STMicroelectronics VND9012AJ Datasheet


Add to my manuals
40 Pages

advertisement

STMicroelectronics VND9012AJ Datasheet | Manualzz

VND9012AJ

Datasheet

Double channel high-side driver with current sense analog feedback for automotive applications

PowerSSO-16

Product status link

VND9012AJ

Product summary

Order code VND9012AJTR

Package

Packing

PowerSSO-16

Tape and reel

Features

Max transient supply voltage

Operating voltage range

Typ. on-state resistance (per Ch)

Current limitation (typ)

Standby current (max)

V

CC

V

CC

R

ON

I

LIMH

I

STBY

36 V

4 to 28 V

12 mΩ

63 A

0.5 µA

• AEC-Q100 qualified

• Extreme low voltage operation for deep cold cranking applications (compliant with LV124, revision 2013)

• General

– Double channel smart high-side driver with current sense analog feedback

– Very low standby current

– Compatible with 3 V and 5 V CMOS outputs

• Current sense diagnostic functions

– Multiplexed analog feedback of load current with high precision proportional current mirror

– Overload and short to ground (power limitation) indication

– Thermal shutdown indication

– OFF-state open-load detection

– Output short to V

CC

detection

– Sense enable/disable

• Protections

– Undervoltage shutdown

– Overvoltage clamp

– Load current limitation

– Self limiting of fast thermal transients

– Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin

– Loss of ground and loss of V

CC

– Reverse battery through self turn-on

– Electrostatic discharge protection

Applications

• Automotive resistive, inductive and capacitive loads

• Protected supply for ADAS systems: radars and sensors

DS12727 - Rev 3 - July 2022

For further information contact your local STMicroelectronics sales office.

www.st.com

VND9012AJ

Description

The device is a double channel high-side driver manufactured using ST proprietary VIPower M0-9 technology and housed in PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.

A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A dedicated multifunction multiplexed analog output pin delivers diagnostic functions including high precision proportional load current sense, in addition to the detection of overload and short circuit to ground, short to V

CC and OFF-state open-load.

A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

DS12727 - Rev 3 page 2/40

1

VND9012AJ

Block diagram and pin description

Block diagram and pin description

Figure 1. Block diagram

VCC

IN0

IN1

SEn

SEL

FaultRST

CS

GND

VCC – GND clamp

Internal supply

Undervoltage shut-down

Channel 1

Channel 0 control & diagnostic

Gate driver

VCC-OUT clamp

CH 0

CH 1

Logic

Power limitation

Overtemperature

Open-Load in OFF

Reverse battery

Current limitation

Current

Sense

OUT1

OUT0

GADG0507181254PS

Table 1. Pin functions

Name Function

V

CC

OUTPUT

0,1

GND

Battery connection.

Power output.

Ground connection. Must be reverse battery protected by an external diode / resistor network.

INPUT

CS

SEn

SEL

0,1

FaultRST

Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.

Multiplexed analog sense output pin; it delivers a current proportional to the selected load current.

Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the CS diagnostic pin.

Active high compatible with 3 V and 5 V CMOS outputs pin; it addresses the CS multiplexer.

Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.

DS12727 - Rev 3 page 3/40

VND9012AJ

Block diagram and pin description

Figure 2. Configuration diagram (top view)

INPUT0

FaultRST

SEn

GND

SEL

N.C.

CS

INPUT1

1

2

3

4

5

6

7

8

PowerSSO-16

16

15

14

13

12

11

10

9

OUTPUT0

OUTPUT0

OUTPUT0

OUTPUT0

OUTPUT1

OUTPUT1

OUTPUT1

OUTPUT1

TAB = V

CC

GADG1605171045PS

Connection / pin

Floating

To ground

1. X: do not care.

Table 2. Suggested connections for unused and not connected pins

CS

Not allowed

Through 1 kΩ resistor

N.C.

X

X

Output

X

(1)

Not allowed

Input

X

Through 15 kΩ resistor

SEn, SELx, FaultRST

X

Through 15 kΩ resistor

DS12727 - Rev 3 page 4/40

2

Note:

2.1

VND9012AJ

Electrical specifications

Electrical specifications

Figure 3. Current and voltage conventions

V

FR

V

SEn

V

SEL

V

IN

I

IN

I

FR

I

SEn

I

SEL

FaultRST

SE n

SEL

INPUT

0,1

I

S

V

CC

OUTPUT

0,1

I

OUT

I

SENSE

CS

V

Fn

V

SENSE

V

OUT

V

CC

I

GND

GADG1605171029PS

V

Fn

= V

OUTn

- V

CC

during reverse battery condition.

Absolute maximum ratings

Stressing the device above the rating listed in Table 3. Absolute maximum ratings

may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the table below for extended periods may affect the device reliability.

Symbol

V

CC

-V

CC

V

CCJS

-I

GND

I

OUT

-I

OUT

I

IN

I

SEn

I

SEL

I

FR

I

SENSE

E

MAX

Table 3. Absolute maximum ratings

Parameter

DC supply voltage

Reverse DC supply voltage

Maximum jump start voltage for single pulse short circuit protection

DC reverse ground pin current

OUTPUT

0,1

DC output current

Reverse DC output current

INPUT

0,1

DC input current

SEn DC input current

SEL DC input current

FaultRST DC input current

CS pin DC output current (V

GND

= V

CC

and V

SENSE

< 0 V)

CS pin DC output current in reverse (V

CC

< 0 V)

Maximum switching energy (single pulse) T jstart

= 150 °C)

Value

36

16

28

200

Internally limited

13

-1 to 10

-1 to 1

-1 to 10

Unit mA

V

V mA

A

10

-20

29.5

mA mJ

DS12727 - Rev 3 page 5/40

2.2

Symbol

V

V

T

ESD

ESD

T j stg

Parameter

Electrostatic discharge (JEDEC 22A-114F)

INPUT

0,1

CS

SEn, SEL, FaultRST

OUTPUT

0,1

V

CC

Charge device model (CDM-AEC-Q100-011)

Junction operating temperature

Storage temperature

Thermal data

Table 4. Thermal data

Symbol

R thj-board

R thj-amb

R thj-amb

Parameter

Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8)

(1)

Thermal resistance junction-ambient (JEDEC JESD 51-5)

Thermal resistance junction-ambient (JEDEC JESD 51-7)

(1)(3)

(1) (2)

1. One channel ON.

2. Device mounted on a four-layer 2s2p PCB

3. Device mounted on a two-layer 2s0p PCB with 2 cm 2 heatsink copper trace

(2)

VND9012AJ

Thermal data

Value

2000

2000

2000

4000

4000

750

-40 to 150

-55 to 150

Unit

V

V

V

V

V

V

°C

Typ. value

6.7

54.8

22.2

Unit

°C/W

DS12727 - Rev 3 page 6/40

2.3

VND9012AJ

Main electrical characteristics

Main electrical characteristics

7 V < V

CC

< 28 V; -40°C < T j

< 150°C, unless otherwise specified.

