Infineon CY8C4024LQI-S403T Microcontroller Data Sheet

Add to My manuals
58 Pages

advertisement

Infineon CY8C4024LQI-S403T Microcontroller Data Sheet | Manualzz

CY8C40xx

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

General description

PSoC™ 4 is a scalable and reconfigurable platform architecture for a family of programmable embedded system controllers with an Arm® Cortex®-M0+ CPU. It combines programmable and reconfigurable analog and digital blocks with flexible automatic routing. The PSoC™ 4000S product family is a member of the PSoC™ 4 platform architecture. It is a combination of a microcontroller with standard communication and timing peripherals, a capacitive touch-sensing system (CAPSENSE™) with best-in-class performance, programmable general-purpose continuous-time and switched-capacitor analog blocks, and programmable connectivity. PSoC™ 4000S products are upward compatible with members of the PSoC™ 4 platform for new applications and design needs.

Features

• 32-bit MCU subsystem

- 48-MHz Arm® Cortex®-M0+ CPU with single-cycle multiply

- Up to 32 KB of flash with read accelerator

- Up to 4 KB of SRAM

• Programmable analog

- Single-slope 10-bit ADC function provided by Capacitance sensing block

- Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin

- Two low-power comparators that operate in Deep Sleep low-power mode

• Programmable digital

- Programmable logic blocks allowing boolean operations to be performed on port inputs and outputs

• Low-power 1.71-V to 5.5-V operation

- Deep Sleep mode with operational analog and 2.5 µA digital system current

• Capacitive sensing

- Capacitive sigma-delta provides best-in-class signal-to-noise ratio (SNR) (>5:1) and water tolerance

- Infineon-supplied software component makes capacitive sensing design easy

- Automatic hardware tuning (SmartSense)

• LCD drive capability

- LCD segment drive capability on GPIOs

• Serial communication

- Two independent run-time reconfigurable serial communication blocks (SCBs) with re-configurable I or UART functionality

2 C, SPI,

• Timing and pulse-width modulation

- Five 16-bit timer/counter/pulse-width modulator (TCPWM) blocks

- Center-aligned, edge, and pseudo-random modes

- Comparator-based triggering of kill signals for motor drive and other high-reliability digital logic applications

• Up to 36 programmable GPIO pins

- 48-pin TQFP, 40-pin QFN, 32-pin QFN, 24-pin QFN, 32-pin TQFP, and 25-ball WLCSP packages

- Any GPIO pin can be CAPSENSE™, analog, or digital

- Drive modes, strengths, and slew rates are programmable

Datasheet www.infineon.com

Please read the Important Notice and Warnings at the end of this document

page 1

002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Features

• Clock sources

- 32-kHz watch crystal oscillator (WCO)

- ±2% internal main oscillator (IMO)

- 32-kHz internal low-power oscillator (ILO)

• ModusToolbox™ software

- Comprehensive collection of multi-platform tools and software libraries

- Includes board support packages (BSPs), peripheral driver library (PDL), and middleware such as CAPSENSE™

• PSoC™ Creator design environment

- Integrated development environment (IDE) provides schematic design entry and build, with analog and digital automatic routing

- Application programming interface (API) components for all fixed-function and programmable peripherals

• Industry-standard tool compatibility

- After schematic entry, development can be done with Arm®-based industry-standard development tools

Datasheet 2 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Table of contents

Table of contents

General description ...........................................................................................................................1

Features ...........................................................................................................................................1

Table of contents...............................................................................................................................3

1 Development ecosystem .................................................................................................................4

1.1 PSoC™ 4 MCU resources .........................................................................................................................................4

1.2 ModusToolbox™ software ......................................................................................................................................5

1.3 PSoC™ Creator ........................................................................................................................................................6

Block diagram...................................................................................................................................7

2 Functional description ....................................................................................................................9

3 Functional definition.....................................................................................................................10

3.1 CPU and memory subsystem ...............................................................................................................................10

3.2 System resources..................................................................................................................................................10

3.3 Analog blocks........................................................................................................................................................12

3.4 Programmable digital blocks...............................................................................................................................12

3.5 Fixed function digital ............................................................................................................................................13

3.6 GPIO.......................................................................................................................................................................14

3.7 Special function peripherals ................................................................................................................................14

4 Pinouts ........................................................................................................................................15

4.1 Alternate pin functions .........................................................................................................................................17

5 Power ..........................................................................................................................................19

5.1 Mode 1: 1.8 V to 5.5 V external supply..................................................................................................................19

5.2 Mode 2: 1.8 V ± 5% external supply ......................................................................................................................20

6 Electrical specifications.................................................................................................................21

6.1 Absolute maximum ratings ..................................................................................................................................21

6.2 Device level specifications....................................................................................................................................22

6.3 Analog peripherals................................................................................................................................................27

6.4 Digital peripherals.................................................................................................................................................32

6.5 Memory..................................................................................................................................................................36

6.6 System resources..................................................................................................................................................37

7 Ordering information ....................................................................................................................41

8 Packaging ....................................................................................................................................43

8.1 Package diagrams.................................................................................................................................................44

9 Acronyms.....................................................................................................................................49

10 Document conventions................................................................................................................53

10.1 Units of measure.................................................................................................................................................53

Revision history ..............................................................................................................................54

Datasheet 3 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Development ecosystem

1 Development ecosystem

1.1

PSoC™ 4 MCU resources

Infineon provides a wealth of data at www.cypress.com

to help you select the right PSoC™ device and quickly and effectively integrate it into your design. The following is an abbreviated, hyperlinked list of resources for

PSoC™ 4 MCU:

• Overview: PSoC™ Portfolio , PSoC™ Roadmap

• Product selectors: PSoC™ 4 MCU

• Application notes cover a broad range of topics, from basic to advanced level, and include the following:

AN79953 : Getting Started With PSoC™ 4. This application note has a convenient flow chart to help decide

which IDE to use: ModusToolbox™ software

or PSoC™ Creator .

AN91184 : PSoC™ 4 BLE - Designing BLE Applications

AN88619: PSoC™ 4 hardware design considerations

AN73854 : Introduction To bootloaders

AN89610: Arm® Cortex® code optimization

AN86233 : PSoC™ 4 MCU power reduction techniques

AN57821: Mixed signal circuit board layout

AN85951 : PSoC™ 4, PSoC™ 6 CAPSENSE™ design guide

• Code examples demonstrate product features and usage, and are also available on Infineon GitHub repositories .

• Technical Reference Manuals (TRMs) provide detailed descriptions of PSoC™ 4 MCU architecture and registers.

• PSoC™ 4 MCU programming specification provides the information necessary to program PSoC™ 4 MCU non-volatile memory.

• Development tools

-

ModusToolbox™ software enables cross platform code development with a robust suite of tools and software

libraries.

-

PSoC™ Creator is a free Windows-based IDE. It enables concurrent hardware and firmware design of PSoC™

3, PSoC™ 4, PSoC™ 5LP, and PSoC™ 6 MCU based systems. Applications are created using schematic capture and over 150 pre-verified, production-ready peripheral components.

CY8CKIT-145-40XX PSoC™ 4000S CAPSENSE™ prototyping kit, is a low-cost and easy-to-use evaluation platform. This kit provides easy access to all the device I/Os in a breadboard-compatible format.

MiniProg4 and MiniProg3 all-in-one development programmers and debuggers.

PSoC™ 4 MCU CAD libraries provide footprint and schematic support for common tools. IBIS models are also available.

• Training Videos are available on a wide range of topics including the PSoC™ 4 MCU 101 series .

• Infineon developer community enables connection with fellow PSoC™ developers around the world, 24 hours a day, 7 days a week, and hosts a dedicated PSoC™ 4 MCU community .

Datasheet 4 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Development ecosystem

1.2

ModusToolbox™ software

ModusToolbox™ software is Infineon’ comprehensive collection of multi-platform tools and software libraries that enable an immersive development experience for creating converged MCU and wireless systems. It is:

• Comprehensive - it has the resources you need

• Flexible - you can use the resources in your own workflow

• Atomic - you can get just the resources you want

Infineon provides a large collection of code repositories on GitHub , including:

• Board support packages (BSPs) aligned with Infineon kits

• Low-level resources, including a peripheral driver library (PDL)

• Middleware enabling industry-leading features such as CAPSENSE™

• An extensive set of thoroughly tested code example applications

ModusToolbox™ software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a project creator, peripheral and library configurators, a library manager, as well as the optional Eclipse IDE for ModusToolbox™, as

Figure 1

shows. For information on using Infineon tools, refer to the documentation delivered with ModusToolbox™ software, and AN79953: Getting Started with PSoC™ 4 .

Figure 1 ModusToolbox™ software tools

Datasheet 5 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Development ecosystem

1.3

PSoC™ Creator

PSoC™ Creator is a free Windows-based IDE. It enables you to design hardware and firmware systems

concurrently, based on PSoC™ 4 MCU. As Figure 2 shows, with PSoC™ Creator you can:

1. Drag and drop component icons to build your hardware system design in the main design workspace

2. Co-design your application firmware with the PSoC™ hardware, using the PSoC™ Creator IDE C compiler

3. Configure components using the configuration tools

4. Explore the library of 100+ components

5. Review component datasheets

6. Prototype your solution with the PSoC™ 4 Pioneer kits. If a design change is needed, PSoC™ Creator and components enable you to make changes on-the-fly without the need for hardware revisions.

