ESAB m3® Plasma Integrated Gas Control (IGC) System - ICH Instruction manual

Add to My manuals
190 Pages

advertisement

ESAB m3® Plasma Integrated Gas Control (IGC) System - ICH Instruction manual | Manualzz

Integrated Gas Control (IGC) System - ICH

no t r el ea se d p rel imi na ry

Instruction Manual

(use with EPP-202/362 Power Sources)

for cut data see manual: 0558010300

0558012266 07/2014

2

Integrated Gas Control (IGC) System - ICH

Integrated Gas Control (IGC) System - ICH

You can get extra copies through your supplier.

CAUTION

These INSTRUCTIONS are for experienced operators. If you are not fully familiar with the principles of operation and safe practices for arc welding and cutting equipment, we urge you to read our booklet, “Precautions and Safe Practices for Arc Welding, Cutting, and

Gouging,” Form 52-529. Do NOT permit untrained persons to install, operate, or maintain this equipment. Do NOT attempt to install or operate this equipment until you have read and fully understand these instructions. If you do not fully understand these instructions, contact your supplier for further information. Be sure to read the Safety Precautions before installing or operating this equipment.

USER RESPONSIBILITY

This equipment will perform in conformity with the description thereof contained in this manual and accompanying labels and/or inserts when installed, operated, maintained and repaired in accordance with the instructions provided. This equipment must be checked periodically. Malfunctioning or poorly maintained equipment should not be used. Parts that are broken, missing, worn, distorted or contaminated should be replaced immediately. Should such repair or replacement become necessary, the manufacturer recommends that a telephone or written request for service advice be made to the Authorized Distributor from whom it was purchased.

This equipment or any of its parts should not be altered without the prior written approval of the manufacturer.

The user of this equipment shall have the sole responsibility for any malfunction which results from improper use, faulty maintenance, damage, improper repair or alteration by anyone other than the manufacturer or a service facility designated by the manufacturer.

READ AND UNDERSTAND THE INSTRUCTION MANUAL BEFORE INSTALLING OR OPERATING.

PROTECT YOURSELF AND OTHERS!

3

4

Integrated Gas Control (IGC) System - ICH

Integrated Gas Control (IGC) System - ICH

Table of Contents

Safety

Safety - English .................................................................................................................................................13

Safety - Spanish .................................................................................................................................................................................. 17

Safety - French .................................................................................................................................................................................... 21

System Diagrams

System Diagrams ..............................................................................................................................................27

Base System + AHC + WIC + ACC (all options) .......................................................................................................................28

Descriptions

Power Supplies .................................................................................................................................................31

380/400V Power Supplies ............................................................................................................................................................... 31

460/575V Power Supplies ............................................................................................................................................................... 31

380/400V Power Supplies ...............................................................................................................................................................32

460/575V Power Supplies ...............................................................................................................................................................32

Interface Control Hub (ICH) .............................................................................................................................33

Specifications ......................................................................................................................................................................................33

ICH Mounting Dimensions .............................................................................................................................................................33

CNC Direct Board ..............................................................................................................................................................................34

Combined Gas Control (CGC) ...........................................................................................................................35

Specifications ......................................................................................................................................................................................35

Connections ........................................................................................................................................................................................36

CGC Flow Diagram ............................................................................................................................................................................39

Combined Gas Control Plumbing Schematic ..........................................................................................................................40

Combined Gas Control Electrical Schematic ........................................................................................................................... 41

CGC Mounting Dimensions ........................................................................................................................................................... 42

CGC Bottom View .............................................................................................................................................................................. 42

Troubleshooting ................................................................................................................................................................................43

Replacement Parts ............................................................................................................................................................................43

5

6

Integrated Gas Control (IGC) System - ICH

Power Distribution Box (PDB) ......................................................................................................................... 44

Specifications ......................................................................................................................................................................................44

PDB Mounting Dimensions............................................................................................................................................................44

PDB Mounting Plate Dimensions .................................................................................................................................................45

PDB Schematic ...................................................................................................................................................................................45

Remote Arc Starter (RAS) ................................................................................................................................ 46

Specifications ......................................................................................................................................................................................46

Remote Arc Starter Connections ................................................................................................................................................. 47

RAS Box Mounting Dimensions ...................................................................................................................................................49

RAS Box Mounting Plate Dimensions ........................................................................................................................................49

Air Curtain Control (ACC) .................................................................................................................................50

Specifications ......................................................................................................................................................................................50

ACC Mounting Dimensions ............................................................................................................................................................ 51

ACC Component Connections ...................................................................................................................................................... 51

Water Injection Control (WIC) ..........................................................................................................................52

Specifications ......................................................................................................................................................................................52

Automatic Height Control (AHC) .....................................................................................................................53

Specifications ......................................................................................................................................................................................53

B4 Mounting Dimensions ...............................................................................................................................................................54

Hoses and Cables ..............................................................................................................................................55

Specifications ......................................................................................................................................................................................59

PT-36 Mechanized Plasmarc Cutting Torch ....................................................................................................59

Package Options Available ...........................................................................................................................................................60

Optional Accessories ........................................................................................................................................................................60

PT-36 Torch Consumable Kits ........................................................................................................................................................ 61

Recommended Regulators ............................................................................................................................................................63

Replacement Parts ............................................................................................................................................................................63

Integrated Gas Control (IGC) System - ICH

Installation

Grounding .........................................................................................................................................................67

Introduction ........................................................................................................................................................................................67

Grounding Overview .......................................................................................................................................................................68

Basic Layout ........................................................................................................................................................................................69

Elements of a Ground System .......................................................................................................................................................70

Plasma Current Return Path ..........................................................................................................................................................70

Plasma System Safety Ground ...................................................................................................................................................... 71

Rail System Safety Ground ............................................................................................................................................................. 74

Earth Ground Rod ............................................................................................................................................................................. 75

Ground Rod ......................................................................................................................................................................................... 75

Soil Resistivity ..................................................................................................................................................................................... 75

Utility Power Electrical Ground .................................................................................................................................................... 76

Multiple Ground Rods .....................................................................................................................................................................77

Machine Grounding Schematic....................................................................................................................................................78

Check upon receipt ..........................................................................................................................................................................79

Before Installation .............................................................................................................................................................................79

Placement of Power Supply .............................................................................................................................79

Input Power Connection ................................................................................................................................................................79

Input Conductors ..............................................................................................................................................................................79

Input Connection Procedure ........................................................................................................................................................80

Output Connection Procedure ..................................................................................................................................................... 81

Interface Cables/Connections.......................................................................................................................................................82

Placement of RAS Box ......................................................................................................................................83

Connections on the RAS Box ........................................................................................................................................................83

Torch Connections ........................................................................................................................................... 86

Connection of Torch to Plasma System .....................................................................................................................................87

Connection to the Remote Arc Starter Box ..............................................................................................................................87

Mounting Torch to Machine ........................................................................................................................................................88

Preparing to Cut................................................................................................................................................................................. 91

7

8

Integrated Gas Control (IGC) System - ICH

Placement of ICH ............................................................................................................................................. 96

Placement of CGC .............................................................................................................................................97

Placement of PDB .............................................................................................................................................97

Individual Component Connections ..........................................................................................................................................98

ACC Component Connections ......................................................................................................................................................99

Component Placement Example ...............................................................................................................................................100

Operation

Interface Control Hub ................................................................................................................................... 104

ICH Operation ................................................................................................................................................ 106

ICH Connectors ................................................................................................................................................................................106

Display Screens ................................................................................................................................................................................107

Editing a Parameter on the Display ..........................................................................................................................................107

Setup Descriptions.......................................................................................................................................................................... 110

Communication Options ...............................................................................................................................................................111

Station Options ................................................................................................................................................................................ 112

Digital I/O ........................................................................................................................................................................................... 114

Digital Inputs .................................................................................................................................................................................... 114

Digital Outputs................................................................................................................................................................................. 114

Modes of Operation: ......................................................................................................................................115

Remote Interface without Serial Communication ............................................................................................................... 115

Operation sequence with ESAB supplied plasma lifter: .................................................................................................... 117

Operation sequence with customer supplied plasma lifter: ............................................................................................ 119

Remote Interface with Serial Communication ......................................................................................................................120

Local Interface - Diagnostics Only .............................................................................................................................................121

Operation sequence: ......................................................................................................................................................................122

Interface Wiring Descriptions .....................................................................................................................................................124

Interface Wiring ...............................................................................................................................................................................124

Integrated Gas Control (IGC) System - ICH

Maintenance/Troubleshooting

ICH Maintenance/Troubleshooting ..............................................................................................................132

Communication Problems ...........................................................................................................................................................132

Digital Input Problems ..................................................................................................................................................................132

Digital Output Problems ...............................................................................................................................................................132

Gas Problems ....................................................................................................................................................................................132

Power Supply Problems ................................................................................................................................................................132

Error Messages on the ICH Display ...........................................................................................................................................133

Module Errors ...................................................................................................................................................................................135

Module Errors ...................................................................................................................................................................................136

Process Errors ....................................................................................................................................................................................137

Process Errors ....................................................................................................................................................................................138

Process Errors ....................................................................................................................................................................................139

Process Errors ....................................................................................................................................................................................140

Torch Front End Disassembly ......................................................................................................................................................141

Torch Front End Assembly ...........................................................................................................................................................144

Torch Front End Assembly using the Speedloader .............................................................................................................145

Torch Front End Disassembly (for Production Thick Plate) ...............................................................................................146

Torch Front End Assembly (for Production Thick Plate) .....................................................................................................149

Torch Body Maintenance ...........................................................................................................................................................151

Torch Body Removal and Replacement ..................................................................................................................................152

Reduced Consumable Life ........................................................................................................................................................154

Checking for Coolant Leaks .........................................................................................................................................................155

9

Integrated Gas Control (IGC) System - ICH

Appendix

ESAB Serial Communication Interface ..........................................................................................................158

Introduction ......................................................................................................................................................................................158

System Requirements ....................................................................................................................................................................158

Installation .........................................................................................................................................................................................159

Operation ...........................................................................................................................................................................................161

ICH Serial Communication Protocol ..............................................................................................................172

Commands ........................................................................................................................................................................................172

ICH Communication Errors ..........................................................................................................................................................179

ICH Login Sequence .......................................................................................................................................................................179

ICH Communication Error Messages ........................................................................................................................................180

ICH Parameter Loading .................................................................................................................................................................183

Replacement Parts

General ................................................................................................................................................................................................186

Ordering .............................................................................................................................................................................................186

10

Safety

12

SAFETY

SAFETY

Safety - English

WARNING: These Safety Precautions are for your protection. They summarize precautionary information from the references listed in Additional Safety

Information section. Before performing any installation or operating procedures, be sure to read and follow the safety precautions listed below as well as all other manuals, material safety data sheets, labels, etc. Failure to observe Safety Precautions can result in injury or death.

PROTECT YOURSELF AND OTHERS --

Some welding, cutting, and gouging processes are noisy and require ear protection. The arc, like the sun, emits ultraviolet (UV) and other radiation and can injure skin and eyes. Hot metal can cause burns. Training in the proper use of the processes and equipment is essential to prevent accidents. Therefore:

1. Always wear safety glasses with side shields in any work area, even if welding helmets, face shields, and goggles are also required.

2. Use a face shield fitted with the correct filter and cover plates to protect your eyes, face, neck, and ears from sparks and rays of the arc when operating or observing operations. Warn bystanders not to watch the arc and not to expose themselves to the rays of the electric-arc or hot metal.

3. Wear flameproof gauntlet type gloves, heavy long-sleeve shirt, cuffless trousers, high-topped shoes, and a welding helmet or cap for hair protection, to protect against arc rays and hot sparks or hot metal. A flameproof apron may also be desirable as protection against radiated heat and sparks.

4. Hot sparks or metal can lodge in rolled up sleeves, trouser cuffs, or pockets. Sleeves and collars should be kept buttoned, and open pockets eliminated from the front of clothing.

5. Protect other personnel from arc rays and hot sparks with a suitable non-flammable partition or curtains.

6. Use goggles over safety glasses when chipping slag or grinding. Chipped slag may be hot and can fly far. Bystanders should also wear goggles over safety glasses.

FIRES AND EXPLOSIONS -- Heat from flames and arcs can start fires. Hot slag or sparks can also cause fires and explosions. Therefore:

1. Remove all combustible materials well away from the work area or cover the materials with a protective non-flammable covering. Combustible materials include wood, cloth, sawdust, liquid and gas fuels, solvents, paints and coatings, paper, etc.

2. Hot sparks or hot metal can fall through cracks or crevices in floors or wall openings and cause a hidden smoldering fire or fires on the floor below.

Make certain that such openings are protected from hot sparks and metal.“

3. Do not weld, cut or perform other hot work until the work piece has been completely cleaned so that there are no substances on the work piece which might produce flammable or toxic vapors.

Do not do hot work on closed containers. They may explode.

4. Have fire extinguishing equipment handy for instant use, such as a garden hose, water pail, sand bucket, or portable fire extinguisher. Be sure you are trained in its use.

5. Do not use equipment beyond its ratings. For example, overloaded welding cable can overheat and create a fire hazard.

6. After completing operations, inspect the work area to make certain there are no hot sparks or hot metal which could cause a later fire. Use fire watchers when necessary.

7. For additional information, refer to NFPA Standard 51B, "Fire Prevention in Use of Cutting and

Welding Processes", available from the National

Fire Protection Association, Battery march Park,

Quincy, MA 02269.

ELECTRICAL SHOCK -- Contact with live electrical parts and ground can cause severe injury or death. DO NOT use AC welding current in damp areas, if movement is confined, or if there is danger of falling.

13

SAFETY

1. Be sure the power source frame (chassis) is connected to the ground system of the input power.

2. Connect the work piece to a good electrical ground.

3. Connect the work cable to the work piece. A poor or missing connection can expose you or others to a fatal shock.

4. Use well-maintained equipment. Replace worn or damaged cables.

5. Keep everything dry, including clothing, work area, cables, torch/electrode holder, and power source.

6. Make sure that all parts of your body are insulated from work and from ground.

7. Do not stand directly on metal or the earth while working in tight quarters or a damp area; stand on dry boards or an insulating platform and wear rubber-soled shoes.

8. Put on dry, hole-free gloves before turning on the power.

9. Turn off the power before removing your gloves.

10. Refer to ANSI/ASC Standard Z49.1 (listed on next page) for specific grounding recommendations. Do not mistake the work lead for a ground cable.

ELECTRIC AND MAGNETIC FIELDS — May be dangerous. Electric current flowing through any conductor causes localized Electric and Magnetic Fields (EMF). Welding and cutting current creates EMF around welding cables and welding machines. Therefore:

1. Welders having pacemakers should consult their physician before welding. EMF may interfere with some pacemakers.

2. Exposure to EMF may have other health effects which are unknown.

3. Welders should use the following procedures to minimize exposure to EMF:

A. Route the electrode and work cables together.

Secure them with tape when possible.

B. Never coil the torch or work cable around your body.

C. Do not place your body between the torch and work cables. Route cables on the same side of your body.

D. Connect the work cable to the work piece as close as possible to the area being welded.

E. Keep welding power source and cables as far away from your body as possible.

FUMES AND GASES -- Fumes and gases, can cause discomfort or harm, particularly in confined spaces. Do not breathe fumes and gases. Shielding gases can cause asphyxiation.

Therefore:

1. Always provide adequate ventilation in the work area by natural or mechanical means. Do not weld, cut, or gouge on materials such as galvanized steel, stainless steel, copper, zinc, lead, beryllium, or cadmium unless positive mechanical ventilation is provided.

Do not breathe fumes from these materials.

2. Do not operate near degreasing and spraying operations. The heat or arc rays can react with chlorinated hydrocarbon vapors to form phosgene, a highly toxic gas, and other irritant gases.

3. If you develop momentary eye, nose, or throat irritation while operating, this is an indication that ventilation is not adequate. Stop work and take necessary steps to improve ventilation in the work area. Do not continue to operate if physical discomfort persists.

4. Refer to ANSI/ASC Standard Z49.1 (see listing below) for specific ventilation recommendations.

14

5. WARNING: This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code §25249.5 et seq.)

CYLINDER HANDLING -- Cylinders, if mishandled, can rupture and violently release gas. Sudden rupture of cylinder, valve, or relief device can injure or kill. Therefore:

1.

Use the proper gas for the process and use the proper pressure reducing regulator designed to operate from the compressed gas cylinder. Do not use adaptors. Maintain hoses and fittings in good condition. Follow manufacturer's operating instructions for mounting regulator to a compressed gas cylinder.

2. Always secure cylinders in an upright position by chain or strap to suitable hand trucks, undercarriages, benches, walls, post, or racks. Never secure cylinders to work tables or fixtures where they may become part of an electrical circuit.

3. When not in use, keep cylinder valves closed. Have valve protection cap in place if regulator is not connected. Secure and move cylinders by using suitable hand trucks. Avoid rough handling of cylinders.

4. Locate cylinders away from heat, sparks, and flames.

Never strike an arc on a cylinder.

5. For additional information, refer to CGA Standard P-1,

"Precautions for Safe Handling of Compressed Gases in Cylinders", which is available from Compressed

Gas Association, 1235 Jefferson Davis Highway,

Arlington, VA 22202.

EQUIPMENT MAINTENANCE -- Faulty or improperly maintained equipment can cause injury or death. Therefore:

1. Always have qualified personnel perform the installation, troubleshooting, and maintenance work.

Do not perform any electrical work unless you are qualified to perform such work.

SAFETY

2. Before performing any maintenance work inside a power source, disconnect the power source from the incoming electrical power.

3. Maintain cables, grounding wire, connections, power cord, and power supply in safe working order. Do not operate any equipment in faulty condition.

4. Do not abuse any equipment or accessories. Keep equipment away from heat sources such as furnaces, wet conditions such as water puddles, oil or grease, corrosive atmospheres and inclement weather.

5. Keep all safety devices and cabinet covers in position and in good repair.

6. Use equipment only for its intended purpose. Do not modify it in any manner.

ADDITIONAL SAFETY INFORMATION -- For more information on safe practices for electric arc welding and cutting equipment, ask your supplier for a copy of "Precautions and Safe Practices for Arc Welding, Cutting and Gouging", Form 52-529.

The following publications, which are available from the American Welding Society, 550 N.W. LeJuene Road,

Miami, FL 33126, are recommended to you:

1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.

2. AWS C5.1 - “Recommended Practices for Plasma Arc

Welding”.

3. AWS C5.2 - “Recommended Practices for Plasma Arc

Cutting”.

4. AWS C5.3 - “Recommended Practices for Air Carbon

Arc Gouging and Cutting”.

5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.

6. AWS C5.6 - “Recommended Practices for Gas Metal

Arc Welding”.

7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.

8. ANSI/AWS F4.1, “Recommended Safe Practices for

Welding and Cutting of Containers That Have Held

Hazardous Substances.”

9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.

15

SAFETY

MEANING OF SYMBOLS - As used throughout this manual: Means Attention! Be Alert! Your safety is involved.

DANGER

CAUTION

WARNING

Means immediate hazards which, if not avoided, will result in immediate, serious personal injury or loss of life.

Means potential hazards which could result in personal injury or loss of life.

Means hazards which could result in minor personal injury.

Enclosure Class

The IP code indicates the enclosure class, i.e. the degree of protection against penetration by solid objects or water. Protection is provided against touch with a finger, penetration of solid objects greater than 12mm and against spraying water up to 60 degrees from vertical. Equipment marked IP21S may be stored, but is not intended to be used outside during precipitation unless sheltered.

CAUTION This product is solely intended for plasma cutting. Any other use may result in personal injury and / or equipment damage.

If equipment is placed on a surface that slopes more than 15°, toppling over may occur. Personal injury and

/ or significant damage to equipment is possible.

Maximum

Tilt Allowed

15 °

16

To avoid personal injury and/or equipment damage, lift using method and attachment points shown here.

SAFETY

Safety - Spanish

ADVERTENCIA: Estas Precauciones de

Seguridad son para su protección. Ellas hacen resumen de información proveniente de las referencias listadas en la sección

"Información Adicional Sobre La Seguridad". Antes de hacer cualquier instalación o procedimiento de operación , asegúrese de leer y seguir las precauciones de seguridad listadas a continuación así como también todo manual, hoja de datos de seguridad del material, calcomanias, etc. El no observar las

Precauciones de Seguridad puede resultar en daño a la persona o muerte.

PROTEJASE USTED Y A LOS DEMAS--

Algunos procesos de soldadura, corte y ranurado son ruidosos y requiren protección para los oídos. El arco, como el sol , emite rayos ultravioleta (UV) y otras radiaciones que pueden dañar la piel y los ojos. El metal caliente causa quemaduras. EL entrenamiento en el uso propio de los equipos y sus procesos es esencial para prevenir accidentes. Por lo tanto:

1. Utilice gafas de seguridad con protección a los lados siempre que esté en el área de trabajo, aún cuando esté usando careta de soldar, protector para su cara u otro tipo de protección.

2. Use una careta que tenga el filtro correcto y lente para proteger sus ojos, cara, cuello, y oídos de las chispas y rayos del arco cuando se esté operando y observando las operaciones. Alerte a todas las personas cercanas de no mirar el arco y no exponerse a los rayos del arco eléctrico o el metal fundido.

3. Use guantes de cuero a prueba de fuego, camisa pesada de mangas largas, pantalón de ruedo liso, zapato alto al tobillo, y careta de soldar con capucha para el pelo, para proteger el cuerpo de los rayos y chispas calientes provenientes del metal fundido. En ocaciones un delantal a prueba de fuego es necesario para protegerse del calor radiado y las chispas.

4. Chispas y partículas de metal caliente puede alojarse en las mangas enrolladas de la camisa , el ruedo del pantalón o los bolsillos. Mangas y cuellos deberán mantenerse abotonados, bolsillos al frente de la camisa deberán ser cerrados o eliminados.

5. Proteja a otras personas de los rayos del arco y chispas calientes con una cortina adecuada no-flamable como división.

6. Use careta protectora además de sus gafas de seguridad cuando esté removiendo escoria o puliendo.

La escoria puede estar caliente y desprenderse con velocidad. Personas cercanas deberán usar gafas de seguridad y careta protectora.

FUEGO Y EXPLOSIONES -- El calor de las flamas y el arco pueden ocacionar fuegos. Escoria caliente y las chispas pueden causar fuegos y explosiones.

Por lo tanto:

1 . Remueva todo material combustible lejos del área de trabajo o cubra los materiales con una cobija a prueba de fuego. Materiales combustibles incluyen madera, ropa, líquidos y gases flamables, solventes, pinturas, papel, etc.

2. Chispas y partículas de metal pueden introducirse en las grietas y agujeros de pisos y paredes causando fuegos escondidos en otros niveles o espacios. Asegúrese de que toda grieta y agujero esté cubierto para proteger lugares adyacentes contra fuegos.

3. No corte, suelde o haga cualquier otro trabajo relacionado hasta que la pieza de trabajo esté totalmente limpia y libre de substancias que puedan producir gases inflamables o vapores tóxicos. No trabaje dentro o fuera de contenedores o tanques cerrados. Estos pueden explotar si contienen vapores inflamables.

4. Tenga siempre a la mano equipo extintor de fuego para uso instantáneo, como por ejemplo una manguera con agua, cubeta con agua, cubeta con arena, o extintor portátil. Asegúrese que usted esta entrenado para su uso.

5. No use el equipo fuera de su rango de operación. Por ejemplo, el calor causado por cable sobrecarga en los cables de soldar pueden ocasionar un fuego.

6. Después de termirar la operación del equipo, inspeccione el área de trabajo para cerciorarse de que las chispas o metal caliente ocasionen un fuego más tarde. Tenga personal asignado para vigilar si es necesario.

7. Para información adicional , haga referencia a la publicación NFPA Standard 51B, "Fire Prevention in Use of

Cutting and Welding Processes", disponible a través de la

National Fire Protection Association, Batterymarch Park,

Quincy, MA 02269.

CHOQUE ELECTRICO -- El contacto con las partes eléctricas energizadas y tierra puede causar daño severo o muerte. NO use soldadura de corriente alterna (AC) en áreas húmedas, de movimiento confinado en lugares estrechos o si hay posibilidad de caer al suelo.

17

SAFETY

1. Asegúrese de que el chasis de la fuente de poder esté conectado a tierra através del sistema de electricidad primario.

2. Conecte la pieza de trabajo a un buen sistema de tierra física.

3. Conecte el cable de retorno a la pieza de trabajo.

Cables y conductores expuestos o con malas conexiones pueden exponer al operador u otras personas a un choque eléctrico fatal.

4. Use el equipo solamente si está en buenas condiciones. Reemplaze cables rotos, dañados o con conductores expuestos.

5. Mantenga todo seco, incluyendo su ropa, el área de trabajo, los cables, antorchas, pinza del electrodo, y la fuente de poder.

6. Asegúrese que todas las partes de su cuerpo están insuladas de ambos, la pieza de trabajo y tierra.

7. No se pare directamente sobre metal o tierra mientras trabaja en lugares estrechos o áreas húmedas; trabaje sobre un pedazo de madera seco o una plataforma insulada y use zapatos con suela de goma.

8. Use guantes secos y sin agujeros antes de energizar el equipo.

9. Apage el equipo antes de quitarse sus guantes.

10. Use como referencia la publicación ANSI/ASC

Standard Z49.1 (listado en la próxima página) para recomendaciones específicas de como conectar el equipo a tierra. No confunda el cable de soldar a la pieza de trabajo con el cable a tierra.

CAMPOS ELECTRICOS Y MAGNETI-

COS - Son peligrosos. La corriente eléctrica fluye através de cualquier conductor causando a nivel local

Campos Eléctricos y Magnéticos

(EMF). Las corrientes en el área de corte y soldadura, crean EMF alrrededor de los cables de soldar y las maquinas. Por lo tanto:

1. Soldadores u Operadores que use marca-pasos para el corazón deberán consultar a su médico antes de soldar. El Campo Electromagnético (EMF) puede interferir con algunos marca-pasos.

2. Exponerse a campos electromagnéticos (EMF) puede causar otros efectos de salud aún desconocidos.

3. Los soldadores deberán usar los siguientes procedimientos para minimizar exponerse al EMF:

A. Mantenga el electrodo y el cable a la pieza de trabajo juntos, hasta llegar a la pieza que usted quiere soldar. Asegúrelos uno junto al otro con cinta adhesiva cuando sea posible.