All typical values refer to V

CC

= 13 V; T j

= 25°C, unless otherwise specified.

Table 5. Power section

Symbol Parameter

V

CC

V

USD

Operating supply voltage

Undervoltage shutdown

V

USDReset

Undervoltage shutdown reset

V

USDhyst

Undervoltage shutdown hysteresis

I

R t

V

D_STBY

I

ON_REV

GND(ON)

I

I

R

ON clamp

STBY

S(ON)

L(off)

V

F

Test conditions

On-state resistance

(1)

I

OUT

= 4.75 A; T j

= 25°C

I

OUT

= 4.75 A; T j

= 150°C

I

OUT

= 4.75 A; V

CC

= 4 V; T j

= 25°C

I

OUT

= 1 A; V

CC

= 2.7 V; V

CC

decreasing

R

DSON

in reverse battery condition

V

CC

= -13 V; I

OUT

= -4.75 A; T

J

= 25°C

Clamp voltage

Supply current in standby at

V

CC

= 13 V

(2)

Standby mode blanking time

Supply current

Control stage current consumption in ON state. All channels active.

Off-state output current at

V

CC

= 13 V

(2)

I

S

= 20 mA; 25°C < T j

< 150°C

I

S

= 20 mA; T j

= -40°C

V

CC

= 13 V; V

IN0,1

= V

OUT0,1

= V

FR

= V

SEn

= 0 V;

V

SEL

= 0 V; T j

= 25°C

V

CC

= 13 V; V

IN0,1

= V

OUT0,1

= V

FR

= V

SEn

= 0 V;

V

SEL

= 0 V; T j

= 85°C

(3)

V

CC

= 13 V; V

IN0,1

= V

OUT0,1

= V

FR

= V

SEn

= 0 V;

V

SEL

= 0 V; T j

= 125°C

V

CC

= 13 V; V

IN

= V

OUT

= V

FR

= V

SEL0,1

V

SEn

= 5 V to 0 V

= 0 V;

V

CC

= 13 V; V

SEn

V

IN1

= 5 V;

= V

FR

= V

SEL0,1

= 0 V; V

IN0

= 5 V;

I

OUT0

= 0 A; I

OUT1

= 0 A

V

CC

= 13 V; V

SEn

= 5 V; V

FR

= V

SEL

= 0 V;

V

IN0

= 5 V; V

IN1

= 5 V; I

OUT0

= 4.75 A;

I

OUT1

= 4.75 A

V

IN0,1

= V

OUT0,1

= 0 V; V

CC

= 13 V; T j

= 25°C

V

IN0,1

= V

OUT0,1

= 0 V; V

CC

= 13 V; T j

= 125°C

Output - V

CC

diode voltage at T

J

=

150 °C

I

OUT

= -4.75 A; T j

= 150°C

1. For each channel

2. PowerMOS leakage included.

3. Parameter specified by design; not subject to production test.

Min. Typ. Max. Unit

4 13 28 V

2.1

2.7

V

4.5

V

36

36

60

0

0

0.15

12

12

38

260

2.9

0.01

26.4

20.4

72

45

0.5

0.5

3

550

4

4.5

0.5

3

0.7

V mΩ mΩ

V

V

µA

µs mA mA

µA

V

DS12727 - Rev 3 page 7/40

VND9012AJ

Main electrical characteristics

Table 6. Switching

Symbol

V

CC

= 13 V; -40°C < T j

< 150°C, unless otherwise specified

Parameter Test conditions Min.

Typ.

t t d(on) d(off)

(1)

(1)

(dV

OUT

/dt) on

(1)

W

W

ON

OFF t

SKEW

(1)

Turn-on delay time at T j

= 25 °C

Turn-off delay time at T j

= 25 °C

Turn-on voltage slope at T j

= 25 °C

(dV

OUT

/dt) off

(1)

Turn-off voltage slope at T j

= 25 °C

Switching energy losses at turn-on (t won

Switching energy losses at turn-off (t woff

Differential Pulse skew (t

PHL

- t

PLH

)

)

)

R

R

L

L

= 2.8 Ω

= 2.8 Ω

R

L

= 2.8 Ω

R

L

= 2.8 Ω

R

L

= 2.8 Ω

1. See

Figure 4. Switching time and Pulse skew

.

2. Parameter guaranteed by design and characterization; not subject to production test.

10

10

0.2

0.2

-85

58

26

0.44

0.53

0.4

0.34

-35

Max.

120

100

0.7

0.7

0.95

0.55

15

(2)

(2)

Unit

µs

V/µs mJ mJ

µs

DS12727 - Rev 3 page 8/40

DS12727 - Rev 3

VND9012AJ

Main electrical characteristics

Symbol

V

IL

I

IL

V

IH

I

IH

V

I(hyst)

V

ICL

V

SELL

I

SELL

V

SELH

I

SELH

V

SEL(hyst)

V

SELCL

V

SEnL

I

SEnL

V

SEnH

I

SEnH

V

SEn(hyst)

V

SEnCL

V

FRL

I

FRL

V

FRH

I

FRH

V

FR(hyst)

V

FRCL

Table 7. Logic inputs

Parameter

7 V < V

CC

< 28 V; -40°C < T j

< 150°C

Test conditions

INPUT

0,1

characteristics

Input low level voltage

Low level input current V

IN

= 0.9 V

Input high level voltage

High level input current V

IN

= 2.1 V

Input hysteresis voltage

Input clamp voltage

I

IN

= 1 mA

I

IN

= -1 mA

FaultRST characteristics

Input low level voltage

Low level input current

Input high level voltage

V

IN

= 0.9 V

High level input current V

IN

= 2.1 V

Input hysteresis voltage

Input clamp voltage

I

IN

= 1 mA

I

IN

= -1 mA

SEL characteristics (7 V < V

CC

< 18 V)

Input low level voltage

Low level input current V

IN

= 0.9 V

Input high level voltage

High level input current

Input hysteresis voltage

V

IN

= 2.1 V

Input clamp voltage

I

IN

= 1 mA

I

IN

= -1 mA

SEn characteristics (7 V < V

CC

< 18 V)

Input low level voltage

Low level input current V

IN

= 0.9 V

Input high level voltage

High level input current V

IN

= 2.1 V

Input hysteresis voltage

Input clamp voltage

I

IN

= 1 mA

I

IN

= -1 mA

Min.