1

2

3

4

5

Figure 2 Multiple-sensor example project in PSoC™ Creator

Datasheet 6 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Block diagram

Block diagram

PSoC™ 4000S

Architecture

32-bit

AHB-Lite

System Resources

Lite

Power

Sleep Control

WIC

POR

PWRSYS

REF

Clock

Clock Control

WDT

ILO IMO

Reset

Reset Control

XRES

Test

TestMode Entry

Digital DFT

Analog DFT

CPU Subsystem

SWD/TC

Cortex® M0+

48 MHz

FAST MUL

NVIC, IRQMUX

SPCIF

FLASH

32 KB

Read Accelerator

SRAM

4 KB

SRAM Controller

Peripherals

PCLK

System Interconnect (Single Layer AHB)

Peripheral Interconnect (MMIO)

ROM

8 KB

ROM Controller

Power Modes

Active/Sleep

DeepSleep

High Speed I/O Matrix & 2 x Programmable I/O

36x GPIOs, LCD

I/O Subsystem

PSoC™ 4000S devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The Arm® serial-wire debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC™ Creator IDE provides fully integrated programming and debug support for the PSoC™ 4000S devices.

The SWD interface is fully compatible with industry-standard third-party tools. The PSoC™ 4000S provides a level of security not possible with multi-chip application solutions or with microcontrollers.

It has the following advantages:

• Allows disabling of debug features

• Robust flash protection

• Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

Datasheet 7 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Block diagram

The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the firmware thus providing security.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC™ 4000S, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC™ 4000S allows the customer to make.

Datasheet 8 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Functional description

2 Functional description

PSoC™ 4000S devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The Arm® serial-wire debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC™ Creator IDE provides fully integrated programming and debug support for the PSoC™ 4000S devices.

The SWD interface is fully compatible with industry-standard third-party tools. The PSoC™ 4000S family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

• Allows disabling of debug features

• Robust flash protection

• Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the firmware thus providing security.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC™ 4000S, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC™ 4000S allows the customer to make.

Datasheet 9 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Functional definition

3

3.1

Functional definition

CPU and memory subsystem

3.1.1

CPU

The Cortex®-M0+ CPU in the PSoC™ 4000S is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a wakeup interrupt controller (WIC). The WIC can wake the processor from Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG.

The debug configuration used for PSoC™ 4000S has four breakpoint (address) comparators and two watchpoint

(data) comparators.

3.1.2

Flash

The PSoC™ 4000S device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.

3.1.3

SRAM

Four KB of SRAM are provided with zero wait-state access at 48 MHz.

3.1.4

SROM

A supervisory ROM that contains boot and configuration routines is provided.

3.2

System resources

3.2.1

Power system

The power system is described in detail in the section

“Power” on page 19. It provides assurance that voltage

levels are as required for each respective mode and either delays mode entry (for example, on power-on reset

(POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC™ 4000S operates with a single external supply over the range of either 1.8 V ±5% (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC™ 4000S provides Active, Sleep, and Deep Sleep low-power modes.

All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in

Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In

Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes

35 µs.

Datasheet 10 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Functional definition

3.2.2

Clock system

The PSoC™ 4000S clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC™ 4000S consists of the internal main oscillator (IMO), internal low-frequency oscillator (ILO), a 32 kHz watch crystal oscillator (WCO) and provision for an external clock. Clock dividers are provided to generate clocks for peripherals on a fine-grained basis. Fractional dividers are also provided to enable clocking of higher data rates for UARTs.

The HFCLK signal can be divided down to generate synchronous clocks for the analog and digital peripherals.

There are eight clock dividers for the PSoC™ 4000S, two of those are fractional dividers. The 16-bit capability allows flexible generation of fine-grained frequency values, and is fully supported in PSoC™ Creator.

HFCLK

IMO

External Clock

Divide By

2,4,8

ILO LFCLK

Prescaler

SYSCLK

HFCLK

Integer

Dividers

Fractional

Dividers

6X 16-bit

2X 16.5-bit

PSoC™ 4000S MCU clocking architecture Figure 3

3.2.3

IMO clock source

The IMO is the primary source of internal clocking in the PSoC™ 4000S. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of

4 MHz. The IMO tolerance with Infineon-provided calibration settings is ±2%.

3.2.4

ILO clock source

The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Infineon provides a software component, which does the calibration.

3.2.5

Watch crystal oscillator (WCO)

The PSoC™ 4000S clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications. The WCO block allows locking the IMO to the 32-kHz oscillator. The

WCO on PSoC™ 4000S series devices does not connect to the LFCLK or WDT. Due to this, RTC functionality is not supported.

Datasheet 11 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Functional definition

3.2.6

Watchdog timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during

Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause Register, which is firmware readable.

3.2.7

Reset

The PSoC™ 4000S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

3.2.8

Voltage reference

The PSoC™ 4000S reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a ±5% reference.

3.3

Analog blocks

3.3.1

Low-power comparators (LPC)

The PSoC™ 4000S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event.

The LPC outputs can be routed to pins.

3.3.2

Current DACs

The PSoC™ 4000S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

3.3.3

Analog multiplexed buses

The PSoC™ 4000S has two concentric independent buses that go around the periphery of the chip. These buses

(called amux buses) are connected to firmware-programmable analog switches that allow the chip’s internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

3.4

Programmable digital blocks

The programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Datasheet 12 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Functional definition

3.5

Fixed function digital

3.5.1

Timer/Counter/PWM (TCPWM) block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC™ 4000S.

3.5.2

Serial communication block (SCB)

I

The PSoC™ 4000S has two serial communication blocks, which can be programmed to have SPI, I2C, or UART functionality.

2 C Mode : The hardware I 2 C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of the PSoC™ 4000S and effectively reduces I 2 C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I

I 2

2 C peripheral is compatible with the I C Standard-mode and Fast-mode devices as defined in the NXP

C-bus specification and user manual (UM10204). The I modes.

2

2 C bus I/O is implemented with GPIO in open-drain

The PSoC™ 4000S is not completely compliant with the I 2 C spec in the following respect:

• GPIO cells are not over-voltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I 2 C system.

UART Mode : This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface

(LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic

UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode : The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

Datasheet 13 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Functional definition

3.6

GPIO

The PSoC™ 4000S has up to 36 GPIOs. The GPIO block implements the following:

• Eight drive modes:

- Analog input mode (input and output buffers disabled)

- Input only

- Weak pull-up with strong pull-down

- Strong pull-up with weak pull-down

- Open drain with strong pull-down

- Open drain with strong pull-up

- Strong pull-up with strong pull-down

- Weak pull-up with weak pull-down

• Input threshold select (CMOS or LVTTL).

• Individual control of input and output buffer enabling/disabling in addition to the drive strength modes

• Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for ports 2 and 3). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC™ 4000S).

3.7

Special function peripherals

3.7.1

CAPSENSE™

CAPSENSE™ is supported in the PSoC™ 4000S through a CAPSENSE™ Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CAPSENSE™ function can thus be provided on any available pin or group of pins in a system under software control. A PSoC™ Creator component is provided for the CAPSENSE™ block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CAPSENSE™ block has two IDACs, which can be used for general purposes if CAPSENSE™ is not being used

(both IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is available).

The CAPSENSE™ block also provides a 10-bit slope ADC function, which can be used in conjunction with the

CAPSENSE™ function.

The CAPSENSE™ block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and Ground to null out power-supply related noise.

3.7.2

LCD segment drive

The PSoC™ 4000S has an LCD controller, which can drive up to 8 commons and up to 28 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM. Digital correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays.

Datasheet 14 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Pinouts

4 Pinouts

The following table provides the pin list for PSoC™ 4000S for the 48-pin TQFP, 40-pin QFN, 32-pin QFN,

24-pin QFN, 32-pin TQFP, and 25-ball CSP packages. All port pins support GPIO. Pin 11 is a No-Connect in the

48-TQFP.

9

10

12

13

7

8

3

4

5

6

47

48

1

2

43

44

45

46

39

40

41

42

35

36

37

38

Table 1

48-pin TQFP

PSoC™ 4000S pin list

32-pin QFN 24-pin QFN 25-ball CSP 40-pin QFN 32-pin TQFP

Pin Name Pin Name Pin Name Pin Name Pin Name Pin Name

28

29

30

P0.0

P0.1

P0.2

17

18

19

P0.0

P0.1

P0.2

13

14

P0.0

P0.1

D1

C3

P0.0

P0.1

22

23

24

P0.0

P0.1

P0.2

17

18

19

P0.0

P0.1

P0.2

31

32

33

34

P0.3

P0.4

P0.5

P0.6

20

21

22

23

P0.3

P0.4

P0.5

P0.6

15

16

17

P0.4

P0.5

P0.6

C2

C1

B1

P0.4

P0.5

P0.6

25

26

27

28

P0.3

P0.4

P0.5

P0.6

20

21

22

23

P0.3

P0.4

P0.5

P0.6

P0.7

XRES

VCCD

VSSD

VDDD

VDDA

VSSA

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

VSSD

P3.0

P3.1

24

25

26

27

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

10

XRES

VCCD

VSSD

VDD

VDD

VSSA

P1.0

P1.1

P1.2

P1.3

P1.7

P2.0

P2.1

P2.2

P2.3

P2.5

P2.6

P2.7

P3.0

P3.1

18

19

20

21

21

22

23

24

1

2

3

4

5

6

XRES

VCCD

VSSD

VDD

VDD

VSSA

P1.2

P1.3

P1.7

P2.0

P2.1

P2.6

P2.7

P3.0

B2

B3

A1

A2

A3

A3

A2

A4

B4

A5

B5

C5

D5

C4

A2

E5

D4

P0.7

XRES

VCCD

VSS

VDD

VDD

VSS

P1.2

P1.3

P1.7

P2.0

P2.1

P2.6

P2.7

VSS

P3.0

P3.1

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

8

9

10

11

6

7

P0.7

XRES

VCCD

VDDD

VDDA

VSSA

P1.0

P1.1

P1.2

P1.3

P1.4

P1.7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

VSSD

P3.0

P3.1

24

25

26

27

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

10

XRES

VCCD

VSSD

VDD

VDD

VSSA

P1.0

P1.1

P1.2

P1.3

P1.7

P2.0

P2.1

P2.2

P2.3

P2.5

P2.6

P2.7

P3.0

P3.1

Datasheet 15 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Pinouts

Table 1

48-pin TQFP

14

16

17

P3.2

P3.3

P3.4

PSoC™ 4000S pin list

(continued)

32-pin QFN

11

12

P3.2

P3.3

24-pin QFN

7

8

P3.2

P3.3

25-ball CSP

E4

D3

P3.2

P3.3

40-pin QFN

12

13

14

P3.2

P3.3

P3.4

32-pin TQFP

Pin Name Pin Name Pin Name Pin Name Pin Name Pin Name

11

12

P3.2

P3.3

18

19

20

21

P3.5

P3.6

P3.7

VDDD

15

16

17

P3.5

P3.6

P3.7

22

23

24

25

P4.0

P4.1

P4.2

P4.3

13

14

15

16

P4.0

P4.1

P4.2

P4.3

9

10

11

12

P4.0

P4.1

P4.2

P4.3

E3

D2

E2

E1

P4.0

P4.1

P4.2

P4.3

18

19

20

21

P4.0

P4.1

P4.2

P4.3

13

14

15

16

P4.0

P4.1

P4.2

P4.3

Note: Pins 11, 15, 26, and 27 are No connects (NC) on the 48-pin TQFP.