B. Nunca envuelva los cables de soldar alrededor de su cuerpo.

C. Nunca ubique su cuerpo entre la antorcha y el cable, a la pieza de trabajo. Mantega los cables a un sólo lado de su cuerpo.

D. Conecte el cable de trabajo a la pieza de trabajo lo más cercano posible al área de la soldadura.

E. Mantenga la fuente de poder y los cables de soldar lo más lejos posible de su cuerpo.

Por lo tanto:

HUMO Y GASES -- El humo y los gases, pueden causar malestar o daño, particularmente en espacios sin ventilación. No inhale el humo o gases. El gas de protección puede causar falta de oxígeno.

1. Siempre provea ventilación adecuada en el área de trabajo por medio natural o mecánico. No solde, corte, o ranure materiales con hierro galvanizado, acero inoxidable, cobre, zinc, plomo, berílio, o cadmio a menos que provea ventilación mecánica positiva . No respire los gases producidos por estos materiales.

2. No opere cerca de lugares donde se aplique substancias químicas en aerosol. El calor de los rayos del arco pueden reaccionar con los vapores de hidrocarburo clorinado para formar un fosfógeno, o gas tóxico, y otros irritant es.

3. Si momentáneamente desarrolla inrritación de ojos, nariz o garganta mientras est á operando, es indicación de que la ventilación no es apropiada.

Pare de trabajar y tome las medidas necesarias para mejorar la ventilación en el área de trabajo.

No continúe operando si el malestar físico persiste.

4. Haga referencia a la publicación ANSI/ASC Standard

Z49.1 (Vea la lista a continuación) para recomendaciones específicas en la ventilación.

18

5. ADVERTENCIA-- Este producto cuando se utiliza para soldaduras o cortes, produce humos o gases, los cuales contienen químicos conocidos por el Estado de California de causar defectos en el nacimiento, o en algunos casos, Cancer. (California Health & Safety Code

§25249.5 et seq.)

MANEJO DE CILINDROS-- Los cilindros, si no son manejados correctamente, pueden romperse y liberar violentamente gases. Rotura repentina del cilindro, válvula, o válvula de escape puede causar daño o muerte.

Por lo tanto:

1.

Utilize el gas apropiado para el proceso y utilize un regulador diseñado para operar y reducir la presión del cilindro de gas . No utilice adaptadores. Mantenga las mangueras y las conexiones en buenas condiciones. Observe las instrucciones de operación del manufacturero para montar el regulador en el cilindro de gas comprimido.

2. Asegure siempre los cilindros en posición vertical y amárrelos con una correa o cadena adecuada para asegurar el cilindro al carro, transportes, tablilleros, paredes, postes, o armazón. Nunca asegure los cilindros a la mesa de trabajo o las piezas que son parte del circuito de soldadura . Este puede ser parte del circuito elélectrico.

SAFETY

2. Antes de dar mantenimiento en el interior de la fuente de poder, desconecte la fuente de poder del suministro de electricidad primaria.

3. Mantenga los cables, cable a tierra, conexciones, cable primario, y cualquier otra fuente de poder en buen estado operacional. No opere ningún equipo en malas condiciones.

4. No abuse del equipo y sus accesorios. Mantenga el equipo lejos de cosas que generen calor como hornos, también lugares húmedos como charcos de agua , aceite o grasa, atmósferas corrosivas y las inclemencias del tiempo.

5. Mantenga todos los artículos de seguridad y coverturas del equipo en su posición y en buenas condiciones.

6. Use el equipo sólo para el propósito que fue diseñado. No modifique el equipo en ninguna manera.

INFORMACION ADICIONAL DE SEGURIDAD -- Para más información sobre las prácticas de seguridad de los equipos de arco eléctrico para soldar y cortar, pregunte a su suplidor por una copia de "Precautions and Safe Practices for Arc Welding, Cutting and Gouging-Form

52-529.

Las siguientes publicaciones, disponibles através de la American Welding Society, 550 N.W. LeJuene Road,

Miami, FL 33126, son recomendadas para usted:

3. Cuando el cilindro no está en uso, mantenga la válvula del cilindro cerrada. Ponga el capote de protección sobre la válvula si el regulador no está conectado. Asegure y mueva los cilindros utilizando un carro o transporte adecuado. Evite el manejo brusco de los

MANTENIMIENTO DEL EQUIPO -- Equipo defectuoso o mal mantenido puede causar daño o muerte. Por lo tanto:

1. Siempre tenga personal cualificado para efectuar l a instalación, diagnóstico, y mantenimiento del equipo. No ejecute ningún trabajo eléctrico a menos que usted esté cualificado para hacer el trabajo.

1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.

2. AWS C5.1 - “Recommended Practices for Plasma Arc

Welding”.

3. AWS C5.2 - “Recommended Practices for Plasma Arc

Cutting”.

4. AWS C5.3 - “Recommended Practices for Air Carbon

Arc Gouging and Cutting”.

5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.

6. AWS C5.6 - “Recommended Practices for Gas Metal

Arc Welding”.

7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.

8. ANSI/AWS F4.1, “Recommended Safe Practices for

Welding and Cutting of Containers That Have Held

Hazardous Substances.”

9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.

19

SAFETY

SIGNIFICADO DE LOS SIMBOLOS -- Según usted avanza en la lectura de este folleto: Los Símbolos

Significan ¡Atención! ¡Esté Alerta! Se trata de su seguridad.

PELIGRO

Significa riesgo inmediato que, de no ser evadido, puede resultar inmediatamente en serio daño personal o la muerte.

ADVERTENCIA

CUIDADO

Significa el riesgo de un peligro potencial que puede resultar en serio daño personal o la muerte.

Significa el posible riesgo que puede resultar en menores daños a la persona.

Clase de envolvente

El código IP indica la clase de envolvente, es decir, el grado de protección contra la penetración de objetos sólidos o agua. Se provee protección contra el toque con un dedo, penetración de objetos sólidos de un tamaño superior a 12 mm y contra rocío de agua de hasta 60 grados de la vertical. El equipo marcado IP21S se puede almacenar, pero no se debe usar en el exterior durante periodos de precipitaciones a menos que esté protegido.

ADVERTENCIA

Este producto sólo se debe usar para corte por plasma Cualquier otro uso puede causar lesiones físicas y/o daños en los equipos.

ADVERTENCIA

Si el equipo se coloca sobre una superficie con una inclinación superior a 15°, se puede producir un volcamiento. Es posible que se produzcan lesiones físicas y/o daños importantes en los equipos.

Inclinación máxima permitida

15 °

ADVERTENCIA

Para evitar lesiones físicas y/o daños en los equipos, levante mediante el método y los puntos de sujeción que se indican en esta ilustración.

20

SAFETY

Safety - French

AVERTISSEMENT : Ces règles de sécurité ont pour but d'assurer votre protection.

Ils récapitulent les informations de précaution provenant des références dans la section des Informations de sécurité supplémentaires. Avant de procéder à l'installation ou d'utiliser l'unité, assurez-vous de lire et de suivre les précautions de sécurité ci-dessous, dans les manuels, les fiches d'information sur la sécurité du matériel et sur les étiquettes, etc. Tout défaut d'observer ces précautions de sécurité peut entraîner des blessures graves ou mortelles.

PROTÉGEZ-VOUS -- Les processus de soudage, de coupage et de gougeage produisent un niveau de bruit élevé et exige l'emploi d'une protection auditive.

L'arc, tout comme le soleil, émet des rayons ultraviolets en plus d'autre rayons qui peuvent causer des blessures

à la peau et les yeux. Le métal incandescent peut causer des brûlures. Une formation reliée à l'usage des processus et de l'équipement est essentielle pour prévenir les accidents. Par conséquent:

1. Portez des lunettes protectrices munies d'écrans latéraux lorsque vous êtes dans l'aire de travail, même si vous devez porter un casque de soudeur, un écran facial ou des lunettes étanches.

2. Portez un écran facial muni de verres filtrants et de plaques protectrices appropriées afin de protéger vos yeux, votre visage, votre cou et vos oreilles des étincelles et des rayons de l'arc lors d'une opération ou lorsque vous observez une opération. Avertissez les personnes se trouvant à proximité de ne pas regarder l'arc et de ne pas s'exposer aux rayons de l'arc électrique ou le métal incandescent.

3. Portez des gants ignifugiés à crispin, une chemise épaisse

à manches longues, des pantalons sans rebord et des chaussures montantes afin de vous protéger des rayons de l'arc, des étincelles et du métal incandescent, en plus d'un casque de soudeur ou casquette pour protéger vos cheveux. Il est également recommandé de porter un tablier ininflammable afin de vous protéger des étincelles et de la chaleur par rayonnement.

4. Les étincelles et les projections de métal incandescent risquent de se loger dans les manches retroussées, les rebords de pantalons ou les poches. Il est recommandé de garder boutonnés le col et les manches et de porter des vêtements sans poches en avant.

5. Protégez toute personne se trouvant à proximité des étincelles et des rayons de l'arc à l'aide d'un rideau ou d'une cloison ininflammable.

6. Portez des lunettes étanches par dessus vos lunettes de sécurité lors des opérations d'écaillage ou de meulage du laitier. Les écailles de laitier incandescent peuvent être projetées à des distances considérables. Les personnes se trouvant à proximité doivent également porter des lunettes

étanches par dessus leur lunettes de sécurité.

INCENDIES ET EXPLOSIONS -- La chaleur provenant des flammes ou de l'arc peut provoquer un incendie. Le laitier incandescent ou les étincelles peuvent également provoquer un incendie ou une explosion. Par conséquent :

1. Éloignez suffisamment tous les matériaux combustibles de l'aire de travail et recouvrez les matériaux avec un revêtement protecteur ininflammable. Les matériaux combustibles incluent le bois, les vêtements, la sciure, le gaz et les liquides combustibles, les solvants, les peintures et les revêtements, le papier, etc.

2. Les étincelles et les projections de métal incandescent peuvent tomber dans les fissures dans les planchers ou dans les ouvertures des murs et déclencher un incendie couvant à l'étage inférieur Assurez-vous que ces ouvertures sont bien protégées des étincelles et du métal incandescent.

3. N'exécutez pas de soudure, de coupe ou autre travail à chaud avant d'avoir complètement nettoyé la surface de la pièce à traiter de façon à ce qu'il n'ait aucune substance présente qui pourrait produire des vapeurs inflammables ou toxiques. N'exécutez pas de travail à chaud sur des contenants fermés car ces derniers pourraient exploser.

4. Assurez-vous qu'un équipement d'extinction d'incendie est disponible et prêt à servir, tel qu'un tuyau d'arrosage, un seau d'eau, un seau de sable ou un extincteur portatif.

Assurez-vous d'être bien instruit par rapport à l'usage de cet équipement.

5. Assurez-vous de ne pas excéder la capacité de l'équipement. Par exemple, un câble de soudage surchargé peut surchauffer et provoquer un incendie.

6. Une fois les opérations terminées, inspectez l'aire de travail pour assurer qu'aucune étincelle ou projection de métal incandescent ne risque de provoquer un incendie ultérieurement. Employez des guetteurs d'incendie au besoin.

7. Pour obtenir des informations supplémentaires, consultez le NFPA Standard 51B, "Fire Prevention in Use of Cutting and Welding Processes", disponible au National Fire

Protection Association, Batterymarch Park, Quincy, MA

02269.

CHOC ÉLECTRIQUE -- Le contact avec des pièces électriques ou les pièces de mise à la terre sous tension peut causer des blessures graves ou mortelles. NE PAS utiliser un courant de soudage c.a. dans un endroit humide, en espace restreint ou si un danger de chute se pose.

21

SAFETY

1. Assurez-vous que le châssis de la source d'alimentation est branché au système de mise à la terre de l'alimentation d'entrée.

2. Branchez la pièce à traiter à une bonne mise de terre électrique.

3. Branchez le câble de masse à la pièce à traiter et assurez une bonne connexion afin d'éviter le risque de choc électrique mortel.

4. Utilisez toujours un équipement correctement entretenu. Remplacez les câbles usés ou endommagés.

5. Veillez à garder votre environnement sec, incluant les vêtements, l'aire de travail, les câbles, le porte-

électrode/torche et la source d'alimentation.

6. Assurez-vous que tout votre corps est bien isolé de la pièce à traiter et des pièces de la mise à la terre.

7. Si vous devez effectuer votre travail dans un espace restreint ou humide, ne tenez vous pas directement sur le métal ou sur la terre; tenez-vous sur des planches sèches ou une plate-forme isolée et portez des chaussures à semelles de caoutchouc.

8. Avant de mettre l'équipement sous tension, isolez vos mains avec des gants secs et sans trous.

9. Mettez l'équipement hors tension avant d'enlever vos gants.

10. Consultez ANSI/ASC Standard Z49.1 (listé à la page suivante) pour des recommandations spécifiques concernant les procédures de mise à la terre. Ne pas confondre le câble de masse avec le câble de mise à la terre.

CHAMPS ÉLECTRIQUES ET MAGNÉTIQUES — comportent un risque de danger. Le courant électrique qui passe dans n'importe quel conducteur produit des champs électriques et magnétiques localisés. Le soudage et le courant de coupage créent des champs électriques et magnétiques autour des câbles de soudage et l'équipement. Par conséquent :

1. Un soudeur ayant un stimulateur cardiaque doit consulter son médecin avant d'entreprendre une opération de soudage. Les champs électriques et magnétiques peuvent causer des ennuis pour certains stimulateurs cardiaques.

2. L'exposition à des champs électriques et magnétiques peut avoir des effets néfastes inconnus pour la santé.

3. Les soudeurs doivent suivre les procédures suivantes pour minimiser l'exposition aux champs électriques et magnétiques :

A. Acheminez l'électrode et les câbles de masse ensemble. Fixez-les à l'aide d'une bande adhésive lorsque possible.

B. Ne jamais enrouler la torche ou le câble de masse autour de votre corps.

C. Ne jamais vous placer entre la torche et les câbles de masse. Acheminez tous les câbles sur le même côté de votre corps.

D. Branchez le câble de masse à la pièce à traiter le plus près possible de la section à souder.

E. Veillez à garder la source d'alimentation pour le soudage et les câbles à une distance appropriée de votre corps.

LES VAPEURS ET LES GAZ -- peuvent causer un malaise ou des dommages corporels, plus particulièrement dans les espaces restreints. Ne respirez pas les vapeurs et les gaz. Le gaz de protection risque de causer l'asphyxie. Par conséquent :

1. Assurez en permanence une ventilation adéquate dans l'aire de travail en maintenant une ventilation naturelle ou à l'aide de moyens mécanique.

N'effectuez jamais de travaux de soudage, de coupage ou de gougeage sur des matériaux tels que l'acier galvanisé, l'acier inoxydable, le cuivre, le zinc, le plomb, le berylliym ou le cadmium en l'absence de moyens mécaniques de ventilation efficaces. Ne respirez pas les vapeurs de ces matériaux.

2. N'effectuez jamais de travaux à proximité d'une opération de dégraissage ou de pulvérisation.

Lorsque la chaleur

ou le rayonnement de l'arc entre en contact avec les vapeurs d'hydrocarbure chloré, ceci peut déclencher la formation de phosgène ou d'autres gaz irritants, tous extrêmement toxiques.

3. Une irritation momentanée des yeux, du nez ou de la gorge au cours d'une opération indique que la ventilation n'est pas adéquate. Cessez votre travail afin de prendre les mesures nécessaires pour améliorer la ventilation dans l'aire de travail. Ne poursuivez pas l'opération si le malaise persiste.

4. Consultez ANSI/ASC Standard Z49.1 (à la page suivante) pour des recommandations spécifiques concernant la ventilation.

22

SAFETY

5. AVERTISSEMENT : Ce produit, lorsqu'il est utilisé dans une opération de soudage ou de coupage, dégage des vapeurs ou des gaz contenant des chimiques considéres par l'état de la Californie comme étant une cause des malformations congénitales et dans certains cas, du cancer.

(California Health & Safety Code §25249.5 et seq.)

MANIPULATION DES CYLINDRES --

La manipulation d'un cylindre, sans observer les précautions nécessaires, peut produire des fissures et un

échappement dangereux des gaz.

Une brisure soudaine du cylindre, de la soupape ou du dispositif de surpression peut causer des blessures graves ou mortelles. Par conséquent :

1.

Utilisez toujours le gaz prévu pour une opération et le détendeur approprié conçu pour utilisation sur les cylindres de gaz comprimé. N'utilisez jamais d'adaptateur.

Maintenez en bon état les tuyaux et les raccords. Observez les instructions d'opération du fabricant pour assembler le détendeur sur un cylindre de gaz comprimé.

2. Fixez les cylindres dans une position verticale, à l'aide d'une chaîne ou une sangle, sur un chariot manuel, un châssis de roulement, un banc, un mur, une colonne ou un support convenable. Ne fixez jamais un cylindre à un poste de travail ou toute autre dispositif faisant partie d'un circuit électrique.

3. Lorsque les cylindres ne servent pas, gardez les soupapes fermées. Si le détendeur n'est pas branché, assurez-vous que le bouchon de protection de la soupape est bien en place. Fixez et déplacez les cylindres à l'aide d'un chariot manuel approprié. Toujours manipuler les cylindres avec soin.

4. Placez les cylindres à une distance appropriée de toute source de chaleur, des étincelles et des flammes. Ne jamais amorcer l'arc sur un cylindre.

5. Pour de l'information supplémentaire, consultez CGA

Standard P-1, "Precautions for Safe Handling of Compressed Gases in Cylinders", mis à votre disposition par le Compressed Gas Association, 1235 Jefferson Davis

Highway, Arlington, VA 22202.

ENTRETIEN DE L'ÉQUIPEMENT -- Un équipement entretenu de façon défectueuse ou inadéquate peut causer des blessures graves ou mortelles. Par conséquent :

1. Efforcez-vous de toujours confier les tâches d'installation, de dépannage et d'entretien à un personnel qualifié.

N'effectuez aucune réparation électrique à moins d'être qualifié à cet effet.

2. Avant de procéder à une tâche d'entretien à l'intérieur de la source d'alimentation, débranchez l'alimentation

électrique.

3. Maintenez les câbles, les fils de mise à la terre, les branchements, le cordon d'alimentation et la source d'alimentation en bon état. N'utilisez jamais un équipement s'il présente une défectuosité quelconque.

4. N'utilisez pas l'équipement de façon abusive. Gardez l'équipement à l'écart de toute source de chaleur, notamment des fours, de l'humidité, des flaques d'eau, de l'huile ou de la graisse, des atmosphères corrosives et des intempéries.

5. Laissez en place tous les dispositifs de sécurité et tous les panneaux de la console et maintenez-les en bon état.

6. Utilisez l'équipement conformément à son usage prévu et n'effectuez aucune modification.

INFORMATIONS SUPPLÉMENTAIRES RELATIVES À LA

SÉCURITÉ -- Pour obtenir de l'information supplémentaire sur les règles de sécurité à observer pour l'équipement de soudage à l'arc électrique et le coupage, demandez un exemplaire du livret "Precautions and Safe Practices for

Arc Welding, Cutting and Gouging", Form 52-529.

Les publications suivantes sont également recommandées et mises à votre disposition par l'American Welding Society, 550 N.W. LeJuene Road, Miami, FL 33126 :

1. ANSI/ASC Z49.1 - “Safety in Welding and Cutting”.

2. AWS C5.1 - “Recommended Practices for Plasma Arc

Welding”.

3. AWS C5.2 - “Recommended Practices for Plasma Arc

Cutting”.

4. AWS C5.3 - “Recommended Practices for Air Carbon

Arc Gouging and Cutting”.

5. AWS C5.5 - “Recommended Practices for Gas Tungsten Arc Welding“.

6. AWS C5.6 - “Recommended Practices for Gas Metal

Arc Welding”.

7. AWS SP - “Safe Practices” - Reprint, Welding Handbook.

8. ANSI/AWS F4.1, “Recommended Safe Practices for

Welding and Cutting of Containers That Have Held

Hazardous Substances.”

9. CSA Standard - W117.2 = Safety in Welding, Cutting and Allied Processes.

23

SAFETY

SIGNIFICATION DES SYMBOLES

Ce symbole, utilisé partout dans ce manuel, signifie "Attention" ! Soyez vigilant ! Votre sécurité est en jeu.

DANGER Signifie un danger immédiat. La situation peut entraîner des blessures graves ou mortelles.

AVERTISSEMENT

Signifie un danger potentiel qui peut entraîner des blessures graves ou mortelles.

ATTENTION

Signifie un danger qui peut entraîner des blessures corporelles mineures.

Classe de protection de l’enveloppe

L’indice de protection (codification IP ) indique la classe de protection de l’enveloppe, c’est-à-dire, le degré de protection contre les corps solides étrangers ou l’eau. L’enveloppe protège contre le toucher, la pénétration d’objets solides dont le diamètre dépasse 12 mm et contre l’eau pulvérisée à un angle de jusqu’à 60 degrés de la verticale. Les équipements portant la marque IP21S peuvent être entreposés à l’extérieur, mais ne sont pas conçus pour être utilisés à l’extérieur pendant une précipitation à moins d’être à l’abri.

AVERTISSEMENT

Ce produit a été conçu pour la découpe au plasma seulement. Toute autre utilisation pourrait causer des blessures et/ou endommager l’appareil.

AVERTISSEMENT

L’équipement pourrait basculer s’il est placé sur une surface dont la pente dépasse 15°. Vous pourriez vous blesser ou endommager l’équipement de façon importante.

Angle d’inclinaison maximal

15 °

24

AVERTISSEMENT

Soulevez à l’aide de la méthode et des points d’attache illustrés afin d’éviter de vous blesser ou d’endommager l’équipement.

System Diagrams

26 system diagrams

Below are some abbreviations used throughout this manual.

ABBREVIATIONS:

A/C - Air Curtain

ACC - Air Curtain Control

AHC - Automatic Height Control

CGC - Combined Gas Control

ICH - Interface Control Hub

IGC - Integrated Gas Control

PDB - Power Distribution Box

RAS - Remote Arc Starter

WIC - Water Injection Control

system diagrams

System Diagrams

The following illustration shows configurations available on the Integrated Gas Control (IGC) System. With this system, ESAB offers a variety of configurations to meet customer’s requirements. Below are the descriptions of each configuration.

1.

Base System

This system is the basic configuration for the IGC Plasma System. It contains major components, such as the Power

Supply, PT-36 Torch, Remote Arc Starter (RAS), Combined Gas Control (CGC), Power Distribution Box (PDB) and

Automatic Height Control (AHC). This system will meet most customers’ needs in cutting carbon steel, stainless steel, and aluminum. It also has the functionality of marking on carbon steel and stainless steel with the same torch and the same consumables. By simply alternating cutting and marking mode on the go, this system is capable of cutting and marking in the same part program without changing the consumables.

2.

Base System + ACC

This system includes the above Base System and ESAB Air Curtain Control (ACC). Air Curtain is a device used to improve the performance of plasma arc when cutting underwater. The Air Curtain output is triggered from the AHC electrical cabinet.

3.

Base System + AHC

This system includes the Base System plus the ESAB AHC, called a “B4 lifter”. In this configuration, ICH will control plasma sequence, and also the AHC sequence. Customer CNC needs to provide the start signal and corner signal for normal cutting.

4.

Base System + WIC

This system is configured to introduce the Water Injection Control (WIC), a module used to regulate cut water flow to shield the cutting process. This configuration is to meet needs of a customer who wants to cut stainless steel without using H35. This system still uses the standard PT-36 torch, but a different set of consumables. Similar to the dry system, this WIC system can also do marking with water shield.

5.

Base System + WIC + ACC (diagram shows all options)

This complete system gives the opportunity for customer to cut carbon steel, stainless steel, and aluminum.

Customer has the capability to cut stainless steel with Water Injection Control (WIC), and underwater with the help of Air Curtain Control (ACC).

27

Base System (EPP-202/362)

Height Control)

THREE PHASE POWER

P/S-CAN

PS-W

(customer supplied) CNC-PWR

CNC-IO

Work Table

CNC-WIC-PWR

CNC-ESTOP

ICH-AUX

ICH-PDB-PWR

ICH-WIC-CAN

ICH-AHC-CAN

ICH-AHC-PWR

Descriptions

30

Description

Description

Power Supplies

The IGC system can use different plasma power supplies. ESAB provides the EPP-202/362, with various input voltages and current output for your requirements. For details about our power supplies, please refer to the power supply’s specific manual.

380/400V Power Supplies

460/575V Power Supplies

Part Number

Output

(100 % duty cycle)

Voltage

Current range DC (marking)

Current range DC (cutting)

Power

Open Circuit Voltage (OCV)

Voltage (3-phase)

Current (3- phase)

Input

Frequency

KVA

Power

Power Factor

Input Fuse (recommended)

Weight - lbs (kg)

EPP-202,

200/230/460V,

60Hz,

0558011310

360 VDC

200/230/460 V

115/96/50 A RMS

60 Hz

39.5 KVA

35.5 KW

90%

150/125/70 A

941 (427)

EPP-202,

380/400V CCC,

50Hz,

0558011311

160 VDC

10A to 36A

EPP-202,

400V CE,

50Hz,

0558011312

30A to 200A

32KW

342/360 VDC

380/400 V

60/57 A RMS

50 Hz

39.5 KVA

35.5 KW

90%

80/75 A

939 (426)

360 VDC

400 V

57 A RMS

50 Hz

39.5 KVA

35.5 KW

90%

75 A

957 (434)

EPP-202,

575V,

60Hz,

0558011313

366 VDC

575 V

43 A RMS

60 Hz

39.5 KVA

35.5 KW

90%

60 A

1085 (492)

31

Description

The IGC system can use different plasma power supplies. ESAB provides the EPP-202/362, with various input voltages and current output for your requirements. For details about our power supplies, please refer to the power supply’s specific manual.

