

C197, C203

Ref.

C3, C5, C13,

C15, C18, C23,

C25, C26, C32,

C36, C43, C46,

C50, C57, C59,

C62, C64, C68,

C75, C80, C82,

C87, C92, C95,

C100, C103,

C106, C123,

C124, C151,

C159, C179,

C185

Part/value Description

1 µF, SMD 0603

(1608), 305

V

AC

, ±20 %

Multilayer ceramic capacitors

C38, C52, C70,

C89, C97

4.7 µF, SMD

0603 (1608), 50

V, ±10 %

Multilayer ceramic capacitors

C107, C108,

C114, C116,

C117, C118,

C119, C120,

C121, C122

Radial, Disc, 25

V, ±5 %

Multilayer ceramic capacitors (not mounted)

C109, C110,

C111, C112,

C113, C115

Radial, 50 V,

±10 %

Multilayer ceramic capacitors (not mounted)

2.2 µF, SMD

1206 (3216), 50

V, ±5 %

100 nF, SMD

1206 (3216), 50

V, ±10 %

1 nF, SMD

1206(3216),

630 V

DC

V, ±10

%

220 pF, SMD

0603 (1608),

500 V, ±20 %

470 nF, SMD

0805(2012), 1K

V

DC

, ±10 %

Multilayer ceramic capacitors

Multilayer ceramic capacitors

Multilayer ceramic capacitors

Multilayer ceramic capacitors

Multilayer ceramic capacitors

-

-

Manufacturer

Wurth

Elektronik

Any

Any

Wurth

Elektronik

Wurth

Elektronik

Wurth

Elektronik

Any

-

-

Order code

885012206076

Any

Any

885012208058

885012208075

885012206079

Any page 46/63

UM2975 - Rev 1

UM2975

Bill of materials

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Item

2

2

6

4

1

7

1

1

1

1

1

1

1

6

3

17

12

Q.ty

Ref.

C207, C210,

C211, C213,

C216, C217

Part/value

100 nF, Radial,

25 V, ±20 %

Description

CAP FILM

RADIAL

Manufacturer

Wurth

Elektronik

Order code

890303425004CS

C208, C209,

C214, C215

C212

470 µF, Radial,

Can - Snap-In,

200 V, ±10 %

100 nF, Radial,

16 V, ±20 %

Aluminium capacitors

Film radial capacitor

Vishay BC

Components

KEMET

MAL215759471E3

R474N310050A1K

C218, C221,

C222, C224,

C227, C229,

C236

10 µF, SMD

0805 (2012)

Multilayer ceramic capacitors

Any Any

C230

C231

C232, C237

C233, C234

C235

C238

3.3 nF, SMD

1206 (3216),

±20 %

560 µF, Radial,

Can, 450 V, ±20

%

Multilayer ceramic capacitor

Aluminium capacitor

0805 (2012

Metric)

0805 (2012

Metric), ±20 %

15 µF, Radial,

Can, 50 V, ±10

%

Capacitors (not mounted)

Capacitors (not mounted)

Aluminium capacitor

680 µF, Radial,

Can, 50 V, ±5 %

Aluminium capacitor

-

-

Any

Panasonic

Electronic

Components

Panasonic

Electronic

Components

Panasonic

Electronic

Components

Wurth

Elektronik

C239

C241

C242

C243 C245

C246 C247

C248 C249

D1, D2, D3

15 µF, Radial,

Can, 50 V, ±5 %

100 nF, 0805

(2012 Metric),

30 V

220 pF, 0805

(2012 Metric)

Aluminium capacitor

Multilayer ceramic capacitor

Multilayer ceramic capacitor

1 nF, SMD 0603

(1608), 20 V

Multilayer ceramic capacitors

STPS1L30A,

SMA

30 V, 1 A low drop power

Schottky rectifiers (not mounted)

D4, D17, D18,

D30, D32, D44,

D46, D53, D54,

D55, D56, D57,

D58, D59, D60,

D66, D67

D7, D8, D12,

D14, D21, D23,

D24, D29, D35,

D37, D38, D43

LED RED, 1206

(3216 Metric),

20 A

Red LEDs

TZMB20-GS08,

DO-213AC,

MINI-MELF,

SOD-80, 100 V

Zener diodes

Wurth

Elektronik

Any

Wurth

Elektronik

ST

Lumex Opto/

Components

Inc.