Descriptions of the pin functions are as follows:

VDDD : Power supply for the digital section.

VDDA : Power supply for the analog section.

VSSD, VSSA : Ground pins for the digital and analog sections respectively.

VCCD : Regulated digital supply (1.8 V ± 5%)

VDD: Power supply to all sections of the chip

VSS: Ground for all sections of the chip

Datasheet 16 002-00123 Rev. *O

2022-07-28

4.1

Alternate pin functions

Each port pin can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CAPSENSE™ pin. The pin assignments are shown in the following table.

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

Table 2

Port/Pin

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P1.0

Pin assignments

Analog lpcomp.in_p[0] lpcomp.in_n[0] lpcomp.in_p[1] lpcomp.in_n[1] wco.wco_in

wco.wco_out

Smart I/O Alternate Function 1 Alternate Function 2 Alternate Function 3 Deep Sleep 1 tcpwm.tr_in[0] tcpwm.tr_in[1] srss.ext_clk

tcpwm.line[2]:1 tcpwm.line_compl[2]:1 tcpwm.line[3]:1 tcpwm.line_compl[3]:1 scb[1].uart_rx:0 scb[1].uart_tx:0 scb[1].uart_cts:0 scb[1].uart_rts:0 scb[0].uart_rx:1 scb[0].uart_tx:1 scb[0].uart_cts:1 scb[0].uart_rts:1 tcpwm.tr_in[2] tcpwm.tr_in[3] scb[1].i2c_scl:0 scb[1].i2c_sda:0 scb[0].i2c_scl:0 scb[0].i2c_sda:0

Deep Sleep 2 scb[0].spi_select1:0 scb[0].spi_select2:0 scb[0].spi_select3:0 scb[1].spi_mosi:1 scb[1].spi_miso:1 scb[1].spi_clk:1 scb[1].spi_select0:1 scb[0].spi_mosi:1 scb[0].spi_miso:1 scb[0].spi_clk:1 scb[0].spi_select0:1 scb[0].spi_select1:1 scb[0].spi_select2:1 scb[0].spi_select3:1

P1.7

P2.0

P2.1

P2.2

P2.3

prgio[0].io[0] prgio[0].io[1] prgio[0].io[2] prgio[0].io[3] tcpwm.line[4]:0 tcpwm.line_compl[4]:0 csd.comp

tcpwm.tr_in[4] tcpwm.tr_in[5] scb[1].i2c_scl:1 scb[1].i2c_sda:1 scb[1].spi_mosi:2 scb[1].spi_miso:2 scb[1].spi_clk:2 scb[1].spi_select0:2

Table 2

Port/Pin

P2.4

P2.5

P2.6

P2.7

P3.0

P3.1

Pin assignments

(continued)

Analog Smart I/O prgio[0].io[4] prgio[0].io[5] prgio[0].io[6] prgio[0].io[7] prgio[1].io[0]

Alternate Function 1 Alternate Function 2 Alternate Function 3 Deep Sleep 1 tcpwm.line[0]:1 tcpwm.line_compl[0]:1 tcpwm.line[1]:1 tcpwm.line_compl[1]:1 tcpwm.line[0]:0 scb[1].uart_rx:1 lpcomp.comp[0]:1 scb[1].i2c_scl:2 prgio[1].io[1] tcpwm.line_compl[0]:0 scb[1].uart_tx:1 scb[1].i2c_sda:2

P3.2

P3.3

P3.4

P3.5

P3.6

P3.7

P4.0

csd.vref_ext

P4.1

csd.cshieldpads

P4.2

csd.cmodpad

prgio[1].io[2] tcpwm.line[1]:0 prgio[1].io[3] tcpwm.line_compl[1]:0 prgio[1].io[4] tcpwm.line[2]:0 prgio[1].io[5] tcpwm.line_compl[2]:0 prgio[1].io[6] tcpwm.line[3]:0 prgio[1].io[7] tcpwm.line_compl[3]:0 scb[1].uart_cts:1 scb[1].uart_rts:1 scb[0].uart_rx:0 scb[0].uart_tx:0 scb[0].uart_cts:0 tcpwm.tr_in[6] tcpwm.tr_in[7] tcpwm.tr_in[8] tcpwm.tr_in[9] tcpwm.tr_in[10] tcpwm.tr_in[11] cpuss.swd_data

cpuss.swd_clk

lpcomp.comp[1]:1 scb[0].i2c_scl:1 scb[0].i2c_sda:1 lpcomp.comp[0]:0

P4.3

csd.csh_tank

scb[0].uart_rts:0 lpcomp.comp[1]:0

Deep Sleep 2 scb[1].spi_select1:1 scb[1].spi_select2:1 scb[1].spi_select3:1 scb[1].spi_mosi:0 scb[1].spi_miso:0 scb[1].spi_clk:0 scb[1].spi_select0:0 scb[1].spi_select1:0 scb[1].spi_select2:0 scb[1].spi_select3:0 scb[0].spi_mosi:0 scb[0].spi_miso:0 scb[0].spi_clk:0 scb[0].spi_select0:0

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Power

5 Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC™ 4000S.

The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V

DD

input.

VDDA

VDDA

VSSA

Analog

Domain

VDDD

Digital

Domain

VSSD

VDDD

VCCD

1.8 Volt

Regulator

Figure 4 Power supply connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is1.8 V ± 5% (externally regulated; 1.71 V to 1.89 V, internal regulator bypassed).

5.1

Mode 1: 1.8 V to 5.5 V external supply

In this mode, the PSoC™ 4000S is powered by an external power supply that can be anywhere in the range of

1.8 V to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the

PSoC™ 4000S supplies the internal logic and its output is connected to the V

CCD

pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 µF; X5R ceramic or better) and must not be connected to anything else.

Datasheet 19 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Power

5.2

Mode 2: 1.8 V ± 5% external supply

In this mode, the PSoC™ 4000S is powered by an external power supply that must be within the range of 1.71 V to

1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1-µF range, in parallel with a smaller capacitor (0.1 µF, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Power supply bypass connections example

1.8V to 5.5V

0.1mF

V

DD

PSoC TM 4000S

V

DDA

1 mF

1.8V to 5.5V

0.1mF

V

CCD

0.1mF

V

SS

Figure 5 External supply range from 1.8 V to 5.5 V with internal regulator active

Datasheet 20 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6

6.1

Electrical specifications

Absolute maximum ratings

Table 3 Absolute maximum ratings

Spec ID# Parameter

[1]

Description

SID1

SID2

SID3

SID4

V

DDD_ABS

V

V

CCD_ABS

GPIO_ABS

I

GPIO_ABS

Digital supply relative to V

SS

Direct digital core voltage input relative to V

SS

GPIO voltage

Maximum current per GPIO

SID5

BID44

BID45

BID46

I

GPIO_injection

ESD_HBM

ESD_CDM

LU

GPIO injection current,

Max for V

Min for V

IH

IL

> V

DDD

, and

< V

SS

Electrostatic discharge human body model

Electrostatic discharge charged device model

Pin current for latch-up

2200

500

–140

Min

–0.5

–0.5

–0.5

–25

–0.5

Typ Max Units Details/conditions

– 6 –

V – 1.95

– V

DD

+ 0.5

25

– 0.5

mA

Current injected per pin

140

V

– mA –

Note

1. Usage above the absolute maximum conditions listed in Table 3 may cause permanent damage to the device. Exposure to absolute

maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150°C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Datasheet 21 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.2

Device level specifications

All specifications are valid for –40°C  T

1.71 V to 5.5 V, except where noted.

A

 105°C and T

J

 125°C, except where noted. Specifications are valid for

Table 4 DC specifications

Typical values measured at V

DD

= 3.3 V and 25°C.

Spec ID Parameter Description

SID53

SID54

V

SID255 V

V

DD

DD

CCD

Power supply input voltage

Power supply input voltage

(V

CCD

= V

DD

= V

DDA

)

Output voltage

(for core logic)

External regulator voltage bypass

Min Typ Max Units Details/conditions

1.8

– 5.5

Internally regulated supply

1.71

1.8

1.89

V

SID55 C

EFC

SID56 C

EXC

Power supply bypass capacitor

0.1

1

µF

Active Mode, V

DD

= 1.8 V to 5.5 V. Typical values measured at VDD = 3.3 V and 25°C.