380/400V Power Supplies

460/575V Power Supplies

Part Number

Output

(100 % duty cycle)

Voltage

Current range DC (marking)

Current range DC (cutting)

Power

Open Circuit Voltage (OCV)

Voltage (3-phase)

Current (3- phase)

Frequency

KVA Input

Power

Power Factor

Input Fuse (recommended)

Weight - lbs (kg)

EPP-362,

460V,

60Hz,

0558011314

360 VDC

460 V

109 A RMS

60 Hz

88.7 KVA

83.7 KW

94%

150 A

1130 (514)

EPP-362,

380V CCC,

50Hz,

0558011315

200 VDC

10A to 36A

30A to 360A

72KW

364 VDC

380 V

134 A RMS

50 Hz

88.5 KVA

85.1 KW

96%

175 A

1130 (514)

EPP-362,

400V CE,

50Hz,

0558011316

360 VDC

400 V

128 A RMS

50 Hz

88.6 KVA

84.7 KW

96%

175 A

1140 (518)

EPP-362,

575V,

60Hz,

0558011317

360 VDC

575 V

88 A RMS

60 Hz

87.7 KVA

84.0 KW

96%

125 A

1125 (512)

32

Description

Interface Control Hub (ICH) p/n 0558009607

The Interface Control Hub (ICH) provides the plasma process control including current, gas and torch height (if applicable). It also serves as the interface between the customer CNC and the ESAB IGC plasma system. At the same time, it functions as a hub for CAN communication.

Specifications

Dimensions: 7.50” (190.5 mm) high x 10.125” (257.2 mm) wide x 6.50” (165.1 mm) deep

Weight: 8.5 lbs. (3.9 kg)

Operating Temperature

Max Humidity

Enclosure Degree of Protection

5-40°C (41-104°F)

95% non-condensing

IP54

Input Power Reduction

230 VAC, 5 Amps

120 VAC, 3 Amps

ICH Mounting Dimensions

 0.28”

(7.1 mm)

11.50”

(292.1 mm)

3.00”

(76.2 mm)

33

Description

CNC Direct Board

p/n 0558009991

The CNC Direct board is the control and interface board inside the ICH. It provides the process control, interface to customer CNC, system setup, panel interface, etc. Below is a skeleton of this CNC board. It shows the major components and the major connectors on the board. The table below gives the functions of these connections.

34

Port

X1

X2

X3

X4

X6

X7

X8

X9

XS1

Function

CNC Control, DB37

RS232

CAN1 and 24VDC input

CAN2

Spare I/O

Reserved

Aux Control, DB25

ASIOB1 Communication

Switches: Plasma Start, Gas Test

Port

XS2

XP1

XP2

S2, S3

V12

V13

V41

J1

Function

Switches: Local/Remote, Station Select and Screen Select

Programming port 1

Programming port 2

ID switches, by default S2=1, S3=4

IC, Main processor

EEPROM, Save data for system configuration, error history, etc.

IC for ASIOB1

DIP switches:

1- 120R for CAN1, 2- 120R for CAN2,

3- VCC to ASIOB1, 4- GND to ASIOB1

Default: 1 - ON, 2 - ON, 3 - OFF, 4 - OFF

Description

Combined Gas Control (CGC) p/n 0558010241

The Combined Gas Control regulates the output of the plasma gas (PG) selected from the three plasma gas inlets (N2/Air, O2/H35 and Argon) and controls the flow of shield gas (SG). It is powered by 24 Volts (AC and DC) from the RAS Box and receives commands via the CAN-bus directly from the ICH.

Like the Shield Gas Box and the Plasma Gas Box, the gas output of the

Combined Gas Control is monitored and fed back through the CAN-bus to ICH for self-diagnosis.

There are four gas inputs (three plasma gases, one shield gas), two gas outputs (SG, PG), and one outboard connection (air curtain). The four inputs are fitted with porous bronze filters and "G-1/4" (BSPP) female right-hand thread. Either of two adaptor fitting kits are available to adapt standard metric or CGA hose connections. The gas fittings and adaptors are listed in the following tables.

Specifications

Dimensions: 8.5” (215.9 mm) long x 6.0” (152.4 mm) wide x 4.5” (114.3 mm) high

Weight: 8.65 lbs. (3.9 kg)

Power Input: 24 VAC/DC

* 6.25”

(158.8 mm)

NOTE:

CAN cable must be routed separate from torch leads.

* 8.50” (215.9 mm) including fittings on front and back

4.75”

(120.7 mm)

4.50”

(114.3 mm)

35

Description

PT-36 m3 G2

Plasma

Torch

Component Locator Designation

(See following component illustrations)

RAS Box

Customer

Supplied

Gases

Power

N2/Air

O2/H35

Air

N2/Air

Argon

CAN

D

J

F

E

A

B

C

G

H

Combined

Gas Control

J

CNC or

Process

Controller

Combined Gas Control Component Locator Designations

Note:

Refer to enclosed tables for all available hoses and cables.

Connections

There are two cables connected to the Combined Gas Control: one is 24V power, the other is CAN. There are four gas inputs (N2/Air, O2/H35, Argon and SG) and two gas outputs (PG and SG). The gas fittings are listed below.

Note:

Chassis must be connected to the machine ground.

Inputs

Output

Gas

N2/Air

O2/H35

Argon

SG

PG

SG

Fitting

1/8” NPT x “A” Inert Gas RH Female

1/4” NPT x “B” Fuel LH Male

1/4” NPT x “B” Inert Gas RH Female

1/4” NPT x “B” Oxygen RH Male

Connection, Male

0.125NPT to "A" Size

ESAB

P/N

631475

83390

74S76

83389

2064113

36

A

Description

B

C D E F J

J H G

37

Description

CAUTION

When connecting fuel gas lines to the oxygen plasma gas input, or reconnecting oxygen after fuel gas use, extra care must be taken to assure that all lines from input through the torch are completely purged.

It is recommended to purge the system and torch lines with nitrogen for 60 seconds prior to reconnection, then purge the nitrogen for 60 seconds with the new supply gas before cutting.

Outputs

Gas

Plasma

Metric

Input

Adaptors

Shield

Air Curtain

Plasma

CGA

Input

Adaptors

Shield

Air Curtain

Fitting

Argon

N2/Air

O2/H35/F5*

N2/Air

Air

G-1/4” right hand male x G-1/4” right hand male

G-1/4” right hand male x G-1/4” right hand male

G-1/4” right hand male x G-1/4” right hand male

G-1/4” right hand male x G-1/4” right hand male

G-1/4” right hand male x “B” Air/Water right hand male

* Another adapator is required when connecting H35/F5.

Part Number - 0558010246 (G-1/4” right hand female x G-1/4” left hand male)

Argon

N2/Air

O2/H35/F5*

N2/Air

Air

G-1/4” right hand male x “B” Inert Gas right hand female

G-1/4” right hand male x “B” Inert Gas right hand female

G-1/4” right hand male x “B” Oxygen right hand male

G-1/4” right hand male x “B” Air/Water right hand male

G-1/4” right hand male x “B” Air/Water right hand male

* Another adapator is required when connecting H35/F5.

Part Number - 0558010245 (“B” Oxygen right hand female x “B” Fuel Gas left hand male)

SG

PG

Air Curtain

1/4” NPT x 5/8"-18 LH male

1/4” NPT x “B” Inert Gas right hand female

1/8” NPT x “B” Inert Gas left hand female

ESAB

P/N

0558010163

0558010163

0558010163

0558010163

0558010165

0558010166

0558010166

0558010167

0558010165

0558010165

10Z30

2064113

08030280

Note:

The PT-36 Torch is shipped with hose lengths that will not allow the Combined Gas Control to be mounted more than two meters (6.6 feet) away from the torch. Please make sure the routing of the standard hoses will allow them to bend and connect properly before permanently mounting the Combined Gas Control.

If additional distance between the torch and box is required, the standard torch hose assembly will need extension hoses to create longer lengths. Extension hoses can be ordered to connect to the existing hose assembly.

BOTH HOSES MUST BE ORDERED

Extension Hose, Plasma Gas, 1M (3.3 ft.) ESAB P/N 0558008996

Extension Hose, Shield Gas, 1M (3.3 ft.) ESAB P/N 0558008997

The longer hose lengths will require that the pierce time be increased and a longer lead-in time must be specified. This is due to the additional time required to purge the N

2

start gas from the hose before the O

2

cut gas becomes affective. This condition occurs when cutting carbon steel with oxygen.

38

Description

Each gas has a requirement for maximum flow and pressure as shown in chart below:

Plasma

Shield

Air Curtain

Gas

Argon

O2/H35/F5

N2/Air

N2/Air

Air

Gas &

Pressure

Air (85psi / 5.9bar)

Process

Nitrogen

(125psi / 8.6bar)

Oxygen

(125psi / 8.6bar)

CGC Flow Diagram

Pressure

125 psi (8.6 bar), 200 SCFH (5.7 SCMH)

125 psi (8.6 bar) for O2, 75 psi (5.2 bar) for H35/F5, 255 SCFH (7.2 SCMH)

125 psi (8.6 bar), 255 SCFH (7.2 SCMH)

125 psi (8.6 bar), 353 SCFH (10.0 SCMH)

80 psi (5.5 bar), 1200 SCFH (34.0 SCMH)

Maximum Gas Flow Rates - CFH (CMH)

With PT-36 Torch

269

(7.6)

385

(10.9)

66

(1.9)

Gas Purity

Clean, Dry, Oil Free

Filtered to 25 microns

99.99%, Filtered to 25 microns

99.5%, Filtered to 25 microns

39

40

Description

Combined Gas Control Plumbing Schematic

Ar

V1

PT1

O2/H35/F5

V2

PV1 PT3

Plasma Gas

N2/Air

V3

P

1

∆P

P

2

PT2

PV2

N2/Air

PT = Pressure Transducer

PV = Proportional Valve

Shield Gas

Description

Combined Gas Control Electrical Schematic

6

7

8

Con 1

3

4

5

1

2

CAN H Out

CAN L Out

CAN Gnd

CAN H In

CAN L In

NC

NC

NC

Con 2

3

4

1

2

24VAC In

24VAC In

-24VDC In

+24VDC In

11

13

15

5

7

9

1

CO 1

3

2

4

6

8

10

12

14

16

LED 1

LED 2

41

CGC Mounting Dimensions

p/n 0558008459

Description

0.313”

(8.0mm)

 0.281

(7.1mm)

CGC Bottom View

0.37”

(9.5mm)

7.50”

(190.5mm)

4.72”

(120.0mm)

4.00”

(101.6mm)

0.37”

(9.5mm)

M6

0.90”

(22.9mm)

2.52”

(64.0mm)

42

Description

Troubleshooting

The Combined Gas Control has two visible LEDs that indicate its’ status. When the GREEN LED is on, this indicates power is applied to the unit and the rate at which it is flashing shows the operational status of the unit (refer to the chart below). If the Green LED is not ON, check the power cable, which should carry 24VDC and 24VAC from the Control Power Box.

If the Yellow LED is not ON, either there is no power to the unit or the station is not selected.

The Combined Gas Control is highly integrated and is treated as a “Black Box”. If one or more functions of the unit stop working, the unit must be returned for repair. Contact technical support for troubleshooting and RMA assistance.

LED

Green

Yellow

Status

OFF

10% ON, 90% OFF

50% ON, 50% OFF

90% ON, 10% OFF

ON

Meaning

Power OFF

Boot loader is running

Application is running

Application is running, CAN is available

Station is selected

Replacement Parts

NOTE:

Additional Parts lists, Schematics and Wiring Diagrams on 279.4 mm x 431.8 mm

(11” x 17”) paper are included inside the back cover of this manual.

43

Description

Power Distribution Box (PDB) p/n 0558010242

The Power Distribution Box (PDB) takes 230 VAC or

115 VAC depending on the switch setup. Outputs of 24 VDC and 24 VAC are to supply power to the

Combined Gas Control (CGC). The PDB also recieves commands from the ICH via the A/C CTRL port. This is for controlling the air curtain outputs. By default, the PDB can control one CGC and one air curtain. If needed, a second CGC and air curtain can be controlled after putting another power block and necessary connectors inside. Power block and connectors kit part number is 0558010247.

Specifications

Dimensions: 10” (254 mm) long x 9.5” (241.3 mm) wide x 4.25” (108 mm) high

Weight: 9.0 lbs. (4.1 kg)

Input Power

230 VAC, 2 Amps

115 VAC, 3 Amps

Output Power 24 V AC/DC

PDB Mounting Dimensions

8.00”

(203.2 mm)

6.50”

(165.1 mm)

M6

.875”

(22.2 mm)

3.00”

(76.2 mm)

4.25”

(108.0 mm)

10.00”

(254.0 mm)

44

Description

PDB Mounting Plate Dimensions

p/n 0558008794

5.75”

(146.0mm)

 0.281

(7.1mm)

0.313”

(8.0mm) 0.50”

(12.7mm)

9.50”

(241.3mm)

PDB Schematic

From the factory, the PDB’s 230/115VAC switch is set to 230VAC. If the customer requires a different input voltage, then change the switch to 115 VAC. For more information see fold-out schematics included with this manual.

45

Description

Remote Arc Starter (RAS) p/n 0558012260

The Remote Arc Starter is more commonly referred to as the RAS

Box. The RAS box provides a voltage feedback to the plasma torch lift. This voltage is used to regulate the torch height while cutting, maintaining the proper height of the torch above the work piece.

Within the RAS box there is a High Frequency/Voltage Divider circuit board which provides pilot arc ionization and voltage divider functions to regulate torch height.

Coolant connections and torch power connections are made within the RAS box and provide an interface between the power supply, coolant circulator and the torch.

Specifications

Dimensions: 8.75” (222.3 mm) high x 7.50” (190.5 mm) wide x 17.00” (431.8 mm) deep

Weight: 28.5 lbs. (12.9 kg)

46

8.75”

(222.3 mm)

7.50”

(190.5 mm)

17.00”

(431.8 mm)

G, H

Description

Remote Arc Starter Connections

Note:

Chassis must be connected to the machine ground.

A

F E

D

C

J

Letter

A

C

D

E

F

G, H

I

J

Description

3 Pin Voltage Divider Connection to the Lift

14 Pin Amphenol Power Supply Connection

Power Supply Enable

Coolant Inlet - Flowing to the Torch

Coolant Return - Flowing back to the Coolant Circulator from the Torch

Strain Relief Fittings

Torch Shroud Connection

Machine Ground Connection

I

47

48

Description

Power

Supply

Control

Box

Component Locator Designation

(See following component illustrations)

PS & CC Control Cable

Power Cable

Pilot Arc Cable

Coolant Supply Hose

Coolant Return Hose

H

E

F

C

G

I

Power, Pilot Arc, Coolant

Remote

Arc

Starter

A

VDR Cable

Power Supply Enable

D

AHC / Lift

( Optional )

PT-36 m3 CAN

Plasma

Torch

Remote Arc Starter Box Component Locator Designations

NOTE: Refer to enclosed tables for all available hoses and cables.

Description

RAS Box Mounting Dimensions

The box has four M6 x 1 threaded mounting holes shown in pattern below.

CAUTION

If fasteners are threaded into the box from below, the length of the fasteners must not allow them to extend more than 0.25” beyond the edge of the internal female threads. If fasteners are too long they can interfere with the components inside the box.

5.00”

(127.00 mm)

1.00”

(2.54 mm)

2.75”

(69.85 mm)

13.75”

(349.25 mm)

RAS Box Mounting Plate Dimensions

p/n 0558008461 18.50"

(469.9 mm)

17.50"

(444.5 mm)

8.75"

(222.3 mm)

3.25"

(82.6 mm)

7.50"

(190.5 mm)

6.50"

(165.1 mm)

49

Air Curtain Control (ACC)

Description p/n 37440 p/n 0558010243

Specifications

Dimensions: 6.00” high (152.4 mm) x 9.56” wide (242.8 mm) x 2.50” deep (63.5 mm)

Weight: 4.00 lbs. (1.81 kg)

Input Power: 24 VAC

The Air Curtain is a device used to improve the performance of plasma arc when cutting underwater. The device mounts onto the torch and produces a curtain of air. This allows the plasma arc to operate in a relatively dry zone to reduce noise, fume, and arc radiation, even though the torch has been submerged.

The Air Curtain requires a source of compressed air that needs to be clean, dry and oil-free. It should be delivered at 80 psi @ 1200 cfh (5.5 bar @ 34 CMH).

50

ACC Mounting Dimensions

Description

9.31”

(236.5 mm)

5.81”

(147.6 mm)

2.91”

(74.0 mm)

.312” x .500” slots

1.16”

(29.5 mm)

ACC Component Connections

7.00”

(177.8 mm)

A

NOTE:

Cables “A” and “B” are listed in the ACC

Component Connections, INSTALLATION section of this manual.

Compressed Air

B

51

Description

Water Injection Control (WIC) p/n 0558009370

The Water Injection Control (WIC) regulates the flow of cut water supplied to the plasma torch. This water is used as a shield in the cutting process. This shield assists in forming the plasma arc and also cools the cut surface. The selection and output of cut water is performed and controlled by the ICH. The WIC consists of a water regulator, pump and a closed feedback loop between proportional valve and flow sensor. This is controlled by a local

Process Control Unit (PCU). The PCU communicates via CAN to the ICH while controlling the proportional and solenoid valves.

The WIC is monitored and sends feedback signals through the CAN bus to the ICH for diagnostic purposes.

For more detailed information on the Water Injection Control (WIC), see manual #0558009491.

Dimensions (Electrical module)

Dimensions (Pump Module)

Weight (Electrical module)

Weight (Pump Module)

Water Requirements

Air Supply (anti-freezing function)

Pump

Motor

Pressure Regulator

Pressure Transducer

Proportional Valve

Flow Sensor

Air Solenoid

Specifications

163 mm x 307 mm x 163 mm (6.4 in x 12.1 in x 6.4 in)

465 mm x 465 mm x 218 mm (18.3 in x 18.3 in x 8.6 in)

15 lb. dry (6.8 kg)

60 lb. dry (27.2 kg)

Tap water with an allowable water hardness of <2 ppm as CaCO3 and Conductivity:

>200,000 ohms per inch, filtered at 5 microns. 1 gpm (3.8 l/min) minimum flow rate @ 20 psi (1.4 bar).

250 CFH @ 80 psi (7.1 cmh @ 5.5 bar)

Positive displacement, rotary vane with adjustable by-pass valve (250 psi / 17.2 bars maximum), CW rotation, Capacity: 1.33 GPM @ 150 psi (5.04 l/min @ 10.3 bar),

Nominal speed: 1725 rpm, Temperature rating: 150 o F (66 o C)

1/2 HP, 230 VAC single phase, 60 Hz, 1725 RPM, 3.6A current,

Temperature rating: 150 o F (66 o C)

Inlet water pressure: 100 psi (6.9 bar) maximum

Outlet water pressure: 20 psi (1.4 bar) factory set

Maximum pressure range: 0 - 200 psi (0 - 13.8 bar)

Temperature range: -40

Supply voltage: 24 VDC o - 257 o F (-40 o - 125 o C)

Pressure signal output: 4 mA for 0 psi, 20 mA for 200 psi (13.8 bar). Regulated to 1 to 5 VDC with 250 ohm resistor.

Supply voltage: 24 VDC

Full load current: 500 mA, Input control signal: 0-10 VDC.

Coil: Standard Voltage: 24 VDC, Operating current: 100-500 mA,

Valve: Orifice size: 3/32”, Cv:0.14 (fully open)

Operating differential pressure: 115 psi (8.0 bar) ; Max. flow 1.5 gpm

Maximum fluid temperature: 150 o F (66 o C)

Maximum operating pressure: 200 psi (13.8 bar),

Operating temperature: -4 o - 212 o F (-20 o - 100 o C), Input power: 5 - 24 VDC @ 50 mA maximum, Output signal: 58 - 575 Hz, Flow range: 0.13 - 1.3 gpm

Supply voltage: 24 VDC, Maximum operating pressure: 140 psi (9.7 bar) , Operating temperature: 32 o - 77 o F (0 - 25 o C)

52

Description

Automatic Height Control (AHC) p/n 0560947166

The B4 lift assembly provides vertical motion for the PT-36 plasma torch, using a typical motor, screw, and slide configuration. The motor turns an enclosed spindle screw, which in turn raises/lowers the lifting plate along linear rails. Directional commands given from the plasma controller determine the direction of the travel. Fixed limit switches are included to prevent upper and lower lift’s over travel.

The lift assembly also contains components necessary to control height over work surfaces; initial, piercing, and cutting heights are encoder controlled during the plasma cycle. During part production, height is automatically controlled by taking voltage measurements between the torch electrode and work surface.

The B4 lifts utilize an Omni Soft Touch® assembly to protect the system during station crashes. Proximity switches monitor torch position in the torch holder. If the torch is jarred in any direction, the process will stop and an error report will be sent to the controller.

Specifications

Dimensions:

6.0” (152.4 mm) wide x 8.5” (215.9 mm) deep x 31.5” (800.1 mm) high

Lift Speed: 315 IPM [8.0m per minute]

Vertical Travel: 8.00” [200.0 mm]

Approximate Weight including torch holder: 85 lbs. [38.5 kg]

Torch Barrel Size: 85.7 mm

IHS Accuracy: ± 0.5 mm

Component Tolerances Encoder Accuracy: ± 0.25 mm

Voltage Accuracy: ± 1 volt

53

Description

B4 Mounting Dimensions

B4 lift hole patterns are provided below to aid end users in mounting the plasma station. An optional plasma bracket/nut plate is available. For more specific details, please refer to the B4 Lift manual.

54

(6) M8 x 1.25 x 40

Socket Head Cap Screws

4.13” [104.9mm]

3.64” [92.4mm]

0.49” [12.4mm]

0.53”

[13.5mm]

2.50”

[63.5mm]

4.47”

[113.5mm] x6 M8x1.25 - 6H

THRU HOLES

5.00”

[127.0mm]

Recommended Mounting Bracket/Nut Plate

Hoses and Cables

Cable / Hose

Description

Description

CAN Bus Cable

Available

Lengths m ( ft. )

1m (3.3’)

2m (6.5’)

3m (10’)

4m (13’)

5m (16’)

6m (19’)

7m (23’)

8m (26’)

9m (30’)

10m (33’)

11m (36’)

12m (39’)

13m (43’)

14m (46’)

15m (49’)

20m (66’)

25m (82')

36m (118')

30m (100')

40m (131')

45m (150')

50m (164')

55m (180')

60m (200')

ESAB

Part Number

0558008464

0558008465

0558008466

0558008467

0558008468

0558008469

0558008470

0558008471

0558008472

0558008473

0558008474

0558008475

0558008476

0558008477

0558008478

0558008479

0558008809

0558008480

0558008481

0558008482

0558008483

0558008484

0558008485

0558008486

55

56

Cable / Hose

Description

Power Supply Enable

Cable / Hose

Description

VDR Cable

Description

Available

Lengths m ( ft. )

5m (16’)

10m (33’)

15m (49’)

20m (66')

25m (82')

Available

Lengths m ( ft. )

0.5m (1.7’)

1.5m (5’)

3m (10’)

4m (13’)

5m (16’)

6m (19’)

6.1m (20')

7m (23’)

8m (26’)

9m (30’)

10m (33’)

15m (49’)

20m (66’)

25m (82')

ESAB

Part Number

0558008329

0558008330

0558008331

0558008807

0558008808

ESAB

Part Number

0560947067

0560947075

0560947076

0560947068

0560947077

0560947069

0560946782

0560947070

0560947071

0560947072

0560947078

0560947073

0560947074

0560946758

Description

Cable / Hose

Description

Pilot Arc Cable

Torch

Description

PT-36 m3 CAN

Plasma Torch

Cable / Hose

Description

PS & CC Control Cable

Cable, Control (14PX-14S), Family

0558011630

ESAB

Part Number

0558008310

0558008311

0558008312

0558008313

0558008314

0558008315

0558008316

0558008317

ESAB

Part Number

0558008301

0558008302

0558008303

0558008308

0558008304

0558008305

0558008306

0558008307

ESAB

Part Number

0558011840

0558011631

0558011632

0558011633

0558011634

0558011635

0558011636

0558011637

0558011963

0558011638

0558011964

0558011639

0558011965

0558011640

Available

Lengths m ( ft. )

2.9m (9.5’)

7.6m (25’)

10m (33’)

15m (50’)

20m (66’)

23m (75’)

25m (82’)

30m (100’)

35m (115’)

40m (131’)

45m (150’)

50m (164’)

55m (180’)

60m (200’)

Available

Lengths m ( ft. )

1.4m (4.5’)

1.8m (6’)

3.6m (12’)

4.3m (14’)

4.6m (15’)

5.2m (17’)

6.1m (20’)

7.6m (25’)

Available

Lengths m ( ft. )

1.4m (4.5’)

1.8m (6’)

3.6m (12’)

4.6m (15’)

5.2m (17’)

6.1m (20’)

7.6m (25’)

4.5m (14.5’)

57

NOTE:

This cable is only used with a ICH to connect the second Interface Box.

For multiple CAN hubs on

ESAB cutting machines use cable 0558008824.

Description

Cable / Hose

Description

CAN Bus Crossover Cable

115 / 230 VAC Input Power Cable

Combined Gas Control

Power Cable

Available

Lengths m ( ft. )

0.5m (1.7’)

5m (16’)

10m (33’)

15m (49')

20m (66’)

25m (82')

1.5m (5’)

3m (10’)

4m (13’)

5m (16’)

6m (19’)

7m (23’)

8m (26’)

9m (30’)

10m (33’)

12.8m (42')

15m (49’)

20m (66’)

ESAB

Part Number

0558008524

0558008261

0558008262

0558008810

0558008811

0558008812

0560947079

0560947080

0560947061

0560947081

0560947062

0560947063

0560947064

0560947065

0560947082

0560946780

0560947066

0560947083

58

Description

PT-36 Mechanized Plasmarc Cutting Torch p/n 0558008300

The PT-36 Mechanized Plasmarc Cutting Torch is a plasma arc torch factory assembled to provide torch component concentricity and consistent cutting accuracy. For this reason, the torch body can not be rebuilt in the field. Only the torch frontend has replaceable parts.

The purpose of this section is to provide the operator with all the information required to install and service the PT-36 Mechanized Plasmarc Cutting Torch. Technical reference material is also provided to assist in troubleshooting the cutting package.

Specifications

Type: Water cooled, Dual gas, mechanized plasmarc cutting torch

Current Rating: 1000 Amps @ 100% duty cycle

Mounting Diameter: 2 “(50.8 mm)

Length of Torch without leads: 16.7 “(42 cm)

IEC 60974-7 Voltage Rating: 500 volts peak

Striking Voltage (maximum value of HI-FREQUENCY voltage): 8000 VAC

Minimum Coolant Flowrate: 1.3 GPM (5.9 L/min)

Minimum Coolant Pressure at Inlet: 175 psig (12.1 bar)

Maximum Coolant Pressure at Inlet: 200 psig (13.8 bar)

Minimum Acceptable Rating of Coolant Recirculator: 16,830 BTU/HR (4.9 kW) at High Coolant Temperature - Ambient

= 45 ° F (25 ° C) and 1.6 USGPM (6 L/min)

Maximum Safe Gas Pressures at Inlets to Torch: 125 psig (8.6 bar)

Safety Interlocks: This torch is intended for use with ESAB plasmarc cutting systems and controls employing a water flow switch on the coolant return line from the torch. Removal of the nozzle retaining cup to service the torch breaks the coolant return path.