Vishay

Semiconductor

Diodes Division

-

-

Any

16SEPF560M

EEU-EE2W150

EEU--FR1C681L

860160572002

885012207098

Any

885012206083

STPS1L30A

SML-LX1206SIC-TR

TZMB20-GS08 page 47/63

UM2975 - Rev 1

UM2975

Bill of materials

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Item

1

4

1

12

6

1

1

2

1

6

49

3

2

2

Q.ty

Ref.

D11, D13, D15,

D16, D26, D27,

D28, D31, D39,

D41, D42, D45

D47, D48, D49,

D50, D51, D52

D61

D62

D63, D65

D64

DC1, DC2,

DC3, DC4,

DC5, DC6

Part/value

STPS2H100A,

SMA

STTH1L06A,

SMA

Description

TZMB3V3-

GS08,

DO-213AC,

MINI-MELF,

SOD-80, 600 V

Zener diodes

STPSC20H12W

L, TO-220AC

1200 V, 20 A high surge silicon carbide power Schottky diode

100 V, 2 A power Schottky rectifier

600 V, 1 A low drop ultrafast diode

STPS1150A,

SMA

STPS2L60A,

SMA

150 V, 1 A power Schottky rectifier

60 V, 2 A low drop power

Schottky rectifier

R12P22005D,

0.77" L x 0.39"

W x 0.49" H

(19.5 mm x 9.8

mm x 12.5 mm)

DC-DC converters

F1, F2, F3, F4,

F5, F6, F7, F8,

F9, F10, F11,

F12, F13, F14,

F15, F16, F17,

F18, F19, F20,

F21, F22, F23,

F24, F25, F26,

F27, F28, F29,

F30, F31, F32,

F33, F37, F38,

F39, F40, F41,

F42, F43, F44,

F45, F46, F47,

F48, F49, F50,

F51, F52

22 ohm at 100

MHz, 0805

(2012 Metric)

Ferrite beads

F34, F35, F36

JP12

J1, JP55, JP56,

JP57

J2

P2 X 2

J3, J10

Fuse10X38,

2Xclips + Fuse

250 V 30 A

Con2, 2pos

7.62 mm

Con2, 2pos

5.08 mm

Digital power connector

Fuse clip cartridges

Connector terminal block

Connector terminal blocks

Connector

Male DIN 41612 through hole 90 degree

Adapter digital power connector

Con3_32A, 3P

9.52 mm

90DEG

Fixed terminal blocks

Manufacturer

Vishay

Semiconductor

Diodes Division

ST

ST

ST

ST

ST

TZMB3V3-GS08

BK/1A3400-09-R +

OFLM030, T

1731721+M46:O46F46M46:

N46

384241

1714984

Order code

STPSC20H12WL

STPS2H100A

STTH1L06A

STPS1150A

STPS2L60A

Recom Power R12P22005D

Wurth

Elektronik

Eaton +

Littelfuse

Phoenix

Contact

Wurth

Elektronik

ERNI

ERNI

Phoenix

Contact

742792021

691213510002

284166 32X2 page 48/63

UM2975 - Rev 1

UM2975

Bill of materials

50

51

52

53

54

48

Item

6

Q.ty

49 2

55

56

57

58

59

39

8

3

3

1

6

2

4

2

13

Ref.

J4, J5, J6, J7,

J8, J9

J11, J12

JP11, JP13,

JP14, JP15,

JP16, JP19,

JP20, JP21,

JP22, JP23,

JP24, JP25,

JP26, JP27,

JP28, JP30,

JP31, JP32,

JP34, JP35,

JP36, JP37,

JP38, JP39,

JP40, JP41,

JP42, JP43,

JP45, JP46,

JP48, JP49,

JP50, JP51,

JP52, JP53,

JP54, JP60,

JP61

JP17, JP18,

JP29, JP33,

JP44, JP47,

JP58, JP59

L1, L2, L3

L4, L5, L6

L7

L9, L10, L11,

L12, L13, L14

LCM1, LCM2

LEM1, LEM2,

LEM3, LEM4

2XP3

Part/value

Con3

Dev3, 20.5 A

Jp_pcb

3JP_pcb

Description

Pin headers

Switches

Jumpers (not mounted)

Jumpers (not mounted)

-

-

Manufacturer

Wurth

Elektronik

Wurth

Electronics Inc.