Typ.

Max.

Unit

1

2.1

0.2

6

1

2.1

0.2

6

1

2.1

0.2

6

1

2.1

0.2

9

-0.7

-0.7

-0.7

-0.7

0.9

10

8.5

0.9

10

8.5

0.9

10

8.5

0.9

10

12

V

µA

V

µA

V

V

V

µA

V

µA

V

V

V

µA

V

µA

V

V

V

µA

V

µA

V

V page 9/40

DS12727 - Rev 3

VND9012AJ

Main electrical characteristics

Table 8. Protections

Symbol Parameter

7 V < V

CC

< 18 V; -40°C < T j

< 150°C

Test conditions

I

I

LIMH

LIMH2

(1)

(2)

I

LIMH at 22 V t

T

T

T

HYST

ΔT

TSD

RS

J_SD

LATCH_RST t

D_Restart

V

DEMAG

DC short- circuit current

V

CC

= 16 V; T j

= -40°C

V

CC

= 16 V; T j

= 150°C

V

CC

= 19 V; T j

= -40°C

V

CC

= 19 V; T j

= 150°C

V

CC

= 22 V; T j

= 25°C

Shutdown temperature

Shutdown temperature (V

CC decreasing)

V

CC

= 2.7 V

Thermal reset of fault diagnostic indication

Thermal hysteresis

(T

TSD

- T

RS

)

(3)

V

FR

= 0 V; V

SEn

= 5 V

Dynamic temperature

V

CC

= 16 V;

V

CC

= 19 V;

Fault reset time for output unlatch

(3)

V

FR

= 5 V to 0 V; V

SEn

= 5 V;

E.g. Ch

0

:

V

IN0

= 5 V; V

SEL

= 0 V

Latch-OFF delay time before automatic restart

Turn-off output voltage clamp

I

OUT

= 1 A; L = 6 mH; T j

= -40 °C

I

OUT

= 1 A; L = 6 mH; T j

= 25°C to

150 °C

1. I

LIMH

guaranteed between 7V and 16V, -40°C < T j

< 150°C

2. I

LIMH2

guaranteed between 16V and 19V, -40°C < T j

< 150°C

3. Parameter guaranteed by design and characterization; not subject to production test.

Min.

-15%

-15%

-15%

-15%

150

140

135

3

V

CC

- 36

Typ.

68

56

53

43

20

175

7

80

55

10

50

Max.

Unit

15%

15%

A

15%

15%

A

210

20

°C

K

µs ms

V

V

CC

- 36 V

CC

- 38 V

CC

- 45 V page 10/40

DS12727 - Rev 3

VND9012AJ

Main electrical characteristics

Symbol

V

SENSE_CL

K

LED dK

LED

/K

LED

(1) (2)

K

0 dK

0

/K

0

(1) (2)

K

1 dK

1

/K

1

(1) (2)

K

2 dK

2

/K

2

(1) (2)

K

3 dK

3

/K

3

(1) (2)

I

SENSE0

Table 9. Current sense

Parameter

7 V < V

CC

< 18 V; -40°C < T j

< 150°C

Test conditions

I

I

I

I

I

CS clamp voltage

OUT

/I

SENSE

Current sense ratio drift at calibration point

OUT

Current sense ratio drift

OUT

/I

SENSE

Current sense ratio drift

OUT

Current sense ratio drift

OUT

/I

/I

/I

SENSE

SENSE

SENSE

Current sense ratio drift

Current sense leakage current

V

SEn

= 0 V; I

SENSE

= 1 mA

V

SEn

= 0 V; I

SENSE

= -1 mA

Current sense characteristics

I

OUT

= 0.05 A; V

SENSE

= 0.5 V;

V

SEn

= 5 V

I

OUT

= 0.05 A; V

SENSE

= 0.5 V;

V

SEn

= 5 V

I

OUT

= 0.25 A; V

SENSE

= 0.5 V;

V

SEn

= 5 V

I

OUT

= 0.25 A; V

SENSE

= 0.5 V;

V

SEn

= 5 V

I

OUT

= 0.95 A; V

SENSE

= 3.5 V;

V

SEn

= 5 V

I

OUT

= 0.95 A; V

SENSE

= 3.5 V;

V

SEn

= 5 V

I

OUT

= 4.75 A; V

SENSE

= 3.5 V;

V

SEn

= 5 V

I

OUT

= 4.75 A; V

SENSE

= 3.5 V;

V

SEn

= 5 V

I

OUT

= 14 A; V

SENSE

= 3.5 V;

V

SEn

= 5 V

I

OUT

= 14 A; V

SENSE

= 3.5 V;

V

SEn

= 5 V

CS disabled: V

SEn

= 0 V

CS disabled:

-1 V < V

SENSE

< 5 V

CS enabled: V

SEn

= 5 V; All channels

ON; I

OUTX

= 0 A; Ch

X diagnostic selected;

E.g. Ch

0

:

V

IN0

= 5 V; V

IN1

= 5 V;

I

V

SEL

OUT1

= 0 V; I

OUT0

= 4.75 A

= 0 A;

CS enabled: V

SEn

Ch

X

= 5 V; Ch diagnostic selected:

X

OFF;

E.g. Ch

0

:

V

IN0

= 0 V; V

IN1

= 5 V;

V

SEL0

= 0 V; V

SEL1

= 0 V;

I

OUT1

= 4.75 A

Min.

-9

Typ.

-8

7

Max.