SID10 I

DD5

Execute from flash;

CPU at 6 MHz

– 1.2

2.0

SID16 I

DD8

Execute from flash;

CPU at 24 MHz

– 2.4

4.0

mA

Internally unregulated supply

X5R ceramic or better

X5R ceramic or better

SID19 I

DD11

Execute from flash;

CPU at 48 MHz

Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)

SID22

SID25 I

I

DD17

DD20

I

2 comparators on

I 2

C wakeup WDT, and

C wakeup, WDT, and comparators on

4.6

1.1

1.4

Sleep Mode, V

DDD

= 1.71 V to 1.89 V (Regulator bypassed)

SID28 I

DD23

I 2 C wakeup, WDT, and

Comparators on

SID28A I

DD23A

I

2

C wakeup, WDT, and

Comparators on

0.7

0.9

Deep Sleep Mode, V

DD

= 1.8 V to 3.6 V (Regulator on)

SID31 I

DD26

Deep Sleep Mode, V

DD

I 2 C wakeup and WDT on

= 3.6 V to 5.5 V (Regulator on)

I

2

C wakeup and WDT on

– 2.5

SID34 I

DD29

Deep Sleep Mode, V

DD

= V

SID37 I

DD32

XRES Current

I 2

– 2.5

CCD

= 1.71 V to 1.89 V (Regulator bypassed)

C wakeup and WDT on – 2.5

SID307 I

DD_XR

Supply current while XRES asserted

– 2

5.9

1.6

1.9

1.1

60

60

60

5 mA

6 MHz

12 MHz mA 12 MHz

µA –

µA –

µA – mA –

Datasheet 22 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

Table 5 AC specifications

Spec ID Parameter

SID48 F

CPU

SID49

[2]

T

SLEEP

SID50

[2]

T

DEEPSLEEP

Description

CPU frequency

Wakeup from Sleep mode

Wakeup from Deep Sleep mode

Min

DC

Typ

0

35

Max Units Details/conditions

48

MHz 1.71 V  V

DD

µs

 5.5 V

Note

2. Guaranteed by characterization.

Datasheet 23 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.2.1

GPIO

Table 6 GPIO DC specifications

Spec ID Parameter Description

SID57

SID58

SID241

SID242

SID243

SID244

SID59

SID60

V

V

V

V

V

V

V

V

IH

[3]

IL

IH

[3]

IL

IH

[3]

IL

OH

OH

Input voltage high threshold

Input voltage low threshold

LVTTL input,

V

DDD

< 2.7 V

LVTTL input,

V

DDD

< 2.7 V

LVTTL input,

V

DDD

 2.7 V

LVTTL input,

V

DDD

 2.7 V

Output voltage high level

Output voltage high level

SID61

SID62

SID62A

SID63

SID64

SID65

SID66

SID67

SID68

[4]

[4]

SID68A

SID69

[4]

SID69A

[4]

[4]

I

I

I

V

V

V

R

R

IL

OL

OL

OL

PULLUP

PULLDOWN

C

IN

V

HYSTTL

V

V

HYSCMOS

HYSCMOS5V5

DIODE

TOT_GPIO

Min

0.7 

0.7 

V

V

2.0

DDD

DDD

 V

DDD

 V

DDD

Typ

– 0.3 

– 0.6

– 0.5

Output voltage low level

Output voltage low level

Output voltage low level

Pull-up resistor

Pull-down resistor

Input leakage current

(absolute value)

Input capacitance

Input hysteresis LVTTL

3.5

3.5

25

Input hysteresis CMOS 0.05 × V

DDD

Input hysteresis CMOS 200

Current through protection diode to

V

DD

/V

SS

Maximum total source or sink chip current

5.6

5.6

40

0.3

Max

8.5

8.5

2

7

 V

 V

0.8

0.6

0.6

0.4

100

200

DDD

DDD

Units Details/conditions

CMOS input

CMOS input

– k

V

Ω

I

OH

= 4 mA at 3 V V

I

OH

DDD

= 1 mA at 3 V V

DDD

I

OL

= 4 mA at 1.8 V V

I

OL

DDD

= 10 mA at 3 V V

DDD

I = 3 mA at 3 V V

DDD

OL

– nA 25°C, V

DDD

= 3.0 V pF – mV

V

V

V

DDD

 2.7 V

DD

< 4.5 V

DD

> 4.5 V

µA – mA –

Notes

3. V

IH

must not exceed V

DDD

+ 0.2 V.

4. Guaranteed by characterization.

Datasheet 24 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

Table 7 GPIO AC Specifications

(Guaranteed by characterization)

Spec ID Parameter

SID70 T

RISEF

Description

Rise time in fast strong mode

SID71 T

FALLF

Fall time in fast strong mode

SID72

SID73

SID74

SID75

SID76

T

T

F

F

F

SID245 F

SID246 F

RISES

FALLS

GPIOUT1

GPIOUT2

GPIOUT3

GPIOUT4

GPIOIN

Rise time in slow strong mode

Fall time in slow strong mode

GPIO F

OUT

;

3.3 V  V

DDD

 5.5 V; fast strong mode

GPIO F

OUT

;

1.71 V  V

DDD

 3.3 V; fast strong mode

GPIO F

OUT

;

3.3 V  V

DDD

 5.5 V; slow strong mode

GPIO F

OUT

;

1.71 V  V

DDD

 3.3 V; slow strong mode

GPIO input operating frequency;

1.71 V  V

DDD

 5.5 V

Min

2

2

10

10

Typ

Max Units Details/conditions

12

12 ns

3.3 V V

DDD

,

Cload = 25 pF

3.3 V V

DDD

,

Cload = 25 pF

60

60

3.3 V V

DDD

,

Cload = 25 pF

3.3 V V

DDD

,

Cload = 25 pF

33

90/10%, 25 pF load,

60/40 duty cycle

16.7

90/10%, 25 pF load,

60/40 duty cycle

7

3.5

MHz

90/10%, 25 pF load,

60/40 duty cycle

90/10%, 25 pF load,

60/40 duty cycle

48 90/10% V

IO

Datasheet 25 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.2.2

XRES

Table 8

SID77 V

SID78 V

IH

IL

XRES DC specifications

Spec ID Parameter

SID79 R

PULLUP

SID80 C

IN

Description

Input voltage high threshold 0.7 × V

DDD

Input voltage low threshold –

Pull-up resistor

Input capacitance

Min

SID81

[5]

V

HYSXRES

Input voltage hysteresis –

SID82 I

DIODE

Current through protection diode to V

DD

/V

SS

Typ

Max Units Details/conditions

V CMOS Input

– 0.3 × V

DDD

60 –

– 7 k Ω – pF –

100 – mV

Typical hysteresis is 200 mV for

V

DD

> 4.5 V

– 100 µA –

Table 9

Spec ID

SID83

[5]

BID194

[5]

T

T

XRES AC specifications

Parameter

RESETWIDTH

RESETWAKE

Wake-up time from reset release

Description

Reset pulse width

Min

1

Typ Max Units Details/conditions

– – µs –

– 2.7

ms –

Note

5. Guaranteed by characterization.

Datasheet 26 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.3

6.3.1

Analog peripherals

Comparator

Table 10

SID84

SID85

SID86

SID87

SID247 V

SID247A V

SID88

SID88A C

SID89

SID248 I

SID259 I

SID90

I

V

V

V

V

C

Z

OFFSET1

OFFSET2

HYST

ICM1

ICM2

ICM3

MRR

MRR

CMP1

CMP2

CMP3

CMP

Comparator DC specifications

Spec ID Parameter Description

Input offset voltage, factory trim

Input offset voltage, custom trim

Hysteresis when enabled

Input common mode voltage in normal mode

Input common mode voltage in low power mode

Input common mode voltage in ultra low power mode

Common mode rejection ratio

Common mode rejection ratio

Block current, normal mode

Block current, low power mode

Block current in ultra low-power mode

DC Input impedance of comparator

50

42

0

Min

Typ

Max

±10

– ±4

10 35

– V

DDD

– 0.1

Units Details/conditions

– mV

Modes 1 and 2

0 – V

DDD V

0 – V

DDD

– 1.15

V

–40°C

≥ 2.2 V at

35

6

400

100

28

V

DDD

≥ 2.7V

dB

V

DDD

≤ 2.7V

µA

V

–40°C

≥ 2.2 V at

M Ω –

Table 11

Spec ID Parameter

SID91

SID258 TRESP2

SID92

Comparator AC specifications

TRESP1

TRESP3

Description

Response time, normal mode, 50 mV overdrive

Response time, low power mode, 50 mV overdrive

Response time, ultra-low power mode, 200 mV overdrive

Min

Typ

38

70

2.3

Max Units Details/conditions

110 ns

200 –

15 µs

V

–40°C

≥ 2.2 V at

Datasheet 27 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.3.2

CSD and IDAC

Table 12

Spec ID

SYS.PER#3

SID308

SID308A

SID309

CSD and IDAC specifications

VDD_RIPPLE

SYS.PER#16 VDD_RIPPLE_1.8

SID.CSD.BLK ICSD

SID.CSD#15 V

SID.CSD#15A V

SID.CSD#16 IDAC1IDD

SID.CSD#17 IDAC2IDD

VCSD

V

Parameter

REF

REF_EXT

COMPIDAC

IDAC1DNL

Description

Max allowed ripple on power supply,

DC to 10 MHz

Max allowed ripple on power supply,

DC to 10 MHz

Maximum block current

Min Typ

Max Units Details/conditions

±50 mV

V

DD

> 2 V (with ripple),

A

,

Sensitivity = 0.1 pF

±25

4000 mV

µA

V

DD

> 1.75 V (with ripple), 25°C T

Parasitic Capacitance

(C

P

) < 20 pF,

A

,

Sensitivity ≥ 0.4 pF

Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator.

Voltage reference for CSD and comparator

External Voltage reference for CSD and comparator

IDAC1 (7-bits) block current

0.6

0.6

1.2 V

V

DDA

DDA

– 0.6

– 0.6

V

1750

V

V whichever is lower

V

DDA

DDA

– 0.6 or 4.4 V,

– 0.6 or 4.4 V, whichever is lower

µA –

IDAC2 (7-bits) block current

Voltage range of operation

1.71

1750

5.5

µA –

V

1.8 V ± 5% or 1.8

  V to

5.5 V

Voltage compliance range of IDAC

0.6

DNL –1

V

DDA

– 0.6

V

1 LSB –

V

DDA

– 0.6 or 4.4 V, whichever is lower

SID310

SID311

SID312

IDAC1INL

IDAC2DNL

IDAC2INL

INL –2

DNL –1

–2

2

1

2

V

LSB –

DDA

< 2 V

SID313

SID314

SID314A

SNR

IDAC1CRT1

IDAC1CRT2

INL

Ratio of counts of finger to noise.