Order code

61300311121

450301014042

-

-

±20 %

514 µH

CON40A, 2X20, pitch 2.54 mm

Inductors (not mounted)

Boost inductors

Connector

Pulse electronics

Wurth

Electronics Inc.

Sullins

Connector

Solution

PA0431LNL

750344313

Inductor (not mounted)

-

22 µH 130 mA,

0805 (2012

Metric)

Fixed inductors

3Phase_Cm_C hoke

Common mode chokes (not mounted)

LTSR 15-NP,

Ring Opening

0.126" Diam., 6 leads

Hall current sensors

-

Taiyo Yuden

LEM USA Inc.

-

LBC2012T220M

LTSR 15-NP

PPPC202LJBN-RC

PROBE1,

PROBE2,

PROBE3,

PROBE4,

PROBE5,

PROBE6,

PROBE8,

PROBE9,

PROBE10,

PROBE11,

PROBE12,

PROBE13,

PROBE14

Current_ProbE

Jumpers (not mounted)

page 49/63

UM2975 - Rev 1

UM2975

Bill of materials

60

61

62

63

64

65

66

67

68

69

Item

1

6

6

8

31

22

4

3

31

3

Q.ty

R1, R3, R19,

R21, R37, R39,

R139, R141

R2, R8, R10,

R20, R26, R28,

R38, R44, R45,

R56, R57, R58,

R62, R71, R78,

R79, R80, R84,

R93, R100,

R101, R102,

R106, R115,

R131, R140,

R149, R163,

R12, R30, R48

R4, R24, R42,

R128, R191,

R195, R196,

R197, R198,

R199, R213,

R214, R215,

R222, R223,

R224, R237,

R238, R239,

R244, R247,

R248

Q1

Ref.

Q2, Q3, Q4, Q5,

Q6, Q7

Q8, Q9, Q10,

Q11, Q12, Q13

Part/value

STS6NF20V,

SO-8

2STF1360,

SOT-89

Description

N-channel 20 V,

30 mOhm typ.,

6 A, 2.7 V drive

STripFET II power MOSFET in an SO-8 package

Low voltage fast-switching

NPN power transistor

SCTW35N65G2

V, HIP247

Silicon carbide power MOSFET

650 V, 55 mOhm typ., 45

A in an HiP247 package

7.5 k, SMD

0603(1608), ±1

%

Resistors

SMD Resistors

Resistors (not mounted)

R147, R154,

R161, R166

R70, R92, R114

10.5k, SMD

0603 (1608),

±0.1 %

12.4k, SMD

0603 (1608),

±0.1 %

Resistors

Resistors

R5, R6, R7,

R13, R16, R22,

R23, R25, R31,

R34, R40, R41,

R43, R49, R52,

R74, R96,

R118, R125,

R127, R129,

R134, R137,

R151, R18,

R36, R54, R67,

R89, R111

R15, R33, R51

10 k, SMD

0603(1608),

±0.1 %

Resistors

Resistors

Manufacturer

ST

ST

ST

Any

Any

Any

Any

Any

Any

Any

Order code

STS6NF20V

2STF1360

SCTW35N65G2V

Any

Any

Any

Any

Any

Any

Any page 50/63

UM2975 - Rev 1

UM2975

Bill of materials

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

88

89

86

87

Item

1

1

2

1

1

2

6

6

3

3

15

3

6

6

5

5

1

1

6

Q.ty

Ref.

R11, R18, R29,

R36, R47, R54

Part/value

18.7 k, SMD

0603 (1608),

±0.1 %

R12, R30, R48,

R59, R81, R103

36k, SMD

0603(1608), ±1

%

R14, R32, R50

N.M.

