STM38371308
TS507
High precision rail-to-rail operational amplifier
Datasheet - production data
Applications
Pin connections (top view)
• Battery-powered applications
• Portable devices
Output
1
VDD
2
Non Inverting Input
3
5
VCC
• Signal conditioning
• Medical instrumentation
4
Inverting Input
SOT23-5
N.C.
1
Inverting Input
2
Non Inverting Input
3
VDD
4
8
N.C.
_
7
VCC
+
6
Output
5
N.C.
SO-8
Features
• Ultra low offset voltage: 25 µV typ, 100 µV max
• Rail-to-rail input/output voltage swing
Description
The TS507 is a high performance rail-to-rail
input/output amplifier with very low offset voltage.
This amplifier uses a new trimming technique that
yields ultra low offset voltages without any need
for external zeroing.
The circuit offers very stable electrical
characteristics over the entire supply voltage
range, and is particularly intended for automotive
and industrial applications.
The TS507 is housed in the space-saving 5-pin
SOT23 package, making it well suited for batterypowered systems. This micropackage simplifies
the PC board design because of its ability to be
placed in small spaces (external dimensions are
2.8 mm x 2.9 mm).
• Operates from 2.7 V to 5.5 V
• High speed: 1.9 MHz
• 45° phase margin with 100 pF
• Low consumption: 0.8 mA at 2.7 V
• Very large signal voltage gain: 131 dB
• High-power supply rejection ratio: 105 dB
• Very high ESD protection 5kV (HBM)
• Latchup immunity
• Available in SOT23-5 micropackage
• Automotive qualification
March 2013
This is information on a product in full production.
DocID10958 Rev 6
1/20
www.st.com
20
Contents
TS507
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Application note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4
3.1
Out-of-the-loop compensation technique . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
In-the-loop-compensation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
SOT23-5 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
SO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2/20
DocID10958 Rev 6
TS507
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Parameter
Value
Supply voltage(1)
Unit
6
Differential input voltage
(2)
Vin
Input voltage
Tstg
Storage temperature
V
±2.5
(3)
VDD-0.3 to VCC+0.3
-65 to +150
°C
(4)(5)
Rthja
Thermal resistance junction to ambient
SOT23-5
SO-8
Rthjc
Thermal resistance junction to case
SOT23-5
SO-8
81
40
Maximum junction temperature
150
°C
5
kV
300
V
2
kV
Tj
HBM: human body model(6)
ESD
MM: machine model
(7)
CDM: charged device
model(8)
Latchup immunity
250
125
°C/W
class A
1. Value with respect to VDD pin.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. VCC-Vin and Vin must not exceed 6 V.
4. Short-circuits can cause excessive heating and destructive dissipation.
5. Rthja/c are typical values.
6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
8. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
Table 2. Operating conditions
Symbol
Parameter
VCC
Supply voltage(1)
Vicm
Common mode input voltage range
Vid
Toper
Differential input
Value
Unit
2.7 to 5.5
voltage(2)
Operating free air temperature range
TS507C
TS507I
VDD to VCC
V
±2.5
0 to +85
-40 to +125
°C
1. Value with respect to VDD pin.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
DocID10958 Rev 6
3/20
Electrical characteristics
2
TS507
Electrical characteristics
Table 3. Electrical characteristics at VCC = +5 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
25
100
250
400
Unit
DC performance
Vio
ΔVio/Δt
Iib
Iio
CMRR
Input offset voltage(2)
Vicm = 0 to 3.8 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
Vicm = 0 V to 5 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
450
550
750
Vio drift vs. temperature
Tmin < Top < Tmax
1
T = 25 °C
TS507C full temperature range
TS507I full temperature range
8
Input bias current
70
75
110