59

Description

7.54"

(191.5 mm)

2.00"

(50.8 mm)

6.17"

(156.7 mm)

9.13"

(231.9 mm)

10.50" (266.7 mm)

Length of Sleeve

Package Options Available

PT-36 package options available through your ESAB dealer. See Replacement Parts section for component part numbers.

Optional Accessories

Bubble Muffler - When used in conjunction with a water pump recirculating water from the table and by using compressed air, this device creates a bubble of air which enables a PT-36 Plasmarc Cutting Torch to be used underwater with less sacrifice of cut quality. This system also permits operation above water as the flow of water through the muffler reduces fume, noise, and arc U.V. Radiation.

(for installation/operation instructions see manual 0558006722).............................. 37439

Air Curtain - This device when supplied with compressed air is used to improve the performance of the PT-36 Plasmarc Cutting Torch when cutting underwater. The device mounts onto the torch and produces a curtain of air. This allows the plasma arc to operate in a relatively dry zone, even though the torch has been submerged to reduce noise, fume, and arc radiation. To be used in underwater applications only.

(for installation/operation instructions see manual 0558006404) .............................37440

60

Description

Speedloader assembly, handheld ...............................................................0558006164

NOTE:

Cannot be used with vent hole nozzles.

Speedloader assembly, 5 fixtures ................................................................0558006165

PT-36 Torch Consumable Kits

PT-36 Repair & Accessories Kit ...................................................................................0558005221

Part Number

0558003804

0004485648

0558002533

0558001625

0558002534

0558002530

0558005457

0558003924

0004485671

0004470045

0004470030

0004470031

0004470115

0004470046

0558003858

0004470044

0004470049

0558007105

0558003918

0004470869

Quantity Description

2

6

1

2

1

5

10

2

1

1

2

1

1

3

1

1

2

2

1

10

Torch Body PT-36 w/O-rings

O-ring 1.614 ID x .070

Baffle, 4 Hole x .032

Baffle, 8 Hole x .047

Baffle, 4 x .032 Reverse

Baffle, 8 x .047 Reverse

Baffle, 4 Hole x .022

Electrode Holder PT-36 w/O-ring

O-ring .364 ID x .070

Nozzle Retaining Cup, Standard

Shield Gas Diffuser, Low Current

Shield Gas Diffuser, Standard

Shield Gas Diffuser, Reverse

Shield Retainer, Standard

Contact Ring w/screw

Screw, Contact Ring

Hex Key Wrench .109"

Nut Driver 7/16" (Electrode tool)

Electrode Holder Tool PT-36

Silicon Grease DC-111 5.3oz

61

62

Description

PT-36 Start-Up Kits ..............................................................................................................................

0558010625

600 AMP

5

5

5

5

5

1

5

5

5

1

5

1

5

5

5

5

5

5

5

0558010624

450 AMP

5

5

-

5

5

1

5

5

-

1

5

1

5

5

5

-

5

5

5

0558010623

360 AMP

5

-

-

5

5

-

5

-

-

-

5

1

5

5

5

-

5

5

5

0558010622

200 AMP

5

-

-

5

-

-

5

-

-

-

5

1

5

5

5

-

5

5

-

Part No

0558009400

0558003914

0558003928

0558009406

0558009411

0558006018

0558006020

0558006030

0558006028

0558006041

0558009550

0558009425

0558006141

0558006166

0558009551

0558006199

0558009548

181W89

950561

Description

ELECTRODE MICRO PT-36

ELECTRODE O2 ULTRALIFE, Standard PT-36

ELECTRODE N2/H35, Standard PT-36

NOZZLE 0.6mm (.024") MICRO PT-36

NOZZLE 1.1mm (.043") MICRO PT-36

NOZZLE 1.8mm (.070") PT-36

NOZZLE 2.0mm (.080") PT-36

NOZZLE 3.0mm (.120") PT-36

NOZZLE 2.8mm (.109") Divergent (O2) PT-36

NOZZLE 4.1mm (.161") PT-36

NOZZLE RETAINING CUP HD PT-36

SHIELD 2.5mm (.099") MICRO PT-36

SHIELD 4.1mm (.160") PT-36

SHIELD 6.6mm (.259") PT-36

SHIELD 5.1mm (.200") HD PT-36

SHIELD 9.9mm (.390") PT-36

SHIELD RETAINER HD PT-36

O-RING 1.114 ID x .070 CR

TOOL BOX

PT-36 H35 Heavy Plate Start-up Kit ............................................................................0558005225

Part Number

0558003963

0558003965

0558003964

0558005689

0558003967

0558002532

0558006688

0558003918

0558003962

0558008737

Quantity Description

5

1

2

5

1

2

2

2

5

5

Electrode, Tungsten 3/16"D

Nozzle H35 .198" Divergent

Collet 3/16"D Electrode

Electrode/Collet Holder PT-36

Collet Body

Baffle, 32 Hole x .023

Shield High Current

Electrode Holder Tool PT-36

Tungsten Electrode Tool

Nozzle Retaining Cup Assy High Current

Description

Recommended Regulators

Liquid Cylinder Service:

O

N

2

2

: R-76-150-540LC ................................................................................................................P/N 19777

: R-76-150-580LC ................................................................................................................P/N 19977

High Pressure Cylinder Service:

O

2

: R-77-150-540 .........................................................................................................P/N 0558010676

Ar & N

2

H

2

& CH

: R-77-150-580 .................................................................................................P/N 0558010682

4

: R-77-150-350 ............................................................................................P/N 0558010680

Industrial Air : R-77-150-590 ...................................................................................P/N 0558010684

Station/Pipeline Service:

O

2

: R-76-150-024 .........................................................................................................P/N 0558010654

Ar & N

2

Air, H

2

: R-76-150-034 .................................................................................................P/N 0558010658

, & CH

4

: R-6703 .............................................................................................................P/N 22236

Replacement Parts

NOTE:

Additional Parts lists, Schematics and Wiring Diagrams on 279.4 mm x 431.8 mm

(11” x 17”) paper are included inside the back cover of this manual.

63

64

Description

Installation

66

InstallatIon

InstallatIon

Check upon receipt

1. Verify all the system components on your order have been received.

2. Inspect the system components for any physical damage that may have occurred during shipping. If there is evidence of damage, please contact your supplier with the model number and serial number from the nameplate.

Before Installation

WARNING

All installation and service of the electrical and plumbing systems must conform to national and local electrical and plumbing codes.

Installation should be performed only by qualified, licensed personnel. Consult your local authorities for any regulation issues.

Locate the major components to the right position prior to making electrical, gas, and interface connections.

Refer to the system interconnection diagrams for major components placement. Ground all major components to earth at one point. To prevent leaks, make sure to tighten all gas and water connections with specific torque.

Grounding

Introduction

Machine grounding is an important part of the installation process, which can be greatly simplified if prepared in advance. The most difficult part of the grounding process is designing and installing a low impedance Earth ground rod. However, the better the Earth ground rod, the less chance there is of having electromagnetic interference problems after the installation is complete.

Most national electric codes address grounding for the purpose of fire prevention and short circuit protection; they do not address equipment protection and electromagnetic interference noise reduction. Therefore, this manual presents more stringent requirements for machine grounding.

WARNING

Electric Shock Hazard.

Improper grounding can cause severe injury or death. Improper grounding can damage machine electrical components. Machine must be properly grounded before putting it into service. The cutting table must be connected to machine earth grounding rod.

67

68

A common symbol used to identify a chassis ground on drawings.

A common symbol used to identify an earth ground on drawings.

InstallatIon

Grounding Overview

There are three parts to a ground system;

Component or "chassis" ground

Earth ground

Protective Earth ground

Component grounding connects all pieces to a single component, like the machine chassis, which is then connected to a common point known as the star point. This provides a path for electromagnetic interference (EMI) from the enclosure to ground.

An earth ground provides a electromagnetic interference (EMI) to return to its source.

A protective earth (PE) ground provides a safe path for fault current. Without a properly grounded system, an unintended path through people or sensitive equipment may be found, resulting in serious injury, death, and/or premature equipment failure.

This section focuses on machines with a plasma cutting system. Machines with plasma cutting capability are particularly prone to electromagnetic interference problems and often utilize dangerous voltages and currents. All machines must have electrical components grounded and attached to an earth ground, regardless of process type (shape cutting, marking, or other material preparation).

A common symbol used to identify a protective earth (PE) ground.

InstallatIon

Basic Layout

The electrical ground layout is similar for both large and small machines. The chassis ground , plasma

6 7 table. This common connection is referred to as a star point (see illustration below). One cable connects

5

1

9

8

3 output of the plasma power supply . Specification of cable sizes is discussed later in this manual. Some country standards or directives require a separate ground rod for the plasma power supply. Consult your machine schematics for more information.

8

Note: The three phase electrical input an electrical ground.

2 to the plasma power supply must include

This illustration demonstrates multiple ground cables fastened with a single bolt to create a star

8 cutting table will vary.

69

InstallatIon

Elements of a Ground System

The ground system consists of five main components:

• plasma current return path

• plasma system safety ground

• utility power electrical ground

• cutting machine chassis ground

• rail system safety ground.

Ensure provisions are made during the installation for each of these elements for creating a complete ground system.

Plasma Current Return Path

The return path ground cable is the most important element of the ground system. It completes the path for the plasma current. Solid, low impedance, well maintained electrical connections are a necessity.

The plasma cutting current is generated by the plasma power supply . A welding cable carries this current

5

4

2 3 torch. The current then arcs to the work piece on the cutting table. The current path must be closed so that the current can easily return to its source. This is done by connecting the cutting table to the positive (+) connection on the plasma power supply. If the return path ground cable is not connected, the plasma system will not work. There will be no way for the arc to establish between the torch and the work piece. If the cable is connected, but the connections have a very high resistance, it will limit the current of the arc, and cause dangerous voltage levels between system components.

1

2

3

4

5

70

InstallatIon

The only way to ensure that all components are at the same voltage level (same potential), and thus eliminate the possibility of being shocked, is to ensure that all interconnections are making good electrical contact.

Good electrical contact requires that connections are made with bare metal to metal contact, the connections are very tight, and are protected from rust and corrosion. Use a grinder or wire wheel to clean all paint, rust, and dirt from the surface when connecting cable lugs to any metal surface. Use an electrical joint compound between cable lugs and metal surfaces to prevent future rust and corrosion. Use the largest size bolts, nuts, and washers possible, and tighten fully. Use lock washers to ensure that connections stay tight.

Plasma System Safety Ground

The plasma system safety ground (or ground rod ) serves several important purposes. It provides:

Frame voltage for personnel safety by ensuring that there are no potential differences between system components and building components.

A stable signal reference for all digital and analog electrical signals on the cutting machine.

Helps control electromagnetic Interference (or

EMI).

Provides a discharge path for short circuits and high voltage spikes, such as those caused by lightening strikes.

71

InstallatIon

There are many misconceptions about the ground rod, and the role it plays in reducing electromagnetic interference. In theory, the ground rod is present to eliminate possible potential differences between equipment and building structures. However many people believe that the ground rod allows all radio

1 rod will eliminate radio frequency noise problems.

Misconception about Earth ground rods.

1

72

InstallatIon

In reality the ground rod is providing a low impedance path by which noise currents may return to their

2

1

Earth ground rod reality.

2

1

73

74

InstallatIon

Rail System Safety Ground

The rail system safety ground makes sure that the entire rail is at ground potential, eliminating any possible shock hazard, and providing backup for the machine chassis ground in case of a plasma current short circuit. All four corners of the rail system should be connected to the cutting table.

InstallatIon

Earth Ground Rod

The best way to make sure that your Earth ground connection is optimized is to enlist the services of a professional. There are a number of engineering firms which specializes in designing and installing Earth grounding systems. However, if this option cannot be used, then there are several things which can be done to ensure that your Earth ground connection is good:

Ground Rod

The ground rod itself can be optimized in two ways: length and diameter. The longer the grounding rod, the better the connection. The same is true for diameter: the larger the diameter, the better the connection.

However, if the soil resistance is very low, then a ground rod longer than 3m [10 feet] does not make a significant difference.

Since soil resistivity is rarely as good as it could be, a standard grounding rod should be

25mm [1 inch] in diameter and 6m [20 feet] long.

Soil Resistivity

Soil resistivity can be changed in two ways: by altering the mineral content, the moisture content, or both.

The ideal solution to poor soil resistivity is to excavate the immediate area and backfill with conditioned soil additives. In extremely dry areas, the moisture content can be improved by installing a drip system which continually moisturizes the soil surrounding the ground rod. A crude way of affecting soil moisture and content is to use salt water, or rock salt to condition the surrounding soil.

75

InstallatIon

Utility Power Electrical Ground

The utility power electrical ground must accompany all 3 phase and single phase power feeds. This electrical ground provides the proper reference for all incoming power. Failure to provide this ground is a violation of most electrical codes, and a serious safety hazard.

Depending on the 3 phase power arrangement (either a “Delta” or a “Y”), the line to ground voltage may be equal to, or less than the line to line voltage. A problem exists any time the line to ground voltage exceeds any individual line to line voltage (difference in potential). Contact your local utility company if you are not sure that your 3 phase power has a proper electrical ground. Make sure that your electrical contractor properly installs the electrical ground wire with all 3 phase and single phase power feeds.

The electrical ground must be connected to the appropriate terminal inside of the plasma power supply. Size wire according to local electrical codes.

2

1

3

1

2

3

Utility Power Electrical Ground

3 Phase Electrical Supply

Plasma Power Supply

76

InstallatIon

Multiple Ground Rods

There are a number of reasons why multiple ground rods should not be used. While installing multiple rods may improve a safety ground or lightening ground, it offers no advantage for electromagnetic interference reduction, and can cause more problems than it is worth.

The problem with multiple ground rods is that each rod uses an “interfacing Electromagnetic Interference

1

2

Multiple ground points can also create undetectable

“sneak” pathways for radio frequency noise currents, actually causing more interference! Instead of considering multiple ground rods, take steps to make the single ground rod as good a ground connection as possible.

1.1

l l

1 2

2.5 l

Multiple ground rods should be avoided if possible.

However, if all other avenues have been explored to lessen your systems’ electronic interferences, multiple ground rods are an option.

Such a system should be installed by a professional and the distance between the rods should exceed

2.5 times the length of the rods.

77

78

InstallatIon

Machine Grounding Schematic

1

2

3

8

10

9

5

6

7

8

9

3

4

1

2

10

Main Control Enclosure

Component Enclosures

Main Star Ground

Rails

Cutting Table

System Star Ground (on Table)

Earth Ground Rod

Plasma Power Supply

Plasma Power Supply Ground (required by EU

Standards)

Electrical System Ground

(+)

4

5

6

7

All electrical enclosures bolted to the machine chassis

Machine chassis grounded to star point on cutting table.

Rails grounded to cutting table

Plasma ground connected to star point on cutting table

Earth ground rod connected to star point on cutting table.

A separate ground rod is required for the plasma power supply by some regulations and directives. Check with local regulations to determine if this additional ground rod is required.

InstallatIon

Placement of Power Supply

WARNING

Failure to follow instructions could lead to death, injury or damaged property. Follow these instructions to prevent injury or property damage. You must comply with local, state and national electrical and safety codes.

A minimum of 1 meter (3 ft.) clearance on front and back for cooling air flow.

Plan for top panel and side panels having to be removed for maintenance, cleaning and inspection.

Locate the power supply relatively close to a properly fused electrical power supply.

Keep area beneath power supply clear for cooling air flow.

Environment should be relatively free of dust, fumes and excessive heat. These factors will affect cooling efficiency.

Input Power Connection

WARNING

Electric shock can kill! Provide maximum protection against electrical shock. Before any connections are made inside the machine, open the line wall disconnect switch to turn power off.

Input power must be provided from a line (wall) disconnect switch that contains fuses or circuit breakers in accordance to local or state regulations.

Input Conductors

Customer needs to supply the input conductors, which may consist either of heavy rubber covered copper conductors (three power and one ground) or run in solid or flexible conduit.

Size of input conductors is dependent on the current. Please refer to the specific power supply manual for the size on input conductors.

79

InstallatIon

Input Connection Procedure

Primary Terminals

Power Input Cable Access

Opening (Rear Panel)

Chassis Ground

1. Remove small rear panel of the plasma unit.

2. Thread cables through the access opening in the rear panel.

3. Secure cables with strain relief at the access opening.

4. Connect the ground lead to the stud on the chassis.

5. Connect the power leads to the primary terminals.

6. Connect the input conductors to the line (wall) disconnect.

7. Before applying power, replace the rear cover panel.

WARNING

Electric shock can kill! Dangerous voltage and current may be present any time working around a plasma power source with covers removed:

DISCONNECT POWER SOURCE AT THE LINE (WALL) DISCONNECT.

HAVE A QUALIFIED PERSON CHECK THE OUTPUT BUS BARS (POSITIVE

AND NEGATIVE) WITH A VOLTMETER.

80

InstallatIon

Output Connection Procedure

1. Open access panel on the lower front of the power source by removing four M6 screws.

2. Thread output cables through the openings at the bottom of the power source immediately behind the front panel.

3. Connect cables to designated terminals mounted inside the power source using UL listed pressure wire connectors.

4. Close front access panel.

Front Access

Panel Opened

Front Access

Panel Closed

Remove four M6 screws to open

Access Panel

To ease connections, thread cables/hoses through these

3 access holes

The plasma unit does not have an ON/OFF switch. The main power is controlled through the line (wall) disconnect switch. Optionally, an input power disconnect box (ESAB p/n 0558011541) can be used.

81

InstallatIon

Interface Cables/Connections

CAN Connector

This is the CAN communication bus connector. The cable from this connector is tied to the CNC/process controller.

J1 (RAS)

This is a connector for interfacing with Remote Arc Starter (RAS) unit. The cable from this connector carries signals such as: Mark

Mode and Hi-Frequency ON.

Interface Cable Connectors Panel (bottom side of front panel)

Analog

Interface

CAN

J1 (RAS)

82

InstallatIon

Placement of RAS Box

Connections on the RAS Box

1. Remove or unlock the cover screws and lift the box cover off to expose internal components.

WARNING

The cover is grounded to the Remote Arc Starter Box internally with a short ground wire. Remove cover carefully to avoid damage to the wire or loosening of the ground wire.

2. Power cables pass through the strain relief fittings. To make the power supply connection to the RAS box, you must first open the unit: remove or unlock the cover screws and lift the box cover off to expose internal components.

Pilot Arc Cable enters through strain relief fitting to Voltage Divider (VDR)

Coolant IN to Power Supply Enable to Power Supply

Coolant OUT

Strain Relief Fittings

Power Source Cables enter through strain relief fittings

83

Buss Bar / Block

InstallatIon

Nomex Insulation

Connection for Pilot Arc Cable

Locking Screw

3. Strip back the insulation of the 4/0 (95 mm 2 ) cable, approximately 38 mm.

4. Insert the 4/0 (95 mm 2 ) cable in the buss bar/block hole until copper extends to the edge of the buss bar / block.

5. Tighten the locking screw(s) down on the cable.

Amperage

Up to 200 amps

Amperage

Up to 400 amps

Up to 800 amps

Up to 1000 amps

Required # of 1/0 Cables

1

Required # of 4/0 Cables

1

2

3

NOTICE

Careful attention while stripping the insulation of the 4/0 (95 mm

2

) cable will make installation in the buss clamp easier. Do not spread or flare the copper conductors.

Note:

Chassis must be connected to the machine ground.

84

InstallatIon

Standard VDR Cable VDR Cable (with free end)

6. If a non-ESAB lifter is to be used with a system the supplied VDR cable will only have a connector on one end. The other end of the cable will have no connector. The end with the supplied connector is to be connected to the RAS box to its corresponding socket which is labeled “Voltage Divider.”

The free end of the VDR cable will be connected to the lifter. Although this is a three conductor cable, only two of the wires are used, BRN (VDR - ) and BLU (WORK). The black wire is a spare and is to be terminated and capped inside of the lifter. The corresponding pin at the RAS box comes terminated from the factory. The RAS box is not to be modified.

It is imperative that the BLUE wire be connected to ground. The BROWN wire is the VDR(-) output.

Customer

Supplied

Lifter

VDR (Voltage Divider Cable)

Ground in Lifter is required for reference

85

InstallatIon

Torch Connections

Torch hook-up requires the connection of power cables / coolant hoses, pilot arc cable and chassis ground. On the PT-36 torch, the coolant hoses from the RAS box to the torch also carry electrode power.

The pilot arc cable is connected inside the arc starter box. The pilot arc cable also has a green/yellow wire that is connected to a grounding stud.

Power Cable /

Coolant Connections

Pilot Arc Connection

Ground

Stud

Pilot

Arc Cable

Chassis

Ground

Wire

Power Cable /

Coolant

PG Hose

SG Hose

86

InstallatIon

Connection of Torch to Plasma System

DANGER

Electric Shock Can Kill!

• Disconnect primary power source before making any adjust ments.

• Disconnect primary source before doing maintenance on system components.

• Do not touch front-end torch parts (nozzle, retaining cup, etc.) without turning primary power off.

Ground Stud

Ground cable

Power cables

Pilot Arc cable

Connection to the Remote Arc Starter Box

The PT-36 has two water cooled power cables which must be connected to the negative output from the power supply. The right handed 7/16-20 fitting is on the cable supplying coolant to the torch. The left handed 7/16-20 fitting is on the cable returning coolant from the torch. Both of these cables have a green/yellow wire to be connected to the ground stud shown above.

The pilot arc cable is connected to the arc starter box (see Installation section). The pilot arc cable also has a green/yellow wire that is connected to a grounding stud.

87

InstallatIon

Mounting Torch to Machine

DANGER

CLAMPING ON TORCH BODY MAY CAUSE DANGEROUS CURRENT

TO FLOW THROUGH MACHINE CHASSIS.

Mount torch on insulated sleeve here

DO NOT mount on steel torch body here

Do not mount on stainless steel torch body.

Torch body is electrically insulated, however high frequency start current may arc through to find a ground.

Clamping near torch body may result in arcing between body and machine.

When this arcing occurs, torch body may require non-warranty replacement.

Damage to machine components may result.

Clamp only on insulated torch sleeve (directly above label) not less than 1.25" (31.75mm) from the torch end of the sleeve.

Placement of ICH

The ICH should be located close to the operator for easy access.

Connect required CAN cables between ICH and other CAN nodes, such as EPP-202/362 Power Source, B4 lifter, if applicable. CAN connection is always made from left to right, if one node is removed from CAN bus, all nodes on the right need to be shifted to left. After connecting all CAN nodes, a terminator is required. Leave all unused

CAN ports open.

Connect DB37 cable to port “CNC” on ICH. The other side of DB37, is connected to the customer’s CNC via a male DB37 connector. An optional breakout board may be used. A DB37 to free end cable is also available.

Connect power from ICH to PDB and B4 lifter, if applicable. Make sure the power switch on ICH is off.

Connect power to ICH box.

88

InstallatIon

Placement of CGC

The CGC regulates the plasma gas and shield gas. For optimum performance, it should always be placed close to torch. According to the material being cut, the customer needs to select and connect the correct inlet gases. Inline filters are embedded into the inlet fittings. Please make sure all inlet gases meet the pressure and flow requirements.

Connect 24V AC/DC power from PDB, then connect CAN cable to ICH.

Plasma

Shield

Air Curtain

Gas

Argon

O2/H35/F5

N2/Air

N2/Air

Air

Gas &

Pressure

Air (85psi / 5.9bar)

Process

Nitrogen

(125psi / 8.6bar)

Oxygen

(125psi / 8.6bar)

Pressure

125 psi (8.6 bar), 200 SCFH (5.7 SCMH)

125 psi (8.6 bar) for O2, 75 psi (5.2 bar) for H35/F5, 255 SCFH (7.2 SCMH)

125 psi (8.6 bar), 255 SCFH (7.2 SCMH)

125 psi (8.6 bar), 353 SCFH (10.0 SCMH)

80 psi (5.5 bar), 1200 SCFH (34.0 SCMH)

Maximum Gas Flow Rates - CFH (CMH)

With PT-36 Torch

269

(7.6)

385

(10.9)

66

(1.9)

Gas Purity

Clean, Dry, Oil Free

Filtered to 25 microns

99.99%, Filtered to 25 microns

99.5%, Filtered to 25 microns

Placement of PDB

The PDB should be placed on the deck as it is used for supplying power to the CGC.

89

InstallatIon

Individual Component Connections

Part numbers and lengths for the cables shown below are provided on the following page.