Unit

-7

V

-35% 10050 +35%

-25 25

-20% 10050 +20%

-15 15

-15% 10050 +15%

-10 10

7% 10050 +7%

-7 7

-5% 10050 +5%

-5

0

-1

0

0

5

0.5

1

10

1

%

%

%

%

%

µA page 11/40

DS12727 - Rev 3

VND9012AJ

Main electrical characteristics

V

I

SENSE_SAT

(1)

I

V

Symbol

OUT_MSD

SENSE_SAT

OUT_SAT t t

V t

I

V

OL

L(off2)

DSTKON

D_OL_V

D_VOL

(1)

(1)

SENSEH

Parameter

7 V < V

CC

< 18 V; -40°C < T j

< 150°C

Test conditions

Output Voltage for CS shutdown

Current sense saturation voltage

CS saturation current

Output saturation current

OFF-state open-load voltage detection threshold

OFF-state output sink current

OFF-state diagnostic delay time from falling edge of INPUT (see

Figure 6. T

DSTKON

)

V

SEn

= 5 V; R

SENSE

= 2.7 kΩ;

E.g. Ch

0

:

V

IN0

= 5 V; V

SEL

= 0 V;

I

OUT0

= 4.75 A

V

CC

= 7 V; R

SENSE

= 10 kΩ;

V

SEn

= 5 V; V

IN0

= 5 V; V

SEL

= 0 V;

I

OUT0

= 14; T j

= -40°C

V

CC

= 7 V; V

SENSE

= 3.5 V;

V

IN0

= 5 V; V

SEn

= 5 V; V

SEL

= 0 V;

T j

= 150°C

V

CC

= 7 V; V

SENSE

= 3.5 V;

V

IN0

= 5 V; V

SEn

= 5 V; V

SEL

= 0 V;

T j

= 150°C

OFF-state diagnostic

V

SEn

= 5 V; Ch

X

OFF;

Ch

X diagnostic selected

E.g: Ch

0

V

IN0

= 0 V; V

SEL

= 0 V;

V

IN

= 0 V; V

OUT

= V

OL

;

T j

= -40°C to 125°C

V

SEn

= 5 V; Ch

X

ON to OFF transition;

Ch

X diagnostic selected

E.g: Ch

0

I

V

IN0

= 5 V to 0 V; V

SEL

OUT0

= 0 A; V

OUT

= 0 V;

= 4 V

Settling time for valid OFFstate open load diagnostic indication from rising edge of

SEn

V

IN0

V

= 0 V; V

IN1

SEL0

V

OUT0

= 0 V; V

= 0 V; V

SEL1

= 4 V; V

SEn

FR

= 0 V;

= 0 V;

= 0 V to 5 V

OFF-state diagnostic delay time from rising edge of V

OUT

V

SEn

= 5 V; Ch

X

OFF;

Ch

X diagnostic selected

E.g: Ch

0

V

IN0

= 0 V; V

SEL

= 0 V;

V

OUT

= 0 V to 4 V

Fault diagnostic feedback (see

Table 10. Truth table )

Current sense output voltage in fault condition

13 V < V

CC

< 18 V; Ch0 in open load;

R

SENSE

= 0.7 kΩ; V

IN0

= 0 V;

V

SEn

= 5 V; I

OUT0

= 0 A; V

OUT0

= 4 V

V

CC

= 7 V; Ch0 in open load;

R

SENSE

= 0.7 kΩ; V

IN0

= 0 V;

V

SEn

= 5 V; I

OUT0

= 0 A; V

OUT0

= 4 V

Min.

4.8

2

29

2

-150

100

5

4.3

Typ.

5

3

-40

170

5

Max.

Unit

4

-5

250

60

30

7.5

V

V mA

A

V

µA

µs

µs

µs

V page 12/40

DS12727 - Rev 3

VND9012AJ

Main electrical characteristics t

Symbol Parameter

7 V < V

CC

< 18 V; -40°C < T j

< 150°C

Test conditions Min.

Typ.

Max.

Unit

I

SENSEH

Current sense output current in fault condition

13 V < V

CC

< 18 V; V

SENSE

= 5 V;

Ch0 in open load;

V

IN0

= 0 V; V

SEn

= 5 V;

I

OUT0

= 0 A; V

OUT0

= 4 V

V

CC

= 7 V; V

SENSE

= 5 V;

Ch0 in open load;

V

IN0

= 0 V; V

SEn

= 5 V;

I

OUT0

= 0 A; V

OUT0

= 4 V

7

4.4

8.6

12 t t t t

Current sense timings (current sense mode - see Figure 5. Current sense timings (current sense mode) )

(3)

DSENSE1H

Current sense settling time from rising edge of SEn

V

IN

= 5 V; V

SEn

= 0 V to 5 V;

R

SENSE

= 1 kΩ; R

L

= 2.8 Ω

60

DSENSE1L

DSENSE2H

Current sense disable delay time from falling edge of SEn

Current sense settling time from rising edge of INPUT

V

IN

= 5 V; V

SEn

= 5 V to 0 V;

R

SENSE

= 1 kΩ; R

L

= 2.8 Ω

V

IN

= 0 V to 5 V; V

SEn

= 5 V;

R

SENSE

= 1 kΩ; R

L

= 2.8 Ω

5

100

20

200

Δt

DSENSE2H

DSENSE2L

Current sense settling time from rising edge of I

OUT

(dynamic response to a step change of I

OUT

)

Current sense turn-off delay time from falling edge of

INPUT

I

V

R

R

IN

L

V

IN

= 5 V; V

SENSE

= 2.8 Ω

SENSE

SEn

= 5 V; R

= 90 % of I

= 5 V to 0 V; V

SEn

= 1 kΩ; R

L

SENSE

SENSEMAX

= 5 V;

= 2.8 Ω

;

= 1 kΩ;

50

100

250 mA

µs

µs

µs

µs

µs t

DSENSE3H t

D_XtoY

D_CStoVSENSEH

Current sense latch-OFF filtering time

Current sense timings (Multiplexer transition times)

(3)

Current sense transition delay from Ch

X

to Ch

Y

Current sense transition delay from stable current sense on

Ch

X

to V

SENSEH on Ch

Y

V

IN0

= 5 V; V

IN1

= 5 V; V

SEn

= 5 V;

V

SEL

= 0 V to 5 V; I

OUT0

I

OUT1

= 4.75 A; R

SENSE

= 0 A;

= 1 kΩ

V

IN0

= 5 V; V

IN1

V

SEL

= 0 V; V

SEn

= 0 V to 5 V; I

OUT0

= 5 V;

= 4.5 A;

V

OUT1

= 4 V; R

SENSE

= 1 kΩ

1.4

2.0

2.6

30

20 ms

µs

µs

1. Parameter guaranteed by design and characterization; not subject to production test.

2. All values refer to V

CC

= 13 V; T j

= 25°C, unless otherwise specified.