R61, R83, R105

69.8 k, SMD

0603 (1608), ±

0.1 %

69.8 k, SMD

0603 (1608),

±1%

R60, R64, R65,

R82, R86, R87,

R104, R108,

R109, R142,

R143, R144,

R156, R157,

R158

1 M, SMD1206

(3216), ±0.1%

R63, R85, R107

13.3 k, SMD

0603 (1608),

±0.1%

R66, R68, R88,

R90, R110,

R112

R76, R98, R120

R72, R94,

R116, R150,

R164

R75, R97,

R119, R152,

R167

2 k, SMD

0603(1608), ±1

%

8.06k, SMD

0603 (1608), ±1

%

11.3 k, SMD

0603 (1608),

±1%

3.74 k, SMD

0603 (1608)

R121

R122

R123

R124

R193, R194,

R212, R221,

R236, R246

R126

R130, R136

R132, R138

R135 N.M.

Description

Resistors

Resistors

Resistors (not mounted)

Resistors

Resistors

Resistors

Resistors

Resistors

Resistors

Resistors (not mounted)

470, SMD 0603

(1608), ±1 %

5.6k, SMD 0603

(1608), ±1 %

Resistors

Resistors

5.1 k, SMD

0603 (1608),

±1%

22, SMD 1206

(3216)

Resistors

Resistors

22,

SMD1210(3225

), ±0.1 %

33 k, SMD 0603

(1608), ± 0.1 %

Resistors

Resistors

24 k, SMD 0603

(1608), ±0.1 %

Resistors

9.1 k, SMD

0603(1608)

30 k, SMD

0603(1608), %,

Resistors

Resistors

Manufacturer

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Order code page 51/63

UM2975 - Rev 1

UM2975

Bill of materials

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Item

2

1

2

1

4

4

9

1

19

6

6

33

6

6

Q.ty

R184, R185,

R209, R219,

R233, R243

R186, R188,

R207, R217,

R231, R241

R9, R17, R35,

R46, R53, R69,

R72, R73, R91,

R94, R95,

R113, R116,

R117, R133,

R146,

R149;R151,

R160, R163,

R165, R187,

R189, R190,

R192, R208,

R211, R218,

R220, R232,

R235, R242,

R245

R200, R201,

R216, R225,

R240, R249

R252, R253,

R254, R255,

R256, R257

Ref.

R145, R155,

R159, R169

Part/value

16.9 k, SMD

0603 (1608),

±1%

1.6 k, SMD

0603 (1608)

R148, R153,

R162, R168

R170 R171

R172 R173

R174 R175

R176 R177

R178

SMD 0805

(2012)

R179

SMD 1206

(3216)

R180, R181,

R202, R203,

R205, R206,

R226, R227,

R229, R230,

R250, R251,

RLED1, RLED2,

RLED3, RLED4,

RLED5, RLED6,

RLED7

1 k, SMD 0603

(1608)

12, SMD 1210

(3225),

100, SMD 0603

(1608)

0, SMD 1210

(3225)

47 k, SMD 1206

(3216)

240 k, SMD

1206 (3216)

Description

Resistors

Resistors

Resistors (not mounted)

Resistor (not mounted)

Resistors

Resistors

Resistors

Resistors

Resistors

Resistors

R258, R259

R260

R261, R262

R263

750, SMD 0805

(2012)

750, SMD 1206

(3216)

51k, SMD 1206

(3216)

10, SMD

0603(1608), %,

Resistors

Resistor

Resistors

Resistor

Manufacturer

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Any

Order code page 52/63

UM2975 - Rev 1

UM2975

Bill of materials

Item

104 2

Q.ty

105 1

106

107

108

109

1

3

1

103

Ref.

R55, R77, R99,

R264, R267

R265

R266

RT1, RT2, RT3

Part/value

27 k, SMD 0603

(1608)

Description

Resistors

10.2 k, SMD

0603 (1608)

110 k, SMD

0603 (1608)

Resistor

Resistor

5 A 32 mm

Inrush current limiters

T1

TRANSFORME

R FLAT

COMPACT

Transformer

(not mounted)