PDB front ICH back

A

B

CGC front

C

PDB back

“A” - Power cable from ICH to PDB (115/230V)

Part Number Length Part Number Length

0560947962 1m (3.3’) 0560947088 5m (16’)

0560946776

0560947964

0560947087

2m (6.4’)

3m (10’)

4m (13’)

0560947089

0560947090

6m (19’)

7m (23’)

90

“C” - Power cable PDB to CGC (24 VAC/DC)

Part Number Length Part Number Length

0560947079 1.5m (5’) 0560947064 8m (26’)

0560947080

0560947061

0560947081

0560947062

0560947063

3m (10’)

4m (13’)

5m (16’)

6m (19’)

7m (23’)

0560947065

0560947082

0560946780

0560947066

0560947083

9m (30’)

10m (33’)

12.8m (42')

15m (49’)

20m (66’)

“B” - CAN cable from ICH to CGC

Part Number Length Part Number Length

0558008464 1m (3.3’) 0558008473 10m (33’)

0558008465

0558008466

0558008467

0558008468

0558008469

0558008470

0558008471

0558008472

2m (6.5’)

3m (10’)

4m (13’)

5m (16’)

6m (19’)

7m (23’)

8m (26’)

9m (30’)

0558008474

0558008475

0558008476

0558008477

0558008478

0558008479

0558008809

0558008480

11m (36’)

12m (39’)

13m (43’)

14m (46’)

15m (49’)

20m (66’)

25m (82')

36m (118')

InstallatIon

ACC Component Connections

A

Compressed Air

Part Number

0560947067

0560947075

0560947076

0560947068

0560947077

0560947069

0560946782

Part Number

0558004841

0558004842

0558004843

0558004844

0558004845

0558006865

0558008502

“A” - Cable from ACC to PDB

Length Part Number

0.5m (1.7’)

1.5m (5’)

0560947070

0560947071

3m (10’)

4m (13’)

5m (16’)

6m (19’)

6.1m (20')

0560947072

0560947078

0560947073

0560947074

0560946758

“B” - Air Curtain hose from ACC to CGC

Length Part Number

1.4m (4.75’)

1.8m (6’)

3.7m (12’)

4.6m (15.25’)

5.3m (17.25’)

6.1m (20’)

7.0m (23’)

0558004846

0558008503

0558008504

0558008505

0558008506

0558008507

B

Length

7m (23’)

8m (26’)

9m (30’)

10m (33’)

15m (49’)

20m (66’)

25m (82')

Length

7.6m (25’)

8.0m (26.25’)

9.1m (30’)

10.1m (33')

11.0m (36.25’)

11.9m (39.5’)

91

InstallatIon

Component Placement Example

5

6 alternative mounting location

8

6

7

2

1

4

3

92

3

4

5

6

7

8

1

2

Components

CNC

Interface Control Hub (ICH)

PT-36 Torch

B4 Lift

Combined Gas Control (CGC)

Remote Arc Starter Box (RAS)

Power Supply

Power Distribution Box (PDB)

InstallatIon

DANGER

Hydrogen explosion hazard! Read the following before attempting to cut with a water table.

A hazard exists whenever a water table is used for plasma arc cutting. Severe explosions have resulted from the accumulation of hydrogen beneath the plate being cut. Thousands of dollars in property damage has been caused by these explosions. Personal injury or death could result from such an explosion. The best available information indicates that three possible sources of hydrogen exists in water tables:

1. Molten Metal Reaction

Most of the hydrogen is liberated by a fast reaction of molten metal from the kerf in the water to form metallic oxides. This reaction explains why reactive metals with greater affinity for oxygen, such as aluminum and magnesium, release greater volumes of hydrogen during the cut than does iron or steel. Most of this hydrogen will come to the surface immediately, but some will cling to small metallic particles. These particles will settle to the bottom of the water table and the hydrogen will gradually bubble to the surface.

2. Slow Chemical Reaction

Hydrogen may also result from the slower chemical reactions of cold metal particles with the water, dissimilar metals, or chemicals in the water. The hydrogen gradually bubbles to the surface.

3. Plasma Gas

Hydrogen may come from the plasma gas. At currents over 750 amps, H-35 is used as cut gas. This gas is 35% hydrogen by volume and a total of about 125 cfh of hydrogen will be released.

Regardless of the source, the hydrogen gas can collect in pockets formed by the plate being cut and slats on the table, or pockets from warped plate. There can also be accumulation of hydrogen under the slag tray or even in the air reservoir, if these are part of the table design. The hydrogen, in the presence of oxygen or air, can then be ignited by the plasma arc or a spark from any source.

4. Follow these practices to reduce hydrogen generation and accumulation:

A. Clean the slag (especially fine particles) from the bottom of the table frequently. Refill the table with clean water.

B. Do not leave plates on the table overnight or a weekend.

C. If a water table has been unused for several hours, vibrate it in some way before the first plate is laid in position.

This will allow accumulated hydrogen in the refuse to break loose and dissipate before it is confined by a plate on the table. This might be accomplished by laying the first plate onto the table with a slight jolt, then raising the plate to permit hydrogen to escape before it is finally set down for cutting.

D. If cutting above water, install fans to circulate air between the plate and the water surface.

E. If cutting underwater, agitate the water under the plate to prevent accumulation of hydrogen. This can be done by aerating the water using compressed air.

F. If possible, change the level of the water between cuts to dissipate accumulated hydrogen.

G. Maintain pH level of the water near 7 (neutral). This reduces the rate of chemical reaction between water and metals.

93

InstallatIon

WARNING

Possible explosion hazard from plasma cutting aluminum-lithium alloys!

Aluminum-Lithium (Al-Li) alloys are used in the aerospace industry because of 10% weight savings over conventional aluminum alloys. It has been reported that molten Al-Li alloys can cause explosions when they come into contact with water. Therefore, plasma cutting of these alloys should not be attempted in the presence of water. These alloys should only be dry cut on a dry table. Alcoa has determined that "dry" cutting on a dry table is safe and gives good cutting results.

DO NOT dry cut over water. DO NOT water injection cut.

The following are some of the Al-Li alloys currently available:

Alithlite (Alcoa)

Alithally (Alcoa)

2090 Alloy (Alcoa)

X8090A (Alcoa)

X8092 (Alcoa)

X8192 (Alcoa)

Navalite (U. S. Navy)

Lockalite (Lockheed)

Kalite (Kaiser)

8091 (Alcan)

For additional details and information on the safe use from the hazards associated with these alloys, contact your aluminum supplier.

WARNING

Oil And Grease Can Burn Violently!

• Never use oil or grease on this torch.

• Handle torch clean hands only on clean surface.

• Use silicone lubricant only where directed.

• Oil and grease are easily ignited and burn violently in the presence of oxygen under pressure.

WARNING

Hydrogen explosion hazard.

Do Not Cut Underwater With H-35! Dangerous buildup of hydrogen gas is possible in the water table.

Hydrogen gas is extremely explosive. Reduce the water level to 4 inches minimum below the workpiece.

Vibrate plate, stir air and water frequently to prevent hydrogen gas buildup.

94

Spark hazard.

WARNING

Heat, spatter, and sparks cause fire and burns.

• Do not cut near combustible material.

• Do not cut containers that have held combustibles.

• Do not have on your person any combustibles (e.g. butane lighter).

• Pilot arc can cause burns. Keep torch nozzle away from yourself and others when activating plasma process.

• Wear correct eye and body protection.

• Wear gauntlet gloves, safety shoes and hat.

• Wear flame-retardant clothing that covers all exposed areas.

• Wear cuffless trousers to prevent entry of sparks and slag.

InstallatIon

Preparing to Cut

Select an appropriate condition from the Cut Data manual (SDP File) and install recommended torch front-end parts (nozzle, electrode, etc.) See Cut Data manual to identify parts and settings.

Position torch over material at desired start location.

See Power Source Manual for proper settings.

See Description and Installation sections for gas control and startup procedures.

Mirror Cutting

When mirror cutting, a reverse swirl gas baffle and reverse diffuser are required. These reverse parts will “spin” the gas in the opposite direction, reversing the “good” side of the cut.

Reverse 4 x .032 Baffle

Reverse 8 x .047 Baffle

P/N 0558002534

P/N 0558002530

Reverse Diffuser P/N 0004470115

Cut Quality

Causes affecting cut quality are interdependent. Changing one variable affects all others. Determining a solution may be difficult. The following guide offers possible solutions to different undesirable cutting results. To begin select the most prominent condition:

Cut Angle, negative or positive

Cut Flatness

Surface Finish

Dross

Dimensional Accuracy

Usually the recommended cutting parameters will give optimal cut quality, occasionally conditions may vary enough that slight adjustments will be required. If so:

Make small incremental adjustments when making corrections.

Adjust Arc Voltage in 5 volt increments, up or down as required.

Adjust cutting speed 5% or less as required until conditions improve.

95

InstallatIon

CAUTION

Before attempting ANY corrections, check cutting variables with the factory recommended settings/consumable part numbers listed in

Cut Data manual.

Cut Angle

Negative Cut Angle

Top dimension is greater than the bottom.

Misaligned torch

Bent or warped material

Worn or damaged consumables

Standoff low (arc voltage)

Cutting speed slow (machine travel rate)

Part

Part

Positive Cut Angle

Top dimension is less than the bottom dimension.

Misaligned torch

Bent or warped material

Worn or damaged consumables

High standoff High (arc voltage)

Cutting speed fast

Current high or low. (See Cut Data manual for recommended current level for specific nozzles).

Drop

Part

Drop Part

96

InstallatIon

Cut Flatness

Top And Bottom Rounded. Condition usually occurs when material is .25" thick (6.4mm) or less.

High current for given material thickness.

(See Cut Data manual for proper settings).

Drop Part

Top Edge Undercut

Standoff low (Arc Voltage).

Drop Part

97

InstallatIon

Surface Finish

Process Induced Roughness

Cut face is consistently rough. May or may not be confined to one axis.

Incorrect Shield Gas mixture (See Cut Data manual).

Worn or damaged consumables.

Machine Induced Roughness

Can be difficult to distinguish from Process Induced

Roughness. Often confined to only one axis. Roughness is inconsistent.

Dirty rails, wheels and/or drive rack/pinion.

Carriage wheel adjustment.

Top View

Cut Face

Process

Induced

Roughness or

Machine

Induced

Roughness

Dross

Dross is a by-product of the cutting process. It is the undesirable material that remains attached to the part. In most cases, dross can be reduced or eliminated with proper torch and cutting parameter setup. Refer to Cut Data manual.

High Speed Dross

Material weld or rollover on bottom surface along kerf. Difficult to remove. May require grinding or chipping. “S” shaped lag lines.

Standoff high (arc voltage).

Cutting speed fast.

Lag Lines

Cut Face

Rollover

Side View

Lag Lines

Cut Face

Slow Speed Dross

Forms as globules on bottom along kerf. Removes easily.

Cutting speed slow.

Globules

Side View

98

CAUTION

InstallatIon

Recommended cutting speed and arc voltage will give optimal cutting performance in most cases. Small incremental adjustments may be needed due to material quality, material temperature and specific alloy. The operator should remember that all cutting variables are interdependent. Changing one setting affects all others and cut quality could deteriorate. Always start at the recommended settings.

Top Dross

Appears as splatter on top of material. Usually removes easily.

Cutting speed fast

Standoff high (arc voltage)

Intermittent Dross

Appears on top or bottom along kerf. Non-continuous. Can appear as any kind of dross.

Possible worn consumables

Other Factors Affecting Dross;

Material temperature

Heavy mill scale or rust

High carbon alloys

Side View

Splatter

Cut Face

CAUTION

Before attempting ANY corrections, check cutting variables with the factory recommended settings/consumable part numbers listed in the Cut Data manual.

Dimensional Accuracy

Generally using the slowest possible speed (within approved levels) will optimize part accuracy. Select consumables to allow a lower arc voltage and slower cutting speed.

NOTICE

Recommended cutting speed and arc voltage will give optimal cutting performance.

Small incremental adjustments may be needed due to material quality, material temperature and specific alloy. The operator should remember that all cutting variables are interdependent. Changing one setting affects all others and cut quality could deteriorate. Always start at the recommended settings. Before attempting ANY corrections, check cutting variables with the factory recommended settings/consumable part numbers listed in the Cut Data manual.

99

Torch Flow Passages

InstallatIon

Water OUT & Power

Pilot Arc

Water IN (L.H.)

Plasma Gas IN

Shield Gas IN

100

Operation

operation

Interface Control Hub

The ICH (Interface Control Hub) is used to interface the ESAB m3 Process Control with the customer CNC using

RS232/RS422/RS485 and digital I/O.

Operation of the m3 IGC system can be made via the ICH (Interface Control Hub) in the following modes.

1. Remote mode without serial communications. (Default)

2. Remote mode with serial communications.

3. Local mode - diagnostics only.

The following pages describe how to operate the ICH.

103

operation

1 2 3 4

ICH front view

5

8 9 10 11 12

16

15

GND

Note:

Chassis must be connected to the machine ground.

104

ICH back view

13

14

7

6

operation

ICH Operation

ICH Connectors

11

12

13

14

15

16

9

10

7

8

Item Number

1

2

3

4

5

6

Item Description

Plasma Start

Gas Test

Local/Remote

Station Select

In Local mode, this switch will start the plasma process. If the Gas Test switch is set to on, then the process will go into TEST Mode. In TEST Mode the power supply faults, errors, and warnings are ignored while at the same time the steps for starting the power supply and turning HF on are skipped.

In Local mode, this switch will start the plasma gas and shield gas at their start values. If the plasma start switch is turned on after this one, the plasma process will start in TEST mode.

This switch will change the ICH system from being remotely controlled, via the serial communications and digital inputs from the CNC, to locally controlled via the switches on the Interface Control Hub.

This switch is a momentary switch which will change the station of which the information on the screen is displaying. If the system is in local mode, then the station selected will change to only the station displayed.

Screen Select

Encoder Wheel with Push Button

Power Switch

Input Power

This switch will allow the user to select different screens.

This only has an effect in local mode under normal operation, when communication is set to none, and in the set up mode. This wheel will allow you to change the parameter the cursor is currently on. The button will also allow you to see a more detailed error message when on the error log screen.

To work the wheel for editing a parameter, push the wheel, move the wheel to change the value, and then press the wheel again to lock in the value.

This switch will turn on the Interface Control Hub.

Customer supplied input power to ICH. See specifications for power requirements.

AHC Power

Gas Power

RS232

ASIOB1

Power connection for an ESAB lift (B4 or A6).

Power connection to the Power Distribution Box (PDB), which provides 24 VAC/

DC to the Combined Gas Control (CGC).

RS232 protocol for remote control if needed.

ASIOB1 protocol for retrofitting older ESAB systems.

CNC

AUX Control

DB37 connector to interface to customer I/O. This also has the RS422/485 connections.

DB25 connector for auxiliary options such as Air Curtain.

CAN Vision 5x Not used.

Fuses Replace fuses with same type and size.

105

operation

Display Screens

Startup Screen

On powerup the ICH screen displays the following information for 3 seconds:

Software version

Editing a Parameter on the Display

Only available when communication is set to none or Local/Remote switch is set to Local.

1. Use the encoder wheel to scroll to the parameter.

2. Push the wheel.

3. Turn the wheel to edit the value.

4. Push the wheel again to lock the value.

Gas Selection Screen

L = Local

C = Cutting

M = Marking

Parameter Set Type

Gas Selection (see table)

Plasma Start (Bar)

Shield Start (CMH)

Plasma Cut (Bar)

Shield Cut (CMH)

Cut Current (Amp)

Start Current (Amp)

Plasma Output (Bar)

Shield Output (CMH)

Current Output (Amp)

12

13

14

8

9

6

7

10

11

4

5

2

3

GS

Gas Select Table

Plasma Shield

Start Cut Start Cut

1 N2 O2 N2 N2

Air O2 Air

N2 N2 N2

N2 H35 Air

N2 H35 N2

Ar

Ar

Ar

Ar

Air

N2

Air Air Air

N2 O2 Air

N2 N2 Air

Ar O2 N2

Air

N2

Air

Air

Air

N2

Air

N2

Air

N2

Ar

Ar

O2

Ar

Air

H2O

Air

H2O

N2 N2 H2O H2O

106

Timers Screen

operation

Timers

Current Ramp Up Time (seconds)

Piercing Time (seconds)

Second Ramp for Thick Plate (seconds)

Current Ramp Down Time (seconds)

Time to delay gas off from the time plasma start is removed. (seconds)

Time to raise torch when cutting is complete (Height Control option required) (seconds)

Height Control Screen (Height Control option required)

Height Settings

Initial/Ignition Height (mm)

Piercing Height (mm)

Cutting Height (mm)

Plate Thickness (mm)

Arc Voltage (volts)

Encoder Height (mm)

Arc Voltage Output (volts)

107

CNC Input Screen

CNC Output Screen

operation

Inputs

Plasma Start

Corner

Block AHC

Plasma Test

Mark Mode

Stat 1 ON

Stat 2 ON

Stat 1 UP**

Stat 1 Down**

Stat 2 UP**

Stat 2 Down**

CNC’s Direct

Input

0

0

0

0**

0**

0

0

0

0

0**

0**

ACT

(selection program is currently running)

0

0

0

0**

0**

0

0

0

0

0**

0**

**only present when the Height Control option is present

Outputs

Defined by motion signal

System has faulted

Arc was lost during cut/mark

System is not ready to cut/mark

Station 1 is on Upper Limit Switch

Station 2 is on Upper Limit Switch

Motion Signal options:

Arc On Motion Enable only goes high when arc is on. Normally used when no torch lifter is supplied with plasma system.

Motion - Motion Enable only goes high when motion is allowed. Normally used when a torch lifter is supplied with plasma system.

Simple - Motion Enable goes high after the pierce time and low after plasma start is removed or there is a fault.

108

operation

Setup Descriptions

Setup - The “setup screen” on the Interface Control Hub is accessed by having “Plasma Start” set to “ON” and “Remote/

Local” set to “LOCAL” when powering up the box. It is exited by turning the power off and then back on. Make sure to reset the switches back to the original state for parameter display. The encoder wheel with pushbutton, is used to select an item and change the values or to select a sub-menu.

An example shown here, is for setting up a Plasma

System configured for the following:

1. m3 Integrated Gas Control System

2. EPP-360 Plasma Power Supply

3. Supplied with ESAB Lifter

4. No Water Injection option

Long Preflow Timer (seconds)

Short Preflow Timer (seconds)

Gas purge before Intial Height sensing (seconds)

Power Supply type

ESAB lifter installed

ESAB Water Injection Module installed

Motion Enable Signal meaning

Gas Control type

Gas Test timeout (seconds)

Error Log

Communication Options

Station 1 Lift Options

Station 2 Lift Options

Save Constants

Reload Constants

If the ESAB lifter has not been supplied with the system, the ICH setup screen for the above configuration would be as shown below:

Long Preflow Timer (seconds)

Short Preflow Timer (seconds)

Gas purge before Intial Height sensing (seconds)

Power Supply type

ESAB lifter installed

ESAB Water Injection Module installed

Motion Enable Signal meaning

Gas Control type

Gas Test timeout (seconds)

Error Log

Communication Options

Save Constants

Reload Constants

109

operation

Described below are the various options to be modified before setting up the plasma system for operation:

Long Preflow

Short Preflow

Power Supply

ESAB Lifter

The long preflow is the time, in milliseconds, the system will wait for the gases to flow before starting the power supply. This time is only used for each start until there is a successful start (after power-up) or when the gas being used is not compatible with the previous gas being used.

The short preflow is the time, in milliseconds, the system will wait for the gases to flow before starting the power supply. This time is only used for when it can be asserted that the last gas used and the current gas are compatible.

The power supply option is where the power supply attached to the system is specified. The EPP-201, EPP-360, EPP-450 and the

EPP-601 are the available choices.

The ESAB Lifter option is set to “YES” if an ESAB lifter was purchased for use with this system.

ESAB Injection

Motion Signal

Gas Control

The ESAB Injection option specifies that the ESAB water injection module was purchased for use with this system.

Arc On - Motion Enable only goes high when arc is on. Normally used when no torch lifter is supplied with plasma system.

Motion - Motion Enable only goes high when motion is allowed. Normally used when a torch lifter is supplied with plasma system.

This option specifies which type of Gas Control is to be used. The options are: (1) Water - Water Injection is the only shield available, (2) CGC - Combined Gas Control in use, (3) Full - The fully automatic gas control system is in use.

Gas Timeout This specifies the maximum time, in seconds, which gases will be allow to flow during a gas test before they are automatically shut off.

Error Log The error log stores up to 13 errors at a time reported by the ICH in the order they are detected. These errors are only cleared by selecting “CLEAR”. Select the error, by pushing the pushbutton part of the encoder wheel, to see more details about the error.

Communication The communication section is used to change the serial communications between the ICH and the CNC.

Protocol - There are four options: None, RS-232, RS-422, and RS-485 ASIOB. Serial communications is disabled when none is selected. The RS-422 protocol uses four wire while the RS-485 uses two wire. ASIOB is only used for interfacing to older ESAB

CNCs.

Baud Rate - The baud rate must be set to the same rate as the CNC’s serial communication transfer rate. Available options are:

300, 1200, 2400, 9600, 19200.

Parity - The parity needs to match the CNC’s serial communication parity. Available options are: None, Even, and Odd.

Stop Bits - The stop bits needs to match the CNC’s serial communication stop bits. Available options are: 1 or 2.

Communication Options

Communication Options

Protocol

Baud Rate

Parity

Stop Bits

Previous Screen

110

operation

Station Options

The following are the options listed under station 1 and station 2:

Lift Type

Arc Volt Cut

Arc Volt Mark

ULS to Table

The lifter type specifies which lift is being used. Available options are: A6 or B4.

The arc voltage calibration used when in CUTTING mode. Using a calibrated voltmeter, measure the voltage from the bus bar in the Remote Arc Starter Box to ground, while the process is active in cut mode. If that is higher than the arc voltage requested, then raise this number. If it is lower, then low this number.

The arc voltage calibration used when in marking mode. Using a calibrated voltmeter, measure the voltage from the bus bar in the Remote Arc Starter Box to ground, while the process is active in MARK mode. If that is higher than the arc voltage requested, then raise this number. If it is lower, then lower this number. The result should be around half of the “Arc Volt Cut” option.

The distance from the torch tip, when on the upper limit switch, to the top of the table slats. This is in micrometers.

Fast Speed

Slow Speed

This is the speed at which the lifter will move when not in the slowdown zone, when using height control, or when moving up.

The slowdown zone is the plate thickness, plus 25 millimeter, above the table slats.

This is the speed at which the lifter will move when in the slowdown zone or using height control. The slowdown zone is the plate thickness, plus 25 millimeter, above the table slats.

Station 1 Lift Options

Lift Type

Arc Voltage for Cutting

Arc Voltage for Marking

Upper Limit Switch to Table (µm)

Fast Speed (Relative speed 0-500)

Slow Speed (Relative speed 0-500)

Previous Screen

Station 2 Lift Options

Lift Type

Arc Voltage for Cutting

Arc Voltage for Marking

Upper Limit Switch to Table (µm)

Fast Speed (Relative speed 0-500)

Slow Speed (Relative speed 0-500)

Previous Screen

111

operation

Once the setup is complete, make sure to save the constants by selecting the “Save Constants” tab. The following screen will be displayed for a couple of seconds to confirm that your changes have been taken.

Save Complete

If you do not want to keep the changes you have made and would like to revert back to the last saved settings then select the “Reload Constants” tab. The following screen will be displayed for a couple of seconds to confirm that your changes have been taken.

Load Complete

112

operation

Digital I/O

Digital Inputs

Digital inputs are to be only turned on with 24 VDC. Any other voltage may damage the board or cause unpredictable results. The best method is to send the 24 VDC from the DB37 connector back on the input, via a relay or opto-isolator chip.

Signal Name

Corner

Description

Informs the ICH to reduce the current to the corner current and block height control (if enabled)

Block AHC

Plasma Test

Plasma Start

Mark

Block height control

Prevents the ICH from sending the start signal to the high frequency unit and power supply during a plasma start. Power supply faults are ignored.

Start the plasma process

Switch to marking mode and use the last loaded marking data

Station 1 Up Move the station 1 lifter up (if installed)

Station 1 Down Move the station 1 lifter down (if installed)

Station 2 Up Move the station 2 lifter up (if installed)

Station 2 Down Move the station 2 lifter down (if installed)

Station 2 On

Station 1 On

Turn on station 2.

Turn on station 1.

Digital Outputs

Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement.

Signal Name

Motion Enable/Arc On

System Fault

Arc Lost

Not Ready

Station 1 ULS

Station 2 ULS

Description

This signal is high when the arc is on or the process is off, when motion signal is set to Motion in the setup screen. This signal is high when the arc is on, when motion signal is set to Arc On in the setup screen.

The ICH has detected a problem which required the process to stop. Send message 003 or check the error log to get the exact set of errors. These are reset with a 000 command, but will remain in the error log.

The arc was lost during a cut/mark operation. This is reset on the next plasma start.

The ICH is not ready to start the process. Possible causes: no Station selected, not in Remote Mode, Plasma Start was high on boot up and is still high, Gas settings missing, Start Current missing, Cut Current missing, Timers missing,

Height Control settings missing (if a lifter is installed).

Station 1 is on the upper limit switch.

Station 2 is on the upper limit switch.

113

operation

Modes of Operation:

Remote Interface without Serial Communication

This mode describes the instance when the CNC controls everything except parameter selection via the digital inputs and outputs. To operate in this mode, go to the setup screen and change the “Protocol” to “None” under “Communications” .

The process parameters need to be modified on the ICH screen every time the CNC needs to change the cutting or marking parameters. The ICH system supports a cutting parameter set and a marking parameter set. The last used set will be available upon restarting the ICH. This requires starting the process at least once with the set.

The cutting parameters and marking parameters can be loaded into different tables in the ICH. After all the parameters are loaded, switching can be done by pressing the push button on the parameter line in the

Gas Selection screen.

Gas Test - The gas test function is designed to allow diagnostics of the gas control system. The gas test feature can be enabled by turning on the “Plasma Test” digital input and issuing a “Plasma Start” . The gases flowing in each test and the pressure/flow at which they are set to, is based on the currently loaded parameters on the ICH display.

The ICH system has two possible sequences it can be running. One with the lifter height controlled by the

ICH system and another with the lifter height controlled by the CNC.

Described below are examples for cutting a part from the CNC. The parameters from the cut data manual used for the setup below are detailed on the following page.

Material Type

Material Thickness

Cut Quality

Current

Start Gas

Cut Gas

Shield Gas

Carbon Steel

12 mm

Production

200 Amps

N2

O2

Air

114

90 115

operation

Operation sequence with ESAB supplied plasma lifter:

1. Setup the part program that needs to be cut from the CNC.

2. Go to the ICH screen for “ C:Cutting Parameters” and setup the parameters according to the cut data manual:

L = Local

C = Cutting

M = Marking

Parameter Set Type

Gas Selection (see table under DISPLAY SCREENS section)

Plasma Start (Bar)

Shield Start (CMH)

Plasma Cut (Bar)

Shield Cut (CMH)

Cut Current (Amp)

Start Current (Amp)

Plasma Output (Bar)

Shield Output (CMH)

Current Output (Amp)

3. Next, go to the ICH screen for Timers and setup the timer values according to the cut data manual:

Timers

Current Ramp Up Time (seconds)

Piercing Time (seconds)

Second Ramp for Thick Plate (seconds)

Current Ramp Down Time (seconds)

Time to delay gas off from the time plasma start is removed. (seconds)

Time to raise torch when cutting is complete (Height Control option required) (seconds)

116

operation

4. Next, go to the ICH screen for Height Settings and setup the height parameters according to the cut data manual:

Height Settings

Initial/Ignition Height (mm)

Piercing Height (mm)

Cutting Height (mm)

Plate Thickness (mm)

Arc Voltage (volts)

Encoder Height (mm)

Arc Voltage Output (volts)

5. Once all of the setups have been completed on the ICH, refer to the cut data manual for the Speed and Kerf inputs to be made on the CNC part program.