3. Transition delay is measured up to +/- 10% of final conditions.

page 13/40

DS12727 - Rev 3

IN

SEn

High

Low

I

OUT

CURRENT SENSE

VOUT

Vcc

Figure 4. Switching time and Pulse skew twon twoff

VND9012AJ

Main electrical characteristics dV

OUT

/dt

ON

80% Vcc

OFF dV

OUT

/dt

20% Vcc t

INPUT td(on) tpLH td(off) tpHL t

Figure 5. Current sense timings (current sense mode) t

DSENSE2H t

DSENSE1L t

DSENSE1H t

DSENSE2L

GAPG1003141014CFT page 14/40

DS12727 - Rev 3

Figure 6. T

DSTKON

V

OUT

> V

OL

VND9012AJ

Main electrical characteristics

V

INPUT

V

OUT

CS

T

DSTKON

GADG0112170745PS

Table 10. Truth table

Mode

Standby

Normal

Overload

Undervoltage

OFF-state diagnostics

Conditions

All logic inputs low

Nominal load connected;

T j

< 150 °C

Overload or short to GND causing:

T j

> T

TSD

or

ΔT j

> ΔT j _SD

V

CC

< V

USD

Short to V

Open-load

CC

(falling)

IN

X

FR SEn SEL

X

OUT

X

L

L

H

L

X

L

L

See (1)

L

CS Comments

L Hi-Z

Low quiescent current consumption

L

See (1)

H

See (1)

Outputs configured for auto-restart

H

L

H

X

H

See (1)

Outputs configured for

Latch-off

L

See (1)

H

H

X

L

L

H

X

X

L X

X

See (1)

X

See (1)

H

See (1)

Output cycles with temperature hysteresis

L

See (1)

Output latches-off

L

L

Hi-Z

Hi-Z

Re-start when

V

CC

> V

USD

+

V

USDhyst

(rising)

H

See (1)

H

See (1)

External pull-up

Negative output voltage

Inductive loads turn-off

1. Refer to Table 11. Current sense multiplexer addressing

L X

See (1) < 0 V See (1)

page 15/40

VND9012AJ

Main electrical characteristics

SEn SEL

0

L

H

H

X

L

H

MUX channel

Table 11. Current sense multiplexer addressing

Normal mode

Channel 0 diagnostic I

SENSE

= 1/K * I

OUT0

Channel 1 diagnostic I

SENSE

= 1/K * I

OUT1

CS output

Overload OFF-state diag.

Hi-Z

V

SENSE

= V

SENSEH

V

SENSE

= V

SENSEH

V

SENSE

= V

SENSEH

V

SENSE

= V

SENSEH

Negative output

Hi-Z

Hi-Z

DS12727 - Rev 3 page 16/40

2.4

Waveforms

OTDIFF

(Internal signal)

OT

(Internal signal)

OT_Fault

(Internal signal)

OT_Fault_Diag

(Internal signal)

(*) Not in scale

Figure 7. Latch-off mode - Intermittent short circuit

Normal condition

INPUT

Short circuit condition t

Unlatch command is stored, but no restart until

D_Restart is elapsed.

FaultRST

I

LIMH

I

OUT

I

NOM

CS t

D_Restart t > t

DSENSE3H

Figure 8. Auto-restart mode - Intermittent short circuit

Short circuit condition Normal condition

INPUT

FaultRST

I

OUT

CS

OTDIFF

(Internal signal)

OT

(Internal signal)

OT_Fault

(Internal signal)

OT_Fault_Diag

(Internal signal)

(*) Not in scale

I

LIMH

Power Limitation t

D_Restart

I

NOM t > t

DSENSE3H

VND9012AJ

Waveforms

DS12727 - Rev 3 page 17/40

DS12727 - Rev 3

Figure 9. Auto-restart mode - Permanent short circuit

INPUT

FaultRST

I

OUT

CS

OTDIFF

(Internal signal)

OT

(Internal signal)

OT_Fault

(Internal signal)

OT_Fault_Diag

(Internal signal)

(*) Not in scale

I

LIMH

Power Limitation t

D_Restart

I

LIMH

Power Limitation t < t

DSENSE3H

Figure 10. Standby mode activation

= Standby = t < t

D_STBY

= t > t

D_STBY

Figure 11. Standby state diagram

Normal Operation t > t

D_STBY

INx = Low

AND

FaultRST = Low

AND

SEn = Low

AND

SELx = Low

Stand-by Mode

INx = High

OR

FaultRST = High

OR

SEn = High

OR

SELx = High

INPUT0

INPUT1

SEn

SEL

FaultRST

IS(ON)

VND9012AJ

Waveforms page 18/40

3

3.1

3.2

3.3

3.4

VND9012AJ

Protections

Protections

Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT j

through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT j

exceeds the safety level of ΔT j_SD

. According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off

(FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermomechanical fatigue.

Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the

FaultRST pin, the device switches on again as soon as its junction temperature drops to T

R

(FaultRST = Low) or remains off (FaultRST = High).

Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I

LIMH

, by operating the output power MOSFET in the active region.

Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V

DEMAG

, allowing the inductor energy to be dissipated without damaging the device.