2
Input offset current
T = 25 °C
TS507C full temperature range
TS507I full temperature range
25
35
50
Common mode rejection ratio
20 log (ΔVicm/ΔVio)
Vicm from 0 V to 3.8 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
94
94
91
Vicm from 0 V to 5 V
PSRR
Avd
VOL
4/20
91
90
89
105
Large signal voltage gain
RL = 10 kΩ, Vout= 0.5 V to 4.5 V
Full temperature range
99
98
131
dB
RL = 600Ω, T=25°C
TS507C full temperature range
TS507I full temperature range
67
95
110
120
RL = 10 kΩ, T=25 °C
Full temperature range
4
15
15
RL = 600 Ω, T=25 °C
TS507C full temperature range
TS507I full temperature range
64
90
110
125
RL = 10 kΩ, T=25 °C
Full temperature range
4
15
15
DocID10958 Rev 6
nA
96
Power supply rejection ratio
20 log (ΔVCC/ΔVio)
Low level output voltage
µV/°C
115
VCC from 2.7 V to 5.5 V,
Vicm=Vcc/2, T=25 °C
TS507C full temperature range
TS507I full temperature range
VCC-VOH High level output voltage drop
µV
mV
TS507
Electrical characteristics
Table 3. Electrical characteristics at VCC = +5 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)(1) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
74
60
53
104
Isink
Vout = VCC, Vid=-1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
Vout = VDD, Vid=1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
90
77
70
128
Isource
Supply current (per operator)(2)
No load, Vout=VCC/2,
Vicm=0 to 5 V, T=25 °C
Full temperature range
0.85
RL = 2 kΩ, CL = 100 pF,
f = 100 kHz
1.9
MHz
45
Degrees
10
dB
Iout
ICC
Max.
Unit
mA
1.15
1.25
Dynamic performance
GBP
Gain bandwidth product
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 2 kΩ, CL=100 pF,
Vout = 1.25 V to 3.75 V,
10% to 90%
0.6
V/µs
eN
Equivalent input noise voltage
f = 1 kHz
12
nV/√ Hz
iN
Equivalent input noise current
f = 10 kHz
1.2
pA/√Hz
0.0003
%
THD+eN THD + noise
RL = 2 kΩ, CL=100 pF
f=1 kHz, G=1, RL=2 kΩ,
Vicm=2 V, Vout=3.5 Vpp
1. All parameter limits at temperatures different from 25 ° C are guaranteed by correlation.
2. Measurements made at 4 Vicm values: Vicm=0 V, Vicm=3.8 V, Vicm=4.2 V, Vicm=5 V.
DocID10958 Rev 6
5/20
Electrical characteristics
TS507
Table 4. Electrical characteristics at VCC = +3.3 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
25
100
250
400
Unit
DC performance
Vio
ΔVio
Iib
Iio
CMRR
Avd
Input offset voltage(2)
6/20
450
550
750
Tmin < Top < Tmax
1
6
Input bias current
T = 25 °C
TS507C full temperature range
TS507I full temperature range
70
75
145
2
Input offset current
T = 25 °C
TS507C full temperature range
TS507I full temperature range
25
40
45
Common mode rejection ratio
20 log (ΔVicm/ΔVio)
Vicm from 0 V to 2.1 V
115
Large signal voltage gain
RL = 10 kΩ, Vout= 0.5 V to 2.8 V
127
RL = 600 Ω, T=25 °C
TS507C full temperature range
TS507I full temperature range
59
85
100
110
RL = 10 kΩ, T=25 °C
Full temperature range
4
15
15
RL = 600 Ω, T=25 °C
TS507C full temperature range
TS507I full temperature range
57
80
100
115
RL = 10 kΩ, T=25 °C
Full temperature range
4
15
15
Low level output voltage
Vout = VCC, Vid=-1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
33
26
22
48
Vout = VDD, Vid=1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
37
32
29
56
Isource
Supply current (per
operator)(2)
No load, Vout=VCC/2,
Vicm=0 to 3.3 V, T=25 °C
Full temperature range
DocID10958 Rev 6
µV
µV/°C
nA
dB
Isink
Iout
ICC
Vicm = 0 V to 3.3 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
Vio drift vs. temperature
VCC-VOH High level output voltage drop
VOL
Vicm = 0 to 2.1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
mV
mA
0.81
1.1
1.2
TS507
Electrical characteristics
Table 4. Electrical characteristics at VCC = +3.3 V, VDD = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)(1) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Dynamic performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF,