6. Execute the program from the CNC and send a “Plasma Start” signal to the ICH.

7. The following happens while the CNC waits for motion enable.

a. The ICH starts the purge before initial height sensing.

b. The torch comes down, does the initial height sensing and finishes the preflow.

c. The ICH starts the power supply.

d. The ICH waits for the arc to transfer and the main current to start, turning the high frequency generator off once the arc has transferred. If the motion signal constant is set to “Arc On” , this is when the

“Motion Enable” signal is returned to the CNC.

e. The gas switches from start to cut values and gas.

f. The ICH ramps the current up to the desired cutting/marking current.

g. The ICH raises to the piercing height.

h. The ICH waits a time, from the parameters, for the current to pierce the plate.

i. The ICH lowers down to the cutting height. If the motion signal constant is set to “Motion” , this is when the “Motion Enable” signal is returned to the CNC.

8. Start moving the machine in the shape desired, turning the corner signal on when not going at full speed for the parameters sent.

9. Remove the “Plasma Start” signal to the ICH at the end of cut.

10. The following happens while the CNC waits for “Motion Enable” to be removed and come back (if the motion signal constant is set to “Motion” ).

a. is removed, if the motion signal constant is set to b. The current ramps down.

“Motion” .

c. The power supply is turned off and, after a time specified in the parameters, the gas stop flowing.

If the motion signal constant is set to “Arc On” , this is when the “Motion Enable” signal is removed.

d. The lift raises for an amount of time specified in the process parameters.

e. If the motion signal constant is set to “Motion” , then this is when “Motion Enable” is returned.

117

operation

Operation sequence with customer supplied plasma lifter:

1. Setup the part program that needs to be cut from the CNC.

2. Go to the ICH screen for “C:Cutting Parameters” and setup the parameters according to the cut data manual:

L = Local

C = Cutting

M = Marking

Parameter Set Type

Gas Selection (see table under DISPLAY SCREENS section)

Plasma Start (Bar)

Shield Start (CMH)

Plasma Cut (Bar)

Shield Cut (CMH)

Cut Current (Amp)

Start Current (Amp)

Plasma Output (Bar)

Shield Output (CMH)

Current Output (Amp)

3. Next go to the ICH screen for Timers and setup the timer values according to the cut data manual:

Timers

Current Ramp Up Time (seconds)

Piercing Time (seconds)

Second Ramp for Thick Plate (seconds)

Current Ramp Down Time (seconds)

Time to delay gas off from the time plasma start is removed. (seconds)

Time to raise torch when cutting is complete (Height Control option required) (seconds)

118

Gas Selection (see table under DISPLAY SCREENS section)

Plasma Start (Bar) operation

4. Once all of the setups have been completed on the ICH, refer to the cut data manual for the Speed and Kerf inputs to be made on the CNC part program.

5. Also, setup the height parameters according to the cut data manual from the CNC.

6. Execute the program from the CNC.

7. The torch, controlled from the CNC, comes down and begins ignition height sensing. Block AHC and Corner can be set to start the purge and preflow. Send plasma start to start.

8. Send a “Plasma Start” signal to the ICH after the torch is at ignition height.

9. The following happens while the CNC waits for “Motion Enable” .

a. The ICH starts the purge.

b. The ICH starts the power supply.

c. The ICH waits for the arc to transfer and the main current to start, turning the high frequency generator off once the arc has transferred. If motion signal constant is set to “Arc On” , then “Motion

Enable” is sent back.

d. The gas switches from start to cut values and gas.

e. The ICH ramps the current up to the desired cutting/marking current. At this time, the torch needs to be raised to piercing height.

f. The ICH waits a fixed time for the current to pierce the plate. If motion signal constant is set to

“Motion” , then “Motion Enable” is sent back.

10. Start moving the machine in the shape desired, turning the corner signal on when not going the full speed for the parameters sent.

11. Remove the “Plasma Start” signal to the ICH at the end of cut.

12. The following happens while the CNC waits for “Motion Enable” to be removed and come back (if the motion signal constant is set to “Motion” ).

a. “Motion Enable” is removed, if the motion signal constant is set to “Motion” .

b. The current ramps down.

c. The power supply is turned off and, after a time specified in the parameters, the gas stop flowing.

If the motion signal constant is set to “Arc On” , this is when the “Motion Enable” signal is removed.

d. If the motion signal constant is set to “Motion” , then this is when “Motion Enable” is returned.

Remote Interface with Serial Communication

This mode of operation is used if the customer needs to have plasma parameter selection controlled from the

CNC. There are two ways this can be achieved:

1. ESAB Serial Communication Interface - ESCI.

ESCI is a an easy to use software with a graphical interface for downloading the necessary parameters to the

ICH for the best cut quality. All the operator needs to know is the material type, thickness of the material, cut amperage and type of plasma gas. More details about the software and the system requirements are described in the appendix.

2. Serial protocol controlled by customer CNC.

Detailed information on the protocol is described in the appendix.

119

operation

Local Interface - Diagnostics Only

The local interface is used to test the plasma system for diagnostic purposes. This allows limited use of the system (i.e. only one station at a time) and is normally used for troubleshooting. This will disable the CNC’s ability to control the system, but will still allow the CNC to get the status (including the gas pressures and flows) and errors.

Upon switching to local mode for the first time, since the last reboot, the parameters loaded are for 200 amp

Carbon Steel Air Production cutting.

120

ESAB Welding and Cutting Products

118

Version 4.0 released on 15Mar11

operation

Note:

The actual operation of cutting should not be performed while in this mode as the CNC is not in control of the process.

L = Local

C = Cutting

M = Marking

Parameter Set Type

Gas Selection (see table)

Plasma Start (Bar)

Shield Start (CMH)

Plasma Cut (Bar)

Shield Cut (CMH)

Cut Current (Amp)

Start Current (Amp)

Plasma Output (Bar)

Shield Output (CMH)

Current Output (Amp)

Operation sequence:

1. To enable the local interface, the “Local/Remote” switch needs to be in the “Local” position.

2. Set up the parameters for the process as needed from the cut data manual.

3. If plasma is to be turned on, then set the “Plasma Start” to “ON” and the gas test switch to the “OFF” position.

4. If the plasma lifter is supplied from ESAB, then the lifter will perform an initial height sense operation.

5. The following happens after the torch is at ignition height: a. The ICH starts the purge.

b. The ICH starts the power supply.

c. The ICH waits for the arc to transfer and the main current to start, turning the high frequency generator off once the arc has transferred. If motion signal constant is set to “Arc On” , then “Motion Enable” is sent back.

d. The gas switches from start to cut values and gas.

e. The ICH ramps the current up to the desired cutting/marking current.

f. The ICH waits a fixed time for the current to pierce the plate.

6. If is turned on before “Plasma Start” is on, then all the above steps are repeated except that a signal to the power supply is not sent from the ICH.

121

Timing Sequence

operation

122

operation

Interface Wiring Descriptions

Interface Wiring

DB37 Connector

This cable should be a twisted pair cable with an overall shield attached to the shell on both ends of the cable.

It has a DB37 male connector on each end.

Wire No.

1

30

31

32

33

26

27

28

29

34

35

36

37

FG

22

23

24

25

18

19

20

21

14

15

16

17

10

11

12

13

8

9

6

7

4

5

2

3

Signal Name

RS422 RX-

GND

Digital Input 5

RS422 RX+

RS422/485 TX+

GND

Digital Output 1 (+)

Digital Output 2 (+)

Digital Output 3 (+)

Digital Output 4 (+)

Digital Output 5 (+)

Digital Output 6 (+)

Digital Output 7 (+)

Digital Output 8 (+)

Digital Input 6

Digital Input 7

Digital Input 8

Digital Input 9

Digital Input 11

GND

24VDC

Field Ground

RS422/485 TX-

RS422/485 GND

Digital Output 1 (-)

Digital Output 2 (-)

Digital Output 3 (-)

Digital Output 4 (-)

Digital Output 5 (-)

Digital Output 6 (-)

Digital Output 7 (-)

Digital Output 8 (-)

Digital Input 1

Digital Input 2

Digital Input 3

Digital Input 4

Digital Input 10

24VDC

Function

Serial receive negative

Serial transmit negative

Communication Ground

Motion Enable Emitter

System Fault Emitter

Arc Lost Emitter

Not Ready Emitter

Station 1 ULS Emitter

Station 2 ULS Emitter

Spare Output Emitter

Spare Output Emitter

Corner

Block AHC

Plasma Test

Cycle Start

Station 2 On

24 VDC Power

Ground

Mark

Serial receive positive

Serial transmit positive

Ground

Motion Enable Collector

System Fault Collector

Arc Lost Collector

Not Ready Collector

Station 1 ULS Collector

Station 2 ULS Collector

Spare Output Collector

Spare Output Collector

Station 1 Up (If installed)

Station 1 Down (If installed)

Station 2 Up (If installed)

Station 2 Down (If installed)

Station 1 On

Ground

24 VDC Power

Cable Shield Ground (Connected via the connector shell)

123

operation

DB37 Connector

The customer has 3 options available for wiring to the DB37 connector shown below:

Connection assemblies for ICH and CNC interface.

Option 1:

ESAB provided DB37 cable (Male-Male) and terminal block assembly for connection to CNC.

DB37 Cable

ICH Box

Example DB37 Breakout boards:

Manufacturer

Sea Level

Winford

Advantech *

Part Number

TB02-KT

BRK37F series

ADAM-3937

DB37 Terminal

Block Assembly

*ESAB recommended part available as ESAB part number 0558009990.

Option 2:

ESAB provided DB37 cable (Male-Male) and customer provided DB37 (Female) connector. Customer builds their own DB37 Interface for connection to CNC.

DB37 Cable

To Customer provided

DB37 Interface

ICH Box

Part Number

0558010071

0558010072

0558010073

0558010074

0558010075

Length

2 M

3 M

4 M

5 M

6 M

DB37 Cable

Part Number

0558010076

0558010077

0558010078

0558010079

0558010080

Length

7 M

10 M

15 M

20 M

25 M

Option 3:

ESAB provided DB37 cable (Male-open end). Customer builds their own Interface for connection to CNC. P/N 0558010157 5 meter length.

DB37 Cable

To Customer provided

Interface

124

operation

125

RS422 Cable Wiring: operation

Customer supplied cable - must be shielded, twisted pair (STP) cable with shield bonded to ground.

RS422 Adaptor

1 TXD +

2 TXD -

3 RXD +

4 RXD -

5 GND

Example serial converters:

Manufacturer

B & B Electronics

Part Number

485DRCI

B & B Electronics

Comm Front

4WSSD9OTB

CVT-485-422-4

Axeon * STS-1915SI

*ESAB recommended part available as ESAB part number

0558009988.

ICH via DB37

21 TXD +

2 TXD -

20 RXD +

1 RXD -

3 GND

DB25 Connector- Air Curtain Option

The DB25 connector is used to connect ICH to the Power Distribution Box (PDB). This cable should be a shielded, twisted pair cable that has a DB25 male connector on one end and a DB25 female connector on the other end.

The DB25 connector is used with the Air Curtain option.

Wire No.

Signal Name

1

2

Analog Input 1

Analog Input 2

8

9

6

7

10

3

4

5

11

12

13

Spare

Spare

Function

Analog Output 1

Analog Output 2

Spare

Spare

CNC Analog Common CNC Analog COM

Analog Input 3

Analog Input 4

Analog Output 3

Analog Output 4

Input 1

Spare

Spare

Spare

Spare

Spare

Input 2

Input 3

Input 4

Spare

Spare

Spare

Wire No.

Signal Name

14

Function

Station 1 Air Curtain(-) Station 1 Air Curtain

18

19

20

15

16

17

21

22

23

24

25

Station 2 Air Curtain(-) Station 2 Air Curtain

Spare 3

Spare 4

Spare output emitter

Spare output emitter

Spare 5 Spare output emitter

Station 1 Air Curtain (+) Station 1 Air Curtain

Station 2 Air Curtain (+) Station 2 Air Curtain

Spare 3

Spare 4

Spare 5

24VDC

CHASSIS GND

Spare output collector

Spare output collector

Spare output collector

Power

Ground

126

operation

DB9 Connector

This is a standard DB9 RS232 cable. This communication port is not recommended for production use.

Function

7

8

9

5

6

3

4

Wire No.

Signal Name

1

2

NC

RS232 RX

RS232 TX

NC

NC

GND

No Connect

Receive

Transmit

No Connect

No Connect

Ground

RS232 RTS Ready To Send

RS232 CTS Clear To Send

NC No Connect

Power Connector

Wire No.

Signal Name

1

2

3

Line 1

Line 2

NC

4 GND

Digital Output Wiring Examples

Function

Line 1 of 230 VAC or Line of 115 VAC (No Height Control)

Line 2 of 230VAC or Neutral of 115 VAC (No Height Control)

No Connect

Ground

Digital outputs should only be 24 VDC with less than 80 milli-amperes current requirement. There are two good methods for doing this. There is a small voltage drop across the opto-isolator in the Interface Control Hub, so it is recommended that a voltage of at least 12 VDC be used in order to protect against noise generated by the plasma system’s starting circuit.

24V

Method 1: Using the 24 VDC to drive a digital input circuit on the

CNC’s input.

DO+ 1

R1 R2

DO- 1 5V

10K

R3

2.74K

1M

Method 2: Using the 24 VDC to drive a relay coil and using the contact on the coil however the CNC needs it.

24V

DO+ 1

DO- 1

R1

10K

R3

2.74K

R2

1M

5V

DO+ 1

DO- 1

24V

A coil B

External CNC

Serial

Digital I/O

127

DO+ 1

DO- 1

A coil B

24V

External CNC

Serial

Digital I/O

External Power

230V/3A w/ Height Control

Water Injection

120V/3A w/o Height Control

Water Injection

Optional

Standard

ICH

(Interface

Control Hub)

CGC

RAS BOX or

External Power

230V/3A w/ Height Control

120V/3A w/o Height Control

B4 Lift

Optional

SGB

Standard

PGB

Water

Injection

ICH

(Interface

Control Hub)

CGC

RAS BOX or

CAN PS

B4 Lift

SGB

PGB

Water

Injection

128 operation

Maintenance/Troubleshooting

130

Maintenance/troubleshooting

Maintenance/troubleshooting

ICH Maintenance/Troubleshooting

Communication Problems

502 Error message

Problem

Unable to send and receive messages

Resolution

Make sure the CNC’s RX - is on pin 2, TX – is on pin 1, RX + is on pin 21, and TX + is on pin 20 of the DB37 connector. Also make sure the constant for the communication protocol is set properly. Communication ground should be connected to pin 3.

The command is not allowed in this state.

Digital Input Problems

Problem

The wrong input on the screen is changing when the CNC turns on an input to the ICH

No input on the screen is changing when the

CNC turns on an input to the ICH

Resolution

Make sure the inputs are wired to the proper input on the ICH.

Make sure the CNC is only sending the 24 VDC from DB37 connector back to the ICH as the input when turning the input on.

Digital Output Problems

Problem

The ICH shows the output turning on but there is no voltage on the output’s emitter side.

Gas Problems

Problem

The CNC turns on a gas test and no gas comes out of the torch.

Resolution

Check for voltage on the collector side. If there is a DC voltage there greater than 10 volts, then call service.

Resolution

Make sure the plasma gas box and shield gas box have power (green

LED on the same side as the cable connections is lit).

Power Supply Problems

Problem

Power supply will not start.

Resolution

Make sure power is supplied.

Check for an error code on the power supply display.

Check for plasma test signal being low.

Check for E-stop signal not connected to RAS Box.

131

Maintenance/troubleshooting

Error Messages on the ICH Display

Error Log Screen

Last received error always shown at top.

Clear all errors on screen.

This screen can be accessed by using “Switch Screen” on the ICH and displays a log of the last 13 errors received by the ICH. By moving the cursor to the error and pressing the hand wheel, more details of the error are displayed.

Error Screen

Station number

Type of Error

Error ID

Error details

This screen can be accessed by scrolling down to the

“fault” text and pressing the hand wheel or through the error log screen.

132

Error Screen

Maintenance/troubleshooting

Station number

Type of error

Power supply error code

Error details

Error Screen

Station number

Type of Error

Number of starts since ICH boot up

Error ID

Command value for error

Actual value when error occurred

Error details

133

134

Maintenance/troubleshooting

Module Errors

ID

3

9

B

11

12

1A

1B

1C

1D

31

34

53

23

2B

2C

2D

2E

2F

30

1E

1F

22

54

59

5A

Problem Solution

The CRC was wrong on the module.

The checksum of the station constants do not match the station constants.

The watchdog telegram has not been received in 400 ms.

The module is reporting a checksum error.

The module has caries out a reset.

The watchdog counter has been exceeded.

The output driver has a short circuit.

The wrong or no expansion board is installed.

There was a checksum error during the transfer of the station constants.

The CAN send buffer overflowed.

The CAN receive buffer overflowed.

The output of the digital output does not match the command.

The checksum of the calibration data is wrong.

The Junma amplifier is reporting an alarm.

There is a checksum error in the calibration data.

The output signal status on the relay output are varying.

The heat sink is over heating.

There is no input voltage for the motor.

The checksum of the local PLC on the module is wrong.

The output cable to the motor is shorted.

There is a problem with the encoder cable.

The checksum of the local PLC on the module is wrong.

The output signal status on the relay output are varying.

There was a checksum error during the transfer of the station constants.

The module has preformed a reset.

This error will normally correct itself. If it continues, replace the module/board.

This error will normally correct itself. If it continues, replace the module/board.

1. Check the CAN cable connection between the module and the ICH.

2. Make sure there is a terminating resistor plug at the end of the CAN bus chain or the last module is plugged into port 7.

3. Make sure the CAN modules are plugged in, starting at port 1 and not skipping a port.

4. Check that the module has power.

5. Replace the module.

This error will normally correct itself. If it continues, replace the module/board.

1. Check if the unit has a stable power supply.

2. Check if the module is properly grounded.

3. Replace the module.

1. Check if the unit has a stable power supply.

2. Check if the module is properly grounded.

3. Replace the module.

1. Check the driver output for a short circuit in the wiring.

2. Replace the module.

Replace the module.

This error will normally correct itself. If it continues, replace the module/board.

Please report these errors to service with the steps you took to produce them.

1. Check the driver output for a short circuit in the wiring.

2. Replace the module.

Replace the module.

Check the Junma's LEDs for more details on the error.

Replace the module.

1. Check the driver output for a short circuit in the wiring.

2. Replace the module.

Please report these errors to service with the steps you took to produce them.

Replace the module.

Please report these errors to service with the steps you took to produce them.

Replace the module.

1. Check the driver output for a short circuit in the wiring.

2. Replace the module.

This error will normally correct itself. If it continues, replace the module/board.

1. Check if the unit has a stable power supply.

2. Check if the module is properly grounded.

3. Replace the module.

Maintenance/troubleshooting

5B

5C

5D

5E

5F

Module Errors

ID Problem

The wrong position sensor is in use.

There is no servo amplifier.

The limit switch has been reached.

There is an over current in the servo amplifier.

The watchdog counter has been exceeded.

C8

C9

CA

CB

CC

FD

FE

FF

Solution

Please report these errors to service with the steps you took to produce them.

The commanded value is too high.

The input pressure on plasma gas 1 is above 145 PSI

(10 BAR).

The input pressure on plasma gas 1 is below 51 PSI

(3.5 BAR).

The input pressure on plasma gas 2 is above 145 PSI

(10 BAR).

The input pressure on plasma gas 2 is below 51 PSI

(3.5 BAR).

There was an unkown error from the CAN port in the

ICH.

The module has preformed a reset.

The module's telegram counters did not match the

ICH's telegram counter

1. Check if the unit has a stable power supply.

2. Check if the module is properly grounded.

3. Replace the module.

1. Check that the command does not exceed the input pressure/flow abilities of the module.

1. Check that the input pressures to the Shield Gas Control are below

145 PSI (10 BAR).

2. Replace the Plasma Gas Control.

1. Check that the input pressures to the Shield Gas Control are above 51

PSI (3.5 BAR).

2. Check that the line between the Shield Gas Control and Plasma Gas

Control, labeled PG1, is not clogged or leaking.

3. Check the pressure on PG1. If it is below 51 PSI (3.5 BAR), then replace the Shield Gas Control.

4. Replace the Plasma Gas Control.

1. Check that the input pressures to the Shield Gas Control are below

145 PSI (10 BAR).

2. Replace the Plasma Gas Control.

1. Check that the input pressures to the Shield Gas Control are above 51

PSI (3.5 BAR).

2. Check that the line between the Shield Gas Control and Plasma Gas

Control, labeled PG2, is not clogged or leaking.

3. Check the pressure on PG2. If it is below 51 PSI (3.5 BAR), then replace the Shield Gas Control.

4. Replace the Plasma Gas Control.

Please report these errors to service with the steps you took to produce them.

1. Check if the unit has a stable power supply.

2. Check if the module is properly grounded.

3. Replace the module.

1. Check the CAN cable connection between the module and the ICH.

2. Make sure there is a terminating resistor plug at the end of the CAN bus chain or the last module is plugged into port 7.

3. Make sure the CAN modules are plugged in, starting at port 1 and not skipping a port.

4. Check that the module has stable power.

5. If this is happening often, replace the module.

135

136

Maintenance/troubleshooting

Process Errors

ID

1

2

3

4

5

6

9

A

D

E

F

10

11

12

13

Problem Solution

The input pressure on plasma gas is above 145 PSI (10

BAR).

The input pressure on plasma gas is below 51 PSI (3.5

BAR).

The input pressure on shield gas is above 145 PSI (10

BAR).

The input pressure on shield gas is below 51 PSI (3.5

BAR).

The output pressure of the plasma gas is more than 7

PSI (0.5 BAR) above the command.

The output pressure of the plasma gas is more than 7

PSI (0.5 BAR) below the command.

The shield gas flow is more than 35 CFH (1 CMH) above the command.

The shield gas flow is more than 35 CFH (1 CMH) below the command.

The arc voltage is more than 300 Volts above the command.

The arc voltage is more than 300 Volts below the command.

The current output is more than 50 Amps above the command.

The current output is more than 50 Amps below the command.

The torch has crashed into the work piece.

The arc went out before the plasma start went low.

The initial height sensing failed to complete in 10 seconds.

1. Check that the input pressures to the Combined Gas Control are below 145 PSI (10 BAR).

2. Replace the Combined Gas Control.

1. Check that the input pressures to the combined Gas Control are above 51 PSI (3.5 BAR).

2. Replace the Combined Gas Control.

1. Check that the input pressures to the Combined Gas Control are below 145 PSI (10 BAR).

2. Replace the Combined Gas Control.

1. Check that the input pressures to the Combined Gas Control are above 51 PSI (3.5 BAR).

2. Replace the Combined Gas Control.

1. Check for a clogged line between the Combined Gas Control and the torch.

2. Check for clogged/damaged consumables.

3. Replace the Combined Gas Control.

1. Check for a leaking line between the Combined Gas Control and the torch.

2. Check for the correct consumables are properly installed.

3. Replace the Combined Gas Control.

1. Check for a leaking line between the Combined Gas Control and the torch.

2. Check for the correct consumables are properly installed.

3. Replace the Combined Gas Control.

1. Check for a clogged line between the Combined Gas Control and the torch.

2. Check for clogged/damaged consumables.

3. Replace the Combined Gas Control.

1. Check for a short in the VDR cable.

2. Check for good grounding on the lifter control box.

3. Replace the MCU in the lifter control box.

1. Check for a short in the VDR cable.

2. Check for good grounding on the lifter control box.

3. Replace the MCU in the lifter control box.

1. Check the feedback voltage from the power supply is the expected value.

2. Check the command voltage to the power supply is the expected value.

1. Check the feedback voltage from the power supply is the expected value.

2. Check the command voltage to the power supply is the expected value.

1. Make sure the stand-off voltage, if using arc voltage height control mode, is correct for the thickness being cut/marked.

2. Make sure the CNC speed is correct for the thickness being cut/ marked.

3. Make sure the plate is level, if using encoder height control mode.

1. Make sure the part being cut/marked fits on the work piece.

2. If this was during a hole cutting, make sure to turn off the plasma start signal before doing overburn.

1. Make sure the work piece is below the torch.

2. Make sure the work piece is properly grounded.

3. Make sure the torch tip is free of debris.

Maintenance/troubleshooting

Process Errors

ID

16

17

18

19

1A

1B

1C

1D

Problem Solution

The Combined Gas Control (CGC) failed to respond properly to the ICH's watchdog command.

The Water Injection Control (WIC) failed to respond properly to the ICH's watchdog command.

The lifter failed to respond properly to the ICH's watchdog command.

1. Check the CAN cable connection between the Combined Gas Control and the ICH.

2. Make sure the switch in the CAN power supply is set to ""CLOSED"" and the CAN power supply is the last module on the CAN bus.

3. Make sure the CAN modules are plugged in, starting at port 1 and not skipping a port.

4. Check that the Combined Gas Control has power. If it does not, check the power cable for a short. If no short is present, check the Power

Distribution Box's fuse and input power.

5. Replace the Combined Gas Control.

1. Check the CAN cable connection between the Water Injection Control and the ICH.

2. Make sure the switch in the CAN power supply is set to ""CLOSED"" and the CAN power supply is the last module on the CAN bus.

3. Make sure the CAN modules are plugged in, starting at port 1 and not skipping a port.

4. Check that the Water Injection Control has power. If it does not, check the Water Injection Control's fuse and input power.

5. Replace the Water Injection Control's PCUA.

1. Check the CAN cable connection between the lifter and the ICH.

2. Make sure the switch in the CAN power supply is set to ""CLOSED"" and the CAN power supply is the last module on the CAN bus.

3. Make sure the CAN modules are plugged in, starting at port 1 and not skipping a port.

4. Check that the lifter has power. If it does not, check the power cable for a short.

5. Replace the lifter's MCU.

The coolant flow is below 1 GPM (3.78 LPM).

The power supply is reporting a fault.

The CAN Power Supply failed to respond properly to the ICH's watchdog command.