DS12727 - Rev 3 page 19/40

4

4.1

VND9012AJ

Application information

Application information

Figure 12. Application diagram

+5V

V

DD

OUT

OUT

OUT

OUT

ADC in

OUT

Rprot_SEn

SEn

INPUT

Rprot

Rprot

Rprot

FaultRST

SEL

Rprot

CS

Cext

Rsense

GND GND

Current mirror

Logic

R

GND

GND

GND

GND

GND protection network against reverse battery

Figure 13. Simplified internal structure

5V

Vcc

Rprot

INPUT

V

CC

D

GND

OUTPUT

GND GND

Dld

MCU

Rprot_SEn

SEn

Rprot

Rprot

FaultRST

CS

OUTPUT

Dld

Rsense

R

GND

GND

D

GND

GND

GAPGCFT00830

DS12727 - Rev 3 page 20/40

4.1.1

4.2

VND9012AJ

Immunity against transient electrical disturbances

Diode (DGND) in the ground line

A resistor (typ. R

GND

= 4.7 kΩ) should be inserted in parallel to D

GND

if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V

CC

pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in

Table 12. ISO 7637-2 - electrical transient conduction along supply line

.

Test pulses are applied directly to DUT (device under test) both in ON and OFF-state and in accordance to ISO

7637-2:2011(E), chapter 4.

The DUT is intended as the current device only, with external components as shown in

Figure 14. M0-9 application schematic .

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: “The function does not perform as designed during the test but returns automatically to normal operation after the test”.

Table 12. ISO 7637-2 - electrical transient conduction along supply line

Test Pulse

2011(E)

Test pulse severity level with Status II functional performance status

1

2a

3a

3b

4 (2)

Level

III

III

IV

IV

IV

U

S

(1)

-112 V

+55 V

-220 V

+150 V

-7 V

Load dump according to ISO 16750-2:2010

Test B

(3)

35 V

Minimum number of pulses or test time

500 pulses

500 pulses

1h

1h

1 pulse

5 pulse

Burst cycle / pulse repetition time min

0.5 s

0.2 s

90 ms

90 ms

1 min max

5 s

100 ms

100 ms

1. U

S

is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

2. Test pulse from ISO 7637-2:2004(E).

3. With 35 V external suppressor referred to ground (-40°C < T j

< 150 °C).

Pulse duration and pulse generator internal impedance

2 ms, 10 Ω

50 µs, 2 Ω

0.1 µs, 50 Ω

0.1 µs, 50 Ω

100 ms, 0.01 Ω

400 ms, 2 Ω

DS12727 - Rev 3 page 21/40

Note:

4.3

4.4

VND9012AJ

MCU I/Os protection

Figure 14. M0-9 application schematic

+5V

V

DD

OUT

V

CC

OUT

OUT

OUT

ADC in

OUT

Rprot_SEn

SEn

INPUT

Rprot

Rprot

Rprot

FaultRST

SEL

Rprot

CS

Cext

Rsense

GND GND

Current mirror

Logic

OUTPUT

1μF

R

GND

GND

D

GND

Rload_nom

GND GND

GND

GND

In case of multiple channels, each OUTPUT must be connected to the resistive nominal load.

MCU I/Os protection

If a ground protection network is used and negative transients are present on the V

CC

line, the control pins will be pulled negative. ST suggests to insert a resistor (R prot

) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

V

CCpeak

/I latchup

≤ R prot

≤ (V

OHµC

- V

IH

- V

GND

) / I

IHmax

Calculation example:

For V

CCpeak

= -150 V; I latchup

≥ 20 mA; V

OHµC

≥ 4.5 V

7.5 kΩ ≤ R prot

≤ 140 kΩ.

Recommended values: R prot

= 15 kΩ

A different value of the resistor has to be used for SEn pin, Rprot_SEn, as reported in

Figure 12. Application diagram .

CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the following signals:

• Current monitor: current mirror of channel output current

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and

SEn pins, according to the address map in Table 7.

DS12727 - Rev 3 page 22/40

Figure 15. CurrentSense and diagnostic – block diagram

VCC

VCC – GND

Clamp

Internal Supply

Undervoltage shut-down

FaultRST

R

PROT

To µC ADC

INPUT

SEL

1

SEL

0

SE n

I

SENSE

CS

R

SENSE

GND

MUX

Fault

Diagnostic

CURRENT

MONITOR

Fault

V

SENSEH

Control & Diagnostic

Gate Driver

VCC – OUT

Clamp

Current

Limitation

Power Limitation

Overtemperature

Short to VCC

Open-Load in OFF K factor

Current

Sense

T

VND9012AJ

CS - analog current sense

I

OUT

OUT

4.4.1

GADG2004171456PS

Principle of current sense signal generation

Figure 16. CurrentSense block diagram

Vcc

Sense MOS

INPUT

Main MOS

Fault

Current sense

Current sense Switch Block

OUT

To uC ADC

CS

R

PROT

R

SENSE

GAPG2307131200CFT

DS12727 - Rev 3 page 23/40

DS12727 - Rev 3

VND9012AJ

CS - analog current sense

Current sense

The output is capable to provide:

Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K

Diagnostics flag in fault conditions delivering fixed voltage V

SENSEH

The current delivered by the current sense circuit, I

SENSE

, can be easily converted to a voltage V

SENSE

by using an external sense resistor, R

SENSE

, allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V

SENSE

calculation can be done using simple equations

Current provided by MultiSense output: I

SENSE

= I

OUT

/K

Voltage on R

SENSE

: V

SENSE

= R

SENSE

· I

SENSE

= R

SENSE

· I

OUT

/K

Where:

V

SENSE

is voltage measurable on R

SENSE

resistor

I

SENSE

is current provided from CurrentSense pin in current output mode

I

OUT

is current flowing through output

K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I

OUT

and I

SENSE

.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the CurrentSense pin which is switched to a

“current limited” voltage source, V

SENSEH

.

In any case, the current sourced by the CurrentSense in this condition is limited to I

SENSEH

.