f = 100 kHz
1.9
MHz
45
Degrees
10
dB
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 2 kΩ, CL=100 pF,
Vout= 0.5 V to 2.8 V,
10 % to 90 %
0.6
V/µs
eN
Equivalent input noise voltage
f = 1 kHz
12
nV/√ Hz
0.0004
%
THD+eN THD + noise
RL = 2 kΩ, CL=100 pF
f=1 KHz, G=1, RL=2 kΩ,
Vicm=1.15 V, Vout=1.8 Vpp
1. All parameter limits at temperatures different from 25 ° C are guaranteed by correlation.
2. Measurements done at 4 Vicm values: Vicm=0 V, Vicm=2.1 V, Vicm=2.5 V, Vicm=3.3 V.
DocID10958 Rev 6
7/20
Electrical characteristics
TS507
Table 5. Electrical characteristics at VCC = +2.7 V VDD = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)(1)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
25
100
250
400
Unit
DC performance
Vio
ΔVio
Iib
Iio
CMRR
Avd
Input offset voltage(2)
8/20
450
550
750
Tmin < Top < Tmax
1
8
Input bias current
T = 25 °C
TS507C full temperature range
TS507I full temperature range
70
75
160
2
Input offset current
T = 25 °C
TS507C full temperature range
TS507I full temperature range
25
45
45
Common mode rejection ratio
20 log (ΔVicm/ΔVio)
Vicm from 0 V to 1.5 V
115
Large signal voltage gain
RL = 10 kΩ, Vout= 0.5 V to 2.2 V
126
RL = 600 Ω, T=25 °C
TS507C full temperature range
TS507I full temperature range
57
85
100
105
RL = 10 kΩ, T=25 °C
Full temperature range
4
15
15
RL = 600 Ω, T=25 °C
TS507C full temperature range
TS507I full temperature range
57
80
100
115
RL = 10 kΩ, T=25 °C
Full temperature range
4
15
15
Low level output voltage
Vout = VCC, Vid=-1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
20
15
13
30
Vout = VDD, Vid=1 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
22
19
17
35
Isource
Supply current (per
operator)(2)
No load, Vout=VCC/2,
Vicm=0 to 2.7 V, T=25 °C
Full temperature range
DocID10958 Rev 6
µV
µV/°C
nA
dB
Isink
Iout
ICC
Vicm = 0 V to 2.7 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
Vio drift vs. temperature
VCC-VOH High level output voltage drop
VOL
Vicm = 0 to 1.9 V, T=25 °C
TS507C full temperature range
TS507I full temperature range
mV
mA
0.79
1.1
1.2
TS507
Electrical characteristics
Table 5. Electrical characteristics at VCC = +2.7 V VDD = 0 V, Vicm = VCC/2, Tamb = 25 °C,
RL connected to VCC/2 (unless otherwise specified)(1) (continued)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
Dynamic performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF,
f = 100 kHz
1.9
MHz
45
Degrees
11
dB
φm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 2 kΩ, CL=100 pF,
Vout= 0.5 V to 2.2 V,
10 % to 90 %
0.6
V/µs
eN
Equivalent input noise voltage
f = 1 kHz
12
nV/√Hz
0.0005
%
THD+eN THD + noise
RL = 2 kΩ, CL=100 pF
f=1 KHz, G=1, RL=2 kΩ,
Vicm=0.85 V, Vout=1.2 Vpp
1. All parameter limits at temperatures different from 25 ° C are guaranteed by correlation.
2. Measurements done at 4 Vicm values: Vicm=0 V, Vicm=1.5 V, Vicm=1.9 V, Vicm=2.7 V.
DocID10958 Rev 6
9/20
Electrical characteristics
TS507
Figure 1. Input offset voltage distribution for
Vicm≤ VCC-1.2 V at T=25 °C
Figure 2. Input offset voltage distribution vs.