Guaranteed by characterization

Output current of

IDAC1 (7 bits) in low range

Output current of

IDAC1 (7 bits) in medium range

5

4.2

34

5.4

41

Ratio

V

DDA

< 2 V

Capacitance range of

5 pF to 35 pF, 0.1-pF sensitivity. All use cases.

V

DDA

> 2 V.

µA LSB = 37.5-nA typ.

µA LSB = 300-nA typ.

Datasheet 28 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

Table 12

Spec ID

SID314B

SID314C

SID314D

SID314E

SID315

SID315A

SID315B

SID315C

SID315D

SID315E

SID315F

SID315G

SID315H

SID320

SID321

SID322

CSD and IDAC specifications

(continued)

Parameter Description Min Typ

IDAC1CRT3

IDAC1CRT12

Output current of

IDAC1 (7 bits) in high range

Output current of

IDAC1 (7 bits) in low range, 2X mode

275

8

IDAC1CRT22

IDAC1CRT32

IDAC2CRT1

IDAC2CRT2

Output current of

IDAC1 (7 bits) in medium range, 2X mode

Output current of

IDAC1 (7 bits) in high range, 2X mode

Output current of

IDAC2 (7 bits) in low range

Output current of

IDAC2 (7 bits) in medium range

69

540

4.2

34

IDAC2CRT3

IDAC2CRT12

IDAC2CRT22

IDAC2CRT32

IDAC3CRT13

IDAC3CRT23

IDAC3CRT33

Output current of

IDAC2 (7 bits) in high range

Output current of

IDAC2 (7 bits) in low range, 2X mode

Output current of

IDAC2 (7 bits) in medium range, 2X mode

Output current of

IDAC2 (7 bits) in high range, 2X mode

Output current of

IDAC in 8-bit mode in low range

Output current of

IDAC in 8-bit mode in medium range

Output current of

IDAC in 8-bit mode in high range

275

8

69

540

8

69

540

IDACOFFSET All zeroes input – –

IDACGAIN

IDACMISMATCH1

Full-scale error less offset

Mismatch between

IDAC1 and IDAC2 in

Low mode

Max Units Details/conditions

330 µA LSB = 2.4-µA typ.

10.5

82

660

5.4

41

330

10.5

82

660

10.5

82

660

1

±10

9.2

µA LSB = 75-nA typ.

µA LSB = 600-nA typ.

µA LSB = 4.8-µA typ.

µA LSB = 37.5-nA typ.

µA LSB = 300-nA typ.

µA LSB = 2.4-µA typ.

µA LSB = 75-nA typ.

µA LSB = 600-nA typ.

µA LSB = 4.8-µA typ.

µA LSB = 37.5-nA typ.

µA LSB = 300-nA typ.

µA LSB = 2.4-µA typ.

LSB

Polarity set by Source or

Sink. Offset is 2 LSBs for

37.5 nA/LSB mode

% –

LSB LSB = 37.5-nA typ.

Datasheet 29 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

Table 12

Spec ID

SID322A

SID322B

SID323

SID324

SID325

CSD and IDAC specifications

(continued)

Parameter Description Min Typ

IDACMISMATCH2

IDACMISMATCH3

Mismatch between

IDAC1 and IDAC2 in

Medium mode

Mismatch between

IDAC1 and IDAC2 in

High mode

IDACSET8

IDACSET7

CMOD

Settling time to

0.5 LSB for

8-bit IDAC

Settling time to

0.5 LSB for

7-bit IDAC

External modulator capacitor.

2.2

Max Units Details/conditions

5.6

LSB LSB = 300-nA typ.

6.8

10

10

LSB LSB = 2.4-µA typ.

µs

µs

Full-scale transition. No external load.

Full-scale transition. No external load.

Datasheet 30 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.3.3

Table 13 10-bit CAPSENSE™ ADC specifications

Spec ID Parameter Description

SIDA94 A_RES Resolution

Min

SIDA95

SIDA97

SIDA98

10-bit CAPSENSE™ ADC

A-MONO Monotonicity

A_GAINERR Gain error

SIDA99 A_OFFSET Input offset voltage

SIDA100 A_ISAR

SIDA101 A_VINS

SIDA103 A_INRES

SIDA104 A_INCAP

SIDA106 A_PSRR

Current consumption

Input voltage range - single ended

Input resistance

Input capacitance

Power supply rejection ratio

V

SSA

– SIDA107

SIDA108

A_TACQ

A_CONV8

SIDA108A A_CONV10

Sample acquisition time

Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.

Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.

SIDA109

SIDA110

SIDA111

SIDA112

A_SND

A_BW

A_INL

A_DNL

Signal-to-noise and

Distortion ratio (SINAD)

Input bandwidth without aliasing

Integral Non Linearity.

1 ksps

Differential Non Linearity.

1 ksps

2.2

20

Typ Max Units Details/conditions

10

16 bits

Auto-zeroing is required every millisecond

Defined by AMUX

Bus.

– –

±2

3

0.25

Yes –

%

In V with V

(2.4 V) mode

DDA

bypass capacitance of

10 µF mV

In V with V

(2.4 V) mode

DDA

bypass capacitance of

10 µF mA –

60

1

61

V

DDA

21.3

85.3

V –

K Ω – pF – dB

In V with V

(2.4 V) mode

DDA

bypass capacitance of

10 µF

µs –

µs

Does not include acquisition time.

Equivalent to

44.8 ksps including acquisition time.

µs dB

Does not include acquisition time.

Equivalent to

11.6 ksps including acquisition time.

With 10-Hz input sine wave, external

2.4-V reference,

V

REF

(2.4 V) mode

22.4

kHz 8-bit resolution

2

1

LSB V REF

= 2.4 V or greater

LSB –

Datasheet 31 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.4

6.4.1

Digital peripherals

Timer counter pulse-width modulator (TCPWM)

Table 14

Spec ID

TCPWM specifications

Parameter

SID.TCPWM.1 ITCPWM1

SID.TCPWM.2 ITCPWM2

SID.TCPWM.2A ITCPWM3

Description

Block current consumption at 3 MHz

Block current consumption at 12 MHz

Block current consumption at 48 MHz

SID.TCPWM.3 TCPWM

FREQ

Operating frequency

SID.TCPWM.4 TPWM

ENEXT

Input trigger pulse width

Min

2/Fc

SID.TCPWM.5 TPWM

EXT

SID.TCPWM.5A TC

RES

SID.TCPWM.5B PWM

RES

SID.TCPWM.5C Q

RES

Output trigger pulse widths

Resolution of counter

PWM resolution

Quadrature inputs resolution

2/Fc

1/Fc

1/Fc

1/Fc

Typ Max Units Details/conditions

– 45 All modes (TCPWM)

– 155 µA All modes (TCPWM)

– 650 All modes (TCPWM)

– Fc

– ns

For all trigger events

[6]

Minimum possible width of Overflow,

Underflow, and CC

(Counter equals

Compare value) outputs

Minimum time between successive counts

Minimum pulse width of PWM

Output

Minimum pulse width between

Quadrature phase inputs

Note

6. Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.

Datasheet 32 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.4.2

I

2

C

Table 15 Fixed I

Spec ID Parameter

2 C DC specifications

[7]

Description

SID149 I

SID150 I

SID151 I

SID152 I

I2C1

I2C2

I2C3

I2C4

Block current consumption at 100 kHz

Block current consumption at 400 kHz

Block current consumption at 1 Mbps

I 2 C enabled in Deep Sleep mode

Min

Table 16 Fixed I 2 C AC specifications

[7]

Spec ID Parameter

SID153 F

I2C1

Bit rate

Description

Typ

Max Units Details/conditions

50 –

135

310

1.4

µA

Min

Typ

Max Units Details/conditions

1 Msps –

Note

7. Guaranteed by characterization.

Datasheet 33 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.4.3

SPI

Table 17 SPI DC specifications

Spec ID Parameter

[7]

Description

SID163 ISPI1

SID164 ISPI2

SID165 ISPI3

Block current consumption at 1 Mbps

Block current consumption at 4 Mbps

Block current consumption at 8 Mbps

Min

Typ

Max Units Details/conditions

360 –

560

600

µA –

Table 18 SPI AC specifications

[7]

Spec ID Parameter Description

SID166 FSPI

SPI operating frequency

(Master; 6X Oversampling)

Fixed SPI Master Mode AC specifications

SID167

SID168

TDMO

TDSI

MOSI valid after SClock driving edge

MISO valid before SClock capturing edge

SID169 THMO

Previous MOSI data hold time

Fixed SPI Slave Mode AC specifications

SID170

SID171

SID171A

SID172

TDMI

TDSO

TDSO_EXT

THSO

MOSI valid before Sclock capturing edge

MISO valid after Sclock driving edge

MISO valid after Sclock driving edge in External

Clock mode

Previous MISO data hold time

SID172A TSSELSSCK SSEL valid to first SCK valid

Min Typ

– –

20

0

40

0

100

Max

8

15

42 + (3 × Tcpu)

48

Units Details/conditions

MHz – ns ns ns

Full clock, late

MISO sampling

Referred to Slave capturing edge

T

CPU

= 1/F

CPU

Datasheet 34 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.4.4

UART

Table 19 UART DC specifications

Spec ID Parameter

[8]

Description

SID160 I

SID161 I

UART1

UART2

Block current consumption at 100 Kbps

Block current consumption at 1000 Kbps

Min

Table 20 UART AC specifications

Spec ID Parameter

[8]

Description

SID162 F

UART

Bit rate

6.4.5

LCD direct drive

Table 21 LCD direct drive DC specifications

[8]

Spec ID Parameter

SID154 I

LCDLOW

Description

Operating current in low power mode

SID155 C

LCDCAP

SID156 LCD

OFFSET

SID157 I

LCDOP1

SID158 I

LCDOP2

LCD capacitance per segment/common driver

Long-term segment offset

LCD system operating current Vbias = 5 V

LCD system operating current Vbias = 3.3 V

Min

Min

Typ

Max Units Details/conditions

55 µA –

312 µA –

Typ

Max Units Details/conditions

1 Mbps –

500

20

2

2

Typ

5

Max Units Details/conditions

– µA 16 × 4 small segment disp. at 50 Hz

5000 pF – mV – mA 32 × 4 segments.