The typical behavior in case of overload or hard short circuit is shown in Waveforms.

page 24/40

VND9012AJ

CS - analog current sense

+5V

Microcontroller V

DD

GND

100nF

OUT

GND

GND

2.2 k

OUT

15k

OUT

15k

OUT

15k

ADC in

15k

OUT

GND

15k

CEXT

Figure 17. Analog HSD – open-load detection in off-state

Vbat

100nF/50V

GND

V

CC

SEn

INPUT

FaultRST

SEL

CS

GND

Rsense

Cu rrent mirror

Logic

R

GND

4.7k

GND

D

GND

GND

OUTPUT

Vbat

Rpull-up

External

Pull -Up switch

OUTPUT

10nF /100V

GND

GAPG1201151432CFT

Figure 18. Open-load / short to V

CC

condition

V

IN

V

SENSE

Open-load

V

SENSE

Short to V

CC

t

DSTKON

V

SENSEH

V

SENSE

= 0

Pull-up connected

Pull-up disconnected

V

SENSEH

GADG2702181218RI

DS12727 - Rev 3 page 25/40

4.4.2

VND9012AJ

CS - analog current sense

Condition

Open-load

Short to V

CC

Nominal

Table 13. CS pin levels in off-state

Output

V

OUT

> V

OL

V

OUT

< V

OL

V

OUT

> V

OL

V

OUT

< V

OL

CS

Hi-Z

V

SENSEH

Hi-Z

0

Hi-Z

V

SENSEH

Hi-Z

0

Short to V

CC

and OFF-state open-load detection

Short to V

CC

A short circuit between V

CC and output is indicated by the relevant current sense pin set to V

SENSEH

during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short-circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R

PU

connecting the output to a positive supply voltage V

PU

.

It is preferable that V

PU

is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, that is when load is connected.

R

PU must be selected in order to ensure V

OUT

> V

OLmax in accordance with the following equation:

R

PU

<

V

PU

- 4

I

L(off2)min @ 4V

H

L

H

L

H

L

SEn

L

H

DS12727 - Rev 3 page 26/40

5

VND9012AJ

Maximum demagnetization energy (VCC = 16 V)

Maximum demagnetization energy (V

CC

= 16 V)

Figure 19. Maximum turn off current versus inductance

100

Single Pulse Tjstart = 150°C

Repetitive pulse Tjstart = 100°C

Repetitive pulse Tjstart = 125°C

10

1

0

0.1

1000

1 10

L (mH)

100

Figure 20. Maximum turn off energy versus inductance

Single Pulse Tjstart = 150°C

Repetitive pulse Tjstart = 100°C

Repetitive pulse Tjstart = 125°C

100

1000

10

1

0.1

1 10

L (mH)

100 1000

DS12727 - Rev 3 page 27/40

6

6.1

VND9012AJ

Package and PCB thermal data

Package and PCB thermal data

PowerSSO-16 thermal data

Figure 21. PowerSSO-16 on two-layer PCB (2s0p to JEDEC JESD 51-5)

Figure 22. PowerSSO-16 on four-layer PCB (2s2p to JEDEC JESD 51-7)

DS12727 - Rev 3

Dimension

Board finish thickness

Board dimension

Board Material

Copper thickness (top and bottom layers)

Copper thickness (inner layers)

Thermal vias separation

Thermal via diameter

Copper thickness on vias

Footprint dimension (top layer)

Heatsink copper area dimension (bottom layer)

Table 14. PCB properties

Value

1.6 mm +/- 10%

77 mm x 86 mm

FR4

0.070 mm

0.035 mm

1.2 mm

0.3 mm +/- 0.08 mm

0.025 mm

2.2 mm x 3.9 mm

Footprint, 2 cm 2 or 8 cm 2 page 28/40

RTHj_amb(°C/W)

VND9012AJ

PowerSSO-16 thermal data

Figure 23. R thj-amb

vs PCB copper area in open box free air condition (one channel on)

RTHj_amb(°C/W)

90

RTHjamb

80

70

60

50

40

30

0 2 4 6

PCB Cu heatsink area (cm^2)

8 10

Figure 24. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

100

Z

TH

(°C/W)

10

DS12727 - Rev 3

1

0.01

0.1

Equation: pulse calculation formula

Z

THδ

= R

TH

· δ + Z

THtp

(1 - δ) where δ = t

P

/T

1

Time (s)

10 100

Cu=foot print

Cu=2 cm2

Cu=8 cm2

4 Layer

1000 page 29/40

VND9012AJ

PowerSSO-16 thermal data

Figure 25. Thermal fitting model of a double-channel HSD in PowerSSO-16

Note: the fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections

(power limitation or thermal cycling during thermal shutdown) are not triggered.

Area/island (cm²)

R1 (°C/W)

R2 (°C/W)

R3 (°C/W)

R4 (°C/W)

R5 (°C/W)

R6 (°C/W)

C1 (W·s/°C)

C2 (W·s/°C)

C3 (W·s/°C)

C4 (W·s/°C)

C5 (W·s/°C)

C6 (W·s/°C)

Table 15. Thermal parameters

FP

30

26

0.00008

0.02

0.08

0.2

0.4

3

2

2.2

4.6

16

2

4.6

6

20

20

0.3

1

5

8

4.6

6

10

18

0.3

1

7

4L

3

7

4

4

0.4

4

18

DS12727 - Rev 3 page 30/40

7

7.1

VND9012AJ

Package information

Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com

. ECOPACK is an ST trademark.

PowerSSO-16 package information

Bottom view

Figure 26. PowerSSO-16 package dimensions ggg C A-B D D2

D3 ggg C A-B D minimum solderable area

E3 E2

Section A-A

θ 2 h

A A2

A1 e for dual gauge only eee C b ddd C D

N

A

D

A ccc C

SEATING PLANE

C

2x f f f C A-B

D

θ 3

Section B-B

b

H

S h

B

θ 1

R1

R

GAUGE PLANE

θ

L1

B

L

WITH PLATING

1.2

for dual gauge only c c1

E1 E index area

(0.25D x 0.75E1)

2x aaa C D

Top view

1 2 3

B

8017965_Rev_9

A N/2

2x N/2 TIPS bbb C b1

BASE METAL

GAPG1605141159CFT

DS12727 - Rev 3 page 31/40

DS12727 - Rev 3

Symbol

E2

E3 h

L

L1

N

R

R1

S c1

D

D2

D3 e

E

E1

A

A1

A2 b b1 c

Θ

Θ1

Θ2

Θ3 aaa bbb ccc ddd eee fff ggg

Table 16. PowerSSO-16 mechanical data

Millimeters

Typ.

Min.

0.00

1.10

0.20

0.20

0.19

0.19

0.25

0.20

4.90 BSC

3.31

2.61

0.50 BSC

6.00 BSC

3.90 BSC

2.20

1.49

0.25

0.40

0.60

1.00 REF

16

0.07

0.07

0.20

Tolerance of form and position

0.10

0.10

0.08

0.08

0.10

0.10

0.15

VND9012AJ

PowerSSO-16 package information

2.80

0.50

0.85

Max.