temperature for Vicm≤ VCC-1.2 V
30
400
350
300
Vio distribution at T=25°C for 0V<=Vicm<=Vcc-1.2V
25
0V<=Vicm<=Vcc-1.2V
250
200
150
100
Vio (µV)
Population %
20
15
10
50
0
-50
-100
-150
-200
-250
5
-300
-350
0
-120
-400
-100
-80
-60
-40
-20
0
20
40
60
80
100
-50 -40 -30 -20 -10 0
120
10 20 30 40 50 60 70 80 90 100 110 120 130
Temperature (°C)
Input offset voltage (µV)
Figure 3. Input offset voltage distribution vs.
temperature for Vicm ≥ VCC-0.8 V
Figure 4. Input offset voltage distribution for
Vicm ≤ VCC-1.2 V at T=25 °C after HTB
45
700
600
Vio distribution at T=25°C for 0V<=Vicm<=Vcc-1.2V
after HTB (1000 hours at 125°C)
40
Vcc-0.8V<=Vicm<=Vcc
500
400
35
300
30
Population %
Vio (µV)
200
100
0
-100
-200
-300
25
20
15
-400
10
-500
-600
5
-700
-50 -40 -30 -20 -10 0
0
-100
10 20 30 40 50 60 70 80 90 100 110 120 130
-80
-60
Temperature (°C)
-40
-20
0
20
40
60
80
100
Input offset voltage (µV)
Figure 5. Input offset voltage distribution for
Vicm ≤ VCC-1.2 V at T=25 °C after THB
Figure 6. Input offset voltage vs. input common
mode voltage at T=25 °C
40
35
Population %
25
20
15
10
5
0
-120
Vcc=2.7V
0
-20
Vcc=5.5V
Vcc=5V
-40
-60
-80
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
-100
Input offset voltage (µV)
10/20
Vcc=3.3V
20
Vio distribution at T=25°C for 0V<=Vicm<=Vcc-1.2V
after THB (1000 hours at 85°C, humidity 85%)
Input Offset Voltage (μV)
30
DocID10958 Rev 6
-2.5
-2.0
-1.5
-1.0
Vicm-Vcc (V)
-0.5
0.0
TS507
Electrical characteristics
Figure 7. Supply current vs. input common
mode voltage in closed loop configuration
at VCC=5 V
Figure 8. Supply current vs. supply voltage
at Vicm=VCC/2
1.0
1.0
0.8
0.8
0.7
T=-40°C
0.5
T=25°C
Supply Current (mA)
Supply Current (mA)
T=125°C
T=125°C
0.3
Vcc=5V
Closed loop
0.2
0.7
T=25°C
0.5
T=-40°C
0.3
0.2
Vicm=Vcc/2
0.0
0
1
2
3
4
Input common mode voltage (V)
0.0
5
Figure 9. Supply current vs. input common
mode voltage in follower configuration
at VCC=2.7 V
0
1
2
3
Supply voltage (V)
4
5
Figure 10. Supply current vs. input common
mode voltage in follower configuration
at VCC=5 V
1.0
1.0
T=125°C
0.8
T=25°C
0.7
0.5
Supply Current (mA)
Supply Current (mA)
0.8
T=-40°C
0.3
Follower configuration
Vcc=2.7V
0.2
0.5
1.0
1.5
2.0
Input Common Mode Voltage (V)
T=125°C
T=-40°C
T=25°C
Output Current (mA)
Output Current (mA)
75
50
25
Vicm=Vcc/2
0
-25
-50
-75
-100
-125
-150
T=-40°C
Follower configuration
Vcc=5V
Sink
Vid = -1V
3.0
T=125°C
T=25°C
3.5
T=-40°C
4.0
4.5
Supply voltage (V)
5.0
0
1
2
3
4
Input Common Mode Voltage (V)
5
Figure 12. Output current vs. output voltage
at VCC=2.7 V
150
Source
Vid = 1V
T=25°C
0.3
0.0
2.5
Figure 11. Output current vs. supply voltage
at Vicm=VCC/2
100
T=125°C
0.5
0.2
0.0
0.0
125
0.7
5.5
DocID10958 Rev 6
40
T=-40°C
35
30
Source
25
Vid=1V
20
T=25°C
15
T=125°C
10
5
0
Vcc=2.7V
-5
-10
T=125°C
-15
T=25°C
-20
-25 Sink
-30 Vid=-1V
-35
T=-40°C
-40
0.0
0.5
1.0
1.5
2.0
2.5
Output Voltage (V)
11/20
Electrical characteristics
TS507
150
T=25°C
125
Source
Vid=1V
Output Current (mA)
100
T=-40°C
75
50
T=125°C
25
Vcc=5V
0
-25
T=125°C
-50
-75
-100
-125
-150
0.0
Sink
Vid=-1V
T=-40°C
1.0
Figure 14. Positive and negative slew rate vs.