50 Hz. 25°C

32 × 4 segments.

50 Hz. 25°C

Table 22

Spec ID Parameter

SID159 F

LCD

LCD direct drive AC specifications

[8]

Description

LCD frame rate

Min

10

Typ

50

Max Units Details/conditions

150 Hz –

Note

8. Guaranteed by characterization.

Datasheet 35 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.5

6.5.1

Memory

Flash

Table 23

Spec ID Parameter

SID173 V

PE

Flash DC specifications

Description

Erase and program voltage

Min

1.71

Typ

Max Units Details/conditions

5.5

V –

Table 24

Spec ID

SID174

SID175

SID176

SID178

SID180

[10]

SID181

[10]

SID182

[10]

SID182A

[10]

T

T

T

T

T

F

F

Flash AC specifications

Parameter

ROWWRITE

[9]

ROWERASE

[9]

ROWPROGRAM

[9]

BULKERASE

[9]

DEVPROG

[9]

END

RET

Description

Row (block) write time (erase and program)

Row erase time

Row program time after erase

Bulk erase time

(32 KB)

Total device program time

Flash endurance

Flash retention.

T  55°C,

Flash retention.

T  85°C,

SID182B

SID256

SID257

[10]

F

RETQ

TWS48

TWS24

Flash retention.

T ≤ 105°C,

10 K P/E cycles,

≤ three years at T

A

≥ 85 °C.

Number of Wait states at 48 MHz

Number of Wait states at 24 MHz

100 K

20

10

10

2

1

Min Typ Max

20

16

4

20

35

7

Units Details/conditions ms

Row (block) =

128 bytes

Seconds –

Cycles –

Years

Guaranteed by

Characterization

CPU execution from Flash

CPU execution from Flash

Notes

9. It can take as much as 20 milliseconds to write to flash. During this time the device should not be Reset, or Flash operations may be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

10.Guaranteed by characterization.

Datasheet 36 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.6

6.6.1

System resources

Power-on reset (POR)

Table 25

Spec ID

Power-on reset (PRES)

Parameter Description

SID.CLK#6 SR_POWER_UP Power supply slew rate

SID185

[10]

SID186

[10]

V

V

RISEIPOR

FALLIPOR

Rising trip voltage

Falling trip voltage

Min

1

0.80

0.70

Typ Max Units Details/conditions

67

1.5

1.4

V

Table 26 Brown-out detect (BOD) for V

CCD

Spec ID Parameter Description

SID190

SID192

[10]

[10]

V

V

FALLPPOR

FALLDPSLP

BOD trip voltage in active and sleep modes

BOD trip voltage in Deep

Sleep

6.6.2

SWD interface

Table 27

Spec ID

SID213

SID214

SID215

[12]

SID216

[12]

SID217

[12]

SID217A

[12]

SWD interface specifications

Parameter Description

F_SWDCLK1 3.3 V  V

DD

 5.5 V

F_SWDCLK2 1.71 V  V

DD

 3.3 V

T_SWDI_SETUP T = 1/f SWDCLK

T_SWDI_HOLD T = 1/f SWDCLK

T_SWDO_VALID T = 1/f SWDCLK

T_SWDO_HOLD T = 1/f SWDCLK

Min

1.48

1.11

Typ Max Units Details/conditions

– 1.62

V

– 1.5 –

Min Typ Max Units Details/conditions

– – 14

MHz

SWDCLK ≤ 1/3 CPU clock frequency

– – 7

SWDCLK ≤ 1/3 CPU clock frequency

0.25 × T – –

0.25 × T –

– –

0.5 × T

1 – – ns

Datasheet 37 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.6.3

Internal main oscillator (IMO)

Table 28 IMO DC specifications

(Guaranteed by design)

Spec ID Parameter

SID218 I

SID219 I

IMO1

IMO2

Description

IMO operating current at 48 MHz

IMO operating current at 24 MHz

Min

Table 29

Spec ID

IMO AC specifications

Parameter Description Min

SID223

SID223A

[11]

SID223B

[11]

F

IMOTOL1

Frequency variation at

24, 32, and 48 MHz

(trimmed)

SID223C

[11]

SID223D

[11]

SID226

SID228

T

STARTIMO

T

JITRMSIMO2

IMO startup time

RMS jitter at 24 MHz

Typ

Max Units Details/conditions

250 µA –

180 µA –

Typ

145

Max Units Details/conditions

±2.0

%

At –40°C to 85°C, for industrial temperature range and original extended industrial range parts

±2.5

±2.0

±1.5

±1.25

7

%

%

%

%

µs – ps –

At –40°C to 105°C, for all extended industrial temperature range parts

At –30°C to 105°C, for enhanced IMO extended industrial temperature range parts

At –20°C to 105°C, for enhanced IMO extended industrial temperature range parts

At 0°C to 85°C, for enhanced IMO extended industrial temperature range parts

Note

11.The enhanced IMO extended temperature range parts replace the original extended industrial temperature range parts. For details on how to identify enhanced IMO extended temperature range parts, please visit the Infineon knowledge base article.

Datasheet 38 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.6.4

Internal low-speed oscillator (ILO)

Table 30 ILO DC specifications

(Guaranteed by design)

Spec ID

SID231

[12]

I

Parameter

ILO1

Description

ILO operating current

Min

Typ

0.3

Table 31

Spec ID

SID234

[12]

SID236

[12]

SID237

ILO AC specifications

Parameter Description

T

STARTILO1

T

ILODUTY

F

ILOTRIM1

ILO startup time

ILO duty cycle

ILO frequency range

Min

40

20

Max Units Details/conditions

1.05

µA –

Typ

50

40

Max Units Details/conditions

2 ms –

60

80

% – kHz –

6.6.5

Watch crystal oscillator (WCO)

Table 32 Watch crystal oscillator (WCO) specifications

Spec ID Parameter Description Min

SID398 FWCO Crystal frequency –

SID399 FTOL Frequency tolerance –

SID400 ESR

SID401 PD

SID402 TSTART

SID403 CL

SID404 C0

SID405 IWCO1

SID406 IWCO2

Equivalent series resistance

Drive level

Startup time

Crystal load capacitance

Crystal shunt capacitance

Operating current (high power mode)

Operating current (low power mode)

6

6.6.6

External clock

Typ

32.768

50

50

1.35

Table 33

SID305

SID306

[14]

[14]

External clock specifications

Spec ID Parameter

ExtClkFreq

ExtClkDuty

Description

External clock input frequency

Duty cycle; measured at

V

DD/2

Min

0

45

Max Units Details/conditions

– kHz –

250 ppm With 20-ppm

1 k Ω –

µW –

500

12.5

– ms – pF – pF –

8 µA –

1 µA –

Typ Max Units Details/conditions

– 48 MHz –

– 55 % –

Notes

12.Guaranteed by characterization.

13.For industrial temperature range parts, the maximum temperature is 85°C.

Datasheet 39 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Electrical specifications

6.6.7

Clock

Table 34 Clock specs

Spec ID Parameter

SID262

[14]

T

CLKSWITCH

Description

System clock source switching time

6.6.8

Smart I/O Pass-through Time

Min

3

Typ

Max

4

Units Details/conditions

Periods –

Table 35 Smart I/O pass-through time (Delay in Bypass Mode)

Spec ID Parameter

SID252 PRG_BYPASS

Description

Max delay added by Smart

I/O in Bypass Mode

Min

Typ

Max

1.6

Units Details/conditions ns –

Note

14.Guaranteed by characterization.

Datasheet 40 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Ordering information

7 Ordering information

The PSoC™ 4000S part numbers and features are listed in the following table.