1. Check the coolant level in the coolant tank.

2. Check for a clog in the filter.

3. Check for a clog in the flow sensor.

4. Check for a kink in the coolant lines.

5. Check for power to the flow sensor.

Check the CAN power supply documentation for more details.

1. Check the CAN cable connection between the CAN Power Supply and the ICH.

2. Make sure the switch in the CAN power supply is set to ""CLOSED"" and the CAN power supply is the last module on the CAN bus.

3. Make sure the CAN modules are plugged in, starting at port 1 and not skipping a port.

5. Replace the CAN Power Supply's control board.

The torch failed to start within 2 seconds of preflow finishing.

1. Make sure the torch is the recommended distance from the work piece.

2. Increase the pilot arc current, up to 10 amps.

3. Check that the HF is coming out of the torch. If not, check the HF relay in the RAS.

The lower limit switch, on the lifter, has been tripped.

1. Check for a short in the lower limit switch wiring.

2. Make sure the cutting does not require the lifter to move beyond its limits.

137

138

Maintenance/troubleshooting

23

24

25

26

27

28

Process Errors

ID

1E

1F

20

21

22

29

2C

2D

2E

2F

30

31

32

Problem Solution

The ICH has reset because of a trap error.

The ICH has reset because of an OP code error.

The ICH has reset because the reset pin on the processor was shorted.

The ICH has reset because of a software command.

The ICH has reset because of the hardware watchdog timed out.

Please report these errors to service with the steps you took to produce them.

The ICH has reset because of a brown out.

The ICH has reset because of a power on reset.

The serial port has reported a parity error.

The serial port has reported a framing error.

The cut water output pressure is more than 200 PSI (14

BAR), while the pump is on.

1. Check for cable grounding issues.

2. If using RS-232, try using a fiber optic converter and short (< 6") cables to the ICH and the computer.

The serial port has reported a receive buffer overrun.

Slow the communication speed of the ICH and computer.

The serial port has reported an unknown error.

1. Check for cable grounding issues.

2. If using RS-232, try using a fiber optic converter and short (< 6") cables to the ICH and the computer.

The LCD has reset.

1. Check the grounding of the ICH enclosure.

2. Replace the ICH's main board.

1. Check the output pressure of the regulator inside the Water Injection

Control.

2. Check the voltage feedback from the pressure sensor. If it is ok, replace the Water Injection Control's PCUA.

3. Replace the pressure sensor.

The cut water output pressure is less than 44 PSI (3

BAR), while the pump is on.

The CAN port has reported a receive buffer overrun.

The CAN port has reported an invalid message on the bus.

The CAN port has reported that the bus was corrupted.

There was an ASIOB bus error.

The initial height sensors are shorted.

1. Check the fuses for the pump.

2. Check that the contactor for the pump is not destroyed.

3. Check the output signal to the contactor from the PCUA is coming on.

4. Check that the pump motor is coming on.

5. Make sure the pump head is moving water and not bypassing 100%.

6. Replace the pressure sensor.

1. Make sure all CAN cables are connected securely.

2. Make sure all modules are properly grounded.

3. Make sure there is a terminating resistor plug at the end of the CAN bus chain or the last module is plugged into port 7.

4. Make sure all the dip switches on the top of the ICH are toggled towards the display.

5. Make sure there are no CAN cables being coiled or run with the power leads or torch leads.

1. Make sure the 5V from the CNC's ASIOB connection is not connected to the main board in the ICH.

2. Make sure all the dip switches on the ICH's main baord are toggled towards the display.

3. Make sure the ASIOB cable is securely connected to the ICH.

1. Check for debris on the shield of the torch.

2. If using the omni crash protection, check that the sensor is properly adjusted.

Maintenance/troubleshooting

33

34

35

36

37

38

39

3A

Process Errors

ID Problem Solution

An unkown error has occurred.

The ICH has rebooted because of a request to switch to the bootloader.

The ICH has rebooted because an unexpected interrupt was fired.

The ICH has rebooted because of an addressing issue.

The ICH has rebooted because of an oscillator failure.

The ICH has rebooted because of a stack overflow or underflow.

The ICH has rebooted because of a math error.

The ICH has rebooted for an unkown reason.

Please report these errors to service with the steps you took to produce them.

139

Maintenance/troubleshooting

Torch Front End Disassembly

Wear on torch parts is a normal occurrence to plasma cutting. Starting a plasma arc is an erosive process to both the electrode and nozzle. Regularly scheduled inspection and replacement of PT-36 parts must take place to maintain cut quality and consistent part size.

DANGER

HOT TORCH WILL BURN SKIN!

ALLOW TORCH TO COOL BEFORE SERVICING.

1. Remove the Shield Cup Retainer.

NOTE:

If the shield cup retainer is difficult to remove, try to screw the nozzle retaining cup tighter to relieve pressure on the shield cup retainer.

2. Inspect mating metal surface of shield cup and shield cup retainer for nicks or dirt that might prevent these two parts from forming a metal to metal seal. Look for pitting or signs of arcing inside the shield cup. Look for melting of the shield tip. Replace if damaged.

3. Inspect diffuser for debris and clean as necessary. Wear on the top notches does occur, effecting gas volume.

Replace this part every other shield replacement. Heat from cutting many small parts in a concentrated area or when cutting material greater than 0.75" (19.1mm) may require more frequent replacement.

CAUTION

Incorrect assembly of the diffuser in the shield will prevent the torch from working properly. Diffuser notches must be mounted away from the shield as illustrated.

Shield Cup

Diffuser

Nozzle Retaining Cup

Shield Cup Retainer

140

Nozzle

Electrode

Torch Body

Maintenance/troubleshooting

4. Unscrew nozzle retainer and pull nozzle straight out of torch body. Inspect insulator portion of the nozzle retainer for cracks or chipping. Replace if damaged.

Inspect nozzle for:

• melting or excessive current transfer.

• gouges from internal arcing.

• nicks or deep scratches on the O-ring seating surfaces .

O-ring cuts, nicks, or wear.

Remove hafnium particles (from the nozzle) with steel wool.

Replace if any damage is found.

NOTE:

Discoloration of internal surfaces and small black starting marks are normal and do not effect cutting performance.

If the holder was tightened sufficiently, the electrode may unscrew without being attached to the electrode holder. When installing the electrode, use only sufficient force to adequately secure the electrode.

5. Remove electrode using electrode removal tool.

6. Disassemble electrode from electrode holder. Insert flats on the holder into a 5/16" wrench. Using the electrode tool, rotate electrode counter-clockwise to remove. Replace electrode if center insert is pitted more than 0.09" (3/32").

Torch Body

Electrode Removal Tool

Electrode

Replace electrode if center insert is pitted more than 0.09" (3/32")

141

Maintenance/troubleshooting

7. Remove electrode holder from torch body. Hex on the end of the electrode holder removal tool will engage in a hex in the holder.

Removal

Tool

Gas Baffle

Electrode Holder Assembly

Electrode

NOTE:

The electrode holder is manufactured in two pieces. Do not disassemble. If the holder is damaged, replace the electrode holder assembly.

8. Disassemble electrode holder and gas baffle. Carefully remove O-ring from electrode holder and slide baffle from holder. Inspect nozzle seating surface (front edge) for chips. Look for cracks or plugged holes. Do not attempt to clear holes. Replace baffle if damaged.

NOTE:

Check all O-rings for nicks or other damage that might prevent O-ring from forming a gas/water tight seal.

Gas Baffle

O-ring

Electrode Holder Assembly

NOTE:

Discoloration of these surfaces with use is normal. It is caused by galvanic corrosion.

142

Maintenance/troubleshooting

Torch Front End Assembly

CAUTION

Over-tightened parts will be difficult to disassemble and may damage torch. Do not over tighten parts during reassembly. Threaded parts are designed to work properly when hand-tightened, approximately 40 to 60 inch/pounds.

Reverse order of disassembly.

Apply a very thin coat of silicone grease to O-rings before assembling mating parts. This facilitates easy future assembly and disassembly for service.

Installing the electrode requires only moderate tightening. If the electrode holder is made tighter than the electrode, it is possible to change worn electrodes without removing the electrode holder.

Turn on the coolant circulator and purge the gases through the torch.

NOTE:

When assembling, place the nozzle inside the nozzle retaining cup and thread the nozzle retaining cup/nozzle combination on the torch body. This will help align the nozzle with the assembly.

The shield cup and shield cup retainer should be installed only after installing the nozzle retaining cup and nozzle. Otherwise the parts will not seat properly and leaks may occur.

Diffuser

Shield

Cup

Shield Cup Retainer

Nozzle

Nozzle Retaining

Cup

Electrode

Torch body

143

Maintenance/troubleshooting

Torch Front End Assembly using the Speedloader

Use of a speedloader, p/n 0558006164, will ease assembly of the torch front end parts. step 1. To use the speedloader, first insert the nozzle into the nozzle retaining cup.

Nozzle

Nozzle Retaining Cup step 2. Screw the speedloader into the nozzle retaining cup to secure the nozzle.

step 3. Secure retaining nut on nozzle with preassembly tool, p/n 0558005917 included with the speedloader.

step 4. Remove the speedloader. It is very important to remove the speedloader to ensure proper seating of the remaining parts.

step 5. Insert the diffuser into the shield cup.

Retaining nut p/n 0558005916

Shield Cup

Diffuser

Shield cup retainer step 6. Insert the nozzle retaining cup assembly into the shield cup retainer.

Nozzle retaining cup assembly

Shield cup retainer assembly step 7. Screw shield cup retainer assembly onto nozzle retaining cup assembly.

144

Preassembly tool

Maintenance/troubleshooting

Torch Front End Disassembly (for Production Thick Plate)

DANGER

HOT TORCH WILL BURN SKIN!

ALLOW TORCH TO COOL BEFORE SERVICING.

1. Remove the Shield Cup Retainer.

NOTE:

If the shield cup retainer is difficult to remove, try to screw the nozzle retaining cup tighter to relieve pressure on the shield cup retainer.

2. Inspect mating metal surface of shield cup and shield cup retainer for nicks or dirt that might prevent these two parts from forming a metal to metal seal. Look for pitting or signs of arcing inside the shield cup. Look for melting of the shield tip. Replace if damaged.

3. Inspect diffuser for debris and clean as necessary. Wear on the top notches does occur, effecting gas volume.

Replace this part every other shield replacement. Heat from cutting many small parts in a concentrated area or when cutting material greater than 0.75" (19.1mm) may require more frequent replacement.

CAUTION

Incorrect assembly of the diffuser in the shield will prevent the torch from working properly. Diffuser notches must be mounted away from the shield as illustrated.

Diffuser

Torch Body

Nozzle

Nozzle Retaining Cup

Shield Cup

Shield Cup Retainer

145

Maintenance/troubleshooting

4. Unscrew nozzle retainer and pull nozzle straight out of torch body. Inspect insulator portion of the nozzle retainer for cracks or chipping. Replace if damaged.

Inspect nozzle for:

• melting or excessive current transfer.

• gouges from internal arcing.

• nicks or deep scratches on the

O-ring seating surfaces.

O-ring cuts, nicks, or wear.

Remove tungsten particles (from the nozzle) with steel wool.

Torch Body

Nozzle Retaining Cup

Replace if any damage is found.

Nozzle

NOTE:

Discoloration of internal surfaces and small black starting marks are normal and do not effect cutting performance.

If the holder was tightened sufficiently, the electrode may unscrew without being attached to the electrode holder. When installing the electrode, use only sufficient force to adequately secure the electrode.

5. Remove electrode using electrode removal tool.

6. Disassemble electrode from electrode holder. Insert flats on the holder into a 5/16" wrench. Using the electrode tool, rotate electrode counter-clockwise to remove. Replace electrode if center is pitted more than

0.06" (1/16") or if the flat has become irregular in shape or is worn to a larger diameter.

Torch Body

Note:

The electrode has two usable ends.

When one end is worn, flip electrode to other end for continued use.

Electrode

Electrode Removal Tool

Collet

Collet Body

Electrode, Tungsten

146

Maintenance/troubleshooting

7. Remove electrode holder from torch body. Hex on the end of the electrode holder removal tool will engage in a hex in the holder.

Torch Body

Electrode Holder

Removal Tool

8. Disassemble electrode holder and gas baffle. Carefully remove O-ring from electrode holder and slide baffle from holder. Inspect nozzle seating surface (front edge) for chips. Look for cracks or plugged holes. Do not attempt to clear holes. Replace baffle if damaged.

NOTE:

Check all O-rings for nicks or other damage that might prevent O-ring from forming a gas/water tight seal.

Electrode Holder

Gas Baffle

O-ring (located underneath baffle)

Pull Gas Baffle back to remove and access o-ring

147

Maintenance/troubleshooting

Torch Front End Assembly (for Production Thick Plate)

CAUTION

Over tightened parts will be difficult to disassemble and may damage torch. Do not over tighten parts during reassembly. Threaded parts are designed to work properly when hand tightened, approximately 40 to 60 inch/pounds.

Reverse order of disassembly.

Apply a very thin coat of silicone grease to O-rings before assembling mating parts. This facilitates easy future assembly and disassembly for service.

Installing the electrode requires only moderate tightening.

Torch Body

1. Replace electrode holder in torch body. Hex on the end of the electrode holder removal tool will engage in a hex in the holder.

Collet

Collet Body

Electrode, Tungsten

2. To replace the electrode, assemble collet, collet body and electrode. Insert electrode assembly into the electrode removal tool and ensure electrode makes contact with bottom of tool hole (electrode will fall into place).

148

Maintenance/troubleshooting

3. Screw electrode assembly in a clockwise direction to torch body. Electrode will tighten in the correct position when collet closes.

Nozzle Retaining Cup

Torch Body

Nozzle

NOTE:

When assembling, place the nozzle inside the nozzle retaining cup and thread the retainer/ nozzle combination on the torch body. This will help align the nozzle with the assembly. The shield cup and shield cup retainer should be installed only after installing the nozzle retaining cup and nozzle. Otherwise the parts will not seat properly and leaks may occur.

149

Maintenance/troubleshooting

Torch Body Maintenance

Inspect O-rings daily and replace if damaged or worn.

Apply a thin coat of silicone grease to O-rings before assembling torch. This facilitates easy future assembly and disassembly for service.

O-ring (1.61" (41mm) I.D. x .07" (1.8mm) BUNA-70A) p/n 996528.

WARNING

Electric Shock Can Kill!

Before performing torch maintenance:

Turn power switch of the power source console to the OFF position

Disconnect primary input power.

Keep electrical contract ring contact points free of grease and dirt.

Inspect ring when changing nozzle.

Clean with cotton swab dipped in isopropyl alcohol.

Contact Ring Points

O-Ring locations

Contact Ring

Contact Ring Screw

Contact Ring Points

150

Maintenance/troubleshooting

Torch Body Removal and Replacement

Electric Shock Can Kill!

WARNING

Before performing torch maintenance:

Turn power switch of the power source console to the OFF position .

Disconnect primary input power.

1. Loosen the worm gear hose clamp so that the torch sleeving can be freed and pulled back up the cable bundle. Approximately 7 inches should be far enough. Unscrew the torch sleeve and slide it back until the pilot arc connection is exposed.

Handle

Torch Body

2. Disconnect the power cables which are threaded onto the shorter stems at the back of the torch. Note that one of these connections is left-handed. Unscrew the gas hoses from the torch head assembly by using a

7/16" (11.1mm) and a 1/2" (12.7mm) wrench. Removal of the gas hoses is easier if the power cables are removed first.

1/2" power cable connections

1/2" shield gas connection

7/16" plasma gas connection

151

Maintenance/troubleshooting

3. Unwrap the electrical tape at the back of the gray plastic insulator over the pilot arc connection. Slide the insulator back and undo the knife connectors.

Electrical Tape

(shown removed)

Wire splice

Pilot Arc Cable

Knife-splice connection

4. To install the new torch head assembly - Connect the pilot arc cable and the main power cable by reversing the steps taken to disconnect them. Be sure the gas and water fittings are tight enough to prevent leaks, but do not use any kind of sealant on them. If the knife connection seems loose, tighten the connection by pressing on the parts with needle-nosed pliers after they are assembled. Secure the gray pilot arc insulator with 10 turns of electrical tape.

5. Slide the handle forward and thread it firmly onto the torch body.

New Torch Head Assembly

152

Maintenance/troubleshooting

Reduced Consumable Life

1. Cutting Up Skeletons

Cutting skeletons (discarded material left after all pieces have been removed from a plate). Their removal from the table can adversely affect electrode life by:

Causing the torch to run off the work.

Greatly increasing the start frequency. This is mainly a problem for O

2

cutting and can be alleviated by choosing a path with a minimum number of starts.

Increasing likelihood that the plate will spring up against the nozzle causing a double arc. This can be mitigated by careful operator attention and by increasing standoff and reducing cutting speeds.

If possible, use an OXWELD torch for skeleton cutting or operate the PT-36 at a high standoff.

2. Height Control Problems

Torch crashing is usually caused by a change in arc voltage when an automatic height control is used. The voltage change is usually the result of plate falling away from the arc. Disabling the height control and extinguishing the arc earlier when finishing the cut on a falling plate can effectively eliminate these problems.

Torch crashing can also occur at the start if travel delay is excessive. This is more likely to occur with thin material. Reduce delay or disable the height control.

Torch crashing can also be caused by a faulty height control.

3. Piercing Standoff Too Low

4. Starting on edges with

continuous pilot arc

5. Work Flipping

Increase pierce standoff

Position torch more carefully or start on adjacent scrap material.

The nozzle may be damaged if the torch hits a flipped up part.

6. Catching on Pierce Spatter

7. Pierce not complete before

starting

8. Coolant flow rate low,

Plasma gas flow rate high,

Current set too high

9. Coolant leaks in torch

Increase standoff or start with longer lead-in.

Increase initial delay time.

Correct settings

Repair leaks

153

Maintenance/troubleshooting

Checking for Coolant Leaks

Coolant leaks can originate from seals on the electrode, electrode holder, nozzle, and torch body. Leaks could also originate from a crack in the insulating material of the torch or nozzle retaining cup or from a power cable.

To check for leaks from any source remove the shield cup, clean off the torch, purge it, and place it over a clean dry plate. With the gases off, run the water cooler for several minutes and watch for leaks. Turn on the plasma gas and watch for any mist from the nozzle exit. If there isn’t any, turn off the plasma gas, turn on the shield gas, and watch for any mist from the shield gas passages in the nozzle retaining cup.

If a leak appears to be coming from the nozzle orifice, remove and inspect the o-rings on the nozzle, electrode, and electrode holder. Check the sealing surfaces on the electrode holder and stainless steel torch liner.

If you suspect that a leak is coming from the electrode itself, you can install a 100 to 200 amp 2-piece nozzle base without a nozzle tip. After purging, run the water cooler with the gas off and observe the end of the electrode. If water is seen to collect there, make sure it is not running down the side of the electrode from a leak at an o-ring seal.

WARNING

If it is necessary to supply power to the power source to run the water cooler, it is possible to have high voltages at the torch with no arc present. Never touch the torch with the power source energized.

154

Appendix

156 appendix

appendix

ESAB Serial Communication Interface

Introduction

ESAB Serial Communication Interface (ESCI) is the software developed for operating the Interface Control

Hub (ICH) remotely. This software is developed on the .NET Framework which will communicate with the ICH through a serial interface.

For customers who have RS232, instead of RS422, an RS232 to RS422 converter may be used to communicate via RS422 with the ICH.

System Requirements

There are certain requirements that need to be met in order to install and operate the ESAB Serial

Communication Interface on your system.

Minimum Requirements:

1. CPU: 1.2GHz P4

2. Memory: 256MB

3. Operating System: Windows XP SP2

4. Hard disk: 30MB + Log Space

5. Serial Communication Port (RS232 or RS422)

6. Display: 800x600

7. Keyboard or Touch screen

8. Windows Installer 3.1 (Included in Redistro Folder)

9. .Net Framework 2.0 (Included in Redistro Folder)

Recommended Requirements:

1. CPU: 2GHz P4

2. Memory: 512MB

3. Operating System: Windows XP SP3

4. Hard disk: 30MB + Log Space

5. Serial Communication Port (RS232 or RS422)

6. Display: 800x600

7. Keyboard or Touch screen

8. Windows Installer 3.1 (Included in Redistro Folder)

9. .Net Framework 2.0 (Included in Redistro Folder)

157

appendix

Installation

Installation of the ESCI software is straight forward. Insert the media containing the ESCI setup file into the system on which you want to install ESCI and run the setup.exe file. Then follow the instructions on screen.

When installation is complete, run the configurator to setup the software for first use.

Figure 1: Communication Configurations

Figure 2: System Options

Figure 3: GRP File Generator

158

appendix

The communication settings (shown in Figure 1), i.e., Port, Speed, Parity and Stop Bit, must match the ICH settings.

The different log levels (shown in Figure 2) available are:

None - Do not record any information.

Errors only - Record the communication errors.

Errors and warnings only - Record communication errors and warnings.

Errors, warnings and information - Record communication errors, warnings, and information about the parameter database etc.

Everything (debug) - Record all the information. This is not recommended unless there are serious problems and the customer wants to debug it.

The GRP generator (shown in Figure 3) allows for the recreation of the GRP file, based on the power supply and a WIC being present. Select the power supply installed, if there is a WIC present, and then click generate. When the file is created, a message will be displayed.

159

appendix

Operation

This section shows how to operate the ESCI software with ICH for remote operation. Launch the ESCI software on your system, the ESAB logo, as shown in Figure 7, is displayed which states ESCI is loading parameters database.

Figure 7: ESCI Loading Screen

160

appendix

Once the ESCI has finished loading the parameter database, the user graphical interface screen, as shown in

Figure 8 for m3 Gen2 and Figure 9 for IGC, will be displayed depending on the mode of operation.

Figure 8: m3 Gen2 Parameter Screen with one station turned on

161

appendix

Figure 8 is with one station turned on. As stations are turned on, the tab for the station(s) will appear like they are in Figure 9 and 10.

162

Figure 9: IGC Parameter Screen with all stations on

appendix

Figure 10: m3 Gen2 with all stations turned on

Throughout the application, this document will assume there is a mouse or touch screen attached to the computer/CNC running the software. If only a keyboard is attached, the tab key can be used to move between buttons and dropdown lists, the arrow keys can be used to change the dropdown lists, and the spacebar key can be used to “click” the buttons.

From all the tabs, it is possible to view the consumables, edit the parameters, freeze the gauges, clear errors, get version information, minimize the application, get the information needing to be loaded on the CNC, and download parameters to the ICH. To view the consumables needed for the currently selected parameters, click the SHOW CONSUMABLES button, Figure 11 will then be displayed. To get rid of the consumables screen click it or press any key. To download the parameters to the ICH, click on the DOWNLOAD button. Once the download is started, a progress bar (Figure 12) will appear and when complete, the progress bar will disappear and a message box (Figure 13) stating that the download is complete will appear for a few seconds. The speed, kerf, and arc voltage (if height control is not controlled by the ICH) will have the values, needing to be set on the CNC, displayed in the bottom right area of the screen.

163

appendix

164

Figure 11: Consumable Pictures

Figure 12: Parameter Download Status Bar

Figure 13: Parameter Download Complete

appendix

The freeze gauges on error option allows the gauges to be frozen in the state they were last in when an error occurs. The station error list will display the error reported by the ICH, which can be cleared by clicking the

CLEAR button. This will also unfreeze the gauges. To get greater detailed information about the error, click on the error.

The version information will display the version of the ICH and the application’s version. The power supply type will also be displayed in the same area.

The GAS TEST buttons on the parameter screen will allow for testing each gas output for the currently downloaded parameters, which is displayed on the gauges to the left. The blue arrow is the start value and the red arrow is the cut/mark value.

The HEIGHT CONTROL TEST button will only show up if the ICH controls the lifter. This button will cause the height control to find the initial height for cutting/marking.

The AIR CURTAIN button will enable/disable the air curtain output. The CLEAR TIMERS/COUNTERS button will reset the number of starts and the arc on time, which are displayed on the station’s tab.

The EDIT PARAMETERS button will display the screen in Figure 14 (m3 Gen 2) or Figure 15 (IGC). This is where all the parameter editing occurs. On this screen all the parameters can be changed. When saving the parameters a parameter group must be specified and can not be the “Standard” group. The “Standard” group is reserved for the parameters from ESAB. The RELOAD button will reload the parameters on the screen back to what they were originally.

Figure 14: m3 Gen2 parameter edit screen

165

appendix

Figure 15: IGC parameter edit screen

The station’s tab is where the feedback from the ICH is displayed, as shown in Figure 16 (m3 Gen2) and Figure

17 (IGC). The red area on the gauges is the area where an error will occur. The yellow area is the area where the performance of the plasma system will be degraded, but still work without producing an error. The green area is the ideal area to be in. Below the needle in each gauge, there is the digital value being read back from the ICH. The yellow and red areas on the gauges measuring the output pressures and flow will only appear when the process is active. This is indicated when the process step is not 0. The process step displays the step number the ICH is currently in. The step 0 is the idle step, where gas and height control tests can be done. The coolant level warning text will only appear when there is a low coolant level detected in the coolant circulator, it is recommended to check for coolant leaks and refill the coolant circulator when this occurs. The warning will not stop the plasma system from functioning. But the coolant flow error is more likely to occur during a cut/mark operation, which can damage the part being made by the plasma system when it shuts down.

166

appendix

Figure 16: m3 Gen2 station tab

167

appendix

168

Figure 17: IGC station tab

appendix

Demo Server

This section shows how to operate the Demo Server. The demo server software will simulate an ICH via an

Ethernet connection. The protocol used on the Ethernet connection is the same as the one used on the serial connection. Launch the Demo Server on your system and when it is loaded, the screen in Figure 18 will be displayed.

Figure 18: Demo Server Main Screen

From here the system type, power supply, lifter, and WIC options can be selected. Once these options are setup to simulate the ICH system desired, the ESCI software can be launched. This can be done by clicking the

LAUNCH ESCI button or by running the ESCI software via other means. The recommended method is via the

LAUNCH ESCI button on the demo server. Once the ESCI software is launched, via the launch ESCI button, the

LAUNCH ESCI button will change to Quit ESCI. This button can be used to quit the ESCI software at any time.