supply voltage
Positive and Negative Slew Rate (V/µs)
Figure 13. Output current vs. output voltage
at VCC=5 V
T=25°C
2.0
3.0
Output Voltage (V)
4.0
1.0
0.6
0.4
T=-40°C
0.2
Vin : from 0.5V to Vcc-0.5V
SR : calculated from 10% to 90%
0.0
T=25°C
T=-40°C
-0.2
T=25°C
-0.4
-0.6
-0.8
T=125°C
Negative slew rate
-1.0
2.0
5.0
T=125°C
Positive slew rate
0.8
2.5
3.0
3.5
4.0
4.5
Supply Voltage (V)
5.0
5.5
6.0
Figure 15. Voltage gain and phase vs. frequency Figure 16. Voltage gain and phase vs. frequency
at VCC=5 V and Vicm=2.5 V at T=25 °C
at VCC=5 V and Vicm=2.5 V at T=-40 °C
Phase
Cl=100pF
-60
Vcc=5V, Vicm=2.5V, G= -100
Rl=2kOhms, Vrl=Vcc/2
Tamb=25°C
-50
4
10
10
5
10
6
10
30
Phase
0
0
-30
Gain
-10
-60
-90
Vcc=5V, Vicm=2.5V, G= -100
Rl=2kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=-40°C
-30
-120
7
60
10
-20
-90
-40
90
20
60
-30
120
30
90
0
-10
-30
150
Cl=230pF 30
Gain
0
-20
180
40
Gain (dB)
Gain (dB)
10
50
150
120
30
20
180
Phase (°)
40
Phase (°)
50
-150
-40
-180
-50
4
10
10
Frequency (Hz)
5
10
-120
-150
6
10
7
-180
Frequency (Hz)
Figure 17. Voltage gain and phase vs. frequency Figure 18. Closed loop gain in voltage follower
at VCC=5 V and Vicm=2.5 V at T=125 °C
configuration for different capacitive load
at T=25 °C
50
180
40
150
120
30
Phase
0
0
-30
Gain
-10
-60
-20
-50
4
10
10
10
6
Gain without C L
-10
Gain with C L =300 pF
-20
-120
Gain with C L =550 pF
-30
-150
10
7
-180
-40
10k
100k
1M
Frequency (Hz)
Frequency (Hz)
12/20
TS507 :
V cc = 5 V
V icm = 2,5 V
T = 25 °C
R L = 10 k Ω
-90
Vcc=5V, Vicm=2.5V, G= -100
Rl=2kOhms, Cl=100pF, Vrl=Vcc/2
Tamb=125°C
5
0
Gain (dB)
30
Phase (°)
Gain (dB)
60
10
-40
10
90
20
-30
20
DocID10958 Rev 6
10M
TS507
Electrical characteristics
Figure 19. Gain margin according to the output
load, at VCC=5 V and T=25 °C
Figure 20. Phase margin according to the
output load, at VCC=5 V and T=25 °C
1E-6
1E-6
V cc = 5 V
V icm = 2,5 V
T amb = 25 °C
1E-7
UNSTABLE
Load Capacitor (F)
Load Capacitor (F)
1E-7
1E-8
1E-9
0 dB
1E-10
10 dB
1E-11 30 dB
20 dB
UNSTABLE
0°
1E-8
V cc = 5 V
V icm = 2,5 V
T amb = 25 °C
10 °
1E-9
20 °
1E-10
30 °
1E-11
40 °
STABLE
1E-12
1
10
100
1k
10k
100k
1M
1E-12
10M
1
10
100
Figure 21. Gain margin vs. output current,
at VCC=5 V and T=25 °C
100k
1M
10M
70
17.5
Recommended area
50
Phase Margin (°)
100 pF
12.5
10.0
7.5
300 pF
550 pF