1.60

0.30

0.28

0.25

0.23

15°

15°

1.70

0.10

3.91

page 32/40

7.2

VND9012AJ

PowerSSO-16 packing information

PowerSSO-16 packing information

Figure 27. PowerSSO-16 reel 13"

Access Hole at

Slot Location

( 40 mm min.)

A D

Description

Base quantity

Bulk quantity

A (max)

B (min)

C (+0.5, -0.2)

D (min)

N

W1 (+2 /-0)

W2 (max)

1. All dimensions are in mm.

C

If present, tape slot in core for tape start:

2.5 mm min. width x

10.0 mm min. depth

B

Table 17. Reel dimensions

Value

(1)

2500

2500

330

1.5

13

20.2

100

12.4

18.4

W2

W1

N

TAPG2004151655CFT

DS12727 - Rev 3 page 33/40

DS12727 - Rev 3

VND9012AJ

PowerSSO-16 packing information

0.30 ±0.05

Figure 28. PowerSSO-16 carrier tape

P

2

2.0 ±0.1

P

0

4.0 ±0.1

1.55 ±0.05

X

1.75 ±0.1

1.6 ±0.1

F

W

B

0

K

1

K

0

SECTION X - X

R 0.5

Typical

Y

X

Y

P

1

REF 4.18

REF 0.6

SECTION Y - Y

REF 0.5

A

0

GAPG2204151242CFT

Table 18. PowerSSO-16 carrier tape dimensions

Description

A

0

B

0

K

0

K

1

F

P

1

W

1. All dimensions are in mm.

Value

(1)

6.50 ± 0.1

5.25 ± 0.1

2.10 ± 0.1

1.80 ± 0.1

5.50 ± 0.1

8.00 ± 0.1

12.00 ± 0.3

Figure 29. PowerSSO-16 schematic drawing of leader and trailer tape

Embossed carrier

Punched carrier

8 mm & 12 mm only

END

Carrier tape

Round sprocket holes

START

Top cover tape

Elongated sprocket holes

(32 mm tape and wider)

Trailer

160 mm minimum

Top cover tape

Components

User direction feed

100 mm min.

Leader

400 mm minimum

GAPG2004151511CFT page 34/40

7.3

PowerSSO-16 marking information

Figure 30. PowerSSO-16 marking information

VND9012AJ

PowerSSO-16 marking information

Special function digit

&: Engineering sample

<blank>: Commercial sample

PowerSSO-16 TOP VIEW

(not to scale)

GADG0310161234SMD

Parts marked as ‘&’ are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST’s Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS12727 - Rev 3 page 35/40

VND9012AJ

Revision history

Date

02-Oct-2018

03-Jun-2021

14-Jul-2022

Revision

1

2

3

Table 19. Document revision history

Changes

Initial release.

Added:

Application information.

Updated:

Figure 1. Block diagram ;

Table 3. Absolute maximum ratings

Table 8. Protections

Table 9. Current sense

Section Features ;

;

;

Section 2.4 Waveforms

.

;

Minor text changes in:

Table 7. Logic inputs .

Updated

Section Features ,

Table 2. Suggested connections for unused and not connected pins

,

Table 3. Absolute maximum ratings

, Table 4. Thermal data ,

Table 6. Switching

,

Table 8. Protections

,

Table 9. Current sense

and

Section 4 Application information

.

Inserted

Section 5 Maximum demagnetization energy (VCC = 16 V)

and

Section 6 Package and PCB thermal data

.

Minor text changes.

DS12727 - Rev 3 page 36/40

VND9012AJ

Contents

Contents

1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2.1

Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3

Main electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4

Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3.1

Power limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2

Thermal shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3

Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4

Negative voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

4.1

GND protection network against reverse battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1

Diode (DGND) in the ground line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2

Immunity against transient electrical disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3

MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4

CS - analog current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.1

4.4.2

Principle of current sense signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Short to V

CC

and OFF-state open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Maximum demagnetization energy (V

CC

= 16 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

6 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

6.1

PowerSSO-16 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

7.1

PowerSSO-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2

PowerSSO-16 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3

PowerSSO-16 marking information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

DS12727 - Rev 3 page 37/40

VND9012AJ

List of tables

List of tables

Table 1. Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 5. Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 6. Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Table 7. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 8. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 9. Current sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 10. Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 11. Current sense multiplexer addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 12. ISO 7637-2 - electrical transient conduction along supply line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 13. CS pin levels in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 14. PCB properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 15. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 16. PowerSSO-16 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 17. Reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 18. PowerSSO-16 carrier tape dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 19. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

DS12727 - Rev 3 page 38/40

VND9012AJ

List of figures

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 2. Configuration diagram (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 3. Current and voltage conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 4. Switching time and Pulse skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 5. Current sense timings (current sense mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 6. T

DSTKON

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 7. Latch-off mode - Intermittent short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 8. Auto-restart mode - Intermittent short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 9. Auto-restart mode - Permanent short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 10. Standby mode activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 11. Standby state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 12. Application diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 13. Simplified internal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 14. M0-9 application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 15. CurrentSense and diagnostic – block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 16. CurrentSense block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 17. Analog HSD – open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 18. Open-load / short to V

CC

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 19. Maximum turn off current versus inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 20. Maximum turn off energy versus inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 21. PowerSSO-16 on two-layer PCB (2s0p to JEDEC JESD 51-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 22. PowerSSO-16 on four-layer PCB (2s2p to JEDEC JESD 51-7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 23. R thj-amb

vs PCB copper area in open box free air condition (one channel on) . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 24. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) . . . . . . . . . . . . . . . . . . . . 29

Figure 25. Thermal fitting model of a double-channel HSD in PowerSSO-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 26. PowerSSO-16 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 27. PowerSSO-16 reel 13" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 28. PowerSSO-16 carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 29. PowerSSO-16 schematic drawing of leader and trailer tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 30. PowerSSO-16 marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

DS12727 - Rev 3 page 39/40

VND9012AJ

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks . All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

DS12727 - Rev 3 page 40/40

advertisement

Was this manual useful for you? Yes No
Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Related manuals

advertisement