The three buttons above the LAUNCH ESCI button simulate the digital inputs from the CNC to the ICH. The

PLASMA START button will start the process and lock out the MARK MODE button. The MARK MODE button will put the simulator into Marking mode. The CORNER button will switch the simulator between corner current and cut/mark current. The STATION ON buttons will toggle the station on/off, simulating the station on digital input from the CNC to the ICH.

The step is the current process step being simulated. The warning code, fault code and extended fault code are the raw codes sent back to the ESCI software. The meaning of the code is explained in the serial protocol section of the manual. By clicking the EDIT FAULT AND WARNING CODE button, they can be edited by the name of the fault/warning. This can be seen in Figure 19. By clicking on the ADD button, Figure 20 will appear where the fault codes can be added. The CLEAR ALL FAULTS button will clear all of the faults.

169

appendix

170

Figure 19: Demo Server Error Screen

Figure 20: Demo Server Error Selection Screen

appendix

ICH Serial Communication Protocol

The serial communication with the ICH can be achieved by RS-232, RS-422, or RS-485. This is selectable via the constant editor mode. Each command and response from the Interface Control Hub has a two character checksum on the end. The checksum can be calculated with the following formula:

Checksum = Hex (Truncate ((ASCII (Character1) + ASCII (Character2) + … + ASCII (CharacterN)), 8 bits))

Where Character1 through CharacterN are the characters of the command/response and data to be sent with the command/response. Truncate is a function that drops all bits higher than the number of bits specified. Hex converts the number into its hexadecimal representation in a string.

Note:

During the starting of the plasma process a high frequency generator will become active for about one second. This will cause communication checksum errors on messages sent and received for up to three seconds. The ICH will automatically resume normal communication after this time.

Commands

000: Hello command

This will also reset all errors.

Command:

000<Checksum>

Response:

000ESAB

001: Version request

Command:

001<Checksum>

Response:

001<Power Supply Version> <ICH Version><Checksum>

Power Supply Version is 4 characters long and in hexadecimal format. ICH Version is 4 characters long and in hexadecimal format. The first two characters are the major and the second two characters are the minor (e.g. Major.Minor)

002: Get station status

Command:

002<Checksum>

Response:

002<Station 1 Status> <Station 2 Status><Checksum>

Station 1 Status and Station 2 Status are 4 characters of hexadecimal, each in the following format:

Bit 11-15:

Bit 10:

Bit 9:

Bit 8:

Bit 0-7:

Spare

Coolant Level OK

Mark Mode

Station Selected

Process Step

171

appendix

003: Get station errors

Command:

003<Checksum>

Response:

003<Station 1 Errors> <Station 2 Errors><Checksum>

Station 1 Errors and Station 2 Errors are 8 characters of hexadecimal each in the following format:

Bit 15:

Bit 14:

Bit 13:

Bit 12:

Bit 11:

Bit 10:

Bit 9:

Bit 8:

Bit 7:

Bit 6:

Bit 5:

Bit 4:

Bit 3:

Bit 2:

Bit 1:

Bit 0:

Bit 31:

Bit 30:

Bit 29:

Bit 28:

Bit 27:

Bit 26:

Bit 25:

Bit 24:

Bit 23:

Bit 22:

Bit 21:

Bit 20:

Bit 19:

Bit 18:

Bit 17:

Bit 16:

Extended Errors exist

Lower Limit Switch

Spare

Spare

Spare

Power Supply Fault

Crash

Coolant Flow OK

Current too low

Current too high

Arc Voltage too low

Arc Voltage too high

Shield Gas 2 Flow too low

Shield Gas 2 Flow too high

Shield Gas 1 Flow too low

Shield Gas 1 Flow too high

Plasma Gas 2 Flow too low

Plasma Gas 2 Flow too high

Plasma Gas output pressure too low

Plasma Gas output pressure too high

Plasma Gas 2 input pressure too low

Plasma Gas 2 input pressure too high

Plasma Gas 1 input pressure too low

Plasma Gas 1 input pressure too high

Water Injection Module Missing

Power Supply Missing

Plasma Gas Box Missing

Shield Gas Box Missing

Lifter Missing

Arc Lost

Ignition Timeout

IHS Timeout

004: Remote Mode

Command:

004<Checksum>

Response:

0040<Checksum> if in local mode and 0041<Checksum> if in remote mode

172

appendix

005: Get extended errors (only available on version 1.7 or later)

Command:

005<Checksum>

Response:

005<Station 1 Errors> <Station 2 Errors><Checksum>

Station 1 Errors and Station 2 Errors are 8 characters of hexadecimal each in the following format:

Bit 16-31:

Bit 15:

Bit 14:

Bit 13:

Bit 12:

Bit 11:

Bit 10:

Bit 9:

Bit 8:

Bit 7:

Bit 6:

Bit 5:

Bit 4:

Bit 3:

Bit 2:

Bit 1:

Bit 0:

Spare

Lower limits switch

Current feedback, inside RAS, too low

Current feedback, inside RAS, too high

WIC Error

WIC Watchdog

RAS Error

RAS Watchdog

CGC Error

CGC Watchdog

PGC Error

PGC Watchdog

SGC Error

SGC Watchdog

Sensor short on lifter

Lifter Error

Lifter Watchdog

006: Parameter Loading Mark/Cut

Command:

0061<Checksum> for mark parameters are being loaded and 0060<Checksum> for parameters.

Response:

0061<Checksum> at all times.

007: Air Curtain enable/disable

Command:

0071<Checksum> for enabled and 0070<Checksum> for disabled.

Response:

0070<Checksum> if action not allowed and 0071<Checksum> if the action was allowed.

173

appendix

008: Retrieve Options

Command:

008<Checksum>

Response: 008<Lifter><Water Injection><Gas Control><Checksum>

Each is 1 byte long. There is a ICH controlled lifter if Lifter is “1”, otherwise there is no height control from the Interface Control Hub. There is a water injection module attached if Water Injection is “1”, otherwise there is no water injection module.

The Gas Control determines which type of control there is.

“0” - Water Injection only.

“1” - Combined Gas Control is used.

“2” - Full Gas Control is used.

028: Read current

Command:

028<Checksum>

Response:

028<Station 1 Current> <Station 2 Current><Checksum>

Station 1 Current and Station 2 Current are both 4 characters long and in the unit amperes.

058: Set currents

Command:

058<Start Current> <Cut Current> <End Current> <Pilot Arc Current><Checksum>

All the currents are in amperes and 4 characters long.

Response:

0581<Checksum> if allowed and 0580<Checksum> if not

060: Shield Cut Gas Test Begin

Command:

060<Checksum>

Response:

0600<Checksum> if not allowed and 0601<Checksum> if allowed

061: Shield Cut Gas Test End

Command:

061<Checksum>

Response:

0611<Checksum>

062: Shield Start Gas Test Begin

Command:

062<Checksum>

Response:

0620<Checksum> if not allowed and 0621<Checksum> if allowed

174

appendix

063: Shield Start Gas Test End

Command:

063<Checksum>

Response:

0631<Checksum>

064: Start Gas Test Begin

Command:

064<Checksum>

Response:

0640<Checksum> if not allowed and 0641<Checksum> if allowed

065: Start Gas Test End

Command:

065<Checksum>

Response:

0651<Checksum>

066: Cut Gas Test Begin

Command:

066<Checksum>

Response:

0660<Checksum> if not allowed and 0661<Checksum> if allowed

067: Cut Gas Test End

Command:

067<Checksum>

Response:

0671<Checksum>

069: IHS Test

Command:

069<On/Off><checksum>

On is 1 and Off is 0.

Response:

0691<Checksum> if allowed and 0690<Checksum> if not allowed

070: Set Corner Current

Command:

070<Corner

The corner current is in amperes and is 4 characters long

Response:

0701<Checksum> if allowed and 0700<Checksum> if not allowed

175

appendix

078: Gas Pressure/Flow loading

Command:

078<PG1 Start> <PG1 Cut> <PG2 Start> <PG2 Cut> <SG1 Start> <SG1 Cut> <SG2 Start> <SG2

Cut><Checksum>

Plasma gases (PG) are in millibar (mBar) and 5 characters long, while shield gases (SG) are in 1000 times cubic meter per hour (1000 * CMH) or milliliters per minute (mLM) and 5 characters long.

Response:

0781<Checksum> if allowed and 0780<Checksum> if not allowed

087: Set height settings

Command:

087<Initial Height> <Cutting Height> <Pierce Height> <Arc Voltage> <Thickness><Checksum>

Initial Height, Cutting Height, Pierce Height, and Arc Voltage are in micrometers and 5 characters long.

Thickness is in micrometers and is 6 characters long.

Response:

0871<Checksum> if allowed and 0870<Checksum> if not allowed.

094: Gas pressure/flow readings from sensors

Command:

094<Checksum>

Response:

094<Station 1 SG1 Flow> <Station 1 SG2 Flow> <Station 1 PG Output Pressure> <Station 1 PG2

Flow> <Station 1 PG1 Input Pressure> <Station 1 PG2 Input Pressure> <Station 1 SG Output

Pressure> <Station 2 SG1 Flow> <Station 2 SG2 Flow> <Station 2 PG Output Pressure> <Station

2 PG2 Flow> <Station 2 PG1 Input Pressure> <Station 2 PG2 Input Pressure> <Station 2 SG Out

Pressure><Checksum>

All the readings are 5 characters each. Pressures are in millibar (mBar) and flows are in 1000 times cubic meter per hour (1000 * CMH). If water injection is in use than SG1 and SG2 flow are the water injection flow in milliliter per minute (mLM) and SG Output Pressure is the water injection pressure.

095: Load timers

Command:

095<Current Ramp Up> <Current Ramp Down> <Gas Off Delay> <Preflow> <Raise When

Complete>

All timers are in milliseconds and 5 characters long.

Response:

0951<Checksum>

096: Gas select

Command:

096<Gas

Gas Select is 2 Characters long.

Response:

0961<Checksum> if allowed and 0960<Checksum> if not allowed

176

appendix

097: Load thick plate timer

Command:

The timer is in milliseconds and 5 characters long.

Response:

0971<Checksum>

099: Read current gas pressure/flow parameters

Command:

099<Checksum>

Response:

099<PG1 Cut> <PG1 Start> <PG2 Cut> <PG2 Start> <SG1 Cut> <SG1 Start> <SG2 Cut> <SG2

Start><Checksum>

Plasma gases (PG) are in millibar (mBar) and 5 characters long, while shield gases (SG) are in 1000 * cubic meter per hour (1000 * CMH) or milliliters per minute (mLM) and 5 characters long.

098 & 122: Read gas select

Command:

098<Checksum>

122<Checksum>

Response:

Select><Checksum>

122<Gas

Gas Select is 2 Characters long.

124: Reset Timers/Counters

Command:

124<Checksum>

Response:

1241<Checksum> all the time

125: Read Timers/Counters

Command:

125<Checksum>

Response:

125<Station 1 Timer> <Station 1 Counter> <Station 2 Timer> <Station 2 Counter><Checksum>

Timers are in the format “hh:mm:ss” and counters are 4 characters long hexadecimal numbers. The counter represents the number of times the torch has been fired since the last reset and the timer is how long the process was running since the last reset.

177

appendix

ICH Communication Errors

There are three possible communication errors:

500: Bad Checksum

The message was received but the checksum was incorrect. Wait one second and then retry. Another

500 will be transmitted after the one second is up.

501: Unknown Command

The command was received but the received command was not a recognized command.

502: Communication Not Allowed

Communication is not allowed because the Local/Remote toggle switch is set to local.

Toggle the Local/Remote switch to remote, and try again.

ICH Login Sequence

The login sequence should be in the following order:

1.

2.

3.

4.

5.

6.

7.

Hello (000)

Version (001)

Get status (002)

Get errors (003)

Get Timers/Counters (125)

Check remote mode status (004)

Retrieve options (008)

Example:

Send

00090

00191

00292

00393

12598

00494

00898

Receive

000ESAB m3-CAN OEM4B

0010168 010041

0020000 000032

00300000000 00000000B3

12500:00:00 0000 00:00:00 0000A0

0041C5

00800129

178

appendix

ICH Communication Error Messages

Error

IHS Timeout

Ignition Timeout

Arc Lost

Lifter Missing

Shield Gas Box

Missing

Plasma Gas Box

Missing

Power Supply

Missing

Water Injection

Module Missing

Plasma Gas 1 input pressure too high

Plasma Gas 1 input pressure too low

Plasma Gas 2 input pressure too high

Plasma Gas 2 input pressure too low

Resolution

Check that there is a plate below the torch and within the stroke of the lifter.

Check the ICH display to see if the station is selected.

Check the lift amplifier in the lift box for a fault.

Call service if none of the above work.

Check that the power supply is turned on.

Check that the torch is within the specified distance to the plate.

Check that the pilot arc cable is attached, in the Remote Arc Starter box, to the pilot arc connection point and on the other end to the power supply’s pilot arc connection point.

Check that the electrode cables are connected to the block in the Remote Arc Starter box.

Check that the work cables are connected to the work piece, normally via a slat.

Check that the machine did not stall over a small hole or try to cut across a large hole (or off the edge of the plate).

Check that the input power to the power supply did not drop out.

Check that the lifter has the CAN cable connected and there are no empty plugs between the lifter’s CAN plug and CAN 1 on the Interface Control Hub.

If this setup has no lifter, then edit the constant, via the constant editing mode, to disable the lifter functions.

Call service if there seems to be no cabling issues.

Check for 230/115 VAC on the power plug of the Shield Gas Box.

Check that the Shield Gas Box has the CAN cable connected and there are no empty plugs between the Shield

Gas Box’s CAN plug and CAN 1 on the Interface Control Hub.

Call service if there seems to be no cabling issues.

Check for 24 VDC and 24 VAC on the power plug of the Plasma Gas Box.

Check that the Plasma Gas Box has the CAN cable connected and there are no empty plugs between the Plasma

Gas Box’s CAN plug and CAN 1 on the Interface Control Hub.

Call service if there seems to be no cabling issues.

Check that the Remote Arc Starter has the CAN cable connected and there are no empty plugs between the

Remote Arc Starter’s CAN plug and CAN 1 on the Interface Control Hub.

Call service if there seems to be no cabling issues.

Check that the Water Injection Box has the CAN cable connected and there are no empty plugs between the

Water Injection Box’s CAN plug and CAN 1 on the Interface Control Hub.

If this setup has no water injection box, then edit the constant, via the constant editing mode, to disable the water injection functions.

Call service if there seems to be no cabling issues.

Check the input gas regulator to insure the input pressure to the system is below 10 Bar (145 PSI).

If the input pressure has been verified to be below 10 Bar (145 PSI), then call service.

Check the input gas regulator to insure the input pressure to the system is above 4 Bar (60 PSI).

Check for a clogged inline filter.

Check for a gas leak or pinched hose between the regulator and the Plasma Gas Box.

If the input pressure has been verified to be above 4 Bar (60 PSI), then call service.

Check the input gas regulator to insure the input pressure to the system is below 10 Bar (145 PSI).

If the input pressure has been verified to be below 10 Bar (145 PSI), then call service.

Check the input gas regulator to insure the input pressure to the system is above 4 Bar (60 PSI).

Check for a clogged inline filter.

Check for a gas leak or pinched hose between the regulator and the Plasma Gas Box.

If the input pressure has been verified to be above 4 Bar (60 PSI), then call service.

179

appendix

Error

Plasma Gas output pressure too high

Plasma Gas output pressure too low

Plasma Gas 2 Flow too high

Plasma Gas 2 Flow too low

Shield Gas 1 Flow too high

Shield Gas 1 Flow too low

Shield Gas 2 Flow too high

Shield Gas 2 Flow too low

Arc Voltage too high

Arc Voltage too low

Current too high

Current too low

Coolant Flow OK

Crash

Resolution

Check for a pinched hose between the Plasma Gas Box and the torch.

Check consumables for correctness and damage.

Call Service.

Check for a leak in the hose between the Plasma Gas Box and the torch.

Check consumables for correctness and damage/wear.

Check input pressure to be at least 1 Bar (14.5 PSI) above command output pressure.

Call Service.

Check consumables for correctness and/or damage/wear.

Check for correct gas on the input lines to the plasma gas box and shield gas box.

Check for a leak in the hose between the Plasma Gas Box and the torch.

Call Service.

Check consumables for correctness and/or damage/wear.

Check for correct gas on the input lines to the plasma gas box and shield gas box.

Check for a pinched hose between the Plasma Gas Box and the torch.

Call Service.

Check consumables for correctness and/or damage/wear.

Check for correct gas on the input lines to the shield gas box.

Check for a leak in the hose between the Shield Gas Box and the torch.

Call Service.

Check consumables for correctness and/or damage/wear.

Check for correct gas on the input lines to the shield gas box.

Check for a pinched hose between the Shield Gas Box and the torch.

Call Service.

Check consumables for correctness and/or damage/wear.

Check for correct gas on the input lines to the shield gas box.

Check for a leak in the hose between the Shield Gas Box and the torch.

Call Service.

Check consumables for correctness and/or damage/wear.

Check for correct gas on the input lines to the shield gas box.

Check for a pinched hose between the Shield Gas Box and the torch.

Call Service.

Check that the torch did not just go over a hole in the plate.

Adjust the arc voltage calibration for errors between read voltage and actual voltage.

Check for a wavy plate.

Call Service.

Check for a damaged or missing VDR cable.

Adjust the arc voltage calibration for errors between read voltage and actual voltage.

Check for a wavy plate.

Call Service.

Check commanded current on the display on the power supply matches the desired current.

Call Service.

Check commanded current on the display on the power supply matches the desired current.

Call Service.

Check coolant level in the reservoir in the coolant circulator.

Call Service.

Check for damage to the torch consumables; replace damaged consumables with new ones.

Remove the obstacle(s) from the path of the torch.

Power Supply

Fault

Check the fault on the display panel of the power supply and follow instructions in the power supply’s manual.

180

appendix

Error

Lifter Watchdog

Lifter Error

Plasma Gas Control Watchdog

Plasma Gas Control Error

Combined Gas

Control Watchdog

Combined Gas

Control Error

Remote Arc

Starter Watchdog

Remote Arc

Starter Error

Water Injection

Control Watchdog

Water Injection

Control Error

Sensor short on

Lifter

Current Feedback, inside RAS, too high

Current Feedback, inside RAS, too low

Lower Limit

Switch

Resolution

The Lifter’s control module has watchdogged.

Check the CAN cables for damage.

Make sure the terminating resistor is installed, if not, all 7 parts are in use.

Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.

The Lifter’s control module has reported an error.

Check the ICH Error Log for exact error.

The Plasma Gas Control’s control module has watchdogged.

Check the CAN cables for damage.

Make sure the terminating resistor is installed, if not, all 7 parts are in use.

Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.

The Plasma Gas Control’s control module has reported an error.

Check the ICH Error Log for exact error.

The Combined Gas Control’s control module has watchdogged.

Check the CAN cables for damage.

Make sure the terminating resistor is installed, if not, all 7 parts are in use.

Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.

The Combined Gas Control’s control module has reported an error.

Check the ICH Error Log for exact error.

The Remote Arc Starter’s control module has watchdogged.

Check the CAN cables for damage.

Make sure the terminating resistor is installed, if not, all 7 parts are in use.

Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.

The Remote Arc Starter’s control module has reported an error.

Check the ICH Error Log for exact error.

The Water Injection Control’s control module has watchdogged.

Check the CAN cables for damage.

Make sure the terminating resistor is installed, if not, all 7 parts are in use.

Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.

The Water Injection Control’s control module has reported an error.

Check the ICH Error Log for exact error.

The Lifter has a sensor short.

Check the crash sensor for proper operation and adjust as needed.

The current feedback, inside the RAS box, is too high.

Check the 24 pin cable to the power supply for a short.

Verify the command to the power supply is greater than 10 volts.

The current feedback, inside the RAS box, is too low.

Check the 24 pin cable to the power supply for a short.

The lower limit switch was tripped on the lifter.

Shield Gas Control

Watchdog

Shield Gas Control

Error

The Shield Gas Control’s control module has watchdogged.

Check the CAN cables for damage.

Make sure the terminating resistor is installed, if not, all 7 parts are in use.

Make sure the switch on the ICH is set to have the 120 Ohm resistor installed on the CANbus.

The Shield Gas Control’s control module has reported an error.

Check the ICH Error Log for exact error.

181

appendix

ICH Parameter Loading

The sequence for loading a whole parameter set.

1. Parameter type (006)

2. Gas select (096)

3. Gas pressure and flows (078)

4. Current (058)

5. Corner current (070)

6. Timers (095)

7. Heights (087) (if lifter exists)

The sequence for loading a single parameter is to send the parameter type command (006) and then the command for the parameter to be updated (with all the fields populated with the updated values). One marking and one cutting parameter set is the maximum the ICH will store. The parameters are only stored until the next power cycle of the Interface Control Hub.

Example :

The following example is for loading the parameters to mark and cut a 6 mm (~0.250”) plate with 200 Amps and only air for the gas when cutting.

Send

0060C6

Receive

0061C7

0960807 0961D0

07800000 00000 02000 03030 04270 04270 00000 0000021 0781D0

0580100 0200 0100 002003

070020059

09500600 00600 00350 00000 01000 00100F4

08704000 03200 10000 00143 00600017

0581CE

0701C8

0951CF

0871D0

0061C7

0960605

0061C7

0961D0

07802760 02760 00000 00000 02000 02000 00000 0000021 0781D0

0580012 0014 0014 00200C 0581CE

070001058

09500100 00100 00350 00000 01000 00000E9

08704000 04100 04000 00070 0250001A

0701C8

0951CF

0871D0

182

Replacement Parts

184

Replacement paRts

Replacement paRts

General

Always provide the serial number of the unit on which the parts will be used. The serial number is stamped on the unit nameplate.

Ordering

To ensure proper operation, it is recommended that only genuine ESAB parts and products be used with this equipment. The use of non-ESAB parts may void your warranty.

Replacement parts may be ordered from your ESAB Distributor.

Be sure to indicate any special shipping instructions when ordering replacement parts.

Refer to the Communications Guide located on the back page of this manual for a list of customer service phone numbers.

NOTE:

Schematics and Wiring Diagrams on 279.4 mm x 431.8 mm

(11” x 17”) paper are included inside the back cover of this manual.

Items listed in the assembly drawing Bill of Materials (included in the back of this publication) that do not have a part number shown are not available from ESAB as a replaceable item and cannot be ordered. Descriptions are shown for reference only. Please use local retail hardware outlets as a source for these items.

185

PT-36

Mechanized Plasmarc Cutting Torch for Production Thick Plate

Replacement paRts

Use:

PT-36 H35 Heavy Plate Start-up Kit .................................

0558005225

Item No.

7

8

5

6

9

10

3

4

1

2

Part Number Description

0558003963

0558003965

0558003964

0558005689

0558003967

0558002532

0558006688

0558003918

0558003962

0558008737

Electrode, Tungsten 0.19" (4.8mm)D

Nozzle H35 .198" (5.0mm) Divergent

Collet 0.19" (4.8mm)D Electrode

Electrode/Collet Holder PT-36

Collet Body

Baffle, 32 Hole x .023" (0.6mm)

Shield High Current

Electrode Holder Tool PT-36

Tungsten Electrode Tool

NOZZLE RETAINING CUP HIGH CURRENT PT-36

8

7

10

9

6

4

3

2

488158

1

181W89

5

NOTE:

These are the only items that are different for Production Thick Plate. Refer to the Cut Data manual

(0558008434/0558008435) for complete setup and parameters.

NOTE:

P/N 0558003965 is supplied with (2) p/n

181W89 installed & (1) p/n 488158 loose in the box. When using the high current nozzle retaining cup and high current shield, as recommended, remove and discard the o-ring nearest the orifice and install p/n

488158 on the step originally intended for the diffuser.

186

Replacement paRts

* bill of materials listed on 11 x 17 fold-out pages (0558008300)

9

21

6

3

O-rings supplied with

Torch Body,

P/N 996528

17

O-ring supplied with

Electrode Holder assembly, P/N 86W99

11

O-ring supplied with

Electrode

16

O-rings, p/n 181W89 supplied with Nozzle

10

19

18

33

8

15

NOTE:

Items 8, 15, 18 & 33 are supplied in a bag with the torch.

187

188

Replacement paRts

REVISION HISTORY

1. Originally released -xxxx

2. revision 06/2014 - removed RAS handle.

C.

B.

D.

A.

E.

F.

G.

H.

ESAB Welding & Cutting Products, Florence, SC

COMMUNICATION GUIDE - CUSTOMER SERVICES

CUSTOMER SERVICE QUESTIONS:

Telephone: (800)362-7080 / Fax: (800) 634-7548

Order Entry Product Availability

Hours: 8:00 AM to 7:00 PM EST

Pricing Order Information Returns

ENGINEERING SERVICE:

Telephone: (843) 664-4416 / Fax : (800) 446-5693 Hours: 7:30 AM to 5:00 PM EST

Warranty Returns Authorized Repair Stations Welding Equipment Troubleshooting

TECHNICAL SERVICE:

Telephone: (800) ESAB-123/ Fax: (843) 664-4452

Part Numbers Technical Applications Specifications

LITERATURE REQUESTS:

Telephone: (843) 664-5562 / Fax: (843) 664-5548

Hours: 8:00 AM to 5:00 PM EST

Equipment Recommendations

Hours: 7:30 AM to 4:00 PM EST

WELDING EQUIPMENT REPAIRS:

Telephone: (843) 664-4487 / Fax: (843) 664-5557

Repair Estimates Repair Status

Hours: 7:30 AM to 3:30 PM EST

WELDING EQUIPMENT TRAINING

Telephone: (843)664-4428 / Fax: (843) 679-5864

Training School Information and Registrations

WELDING PROCESS ASSISTANCE:

Telephone: (800) ESAB-123

TECHNICAL ASST. CONSUMABLES:

Telephone : (800) 933-7070

Hours: 7:30 AM to 4:00 PM EST

Hours: 7:30 AM to 4:00 PM EST

Hours: 7:30 AM to 5:00 PM EST

IF YOU DO NOT KNOW WHOM TO CALL

Telephone: (800) ESAB-123

Fax: (843) 664-4462

Hours: 7:30 AM to 5:00 PM EST or visit us on the web at http://www.esabna.com

The ESAB web site offers

Comprehensive Product Information

Material Safety Data Sheets

Warranty Registration

Instruction Literature Download Library

Distributor Locator

Global Company Information

Press Releases

Customer Feedback & Support

advertisement

Related manuals

Download PDF

advertisement

Table of contents