TP40, TP41,

TP42, TP43,

TP44, TP45,

TP46, TP47,

TP48, TP49,

TP50, TP51,

TP52, TP53,

TP54, TP55,

TP56, TP57,

TP58, TP59,

TP60, TP61,

TP62, TP63,

TP64, TP65,

TP66, TP67,

TP68, TP69,

TP70, TP71,

TP72, TP73,

TP74, TP75,

TP76, TP77,

TP78, TP79,

TP1, TP2, TP4,

TP5, TP6, TP7,

TP8, TP9,

TP10, TP11,

TP12, TP13,

TP14, TP15,

TP16, TP17,

TP18, TP19,

TP20, TP21,

TP22, TP23,

TP24, TP25,

TP26, TP27,

TP28, TP29,

TP30, TP31,

TP32, TP33,

TP34, TP35,

TP36, TP37,

TP38, TP39,

TP80, TP81,

TP82, TP83,

TP84, TP85,

TP86, TP87,

TP88, TP89,

TP90, TP91,

TP92, TP93,

TP94, TP95,

TP96, TP97,

TP98, TP99,

TP100, TP101,

TP102, TP103,

TP104

TestPoint_Ring,

1 mm

Test terminals

Manufacturer

Any

Any

Any

Ametherm

Wurth

Any

Any

Any

Any

Any

Order code

SL32 5R020-B

750317707 page 53/63

UM2975 - Rev 1

UM2975

Bill of materials

110

111

112

113

114

115

116

117

118

119

Item

120

121

122

123

7

4

5

2

1

6

4

2

2

1

5

5

10

10

Q.ty

Ref.

U10, U12, U13,

U1, U3, U5, U8

U11, U14, U15,

U7

U16, U17, U19,

U21, U22

U18, U23

U20

U24, U25, U26,

U27, U28, U29

U2, U4, U6, U9

U30, U32

U31, U33

U34

TW1, TW2,

TW3, TW4,

TW5

Screw M3 X

6mm

TW6, TW7,

TW8, TW9,

TW10, TW11,

TW12, TW13,

TW14, TW15

M3

Part/value

TSV914IDT,

SO-14

TSV912IDT,

SO-8

Description

Wide-bandwidth

(8 MHz) rail to rail input/output

5 V CMOS Op-

Amps, quad

Wide-bandwidth

(8 MHz) rail to rail input/output

5V CMOS Op-

Amps, dual

Manufacturer

ST

ST

AMC1301DWV

R, 8-SOIC

(0.295", 7.50

mm Width)

IC op-amp isolation circuits

Texas

Instruments

DCH010505SN

7, SIP,

STLM20W87F,

SOT323-5L

STGAP2SICS,

SO-8

TSV912IDT,

SO-8

LD29080DT50R

, DPAK

800 mA fixed and adjustable output very low drop voltage regulator

LD29080S33R,

SOT-223

VIPER26HD,

SO-16

800 mA fixed and adjustable output very low drop voltage regulator

Fixed frequency

VIPer plus family

M3X10, Male/

Female M3X10 mm

M3 Pan Head,

M3X6mm

Spacers

Screws

1-channel DC-

DC power supply module

4-pin

Analog temperature sensor, ultra-low current 2.4 V, high precision

Texas

Instruments

ST

Galvanically isolated 4 A single gate driver

Wide-bandwidth

(8 MHz) rail to rail input/output

5V CMOS Op-

Amps, dual

ST

ST

ST

ST

ST

Wurth

Elektronik

RS

M3X40, Brass

Hex Standoff

Hex Nut, M3

Brass Hex

Standoff Male/

Female, 40mm,

M3 x M3

Hex nut

Wurth

Elektronik

RS

Order code

TSV914IDT

TSV912IDT

AMC1301DWVR

DCH010505SN7

STLM20W87F

STGAP2SICS

TSV912IDT

LD29080DT50R

LD29080S33R

VIPER26HD

971100351

482-8515

971100354

483-0502 page 54/63

UM2975 - Rev 1

12

13

10

11

14

7

8

5

6

9

15

16

17

18

19

Item

1

2

3

4

20

UM2975

Bill of materials

5

2

2

1

1

1

1

3

1

7

1

1

1

1

1

Q.ty

1

26

7

17

16

Table 9. Control board bill of materials

Ref.