Table 36 PSoC™ 4000S ordering information

Features

Category MPN

Package

4024

4025

4045

CY8C4024FNI-S402

CY8C4024LQI-S401

CY8C4024LQI-S402

CY8C4024AXI-S402

CY8C4024LQI-S403

CY8C4024AZI-S403

CY8C4024FNI-S412

CY8C4024LQI-S411

CY8C4024LQI-S412

CY8C4024AXI-S412

CY8C4024LQI-S413

CY8C4024AZI-S413

CY8C4024AZQ-S413

CY8C4025FNI-S402

CY8C4025LQI-S401

CY8C4025LQI-S402

CY8C4025AXI-S402

CY8C4025LQI-S403

CY8C4025AZI-S403

CY8C4025AZQ-S403

CY8C4025FNI-S412

CY8C4025LQI-S411

CY8C4025LQI-S412

CY8C4025AXI-S412

CY8C4025LQI-S413

CY8C4025AZI-S413

CY8C4025AZQ-S413

CY8C4045FNI-S412

CY8C4045LQI-S411

CY8C4045LQI-S412

CY8C4045AXI-S412

CY8C4045LQI-S413

CY8C4045AZI-S413

CY8C4045AZQ-S413

24 32 4

24 32 4

24 32 4

24 32 4

48 32 4

48 32 4

48 32 4

48 32 4

48 32 4

48 32 4

48 32 4

24 16 2

24 16 2

0 0 1 0

0 0 1 0

24 16 2 0 0 1 0

24 16 2   0 0 1 0

24 16 2

24 16 2

24 16 2

24 16 2

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

24 16 2

24 16 2

24 16 2

24 16 2

24 16 2

24 32 4

24 32 4

24 32 4

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 0 1 0

0

0

0

0

1

1

0

0

24 32 4

24 32 4

24 32 4

0 0 1 0

0 0 1 0

0 0 1 0

24 32 4

24 32 4

24 32 4

24 32 4

0 0 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

2 5 2 8 21 ✔ – –

2 5 2 8 19 – ✔ –

2 5 2 16 27 – – ✔ – – –

2 5 2 16 27 – – – ✔ – –

2 5 2 16 34 – – –

2 5 2 16 36 – – –

– ✔

– – ✔

2 5 2 8 21 ✔ – –

2 5 2 8 19 – ✔ –

2 5 2 16 36 – – –

2 5 2 16 27 – – ✔ – – –

2 5 2 16 27 – – – ✔ – –

2 5 2 16 34 – – – – ✔ –

– – ✔

–40°C to 85°C

2

2 5 2 8 21 ✔ – –

2 5 2 8 19 – ✔ –

2 5 2 16 27 – – ✔ – – –

2

5

5

2

2

16 36

16 27

– – ✔ –40°C to 105°C

–40°C to 85°C

2

2

2

2

5

5

5

5

2

2

2

2

16 34

16 36

16 36

8 21

– ✔ –

– – ✔

– – ✔ –40°C to 105°C

– – –

2 5 2 8 19 – ✔ – – – –

2 5 2 16 27 – – ✔ – – –

2 5 2 16 27 – – – ✔ – –

2 5 2 16 34 – – – – ✔ –

–40°C to 85°C

2 5 2 16 36 – – – – – ✔

2

2

5

5

2

2

16 36

8 21

– – – ✔ –40°C to 105°C

– – – –

2 5 2 8 19 – ✔ – – – –

2 5 2 16 27 – – ✔ – – –

–40°C to 85°C

2 5 2 16 27 – – – ✔ – –

2 5 2 16 34 – – – – ✔ –

2 5 2 16 36 – – – – – ✔

2 5 2 16 36 – – – – – ✔ –40°C to 105°C

Datasheet 41 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Ordering information

The nomenclature used in the preceding table is based on the following part numbering convention:

Field

CY8C Prefix

4

A

B

C

DE

F

S

Architecture

Family

CPU Speed

Description

Flash Capacity

Package Code

Temperature Range

Series Designator

XYZ Attributes Code

The following is an example of a part number:

Values Meaning

PV

FN

I

Q

7

AX

AZ

LQ

4

4

5

6

4

0

2

PSoC™ 4

4000 Family

24 MHz

48 MHz

16 KB

32 KB

64 KB

128 KB

TQFP (0.8-mm pitch)

TQFP (0.5-mm pitch)

QFN

SSOP

CSP

Industrial

Extended Industrial

S

M

PSoC™ 4 S-Series

PSoC™ 4 M-Series

L

BL

PSoC™ 4 L-Series

PSoC™ 4 BLE-Series

000-999 Code of feature set in the specific family

Example

4: PSoC 4

4: 48 MHz

5: 32 KB

I: Industrial

Cypress Prefix

Architecture

Family within Architecture

CPU Speed

Flash Capacity

Package Code

Temperature Range

Silicon Family

Attributes Code

CY8C 4 A B C DE F – S XYZ

Datasheet 42 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Packaging

8 Packaging

The PSoC™ 4000S is offered in 48-pin TQFP, 40-pin QFN, 32-pin QFN, 24-pin QFN, 32-pin TQFP, and 25-ball WLCSP packages.

Package dimensions and Infineon drawing numbers are in the following table.

Table 37

Spec ID

BID20

BID27

BID34A

BID34

BID34G

BID34F

Package list

Package

48-pin TQFP

40-pin QFN

32-pin QFN

24-pin QFN

32-pin TQFP

25-ball WLCSP

Description

7 × 7 × 1.4 mm height with 0.5-mm pitch

6 × 6 × 0.6 mm height with 0.5-mm pitch

5 × 5 × 0.6 mm height with 0.5-mm pitch

4 × 4 × 0.6 mm height with 0.5-mm pitch

7 × 7 × 1.4 mm height with 0.8-mm pitch

2.02 × 1.93 × 0.48 mm height with 0.35-mm pitch

Package drawing

51-85135

001-80659

001-42168

001-13937

51-85088

002-09957

T

JC

T

JA

T

JC

Table 38

Parameter

T

A

T

J

T

JA

T

JC

T

JA

T

JC

T

JA

T

JC

T

JA

T

JC

T

JA

Package thermal characteristics

Description

Operating ambient temperature –

Operating junction temperature –

Package θ

JA

Package θ

JC

Package θ

JA

Package θ

JC

Package θ

JA

Package θ

JC

Package θ

JA

Package

48-pin TQFP

40-pin QFN

32-pin QFN

Package θ

JC

Package θ

JA

24-pin QFN

32-pin TQFP Package θ

JC

Package θ

JA

Package θ

JC

25-ball WLCSP

Table 39 Solder reflow peak temperature

Package Maximum peak temperature

All 260 °C

Min

–40

–40

Typ

25

73.5

33.5

17.8

2.8

20.8

5.9

21.7

5.6

29.4

3.5

40

0.5

Max Units

105 °C

125

°C

°C/W

°C/W

°C/W

°C/W

°C/W

°C/W

– °C/W

– °C/W

°C/W

°C/W

°C/W

°C/W

Maximum time at peak temperature

30 seconds

Datasheet 43 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Packaging

Table 40

8.1

Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-020

Package

All except WLCSP

25-ball WLCSP

MSL

MSL 3

MSL 1

Package diagrams

Figure 6

51-85135 *C

48-pin TQFP (7 × 7 × 1.4 mm) package outline, 51-85135

Datasheet 44 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Packaging

Figure 7

001-80659 *A

40-pin QFN ((6 × 6 × 0.6 mm) 4.6 × 4.6 E-Pad (Sawn)) package outline, 001-80659

Datasheet 45 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Packaging

SEE NOTE 1

TOP VIEW

BOTTOM VIEW

SIDE VIEW

Figure 8

DIMENSIONS

E

E2

L b e

A

A1

A2

D

D2

SYMBOL

MIN.

NOM.

MAX.

0.50

-

0.55

0.020

0.60

0.045

4.90

3.40

0.15 BSC

5.00

3.50

5.10

3.60

4.90

3.40

5.00

3.50

5.10

3.60

0.30

0.18

0.40

0.25

0.50 TYP

0.50

0.30

NOTES:

1. HATCH AREA IS SOLDERABLE EXPOSED PAD

2. BASED ON REF JEDEC # MO-248

3. PACKAGE WEIGHT: 0.0388g

4. DIMENSIONS ARE IN MILLIMETERS

001-42168 *F

32-pin QFN ((5.0 × 5.0 × 0.55 mm) 3.5 × 3.5 mm E-Pad (Sawn)) package outline, 001-42168

Datasheet 46 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Packaging

Figure 9

001-13937 *H

24-pin QFN ((4 × 4 × 0.60 mm) 2.65 × 2.65 E-Pad (Sawn)) package outline, 001-13937

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Datasheet 47 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Packaging

Figure 10 32-pin TQFP (7 × 7 × 1.4 mm) package outline, 51-85088

51-85088 *E

Figure 11

002-09957 **

25-ball WLCSP (2.02 × 1.93 × 0.48 mm) package outline, 002-09957

Datasheet 48 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Acronyms

9 Acronyms

EMI

EMIF

EOC

EOF

EPSR

ESD

ETM

FIR

DNL

DNU

DR

DSI

DWT

ECC

ECO

EEPROM

CMRR

CPU

CRC

DAC

DFB

DIO

DMIPS

DMA

Table 41

Acronym

Acronyms used in this document abus

ADC

AG

AHB analog local bus analog-to-digital converter analog global

Description

AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus

ALU

AMUXBUS

API

APSR

ARM ®

ATM

BW

CAN arithmetic logic unit analog multiplexer bus application programming interface application program status register advanced RISC machine, a CPU architecture automatic thump mode bandwidth

Controller Area Network, a communications protocol common-mode rejection ratio central processing unit cyclic redundancy check, an error-checking protocol digital-to-analog converter, see also IDAC, VDAC digital filter block digital input/output, GPIO with only digital capabilities, no analog. See GPIO.

Dhrystone million instructions per second direct memory access, see also TD differential nonlinearity, see also INL do not use port write data registers digital system interconnect data watchpoint and trace error correcting code external crystal oscillator electrically erasable programmable read-only memory electromagnetic interference external memory interface end of conversion end of frame execution program status register electrostatic discharge embedded trace macrocell finite impulse response, see also IIR

Datasheet 49 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Acronyms

NMI

NRZ

NVIC

NVL opamp

PAL

PC

PCB

PGA

PHUB

PHY

PICU

LUT

LVD

LVI

LVTTL

MAC

MCU

MISO

NC

ITM

LCD

LIN

LR

I/O

IPOR

IPSR

IRQ

Table 41

Acronym

Acronyms used in this document

(continued)

Description

FPB

FS

GPIO

HVI flash patch and breakpoint full-speed general-purpose input/output, applies to a PSoC pin high-voltage interrupt, see also LVI, LVD

IIR

ILO

IMO

INL

IC

IDAC

I

IDE

2 C, or IIC integrated circuit current DAC, see also DAC, VDAC integrated development environment

Inter-Integrated Circuit, a communications protocol infinite impulse response, see also FIR internal low-speed oscillator, see also IMO internal main oscillator, see also ILO integral nonlinearity, see also DNL input/output, see also GPIO, DIO, SIO, USBIO initial power-on reset interrupt program status register interrupt request instrumentation trace macrocell liquid crystal display

Local Interconnect Network, a communications protocol.

link register lookup table low-voltage detect, see also LVI low-voltage interrupt, see also HVI low-voltage transistor-transistor logic multiply-accumulate microcontroller unit master-in slave-out no connect nonmaskable interrupt non-return-to-zero nested vectored interrupt controller nonvolatile latch, see also WOL operational amplifier programmable array logic, see also PLD program counter printed circuit board programmable gain amplifier peripheral hub physical layer port interrupt control unit