5.0
V cc = 5 V
V icm = 2,5 V
T amb = 25 °C
RL = 2 kΩ
2.5
0.0
-4
-3
-2
-1
0
1
Recom m ended area
60
15.0
Gain Margin (dB)
10k
Figure 22. Phase margin vs. output current,
at VCC=5 V and T=25 °C
20.0
2
3
550 pF
30
20
V cc = 5 V
V icm = 2,5 V
T am b = 25 °C
RL = 2 kΩ
10
0
-10
4
-4
-3
30
75
20
Vcc = 5 V
Vicm = 2,5 V
50
Tamb = 25 °C
RL = 2 k Ω
-1
0
1
2
3
4
Figure 24. Distortion + noise vs. output voltage
0.1000
Vcc=5V
-10
Gain Margin
-20
-25
-50
THD + N (%)
0
Phase (°)
25
0
0.0100
Vcc=3.3V
Vcc=2.7V
f=1kHz
Rl=2kOhms
Gain=1
BW =22kHz
Vicm=(Vcc-1V)/2
0.0010
Phase Margin
-30
-40
10p
-2
Output Current (mA)
Figure 23. Phase and gain margins vs
capacitive load at = 25 °C
10
300 pF
100 pF
40
Output Current (mA)
Gain (dB)
1k
Load Resistor (Ω )
Load Resistor (Ω )
-2.5
STABLE
50 °
-75
100p
1n
-100
10n
0.0001
Load Capacitor (F)
DocID10958 Rev 6
0.01
0.1
1
Output Voltage (Vpp)
13/20
Electrical characteristics
TS507
Figure 25. Distortion + noise vs. frequency
Figure 26. Noise vs. frequency
1000
Vout=Vcc-1.5Vpp
Rl=2kOhms
Gain=1
BW =80kHz
Vicm=(Vcc-1V)/2
Vcc=2.7V
1E-3
Vcc=3.3V
Vcc=5V
1E-4
10
14/20
Input equivalent noise density (nV/VHz)
THD + N (%)
0.01
100
10
Vcc=5V, Vicm=2.5V, Tamb=25°C
1
100
1000
Frequency (Hz)
10000
DocID10958 Rev 6
1
10
100
Frequency (Hz)
1000
10000
TS507
Application note
3
Application note
The application note AN2653, based on the TS507, describes three compensation
techniques for solving stability issues when driving large capacitive loads. Two of these
techniques are briefly explained below. For more details, refer to the AN2653 on:
www.st.com.
3.1
Out-of-the-loop compensation technique
The first technique, named out-of-the-loop compensation, uses an isolation resistor, ROL,
added in series between the output of the amplifier and its load (see Figure 27). The resistor
isolates the op-amp feedback network from the capacitive load. This compensation method
is effective, but the drawback is a limitation on the accuracy of Vout depending on the
resistive load value.
Figure 27. Out-of-the-loop compensation schematics
To help implement the compensation, the abacus given in Figure 28 and Figure 29 provides
the ROL value to be chosen for a given CL and phase/gain margins. These abacus are
plotted for voltage follower configuration with a load resistor of 10 kΩ at 25 °C.