Part / Value Description

Manufacture r

CN56

Jtag_SWD_Ada pter

C1, C3, C5, C6,

C7, C10, C28,

C34, C36, C37,

C45, C48, C49,

C51, C52, C53,

C55, C59, C61,

C62, C65, C66,

C134, C137,

C138, C139

C2, C27, C35,

C47, C50, C58,

C64

C11, C12, C13,

C14, C20, C21,

C22, C24, C30,

C31, C32, C33,

C38, C40, C42,

C43, C140

100nF/16V

1µF/25V

100pF/50V

C15, C23, C135 220nF/50V

C18 470nF/50V

C29

C133

D2, D4, D5, D9,

D12, D13, D15

220pF/50V

10µF/25V

GREEN

D3, D10

SMAJ5.0A-TR,

SMA

RED D7

F1, F2, F3, F4,

F5

JP1, JP7

30Ω@100MHz

JP2

3JP_pcb

STRIP_2X3 (not mounted)

Connector

CAPACITOR, 603

CAPACITOR, 603

CAPACITOR, 603

CAPACITOR, 603

CAPACITOR, 805

CAPACITOR, 603

CAPACITOR, 805

LED, SMD 0805

Samtec

Any

Any

Any

Any

Murata

Any

TDK

Any

400 W TVS in SMA ST

LED, SMD 0805

-

-

-

Any

TDK

Corporation

-

-

J1

J2

LED1

L1

P1 i2C

CON4

WE-CBF

64 male

R2, R4, R5, R8,

R10, R13, R16,

R19, R23, R30,

R35, R44, R125,

R128, R129,

R130

10k

-

CONNECTOR, strip4_100m_v

CONNECTOR, strip4_100m_v

LED

FERRITE, 603

Connector

RESISTOR, 603

Any

Any

OSRAM

WE

ERNI

Any

Any

Any

Any

Any

Any

Any

Order code

FTSH-105-01-F-D-K

-

-

-

-

SMAJ5.0A-TR

Any

MPZ2012S300AT000

Any

Any

LSG T676

74279262

533406

Any page 55/63

UM2975 - Rev 1

22

23

24

Item

21

25

26

27

28

29

30

UM2975

Bill of materials

Q.ty

36

10

2

2

26

1

5

1

1

1

Ref.

Part / Value Description

Manufacture r

R6, R7, R9,

R12, R14, R15,

R20, R21, R22,

R24, R25, R26,

R27, R28, R29,

R31, R33, R34,

R36, R38, R40,

R41, R42, R43,

R47, R48, R49,

R52, R54, R55,

R57, R58, R59,

R60, R61, R62

(not mounted)

R17, R39, R45,

R46, R50, R51,

R53, R56, R131,

R133

1k

R126, R127 0

RESISTOR, 603

RESISTOR, 603

Any

Any

S1, S2 -

RESISTOR, 603

None

Any

TE

Connectivity

TP1, TP2, TP3,

TP4, TP5, TP6,

TP7, TP8, TP9,

TP10, TP11,

TP12, TP13,

TP14, TP15,

TP16, TP17,

TP18, TP19,

TP20, TP21,

TP22, TP24,

TP25, TP26,

TP27

TestPoint, TestPoint Any

USB2

U2, U5, U6, U9,

U10

U3

U4

U22

SO-8

-

TSV912IDT,

LD29080S33R,

SOT-223

STM32G474RE

T3, LQFP64

ESDA6V1L,

SOT23-3L microUSB connector

Wide-bandwidth (8

MHz) rail to rail input/output 5V

CMOS Op-Amps, dual

800 mA fixed and adjustable output very low drop voltage regulator

Mainstream Arm

Cortex-M4 MCU

170 MHz with

512 Kbytes of

Flash memory, Math

Accelerator, HR

Timer, High Analog level integration

Dual Transil array for ESD protection

MOLEX

ST

ST

ST

ST

Any

Any

Any

Order code

FSM4JSMATR

Any

47346-0001

TSV912IDT

LD29080S33R

STM32G474RET3

ESDA6V1L page 56/63

Revision history

Date

18-Jan-2022

Table 10. Document revision history

Revision

1 Initial release.

Changes

UM2975

UM2975 - Rev 1 page 57/63

UM2975

Contents

Contents

1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.1

Safety information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4

Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5

Reference design description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.1

1.5.2

Power board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.3

Control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6

Power factor correction (PFC) benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7