Datasheet 50 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Acronyms

SR

SRAM

SRES

SWD

SWV

TD

THD

TIA

TRM

TTL

TX

UART

SCL

SDA

S/H

SINAD

SIO

SOC

SOF

SPI

RISC

RMS

RTC

RTL

RTR

RX

SAR

SC/CT

Table 41

Acronym

Acronyms used in this document

(continued)

Description

PLA

PLD

PLL

PMDD programmable logic array programmable logic device, see also PAL phase-locked loop package material declaration datasheet

POR

PRES

PRS

PS

PSoC™

PSRR

PWM

RAM power-on reset precise power-on reset pseudo random sequence port read data register

Programmable System-on-Chip™ power supply rejection ratio pulse-width modulator random-access memory reduced-instruction-set computing root-mean-square real-time clock register transfer language remote transmission request receive successive approximation register

I switched capacitor/continuous time

2 C serial clock

I 2 C serial data sample and hold signal to noise and distortion ratio special input/output, GPIO with advanced features. See GPIO.

start of conversion start of frame

Serial Peripheral Interface, a communications protocol slew rate static random access memory software reset serial wire debug, a test protocol single-wire viewer transaction descriptor, see also DMA total harmonic distortion transimpedance amplifier technical reference manual transistor-transistor logic transmit

Universal Asynchronous Transmitter Receiver, a communications protocol

Datasheet 51 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Acronyms

Table 41

Acronym

Acronyms used in this document

(continued)

Description

UDB

USB

USBIO

VDAC universal digital block

Universal Serial Bus

USB input/output, PSoC pins used to connect to a USB port voltage DAC, see also DAC, IDAC

WDT

WOL

WRES

XRES

XTAL watchdog timer write once latch, see also NVL watchdog timer reset external reset I/O pin crystal

Datasheet 52 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Document conventions

10

10.1

Document conventions

Units of measure

pF ppm ps s sps sqrtHz

V nA ns nV

µW mA ms mV

µF

µH

µs

µV

MHz

M 

Msps

µA

KB kbps

Khr kHz k  ksps

LSB

Mbps

Table 42

Symbol

Units of measure

°C dB fF

Hz degrees Celsius decibel femto farad hertz

1024 bytes kilobits per second kilohour kilohertz kilo ohm kilosamples per second least significant bit megabits per second megahertz mega-ohm megasamples per second microampere microfarad microhenry microsecond microvolt microwatt milliampere millisecond millivolt nanoampere nanosecond nanovolt ohm picofarad parts per million picosecond second samples per second square root of hertz volt

Unit of measure

Datasheet 53 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Revision history

Revision history

Document version

**

*A

*B

*C

*D

*E

Date of release Description of changes

2015-08-28 New datasheet.

2015-10-30

Removed 20-ball WLCSP package related information in all instances across the document.

Added 25-ball WLCSP package related information in all instances across the document.

Updated

Pinouts :

Updated

Table 1

.

Updated

Electrical specifications :

Updated

Analog peripherals :

Updated

Comparator

:

Updated

Table 10

(Updated details in “Details/Conditions” column corresponding to V

ICM3

, I

CMP3

parameters (Added V

DDD

≥ 2.2V at –40 °C)).

Updated

Table 11

(Updated details in “Details/Conditions” column corresponding to TRESP3 parameter (Added V

DDD

Updated

CSD and IDAC

:

Updated

Table 13

.

Updated

Ordering information

:

Updated part numbers.

≥ 2.2V at –40 °C)).

2015-12-08 Changed status from Advance to Preliminary.

2016-01-27

Updated

Packaging :

Updated

Table 38

(Replaced TBD with values for Theta J

A

and Theta J

C parameters).

Updated

Package diagrams

:

Replaced TBD with spec 002-09957 **.

Added Errata.

2016-02-16 Updated to new template.

2016-03-15

Updated

Pinouts :

Updated

Table 1

.

Updated

Electrical specifications :

Updated

Device level specifications :

Updated

XRES :

Updated

Table 8

(Updated all values corresponding to R

PULLUP

parameter).

RESETWAKE

Updated

Table 9

(Updated all values corresponding to T parameter).

Updated

Analog peripherals :

Updated

CSD and IDAC

:

Updated

Table 12

.

Updated

10-bit CAPSENSE™ ADC :

Updated

Table 13

.

Updated

Memory :

Updated

Flash :

Updated

Table 24 (Updated all values corresponding to T

T

ROWPROGRAM

parameters).

ROWERASE

,

Datasheet 54 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Revision history

Document version

*F

*G

*H

*I

*J

Date of release Description of changes

2016-05-12

2016-07-27

2016-09-14

2017-01-09

Updated

Pinouts :

Updated

Alternate pin functions

:

Updated

Table 2

.

Updated

Electrical specifications :

Updated

Analog peripherals :

Updated

CSD and IDAC

:

Updated

Table 12

(Updated all values corresponding to IDAC1INL,

IDAC2INL, SNR, IDAC1CRT1, IDAC1CRT12, IDAC1CRT22, IDAC1CRT32,

IDAC2CRT1, IDAC2CRT12, IDAC2CRT22, IDAC2CRT32, IDACMISMATCH2,

IDACMISMATCH3 parameters).

Updated

10-bit CAPSENSE™ ADC :

Updated

Table 13 (Updated all values corresponding to A_SND parameter).

Removed Errata.

Updated to new template.

Changed status from Preliminary to Final.

Updated

Functional definition

:

Updated

Special function peripherals

:

Updated

LCD segment drive :

Updated description.

Updated

Electrical specifications :

Updated

Device level specifications :

Updated

Table 4

(Updated details corresponding to I

parameters).

, I

DD8

, I

DD11

, I

DD17

,

I

DD20

, I

Updated

, I

GPIO :

, I

DD26

, I

DD29

, I

DD32

, I

DD_XR

Updated

Table 6

(Updated details in “Details/Conditions” column corresponding to V

OH

parameter and spec ID SID60).

Updated

Packaging :

Updated

Table 37 (Updated details in “Description” column corresponding

to 25-Ball WLCSP package (Updated package dimensions)).

Updated

Table 40

(Added 25-ball WLCSP package and its corresponding details).

Completing Sunset Review.

Added 40-pin QFN package related information in all instances across the document.

Updated

Electrical specifications :

Updated

Device level specifications :

Updated

Table 4

(Updated details corresponding to I

DD5

I

DD20

, I

DD23

Updated

, I

DD23A

, I

Packaging :

, I

Updated

Package diagrams

:

Added spec 001-80659 *A.

DD29

, I

DD32

, I

DD_XR

parameters).

, I

DD8

, I

DD11

, I

DD17

,

Updated

Electrical specifications :

Replaced PRGIO with Smart I/O in all instances.

2017-04-26 Updated Cypress Logo and Copyright.

Datasheet 55 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Revision history

Document version

*K

*L

Date of release

2017-11-17

2019-07-31

Description of changes

Updated Document Title to read as “PSoC® 4: PSoC 4000S Datasheet

Programmable System-on-Chip (PSoC®)”.

Added 32-pin TQFP Package related information in all instance across the document.

Updated

Ordering information

:

Updated part numbers.

Updated

Packaging :

Updated

Package diagrams

: spec 001-42168 – Changed revision from *E to *F.

Added spec 51-85088 *E.

Updated

Features :

Updated

32-bit MCU subsystem

:

Updated description.

Added

Development ecosystem

.

Added

PSoC™ Creator

.

Updated

Functional definition

:

Updated

System resources :

Updated

Power system

:

Updated description.

Updated

Watch crystal oscillator (WCO)

:

Updated description.

Updated

Fixed function digital :

Updated

Serial communication block (SCB) :

Updated description.

Updated

Special function peripherals

:

Updated

LCD segment drive :

Updated description.

Updated

Pinouts :

Added Note below

Table 1 .

Updated

Electrical specifications :

Updated

Analog peripherals :

Updated

CSD and IDAC :

Updated

Table 12

(Updated details in “Details/Conditions” column corresponding to V

REF

, V

REF_EXT

and V

COMPIDAC

parameters).

Updated

Digital peripherals

:

Updated

SPI :

Updated

Table 18

(Updated all values corresponding to TSSELSSCK parameter).

Updated

Ordering information

:

Updated part numbers.

Updated

Packaging :

Updated

Package diagrams

: spec 001-13937 – Changed revision from *F to *G.

Updated to new template.

Completing Sunset Review.

Datasheet 56 002-00123 Rev. *O

2022-07-28

PSoC™ 4 MCU: PSoC™ 4000S

Based on Arm® Cortex®-M0+ CPU

Revision history

Document version

*M

*N

*O

Date of release

2020-11-20

2020-12-23

2022-07-28

Description of changes

Updated

Features :

Added “Clock sources”.

Added “ModusToolbox™ software”.

Updated

Development ecosystem

:

Replaced “More Information” with “Development ecosystem” in heading.

Updated description.

Added

ModusToolbox™ software .

Updated

Electrical specifications :

Updated

Device level specifications :

Updated temperature range in description below heading.

Updated

System resources :

Updated

Power-on reset (POR) :

Updated

Table 25

.

Updated

Ordering information

:

Updated

Table 36

:

Added Q-temp MPNs for the 48-pin TQFP package.

Updated

Packaging :

Updated

Table 38

.

Updated to new template.

Updated

Ordering information

:

Updated Nomenclature:

Updated details under Temperature Range to show “Extended Industrial”.

Updated

Table 29

: Updated spec SID223 and SID223A. Added specs

SID223B through SID223D.

Migrated to Infineon template.

Datasheet 57 002-00123 Rev. *O

2022-07-28

Please read the Important Notice and Warnings at the end of this document

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-28

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this document?

Go to www.infineon.com/support

Document reference

002-00123 Rev. *O

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”).

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office

( www.infineon.com

).

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon

Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon

Technologies office.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

Except as otherwise explicitly approved by Infineon

Technologies in a written document signed by authorized representatives of Infineon

Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

advertisement

Related manuals