Figure 28. Gain margin abacus: serial resistor Figure 29. Phase margin abacus: serial resistor
to be added in a voltage follower
to be added in a voltage follower
configuration at 25 °C
configuration at 25 °C
100
8 dB
4 dB
1
0 dB
12 dB
10
16 dB
Compensation Resistor ROL
STABLE
UNSTABLE
0.1
0.01
10p
100p
1n
10n
100n
V cc = 5 V
V icm = 2,5 V
T = 25 °C
R L = 10 k Ω
1µ
10µ
Compensation Resistor ROL
100
STABLE
30 °
20 °
10
10 °
1
0 °
UNSTABLE
V cc = 5 V
V icm = 2,5 V
T = 25 °C
R L = 10 k Ω
0.1
0.01
10p
100p
1n
10n
100n
1µ
10µ
Load Capacitor (F)
Load Capacitor (F)
DocID10958 Rev 6
15/20
Application note
3.2
TS507
In-the-loop-compensation technique
The second technique is called in-the-loop-compensation technique, because the
additional components (a resistor and a capacitor) used to improve the stability are inserted
in the feedback loop (see Figure 30).
Figure 30. In-the-loop compensation schematics
This compensation method allows (by a good choice of compensation components) the
original pole caused by the capacitive load to be compensated. Stability is thus improved.
The main drawback of this circuit is the reduction of the output swing, because the isolation
resistor is in the signal path.
Table 6 shows the best compensation components for different ranges of load capacitors
(with RL = 10 kΩ) in voltage follower configuration.
Table 6. Best compensation components for different load capacitor ranges in
voltage follower configuration for TS507 (with RL = 10 kΩ)
Load capacitor
range
RIL (kΩ)
CIL (pF)
Minimum gain
margin (dB)(1)
Minimum phase
margin (degree)(1)
10 pF to 100 pF
1
250
17
55
100 pF to 1 nF
1
250
16
42
1 nF to 10 nF
1
630
11
27
1. Parameter guaranteed by design at 25 °C.
16/20
DocID10958 Rev 6
TS507
4
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
4.1
SOT23-5 package information
Figure 31. SOT23-5 package mechanical drawing
Table 7. SOT23-5 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
Mils
Max.
Min.
Typ.
Max.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.00
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0.95
37.4
e1
1.9
74.8
L
0.35
0.55
DocID10958 Rev 6
13.7
21.6
17/20
Package information
4.2
TS507
SO-8 package
Figure 32. SO-8 package mechanical drawing
Table 8. SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
18/20
Inches
0.10
DocID10958 Rev 6
0.004
TS507
5
Ordering information
Ordering information
Table 9. Order codes
Order code
TS507ID
TS507IDT
Temperature range
Package
Packing
Marking
-40°C to 125 °C
SO-8
Tube or
tape and reel
TS507I
SOT23-5(1)
TS507ILT
TS507IYLT(2)
-40°C to 125 °C
TS507CD
TS507CDT
0°C to 85 °C
TS507CLT
K131
(1)
SOT23-5
(automotive grade)
Tape and reel
K137
SO-8
Tube or
tape and reel
TS507C
SOT23-5(1)
Tape and reel
K136
1. All information related to the SOT23-5 package is subject to change without notice.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent are qualified.
6
Revision history
Figure 33. Document revision history
Date
Revision
Changes
01-Oct-2004
1
Preliminary data release for product in development.
02-May-2006
2
Update preliminary data release for product in development.
15-Dec-2006
3
First public release.
03-May-2007
4
Automotive grade products added.
08-Apr-2008
5
Electrical characteristics curves for Bode and AC stability added and
updated.
Application note section added.
21-Mar-2013
6
Features: added automotive qualification
Updated Table 9: Order codes
DocID10958 Rev 6
19/20
TS507
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20
DocID10958 Rev 6
Was this manual useful for you? yes no
Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Download PDF

advertising