Converter operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 How to use the STDES-VRECTFD reference design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.1

System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2

How to connect the reference design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3

MCU programming and debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1

2.3.2

Power supply section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4

Preliminary test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1

2.4.2

2.4.3

AC sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

DC sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

AC connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4

DC connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5

Startup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1

Controlled startup procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2

Direct startup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

3.1

Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1

3.1.2

Current control strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Voltage control strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2

Phase locked loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

4.1

Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

5.1

Startup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2

PFC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

UM2975 - Rev 1 page 58/63

UM2975

Contents

5.3

Step load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4

Power factor, efficiency, and THDi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

7 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

List of figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

UM2975 - Rev 1 page 59/63

UM2975

List of tables

List of tables

Table 1. Main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 2. Protection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 3. Boost inductor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 4. Operation condition limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 5. Control strategy comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 6. STDES-VRECTFD power factor, efficiency, and THDi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 7. STDES-VRECTFD bill of materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 8. Power board bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 9. Control board bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 10. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

UM2975 - Rev 1 page 60/63

UM2975

List of figures

List of figures

Figure 1. DC charging station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 2. STDES-VRECTFD reference design - power board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 3. STDES-VRECTFD reference design - control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 4. STDES-VRECTFD block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 5. STDES-VRECTFD reference design - power board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 6. STDES-VRECTFD power board sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 7. Three and four-wire connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 8. Focus on the STDES-VRECTFD NTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 9. STDES-VRECTFD NTC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 10. AC current sensing block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 11. AC voltage sensing block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 12. DC current sensing block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 13. DC voltage sensing block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 14. STDES-VRECTFD reference design - control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 15. STDES-VRECTFD control board sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 16. STDES-VRECTFD MCU pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 17. PFC benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 18. Switching paths of the Vienna topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 19. STDES-VRECTFD connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 20. ST-LINK/V2 and adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 21. ST-LINK/V2 connected to the control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 22. IAR EWARM program procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 23. IAR EWARM debug procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 24. Example of power supply configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 25. Example of driver configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 26. AC sensing section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 27. AC voltage sensing test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 28. AC grid current sensing test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 29. DC voltage sensing test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 30. DC current sensing test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 31. AC connection and sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 32. DC side load connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 33. Startup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 34. Connection and power-on procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 35. STDES- VRECTFD ICL NTCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 36. FSM_Wait block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 37. FSM_Idle block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 38. FSM_Init block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 39. FSM_Start block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 40. FSM_Run block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 41. Cascaded control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 42. Continuous conduction mode in current control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 43. Current decoupling control of the reference design converter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 44. CDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 45. Converter DC side model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 46. Voltage control diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 47. PLL internal regulator loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 48. PLL in AC main voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 49. STM32Cube ecosystem development flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 50. DPC development flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 51. AC-DC rectifier application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 52. Simplified execution task of the control in AC-DC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 53. STDES-VRECTFD configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

UM2975 - Rev 1 page 61/63

UM2975

List of figures

Figure 54. Startup procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 55. PFC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 56. Step load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 57. STDES-VRECTFD power factor plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 58. STDES-VRECTFD efficiency plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 59. STDES-VRECTFD THDi plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 60. STDES-VRECTFD circuit schematic - power board (1 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 61. STDES-VRECTFD circuit schematic - power board (2 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 62. STDES-VRECTFD circuit schematic - power board (3 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 63. STDES-VRECTFD circuit schematic - power board (4 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 64. STDES-VRECTFD circuit schematic - power board (5 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 65. STDES-VRECTFD circuit schematic - power board (6 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 66. STDES-VRECTFD circuit schematic - power board (7 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 67. STDES-VRECTFD circuit schematic - power board (8 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 68. STDES-VRECTFD circuit schematic - power board (9 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 69. STDES-VRECTFD circuit schematic - power board (10 of 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 70. STDES-VRECTFD circuit schematic - power board (11 of 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 71. STDES-VRECTFD circuit schematic - control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

UM2975 - Rev 1 page 62/63

UM2975

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of

Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks . All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

UM2975 - Rev 1 page 63/63

advertisement

Related manuals

Download PDF

advertisement